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Abstract:
We prove that, for any two polyhedral manifolds P,Q, there is a polyhedral manifold I such that P, I share
a common unfolding and I,Q share a common unfolding. In other words, we can unfold P, refold (glue)
that unfolding into I, unfold I, and then refold into Q. Furthermore, if P,Q have no boundary and can be
embedded in 3D (without self-intersection), then so does I. These results generalize to n given manifolds
P1,P2, . . . ,Pn; they all have a common unfolding with the same intermediate manifold I. Allowing more
than two unfold/refold steps, we obtain stronger results for two special cases: for doubly covered convex
planar polygons, we achieve that all intermediate polyhedra are planar; and for tree-shaped polycubes, we
achieve that all intermediate polyhedra are tree-shaped polycubes.
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1. Introduction

Consider a polyhedral manifold — a connected two-

dimensional surface made from flat polygons by gluing to-

gether paired portions of boundary (but possibly still leav-

ing some boundary unpaired, and not necessarily embedded

in space without overlap). Two basic operations on such

a manifold are gluing (joining together two equal-length

portions of remaining boundary) and the inverse operation

cutting (splitting a curve into two equal-length portions of

boundary, while preserving overall connectivity of the man-

ifold). If we cut a manifold P enough that it can be laid

isometrically into the plane (possibly with overlap), we call

the resulting flat shape U an unfolding of P.*1 Conversely,

if we glue a flat shape U into any polyhedral manifold P,

we call P a folding of U (and U an unfolding of P).

(Un)foldings naturally define an infinite bipartite graphG

[1, Section 25.8.3]: define a vertex on one side for each man-
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ifold P, a vertex on the other side for each flat shape U , and

an edge between U and P whenever U is an unfolding of P
(or equivalently, P is a folding of U). Because unfolding and

folding preserve surface area, we can naturally restrict the

graph to manifolds and flat shapes of a fixed surface area A.

Is the resulting graph GA connected? In other words, is

it possible to transform any polyhedral manifold into any

other polyhedral manifold of the same surface area by an al-

ternating sequence of unfolding to a flat shape, folding that

flat shape into a new manifold, unfolding that manifold into

a flat shape, and so on? We call each pair of steps — un-

folding and then folding — a refolding step. We can then

ask whether two manifolds have a k-step refolding for each

k = 1, 2, . . ..

In this paper, we give the first proof that the graph GA

is connected. In fact, we show that the graph has diameter

at most 2: every two polyhedral manifolds P,Q have a 2-

step refolding. In other words, there is a single polyhedral

manifold I such that P and I share a common unfolding,

as do I and Q. This result turns out to follow relatively

easily using classic results from common dissection, similar

in spirit to general algorithms for hinged dissection [4].

More interesting is that we show similar results when we

restrict the polyhedral manifolds to the following special

cases, which sometimes reduce the allowed input manifolds

P,Q, but importantly also reduce the allowed intermediate

manifolds I:
( 1 ) No boundary: If polyhedral manifolds P and Q have

no boundary (what we might call “polyhedra”), then

there is a 2-step refolding where the intermediate man-

ifold I also has no boundary. This version is similarly
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easy. (In fact, we can achieve this property even when

P and Q have boundary.)

( 2 ) Embedded: If polyhedral manifolds P and Q are em-

bedded in 3D and have no boundary, then there is a

2-step refolding where the intermediate manifold I is

embedded in 3D and has no boundary. This strength-

ening follows directly from a general theorem of Burago

and Zalgaller [5]. (In fact, we can achieve this property

whenever P and Q are orientable. Or, if we allow I to

have boundary, we can always make it embeddable in

3D.)

( 3 ) Doubly covered convex polygons: If polyhedral

manifolds P and Q are doubly covered convex poly-

gons, then there is an O(n)-step refolding where every

intermediate manifold I is “planar” (all polygons lie in

the plane, but possibly with multiple layers) and has no

boundary. This result follows from an O(1)-step refold-

ing to remove a vertex from a doubly covered convex

polygon.

( 4 ) Polycubes: If polyhedral manifolds P and Q are the

surfaces of tree-shaped n-cubes (made from n unit cubes

joined face-to-face according to a tree dual), then there

is an O(n2)-step refolding where every intermediate

manifold I is a (possibly self-intersecting) tree-shaped

n-cube. Furthermore, the refoldings involve cuts only

along edges of the cubes (grid edges); and if the given

polycubes do not self-intersect and are “slit-free”, then

the intermediate polycubes also do not self-intersect.

This result follows from simulating operations in recon-

figurable robots.

Past work on refolding has focused on the restriction to

polyhedral manifolds that are the surfaces of convex polyhe-

dra. This version began with a specific still-open question

— is there a 1-step refolding from a cube to a regular tetra-

hedron? — independently posed by M. Demaine (1998), F.

Hurtado (2000), and E. Pegg (2000). When E. Demaine

and J. O’Rourke wrote this problem in their book [1, Open

Problem 25.6], they also introduced the multi-step refold-

ing problem. Let CA be the subgraph of GA restricting

to convex polyhedra and their unfoldings. Demaine, De-

maine, Diomidova, Kamata, Uehara, and Zhang [2] showed

that several convex polyhedra of surface area A are all in the

same connected component ofCA: doubly covered triangles,

doubly covered regular polygons, tetramonohedra (tetrahe-

dra whose four faces are congruent acute triangles, including

doubly covered rectangles), regular prisms, regular prisma-

toids, augmented regular prismatoids, and all five Platonic

solids. These refoldings require just O(1) steps (at most 9).

Our 2-step refolding is very general, applying in particular

to any two convex polyhedra; for example, Figure 1 shows

the example of a cube to a regular tetrahedron. But our

refolding crucially relies on a nonconvex intermediate man-

ifold I. We conjecture that two steps is also optimal, even

for two convex polyhedra. Indeed, Arseneva, Demaine, Ka-

mata, and Uehara [3] conjectured that most pairs of doubly

covered triangles (specifically, those with rationally indepen-

dent angles) have no common unfolding, and thus no 1-step

refolding. As evidence, they showed (by exhaustive search)

that any common unfolding has at least 300 vertices. As-

suming this conjecture, two steps are sometimes necessary.

Two steps is also the first situation where we have an inter-

mediate manifold I, which is what allows us to exploit the

additional freedom of the nonconvexity of I.
After presenting our general 2-step refolding (Section 3),

we consider the special cases of doubly covered convex poly-

gons (Section 4) and polycubes (Section 5).

2. Refolding Model

In our constructions, we use a more general but equivalent

form of “refolding step”: any cutting followed by any glu-

ing. In other words, we allow using an arbitrary connected

manifold in between cutting and gluing. By contrast, the

definition in Section 1 requires a full unfolding followed by a

folding, which requires a flat shape in between cutting and

gluing.

These two models are equivalent. If we want to modify

one of our refolding steps to instead reach a full unfolding

after cutting, we can perform additional cuts (that preserve

connectivity) until the manifold can be laid flat, and then

immediately reglue those cuts back together. The same idea

is used in [2].

3. Transformation Between Polyhedral

Manifolds

In this section, we prove the main result of the paper:

Theorem 3.1. For any n polyhedral manifolds P1, . . . ,Pn

of the same surface area, there is another polyhedral man-

ifold I such that Pi and I have a common unfolding for

all i. We can guarantee that the intermediate manifold

I has no boundary, or guarantee that it embeds in 3D. If

manifolds Pi are all orientable, then we can guarantee that

the intermediate manifold I is orientable, has no bound-

ary, and embeds in 3D.

We initially focus on the case of n = 2 manifolds:

Corollary 3.2. Any two polyhedral manifolds P,Q of the

same surface area have a 2-step refolding. We can guaran-

tee that the intermediate manifold I has no boundary, or

guarantee that it embeds in 3D. If manifolds P and Q are

both orientable, then we can guarantee that the intermedi-

ate manifold I is orientable, has no boundary, and embeds

in 3D.

Figure 1 gives an example construction of an intermediate

manifold I when P is a cube and Q is a regular tetrahedron.

To improve figure clarity, this construction does not exactly

follow the general algorithm described below: instead of the

general dissection algorithm, we use an efficient 3-piece dis-

section based on a dissection of Gavin Theobald [6], and

we preserve more original gluings when resolving overlaps.

Nonetheless, it serves as a running example of the key steps

in our algorithm.
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(a) 3-piece dissection of the cube into the regular tetrahedron, based on Gavin Theobald’s 5-piece dissection of the Latin cross into the
equilateral triangle [6]. Red and blue dashed lines represent the folding to a cube and regular tetrahedron respectively.

(b) Desired gluings for the cube (red) and the regular tetrahe-
dron (blue).

(c) Gluing for an intermediate manifold I, from subsets of the
cube (red) and the tetrahedron (blue) gluing and zipping the re-
mainder (green).

Fig. 1: Example 2-step refolding from the cube to the regular tetrahedron.

3.1 Common Dissection

We start by computing a common dissection of the

given manifolds P and Q of equal surface area, that is, a

subdivision of each surface into polygons that match in the

sense that, for some perfect pairing of P’s polygons with

Q’s polygons, there is an isometry between paired polygons.

Solutions to this dissection problem for polygons P and Q
go back to the early 1800s [7, 8, 9, 10]. Their high-level

approach is as follows:

( 1 ) Triangulate P and Q.

( 2 ) Dissect each triangle (from both triangulations) into a

rectangle. (This dissection needs only three pieces: cut

the triangle parallel to its base at half the height, and

cut from the apex orthogonal to the first cut.)

( 3 ) Dissect each rectangle into a rectangle of height hmin,

the smallest height among all the rectangles (i.e., half

the smallest height among all triangles in both triangu-

lations). (This dissection is more difficult and can re-

quire a polynomial number of [Someone fact-checkxxx

this —Alice] pieces in the general case.)

( 4 ) Arrange all the rectangles from P into one long rect-

angle of height hmin, and similarly arrange all the rect-

angles from Q into one long rectangle of height hmin,

necessarily the same rectangle R.

( 5 ) Overlay the two dissections of this common rectangle R

and subdivide according to all cuts, producing a set of

polygons that can form into P and can form into Q.

See [4, 11] for more algorithmic descriptions, including pseu-

dopolynomial bounds on the number of pieces.

We can apply the same technique to the case where P
and Q are polyhedral manifolds instead of polygons. The

only slightly different step is triangulating the surfaces P
and Q (Step 1), which we can do by e.g. triangulating the

faces. Then Steps 2–5 apply to the resulting triangles as

usual. Because the dissection construction does not require

flipping the polygons, the resulting common dissection is

locally orientation preserving : the mapping from the

polygons arranged to form P to the polygons arranged to

form Q locally preserves which side of each polygon is “up”.

The resulting dissection may not be “edge-to-edge”: when
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assembling the polygons together to form P or Q, two poly-

gons may meet (intersect) at a segment that is only a subset

of an edge of either polygon. Figure 1a shows an example

of such a dissection, from a cube to a regular tetrahedron:

for example, in the cube (cross) arrangement, the triangular

piece and square piece share only a portion of their edges.

(This example was designed by hand, based on a dissec-

tion by Gavin Theobald [6], not produced by the algorithm

above. In fact, Gavin Theobald found a 2-piece dissection

from the cube to the regular tetrahedron [12].)

We can generalize this common dissection construction

to n polyhedral manifolds P1, . . . ,Pn of the same surface

area (as also mentioned in [4]): just overlay n dissections in

Step 5. Henceforth we will consider the case of general n.

3.2 Abstract Intermediate Manifold

Next we construct the intermediate manifold I. For now,
we will not worry about embeddability, and just construct

an (abstract) polyhedral manifold.

Consider two polygons P1, P2 in the common dissection

that are adjacent in manifold Pi meaning that, when the

polygons are assembled to form Pi, there is an edge e1 of

P1 and an edge e2 of P2 that overlap on a common positive-

length segment. Let ∩i(e1, e2) denote the segment of e1

that intersects e2 when assembling Pi, and let ∩i(e2, e1)

denote the corresponding segment of e2. (If the edges share

more than one segment, as they might in a non-edge-to-edge

gluing, pick one arbitrarily, but consistently for e1 and e2.)

Intuitively, ∩i(e1, e2) ↔ ∩i(e2, e1) represent the gluings de-

sired by Pi, but the Pi gluings likely conflict with the Pj

gluings for i ̸= j. Figure 1b gives an example.

Next we construct a (partial) gluing on the boundaries

of the polygons that includes a positive segment from every

∩i(e1, e2) ↔ ∩i(e2, e1) gluing, while avoiding conflicts. The

algorithm proceeds as follows:

( 1 ) For each manifold Pi, and for every overlapping pair of

edges e1 of P1 and e2 of P2 when assembling the poly-

gons into Pi, add ∩i(e1, e2) ↔ ∩i(e2, e1) to the list of

gluings.

( 2 ) Find two gluings that overlap on an edge e, say s1 ↔ s2

and s′1 ↔ s′2 where segments s1 and s′1 are subsegments

of a common edge e that overlap on a positive-length

segment s1 ∩ s′1. Refer to Figure 2.

Fig. 2: Removing overlap from two gluings s1 ↔ s2 and

s′1 ↔ s′2 on edge e, by reducing s1 and s′1 to subsegments s

and s′ which bisect s1 ∩ s′1.

( 3 ) Divide the segment s1 ∩ s′1 into two equal halves, s

and s′.

( 4 ) Remove the overlap between these two gluings by re-

stricting s1 ↔ s2 to the subsegment s ⊂ s1, and re-

stricting s′1 ↔ s′2 to the subsegment s′ ⊂ s′1.

( 5 ) Repeat Steps 2–4 until all overlaps have been removed.

Because this algorithm only modifies gluings by restricting

to a subsegment, it never adds new overlaps, so it will re-

move all overlaps after O((nE2)2) repetitions, where E is

the number of edges in the common dissection so O(E2)

bounds the number of gluings from each manifold Pi. Fur-

thermore, every original gluing ∩i(e1, e2) ↔ ∩i(e2, e1) re-

mains intact for some positive length.

Some of the boundary of the polygons may now be

unglued. If we want to avoid I having boundary, we can

glue each segment s of remaining boundary to itself, by di-

viding it in two equal halves s′, s′′, giving s′ and s′′ oppo-

site orientations, and gluing s′ ↔ s′′. (This type of gluing

is called “zipping” [13].) Figure 1c gives an example of a

gluing that might result from an optimized form of this al-

gorithm (where we maintain as much of the original gluings

as possible).

The gluing described above defines the intermediate man-

ifold I. Because manifold I contains a portion of every de-

sired gluing for Pi, I has a common unfolding with Pi: just

cut all gluings that did not originate from Pi. Because no

cut fully separates an entire edge from its mate in Pi, this

cutting preserves connectivity; indeed, we obtain the same

dual graph of piece adjacencies as we do when arranging the

dissection into Pi. Thus we obtain a 1-step refolding from

Pi to I, and similarly from I to Pj , which gives a 2-step

refolding from Pi to Pj .

If manifolds Pi are all orientable, then so is the resulting

intermediate manifold I, because the common dissection is

(locally) orientation preserving.

3.3 Embeddable Intermediate Polyhedron via

Burago–Zalgaller Theorem

To guarantee that I is embeddable in 3D, we use a pow-

erful result of Burago and Zalgaller [5]. See also [14] for a

detailed description of the result, and [15] for a description

of the (quite complicated) construction.

Theorem 3.3 ([5, Theorem 1.7]). Every polyhedral man-

ifold that is either orientable or has boundary admits an

isometric piecewise-linear C0 embedding into 3D.

To apply this theorem, we need that I is either orientable

or has boundary. As argued above, I is orientable if mani-

folds Pi are all orientable. Otherwise, we can give I bound-

ary by reducing any one gluing to half of its length (or omit-

ting the zips if we had some). Either way, Theorem 3.3 gives

a subdivision of the polygons in I into finitely many sub-

polygons, each of which gets isometrically embedded in 3D

by an embedding of I.

4. Transformation Between Doubly

Covered Convex Polygons

We start with doubly covered convex polygons, that

is, polyhedral manifolds without boundary formed from two
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copies of a convex planar polygon by gluing together all

corresponding pairs of edges. Here we require that every

intermediate polyhedral manifold I is planar in the sense

that its polygons all lie in the plane, but we allow any num-

ber of layers of stacked polygons, generalizing the notion of

doubly covered polygon.

Theorem 4.1. Any two doubly covered convex n-gons of

the same area have an O(n)-step refolding, where all in-

termediate manifolds are planar with no boundary.

As a useful building block, we consider a simple 2-step

refolding which allows removing a piece from the polygon,

rotating it, and gluing it back elsewhere (similar to hinged

dissection), provided we can fold the polygon to facilitate

the gluing.

Lemma 4.2. Let P be a subset of the plane homeomor-

phic to a closed disk, as visualized in Figure 3. Suppose

A1B1 and A2B2 are line segments on the boundary of P ,

such that there exists a plane reflection r taking A1 to A2

and B1 to B2. Let c be a simple curve starting and ending

on the boundary of P passing through its interior, so that

it separates P into two closed halves P1 and P2 containing

A1B1 and A2B2 respectively. Let f be the unique rotation

and translation such that f(A1) = A2 and f(B1) = B2,

and suppose f(P1) intersects P2 only on A2B2. Then there

is a 2-step refolding between the double covers of P and P ′,

where P ′ = f(P1) ∪ P2.

Proof. The refolding is accomplished by the following

steps, illustrated in Figure 3:

( 1 ) Cut along A1B1 and A2B2, then glue the top layer of

A1B1 to the top layer of A2B2 and similarly for the

bottom layers. This intermediate step can be folded

flat by a single fold along the line of reflection of r.

( 2 ) Cut along c in both layers to create two new boundaries

c1 and c2. Then glue the top layer of c1 to the bottom

layer of c1 and similarly for c2.

Now we consider the triangle △ABC formed by three

consecutive vertices A,B,C on the boundary of a polygon

P . Our goal is to find an O(1)-step refolding of P which

moves the apex B parallel to AC (which preserves area).

This will allow us to move B so that the interior angle at

C becomes 180◦, eliminating a vertex from P . By induc-

tion, this allows us to reduce any doubly covered polygon

down to a doubly covered triangle, and then we can use a

known 3-step refolding between doubly covered triangles [2,

Theorem 2]. We accomplish the goal as follows:

Lemma 4.3. Let P be a convex polygon with three con-

secutive vertices A,B,C such that the projection of B onto

AC is between A and C. Then there is an O(1)-step re-

folding between the double covers of P and P ′, where P ′

is the polygon obtained from P by replacing △ABC by a

rectangle with base AC with the same area.

Proof. Refer to Figure 4. Let X be the midpoint of AB, Y

be the midpoint of BC, and O be the projection of B onto

XY . Using Lemma 4.2, we rotate △XBO by 180◦ about

P:

A1

B1

A2

B2

(a) Folding to glue A1B1 to
A2B2

A2

B2

(b) Cutting along c

A2

B2

(c) Finished

Fig. 3: Rearranging two pieces via a 2-step refolding.

X, and similarly we rotate △Y BO by 180◦ about Y . This

forms the desired rectangle.

A

B

C

X Y
O

Fig. 4: Refolding △ABC into a rectangle when B is be-

tween A and C.

Lemma 4.4. Let P be a convex polygon with three con-

secutive vertices A,B,C, and let B1 be the projection of

B onto AC. Suppose that C is between A and B1, and

|CB1| ≤ 4|AC|. Then there is an O(1)-step refolding be-

tween the double covers of P and P ′, where P ′ is the poly-

gon obtained from P by replacing △ABC by a rectangle

with base AC with the same area.

Proof. Refer to Figure 5, where all point labels remain fixed

in the plane across all subfigures. Let X be the midpoint

of AB and Y be the midpoint of BC (Figure 5a). For this

proof, we will adopt the convention that p1 denotes the pro-

jection of point p onto AC and p2 denotes the projection of

p onto XY .

Using Lemma 4.2, we rotate △XY B by 180◦ about X

(Figure 5a), forming the parallelogram ACY Y ′ (Figure 5b).

Now let W be the midpoint of CY and V be the midpoint

of AY ′. We have

|AV1| = |W2Y | = 1

4
|CB1| ≤ |AC| = |Y ′Y |,

which implies V1 lies on AC and W2 lies on Y ′Y . Using

Lemma 4.2 twice, we rotate △AV V1 by 180◦ about V ,

and △YWW2 by 180◦ about W . This forms a rectangle

V1V2W2W1. Finally, we use Lemma 4.2 again to move the
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rectangle CC2W2W1 to AA2V1V2.

A

B

C

X

Y

(a) Triangle to parallelogram

A

Y

C

Y ′

W

W2

V

V1

(b) Parallelogram to rectangle

A

A2
C2 W2

W1CV1

V2

(c) Shifting the rectangle

Fig. 5: Refolding △ABC into a rectangle when B is not

between A and C.

Lemma 4.5. Let P be a convex polygon with three con-

secutive vertices A,B,C and let Z be another vertex of P

such that the interior angle at Z is at most the interior an-

gle at B. Let ℓ be the line through B parallel to AC, Q1 be

the intersection of ZA with ℓ, and Q2 be the intersection

of ZC with ℓ. Then min{|Q1B|, |Q2B|} ≤ |AC|.

Proof. Refer to Figure 6. Construct B′ so that ABCB′

is a parallelogram. Vertex Z cannot lie in the interior of

△ACB′ or else its interior angle would be larger than that

of B (by convexity of P ). Thus Z is either below AB′ or

below CB′; in the first case, we have |Q1B| ≤ |AC|, and in

the second case, we have |Q2B| ≤ |AC|.

A

ℓ B

B′

Z

C

Q1 Q2

Fig. 6: Bounding the distance from B to Q1, Q2.

Corollary 4.6. Let P be a convex polygon with five con-

secutive vertices D1, A,B,C,D2 (where possibly D1 = D2)

such that the interior angle at B is at least as large as

the interior angles at D1 and D2. Let ℓ be the line

through B parallel to AC, Q1 be the intersection of D1A

with ℓ, and Q2 be the intersection of D2C with ℓ. Then

min{|Q1B|, |Q2B|} ≤ |AC|.

Proof. By convexity of P , D1 is below D2A and so |Q1B|
is at most the distance from B to the intersection of D2A

with ℓ. The inequality thus follows from Lemma 4.5 applied

to D2.

Proof of Theorem 4.1. It suffices to show that, for n ≥ 4,

any doubly covered convex n-gon can be reduced to a dou-

bly covered convex (n − 1)-gon by an O(1)-step refolding,

because then we can reduce both polygons to triangles in

O(n) steps, and [2, Theorem 2] shows there is a 3-step re-

folding between any pair of doubly covered triangles with

the same area.

Let P be a convex n-gon where n ≥ 4, and let B be a

vertex of P with the largest interior angle. By Corollary 4.6

we can label the nearby vertices of B by A,C,D such that

A,B,C,D are consecutive and |QB| ≤ |AC| where Q is the

intersection of DC with ℓ, the line through B parallel to

AC. Let P ′ be the polygon obtained from P by replacing

△ABC by a rectangle with base AC of the same area, and

let P ′′ be the polygon obtained from P by replacing △ABC

by △AQC. By Lemma 4.3, there is an O(1)-step refolding

between the double covers of P and P ′; it applies because

the interior angle of B is at least 90◦. Similarly, one of Lem-

mas 4.3 or 4.4 (using |QB| ≤ |AC|) shows that there is an

O(1)-step refolding between the double covers of P ′′ and P ′.

Thus there is an O(1)-step refolding between double covers

of P and P ′′. But because D,C,Q are collinear, P ′′ is a

convex (n− 1)-vertex polygon.

5. Transformation Between Tree-

Shaped Polycubes

Next we consider tree-shaped n-cubes, that is, polyhe-

dral manifolds formed from n unit cubes in 3D joined face-

to-face in a tree structure (forming a tree dual graph). Here,

when two cubes get joined together at a common face, we re-

move that face from the manifold, preserving that the man-

ifold is homeomorphic to a sphere. (This notion of “join”

is a higher-dimensional analog of gluing.) Thus every tree-

shaped n-cube has surface area 6n− 2(n− 1) = 4n+ 2.

We allow two cubes to be adjacent even if they are not

glued together, in which case there are two surface squares

in between. If there are no such touching cubes, we call

the tree-shaped n-cube slit-free .*2 When the n-cubes are

not slit-free, we further allow multiple cubes to occupy the

same location in space, in which case we call the tree-shaped

n-cube self-intersecting .

All cubes of a tree-shaped n-cube naturally lie on a cu-

bical grid. Define grid cutting to be cutting restricted to

edges of the cubical grid, and grid refolding to be grid cut-

ting followed by gluing that results in another tree-shaped

n-cube.

Theorem 5.1. Any two tree-shaped n-cubes have an

O(n2)-step grid refolding, where all intermediate manifolds

are possibly self-intersecting tree-shaped n-cubes. If the

*2 Our definition of “slit-free” here is less restrictive than previ-
ous notions of “well-separated” [16], which required at least
one straight cube (connected to cubes on two opposite faces
and nowhere else) between every two non-straight cubes.
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given tree-shaped n-cubes do not self-intersect and are slit-

free, then the intermediate manifolds do not self-intersect.

To transform between two given tree-shaped polycubes P
and Q, we mimic the “sliding cubes” model of reconfigur-

ing modular robots made up of n cubes, which was recently

solved in optimal O(n2) steps [17]. This model defines two

types of operations (see Figure 7):

( 1 ) Slide a cube along a flat surface of neighboring cubes

by 1 unit.

( 2 ) Rotate a cube around the edge of an adjacent cube.

1

2

Fig. 7: Two different ways an individual cube can move on

a surface of a polycube: (1) sliding and (2) rotating.

We will show how to perform slide and rotate operations

for a leaf cube, that is, a leaf of the dual tree in a tree-

shaped polycube. In this case, sliding can be viewed as

moving a leaf cube to a new parent, and rotating can be

viewed as the leaf cube attaching to a different location of

the same parent.

To slide a leaf cube, we perform the following refolding

step, illustrated in Figure 8:

( 1 ) Cut AB, BE, ED, FG, GJ , and IJ . These cuts free

up the leaf cube to move into the adjacent location, as

drawn in the intermediary figure in Figure 8.

( 2 ) Glue AB′ to E′B′, FG′ to J ′G′, E′D to AB, J ′I to

FG, DE to BE, and IJ to GJ .
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Fig. 8: Sliding a leaf cube.

Figure 9 shows an extension of sliding. Here the leaf cube

IDEJCHGB does not move, but it changes its parent from

the cube attached below to the cube attached on its left, ef-

fectively traversing the reflex corner. The same refolding

step as sliding applies in this case.
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Fig. 9: “Sliding” a leaf cube in a reflex corner.

To rotate a leaf cube around an edge we perform the fol-

lowing refolding step, illustrated in Figure 10:

( 1 ) Cut BA, AD, DE, GF , FI, and IJ . Similar to the

sliding procedure, these cuts free up the leaf cube to

move, as shown in the intermediary figure in Figure 10.

( 2 ) Glue AB to AD, FG to FI, BA′ to DE, GF ′ to IJ ,

A′D′ to ED′, and F ′I ′ to JI ′.
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Fig. 10: Rotating a leaf cube over the edge of a polycube.

By combining these three operations, we can follow a

simple algorithm for transforming a given n-cube P into

a 1× 1× n line:

( 1 ) Fix one leaf cube as the root cube c1. Assume by sym-

metry that the root cube’s unique neighbor is in the

down direction.

( 2 ) For i = 2, 3, . . . , n:

( a ) Assume c1, . . . , ci−1 have been arranged into an up-

ward line, with ci being a current leaf.

( b ) Take a leaf cube ci that is not ci−1 (given that

there are always at least two leaves).

( c ) Slide and rotate ci around the boundary of the rest

of the tree until it reaches the root cube c1, and

then slide it up the line to place it immediately

above ci−1.

This algorithm requires O(n2) steps: potentially each

of the n cubes needs to traverse the surface area of the

tree-shaped n-cube, which is O(n). It may also cause self-

intersection, because it blindly follows the surface of the

tree-shaped n-cube, so it may place the moving leaf cube

on top of an adjacent cube in the case of touching cubes. If

the tree-shaped n-cube is slit-free, though, then this simple

algorithm avoids self-intersection.

To transform between two tree-shaped n-cubes P and Q,

we apply the algorithm above separately to each of P and

Q, perform the refolding steps on P to transform it into a

line, and then perform the reverse refolding steps on Q to

transform the line into Q. (Note that each refolding step is

reversible.) Thus we have proved Theorem 5.1.

It is tempting to apply the (much more complicated)

O(n2)-step algorithm of Abel, Akitaya, Kominers, Korman,

and Stock [17], which has the advantage of avoiding self-

intersection without any assumption of slit-freeness. Un-

fortunately, sliding and rotating nonleaf cubes seem more

difficult. One approach is to transform one spanning tree

into another (probably increasing the number of steps), but

it is not even clear whether this can be accomplished by leaf

reparenting operations.

It also seems likely that some of these moves can be done

in parallel in the same refolding step, leading to fewer re-

folding steps. Some models of modular robotics have paral-

lel reconfiguration algorithms that move a linear number of
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robots in each round [18, 19]. It remains open whether we

can get similarly good bounds in the cube sliding model or

the leaf-focused sliding-by-refolding model.

6. Conclusion

In this paper, we showed a transformation algorithm be-

tween any two manifolds with two cut-and-glue refolding

steps. When transforming between manifold P and mani-

fold Q, we go through an intermediate embeddable polyhe-

dron which is not necessarily convex. We also showed two

simpler refolding algorithms for doubly covered polyhedra

and tree-shaped polycubes.

Many open questions remain:

• Are there examples where 1-step refolding is impossi-

ble? [3]

• If the two given polyhedra are convex, is there a finite-

step refolding where the intermediate polyhedra are also

convex? [1, Section 25.8.3]

• Can we extend our polycube result to avoid self-

intersection without assuming slit-freeness, or to sup-

port non-tree-shaped polycubes of the same surface

area?

• Can we improve the number of refolding steps needed

for the doubly covered polygon or polycube refolding

algorithms?
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