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Abstract

We propose zero-area reciprocal diagram as a graphical tool for the design of rigid foldable mechanisms.
First, we interpret the meaning of zero-area reciprocal diagram as the second-order approximation of
rigid foldability of origami crease pattern. We further show the equivalence to rigid foldability for
special cases of single-vertex origami and an origami pattern with flat foldable degree-4 vertices. We
also show design examples with approximated rigid folding.

Keywords: morphology, origami, reciprocal diagram, first-order flexibility, second-order flexibility

1. Introduction
The reciprocal diagram is a powerful graphical tool for understanding and designing structural systems.
If we give a truss structure as an original form diagram, its reciprocal diagram represents a force diagram
representing the equilibrium. If we give a crease pattern as an original form diagram, then its recipro-
cal diagram represents its polyhedral lifting, which is a polyhedral surface whose planar projection is
precisely the original diagram [3, 12]. These two interpretations are related: the polyhedral lifting rep-
resents the Airy stress function of the truss under stress [7], where the fold angle (measured by tangents)
of the polyhedral edge is equivalent to the force applied to each edge.

In the context of origami, we can view a polyhedral lifting as the first-order approximation of rigid
origami, i.e., an origami surface is composed of rigid panels and rotational hinges connecting them
together. Hence, it seems proper to use the reciprocal diagram for the analysis of rigid foldability and
the design of rigidly foldable structures. However, it turns out soon that the existence of reciprocal
diagram alone is a poor tool to judge rigid foldability of origami. For example, a degree-3 vertex has a
nontrivial reciprocal diagram, but there is no valid folding for this pattern (Figure 1).

David Huffman, the third author of this paper, introduced the concept of dual picture in 1970s [5] for
analyzing polyhedral surface with zero Gaussian curvature, i.e., paper folding. In this paper, we call
a dual picture a zero-area reciprocal diagram as it is a reciprocal diagram with an additional property
that the signed area of each face is zero. Figure 2 shows an example of origami vertex and its zero-area
reciprocal diagram. Huffman designed series of origami patterns in 1970’s, when he apparently used
the zero-area reciprocal diagram in his design sketch. However, the precise meaning of the diagram
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Figure 1: A pattern with degree-3 vertices has a nontrivial reciprocal diagram, but is not finitely foldable.
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Figure 2: Left: A crease pattern of origami. Middle: A zero-area reciprocal diagram of the crease
pattern. Right: We also use a cantellated diagram for visualization purpose.

in the context of folding motion was not mathematically clarified, as his interpretation of zero-area
reciprocal diagram as the “infinitesimal” behavior of folding near very flat unfolded state [5] leaves
some ambiguity.

Zero area reciprocal diagram is catching the researchers’ attentions again after 2000s in the context of
origami engineering. Watanabe and Kawaguchi [11] presented the zero-area reciprocal diagram as a
method to judge rigid foldability and showed that the existence of such diagram is a necessary condition
for rigid foldability but not sufficient in general. Further, Watanabe [10] shows the relation between the
second-order approximation of rigid foldability and the zero-area reciprocal diagram.

In this paper, we will clarify the geometric meaning of zero-area reciprocal diagram by first verifying
the equivalence of the existence of zero-area dual polygon and the second-order rigid foldability, and
then by showing this second-order condition is actually sufficient condition of finite rigid foldability in
the special types of patterns, namely, a single vertex pattern and a flat-foldable degree-4 multi-vertex
origami. The contribution of this paper is summarized as:

1. The equivalence of zero-area reciprocal diagram and second-order rigid foldability.
2. The equivalence of the existence of zero-area reciprocal diagram and the finite rigid foldability for

a single-vertex case.
3. The equivalence of the existence of zero-area reciprocal diagram and the finite rigid foldability for

a flat-foldable degree-4 multi-vertex origami.
4. Analysis of design examples of rigidly or approximately foldable patterns designed by Huffman.

2. Definitions
Reciprocal Diagram A crease pattern C is a planar graph on a polygonal piece of paper P such that it
partitions P into multiple faces. Consider the dual graph D of C; the dual graph is a planar graph whose
faces, edges, and vertices correspond to the vertices, edges, and faces of C, respectively. The reciprocal
diagram R of C is a mapping (with potential self-intersection) of D on to the plane with the following
properties:
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1. The edge i∗ in R mapped from crease i in C is a straight segment perpendicular to i.
2. The face loop is defined for each face v∗ in R corresponding to vertex v in C as the sequence of

dual edges corresponding to the edges in counterclockwise order around v.
3. Each edge i∗ of reciprocal diagram has assigned sign σi, such that along any face loop of v∗,

the direction of the edge i∗ is 90◦ clockwise or counterclockwise rotation of the vector along the
original crease i from corresponding vertex v if sign is plus or minus, respectively.

Zero-area reciprocal diagram of C is a reciprocal diagram of C where the signed area of each face in
counterclockwise orientation is zero.

We also propose the visualization of the reciprocal diagram, cantellated diagram, which is a potentially
self-intersecting cantellation of the original diagram, whose generated dual polygon at the vertex is
congruent to the corresponding face of the reciprocal diagram (Figure 2 Right.) The existence of (zero-
area) cantellated diagram is equivalent to the existence of (zero-area) reciprocal diagram.

Rigid Foldability We follow an usual definitions of rigid foldability [1] but with allowing some edges
not to fold at all. Rigid folded state of origami by crease pattern C is a piecewise isometric homeomor-
phism of a piece of paper P , where each face surrounded by crease of C and the boundary of P stays
congruent after folded. Fold angle of a crease is the signed angle formed by the normals of incident
faces, such that it is positive (negative) if the front side (back side) of the paper gets closer.

Each fold angle determines the relative position of adjacent faces, which in turn, determines the positions
of all faces. Thus a given folded state (relative to one of the face) can be uniquely represented by a point
in REin , where each axis represents the fold angle of each crease. This space is called the parameter
space. The set of point on parameter space that represents a valid folded state is called configuration
space, which is the solution space of piecewise isometry constraints. Rigid foldability is a problem of
asking if there is a finite length continuous path from a point within the configuration space.

Condition of Folded State A planar piece of paper homeomorphic to a disk with specified fold angles
is judged to be a valid rigid folded state if and only if there is no paper crossings and it satisfies all of
the condition around each vertex: for each interior vertex with incident edges i = 0, . . . , n− 1 with fold
angles ρi and direction vector `i = (`xi , `

y
i , `

z
i )

T (`zi = 0 when we are at the flat state) [6, 2],

F := R(`0, ρ0)R(`1, ρ1) · · ·R(`n−1, ρn−1) = I3, (1)

where R(`i, ρi) is an orthogonal matrix representing the rotation by angle ρi about an axis along `i
passing through the origin (Figure 3 Left). In this paper, we can ignore the paper crossing because we are
interested in the neighborhood of configuration space near the flat state, where no potential intersection
exists.

Here, R(`i, ρi) can be described by Rodregues’s formula as

R(`i, ρi) = I3 + sin ρ [`i×] + (1− cos ρ) [`i×]2 ,

where [`i×] is a cross product operator which is is a skew-symmetric matrix defined such that [`i×]p =

`i × p for any vector p.

[`i×] :=

 0 −`zi `yi
`zi 0 −`xi
−`yi `xi 0

 .
n-th order rigid foldability: We say an origami crease pattern is n-th order rigidly foldable (n = 1, 2)
if there is a parameterized C1 path ρ(t) in the parameter space with nontrivial initial speed ρ̇(0) such
that F is at most o(tn+1).The motion ρ(t) is called n-th order rigid folding motion. First order rigid
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Figure 3: Single vertex rigid origami. Gauss Map and its projection to a plane.

foldability is also called infinitesimal rigid foldability.

Corollary 1 n-th order rigid foldability implies n− 1-th rigid foldability.

3. First Order Rigid Foldability
Because F is C∞, its first-order approximation can be given as

F = I3 +

n−1∑
i=0

∂F

∂ρi

∣∣∣∣
ρ=0

ρ̇i∆t+ o(∆t2), (2)

where the partial derivative of F in the second term is

∂F

∂ρi

∣∣∣∣
ρ=0

= R(`0, ρ0) · · ·R(`i, ρi) [`i×]R(`i+1, ρi+1) · · ·R(`n−1, ρn−1)|ρ=0 = [`i×] . (3)

Here, we used that

∂R(`i, ρi)

∂ρi
= cos ρ [`×] + sin ρ [`×]2 = R(`i, ρi) [`×] .

Therefore, the necessary and sufficient condition for the first-order rigid foldability is to obtain the
motion’s first-order derivative ρ̇i making the second term of Equation 2 zero.

n−1∑
i=0

ρ̇i [`i×] = 0. (4)

for each vertex. Equivalently, using ωi = ρ̇i`i = (ωxi , ω
y
i , ω

z
i )

T,

n−1∑
i=0

ρ̇i`i =

n−1∑
i=0

ωi = 0. (5)

Theorem 2 The existence of nontrivial reciprocal diagram of crease pattern C is the necessary and
sufficient condition for the first-order rigid foldability by C.

Proof: For sufficiency, assume that there is a nontrivial reciprocal diagram. For each edge i∗ of recip-
rocal diagram, we can define signed length `i∗ , the length of i∗ with its sign σi. If we set ρ̇i = `i∗ , then
Equation 5 represents the closure of corresponding each face loop rotated by 90◦ in counterclockwise
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direction. For necessity, given Equations 5 for each vertex, we can draw its dual polygon for each vertex
such that each edge has length of |ρi| and signs of sign(ρi). Such dual polygon can be translated to
tessellate a plane because their shared edges have compatible directions and lengths. 2

An important fact from Equation 5 is that in a flat unfolded state or origami, z element of the equation
degenerates to zero no matter of choice of fold speed assignment. Only two equations out of three
constraints is actually active in this singular position, but once it is in a generic folded position, the
third equation constrains the system. As a result, a 3-valency vertex is infinitesimally rigidly foldable
although not rigidly foldable. Also, the flat state is a bifurcation point of different folding paths for a
rigidly foldable system.

4. Second order Rigid Foldability
Now, let us consider the second-order rigid foldability.

F = I +
∑

i=0,...,n−1

∂F

∂ρi
ρ̇i

∣∣∣∣
ρ=0

∆t+
1

2

n−1∑
i=0

n−1∑
j=0

∂2F

∂ρi∂ρj
ρ̇iρ̇j +

n−1∑
i=0

∂F

∂ρi
ρ̈i

∣∣∣∣∣∣
ρ=0

∆t2 + o(∆t3) (6)

Here, the second-order derivative of the total rotation is

∂2F

∂ρi∂ρj
= R(`0, ρ0) · · ·R(`i, ρi) [`i×] · · ·R(`j , ρj)

[
`j×
]
· · ·R(`n−1, ρn−1), (7)

when i ≤ j. This has the value at the flat state of

Hi,j :=
∂2F

∂ρi∂ρj

∣∣∣∣
ρ=0

=

{
[`i×]

[
`j×
]

i ≤ j[
`j×
]

[`i×] i > j
(8)

The former i ≤ j case is calculated as

[`i×]
[
`j×
]

=

−`iy`jy `i
y`j

x 0

`i
x`j

y −`ix`jx 0

0 0 −`ix`jx − `iy`jy

 (9)

We can easily check that the latter case is the transpose of the former case. A first-order rigid folding
motion ρ is a second-order rigid folding motion if and only if ρ̇ and ρ̈ can be given such that the third
term of Equation 6 vanishes.∑

i,j

Hi,j ρ̇iρ̇j +
∑
i

[`i×] ρ̈i =

∑
i,j

−`iy`jy `a
y`b

x 0

`a
x`b

y −`ix`jx 0

0 0 −`ix`jx − `iy`jy

 ρ̇iρ̇j +
∑
i

 0 0 `yi
0 0 −`xi
−`yi `xi 0

 ρ̈i = 0

where a = min(i, j) and b = max(i, j). Notice the perpendicularity of first and second term, which
means that they must be both 0. The second term can be set to zero by either a trivial acceleration,so we
only need to care about the first term.

The diagonal elements of the first term
∑

Hi,j ρ̇iρ̇j are all zero because of Equation 5. For example,∑
i,j `

x
i `
x
j ρ̇iρ̇j = (

∑
i ω

x
i )(
∑

j ω
x
j ) = 0. So, we look at the remaining elements (1, 2) and (2, 1) of

the matrix, and consider their summation and difference. The summation again is zero because of
5
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Figure 4: The signed area of a reciprocal face.

Equation 5. ∑
i,j

(Hi,j(2, 1)`+ Hi,j(1, 2))ρ̇iρ̇j =
∑
i,j

(ωxi ω
y
j + ωyi ω

x
j ) = 0

Their difference is ∑
i,j

(Hi,j(2, 1)`−Hi,j(1, 2))ρ̇iρ̇j . = 2
∑

i,j(i<j)

‖ωi × ωj‖

Therefore, ρ is second-order rigidly foldable motion if and only if it satisfies Equation 5 and∑
i,j(i<j)

‖ωi × ωj‖ = 0 (10)

Theorem 3 A crease pattern is second-order rigidly foldable if and only if there exists a non-trivial
zero-area reciprocal diagram.

Proof: For necessity, assume that Equations 5 and 10 are satisfied. Because of Equation 5, there exits
a reciprocal diagram, and we let the position of the node of reciprocal diagram as xi such that ωi =

xi+1 − xi for each vertex. Now, Equation 10 can be written as ∑
i,j(i<j)

‖ωi × ωj‖

= ‖(ω0 + · · ·+ ωn−2)× ωn−1‖+ ‖(ω0 + · · ·+ ωn−3)× ωn−2)‖+ · · ·+ ‖ω0 × ω1‖

=

n−1∑
i=1

‖(xi − x0)× (xi+1 − xi)‖

Since ‖(xi − x0)× (xi+1 − xi)‖ represents 2 times the signed area of triangle formed by x0,xi,xi+1,
their summation is the signed area of the polygon x0,x1, . . . ,xn−1. Therefore, each face of the recip-
rocal diagram has zero-area. Figure 4 shows an example of degree-4 vertex. On the other hand, if the
reciprocal diagram is zero-area, it satisfies Equation 10, so it is also sufficient. 2

5. Single Vertex Rigid Foldability
In general, second-order rigid foldability does not imply finite rigid foldability. However, second-order
rigid foldability is a sufficient judge of finite rigid foldability for a single-vertex origami.
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Theorem 4 A single-vertex origami is rigidly foldable if and only if it has a nontrivial zero-area dual.

Proof: Necessity is obvious as rigid foldability implies second-order rigid foldability. For sufficiency,
assume that a zero-area reciprocal diagram exists. Consider adding a slit along one of the creases and
folding the other creases proportionally to the folding speed given by the reciprocal digram. This struc-
ture can be illustrated as a spherical linkage by taking the intersection of the surrounding faces with a
small sphere centering the vertex. We claim that the gap at the slit can be glued back together by a mall
modification of fold angles; more specific proof follows.

First, we can safely assume that there are at least four creases with nontrivial speeds. (This is because
a nontrivial reciprocal polygon has at least two non-trivial edges. If there are only two of such creases,
they must be collinear, and the proportional folding is exactly a valid rigid folding as desired. If there are
only three of such creases, the reciprocal diagram forms a triangle, whose area cannot be zero.) Now,
take three consecutive creases i, j, and k, such that the summation of angles θij between ij and θjk
between jk is smaller than 180◦ (Figure 5). Now, assume that the slit separates crease k into two k and
k′ (such that k side is connected), and fold the rest of the angles according to the reciprocal diagram.
We assume that the fold angle at j equals some time parameter t. The distance θik′ between i and k′ is
approximated by θik in second order. This is calculated using spherical lows of cosines as follows.

cos(θik′ + o(t3)) = cos(θik) = cos θij cos θjk + sin θij sin θjk cos(π − t).

By the Taylor expansion of cosines and sines, we get

cos θik′ − cos(θij + θjk) =
t2

2
sin θij sin θjk + o(t3) > 0 (11)

Therefore, θik′ < θij + θjk holds for the range of sufficiently small t, and thus the gap is connected. 2

i
j

k

t=ρj 

θik

θij

θjk

gap o(t3)

Figure 5: Using two flaps to fill the gap of o(t3).

6. Multiple Vertex Cases
For a pattern with multiple vertices, zero-area reciprocal diagram does not imply rigid foldabilty in
general. The third author designed series of origami crease patterns, which apparently are based on
zero-area reciprocal diagram. Here, we show a family of patterns that are rigidly foldable and a family
that are only approximately rigid foldable.

Exactly Rigidly Foldable: Flat foldable Degree-4 Pattern A pattern made only with flat-foldable
degree-4 vertex has a property that if there exits a rigid folding, then the folding angles measured by
tangent of half angles tan ρ

2 are proportional to each other [4, 5, 9]. A series of patterns designed by
Huffman falls into this category. Figure 6 shows one of such patterns with zero-area reciprocal diagram,
which are all rigidly foldable. In fact, we can show that any origami pattern in this category is rigidly
foldable.
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Figure 6: A pattern formed by Flat-foldable degree-4 vertices. Left: Huffman’s sketch with reciprocal
diagram. Right: Folding simulation by Freeform Origami.
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Figure 7: Zero-area reciprocal diagram of flat-foldable degree-4 vertex.

Theorem 5 An origami crease pattern that is composed only of degree-4 vertices with supplementary
opposite angles is rigidly foldable if and only if there exists a nontrivial zero-area reciprocal diagram.

Proof: Assume there is a zero-area reciprocal diagram. Consider a vertex with faces A,B,C,D with
sector angles α, β, π − α, π − β, respectively. (1) Because of this supplementary angle property, when
each crease is drawn as a full line, there exists a pair of perpendicular axesm1 andm2 that mirror reflects
creases AB to CD and BC to DA. (2) Also, because reciprocal quadrangle A∗B∗C∗D∗ is zero-area,
the line A∗C∗ is parallel to B∗D∗ (Figure 7). From properties (1) and (2), the possible reciprocal
quadrangles are constrained to have A∗C∗ parallel or perpendicular to the m1 and m2. This reduces to
two cases as shown in Figure 7.

(ωAB, ωBC , ωCD, ωDA) =


(
− cos α+β2 , cos α−β2 , cos α+β2 , cos α−β2

)(
sin α+β

2 ,− sin α−β
2 , sin α+β

2 , sin α−β
2

)
It can be checked that the path(

tan
ρAB

2
, tan

ρBC
2
, tan

ρCD
2
, tan

ρDA
2

)
= (ωAB, ωBC , ωCD, ωDA)

satisfies Equation 1, and thus is a continuous rigid folding path. Zero-area polygons are compatible
in the reciprocal diagram, so the existence of zero-area reciprocal diagram imply the existence of rigid
folding motion. 2

Approximately Rigidly Foldable: Spiral Pattern General assembly of zero-area polygons does not
lead to a finite mechanism. Figure 8 shows examples of spiral origami designed by the third author based
on reciprocal diagrams. Figure 9 shows the reconstructed cantellation diagram. To verify, we performed
a folding simulation using Freeform Origami [8] (Figure 8 Bottom). We observed a small flex with some
numerical error and significantly slow convergence to the flat state. The slow convergence seemingly
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Figure 8: Series of spiral designs that has zero-area reciprocal diagram. They are only approximately
rigidly foldable.

Figure 9: Left: One of patterns from Figure 8. Right: Cantellated visualization of zero-area reciprocal
diagram.

originates from the failure in the Newton-Raphson method when dealing with non-quadratic errors along
the second-order rigidly foldable path.

7. Conclusion
We showed the equivalence of zero-area reciprocal diagram and the second-order rigid foldability for
origami crease pattern. Single vertex origami and an origami pattern with flat foldable degree-4 vertices
are special cases where the second-order rigid foldability leads to finite rigid foldability. Compared to
the characterization of rigid foldability of a single-vertex [1] or origami with flat-foldable degree-4 ver-
tices [9], the proposed graphical method has an advantage that we can construct the folding speed as the
signed length of the diagram. We expect that the zero-area reciprocal diagram in the form of cantellated
diagram can be applied as a good graphical tool for the design of rigidly foldable mechanisms, espe-
cially when the folding speed needs to be controlled. As an example, Figure 10 shows a rigidly foldable
mechanism with rapidly amplifying folding speeds. This continuous one-DOF mechanism mimics a
sequential folding process. We also showed variational designs of second-order rigidly foldable but not
rigidly foldable patterns. As such patterns can approximate a rigid folding mechanism, we suspect that
these patterns have many potential engineering applications for deformable and deployable structures.

Acknowledgment
This work was discussed at the 2016 Bellairs Workshop on Computational Geometry, co-organized by
Erik Demaine and Godfried Toussaint. We thank the other participants of the workshop for stimulating

9



Proceedings of the IASS Annual Symposium 2016
Spatial Structures in the 21st Century

Figure 10: A “sequential” rigid folding produced by amplifying folding speeds.
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