
Recursed Is Not Recursive: A Jarring Result1

Erik D. Demaine2

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA3

Justin Kopinsky4

Work done while at Massachusetts Institute of Technology, Cambridge, MA, USA5

jkopinsky@gmail.com6

Jayson Lynch7

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA8

Abstract9

Recursed is a 2D puzzle platform video game featuring “treasure chests” that, when jumped into,10

instantiate a room that can later be exited (similar to function calls), optionally generating a “jar”11

that returns back to that room (similar to continuations). We prove that Recursed is RE-complete12

and thus undecidable (not recursive) by a reduction from the Post Correspondence Problem. Our13

reduction is “practical”: the reduction from PCP results in fully playable levels that abide by all14

constraints governing levels (including the 15 × 20 room size) designed for the main game. Our15

reduction is also “efficient”: a Turing machine can be simulated by a Recursed level whose size is16

linear in the encoding size of the Turing machine and whose solution length is polynomial in the17

running time of the Turing machine.18

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness19

Keywords and phrases Computational Complexity, Undecidable, Video Games20

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2020.3521

Related Version The full version of this paper is available at https://arxiv.org/abs/2002.05131 [10].22

1 Introduction23

Recursed1 [15] is an indie puzzle platform video game by lone developer Portponky. The24

game’s main feature is having rooms contained within treasure chests, often recursively,25

inspired by functional programming; see Section 2 for details.26

In this paper, we show that deciding whether a given Recursed level can be solved is27

RE-complete and thus undecidable (not recursive).2 We thus positively settle a player’s28

claim that Recursed is NP-hard [5] and another player’s conjecture that it is undecidable [11].29

Our proof is by a reduction from the Post Correspondence Problem (PCP); refer to Section 330

for a definition. We use the properties of PCP that the constraints are locally checkable and31

that the resolution of choices proceeds in only one direction (adding more words/dominoes32

to the string).33

RE-completeness of a video game requires some source of arbitrarily unbounded state in34

the game. The unbounded state we use in Recursed stems only from the player’s ability to35

generate instances of rooms arbitrarily deeply through normal use of the game’s recursive36

1 All products, company names, brand names, trademarks, and sprites are properties of their respective
owners. Sprites are used here under Fair Use for the educational purpose of illustrating mathematical
theorems.

2 A brief recap on terminology: RE (Recursively Enumerable) is the class of decision problems whose “yes”
instances are accepted by a Turing machine in finite time, but whose “no” instances may be indicated by
the machine running for infinite time, while R (Recursive or Decidable) is the class of decision problems
whose “yes” and “no” instances are accepted and rejected, respectively, by a Turing machine in finite
time. It is known that RE $ R; for example, the Halting Problem is in the difference RE \ R.

© Erik D. Demaine, Justin Kopinsky, and Jayson Lynch;
licensed under Creative Commons License CC-BY

31st International Symposium on Algorithms and Computation (ISAAC 2020).
Editors: Yixin Cao, Siu-Wing Cheng, and Minming Li; Article No. 35; pp. 35:1–35:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jkopinsky@gmail.com
https://doi.org/10.4230/LIPIcs.ISAAC.2020.35
https://arxiv.org/abs/2002.05131
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Recursed Is Not Recursive: A Jarring Result

chest mechanics (and by extension, its jar mechanics); see Section 2 for details. Each of the37

finitely many rooms resulting from our reduction has constant size — even fitting within the38

15× 20 size of standard Recursed rooms — and contains only a constant number of objects39

and a constant amount of state. Indeed, the Recursed levels generated by our reduction are40

“practical”: they could, in principle, be solved by a human, provided they knew which PCP41

dominoes to place at each placement step. Using the custom level feature of Recursed, we42

have built a fully playable custom level demonstrating the reduction applied to a simple43

2-domino PCP instance, which is available for download [9].44

Our reduction is also efficient, meaning that it efficiently represents the execution of a45

Turing machine. The Recursed level size is linear in the number k of dominoes in the PCP46

instance, and the Recursed solution length is O(L log k) where L is the number of symbols in47

a solution to the PCP instance. Using the standard reduction from the Halting Problem to48

PCP [18], the Recursed level size is linear in the encoding size k of the Turing machine, and49

the Recursed solution length is O(TS log k) = O(T 2 log k) where T is the running time and50

S is the space used by the Turing machine. As a consequence, deciding whether a Recursed51

level can be solved in a polynomial number of steps is NP-complete, and deciding whether a52

Recursed level can be solved in an exponential number of steps is NEXPTIME-complete.53

Related Work. The first RE-completeness/undecidability result for a video game was for54

another indie puzzle game, Braid [12], designed by Jonathan Blow. (The computational55

complexity of Blow’s other puzzle game, The Witness, has also been studied, with NP-, Σ2-,56

and PSPACE-completeness results for various aspects of the game [1].) To our knowledge,57

our result is the second RE-completeness/undecidability result for a (real-world) single-player58

video game.59

The Braid reduction [12] produces a Braid level of finite size. The unbounded state60

it exploits comes from the game’s ability to generate arbitrarily unbounded quantities of61

enemies and pack them into the same location, allowing the level to increment a counter62

arbitrarily high. Enemies prevent the player from getting to a location, allowing the player to63

detect when the counter is zero. In this way, the Braid reduction simulates a counter machine.64

Because the reduction from Turing machine to counter machine [14] requires an exponential65

slowdown, the Braid reduction is not efficient: the resulting solution length is exponential in66

the running time of the Turing machine. Also, because the items in Recursed all help rather67

than hinder the player’s mobility, this type of approach cannot work for Recursed.68

For two-player games, there is one undecidability result we are aware of: Magic: The69

Gathering is RE-hard/undecidable even for two players [4], via an efficient Turing machine70

simulation. In fact, the players’ moves are all forced, so this result is arguably about71

a zero-player simulation (but only the two-player game is “real-world”). An earlier RE-72

hardness/undecidability proof [3] simulated a counter machine, and thus was inefficient; it73

also required more players and a small tweak to the game rules.74

Team multiplayer games are often RE-complete/undecidable even when the game’s state75

is finite; the source of unboundedness is the hypothetical game strategies built in the players’76

heads [13]. Recently, this technique has been applied to prove RE-completeness/undecidability77

of real-world team video games, including Team Fortress 2, Super Smash Brothers: Brawl,78

and Mario Kart [6]. These reductions are naturally very different from Recursed, given the79

different source of unboundedness.80

Roadmap. Section 2 gives an overview of the mechanics of Recursed relevant to our81

construction. Section 3 presents a sketch of our reduction construction. For full details,82

E.D. Demaine, J. Kopinsky, and J. Lynch 35:3

please refer to the full paper [10]. Section 4 describes some open questions and conjectures83

regarding the complexity of subsets of Recursed.84

2 Game Rules85

This section covers the rules of Recursed insofar as they are needed for our construction in86

Section 3. For simplicity, we omit those objects and notions which we will not use.3 See [16]87

for a video illustration of some core mechanics, including blocks, keys, doors, chests, and jars.88

2.1 Basic Player Actions89

We will call the player character Rico. By default, Rico can run horizontally and jump90

or fall vertically. Rico can jump up to a surface at most 3 tiles higher than where they91

jumped from, but can fall arbitrarily far with no penalty. Rico can pick up objects they are92

standing next to (see below for an enumeration). Rico can only carry one object at a time,93

and cannot pick up further objects until releasing the one held. While holding an object,94

Rico can drop it, causing it to fall, or throw it. Thrown objects travel in a perfectly vertical95

or horizontal trajectory until hitting a solid tile (or reaching the apex, if thrown upwards),96

at which point they fall until landing on a floor tile, or falling off the bottom of the screen.97

Note that other objects do not impede the horizontal trajectory of a thrown object, but,98

when falling, objects can land on blocks. If Rico is carrying an object, their jump height is99

lowered to at most 2 blocks.100

Typically, walls, floors, and ceilings are comprised of tiles, which are immovable and101

impassable, by Rico or any object. At any given time, Rico will be situated in a room of size102

at most 15× 20 (though sometimes smaller), which is what is shown to the player. Typically,103

rooms will have borders consisting of solid tiles (counting towards the size). It is possible for104

some walls, floor, or ceiling to be missing. If Rico falls off the edge, they bounce back up a105

few blocks, but we will not have any missing floors in our construction.106

A level is comprised of a collection of rooms (see Section 2.3 for more details). Rico’s107

goal is to reach a purple crystal, of which exactly one exists in some room of each level.108

There is one additional special environmental feature called a ledge (see Figure 1). Ledges109

are always oriented horizontally. Rico can jump upwards through a ledge, but cannot by110

any means traverse back downwards through a ledge. Thrown or dropped objects ignore111

ledges entirely in both directions.112

2.2 Basic Objects113

We depict all of the objects necessary for our construction in Figure 1. A description of each114

follows.115

Blocks. The primary use of blocks is for Rico to stand on and be able to jump higher. In116

particular, if Rico is standing on a block, they can jump to a height of 4 above the ground (3117

if carrying another object), which would be otherwise impossible. Furthermore, blocks can118

be stacked arbitrarily high, and Rico can “climb” stacks of blocks, so with k blocks, Rico can119

reach a height of k + 3.120

3 Inexhaustively including water, acid, Ooblecks, cauldrons, paradoxes, glitches, and cloud walls.

ISAAC 2020

35:4 Recursed Is Not Recursive: A Jarring Result

doordoor
ricorico pink flamepink flame

blockblock keykey

ringring chestchest jarjar green flamegreen flame

green glowgreen glow
crystalcrystal ledgeledge

Figure 1 A toy level containing a copy of each object used in our construction.

Keys and doors. Keys are carryable objects which open doors. Doors are static objects121

in the level which occupy a space 3 tiles high by 1 tile wide, generally preventing traversal122

from one side to the other. A key can be carried directly to a door, or thrown at it. In either123

case, the key and the door both disappear, allowing Rico to traverse the space previously124

occupied by the door. There is only one type of key and one type of door, so any key in the125

game can open any door.126

Rings. The only direct use of rings in-game is to trigger pre-scripted dialog when thrown127

against a wall. Therefore, they provide no particular use toward solving a level. Nevertheless,128

we will make use of rings in our construction as a generic object which specifically does129

nothing except lower Rico’s jump height to 2 tiles when held. See Section 3.2.2.130

2.3 Chests131

Chests are the primary “gimmick” of Recursed. They were designed to emulate function calls132

(in the programming sense) to some degree. In Recursed, chests do not contain objects, but133

rather entire rooms. Rico can jump into chests, thereby entering the room contained therein.134

The room contained in a chest is an immutable property of the chest itself—a particular chest135

will always contain a particular room, according to the specification of that chest. Different136

chests can contain the same room.137

When Rico enters a room via a chest, they appear at a pre-specified entry point4, along138

with a pink flame, which we refer to interchangeably as an exit. The room will be generated139

freshly from its specification each time Rico enters a chest containing it regardless of whether140

Rico has previously visited and/or interacted with objects in the room. This follows the141

function call intuition of each invocation entering the function at the beginning with no local142

state.143

While in a room contained in a chest (which is most of the time), Rico can freely interact144

with any objects present including other chests. Every room except for the initial room Rico145

4 The entry point is a property of the room itself; Rico will appear at the same entry point regardless of
which chest was used to enter the room.

E.D. Demaine, J. Kopinsky, and J. Lynch 35:5

begins the level in will necessary have a pink flame exit. If Rico returns to the exit of a146

room, they can choose to leave by interacting with the pink flame. In doing so, they will hop147

back out of the chest they initially came in, thus re-entering the “parent” room in the same148

state that it was when Rico jumped in the chest. Note the asymmetry between entering and149

exiting chests. Again, this emulates the function call behavior of saving the local state of150

the parent function when returning from a child function. Because any future entries to the151

chest room will re-generate the room anew, any state that room had when Rico leaves is152

entirely forgotten.153

Rico can of course recursively enter chests (hence the name), thereby saving a “call154

history” in a stack-like fashion. Rico can even enter a room via a chest contained in that155

same room, reminiscent of a recursive function calling itself.156

One final key property of chests is that when Rico jumps into a chest, or leaves via the157

pink flame, they can do so while carrying at most one object. Thus, provided that Rico can158

manage to get access to it, Rico can bring a block, a key, or another chest with them into or159

out of a chest. To demonstrate the impact of this ability, observe that on the one hand, if160

Rico carries, say, a block into a chest and then subsequently leaves the chest empty-handed,161

that block is lost forever. On the other hand, if Rico enters a chest empty-handed, but162

manages to leave while carrying a block, the parent room now has a block that in effect did163

not previously exist. In particular, Rico can repeat the same sequence of actions any number164

of times to produce an unbounded number of blocks in the parent room.165

2.4 Green Glow166

Some objects in the game have a green glow (see Figure 1). These objects violate the167

“function call” rules of chests described above, in that the state of a green glowing object168

is saved no matter when or where it is interacted with. The simplest example is a green169

glowing door, since it cannot be moved, but only open. If a green glowing door in a room is170

opened by any key, it will always be open when Rico revisits that room, even if doing so by171

entering a chest and thus regenerating (the nonglowing parts of) the room.172

Movable objects, including blocks, keys, and chests can also glow green. In this case, if173

the object moves around the room it begins the level in, then whenever Rico revisits that174

room the location of the object will be remembered. This is the only property we will make175

use of in the construction, but we note for posterity that green glowing objects can be moved176

between rooms and this will be remembered as well. Green glowing chests have even more177

interesting properties, but we encourage the reader to play the game and discover those for178

themselves!179

2.5 Jars180

Jars are similar to chests in that they contain rooms, but unlike chests, they are designed to181

emulate continuations (in the functional programming sense), rather than function calls.182

Jars can never be present in the initial state of a level. Rather, some rooms (other than the183

initial starting room) will have a green flame exit in addition to the standard pink flame184

exit (not to be confused with green glow above). The green flame can be located anywhere185

in the room and is independent of Rico’s initial point of entry. There can even be more than186

one (though not in our construction). If Rico exits a room via a green flame exit, they will187

hop back out of the containing chest, just like by the pink flame, except they will now be188

carrying a newly created jar . Note that Rico cannot be carrying any object when leaving189

via green flame exits in order to have space to carry the jar.190

ISAAC 2020

35:6 Recursed Is Not Recursive: A Jarring Result

Rico can carry the jar around just like any other object. If, subsequently, Rico enters a191

jar, they will re-enter the room containing the green flame the jar was created with, at the192

location of the green flame, with the room in the same state that it was in when the jar was193

created, except that the green flame itself is now gone, so no further jars can be created from194

the same place. Thus, any doors previously opened or objects previously moved or placed195

will be just where they were when Rico used the green flame. Importantly, when Rico later196

exits a room after entering it from a jar, they will reappear in the parent room just as if197

they had used a chest, and may even be carrying an object, but the jar will be destroyed.198

Thus, any particular jar can only be entered once.199

3 Main Result200

I Theorem 3.1 (Recursed is RE-complete). It is RE-complete to decide whether a player can201

reach the crystal in a given level.202

Containment is straightforward: the game can obviously be simulated, given an initial203

state and sequence of player inputs. Thus, with a recursively enumerable Turing machine,204

one can enumerate every input string frame-by-frame and check whether any such string205

solves the level.206

The hardness reduction is from the Post Correspondence Problem (PCP). Originally207

shown undecidable by Post in [17], we follow Sipser’s description of the problem [18]. Given208

a set of dominoes D1, . . . , Dk each with a string Ai = ai1ai2 . . . aisi
on the top half and a209

string Bi = bi1 . . . biri
on the bottom half, denoted Di = 〈Ai | Bi〉. We are tasked with210

laying such dominoes next to each other (copying dominoes as much as necessary) such211

that the concatenation of the top halves equals the concatenation of the bottom halves. We212

will enforce that the first domino must be D0 which will simplify the initial part of the213

construction. (Forcing the first domino to be of a specified type clearly does not make the214

problem decidable, since if it did there is a trivial nondeterministic decision algorithm which215

guesses the first domino and then calls the hypothesized decision oracle).216

We will implement a (nondeterministic) algorithm to solve PCP in Recursed. The217

algorithm is as follows:218

1. Nondeterministically choose a domino Di = 〈Ai | Bi〉 to add to the solution, or stop and219

skip to 4.220

2. Push Ai onto stack SA and Bi onto stack SB .221

3. Return to 1.222

4. Pop SA and SB and check whether the popped symbols are equal; REJECT if not.223

5. Repeat 4 until one stack empties, then check if the other stack is also empty; if yes,224

ACCEPT, else REJECT.225

3.1 High-Level Overview226

Rico initially spawns in a room next to a block and a chests, with another chest and a locked227

door past a ledge, shown in Figure 2. On the other side of the locked door is the goal crystal,228

but it is 6 tiles above the ground, one tile too high for Rico to jump to reach unaided5. The229

chest next to the door is a Global-Lock chest, which, once unlocked, will provide the key230

5 Rico can reach a jump height of 3 tiles and is 2 tiles tall, and so can reach a crystal 5 blocks high.

E.D. Demaine, J. Kopinsky, and J. Lynch 35:7

to this very door. All Rico has to do is open the Global-Lock gadget and get the block to231

the other side of the locked door! Of course, it will not be so easy...232

The reduction is demonstrated with a fully playable level [9] for a PCP instance with233

D0 = 〈01 | 0〉, D1 = 〈0 | 10〉, whose (shortest) solution is of course D0D1.234

A0,0A0,0 GLGL

Figure 2 The initial room.

The high level structure of the construction is as follows: We will store SA in the “call235

history” of chests Rico has jumped into and we will store SB in a chain of jars. For each236

symbol aij ∈ SA, there will be one corresponding room in our call history. For each symbol237

bij ∈ SB , there will be one corresponding room in our chain of jars. Rico will need to carry238

the top level jar around pretty much all the time, unless changing the state of another gadget.239

The very last jar at the bottom of the chain representing SB will contain a single block6240

which, if retrieved in the crystal room, Rico can use to jump on and reach the crystal.241

The intended solution path which Rico must follow is comprised of two phases: a “Pushing”242

phase, and a “Checking” phase. During the pushing phase, Rico will push symbols to SA via243

the explicit chest stack, and to SB by building the chain of jars (i.e., the outermost jar Rico244

is carrying contains machinery corresponding to the top symbol of SB as well as a second245

jar which itself contains machinery corresponding to the next symbol of SB, etc.). During246

the checking phase, Rico will need to traverse back up the history of chests and prove that247

each room corresponding to a symbol at the top of SA matches the symbol corresponding248

to the room contained in the outermost jar, i.e. at the top of SB, and “popping” both off249

their stacks. Rico can reach the crystal only if they reach the starting room (thereby having250

emptied SA) when SB is also exactly empty, at which point Rico will be carrying the initial251

block rather than a jar.252

3.2 Gadgets253

In this section, we will enumerate a collection of gadgets which will be used in the overall254

construction. A gadget is a template for a section of a level with specific properties. We255

first describe the One-Way, Proof-of-Holding, and One-Time-Traversal gadgets256

which are simple and useful subcomponents we will use repeatedly. Section 3.2.4 describes257

the Prove-Verifygadget which has one entrance which can only be traversed if another258

entrance has previously been traversed. It is the main component in our ability to record259

state in our construction. Finally, Section 3.3 gives a brief sketch of the full construction with260

figures depicting the important rooms in the construction. These include gadgets for the261

choice of domino placement (Figure 7, symbols in the top stack SA (Figure 8), and symbols262

in the bottom stack SB (Figure 9).263

6 One might be forgiven for referring to this as the “blockchain representation” of SB .

ISAAC 2020

35:8 Recursed Is Not Recursive: A Jarring Result

3.2.1 One-Way264

A One-Way gadget allows Rico to pass from one side of the gadget to another, but not back265

in the opposite direction. Our One-Way gadgets have the additional property that Rico is266

not able to throw an object through one without traversing it themself.267

We use two One-Way implementations: the first is comprised of two “stair steps”, each268

two blocks high, followed by a four block drop. Rico can only jump at most 3 blocks, so after269

jumping down from the ledge, they cannot get back up. The second implementation is a270

simple ledge: Rico can jump up onto the ledge but then is unable to get back down. Layout271

constraints govern the choice of implementation.272

The latter ledge implementation trivially satisfies the thrown object requirement, since273

objects always pass through ledges. The stair step implementation requires one extra feature,274

which is to make sure the floor below the four block cliff is a ledge, so that any object dropped275

over the edge will fall through the ledge and become inaccessible, either by getting trapped276

in an unreachable pit, or by falling off the bottom of the screen, depending on placement.277

Further, we add a multi-block ‘stalactite’ over the ledge to ensure that any item thrown from278

above the stairs will hit this wall and fall below the ledge.279

The ledge One-Way can be seen on the far left sides of Figures 7 and 8. The stair280

implementation can be seen once in the bottom of Figure 7 and in triplet in the bottom of281

Figure 8.282

3.2.2 Proof-of-Holding283

The Proof-of-Holding gadget (H) is a simple gadget which is traversable if and only if284

Rico is carrying an object. It has the additional important property that the held object285

must also traverse the gadget, and cannot be left at the entry side of the gadget for later286

retrieval. See Figure 3a. It makes use of the fact that while carrying something Rico’s jump287

height is lower. If Rico jumps three blocks high, which is unavoidable while not carrying an288

object, they will get stuck in the enclosed area at the top of the gadget. However, if Rico is289

carrying an object, they will jump only two blocks high and land on the lower edge, and have290

space to walk out of the gadget to the right. The pit at the bottom of the gadget prevents291

Rico from dropping the held object back down and leaving it behind (accessibly), as it will292

get stuck in the pit.293

3.2.3 One-Time-Traversal294

The One-Time-Traversal (1O) is what it says on the tin. Rico can traverse it one time in295

one direction, after which it cannot be traversed in that direction again. See Figure 3b. It is296

implemented by forcing Rico to be holding an object (we use a ring so as not to bestow any297

other abilities) in order to jump up a small step, without irreversibly getting stuck on the298

ledge 3 blocks up. If Rico is not holding the ring while jumping up the step, getting stuck299

on the ledge is unavoidable. The gap below the ring’s tile is to allow Rico to throw a held300

object over to the other side of the gadget to be retrieved after traversal (recall that Rico,301

being two tiles high, cannot fit through that gap).302

I Lemma 3.2. The One-Time-Traversal gadget can be traversed at most once.303

Proof. The reason the gadget is one-time use is because (1) once the ring is removed it is304

impossible to get it or any other object up to the tile where the ring is initially and (2) the305

gadget is only possible to traverse from left to right if there is an object present precisely on306

that tile.307

E.D. Demaine, J. Kopinsky, and J. Lynch 35:9

It is easy to see (1) by recalling that Rico cannot jump to a height of 3 blocks while308

holding an object, nor is there anyway to throw an object upwards with any horizontal309

velocity, so Rico can neither carry nor throw an object up to the ring’s starting tile. Given310

(1), (2) becomes clear because there is no way Rico can be carrying an object while standing311

on the lower ledge except by grabbing one off the ring’s starting tile. J312

For notational convenience, and because we always want to force Rico to prove that the jar313

is never dropped, we will always combine One-Time-Traversal with Proof-of-Holding314

gadgets, to get a gadget which Rico can traverse if and only if they are carrying something315

and even then at most once. We denote this combined gadget by 1O + H, or 9.316

(a) Proof-of-Holding gadget. (b) One-Time-Traversal gadget.

(c) Combined start-of-room construction.

Figure 3 The Proof-of-Holding and One-Time-Traversal gadgets. These exclusively appear
together and at the start of most rooms, so we will always use the combined version shown in (c)
for compactness. Note that Rico cannot jump from the ledge on the left directly to the ring, as they
will necessarily bump their head on the ‘stalactite’ block and fall, even while holding an object.

3.2.4 Prove-Verify Gadget317

The primary driving gadget behind much of our construction is what we call a Prove-Verify318

(PV) gadget. The basic idea is that the gadget primarily consists of a single room which319

contains a green glowing block which can be in one of two states: set or unset. If Rico is able320

to visit a Prove chest, P , they can put the gadget in the set state. If Rico visits a Verify321

chest, V , they will be able to retrieve a key from V if and only if the gadget is Set, and in322

doing so must return it to the Unset state. In this way, retrieving the key from V verifies323

that P was visited. Note that a Verify chest is always followed by a locked door. Unless324

otherwise stated, PV gadgets are initially unset. We note that this is a minor variation on325

the “Self-closing Door” gadget [2] in the framework of [8].326

A major use case for PV gadgets is to force Rico to prove that a room is being entered327

when and from where it is intended to be. To enforce this, for most rooms R, the first element328

encountered will be a VR gadget corresponding to that particular room, which will be set329

ISAAC 2020

35:10 Recursed Is Not Recursive: A Jarring Result

only if Rico is coming into that room immediately after visiting a corresponding PR gadget330

in the previous room. Correspondingly, whenever we intend Rico to continue on to R in the331

intended call stack, we will precede the chest containing R with a PR gadget followed by a332

one-way.333

The crux of the gadget is a stateful memory room Mx shared by a Prove-Verify334

pair Px and Vx, shown in Figure 4. If the green block is in the pit, the gadget is Unset, for335

Rico cannot retrieve the key (or indeed, leave the gadget at all once falling down the cliff336

next to the entry). If the block is not in the pit, Rico can jump on it to retrieve the other337

block up on the ledge, and put both of them in the pit which is enough to get up to the key338

and back around to the exit. Of course, after doing so the green block is in the pit and the339

gadget is unset again.340

(a) Unset state. (b) Set state.

Figure 4 The Mem component of the Prove-Verify gadget.

The Prove gadget simply gives Rico a block to take into the corresponding Verify341

chest with which they can retrieve the green block from the pit (by using both the extra342

block and the block up on the ledge), shown in Figure 5a. At no point can anything but the343

block enter the Mem room, due to the 3 block high barrier which Rico cannot carry any344

object over. Similarly, no object but the key may exit the Mem gadget, and bringing the key345

out of the Mem chest while in the Prove chest is clearly not useful due to the same barrier346

preventing it going anywhere else.347

MxMx

(a) Prove gadget Px.

MxMx

(b) Verify gadget Vx.

Figure 5 The Prove and Verify gadgets.

The Verify gadget, shown in Figure 5b, is intended to allow retrieval of a single key if348

E.D. Demaine, J. Kopinsky, and J. Lynch 35:11

the corresponding Mem room is set. The intended usage is to jump into the Mem room and349

retrieve a key, then throw that key against the door on the left to allow access to the other350

key, which can then be brought out of the Verify chest.351

There is some additional complexity in order to prevent cheating, embodied by the352

following lemma.353

I Lemma 3.3. No object (other than a block from the corresponding Prove gadget) can354

enter the Mem chest.355

Proof. First, note that the Mem chest only appears in the Prove and Verify gadgets. For356

the Prove gadget, the 3 tile high barrier ensures that nothing can be brought from the357

entrance of the gadget to the Mem chest. For the Verify gadget, we again use a 3 tile high358

barrier which nothing can be carried over. However, in order to allow the Mem chest state359

to interact with the rest of the gadget, we require a gap which the key retrieved from the360

Mem room can be thrown through, opening the door on the left. The important observation361

is that no object can be usefully thrown through the gap except a key going from right to362

left hitting and opening the door. Any other object will hit a wall or the door and land363

inaccessibly in the pit under one of the ledges. Thus, again, no object can enter the Mem364

chest, and no object can leave the Mem chest except a key, and therefore no object can leave365

the Verify chest except the key behind the door. Finally, we need to ensure that the Mem366

chest itself cannot exit the Prove or Verify gadgets. Once again, the 3 tile high barriers367

and the ledges also prevent this.368

Note that Rico could bring in a key from outside to open the door with, but all this would369

achieve is replacing the old key with a new key, so doing so cannot be eminently useful. J370

If Lemma 3.3 did not hold and Rico could bring in, say, another chest, they could then371

move the green glowing block from the Mem chest into some other room, and this could372

subsequently result in Bad Things.373

3.2.5 Global-Lock374

We will also use a variant of the Prove-Verify gadget semantics which we will call a375

Global-Lock (GL). The Global-Lock can be ‘set’ just once, and subsequently used to376

retrieve a key any number of times. The Global-Lock gadget will only be used to allow377

Rico to transition between the pushing phase and the checking phase, and subsequently verify378

that the transition was made. The Global-Lock is just a room with a green glowing locked379

door with a key behind it (see Figure 6). As long as the door is locked, the key is irretrievable,380

but once Rico is given a key to take into even one chest containing the Global-Lock room,381

they can permanently unlock the door and allow all the other chests containing this room to382

dispense keys.383

Figure 6 The Global-Lock gadget.

ISAAC 2020

35:12 Recursed Is Not Recursive: A Jarring Result

3.3 Construction Sketch384

In this section we present figures for the primary structural rooms of the construction385

(Figures 7, 8, and 9), as well as full details for the Aij rooms (Figure 8) in Section 3.3.1, thus386

giving a “flavor” of the setup. Full construction details, including those for the DC rooms387

(Figure 7) and the Bij rooms (Figure 9), are omitted and can be found in our full paper [10].388

Figure 7 depicts rooms which allow Rico to select a domino to logically place at each step.389

Figure 8 depicts a room type representing symbols on stack SA, and Figure 9 depicts a pair390

of room types representing symbols on stack SB . During the checking phase, for each pair of391

symbols at the front of SA and SB Rico will have to perform a 2-way handshake between392

the machinery in the respective corresponding room Aij and B
(J)
i′j′ to prove that the symbols393

are the same. If they aren’t, Rico will get stuck. On the other hand, if Rico can successfully394

perform all handshakes and simultaneously empty the call stack and the jar chain, they will395

be able to deliver the initial block to the start room and reach the goal!396

3.3.1 Aij Rooms397

Consider the jth symbol in the top half of the ith domino. We uniquely identify that location398

by Aij and the (nonunique) symbol by s(Aij). Similarly, we label the bottom half locations399

Bij corresponding to symbol s(Bij). Each location Aij has a corresponding room, also400

labeled Aij , shown in Figure 8.401

VDCi
VDCi

PDCi+1PDCi+1

GLGL DCi+1,2jDCi+1,2j DCi+1,2j+1DCi+1,2j+1

Figure 7 The Domino-Choice rooms,
Dij . Rico can traverse these rooms through
a series of binary choices to select a domino
to logically place at each step.

VAi,j
VAi,j

PAi,j+1PAi,j+1

Ps(Ai,j),bPs(Ai,j),b PhsPhs Ai,j+1Ai,j+1
GLGL

Vs(Ai,j),bVs(Ai,j),bVs(Ai,j),aVs(Ai,j),a

Figure 8 The Aij rooms. When placing
domino i, Rico must traverse all of the cor-
responding Aij rooms. During the checking
phase, Rico must traverse the latter halves
of these rooms in reverse order, through ma-
chinery representing the jth symbol on the
domino.

Pushing. During the pushing phase, Rico will do the following. Upon entering, Rico must402

interact with several elements, each separated from the next by a one-way:403

1. Traverse a Proof-of-Holding gadget404

2. Traverse a VAij
gadget405

3. Traverse a PAi,j+1 gadget406

4. Enter a chest leading to the next symbol room, Ai,j+1.407

E.D. Demaine, J. Kopinsky, and J. Lynch 35:13

If Aij is the last symbol in the top half string for this domino (i.e. Domino i has exactly408

j top half symbols), Ai,j+1 and PAi,j+1 will be replaced with Bi0 and PBi0 , leading to the409

Bij rooms for this domino. If the bottom string of Domino i is empty, the replacements will410

instead be the first Domino-Choice room, DC00, and PDC00 , respectively. This is as far as411

Rico will go during the Domino Selection phase.412

Popping. Of course, that is not the end of the room, for when Rico jumps back out of the413

Ai,j+1 chest they entered in Step 4 above during the checking phase, this is the point where414

they will need to pop a symbol from SB and prove that it is equal to aij . Note that Rico415

will not be able to usefully go back into the Ai,j+1 chest they just jumped out of, since there416

will immediately be an untraversable VAi,j+1 gadget.417

During the checking phase, Rico must take the following steps, comprising a 2-way418

handshake to prove that S(Aij) and bi′j′ are equal to each other. Again, all elements are419

separated by One-Ways (besides entering and exiting held jars, of course).420

1. Traverse the Global-Lock gadget to prove the checking phase has been entered and a421

“handshake” chest Phs, allowed in either order to save space. The Phs gadget will prove422

that the handshake has been appropriately initiated (see below).423

2. Traverse a Ps(Aij),b gadget corresponding to the “bottom half b version” of s(Aij).424

3. Delve into the jar they should be carrying, hopefully containing B
(J)
ij with s(Aij) = s(Bij).425

4. Inside the jar (refer to the full construction [10] for details), traverse a Vs(Bij),b gadget,426

only possible if s(Aij) = s(Bij).427

5. Traverse a Ps(Bij),a gadget corresponding to the “top half a version” of s(Aij).428

6. Traverse a Vhs chest.429

7. Exit the jar, thereby destroying the B
(J)
ij instance, effectively popping SB .430

8. Traverse the Ps(Aij),b from Step 2 again (see below for an explanation).431

9. Traverse a Vs(Aij),a gadget, again only possible if s(Aij) = s(Bij).432

10. Traverse an instance of Vs(Aij),b to re-unset it from Step 8.433

The Phs-Vhs handshake pair is necessary to disallow popping multiple instances of s(Aij)434

off of SB. Without it, after Step 8, Rico could enter the new top jar, and traverse it435

successfully, contingent on the symbol it corresponds to being equal to s(Aij). However,436

the Vhs gadget prevents this, since it will become unset after having traversed the previous437

intended jar.438

Steps 8 and 10 are necessary because there is no way to prevent Rico from traversing the439

Ps(Aij),b an extra time after exiting the jar, which could allow future unintended traversals of440

a Vs(Aij),b somewhere else. Thus, we must simply assume that Rico will traverse the Ps(Aij),b441

chest again and then force them to unset the Vs(Aij),b in Step 10.442

As mentioned above, please refer to our full paper [10] for a complete discussion of the443

DC and Bij rooms and the remaining construction details.444

4 Open Problems445

Although we achieve a tight result of RE-completeness, we could still ask about the complexity446

of Recursed with a subset of the puzzle mechanics. We propose two conjectures and two447

open problem relating to subsets of Recursed mechanics.448

I Conjecture 1 (Cauldrons but no Jars). We conjecture that Recursed with Cauldrons, but449

no Jars, is still undecidable.450

ISAAC 2020

35:14 Recursed Is Not Recursive: A Jarring Result

VBi,jVBi,j

PB(J)PB(J)

B
(C)
i,j+1B
(C)
i,j+1 VB(C)VB(C) B

(J)
i,jB
(J)
i,j

PBi,j+1PBi,j+1GLGL

(a) B
(C)
ij “call stack” rooms. When placing dom-

ino i, traversing room B
(C)
ij for each bottom sym-

bol j will force Rico to add room B
(J)
ij (right)

to the jar chain.

VB(J)VB(J)

PB(C)PB(C)

Vs(Ai,j),bVs(Ai,j),b GLGL

VhsVhsPs(Bi,j),aPs(Bi,j),a

(b) B
(J)
ij “jar chain” rooms. Rico will be forced

to traverse the second halves of these rooms dur-
ing the checking phase, again through machinery
representing the symbols on the bottom stack.

Figure 9 The Bij rooms.

This conjecture seems very likely because Cauldrons (which are intended to intuitively451

represent multi-threading) allow Rico to jump between different “worlds” (up to 4, represented452

visually by background color) which each have their own chest history. Thus, it should not453

be difficult to build a reduction similar to ours which makes use of multiple stacks to simulate454

PCP or 2-stack Push Down Automata, both of which are undecidable.455

I Conjecture 2 (No Cauldrons or Jars). We conjecture that Recursed without Cauldrons or456

Jars can be simulated by a Push-Down Automata, and is therefore decidable.457

The main difficulty with proving this conjecture is that during a solution, rooms can458

contain an unbounded number of objects (blocks, keys, or chests), and such state can not be459

trivially stored in either the automata head, or on the stack. However, we conjecture that460

after some bounded point, more objects of a given type cannot help towards a solution, and461

can therefore be forgotten. However, this seems difficult to prove.462

I Open Problem 3 (Jars or Cauldrons but no Green Glow). What is the complexity of Recursed463

with Jars or Cauldrons or both, but without green glowing objects?464

Green glowing objects are not required to build some form of two or more stateful stacks465

with either Jars or Cauldrons, but it seems very difficult to construct reductions without466

them. It’s possible that there simply is not enough interaction amongst the limited set of467

objects in Recursed for this problem class to be undecidable, but it seems quite difficult to468

rule out.469

I Open Problem 4. What is the complexity of Recursed restricted to a polynomial-length470

“room stack” (analogous to call stack)?471

This problem is naturally in NPSPACE = PSPACE, but is it PSPACE-complete? This472

question likely needs a different approach, as our reduction is focused on time simulation473

and not on multiple uses of gadgets.474

Acknowledgments475

This work was initiated during the 33rd Bellairs Winter Workshop on Computational476

Geometry, co-organized by Erik Demaine and Godfried Toussaint in March 2018 in Holetown,477

E.D. Demaine, J. Kopinsky, and J. Lynch 35:15

Barbados. We thank the other participants — in particular, Robert Hearn — for related478

discussions and providing an inspiring atmosphere. We thank Edison Y. He for his helpful479

comments on earlier drafts of this paper. Figures were generated using SVG Tiler [7].480

References481

1 Zachary Abel, Jeffrey Bosboom, Erik D. Demaine, Linus Hamilton, Adam Hesterberg, Justin482

Kopinsky, Jayson Lynch, and Mikhail Rudoy. Who witnesses The Witness? Finding witnesses483

in The Witness is hard and sometimes impossible. In Proceedings of the 9th International484

Conference on Fun with Algorithms (FUN 2018), pages 3:1–3:21, La Maddalena, Italy, June485

2018.486

2 Joshua Ani, Sualeh Asif, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, Jayson487

Lynch, Sarah Scheffler, and Adam Suhl. PSPACE-completeness of pulling blocks to reach a488

goal. In Abstracts from the 22nd Japan Conference on Discrete and Computational Geometry,489

Graphs, and Games (JCDCGGG 2019), pages 31–32, Tokyo, Japan, September 2019.490

3 Alex Churchill. Magic: the Gathering is Turing complete. http://www.toothycat.net/491

~hologram/Turing/, 2012.492

4 Alex Churchill, Stella Biderman, and Austin Herrick. Magic: The Gathering is Turing complete.493

arXiv:1904.09828, 2019. https://arXiv.org/abs/1904.09828.494

5 Computational complexity theory Steam curator. https://store.steampowered.com/curator/495

31317680-Computational-Complexity-Theory/, 2017. Steam curator page claiming hardness496

results for various games.497

6 Michael J. Coulombe and Jayson Lynch. Cooperating in video games? impossible! undecidab-498

ility of team multiplayer games. In Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe499

Prencipe, editors, Proceedings of the 9th International Conference on Fun with Algorithms500

(FUN 2018), volume 100 of LIPIcs, pages 14:1–14:16, La Maddalena, Italy, June 2018.501

7 Erik D. Demaine. SVG Tiler. https://github.com/edemaine/svgtiler, 2020.502

8 Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational complexity503

of motion planning of a robot through simple gadgets. In Proceedings of the 9th International504

Conference on Fun with Algorithms (FUN 2018), volume 100 of LIPIcs, pages 18:1–18:21, La505

Maddalena, Italy, June 2018.506

9 Erik D. Demaine and Justin Kopinsky. recursed-xls2lua. https://github.com/edemaine/507

recursed-xls2lua, 2020. Tool to convert xls descriptions of Recursed levels to playable lua files,508

with examples.509

10 Erik D. Demaine, Justin Kopinsky, and Jayson Lynch. Recursed is not recursive: A jarring510

result. arXiv:2002.05131, 2020. https://arXiv.org/abs/2002.05131.511

11 edderiofer. edderiofer Steam review. https://steamcommunity.com/id/edderiofer/512

recommended/497780/, 2017. User review for Recursed which conjectures undecidability.513

12 Linus Hamilton. Braid is undecidable. arXiv:1412.0784, 2014. https://arXiv.org/abs/1412.0784.514

13 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A. K. Peters,515

Ltd., Natick, MA, USA, 2009.516

14 Marvin L. Minsky. Recursive unsolvability of Post’s problem of “Tag” and other topics in517

theory of Turing machines. Annals of Mathematics, 74(3):437–455, November 1961.518

15 Portponky. Recursed. https://store.steampowered.com/app/497780/Recursed/, 2016.519

16 Portponky. Recursed - fissure / jar mechanic. https://youtu.be/WumGkuBzvLQ, 2016.520

17 Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the American521

Mathematical Society, 52(4):264–268, 1946.522

18 Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition,523

2012.524

ISAAC 2020

http://www.toothycat.net/~hologram/Turing/
http://www.toothycat.net/~hologram/Turing/
http://www.toothycat.net/~hologram/Turing/
https://arXiv.org/abs/1904.09828
https://store.steampowered.com/curator/31317680-Computational-Complexity-Theory/
https://store.steampowered.com/curator/31317680-Computational-Complexity-Theory/
https://store.steampowered.com/curator/31317680-Computational-Complexity-Theory/
https://github.com/edemaine/svgtiler
https://github.com/edemaine/recursed-xls2lua
https://github.com/edemaine/recursed-xls2lua
https://github.com/edemaine/recursed-xls2lua
https://arXiv.org/abs/2002.05131
https://steamcommunity.com/id/edderiofer/recommended/497780/
https://steamcommunity.com/id/edderiofer/recommended/497780/
https://steamcommunity.com/id/edderiofer/recommended/497780/
https://arXiv.org/abs/1412.0784
https://store.steampowered.com/app/497780/Recursed/
https://youtu.be/WumGkuBzvLQ

	Introduction
	Game Rules
	Basic Player Actions
	Basic Objects
	Chests
	Green Glow
	Jars

	Main Result
	High-Level Overview
	Gadgets
	One-Way
	Proof-of-Holding
	One-Time-Traversal
	Prove-Verify Gadget
	Global-Lock

	Construction Sketch
	A_ij Rooms

	Open Problems

