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Abstract

We show that every convex polyhedron may be un-
folded to one planar piece, and then refolded to a
different convex polyhedron. If the unfolding is re-
stricted to cut only edges of the polyhedron, then
we show that many regular and semi-regular poly-
hedra are “edge-unfold rigid” in the sense that each
of their unfoldings may only fold back to the origi-
nal. For example, all of the 43,380 edge unfoldings
of a dodecahedron may only fold back to the dodec-
ahedron. We begin the exploration of which polyhe-
dra are edge-unfold rigid, demonstrating infinite rigid
classes through perturbations, and identifying one in-
finite nonrigid class: tetrahedra.

(The full version of this paper is available.1)

1 Introduction

It has been known since [5] and [3] that there are con-
vex polyhedra, each of which may be unfolded to a
planar polygon and then refolded to different convex
polyhedra. For example, the cube may be unfolded
to a “Latin cross” polygon, which may be refolded to
22 distinct non-cube convex polyhedra [4, Figs. 25.32-
6]. But there has been only sporadic progress on un-
derstanding which pairs of convex polyhedra2 have a
common unfolding. A notable recent exception is the
discovery [7] of an unfolding of a cube that refolds to a
regular tetrahedron, partially answering Open Prob-
lem 25.6 in [4, p. 424].

Here we begin to explore a new question, which we
hope will shed light on the unfold-refold spectrum of
problems: Which polyhedra P are refold-rigid in the
sense that any unfolding of P may only be refolded
back to P? The answer we provide here is: none—
Every polyhedron P has an unfolding that refolds to
an incongruent P ′. Thus every P may be transformed
to some P ′.
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This somewhat surprising answer leads to the next
natural question: Suppose the unfoldings are re-
stricted to edge unfoldings, those that only cut along
edges of P (rather than permitting arbitrary cuts
through the interior of faces). Say that a polyhe-
dron P whose every edge unfolding only refolds back
to P is edge-unfold rigid, and otherwise is an edge-
unfold transformer. It was known that four of the
five Platonic solids are edge-unfold transformers (e.g.,
[2] and [6]). Here we prove that the dodecahedron is
edge-unfold rigid: all of its edge unfoldings only fold
back to the dodecahedron. The proof also demon-
strates edge-unfold rigidity for 11 of the Archimedean
solids. We also establish the same rigidity for infinite
classes of slightly perturbed versions of these polyhe-
dra. In contrast to this, we show that every tetra-
hedron is an edge-unfold transformer: at least one
among a tetrahedron’s 16 edge unfoldings refolds to a
different polyhedron.

This work raises many new questions, summarized
in Section 6.

2 Notation and Definitions

We will use P for a polyhedron in R3 and P for a
planar polygon. An unfolding of a polyhedron P is
development of its surface after cutting to a single
(possibly overlapping) polygon P in the plane. The
surface of P must be cut open by a spanning tree to
achieve this. An edge-unfolding only includes edges of
P in its spanning cut tree. Note that we do not insist
that unfoldings avoid overlap.

A folding of a polygon P is an identification of its
boundary points that satisfies the three conditions
of Alexandrov’s theorem: (1) The identifications (or
“gluings”) close up the perimeter of P without gaps;
(2) The resulting surface is homeomorphic to a sphere;
and (3) Identifications result in ≤ 2π angle glued at
every point. Under these three conditions, Alexan-
drov’s theorem guarantees that the folding produces
a convex polyhedron, unique once the gluing is spec-
ified. See [1] or [4]. Note that there is no restriction
that whole edges of P must be identified to whole
edges, even when P is produced by an edge unfolding.
We call a gluing that satisfies the above conditions an
Alexandrov gluing.

A polyhedron P is refold-rigid if every unfolding
of P may only refold back to P. Otherwise, P is
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a transformer. A polyhedron is edge-unfold rigid if
every edge unfolding of P may only refold back to P,
and otherwise it is an edge-unfold transformer.

3 Polyhedra Are Transformers

The proof that no polyhedron P is refold rigid breaks
naturally into two cases. We first state a lemma that
provides the case partition. Let κ(v) be the curvature
at vertex v ∈ P, i.e., the “angle gap” at v: 2π minus
the total incident face angle α(v) at v. By the Gauss-
Bonnet theorem, the sum of all vertex curvatures of
P is 4π.

Lemma 1 For every polyhedron P, either there is a
pair of vertices with κ(a) + κ(b) > 2π, or there are
two vertices each with at most π curvature: κ(a) ≤ π
and κ(b) ≤ π.

Proof. Suppose there is no pair with curvature sum
more than 2π. So we have κ(v1) + κ(v2) ≤ 2π and
κ(v3) +κ(v4) ≤ 2π for four distinct vertices. Suppose
neither of these pairs have both vertices with at most
π curvature. If κ(v2) > π, then κ(v1) ≤ π; and sim-
ilarly, if κ(v4) > π, then κ(v3) ≤ π. Thus we have
identified two vertices, v1 and v3, both with at most
π curvature. �

We can extend this lemma to accommodate 3-vertex
doubly covered triangles as polyhedra, because then
every vertex has curvature greater than π.

Lemma 2 Any polyhedron P with a pair of vertices
with curvature sum more than 2π is not refold-rigid:
There is an unfolding that may be refolded to a dif-
ferent polyhedron P ′.

Proof. Let κ(a)+κ(b) > 2π, and so the incident face
angles satisfy α(a) + α(b) < 2π. Let γ be a shortest
path on P connecting a to b. Cut open P with a cut
tree T that includes γ as an edge. How T is completed
beyond the endpoints of γ = ab doesn’t matter.

Let γ1 and γ2 be the two sides of the cut γ, and
let m1 and m2 be the midpoints of γ1 and γ2. Reglue
the unfolding by folding γ1 at m1 and gluing the two
halves of γ1 together, and likewise fold γ2 at m2. All
the remaining boundary of the unfolding outside of γ
is reglued back exactly as it was cut by T .

The midpoint folds at m1 and m2 have angle π (be-
cause γ is a geodesic). The gluing draws the endpoints
a and b together, forming a point with total angle
α(a) + α(b) < 2π. Thus this gluing is an Alexandrov
gluing, producing some polyhedron P ′. Generically
P ′ has one more vertex than P: it gains two vertices
at m1 and m2, and a and b are merged to one. P ′
could only have the same number of vertices as P if
α(a) + α(b) = 2π, which is excluded in this case. �

Lemma 3 Any polyhedron P with a pair of vertices
each with curvature at most π is not refold-rigid:
There is an unfolding that may be refolded to a dif-
ferent polyhedron P ′.

Proof. Let a and b be a pair of vertices with κ(a) ≤ π
and κ(b) ≤ π, and so α(a) ≥ π and α(b) ≥ π. Let
γ = ab be a shortest path from a to b on P. Because
the curvature at each endpoint is at most π, there is
at least π surface angle incident to a and to b. This
permits identification of a rectangular neighborhood
R on P with midline ab, whose interior is vertex-free.

Now we select a cut tree T that includes ab and
otherwise does not intersect R. This is always possible
because there is at least π surface angle incident to
both a and b. So we could continue the path beyond
ab to avoid cutting into R. Let T unfold P to polygon
P . We will modify T to a new cut tree T ′.

Replace ab in T by three edges ab′, b′a′, a′b, forming
a zigzag ‘Z’-shape, Z = ab′a′b, with Z ⊂ R. We will
illustrate with an unfolding of a cube, shown in Fig. 1,
with ab the edge cut between the front (F) and top
(T) faces of the cube.
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Figure 1: Unfolding of a unit cube. The cut edge
ab is replaced by Z = ab′a′b. The unfolding P ′ is
illustrated. The insert shows the gluing in the vicinity
of ab in the refolding to P ′.

We select an angle ε determining the Z according
to two criteria. First, ε is smaller than either κ(a) and
κ(b). Second, ε is small enough so that the following
construction sits inside R. Let R′ ⊂ R be a rectangle
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whose diagonal is ab; refer to Fig. 2. Trisect the left
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Figure 2: Construction of zig-zag path Z.

and right sides of R′, and place a′ and b′ two-thirds
away from a and b respectively. The angle of the Z
at a′ and at b′ is ε. 4ab′a′ and 4ba′b′ are congruent
isosceles triangles; so |ab′| = |b′a′| = |a′b|.

The turn points a′ and b′ have curvature zero on P
(because Z ⊂ R and R is vertex-free). Let P ′ be the
polygon obtained by unfolding P by cutting T ′, and
label the pair of images of each Z corner a1, a

′
1, . . . , b2,

as illustrated in Fig. 1. Now we refold it differently, to
obtain a different polyhedron P ′. “Zip” P ′ closed at
the reflex vertices a′2 and b′1. Zipping at a′2 glues a′2b

′
2

to a′2b2, so that now b2 = b′2; zipping at b′1 glues b′1a
′
1

to b′1a1, so that now a1 = a′1. (See the insert of Fig. 1.)
Finally, the two “halves” of the new a′1b

′
1 = a2b2 are

glued together, and the remainder of T ′ is reglued just
as it was in T .

This gluing produces new vertices near a′ and b′,
each of curvature κ(a′) = κ(b′) = ε. An extra ε of
surface angle is glued to both a and b, so their curva-
tures each decrease by ε (and so maintain the Gauss-
Bonnet sum of 4π). By the choice of ε, these curva-
tures remain positive. Alexandrov’s theorem is sat-
isfied everywhere: the curvatures at a, b, a′, b′ are all
positive, and the lengths of the two halves of the new
a′1b
′
1 = a2b2 edge are the same (and note this length is

not the original length of ab on P, but rather the side-
length of the isosceles triangles: |ab′| = |b′a′| = |a′b|).
So this refolding corresponds to some polyhedron P ′.
It is different from P because it has two more vertices
at a′ and b′ (vertices at a and b remain with some
positive curvature by our choice of ε). �

Putting Lemmas 2 and 3 together yields the claim:

Theorem 4 Every polyhedron has an unfolding that
refolds to a different polyhedron, i.e., no polyhedron
is refold-rigid.

4 Many (Semi-)Regular Polyhedra are Edge-
Unfold Rigid

Our results on edge-unfold rigidity rely on this theo-
rem:

Theorem 5 Let θmin be the smallest angle of any
face of P, and let κmax be the largest curvature at

any vertex of P. If θmin > κmax, then P is edge-
unfold rigid.

Proof. Let T be an edge-unfold cut tree for P, and
P the resulting unfolded polygon. No angle on the
boundary of P can be smaller than θmin. Let x be
a leaf node of T and y the parent of x. The exterior
angle at x in the unfolding P is at most κmax. Because
every internal angle of P is at least θmin, which is
larger than κmax, no point of P can be glued into x,
leaving the only option to “zip” together the two cut
edges deriving from xy ∈ T . Let T ′ = T \ xy be the
cut tree remaining after this partial gluing, and P ′

the partially reglued manifold.
If T ′ is not empty, it is a tree, with at least two

leaves, one of which might be y (if x was the only
child of y). Any leaf z ∈ T ′ corresponds to some
vertex v ∈ P, with all but one incident edge already
glued. Because P ′ has not gained any new angles
beyond those available in P , we have returned to the
same situation: no angle of P ′ is small enough to fit
into the angle gap at z, which is at most κmax at any
v. Thus again the edge of T ′ incident to z must be
zipped in the gluing. Continuing in this manner, we
see that T may only be reglued by exactly identifying
every cut-edge pair, reproducing P. �

Corollary 6 The regular and semi-regular solids
that satisfy Theorem 5, listed in Table 4, are all edge-
refold rigid.

Corollary 7 Any polyhedron P that satisfies The-
orem 5, may be “perturbed” by moving its vertices
slightly to create an uncountable number of edge-
refold rigid polyhedra.

Proof. Proof omitted. �

5 Tetrahedra are edge-unfold transformers

The goal of this section is to prove this theorem:

Theorem 8 Every tetrahedron may be edge-
unfolded and refolded to a different polyhedron.

There are 16 distinct edge unfoldings of a tetrahe-
dron T . The spanning cut trees that determine these
unfoldings fall into just two combinatorial types: The
cut tree is a star, a Y-shaped “trident” with three
leaves, or the cut tree is a path of three edges. There
are 4 different tridents, and 2·

(
4
2

)
= 12 different paths.

In all these unfoldings, the polygon P that consti-
tutes the unfolded surface is a hexagon: the three cut
edges becomes three pairs of equal-length edges of the
hexagon. Our goal is to show that, for any T , at least
one of the 16 unfoldings P may be refolded to a poly-
hedron P ′ not congruent to T .
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Polyhedron Name θmin κmax θmin>κmax

Dodecahedron 3
5

1
5 3

Trunc. Cube 1
3

1
6 3

Rhombicuboctahedron 1
3

1
6 3

Trunc. Cuboctahedron 1
2

1
12 3

Snub Cube 1
3

1
6 3

Icosidodecahedron 1
3

2
15 3

Trunc. Dodecahedron 1
3

1
15 3

Trunc. Icosahedron 3
5

1
15 3

Rhomb-

icosidodecahedron 1
3

1
15 3

Trunc.

Icosidodecahedron 1
2

1
30 3

Snub Dodecahedron 1
3

1
15 3

Pseudo-

rhombicuboctahedron 1
3

1
6 3

Table 1: Inventory of minimum face angles and maxi-
mum vertex curvatures, for selected regular and semi-
regular polyhedra. All angles expressed in units of π.

Proof. (of Theorem 8). The proof classifies tetrahe-
dra by their four curvatures, and then establishes the
claim for each of the resulting four classes. A concrete
example of one of the classes, a 2r-tetrahedron with
κ1 ≥ κ2 ≥ 1 > κ3 ≥ κ4, is shown in Fig. 3. Proof
omitted. �
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Figure 3: A tetrahedron with v1, v2 “convex” and
v3, v4 “reflex,” cut open with a trident rooted at v4,
producing a hexagon with one reflex vertex with exte-
rior angle κ3. The proof shows that the convex angle
α1 derived from v1 fits within κ3.

6 Open Problems

Our work so far just scratches the surface of a po-
tentially rich topic. Here we list some questions sug-
gested by our investigations.

1. Star unfoldings (e.g., [4, Sec. 24.3]) are natural
candidates for rigidity. Is it the case that almost
every star unfolding of (almost?) every polyhe-
dron is refold-rigid?

2. Which (if either) of the following is true? (a) Al-
most all polyhedra are edge-unfold rigid. (b) Al-
most all polyhedra are edge-unfold transformers.

3. Characterize the polygons P that can fold in
two different ways (have two different Alexandrov
gluings) to produce the exact same polyhedron
P. We have only sporadic examples of this phe-
nomenon (among the foldings of the Latin cross).

4. Do our transformer results extend to the situa-
tion where the unfoldings are required to avoid
overlap? We can extend Lemma 2 to ensure
nonoverlap, but extending Lemma 3 seems more
difficult.

5. One could view an edge-unfold and refold oper-
ation as a directed edge between two polyhedra
in the space of all convex polyhedra. Thm. 5 and
Cor. 7 show neighbors of some (semi-)regular
polyhedra have no outgoing edges. What is the
connected component structure of this space?
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