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Any Regular Polyhedron Can Transform to Another by O(1) Refoldings
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Abstract

We show that several classes of polyhedra are joined
by a sequence of O(1) refolding steps, where each re-
folding step unfolds the current polyhedron (allowing
cuts anywhere on the surface and allowing overlap) and
folds that unfolding into exactly the next polyhedron;
in other words, a polyhedron is refoldable into another
polyhedron if they share a common unfolding. Specifi-
cally, assuming equal surface area, we prove that (1) any
two tetramonohedra are refoldable to each other, (2) any
doubly covered triangle is refoldable to a tetramono-
hedron, (3) any (augmented) regular prismatoid and
doubly covered regular polygon is refoldable to a tetra-
monohedron, (4) any tetrahedron has a 3-step refold-
ing sequence to a tetramonohedron, and (5) the regu-
lar dodecahedron has a 4-step refolding sequence to a
tetramonohedron. In particular, we obtain a ≤ 6-step
refolding sequence between any pair of Platonic solids,
applying (5) for the dodecahedron and (1) and/or (2)
for all other Platonic solids. As far as the authors know,
this is the first result about common unfolding involving
the regular dodecahedron.

1 Introduction

A polyhedron Q is refoldable to a polyhedron Q′ if Q
can be unfolded to a planar shape that folds into ex-
actly the surface of Q′, i.e., Q and Q′ share a common
unfolding/development, allowing cuts anywhere on the
surfaces of Q and Q′. (Although it is probably not nec-
essary for our refoldings, we also allow the common un-
folding to self-overlap, as in [6].) The idea of refolding
was proposed independently by M. Demaine, F. Hur-
tado, and E. Pegg [5, Open Problem 25.6], who specifi-
cally asked whether every regular polyhedron (Platonic
solid) can be refolded into any other regular polyhe-
dron. In this context, there exist some specific results:
Araki et al. [2] found two Johnson-Zalgaller solids that
are foldable to regular tetrahedra [2], and Shirakawa et
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al. [9] found an infinite sequence of polygons that can
each fold into a cube and an approaching-regular tetra-
hedron.

More broadly, Demaine et al. [4] showed that any con-
vex polyhedron can always be refolded to at least one
other convex polyhedron. Xu et al. [11] and Biswas and
Demaine [3] found common unfoldings of more than two
(specific) polyhedra. On the negative side, Horiyama
and Uehara [6] proved impossibility of certain refoldings
when the common unfolding is restricted to cut along
the edges of polyhedra.

In this paper, we consider the connectivity of polyhe-
dra by the transitive closure of refolding, an idea sug-
gested by Demaine and O’Rourke [5, Section 25.8.3].
Define a (k-step) refolding sequence from Q to
Q′ to be a sequence of convex polyhedra Q =
Q0, Q1, . . . , Qk = Q′ where each Qi−1 is refoldable to
Qi. We refer to k as the length of the refolding se-
quence. To avoid confusion, we use “1-step refoldable”
to refer to the previous notion of refoldability.

Our results. Do all pairs of convex polyhedra of the
same surface area (a trivial necessary condition) have a
finite-step refolding sequence? If so, how short of a se-
quence suffices? As mentioned in [5, Section 25.8.3], the
regular polyhedron open problem mentioned above is
equivalent to asking whether 1-step refolding sequences
exist for all pairs of regular polyhedra. We solve a
closely related problem, replacing “1” with “O(1)”: for
any pair of regular polyhedra Q and Q′, we give a re-
folding sequence of length at most 6.

More generally, we give a series of results about O(1)-
step refolding certain pairs of polyhedra of the same
surface area:

1. In Section 3, we show that any two tetramonohedra
are 1-step refoldable to each other, where a tetra-
monohedron is a tetrahedron that consists of four
congruent acute triangles.

This result offers a possible “canonical form” for
finite-step refolding sequences between any two
polyhedra: because a refolding from Q to Q′ is also
a refolding from Q′ to Q, it suffices to show that
any polyhedron has a finite-step refolding into some
tetramonohedron.
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2. In Section 4, we show that every regular prismatoid
and every augmented regular prismatoid are 1-step
refoldable to a tetramonohedron.

In particular, the regular tetrahedron is a tetra-
monohedron, the regular hexahedron (cube) is a
regular prismatoid, and the regular octahedron and
regular icosahedron are both augmented regular
prismatoids. Therefore, the regular tetrahedron
has a 2-step refolding sequence to the regular hexa-
hedron, octahedron, and icosahedron (via an inter-
mediate tetramonohedron); and every pair of poly-
hedra among the regular hexahedron, octahedron,
and icosahedron have a 3-step refolding sequence
(via two intermediate tetramonohedra).

3. In Section 5, we prove that a regular dodecahedron
is refoldable to a tetramonohedron by a 4-step re-
folding sequence.

As far as the authors know, there are no previous
explicit refolding results for the regular dodecahe-
dron, except the general results of [4].

Combining the results above, any pair of regu-
lar polyhedra (Platonic solids) have a refolding se-
quence of length at most 6.

4. In addition, we prove that every doubly covered tri-
angle (Section 3) and every doubly covered regular
polygon (Section 4) are refoldable to a tetramono-
hedron, and that every tetrahedron has a 3-step re-
folding sequence to a tetramonohedron (Section 6).

Therefore, every pair of polyhedra among the list
above have an O(1)-step refolding sequence.

2 Preliminaries

For a polyhedron Q, V (Q) denotes the set of vertices
of Q. For v ∈ V (Q), define the cocurvature σ(v) of
v on Q to be the sum of the angles incident to v on
the facets of Q. The curvature κ(v) of v is defined by
κ(v) = 2π − σ(v). In particular, if κ(v) = σ(v) = π, we
call v a smooth vertex . We define Πk to be the class of
polyhedra Q with exactly k smooth vertices. It is well-
known that the total curvature of the vertices of any
convex polyhedron is 4π, by the Gauss–Bonnet Theo-
rem (see [5, Section 21.3]). Thus the number of smooth
vertices of a convex polyhedron is at most 4. Therefore,
the classes Π0,Π1,Π2,Π3,Π4 give us a partition of all
convex polyhedra.

An unfolding of a polyhedron is a (possibly self-
overlapping) planar polygon obtained by cutting and
developing the surface of the polyhedron (allowing cuts
anywhere on the surface). Folding a polygon P is an
operation to obtain a polyhedron Q by choosing crease
lines on P and gluing the boundary of P properly. When

the polyhedron Q is convex, the following result is cru-
cial:

Lemma 1 (Alexandrov’s Theorem [8, 5]) If we
fold a polygon P in a way that satisfies the following
three Alexandrov’s conditions, then there is a
unique convex polyhedron Q realized by the folding.

1. Every point on the boundary of P is used in the
gluing.

2. At any glued point, the summation of interior an-
gles (cocurvature) is at most 2π.

3. The obtained surface is homeomorphic to a sphere.

By this result, when we fold a polygon P to a poly-
hedron Q, it is enough to check that the gluing sat-
isfies Alexandrov’s conditions. (In this paper, it is
easy to check that the conditions are satisfied by our
(re)foldings, so we omit their proof.)

A polyhedron Q is (1-step) refoldable to a polyhe-
dron Q′ if Q can be unfolded to a polygon that folds
to Q′ (and thus they have the same surface area). A
(k-step) refolding sequence of a polyhedron Q to
a polyhedron Q′ is a sequence of convex polyhedra
Q = Q0, Q1, . . . , Qk = Q′ where Qi−1 is refoldable to
Qi for each i ∈ {1, . . . , k}. To simplify some arguments
that Q is refoldable to Q′, we sometimes only partially
unfold Q (cutting less than needed to make the surface
unfold flat), and refold to Q′ so that Alexandrov’s con-
ditions hold.

We introduce some key polyhedra. A tetrahedron is a
tetramonohedron if its faces are four congruent acute
triangles.1 We consider a doubly covered polygon as
a special polyhedron with two faces. Precisely, for a
given n-gon P , we make a mirror image P ′ of P and
glue corresponding edges. Then we obtain a doubly
covered n-gon which has 2 faces, n edges, and zero
volume.

3 Refoldabilty of Tetramonohedra and Doubly Cov-
ered Triangles

In this section, we first show that any pair of tetra-
monohedra can be refolded to each other. We note that
a doubly covered rectangle is a (degenerate) tetramono-
hedron, by adding edges along two crossing diagonals
(one on the front side and one on the back side). It is
known that a polyhedron is a tetramonohedron if and
only if it is in Π4 [7]. In other words, Π4 is the set of
tetramonohedra.

Theorem 2 For any Q,Q′ ∈ Π4, Q is 1-step refoldable
to Q′.

1This notion is also called isotetrahedron in some literature.
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Figure 1: A refolding between two tetramonohedra

Proof. Let T be any triangular face of Q. Let a be
the length of the longest edge of T and b the height
of T for the base edge of length a. We define T ′, a′,
and b′ in the same manner for Q′; refer to Figure 1.
We assume a > a′ without loss of generality. Now we
have a′ > b′ because a′ is the longest edge of T ′, and
a′b′ = ab because T and T ′ are of the same area. Thus,
(a′)2 = a′b′ a

′

b′ > a′b′ = ab, and 2a′ > a′ > b by a > a′.
We cut two edges of Q of length a, resulting in a

cylinder of height b and circumference 2a. Then we
can cut the cylinder by a segment of length 2a′ because
2a′ > b. The resulting polygon is a parallelogram such
that two opposite sides have length 2a and the other
two opposite sides have length 2a′. Now we glue the
sides of length 2a and obtain a cylinder of height b′ and
circumference 2a′. Then we can obtain Q′ by folding
this cylinder suitably (the opposite of cutting two edges
of Q′ of length 2a′). �

To complement the doubly covered rectangles han-
dled by Theorem 2, we give a related result for doubly
covered triangles:

Theorem 3 Any doubly covered triangle Q is 1-step re-
foldable into a doubly covered rectangle. Thus, Q has a
refolding sequence to any doubly covered triangle Q′ of
length at most 3. If doubly covered triangles Q and Q′

share at least one edge length, then the sequence has
length at most 2.

Proof. Let Q consist of a triangle T and its mirror
image T ′. We first cut Q along any two edges, and
unfold along the remaining attached edge, resulting in
a quadrilateral unfolding as shown in Figure 2. Let b be
the length of the uncut edge, which we call the base ,
and let h be the height of T with respect to the base.
Let p and q be the midpoints of the two cut edges. Then
the line segment pq is parallel to the base and of length
b/2. In the unfolding of Q, let p′ and q′ be the mirrors
of p and q, respectively. Then we can draw a grid based
on the rectangle pp′q′q as shown in Figure 2. By folding
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Figure 2: A refolding from a doubly covered triangle to
a doubly covered rectangle

along the crease lines defined by the grid, we can obtain
a doubly covered rectangle Q′′ of size b/2×h (matching
the doubled surface area of Q). (Intuitively, this folding
wraps T and T ′ on the surface of the rectangle pp′q′q.)

Because Q′′ is also a tetramonohedron, the second
claim follows from Theorem 2. When Q has an edge of
the same length as an edge of Q′, as in the third claim,
we can cut the other two edges of Q and Q′ to obtain
the same doubly covered rectangle, resulting in a 2-step
refolding sequence. �

The technique in the proof of Theorem 3 works for
any doubly covered triangle Q even if its faces are acute
or obtuse triangles.

4 Refoldability of a Regular Prismatoid to a Tetra-
monohedron

In this section, we give a 1-step refolding of any reg-
ular prism or prismatoid to a tetramonohedron. We
extend the approach of Horiyama and Uehara [6], who
showed that the regular icosahedron, the regular octa-
hedron, and the regular hexahedron (cube) can be 1-
step refolded into a tetramonohedron. As an example,
Figure 3 shows their common unfolding for the regular
icosahedron.

A polygon P = (p0, c1, p1, c2, p2, . . . , p2n, c2n, p2n+1, p0)
is called a spine polygon if it satisfies the following
two conditions (refer to Figure 4):

1. Vertex pi is on the line segment p0pn for each 0 <
i < n; vertex pi is on the line segment pn+1p2n+1

for each n + 1 < i < 2n + 1; and the polygon
B = (p0, pn, pn+1, p2n+1, p0) is a parallelogram. We
call B the base of P , and require it to have positive
area.

2. The polygon Ti = (pi, ci+1, pi+1, pi) is an isosceles
triangle for each 0 ≤ i ≤ n − 1 and n + 1 ≤ i ≤
2n. The triangles T0, T1, . . . , Tn−1 are congruent,
and Tn+1, Tn+2, . . . , T2n are also congruent. These
triangles are called spikes.
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Figure 3: A common unfolding of a regular icosahedron
and a tetramonohedron, from [6]

p0 p1 p2 pn−2 pn−1 pn

p2n+1 p2n p2n−1 pn+3 pn+2 pn+1

c1 c2 cn−1 cn

c2n c2n−1 cn+2 cn+1

Figure 4: A spine polygon with 2n spikes

Lemma 4 Any spine polygon P can be folded to a tetra-
monohedron.

Proof. Akiyama and Matsunaga [1] prove that a poly-
gon P can be folded into a tetramonohedron if the
boundary of P can be divided into six parts, two of
which are parallel and the other four of which are rota-
tionally symmetric. We divide the boundary of a spine
polygon P into l1 = (p0, c1, . . . , cn); l2 = (cn, pn), l3 =
(pn, pn+1); l4 = (pn+1, cn+1, . . . , c2n), l5 = (c2n, p2n+1);
and l6 = (p2n+1, p0). Then l3 and l6 are parallel be-
cause the base of P is a parallelogram. Each of l2 and
l5 is trivially rotationally symmetric. Each of l1 and l4
is rotationally symmetric because each spike of P is an
isosceles triangle. �

Now we introduce some classes of polyhedra; refer to
Figure 5.

A prismatoid is the convex hull of parallel base and
top convex polygons. We sometimes call the base and
the top roofs when they are not distinguished. We
call a prismatoid regular if (1) its base P1 and top P2

are congruent regular polygons and (2) the line passing
through the centers of P1 and P2 is perpendicular to P1

and P2. (Note that the side faces of a regular prismatoid
do not need to be regular polygons.) The perpendicular
distance between the planes containing P1 and P2 is the
height of the prismatoid. The set of regular prismatoids
contains prisms and antiprisms, as well as doubly

Figure 5: A regular prismatoid and an augmented reg-
ular prismatoid

covered regular polygons (prisms of height zero).
A pyramid is the convex hull of a base convex poly-

gon and an apex point. We call a pyramid regular
if the base polygon is a regular polygon, and the line
passing through the apex and the center of the base is
perpendicular to the base. (Note that the side faces of
a regular pyramid do not need to be regular polygons.)
A polyhedron is an augmented regular prismatoid
if it can be obtained by attaching two regular pyramids
to a regular prismatoid base-to-roof, where the bases of
the pyramids are congruent to the roofs of the prisma-
toid and each roof is covered by the base of one of the
pyramids.

Theorem 5 Any regular prismatoid or augmented reg-
ular prismatoid of positive volume can be unfolded to a
spine polygon.

Proof. Let Q be a regular prismatoid. Let c1 and c2 be
the center points of two roofs P1 and P2, respectively.
Cutting from ci to all vertices of Pi for each i = 1, 2
and cutting along a line joining between any pair of
vertices of P1 and P2, we obtain a spine polygon. For an
augmented regular prismatoid Q, we can similarly cut
from the apex ci of each pyramid to the other vertices
of the pyramid, which are the vertices of the roof Pi of
the prismatoid. �

When the height of the regular prismatoid is zero (or
it is a doubly covered regular polygon), the proof of
Theorem 5 does not work because the resulting polygon
is not connected. In this case, we need to add some
twist.

Theorem 6 Any doubly covered regular n-gon is 1-step
refoldable to a tetramonohedron for n > 2.

Proof. First suppose that n is an even number 2k
for some positive integer k > 1. We consider a spe-
cial spine polygon where the top angles are 2π

k ; the
vertices p0, p2n+1, p1 are on a circle centered at c1;
and the vertices p2n+1, p1, p2 are on a circle centered
at c2n; see Figure 6. Then we can obtain a dou-
bly covered n-gon by folding along the zig-zag path
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Figure 6: The case of a doubly covered regular 8-gon
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Figure 7: The case of a doubly covered regular 5-gon

p2n+1, p1, p2n, p2, . . . , pn+2, pn shown in Figure 6. Thus
when n = 2k for some positive integer k, we obtain the
theorem.

Now suppose that n is an odd number 2k + 1 for
some positive integer k. We consider the spine polygon
whose top angles are 4π

2k+1 ; the vertices p0, p2n+1, p1 are
on a circle centered at c1; and the vertices p2n+1, p1, p2
are on a circle centered at c2n. From this spine
polygon, we cut off two triangles c1, p0, c2n+1 and
cn+1, pn+1, pn, as in Figure 7. Then we can obtain a
doubly covered n-gon by folding along the zig-zag path
p2n+1, p1, p2n, p2, . . . , pn+2, pn shown in Figure 7. Al-
though the unfolding is no longer a spine polygon, it
is easy to see that it can also fold into a tetramono-
hedron by letting l′1 = (c1, p1, . . . , pn), l′2 = (pn, pn),
l′3 = (pn, cn+1), l′4 = (cn+1, pn+2 . . . , p2n+1), l′5 =
(p2n+1, p2n+1), and l′6 = (p2n+1, c1) in the proof of
Lemma 4. �

The proof of Theorem 6 is effectively exploiting that
a doubly covered regular 2k-gon (with k > 1) can be
viewed as a degenerate regular prismatoid with two k-
gon roofs, where each of the side triangles of this pris-
matoid is on the plane of the roof sharing the base of
the triangle.

Because the cube and the regular octahedron are reg-
ular prismatoids and the regular icosahedron is an aug-
mented regular prismatoid, we obtain the following:

Corollary 7 Let Q and Q′ be regular polyhedra of the
same area, neither of which is a regular dodecahedron.
Then there exists a refolding sequence of length at most
3 from Q to Q′. When one of Q or Q′ is a regular
tetrahedron, the length of the sequence is at most 2.

5 Refoldability of a Regular Dodecahedron to a
Tetramonohedron

In this section, we show that there is a refolding se-
quence of the regular dodecahedron to a tetramonohe-
dron of length 4. Combining this result with Corol-
lary 7, we obtain refolding sequences between any two
regular polyhedra of length at most 6.

Demaine et al. [4] mention that the regular dodeca-
hedron can be refolded to another convex polyhedron.
Indeed, they show that any convex polyhedron can be
refolded to at least one other convex polyhedron using
an idea called “flipping a Z-shape”. We extend this idea.

Definition 1 For a convex polyhedron Q and n, k ∈ N,
let p = (s1, s2, . . . , s(2k+1)n) be a path that consists of
isometric and non-intersecting (2k + 1)n straight line
segments si on Q. We cut the surface of Q along p.
Then each line segment is divided into two line segments
on the boundary of the cut. For each line segment si,
let sli and sri correspond to the left and right sides on
the boundary along the cut (Figure 8). Then p is a Z-
flippable (n, k)-path on Q, and Q is Z-flippable by p,
if the following gluing satisfies Alexandrov’s conditions.
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Figure 8: Z-flip
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• Glue sr1, s
r
2, . . . , s

r
n to sl2n+1, s

l
2n+2, . . . , s

l
3n.

• Glue srn+1, s
r
n+2, . . . , s

r
2n to sr3n, s

r
3n−1, . . . , s

r
2n+1.

...

• Glue sr2(k−1)n+1, s
r
2(k−1)n+2, . . . , s

r
2kn to

sr(2k+1)n, s
r
(2k+1)n−1, . . . , s

r
2kn+1.

If there are Z-flippable paths p1, p2, . . . , pm inducing
a forest on Q, we can flip them all at the same time.
Then we say that Q is Z-flippable by p1, p2, . . . , pm.

Theorem 8 There exists a 4-step refolding sequence
between a regular dodecahedron and a tetramonohedron.

Proof. Let D be a regular dodecahedron. To simplify,
we assume that each edge of a regular pentagon is of
length 1. We show that there exists a refolding sequence
D,Q1, Q2, Q3, Q4 of length 4 for a tetramonohedron Q4.

All cocurvatures of the vertices of D are equal to 9π
5 .

For any vertices v, there are 3 vertices of distance 1 from

v and 6 vertices of distance φ = 1+
√
5

2 from v. Here-
after, in figures, each circle describes a non-flat vertex
on a polyhedron and the number in the circle describes
its cocurvature divided by π

5 . Each pair of vertices of
distance 1 is connected by a solid line, and each pair
of vertices of distance φ is connected by a dotted line.
Figure 9 shows the initial state of D in this notation.
We note that solid and dotted lines do not necessarily
imply edges (or crease lines) on the polyhedron.
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9 99

9

99

9

9

9

9

9

9 9

9

9 9

9

9

Figure 9: The initial regular dodecahedron

First, we choose p1 = (s11, s
1
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3
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3
6), and p4 = (s41, s

4
2, s

4
3) on the surface

of D on the left of Figure 10. Then, p1 and p3 are
Z-flippable (2, 1)-paths and p2 and p4 are Z-flippable
(1, 1)-paths. Thus, D is Z-flippable by p1, p2, p3, p4 to
the polyhedron on the right of Figure 10. Let Q1 be the
resulting polyhedron.

Second, we choose p1 = (s11, s
1
2, . . . , s

1
5) on the surface

of Q1 on the left of Figure 11. Then, p1 is a Z-flippable
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Figure 10: A refolding from D to Q1
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Figure 11: A refolding from Q1 to Q2

(1, 3)-path. Thus, Q1 is Z-flippable by p1 to the next
polyhedron Q2 on the right of Figure 11.

Third, we choose p1 = (s11, s
1
2, s

1
3) and p2 = (s21, s

2
2, s

2
3)

on the surface of Q2 on the left of Figure 12. Then,
p1 and p2 are Z-flippable (1, 1)-paths. Thus, Q2 is Z-
flippable by p1 and p2 to the polyhedron Q3 on the right
of Figure 12.
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Figure 12: A refolding from Q2 to Q3
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Figure 13: A refolding from Q3 to Q4

Q3 on the left of Figure 13. Then, p1 and p2 are Z-
flippable (1, 3)-paths and p3 is a Z-flippable (1, 1)-path.
Thus, Q3 is Z-flippable by p1, p2, and p3 to the polyhe-
dron Q4 on the right of Figure 13. Finally, we obtain
a tetramonohedron Q4 from a regular dodecahedron D
by a 4-step refolding sequence.

In this proof, we used partial unfolding between pairs
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Figure 14: A refolding of a polyhedron in Π3∩Q5 to Π4

of polyhedra in the refolding sequence. Appendix A
gives the (fully unfolded) common unfoldings. �

6 Refoldability of a Tetrahedron to a Tetramonohe-
dron

In this section, we prove that any tetrahedron can be
refolded to a tetramonohedron. Let Qk denote the class
of polyhedra with exactly k vertices.

6.1 Refoldability of Π3 to Π4

First we show a technical lemma: any polyhedron Q in
Π3 can be refolded to a tetramonohedron by a refolding
sequence of length linear in the number of vertices of Q.

Lemma 9 For any Q ∈ Π3 ∩ Qn with n ≥ 5, there is
a refolding sequence of length 2n − 9 from Q to some
Q′ ∈ Π4.

Proof. (Outline) We prove the claim by induction. As
the base case, suppose n = 5; refer to Figure 14. Let
λ1, λ2, λ3 be the smooth vertices of Q and vi, vj be the
other vertices. Take a point m on the segment λ1λ2
with ∠vivjm = κ(vi) and cut the surface of Q along the
segments λ1λ2, vivj , and vjm. Then σ(vj)− κ(vi) = π
because κ(vi) + κ(vj) = π. The point vj is then di-
vided into a point of degree κ(vi) and a point of de-
gree π on the boundary. Trace the obtained boundary
from vi counterclockwise and denote points correspond-
ing to vi, vj ,m,m by pi, pj , pm1

, pm2
, respectively. Let

c1 and c2 be the center points of the segments pipj and
pm1

pm2
, respectively. We take the point s which has the

same distance with pm1 from c1. Let c3 be the center of
the segment pm2s. Now glue the segment sc1 to c1pm1 ,
the segment pm2

c2 to c2pm1
, and the segment pm2

c3 to
c3, s. Let Q′ be the obtained polyhedron after the glu-
ing. Then Q′ is in Π4 because each curvature of every
vertex of Q′ is π.

Now we turn to the inductive step. Let Q be any
polyhedron in Π3∩Qk with k > 5. We prove that there
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Figure 15: A refolding sequence from Π3 ∩ Qk to Π3 ∩
Qk−1

exists a refolding sequence (Q,Q′, Q′′) for two polyhedra
Q′ and Q′′ with Q′′ ∈ Π3 ∩Qk−1; refer to Figure 15.

Let λ1, λ2, λ3 be the smooth vertices of Q and vi, vj be
any other vertices on Q. Note that 0 < κ(vi)+κ(vj) < π
because k > 5. Take a point m on the segment λ1λ2
with ∠vivjm = π, cut the surface of Q′ along the seg-
ment λ1λ2, and glue it again so that m is an endpoint.
(This can be done because the cut produces a “rolling
belt” in terms of folding; see [5] for the details.) Let Q′

be the obtained polyhedron, and let λ′1(= m), λ′2, λ
′
3(=

λ3) be the smooth vertices of Q′. Now take a point m′

on the segment λ′2, λ
′
3 such that ∠λ′1vim

′ = κ(vj) and
cut the surface of Q′ along the segments λ′1vi, λ

′
2λ
′
3,

vivj , and vim
′. Trace the obtained boundary from

vj counterclockwise and denote points corresponding
to vj , vi,m

′,m′, vi by pj , pi1 , pm′
1
, pm′

2
, pi2 , respectively.

Let c1 and c2 be the midpoints of pi1pj and pm′
1
pm′

2
,

respectively. Take the point s which has the same dis-
tance with pm′

1
from c1. Let c3 be the midpoint of the

segment pm′
2
s. Now glue the segment pm′

1
c1 to c1s,

the segment pm′
2
c2 to c2pm′

1
, and the segment pm′

2
c3

to c3s. Let Q′′ be the obtained polyhedron. Then Q′′

is in Π3 ∩ Qk−1 because each curvature of points cor-
responding to c1, c2, c3 is π and 0 < σ(v′4) < π be-
cause σ(v′4) = σ(vi) − κ(vj) = σ(vi) + σ(vj) − 2π and
0 < κ(vi) + κ(vj) < π. �

Theorem 10 For any Q ∈ Q4, there is a 3-step refold-
ing sequence from Q to some Q′′′ ∈ Π4.

∈
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Figure 16: Refolding from any tetrahedron to a tetra-
monohedron

Proof. (Outline) Let v, v′ be two vertices of Q with
smallest cocurvature. (That is, σ(v), σ(v′) ≤ σ(v′′) for
the other two vertices v′′ of Q.) We cut along the seg-
ment vv′ and glue the point v to v′. Let Q′ be the
resulting polyhedron. Then, because σ(v) + σ(v′) ≤ 2π
by the Gauss–Bonnet Theorem, Q′ satisfies the Alexan-
drov’s conditions. That is, Q′ is a convex polyhedron in
Π2∪Q5. (We assume that the original Q has no smooth
vertex to simplify the arguments.)

Let λ1 and λ2 be the two smooth vertices of Q′ (which
was generated by the gluing of v and v′), and vi, vj
be two vertices of Q′ of larger cocurvature than others
with κ(vi) < κ(vj). By the Gauss–Bonnet Theorem,
4π
3 ≤ σ(vi) + σ(vj) ≤ 2π. We take the point m on the

segment λ1λ2 so that ∠(vi, vj ,m) = κ(vi). Now we cut
along the segments λ1λ2, vivj , and vjm; see Figure 16.
Trace the obtained boundary from vi counterclockwise
and denote points corresponding to vi, vj ,m,m, vj by
pi, pj1 , pm1 , pj2 , pm2 , respectively. Let c1 and c2 be the
midpoints of the segments pipj2 and pm1pm2 , respec-
tively. Furthermore, we take the point s which has the
same distance with pm2

from c1, and let c3 be the mid-
point of spm1

.
Now glue segment pic1 to pj2c1, segment pis to

pj2pm2
, segment pm1

c2 to pm2
c2, and segment sc3 to

pm1
c3. Let Q′′ be the resulting polyhedron. Then

the gluing to fold Q′′ produces four vertices. Among
them, three vertices produced by the points c1, c2, c3
are smooth vertices of curvature π. The cocurvature of
the vertex of Q′′ generated by the gluing of pj1 to the
boundary is 3π − (κ(vj) + κ(vi)), which is in [π, 5π3 ] by
4π
3 ≤ σ(vi)+σ(vj) ≤ 2π. Therefore, Q′′ satisfies Alexan-

drov’s conditions, and hence we obtain Q′′ ∈ Π3 ∪ Q.
By Lemma 9, there exists Q′′′ ∈ Π4 such that there is a
3-step refolding sequence from Q to Q′′′. �



CCCG 2021, Halifax, Canada, August 10–12, 2021

7 Conclusion

In this paper, we give a partial answer to Open Problem
25.6 in [5]. For every pair of regular polyhedra, we ob-
tain a refolding sequence of length at most 6. Although
this is the first refolding result for the regular dodeca-
hedron, the number of refolding steps to other regular
polyhedra seems a bit large. Finding a shorter refolding
sequence than Theorem 8 is an open problem.

The notion of refolding sequence raises many open
problems. What pairs of convex polyhedra are con-
nected by a refolding sequence of finite length? Is there
any pair of convex polyhedra that are not connected by
any refolding sequence?

At the center of our results is that the set of tetra-
monohedra induces a clique by the binary relation of
refoldability. Is the regular dodecahedron refoldable to
a tetramonohedron? Are all Archimedean and Johnson
solids refoldable to tetramonohedra? Is there any con-
vex polyhedron not refoldable to a tetramonohedron?
(If not, we would obtain a 3-step refolding sequence be-
tween any pair of convex polyhedra.)

Another open problem is the extent to which allowing
or forbidding overlap in the common unfoldings affects
refoldability. While we have defined refoldability to al-
low overlap, in particular to follow [4] where it may be
necessary, most of the results in this paper would still
apply if we forbade overlap. For example, Appendix A
confirms this for our refolding sequence from the regular
dodecahedron to a tetramonohedron; while the general
approach of Lemma 9 is likely harder to generalize. Are
there two polyhedra that have a common unfolding but
all such common unfoldings overlap? (If not, the two
notions of refolding are equivalent.)
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A Common Unfoldings from Regular Dodecahedron
to Tetramonohedron in Theorem 8

Figures 17, 18, 19, and 20 show the common unfoldings of
each consecutive pair of polyhedra in the refolding sequence
from the proof of Theorem 8.
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Figure 17: A common unfolding of D and Q1

Figure 18: A common unfolding of Q1 and Q2
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Figure 19: A common unfolding of Q2 and Q3

Figure 20: A common unfolding of Q3 and Q4
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