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Abstract:

We prove that, for any two polyhedral manifolds P, Q, there is a polyhedral manifold Z such that P,Z share
a common unfolding and Z, Q share a common unfolding. In other words, we can unfold P, refold (glue)
that unfolding into Z, unfold Z, and then refold into Q. Furthermore, if P, Q have no boundary and can be
embedded in 3D (without self-intersection), then so does Z. These results generalize to n given manifolds
P1,P2,...,Pn; they all have a common unfolding with the same intermediate manifold Z. Allowing more
than two unfold/refold steps, we obtain stronger results for two special cases: for doubly covered convex
planar polygons, we achieve that all intermediate polyhedra are planar; and for tree-shaped polycubes, we
achieve that all intermediate polyhedra are tree-shaped polycubes.
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1. Introduction

Consider a polyhedral manifold — a connected two-
dimensional surface made from flat polygons by gluing to-
gether paired portions of boundary (but possibly still leav-
ing some boundary unpaired, and not necessarily embedded
in space without overlap). Two basic operations on such
a manifold are gluing (joining together two equal-length
portions of remaining boundary) and the inverse operation
cutting (splitting a curve into two equal-length portions of
boundary, while preserving overall connectivity of the man-
ifold). If we cut a manifold P enough that it can be laid
isometrically into the plane (possibly with overlap), we call
the resulting flat shape U an unfolding of 77 Conversely,
if we glue a flat shape U into any polyhedral manifold P,
we call P a folding of U (and U an unfolding of P).

(Un)foldings naturally define an infinite bipartite graph G
[T} Section 25.8.3]: define a vertex on one side for each man-
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ifold P, a vertex on the other side for each flat shape U, and

an edge between U and P whenever U is an unfolding of P

(or equivalently, P is a folding of U). Because unfolding and

folding preserve surface area, we can naturally restrict the

graph to manifolds and flat shapes of a fixed surface area A.

Is the resulting graph G4 connected? In other words, is

it possible to transform any polyhedral manifold into any

other polyhedral manifold of the same surface area by an al-
ternating sequence of unfolding to a flat shape, folding that
flat shape into a new manifold, unfolding that manifold into

a flat shape, and so on? We call each pair of steps — un-

folding and then folding — a refolding step. We can then

ask whether two manifolds have a k-step refolding for each
k=1,2,....

In this paper, we give the first proof that the graph G4
is connected. In fact, we show that the graph has diameter
at most 2: every two polyhedral manifolds P, Q have a 2-
step refolding. In other words, there is a single polyhedral
manifold Z such that P and Z share a common unfolding,
as do Z and Q. This result turns out to follow relatively
easily using classic results from common dissection, similar
in spirit to general algorithms for hinged dissection [4].

More interesting is that we show similar results when we
restrict the polyhedral manifolds to the following special
cases, which sometimes reduce the allowed input manifolds
P, Q, but importantly also reduce the allowed intermediate
manifolds Z:

(1) No boundary: If polyhedral manifolds P and Q have
no boundary (what we might call “polyhedra”), then
there is a 2-step refolding where the intermediate man-
ifold Z also has no boundary. This version is similarly
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easy. (In fact, we can achieve this property even when
P and Q have boundary.)

(2) Embedded: If polyhedral manifolds P and Q are em-
bedded in 3D and have no boundary, then there is a
2-step refolding where the intermediate manifold Z is
embedded in 3D and has no boundary. This strength-
ening follows directly from a general theorem of Burago
and Zalgaller [0]. (In fact, we can achieve this property
whenever P and Q are orientable. Or, if we allow Z to
have boundary, we can always make it embeddable in
3D.)

(3) Doubly covered convex polygons: If polyhedral
manifolds P and Q are doubly covered convex poly-
gons, then there is an O(n)-step refolding where every
intermediate manifold Z is “planar” (all polygons lie in
the plane, but possibly with multiple layers) and has no
boundary. This result follows from an O(1)-step refold-
ing to remove a vertex from a doubly covered convex
polygon.

(4) Polycubes: If polyhedral manifolds P and Q are the
surfaces of tree-shaped n-cubes (made from n unit cubes
joined face-to-face according to a tree dual), then there
is an O(n?)-step refolding where every intermediate
manifold Z is a (possibly self-intersecting) tree-shaped
n-cube. Furthermore, the refoldings involve cuts only
along edges of the cubes (grid edges); and if the given
polycubes do not self-intersect and are “slit-free”, then
the intermediate polycubes also do not self-intersect.
This result follows from simulating operations in recon-
figurable robots.

Past work on refolding has focused on the restriction to
polyhedral manifolds that are the surfaces of convez polyhe-
dra. This version began with a specific still-open question
— is there a 1-step refolding from a cube to a regular tetra-
hedron? — independently posed by M. Demaine (1998), F.
Hurtado (2000), and E. Pegg (2000). When E. Demaine
and J. O’Rourke wrote this problem in their book [I, Open
Problem 25.6], they also introduced the multi-step refold-
ing problem. Let C4 be the subgraph of G4 restricting
to convex polyhedra and their unfoldings. Demaine, De-
maine, Diomidova, Kamata, Uehara, and Zhang [2] showed
that several convex polyhedra of surface area A are all in the
same connected component of C 4: doubly covered triangles,
doubly covered regular polygons, tetramonohedra (tetrahe-
dra whose four faces are congruent acute triangles, including
doubly covered rectangles), regular prisms, regular prisma-
toids, augmented regular prismatoids, and all five Platonic
solids. These refoldings require just O(1) steps (at most 9).

Our 2-step refolding is very general, applying in particular
to any two convex polyhedra; for example, Figure [1| shows
the example of a cube to a regular tetrahedron. But our
refolding crucially relies on a nonconvex intermediate man-
ifold Z. We conjecture that two steps is also optimal, even
for two convex polyhedra. Indeed, Arseneva, Demaine, Ka-
mata, and Uehara [3] conjectured that most pairs of doubly
covered triangles (specifically, those with rationally indepen-
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dent angles) have no common unfolding, and thus no 1-step
refolding. As evidence, they showed (by exhaustive search)
that any common unfolding has at least 300 vertices. As-
suming this conjecture, two steps are sometimes necessary.
Two steps is also the first situation where we have an inter-
mediate manifold Z, which is what allows us to exploit the
additional freedom of the nonconvexity of Z.

After presenting our general 2-step refolding (Section ,
we consider the special cases of doubly covered convex poly-
gons (Section [4)) and polycubes (Section [f)).

2. Refolding Model

In our constructions, we use a more general but equivalent
form of “refolding step”: any cutting followed by any glu-
ing. In other words, we allow using an arbitrary connected
manifold in between cutting and gluing. By contrast, the
definition in Section [[]requires a full unfolding followed by a
folding, which requires a flat shape in between cutting and
gluing.

These two models are equivalent. If we want to modify
one of our refolding steps to instead reach a full unfolding
after cutting, we can perform additional cuts (that preserve
connectivity) until the manifold can be laid flat, and then
immediately reglue those cuts back together. The same idea
is used in [2].

3. Transformation Between Polyhedral
Manifolds

In this section, we prove the main result of the paper:
Theorem 3.1. For any n polyhedral manifolds P1,...,Pn
of the same surface area, there is another polyhedral man-
ifold T such that P; and Z have a common unfolding for
all i. We can guarantee that the intermediate manifold
T has no boundary, or guarantee that it embeds in 3D. If
manifolds P; are all orientable, then we can guarantee that
the intermediate manifold T is orientable, has mo bound-
ary, and embeds in 3D.

We initially focus on the case of n = 2 manifolds:
Corollary 3.2. Any two polyhedral manifolds P, Q of the
same surface area have a 2-step refolding. We can guaran-
tee that the intermediate manifold T has no boundary, or
guarantee that it embeds in 38D. If manifolds P and Q are
both orientable, then we can guarantee that the intermedi-
ate manifold I is orientable, has no boundary, and embeds
mn 3D.

Figure[l] gives an example construction of an intermediate
manifold Z when P is a cube and Q is a regular tetrahedron.
To improve figure clarity, this construction does not exactly
follow the general algorithm described below: instead of the
general dissection algorithm, we use an efficient 3-piece dis-
section based on a dissection of Gavin Theobald [6], and
we preserve more original gluings when resolving overlaps.
Nonetheless, it serves as a running example of the key steps
in our algorithm.
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(a) 3-piece dissection of the cube into the regular tetrahedron, based on Gavin Theobald’s 5-piece dissection of the Latin cross into the
equilateral triangle [6]. Red and blue dashed lines represent the folding to a cube and regular tetrahedron respectively.

(b) Desired gluings for the cube (red) and the regular tetrahe-
dron (blue).

(¢) Gluing for an intermediate manifold Z, from subsets of the
cube (red) and the tetrahedron (blue) gluing and zipping the re-
mainder (green).

Fig. 1: Example 2-step refolding from the cube to the regular tetrahedron.

3.1 Common Dissection
We start by computing a common dissection of the

given manifolds P and Q of equal surface area, that is, a

subdivision of each surface into polygons that match in the

sense that, for some perfect pairing of P’s polygons with

Q’s polygons, there is an isometry between paired polygons.

Solutions to this dissection problem for polygons P and Q

go back to the early 1800s [7, [8 @, [10]. Their high-level

approach is as follows:

(1) Triangulate P and Q.

(2) Dissect each triangle (from both triangulations) into a
rectangle. (This dissection needs only three pieces: cut
the triangle parallel to its base at half the height, and
cut from the apex orthogonal to the first cut.)

(3) Dissect each rectangle into a rectangle of height hmin,
the smallest height among all the rectangles (i.e., half
the smallest height among all triangles in both triangu-
lations). (This dissection is more difficult and can re-
quire a polynomial number of [Someone fact-check
this —ALICE] pieces in the general case.)
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(4) Arrange all the rectangles from P into one long rect-
angle of height hmin, and similarly arrange all the rect-
angles from Q into one long rectangle of height Amin,
necessarily the same rectangle R.

(5) Overlay the two dissections of this common rectangle R
and subdivide according to all cuts, producing a set of
polygons that can form into P and can form into Q.

See [4 [T1] for more algorithmic descriptions, including pseu-

dopolynomial bounds on the number of pieces.

We can apply the same technique to the case where P
and Q are polyhedral manifolds instead of polygons. The
only slightly different step is triangulating the surfaces P
and Q (Step 1), which we can do by e.g. triangulating the
faces. Then Steps 2-5 apply to the resulting triangles as
usual. Because the dissection construction does not require
flipping the polygons, the resulting common dissection is
locally orientation preserving: the mapping from the
polygons arranged to form P to the polygons arranged to
form Q locally preserves which side of each polygon is “up”.

The resulting dissection may not be “edge-to-edge”: when
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assembling the polygons together to form P or Q, two poly-
gons may meet (intersect) at a segment that is only a subset
of an edge of either polygon. Figure shows an example
of such a dissection, from a cube to a regular tetrahedron:
for example, in the cube (cross) arrangement, the triangular
piece and square piece share only a portion of their edges.
(This example was designed by hand, based on a dissec-
tion by Gavin Theobald [6], not produced by the algorithm
above. In fact, Gavin Theobald found a 2-piece dissection
from the cube to the regular tetrahedron [12].)

We can generalize this common dissection construction
to n polyhedral manifolds Pi,..., P, of the same surface
area (as also mentioned in [4]): just overlay n dissections in
Step 5. Henceforth we will consider the case of general n.

3.2 Abstract Intermediate Manifold

Next we construct the intermediate manifold Z. For now,
we will not worry about embeddability, and just construct
an (abstract) polyhedral manifold.

Consider two polygons Pi, P> in the common dissection
that are adjacent in manifold P; meaning that, when the
polygons are assembled to form P;, there is an edge e1 of
P1 and an edge ez of P> that overlap on a common positive-
length segment. Let N;(e1,e2) denote the segment of e;
that intersects ez when assembling P;, and let N;(e2,e1)
denote the corresponding segment of es. (If the edges share
more than one segment, as they might in a non-edge-to-edge
gluing, pick one arbitrarily, but consistently for e; and es.)
Intuitively, N;(e1, e2) <> N;(e2, e1) represent the gluings de-
sired by P;, but the P; gluings likely conflict with the P;
gluings for 7 # j. Figure [ID] gives an example.

Next we construct a (partial) gluing on the boundaries
of the polygons that includes a positive segment from every
Ni(e1, e2) <> Ni(e2, e1) gluing, while avoiding conflicts. The
algorithm proceeds as follows:

(1) For each manifold P;, and for every overlapping pair of
edges e1 of P; and ez of P> when assembling the poly-
gons into P;, add N;(e1,e2) <> Ni(ez,e1) to the list of
gluings.

(2) Find two gluings that overlap on an edge e, say s1 <> s2
and s} ¢ s5 where segments s and s§ are subsegments
of a common edge e that overlap on a positive-length
segment s1 N s7. Refer to Figure

\

Fig. 2: Removing overlap from two gluings s1 <> s2 and
s} <> sh on edge e, by reducing s1 and s} to subsegments s
and s’ which bisect s1 N s].

(3) Divide the segment s1 N s7 into two equal halves, s
and s’.
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(4) Remove the overlap between these two gluings by re-
stricting s1 <> s2 to the subsegment s C si1, and re-
stricting s} <+ s} to the subsegment s’ C sj.

(5) Repeat Steps until all overlaps have been removed.

Because this algorithm only modifies gluings by restricting

to a subsegment, it never adds new overlaps, so it will re-

move all overlaps after O((n E?)?) repetitions, where E is

the number of edges in the common dissection so O(E?)

bounds the number of gluings from each manifold P;. Fur-

thermore, every original gluing N;(e1,e2) «> Ni(e2,e1) re-
mains intact for some positive length.

Some of the boundary of the polygons may now be
unglued. If we want to avoid Z having boundary, we can
glue each segment s of remaining boundary to itself, by di-
viding it in two equal halves s’,s”, giving s’ and s” oppo-
site orientations, and gluing s’ <+ s”. (This type of gluing
is called “zipping” [13].) Figure [Ld gives an example of a
gluing that might result from an optimized form of this al-
gorithm (where we maintain as much of the original gluings
as possible).

The gluing described above defines the intermediate man-
ifold Z. Because manifold Z contains a portion of every de-
sired gluing for P;, Z has a common unfolding with P;: just
cut all gluings that did not originate from P;. Because no
cut fully separates an entire edge from its mate in P;, this
cutting preserves connectivity; indeed, we obtain the same
dual graph of piece adjacencies as we do when arranging the
dissection into P;. Thus we obtain a 1-step refolding from
P; to Z, and similarly from 7 to P;, which gives a 2-step
refolding from P; to P;.

If manifolds P; are all orientable, then so is the resulting
intermediate manifold Z, because the common dissection is
(locally) orientation preserving.

3.3 Embeddable Intermediate Polyhedron via
Burago—Zalgaller Theorem

To guarantee that Z is embeddable in 3D, we use a pow-
erful result of Burago and Zalgaller [5]. See also [I4] for a
detailed description of the result, and [15] for a description
of the (quite complicated) construction.

Theorem 3.3 (|5, Theorem 1.7]). Ewvery polyhedral man-
ifold that is either orientable or has boundary admits an
isometric piecewise-linear C° embedding into 3D.

To apply this theorem, we need that Z is either orientable
or has boundary. As argued above, Z is orientable if mani-
folds P; are all orientable. Otherwise, we can give Z bound-
ary by reducing any one gluing to half of its length (or omit-
ting the zips if we had some). Either way, Theorem [3.3|gives
a subdivision of the polygons in Z into finitely many sub-
polygons, each of which gets isometrically embedded in 3D
by an embedding of Z.

4. Transformation Between

Covered Convex Polygons

Doubly

We start with doubly covered convex polygons, that
is, polyhedral manifolds without boundary formed from two
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copies of a convex planar polygon by gluing together all
corresponding pairs of edges. Here we require that every
intermediate polyhedral manifold Z is planar in the sense
that its polygons all lie in the plane, but we allow any num-
ber of layers of stacked polygons, generalizing the notion of
doubly covered polygon.

Theorem 4.1. Any two doubly covered convex n-gons of
the same area have an O(n)-step refolding, where all in-
termediate manifolds are planar with no boundary.

As a useful building block, we consider a simple 2-step

refolding which allows removing a piece from the polygon,
rotating it, and gluing it back elsewhere (similar to hinged
dissection), provided we can fold the polygon to facilitate
the gluing.
Lemma 4.2. Let P be a subset of the plane homeomor-
phic to a closed disk, as visualized in Figure [3 Suppose
A1B1 and A2Bs are line segments on the boundary of P,
such that there exists a plane reflection r taking A1 to As
and B1 to Ba. Let ¢ be a simple curve starting and ending
on the boundary of P passing through its interior, so that
it separates P into two closed halves P1 and P2 containing
A1B1 and A3 Bs respectively. Let f be the unique rotation
and translation such that f(A1) = A2 and f(B1) = Ba,
and suppose f(Pl) intersects P> only on A2 B2. Then there
is a 2-step refolding between the double covers of P and P’
where P’ = f(P1) U Ps.

Proof. The refolding is accomplished by the following

steps, illustrated in Figure

(1) Cut along A1 B and A B>, then glue the top layer of
A1B1 to the top layer of A2B2 and similarly for the
bottom layers. This intermediate step can be folded
flat by a single fold along the line of reflection of r.

(2) Cut along c in both layers to create two new boundaries
c1 and c2. Then glue the top layer of c¢1 to the bottom
layer of c¢1 and similarly for cs. O

Now we consider the triangle AABC formed by three

consecutive vertices A, B, C on the boundary of a polygon
P. Our goal is to find an O(1)-step refolding of P which
moves the apex B parallel to AC' (which preserves area).
This will allow us to move B so that the interior angle at
C becomes 180°, eliminating a vertex from P. By induc-
tion, this allows us to reduce any doubly covered polygon
down to a doubly covered triangle, and then we can use a
known 3-step refolding between doubly covered triangles [2]
Theorem 2]. We accomplish the goal as follows:
Lemma 4.3. Let P be a convex polygon with three con-
secutive vertices A, B, C such that the projection of B onto
AC is between A and C. Then there is an O(1)-step re-
folding between the double covers of P and P’, where P’
is the polygon obtained from P by replacing NABC by a
rectangle with base AC with the same area.

Proof. Refer to Figure[d] Let X be the midpoint of AB, Y
be the midpoint of BC, and O be the projection of B onto
XY. Using Lemma we rotate AX BO by 180° about
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B>

A1 ! AQ

Ao

(a) Folding to glue A1 B to
AsBs

(b) Cutting along ¢

B>

Az

(c) Finished

Fig. 3: Rearranging two pieces via a 2-step refolding.

X, and similarly we rotate AY BO by 180° about Y. This
forms the desired rectangle. O

B

Fig. 4: Refolding AABC into a rectangle when B is be-
tween A and C.

Lemma 4.4. Let P be a convex polygon with three con-
secutive vertices A, B,C, and let B1 be the projection of
B onto AC. Suppose that C is between A and Bi, and
|CB1| < 4|AC|. Then there is an O(1)-step refolding be-
tween the double covers of P and P', where P’ is the poly-
gon obtained from P by replacing AABC by a rectangle
with base AC with the same area.

Proof. Refer to Figure[f] where all point labels remain fixed
in the plane across all subfigures. Let X be the midpoint
of AB and Y be the midpoint of BC' (Figure . For this
proof, we will adopt the convention that p; denotes the pro-
jection of point p onto AC' and p2 denotes the projection of
p onto XY.

Using Lemma [4.2] we rotate AXY B by 180° about X
(Figure, forming the parallelogram ACYY”’ (Figure.
Now let W be the midpoint of CY and V be the midpoint
of AY’. We have

1
|AVA| = [W2Y| = {|CBi| < |AC| = [Y'Y],

which implies V1 lies on AC and W2 lies on Y'Y. Using
Lemma, twice, we rotate AAVV) by 180° about V,
and AYWWs by 180° about W. This forms a rectangle
ViVoWoWi. Finally, we use Lemma [£.2] again to move the
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rectangle CCoWaWi to AA2ViVa. O
B
X
Y

A C

(a) Triangle to parallelogram

Y’ W2y

(v
W)
A Vi C

(b) Parallelogram to rectangle

As Va Ca Wo

A Vi C W1
(c) Shifting the rectangle
Fig. 5: Refolding AABC into a rectangle when B is not
between A and C.

Lemma 4.5. Let P be a convex polygon with three con-
secutive vertices A, B,C and let Z be another vertex of P
such that the interior angle at Z is at most the interior an-
gle at B. Let ¢ be the line through B parallel to AC, Q1 be
the intersection of ZA with £, and Q2 be the intersection
of ZC with £. Then min{|Q1B|, |Q2B]|} < |AC|.

Proof. Refer to Figure [6] Construct B’ so that ABC'B’
is a parallelogram. Vertex Z cannot lie in the interior of
AACB’ or else its interior angle would be larger than that
of B (by convexity of P). Thus Z is either below AB’ or
below C'B'; in the first case, we have |Q1B| < |AC|, and in
the second case, we have |Q2B]| < |AC|. O

Fig. 6: Bounding the distance from B to Q1, Q2.

Corollary 4.6. Let P be a convex polygon with five con-
secutive vertices D1, A, B, C, D2 (where possibly D1 = D3 )
such that the interior angle at B is at least as large as
the interior angles at D1 and Dz. Let £ be the line
through B parallel to AC, Q1 be the intersection of D1 A
with £, and Q2 be the intersection of D2C with £. Then
min{|Q1B|,[Q2Bl} < |AC|.

Proof. By convexity of P, D1 is below D2A and so |Q1B]|
is at most the distance from B to the intersection of D2 A
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with ¢. The inequality thus follows from Lemma applied
to Do. O

Proof of Theorem[{-1] 1t suffices to show that, for n > 4,
any doubly covered convex n-gon can be reduced to a dou-
bly covered convex (n — 1)-gon by an O(1)-step refolding,
because then we can reduce both polygons to triangles in
O(n) steps, and [2, Theorem 2] shows there is a 3-step re-
folding between any pair of doubly covered triangles with
the same area.

Let P be a convex m-gon where n > 4, and let B be a
vertex of P with the largest interior angle. By Corollary [£.6]
we can label the nearby vertices of B by A, C, D such that
A, B, C, D are consecutive and |QB| < |AC| where @ is the
intersection of DC with ¢, the line through B parallel to
AC. Let P’ be the polygon obtained from P by replacing
AABC by a rectangle with base AC' of the same area, and
let P” be the polygon obtained from P by replacing AABC
by AAQC. By Lemma there is an O(1)-step refolding
between the double covers of P and P’; it applies because
the interior angle of B is at least 90°. Similarly, one of Lem-
mas or (using |@QB| < |AC|) shows that there is an
O(1)-step refolding between the double covers of P and P’.
Thus there is an O(1)-step refolding between double covers
of P and P”. But because D,C,Q are collinear, P” is a
convex (n — 1)-vertex polygon. O
Tree-

5. Transformation Between

Shaped Polycubes

Next we consider tree-shaped n-cubes, that is, polyhe-
dral manifolds formed from n unit cubes in 3D joined face-
to-face in a tree structure (forming a tree dual graph). Here,
when two cubes get joined together at a common face, we re-
move that face from the manifold, preserving that the man-
ifold is homeomorphic to a sphere. (This notion of “join”
is a higher-dimensional analog of gluing.) Thus every tree-
shaped n-cube has surface area 6n — 2(n — 1) = 4n + 2.

We allow two cubes to be adjacent even if they are not
glued together, in which case there are two surface squares
in between. If there are no such touching cubes, we call
the tree-shaped n-cube slit-f'r‘ee When the n-cubes are
not slit-free, we further allow multiple cubes to occupy the
same location in space, in which case we call the tree-shaped
n-cube self-intersecting.

All cubes of a tree-shaped m-cube naturally lie on a cu-
bical grid. Define grid cutting to be cutting restricted to
edges of the cubical grid, and grid refolding to be grid cut-
ting followed by gluing that results in another tree-shaped
n-cube.

Theorem 5.1. Any two tree-shaped n-cubes have an
O(n?)-step grid refolding, where all intermediate manifolds
are possibly self-intersecting tree-shaped n-cubes. If the

*2 Our definition of “slit-free” here is less restrictive than previ-

ous notions of “well-separated” [16], which required at least
one straight cube (connected to cubes on two opposite faces
and nowhere else) between every two non-straight cubes.
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given tree-shaped n-cubes do not self-intersect and are slit-

free, then the intermediate manifolds do not self-intersect.
To transform between two given tree-shaped polycubes P

and Q, we mimic the “sliding cubes” model of reconfigur-

ing modular robots made up of n cubes, which was recently

solved in optimal O(n?) steps [I7]. This model defines two

types of operations (see Figurolﬂ):

(1) Slide a cube along a flat surface of neighboring cubes

by 1 unit.
(2) Rotate a cube around the edge of an adjacent cube.

2
VAP m
1 \

Fig. 7: Two different ways an individual cube can move on
a surface of a polycube: (1) sliding and (2) rotating.

We will show how to perform slide and rotate operations
for a leaf cube, that is, a leaf of the dual tree in a tree-
shaped polycube. In this case, sliding can be viewed as
moving a leaf cube to a new parent, and rotating can be
viewed as the leaf cube attaching to a different location of
the same parent.

To slide a leaf cube, we perform the following refolding
step, illustrated in Figure [8}

(1) Cut AB, BE, ED, FG, GJ, and IJ. These cuts free
up the leaf cube to move into the adjacent location, as
drawn in the intermediary figure in F igure

(2) Glue AB’ to E'B’, FG' to J'G’, E'D to AB, J'I to
FG, DE to BE, and IJ to GJ.

C,
H 1 1 G H
C B [I B
S~ / S
5 A3 7 A= | F/3 G/1 ]
A B| A 3
E B E A/E B/D E

Fig. 8: Sliding a leaf cube.

Figure [0 shows an extension of sliding. Here the leaf cube
IDEJCHGB does not move, but it changes its parent from
the cube attached below to the cube attached on its left, ef-
fectively traversing the reflex corner. The same refolding
step as sliding applies in this case.

G D G/L H

e}

Fig. 9: “Sliding” a leaf cube in a reflex corner.

To rotate a leaf cube around an edge we perform the fol-
lowing refolding step, illustrated in Figure [I0}
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(1) Cut BA, AD, DE, GF, FI, and IJ. Similar to the
sliding procedure, these cuts free up the leaf cube to
move, as shown in the intermediary figure in Figure

(2) Glue AB to AD, FG to FI, BA' to DE, GF’ to IJ,
A'D' to ED', and F'I’ to JI'.

] 3 , I

E E E/A' D'

Fig. 10: Rotating a leaf cube over the edge of a polycube.

By combining these three operations, we can follow a
simple algorithm for transforming a given n-cube P into
alx1xmn line:

(1) Fix one leaf cube as the root cube c¢1. Assume by sym-
metry that the root cube’s unique neighbor is in the
down direction.

(2)Fori=2,3,...,n:

(a) Assumecy, ..., c;—1 have been arranged into an up-
ward line, with ¢; being a current leaf.

(b) Take a leaf cube ¢; that is not c¢;—1 (given that
there are always at least two leaves).

(c) Slide and rotate ¢; around the boundary of the rest
of the tree until it reaches the root cube c¢1, and
then slide it up the line to place it immediately
above ¢;_1.

This algorithm requires O(nz) steps: potentially each
of the n cubes needs to traverse the surface area of the
tree-shaped n-cube, which is O(n). It may also cause self-
intersection, because it blindly follows the surface of the
tree-shaped m-cube, so it may place the moving leaf cube
on top of an adjacent cube in the case of touching cubes. If
the tree-shaped n-cube is slit-free, though, then this simple
algorithm avoids self-intersection.

To transform between two tree-shaped n-cubes P and Q,
we apply the algorithm above separately to each of P and
9, perform the refolding steps on P to transform it into a
line, and then perform the reverse refolding steps on Q to
transform the line into Q. (Note that each refolding step is
reversible.) Thus we have proved Theorem [5.1

It is tempting to apply the (much more complicated)
O(n?)-step algorithm of Abel, Akitaya, Kominers, Korman,
and Stock [I7], which has the advantage of avoiding self-
intersection without any assumption of slit-freeness. Un-
fortunately, sliding and rotating nonleaf cubes seem more
difficult. One approach is to transform one spanning tree
into another (probably increasing the number of steps), but
it is not even clear whether this can be accomplished by leaf
reparenting operations.

It also seems likely that some of these moves can be done
in parallel in the same refolding step, leading to fewer re-
folding steps. Some models of modular robotics have paral-
lel reconfiguration algorithms that move a linear number of



Journal of Information Processing Vol.0 [1}-10 (??? 1992)

robots in each round [I8] [19]. It remains open whether we
can get similarly good bounds in the cube sliding model or
the leaf-focused sliding-by-refolding model.

6. Conclusion

In this paper, we showed a transformation algorithm be-
tween any two manifolds with two cut-and-glue refolding
steps. When transforming between manifold P and mani-
fold @, we go through an intermediate embeddable polyhe-
dron which is not necessarily convex. We also showed two
simpler refolding algorithms for doubly covered polyhedra
and tree-shaped polycubes.

Many open questions remain:

e Are there examples where 1-step refolding is impossi-

ble? [3]

e If the two given polyhedra are convex, is there a finite-
step refolding where the intermediate polyhedra are also
convex? [II Section 25.8.3]

e Can we extend our polycube result to avoid self-
intersection without assuming slit-freeness, or to sup-
port non-tree-shaped polycubes of the same surface
area?

e Can we improve the number of refolding steps needed
for the doubly covered polygon or polycube refolding
algorithms?
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