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Abstract

We show that several classes of polyhedra are joined by a sequence of O(1) re-
folding steps, where each refolding step unfolds the current polyhedron (allow-
ing cuts anywhere on the surface and allowing overlap) and folds that unfolding
into exactly the next polyhedron; in other words, a polyhedron is refoldable into
another polyhedron if they share a common unfolding. Specifically, assuming
equal surface area, we prove that (1) any two tetramonohedra are refoldable
to each other, (2) any doubly covered triangle is refoldable to a tetramono-
hedron, (3) any (augmented) regular prismatoid and doubly covered regular
polygon is refoldable to a tetramonohedron, (4) any tetrahedron has a 3-step
refolding sequence to a tetramonohedron, and (5) the regular dodecahedron has
a 4-step refolding sequence to a tetramonohedron. In particular, we obtain a
≤ 6-step refolding sequence between any pair of Platonic solids, applying (5)
for the dodecahedron and (1) and/or (2) for all other Platonic solids. As far as
the authors know, this is the first result about common unfolding involving the
regular dodecahedron.

Keywords: Unfolding of Polyhedra, Common Unfolding, Refolding Dissection,
Reconfiguration Problem

1. Introduction

A polyhedron Q is refoldable to a polyhedron Q′ if Q can be unfolded to
a planar shape that folds into exactly the surface of Q′, i.e., Q and Q′ share a
common unfolding/development, allowing cuts anywhere on the surfaces of Q
and Q′. (Although it is probably not necessary for our refoldings, we also allow
the common unfolding to self-overlap, as in [8].) The idea of refolding was pro-
posed independently by M. Demaine, F. Hurtado, and E. Pegg [1, Open Problem
25.6], who specifically asked whether every regular polyhedron (Platonic solid)
can be refolded into any other regular polyhedron. In this context, there exist
some specific results: Araki et al. [9] found two Johnson-Zalgaller solids that are
refoldable to regular tetrahedra [9], and Shirakawa et al. [3] found an infinite
sequence of polygons that can each fold into a cube and an approaching-regular
tetrahedron.
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More broadly, Demaine et al. [6] showed that any convex polyhedron can
always be refolded to at least one other convex polyhedron. Xu et al. [2] and
Biswas and Demaine [10] found common unfoldings of more than two (specific)
polyhedra. On the negative side, Horiyama and Uehara [8] proved impossibility
of certain refoldings when the common unfolding is restricted to cut along the
edges of polyhedra.

In this paper, we consider the connectivity of polyhedra by the transitive
closure of refolding, an idea suggested by Demaine and O’Rourke [1, Section
25.8.3]. Define a (k-step) refolding sequence from Q to Q′ to be a sequence
of convex polyhedra Q = Q0, Q1, . . . , Qk = Q′ where each Qi−1 is refoldable
to Qi. We refer to k as the length of the refolding sequence. We just say
“refoldable” when two polyhedra have a 1-step refolding sequence.

Our results. Do all pairs of convex polyhedra of the same surface area (a trivial
necessary condition) have a finite-step refolding sequence? If so, how short of a
sequence suffices? As mentioned in [1, Section 25.8.3], the regular polyhedron
open problem mentioned above is equivalent to asking whether 1-step refolding
sequences exist for all pairs of regular polyhedra. We solve a closely related
problem, replacing “1” with “O(1)”: for any pair of regular polyhedra Q and
Q′, we give a refolding sequence of length at most 6.

More generally, we give a series of results about O(1)-step refolding certain
pairs of polyhedra of the same surface area:

1. In Section 3, we show that any two tetramonohedra are refoldable to each
other, where a tetramonohedron is a tetrahedron that consists of four
congruent acute triangles.
This result offers a possible “canonical form” for finite-step refolding se-
quences between any two polyhedra: because a refolding from Q to Q′ is
also a refolding from Q′ to Q, it suffices to show that any polyhedron has
a finite-step refolding into some tetramonohedron.

2. In Section 4, we show that every regular prismatoid and every augmented
regular prismatoid are refoldable to a tetramonohedron.
In particular, the regular tetrahedron is a tetramonohedron, the regular
hexahedron (cube) is a regular prismatoid, and the regular octahedron
and regular icosahedron are both augmented regular prismatoids. There-
fore, the regular tetrahedron has a 2-step refolding sequence to the regu-
lar hexahedron, octahedron, and icosahedron (via an intermediate tetra-
monohedron); and every pair of polyhedra among the regular hexahedron,
octahedron, and icosahedron have a 3-step refolding sequence (via two in-
termediate tetramonohedra).

3. In Section 5, we prove that a regular dodecahedron is refoldable to a
tetramonohedron by a 4-step refolding sequence.
As far as the authors know, there are no previous explicit refolding results
for the regular dodecahedron, except the general results of [6].
Combining the results above, any pair of regular polyhedra (Platonic
solids) have a refolding sequence of length at most 6.
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4. In addition, we prove that every doubly covered triangle (Section 3) and
every doubly covered regular polygon (Section 4) are refoldable to a tetra-
monohedron, and that every tetrahedron has a 3-step refolding sequence
to a tetramonohedron (Section 6).
Therefore, every pair of polyhedra among the list above have an O(1)-step
refolding sequence.

2. Preliminaries

For a polyhedron Q, V (Q) denotes the set of vertices of Q. For v ∈ V (Q),
define the cocurvature σ(v) of v on Q to be the sum of the angles incident to v
on the facets of Q. The curvature κ(v) of v is defined by κ(v) = 2π−σ(v). In
particular, if κ(v) = σ(v) = π, we call v a smooth vertex . We define Πk to be
the class of polyhedra Q with exactly k smooth vertices. It is well-known that
the total curvature of the vertices of any convex polyhedron is 4π, by the Gauss–
Bonnet Theorem (see [1, Section 21.3]). Thus the number of smooth vertices of
a convex polyhedron is at most 4. Therefore, the classes Π0,Π1,Π2,Π3,Π4 give
us a partition of all convex polyhedra.

An unfolding of a polyhedron is a (possibly self-overlapping) planar polygon
obtained by cutting and developing the surface of the polyhedron (allowing cuts
anywhere on the surface). Folding a polygon P is an operation to obtain a
polyhedron Q by choosing crease lines on P and gluing the boundary of P
properly. When the polyhedron Q is convex, the following result is crucial:

Lemma 1 (Alexandrov’s Theorem [12, 1]). If we fold a polygon P in a
way that satisfies the following three Alexandrov’s conditions, then there is
a unique convex polyhedron Q realized by the folding.

1. Every point on the boundary of P is used in the gluing.

2. At any glued point, the summation of interior angles (cocurvature) is at
most 2π.

3. The obtained surface is homeomorphic to a sphere.

By this result, when we fold a polygon P to a convex polyhedron Q, it is enough
to check that the gluing satisfies Alexandrov’s conditions. (In this paper, it is
easy to check that the conditions are satisfied by our (re)foldings, so we omit
their proof.)

A polyhedron Q is (1-step) refoldable to a polyhedron Q′ if Q can be
unfolded to a connected polygon that folds to Q′ (and thus they have the same
surface area). A (k-step) refolding sequence of a polyhedron Q to a polyhe-
dron Q′ is a sequence of convex polyhedra Q = Q0, Q1, . . . , Qk = Q′ where Qi−1

is refoldable to Qi for each i ∈ {1, . . . , k}. To simplify some arguments that Q
is refoldable to Q′, we sometimes only partially unfold Q (cutting less than
needed to make the surface unfold flat), and refold to Q′ so that Alexandrov’s
conditions hold.

3



a

b
b′ 

a′ 

Q

2a′ 

2a

2a′ 

2a
2a′ 

2a

Q′ 
a′ 

a′ 

a

a

2a

2a′ 

2a′ 2a

Figure 1: A refolding between two tetramonohedra

We introduce some key polyhedra. A tetrahedron is a tetramonohedron
if its faces are four congruent acute triangles.4 We consider a doubly covered
polygon as a special polyhedron with two faces. Precisely, for a given n-gon P ,
we make a mirror image P ′ of P and glue corresponding edges. Then we obtain
a doubly covered n-gon which has 2 faces, n edges, and zero volume. A
doubly covered rectangle can be regarded as a special case of tetramonohedron
whose faces are triangle with a right angle.

3. Refoldabilty of Tetramonohedra and Doubly Covered Triangles

In this section, we first show that any pair of tetramonohedra can be re-
folded to each other. We note that a doubly covered rectangle is a (degenerate)
tetramonohedron, by adding edges along two crossing diagonals (one on the
front side and one on the back side). It is known that a polyhedron is a tetra-
monohedron if and only if it is in Π4 [4, p. 97]. In other words, Π4 is the set of
tetramonohedra.

Theorem 1. For any Q,Q′ ∈ Π4, Q is refoldable to Q′.

Proof. Let T be any triangular face of Q. Let a be the length of the longest edge
of T and b be the height of T for the base edge of length a. We define T ′, a′, and
b′ in the same manner for Q′; refer to Figure 1. We assume a > a′ without loss of
generality. Now we have a′ > b′ because a′ is the longest edge of T ′, and a′b′ = ab
because T and T ′ are of the same area. Thus, (a′)2 = a′b′ a

′

b′ > a′b′ = ab, and
2a′ > a′ > b by a > a′.

We cut two edges of Q of length a, resulting in a cylinder of height b and
circumference 2a. Then we can cut the cylinder by a segment of length 2a′

because 2a′ > b. The resulting polygon is a parallelogram such that two opposite
sides have length 2a and the other two opposite sides have length 2a′(Figure 1).
Now we glue the sides of length 2a and obtain a cylinder of height b′ and
circumference 2a′. Then we can obtain Q′ by folding this cylinder suitably (the
opposite of cutting two edges of Q′ of length 2a′). □

4This notion is also called isoscels tetrahedron or isotetrahedron in some literature.
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Figure 2: A refolding from a doubly covered triangle to a doubly covered rectangle

To complement the doubly covered rectangles handled by Theorem 1, we
give a related result for doubly covered triangles:

Theorem 2. Any doubly covered triangle Q is refoldable into a doubly covered
rectangle. Thus, Q has a refolding sequence to any doubly covered triangle Q′

of length at most 3. If doubly covered triangles Q and Q′ share at least one edge
length, then the sequence has length at most 2.

Proof. Let Q consist of a triangle T and its mirror image T ′. We first cut Q
along any two edges, and unfold along the remaining attached edge, resulting
in a quadrilateral unfolding as shown in Figure 2. Let b be the length of the
uncut edge, which we call the base , and let h be the height of T with respect
to the base. Let p and q be the midpoints of the two cut edges. Then the line
segment pq is parallel to the base and of length b/2. In the unfolding of Q, let
p′ and q′ be the mirrors of p and q, respectively. Then we can draw a grid based
on the rectangle pp′q′q as shown in Figure 2. By folding along the crease lines
defined by the grid, we can obtain a doubly covered rectangle Q′′ of size b/2×h
(matching the doubled surface area of Q). (Intuitively, this folding wraps T and
T ′ on the surface of the rectangle pp′q′q.)

Because a doubly covered rectangle is a special case of tetramonohedra, Q′′

is a tetramonohedron. Therefore, the second claim follows from Theorem 1.
When Q has an edge of the same length as an edge of Q′, as in the third claim,
we can cut the other two edges of Q and Q′ to obtain the same doubly covered
rectangle, resulting in a 2-step refolding sequence. □

The technique in the proof of Theorem 2 works for any doubly covered
triangle Q even if its faces are acute or obtuse triangles.

4. Refoldability of a Regular Prismatoid to a Tetramonohedron

In this section, we give a 1-step refolding sequence of any regular prism or
prismatoid to a tetramonohedron. We extend the approach of Horiyama and
Uehara [8], who showed that the regular icosahedron, the regular octahedron,
and the regular hexahedron (cube) can be refolded into a tetramonohedron. As
an example, Figure 3 shows their common unfolding for the regular icosahedron.
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Figure 3: A common unfolding of a regular icosahedron and a tetramonohedron, from [8]

p0 p1 p2 pn−2 pn−1 pn

p2n+1 p2n p2n−1 pn+3 pn+2 pn+1

c1 c2 cn−1 cn

c2n c2n−1 cn+2 cn+1

Figure 4: A spine polygon with 2n spikes

A polygon P = (p0, c1, p1, c2, p2, . . . , p2n, c2n, p2n+1, p0) is called a spine
polygon if it satisfies the following two conditions (refer to Figure 4):

1. Vertex pi is on the line segment p0pn for each 0 < i < n; vertex pi is on
the line segment pn+1p2n+1 for each n+ 1 < i < 2n+ 1; and the polygon
B = (p0, pn, pn+1, p2n+1, p0) is a parallelogram. We call B the base of P ,
and require it to have positive area.

2. The polygon Ti = (pi, ci+1, pi+1, pi) is an isosceles triangle for each 0 ≤ i ≤
n−1 and n+1 ≤ i ≤ 2n. The triangles T0, T1, . . . , Tn−1 are congruent, and
Tn+1, Tn+2, . . . , T2n are also congruent. These triangles are called spikes.

Lemma 2. Any spine polygon P can be folded to a tetramonohedron.

Proof. Akiyama and Matsunaga [11] prove that a polygon P can be folded into
a tetramonohedron if the boundary of P can be divided into six parts, two of
which are parallel and the other four of which are rotationally symmetric. We
divide the boundary of a spine polygon P into l1 = (p0, c1, p1, c2, . . . , pn−1, cn);
l2 = (cn, pn), l3 = (pn, pn+1); l4 = (pn+1, cn+1, pn+2, cn+2, . . . , p2n, c2n), l5 =
(c2n, p2n+1); and l6 = (p2n+1, p0). Then l3 and l6 are parallel because the base
of P is a parallelogram. Each of l2 and l5 is rotationally symmetric on its own as
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Figure 5: A regular prismatoid and an augmented regular prismatoid

line segments, centering its midpoint. Each of l1 and l4 is rotationally symmetric
because each spike of P is an isosceles triangle. □

Now we introduce some classes of polyhedra; refer to Figure 5.
A prismatoid is the convex hull of parallel base and top convex polygons.

We sometimes call the base and the top roofs when they are not distinguished.
We call a prismatoid regular if (1) its base P1 and top P2 are congruent regular
polygons and (2) the line passing through the centers of P1 and P2 is perpen-
dicular to P1 and P2. (Note that the side faces of a regular prismatoid do not
need to be regular polygons.) The perpendicular distance between the planes
containing P1 and P2 is the height of the prismatoid. The set of regular pris-
matoids contains prisms and antiprisms, as well as doubly covered regular
polygons (prisms of height zero).

A pyramid is the convex hull of a base convex polygon and an apex point.
We call a pyramid regular if the base polygon is a regular polygon, and the
line passing through the apex and the center of the base is perpendicular to the
base. (Note that the side faces of a regular pyramid do not need to be regular
polygons.) A polyhedron is an augmented regular prismatoid if it can be
obtained by attaching two regular pyramids to a regular prismatoid base-to-roof,
where the bases of the pyramids are congruent to the roofs of the prismatoid
and each roof is covered by the base of one of the pyramids.

Theorem 3. Any regular prismatoid or augmented regular prismatoid of posi-
tive volume can be unfolded to a spine polygon.

Proof. Let Q be a regular prismatoid. Let c1 and c2 be the center points of
two roofs P1 and P2, respectively. Cutting from ci to all vertices of Pi for each
i = 1, 2 and cutting along a line joining between any pair of vertices of P1 and
P2, we obtain a spine polygon. For an augmented regular prismatoid Q, we
can similarly cut from the apex ci of each pyramid to the other vertices of the
pyramid, which are the vertices of the roof Pi of the prismatoid. □

When the height of the regular prismatoid is zero (or it is a doubly covered
regular polygon), the proof of Theorem 3 does not work because the resulting
polygon is not connected. In this case, we need to add some twist.
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Figure 6: The case of a doubly covered regular 8-gon
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Figure 7: The case of a doubly covered regular 5-gon

Theorem 4. Any doubly covered regular n-gon is refoldable to a tetramonohe-
dron for n > 2.

Proof. First suppose that n is an even number 2k for some positive integer k > 1.
We consider a special spine polygon where the top angles are 2π

k ; the vertices
p0, p2n+1, p1 are on a circle centered at c1; and the vertices p2n+1, p1, p2 are on a
circle centered at c2n; see Figure 6. Then we can obtain a doubly covered n-gon
by folding along the zig-zag path p2n+1, p1, p2n, p2, . . . , pn+2, pn (shown by the
doted lines in Figure 6) such that we glue two segments (p0, p2n+1), (pn, pn+1)
and zip the both side edges at each pi. Thus when n = 2k for some positive
integer k, we obtain the theorem.

Now suppose that n is an odd number 2k+1 for some positive integer k. We
consider the spine polygon whose top angles are 4π

2k+1 ; the vertices p0, p2n+1, p1
are on a circle centered at c1; and the vertices p2n+1, p1, p2 are on a circle
centered at c2n. From this spine polygon, we cut off two triangles c1, p0, c2n+1

and cn+1, pn+1, pn, as in Figure 7. Then we can obtain a doubly covered n-
gon by folding along the zig-zag path p2n+1, p1, p2n, p2, . . . , pn+2, pn shown in
Figure 7. Although the unfolding is no longer a spine polygon, it is easy to
see that it can also fold into a tetramonohedron by letting l′1 = (c1, p1, . . . , pn),
l′2 = (pn, pn), l

′
3 = (pn, cn+1), l

′
4 = (cn+1, pn+2 . . . , p2n+1), l

′
5 = (p2n+1, p2n+1),

and l′6 = (p2n+1, c1) in the proof of Lemma 2. □
The proof of Theorem 4 is effectively exploiting that a doubly covered regular

2k-gon (with k > 1) can be viewed as a degenerate regular prismatoid with two
k-gon roofs, where each of the side triangles of this prismatoid is on the plane
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of the roof sharing the base of the triangle.
Because the cube and the regular octahedron are regular prismatoids and the

regular icosahedron is an augmented regular prismatoid, we obtain the following:

Corollary 1. Let Q and Q′ be regular polyhedra of the same area, neither of
which is a regular dodecahedron. Then there exists a refolding sequence of length
at most 3 from Q to Q′. When one of Q or Q′ is a regular tetrahedron, the length
of the sequence is at most 2.
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Figure 8: Z-flip

5. Refoldability of a Regular Dodecahedron to a Tetramonohedron

In this section, we show that there is a refolding sequence of the regular
dodecahedron to a tetramonohedron of length 4. Combining this result with
Corollary 1, we obtain refolding sequences between any two regular polyhedra
of length at most 6.
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Demaine et al. [6] mention that the regular dodecahedron can be refolded
to another convex polyhedron. Indeed, they show that any convex polyhedron
can be refolded to at least one other convex polyhedron using an idea called
“flipping a Z-shape”. We extend this idea.

Definition 1. For a convex polyhedron Q and n, k ∈ N, let p = (s1, s2, . . . , s(2k+1)n)
be a path that consists of isometric and non-intersecting (2k + 1)n straight line
segments si on Q. We cut the surface of Q along p. Then each line segment
is divided into two line segments on the boundary of the cut. For each line seg-
ment si, let sli and sri correspond to the left and right sides on the boundary
along the cut (Figure 8). Then p is a Z-flippable (n, k)-path on Q, and Q is
Z-flippable by p, if the following gluing satisfies Alexandrov’s conditions.

• Glue sl1, s
l
2, . . . , s

l
n to sl2n, s

l
2n−1, . . . , s

l
n+1.

• Glue sr1, s
r
2, . . . , s

r
n to sl2n+1, s

l
2n+2, . . . , s

l
3n.

• Glue srn+1, s
r
n+2, . . . , s

r
2n to sr3n, s

r
3n−1, . . . , s

r
2n+1.

...

• Glue sr2(k−1)n+1, s
r
2(k−1)n+2, . . . , s

r
2kn to sr(2k+1)n, s

r
(2k+1)n−1, . . . , s

r
2kn+1.

Figure 9 gives an example of a refolding by a Z-flippable (1, 1)-path.

A

B
B

A

Figure 9: An example of Z-flippable (1, 1)-paths

If there are Z-flippable paths p1, p2, . . . , pm inducing a tree structure on the
surface of Q, we can flip them all at the same time (See Figure 10). Then we
say that Q is Z-flippable by p1, p2, . . . , pm. This method also works when the
obtained structure is disconnected trees with no intersections because we can flip
each tree independently.

Theorem 5. There exists a 4-step refolding sequence between a regular dodec-
ahedron and a tetramonohedron.

Proof. Let D be a regular dodecahedron. To simplify, we assume that each
edge of a regular pentagon is of length 1. We show that there exists a refolding
sequence D,Q1, Q2, Q3, Q4 of length 4 for a tetramonohedron Q4.
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Figure 10: An example of Z-flippable paths that form a tree structure

All cocurvatures of the vertices of D are equal to 9π
5 . For any vertices v,

there are 3 vertices of distance 1 from v and 6 vertices of distance ϕ = 1+
√
5

2 from
v. Hereafter, in figures, each circle describes a non-flat vertex on a polyhedron
and the number in the circle describes its cocurvature divided by π

5 . Each pair
of vertices of distance 1 is connected by a solid line, and each pair of vertices of
distance ϕ is connected by a dotted line. Figure 11 shows the initial state of D
in this notation. We note that solid and dotted lines do not necessarily imply
edges (or crease lines) on the polyhedron.

9 9

9 99

9

99

9

9

9

9

9

9 9

9

9 9

9

9

Figure 11: The initial regular dodecahedron

First, we choose p1 = (s11, s
1
2, . . . , s

1
6), p

2 = (s21, s
2
2, s

2
3), p

3 = (s31, s
3
2, . . . , s

3
6),

and p4 = (s41, s
4
2, s

4
3) on the surface of D on the left of Figure 12. Then, p1 and

p3 are Z-flippable (2, 1)-paths and p2 and p4 are Z-flippable (1, 1)-paths. Thus,
D is Z-flippable by p1, p2, p3, p4 to the polyhedron on the right of Figure 12. Let
Q1 be the resulting polyhedron.

Second, we choose p1 = (s11, s
1
2, . . . , s

1
5) on the surface of Q1 on the left of

Figure 13. Then, p1 is a Z-flippable (1, 3)-path. Thus, Q1 is Z-flippable by
p1 to the next polyhedron Q2 on the right of Figure 13. Third, we choose
p1 = (s11, s

1
2, s

1
3) and p2 = (s21, s

2
2, s

2
3) on the surface of Q2 on the left of Figure 14.

Then, p1 and p2 are Z-flippable (1, 1)-paths. Thus, Q2 is Z-flippable by p1 and
p2 to the polyhedron Q3 on the right of Figure 14.

Fourth, we choose p1 = (s11, s
1
2, . . . , s

1
5), p2 = (s21, s

2
2, . . . , s

2
5), and p3 =
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Figure 12: A refolding from D to Q1
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Figure 13: A refolding from Q1 to Q2
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Figure 15: A refolding from Q3 to Q4
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(s31, s
3
2, s

3
3) on the surface of Q3 on the left of Figure 15. Then, p1 and p2

are Z-flippable (1, 3)-paths and p3 is a Z-flippable (1, 1)-path. Thus, Q3 is Z-
flippable by p1, p2, and p3 to the polyhedron Q4 on the right of Figure 15.
Finally, we obtain a tetramonohedron Q4 from a regular dodecahedron D by a
4-step refolding sequence.

In this proof, we used partial unfolding between pairs of polyhedra in the re-
folding sequence. We give the (fully unfolded) common unfoldings in Appendix
A. Thus, there exists a 4-step refolding sequence between a regular dodecahe-
dron and a tetramonohedron.

□

6. Refoldability of a Tetrahedron to a Tetramonohedron

In this section, we prove that any tetrahedron can be refolded to a tetra-
monohedron. Let Qk denote the class of polyhedra with exactly k vertices.

Theorem 6. For any Q ∈ Q4, there is at most 3-step refolding sequence from
Q to some Q′′′ ∈ Π4.

Proof. There are three possible cases about Q: Q ∈ Π0, Q ∈ Π1, or Q ∈ Π2

(the case of Q ∈ Π3 never happen by the Gauss–Bonnet Theorem). First, we
consider the case of Q ∈ Π0 and Q ∈ Π1 (See Figure 16). In each case, there are
two vertices v0, v1 such that σ(v0)+σ(v1) ≤ 2π by the Gauss–Bonnet Theorem.
We cut along the segment v0v1 and glue the point v0 to v1. On the resulting
polyhedron, there are a new vertex v′ of a cocurvature σ(v0) + σ(v1) ≤ 2π
and two new smooth vertices λ0, λ1. Thus, we can obtain a convex polyhedron
Q′ ∈ Π2 by Alexandrov’s Theorem. That is, we can reduct these two cases
to the case of Q ∈ Π2 by the 1-step refolding sequence. Next, we prove that
Q′ ∈ Π2 is 2-step refoldable into a polyhedron Q′′′ ∈ Π4 by the following two
lemmas.

v1

(σ(v0) + σ(v1) = )σ(v′ ) < 2π

v0

σ(λ0) = σ(λ1) = π

Figure 16: The refolding step Π0 or Π1 to Π2

Lemma 3. Any polyhedron Q′ ∈ Π2 ∩ Q5 is refoldable into a polyhedron Q′′ ∈
Π3 ∩Q5.

Proof. Let λ0, λ1 be the two smooth vertices ofQ′. We cutQ′ by the shortest line
segment l joinining λ0 and λ1 and denote the obtained surface by C. By making
crease lines from each of the other vertices to l perpendicularly and embedding
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the cut end of C to xy plane, we can form C as a triangular prism sliced
(Figure 17). Let h(t) be the hight of a point t on the side of Q′. Let v0, v1, v2 be
the other vertices of Q′ clockwisely from the viewpoint of the outside of Q′ and li
be the shortest line segments from vi to v0. We assume that h(v0) ≤ h(v1), h(v2)
without loss of generality. Let θi denote the angle from the perpendicular line
of v0 to li. Then, since

π
2 ≤ θ1, θ2 and θ1 + θ2 < σ(v0), we have κ(v0) < π.

v0
v2

v1

v0

θ1 θ2

v2
v1

l1 l2

Figure 17: A triangular prism sliced diagonally

Since κ(v0) + κ(v1) + κ(v2) = 2π from the Gauss–Bonnet Theorem, at least
one of κ(v1), κ(v2) is less than π. Thus we assume κ(v1) < π. Let l′ be the line
where the counter-clockwise angle from l1 to l′ at v0 is π (Figure 18). Note that
the clockwise angle from l1 to l′ at v0 is σ(v0)− π = π − κ(v0).

v0
v2

v1

v0
v2

v1 v1

m

π

π − κ(v0)

m

pv1

λ1 λ2

v0

v1 v2

l2

l l

l1

pm p′ m

pv0

pm p′ m

pv0

pv1

×

×

×

s

c0

c1

c2

π − θ
θ

l1

l′ 

l1

v1

Figure 18: A side view of C

By h(v0) ≤ h(v1), h(v2), l
′ and l have an intersection point m. Let θ be

the counter-clockwise angle from l′ to l at m. l1 and l′ do not intersect except
at v0 because ∀t1 ∈ l1,

∀ t2 ∈ l′ and h(t2) < h(v0) < h(t1). Then we cut C by
l1, l

′(Figure 19).
We denote α(p) as the interior angle of a point p. On the obtained bound-

ary, there are four points whose interior angles are not π: Let pv0 , pv1 corre-
spond to v0, v1 and the both of pm, p′m correspond to m such that α(pv1) =
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m

pv1

λ1 λ2

v0

v1 v2

l2

l l

l1

pm p′ m

pv0

pm p′ m

pv0

pv1

×

×

×

s

c0

c1

c2

Figure 19: A way of cutting and glueing

σ(v1), α(pv0
) = π − κ(v0), α(pm) = θ, and α(p′m) = π − θ. Let c0 be the cen-

ter point of (pv1 , pv0), and s be the point that have the same distance with
p′m from c0. Let c1 and c2 be the center point of (pm, pm′) and (pm, s). We
glue each of pv0 , pv1 and p′m, pm, s. Let Q′′ be the resulting polyhedron. Since
α(pv0)+α(pv1) = π−κ(v0)+σ(v1) = 3π−(κ(v0)+κ(v1)) = 3π−(2π−κ(v1)) =
π + κ(v1) < 2π. Q′′ satisfies the Alexandrov’s conditions.
That is, Q′′ is a convex polyhedron in Π3 ∩Q5. □

Lemma 4. Any polyhedron Q′′ ∈ Π3 ∩Q5 is refoldable into a polyhedron Q′′′ ∈
Π4.

Proof. Let λ0, λ1, λ2 be the three smooth vertices of Q′′ and v0, v1 be the other
vertices. In the proof of Lemma 3, the vertex v3 of Q′ remains as the vertex
of Q′ without cutting, and v0, v1 are chosen such that κ(v0), κ(v1) < π holds.
Thus, we can apply the proof of Lemma 3 to a proof of Lemma 4 by replacing
v2 to λ2. As a result, we obtain a polyhedron Q′′′ of Π4. □
By Lemmas 3 and 4, Theorem 6 follows. □

7. Conclusion

In this paper, we give a partial answer to Open Problem 25.6 in [1]. For
every pair of regular polyhedra, we obtain a refolding sequence of length at
most 6. Although this is the first refolding result for the regular dodecahedron,
the number of refolding steps to other regular polyhedra seems a bit large.
Finding a shorter refolding sequence than Theorem 5 is an open problem.

The notion of refolding sequence raises many open problems.

• What pairs of convex polyhedra are connected by a refolding sequence of
finite length?

• Is there any pair of convex polyhedra that are not connected by any re-
folding sequence?

At the center of our results is that the set of tetramonohedra induces a clique
by the binary relation of refoldability.

• Is the regular dodecahedron refoldable to a tetramonohedron?
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• Are all Archimedean and Johnson solids refoldable to tetramonohedra?

• Is there any convex polyhedron not refoldable to a tetramonohedron? (If
not, we would obtain a 3-step refolding sequence between any pair of
convex polyhedra.)

Another open problem is the extent to which allowing or forbidding overlap
in the common unfoldings affects refoldability. While we have defined refold-
ability to allow overlap, in particular to follow [6] where it may be necessary,
most of the results in this paper would still apply if we forbade overlap. For
example, Appendix A confirms this for our refolding sequence from the regular
dodecahedron to a tetramonohedron; while the general approach of Theorem 6
is likely harder to generalize.

• Are there two polyhedra that have a common unfolding but all such com-
mon unfoldings overlap? (If not, the two notions of refolding are equiva-
lent.)
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Appendix A. Common Unfoldings from Regular Dodecahedron to
Tetramonohedron in Theorem 5

Figures A.1, A.2, A.3, and A.4 show the common unfoldings of each consecutive
pair of polyhedra in the refolding sequence from the proof of Theorem 5.
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