
Solving the Rubik’s Cube Optimally is
NP-complete∗

Erik D. Demaine1, Sarah Eisenstat2, and Mikhail Rudoy3

1 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,
Cambridge, MA 02139, USA. edemaine@mit.edu

2 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,
Cambridge, MA 02139, USA.

3 MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,
Cambridge, MA 02139, USA. mrudoy@gmail.com. Now at Google.

Abstract
In this paper, we prove that optimally solving an n × n × n Rubik’s Cube is NP-complete by
reducing from the Hamiltonian Cycle problem in square grid graphs. This improves the previous
result that optimally solving an n×n×n Rubik’s Cube with missing stickers is NP-complete. We
prove this result first for the simpler case of the Rubik’s Square—an n× n× 1 generalization of
the Rubik’s Cube—and then proceed with a similar but more complicated proof for the Rubik’s
Cube case. Our results hold both when the goal is make the sides monochromatic and when the
goal is to put each sticker into a specific location.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, F.2.2 Nonnumerical
Algorithms and Problems

Keywords and phrases combinatorial puzzles, NP-hardness, group theory, Hamiltonicity

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.25

1 Introduction

The Rubik’s Cube is an iconic puzzle in which the goal is to rearrange the stickers on the
outside of a 3 × 3 × 3 cube so as to make each face monochromatic by rotating 1 × 3 × 3
(or 3× 1× 3 or 3× 3× 1) slices. In some versions where the faces show pictures instead of
colors, the goal is to put each sticker into a specific location. The 3× 3× 3 Rubik’s Cube
can be generalized to an n× n× n cube in which a single move is a rotation of a 1× n× n

slice. We can also consider the generalization to an n× n× 1 figure. In this simpler puzzle,
called the n× n Rubik’s Square, the allowed moves are flips of n× 1× 1 rows or 1× n× 1
columns. These two generalizations were introduced in [3].

The overall purpose of this paper is to address the computational difficulty of optimally
solving these puzzles. In particular, consider the decision problem which asks for a given
puzzle configuration whether that puzzle can be solved in a given number of moves. We
show that this problem is NP-complete for the n× n Rubik’s Square and for the n× n× n

Rubik’s Cube under two different move models. These results close a problem that has been
repeatedly posed as far back as 1984 [1, 8, 5] and has until now remained open [7].

In Section 2, we formally introduce the decision problems regarding Rubik’s Squares
and Rubik’s Cubes whose complexity we will analyze. Then in Section 3, we introduce the

∗ A full version of the paper is available [4].

© Erik D. Demaine, Sarah Eisenstat, and Mikhail Rudoy;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 25; pp. 25:1–25:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

edemaine@mit.edu
mrudoy@gmail.com
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Solving the Rubik’s Cube Optimally is NP-complete

variant of the Hamiltonicity problem that we will reduce from—Promise Cubical Hamiltonian
Path—and prove this problem to be NP-hard. Next, we prove that the problems regarding the
Rubik’s Square are NP-complete in Section 4 by reducing from Promise Cubical Hamiltonian
Path. After that, we apply the same ideas in Section 5 to a more complicated proof of
NP-hardness for the problems regarding the Rubik’s Cube. Finally, we discuss possible next
steps in Section 6. Membership in NP, as well as other omitted proofs, can be found in the
full version of this paper [4].

2 Rubik’s Cube and Rubik’s Square problems

2.1 Rubik’s Square
We begin with a simpler model based on the Rubik’s Cube which we will refer to as the
Rubik’s Square. In this model, a puzzle consists of an n×n array of unit cubes, called cubies
to avoid ambiguity. Every cubie face on the outside of the puzzle has a colored (red, blue,
green, white, yellow, or orange) sticker. The goal of the puzzle is to use a sequence of moves
to rearrange the cubies such that each face of the puzzle is monochromatic in a different
color. A move consists of flipping a single row or column in the array through space via a
rotation in the long direction as demonstrated in Figure 1.

Figure 1 A single move in an example 6 × 6 Rubik’s Square.

We are concerned with the following decision problem:

I Problem 1. The Rubik’s Square problem has as input an n× n Rubik’s Square configu-
ration and a value k. The goal is to decide whether a Rubik’s Square in configuration C can
be solved in k moves or fewer.

Note that this type of puzzle was previously introduced in [3] as the n× n× 1 Rubik’s
Cube. In that paper, the authors showed that deciding whether it is possible to solve the
n × n × 1 Rubik’s Cube in a given number of moves is NP-complete when the puzzle is
allowed to have missing stickers (and the puzzle is considered solved if each face contains
stickers of only one color).

2.2 Rubik’s Cube
Next consider the Rubik’s Cube puzzle. An n× n× n Rubik’s Cube is a cube consisting of
n3 unit cubes called cubies. Every face of a cubie that is on the exterior of the cube has a
colored (red, blue, green, white, yellow, or orange) sticker. The goal of the puzzle is to use a
sequence of moves to reconfigure the cubies in such a way that each face of the cube ends up
monochromatic in a different color. A move count metric is a convention for counting moves
in a Rubik’s Cube. Several common move count metrics for Rubik’s Cubes are listed in [9].
As discussed in [2], however, many common move count metrics do not easily generalize to

E.D. Demaine, S. Eisenstat, and M. Rudoy 25:3

n > 3 or are not of any theoretical interest. In this paper, we will restrict our attention to
two move count metrics called the Slice Turn Metric and the Slice Quarter Turn Metric.
Both of these metrics use the same type of motion to define a move. Consider the subdivision
of the Rubik’s Cube’s volume into n slices of dimension 1× n× n (or n× 1× n or n× n× 1).
In the Slice Turn Metric (STM), a move is a rotation of a single slice by any multiple of 90◦.
Similarly, in the Slice Quarter Turn Metric (SQTM), a move is a rotation of a single slice by
an angle of 90◦ in either direction. An example SQTM move is shown in Figure 2.

Figure 2 A single slice rotation in an example 7 × 7 × 7 Rubik’s Cube.

We are concerned with the following decision problems:
I Problem 2. The STM/SQTM Rubik’s Cube problem takes as input a configuration
of a Rubik’s Cube together with a number k. The goal is to decide whether a Rubik’s Cube
in configuration C can be solved in at most k STM/SQTM moves.

2.3 Notation
Next we define some notation for dealing with the Rubik’s Cube and Rubik’s Square problems.

To begin, we need a way to refer to cubies and stickers. For this purpose, we orient the
puzzle to be axis-aligned. In the case of the Rubik’s Square we arrange the n× n array of
cubies in the x and y directions and we refer to a cubie by stating its x and y coordinates.
In the case of the Rubik’s Cube, we refer to a cubie by stating its x, y, and z coordinates.
To refer to a sticker in either puzzle, we need only specify the face on which that sticker
resides (e.g. “top” or “+z”) and also the two coordinates of the sticker along the surface of
the face (e.g. the x and y coordinates for a sticker on the +z face).

If n = 2a + 1 is odd, then we will let the coordinates of the cubies in each direction range
over the set {−a,−(a − 1), . . . ,−1, 0, 1, . . . , a − 1, a}. This is equivalent to centering the
puzzle at the origin. If, however, n = 2a is even, then we let the coordinates of the cubies in
each direction range over the set {−a,−(a− 1), . . . ,−1} ∪ {1, . . . , a− 1, a}. In this case, the
coordinate scheme does not correspond with a standard coordinate sheme no matter how we
translate the cube. This coordinate scheme is a good idea for the following reason: under
this scheme, if a move relocates a sticker, the coordinates of that sticker remain the same up
to permutation and negation.

Next, we need a way to distinguish the sets of cubies affected by a move from each other.
In the Rubik’s Square, there are two types of moves. The first type of move, which we

will call a row move or a y move, affects all the cubies with some particular y coordinate.
The second type of move, which we will call a column move or an x move affects all the
cubies with some particular x coordinate. We will refer to the set of cubies affected by a row

STACS 2018

25:4 Solving the Rubik’s Cube Optimally is NP-complete

move as a row and refer to the set of cubies affected by a column move as a column. In order
to identify a move, we must identify which row or column is being flipped, by specifying
whether the move is a row or column move as well as the index of the coordinate shared by
all the moved cubies (e.g. the index −5 row move is the move that affects the cubies with
y = −5).

In the Rubik’s Cube, each STM/SQTM move affects a single slice of n2 cubies sharing
some coordinate. If the cubies share an x (or y or z) coordinate, then we call the slice an x

(or y or z) slice. As with the Rubik’s Square, we identify the slice by its normal direction
together with its cubies’ index in that direction (e.g. the x = 3 slice). We will also refer to
the six slices at the boundaries of the Cube as face slices (e.g. the +x face slice).

A move in a Rubik’s Cube can be named by identifying the slice being rotated and the
amount of rotation. We split this up into the following five pieces of information: the normal
direction to the slice, the sign of the index of the slice, the absolute value of the index of
the slice, the amount of rotation, and the direction of rotation. Splitting the information up
in this way allows us not only to refer to individual moves (by specifying all five pieces of
information) but also to refer to interesting sets of moves (by omitting one or more of the
pieces of information).

To identify the normal direction to a slice, we simply specify x, y, or z; for example, we
could refer to a move as an x move whenever the rotating slice is normal to the x direction.
We will use two methods to identify the sign of the index of a moved slice. Sometimes we will
refer to positive moves or negative moves, and sometimes we will combine this information
with the normal direction and specify that the move is a +x, −x, +y, −y, +z, or −z move.
We use the term index-v move to refer to a move rotating a slice whose index has absolute
value v. In the particular case that the slice rotated is a face slice, we instead use the term
face move. We refer to a move as a turn if the angle of rotation is 90◦ and as a flip if
the angle of rotation is 180◦. In the case that the angle of rotation is 90◦, we can specify
further by using the terms clockwise turn and counterclockwise turn. We make the notational
convention that clockwise and counterclockwise rotations around the x, y, or z axes are
labeled according to the direction of rotation when looking from the direction of positive x,
y, or z.

We also extend the same naming conventions to the Rubik’s Square moves. For example,
a positive row move is any row move with positive index and an index-v move is any move
with index ±v.

2.4 Group-theoretic approach
An alternative way to look at the Rubik’s Square and Rubik’s Cube problems is through
the lens of group theory. The transformations that can be applied to a Rubik’s Square or
Rubik’s Cube by a sequence of moves form a group with composition as the group operation.
Define RSn to be the group of possible sticker permutations in an n× n Rubik’s Square and
define RCn to be the group of possible sticker permutations in an n× n× n Rubik’s Cube.

Consider the moves possible in an n× n Rubik’s Square or an n× n× n Rubik’s Cube.
Each such move has a corresponding element in group RSn or RCn.

For the Rubik’s Square, let xi ∈ RSn be the transformation of flipping the column with
index i in an n× n Rubik’s Square and let yi be the transformation of flipping the row with
index i in the Square. Then if I is the set of row/column indices in an n× n Rubik’s Square
we have that RSn is generated by the set of group elements

⋃
i∈I{xi, yi}.

Similarly, for the Rubik’s Cube, let xi, yi, and zi in RCn be the transformations corre-
sponding to clockwise turns of x, y, or z slices with index i. Then if I is the set of slice

E.D. Demaine, S. Eisenstat, and M. Rudoy 25:5

indices in an n × n × n Rubik’s Cube we have that RCn is generated by the set of group
elements

⋃
i∈I{xi, yi, zi}.

Using these groups we obtain a new way of identifying puzzle configurations. Let C0 be a
canonical solved configuration of a Rubik’s Square or Rubik’s Cube puzzle. For the n× n

Rubik’s Square, define C0 to have top face red, bottom face blue, and the other four faces
green, orange, yellow, and white in some fixed order. For the n× n× n Rubik’s Cube, let C0
have the following face colors: the +x face is orange, the −x face is red, the +y face is green,
the −y face is yellow, the +z face is white, and the −z face is blue. Then from any element
of RSn or RCn, we can construct a configuration of the corresponding puzzle by applying
that element to C0. In other words, every transformation t ∈ RSn or t ∈ RCn corresponds
with the configuration Ct = t(C0) of the n× n Rubik’s Square or n× n× n Rubik’s Cube
that is obtained by applying t to C0.

Using this idea, we define a new series of problems:
I Problem 3. The Group Rubik’s Square problem has as input a transformation t ∈ RSn

and a value k. The goal is to decide whether the transformation t can be reversed by a
sequence of at most k transformations corresponding to Rubik’s Square moves. In other
words, the answer is “yes” if and only if the transformation t can be reversed by a sequence
of at most k transformations of the form xi or yi.
I Problem 4. The Group STM/SQTM Rubik’s Cube problem has as input a transfor-
mation t ∈ RCn and a value k. The goal is to decide whether the transformation t can be
reversed by a sequence of at most k transformations corresponding with legal Rubik’s Cube
moves under move count metric STM/SQTM.

We can interpret these problems as variants of the Rubik’s Square or Rubik’s Cube
problems. For example, the Rubik’s Square problem asks whether it is possible (in a given
number of moves) to unscramble a Rubik’s Square configuration so that each face ends up
monochromatic, while the Group Rubik’s Square problem asks whether it is possible (in a
given number of moves) to unscramble a Rubik’s Square configuration so that each sticker
goes back to its exact position in the originally solved configuration C0. As you see, the
Group Rubik’s Square problem, as a puzzle, is just a more difficult variant of the puzzle:
instead of asking the player to move all the stickers of the same color to the same face, this
variant asks the player to move each stickers to the exact correct position. Similarly, the
Group STM/SQTM Rubik’s Cube problem as a puzzle asks the player to move each sticker
to an exact position. These problems can have practical applications with physical puzzles.
For example, some Rubik’s Cubes have pictures split up over the stickers of each face instead
of just monochromatic colors on the stickers. For these puzzles, as long as no two stickers
are the same, the Group STM/SQTM Rubik’s Cube problem is more applicable than the
STM/SQTM Rubik’s Cube problem (which can leave a face “monochromatic” but scrambled
in image).

We formalize the idea that the Group version of the puzzle is a strictly more difficult
puzzle in the following lemmas:

I Lemma 2.1. If (t, k) is a “yes” instance to the Group Rubik’s Square problem, then
(t(C0), k) is a “yes” instance to the Rubik’s Square problem.

I Lemma 2.2. If (t, k) is a “yes” instance to the Group STM/SQTM Rubik’s Cube problem,
then (t(C0), k) is a “yes” instance to the STM/SQTM Rubik’s Cube problem.

At this point it is also worth mentioning that the Rubik’s Square with SQTM move model
is a strictly more difficult puzzle than the Rubik’s Square with STM move model:

STACS 2018

25:6 Solving the Rubik’s Cube Optimally is NP-complete

I Lemma 2.3. If (C, k) is a “yes” instance to the SQTM Rubik’s Cube problem, then it
is also a “yes” instance to the STM Rubik’s Cube problem. Similarly, if (t, k) is a “yes”
instance to the Group SQTM Rubik’s Cube problem, then it is also a “yes” instance to the
Group STM Rubik’s Cube problem.

3 Hamiltonicity variants

To prove the problems introduced above hard, we need to introduce several variants of the
Hamiltonian cycle and path problems.

It is shown in [6] that the following problem is NP-complete.

I Problem 5. A square grid graph is a finite induced subgraph of the infinite square lattice.
The Grid Graph Hamiltonian Cycle problem asks whether a given square grid graph with no
degree-1 vertices has a Hamiltonian cycle.

Starting with this problem, we prove that the following promise version of the grid graph
Hamiltonian path problem is also NP-hard.

I Problem 6. The Promise Grid Graph Hamiltonian Path problem takes as input a square
grid graph G and two specified vertices s and t with the promise that any Hamiltonian path
in G has s and t as its start and end respectively. The problem asks whether there exists a
Hamiltonian path in G.

The above problem is more useful, but it is still inconvenient in some ways. In particular,
there is no conceptually simple way to connect a grid graph to a Rubik’s Square or Rubik’s
Cube puzzle. It is the case, however, that every grid graph is actually a type of graph called
a “cubical graph”. Cubical graphs, unlike grid graphs, can be conceptually related to Rubik’s
Cubes and Rubik’s Squares with little trouble.

So what is a cubical graph? Let Hm be the m dimensional hypercube graph; in particular,
the vertices of Hm are the bitstrings of length m and the edges connect pairs of bitstrings
whose Hamming distance is exactly one. Then a cubical graph is any induced subgraph of
any hypercube graph Hm.

Notably, when embedding a grid graph into a hypercube, it is always possible to assign the
bitstring label 00 . . . 0 to any vertex. Suppose we start with Promise Grid Graph Hamiltonian
Path problem instance (G, s, t); then by embedding G into a hypercube graph, we can
reinterpret this instance as an instance of the promise version of cubical Hamiltonian path:

I Problem 7. The Promise Cubical Hamiltonian Path problem takes as input a cubical graph
whose vertices are length-m bitstrings l1, l2, . . . , ln with the promise that (1) ln = 00 . . . 0
and (2) any Hamiltonian path in the graph has l1 and ln as its start and end respectively.
The problem asks whether there exists a Hamiltonian path in the cubical graph. In other
words, the problem asks whether it is possible to rearrange bitstrings l1, . . . , ln into a new
order such that each bitstring has Hamming distance one from the next.

First, we reduce from the Grid Graph Hamiltonian Cycle problem to the Promise Grid
Graph Hamiltonian Path problem.

I Lemma 3.1. The Promise Grid Graph Hamiltonian Path problem (Problem 6) is NP-hard.

Second, we reduce from the Promise Grid Graph Hamiltonian Path problem to the
Promise Cubical Hamiltonian Path problem.

I Theorem 3.2. The Promise Cubical Hamiltonian Path problem (Problem 7) is NP-hard.

E.D. Demaine, S. Eisenstat, and M. Rudoy 25:7

4 (Group) Rubik’s Square is NP-complete

4.1 Reductions
To prove that the Rubik’s Square and Group Rubik’s Square problems are NP-complete, we
reduce from the Promise Cubical Hamiltonian Path problem of Section 3.

Suppose we are given an instance of the Promise Cubical Hamiltonian Path problem
consisting of n bitstrings l1, . . . , ln of length m (with ln = 00 . . . 0). To construct a Group
Rubik’s Square instance we need to compute the value k indicating the allowed number of
moves and construct the transformation t ∈ RSs.

The value k can be computed directly as k = 2n− 1.
The transformation t will be an element of group RSs where s = 2(max(m, n) + 2n).

Define ai for 1 ≤ i ≤ n to be (x1)(li)1 ◦ (x2)(li)2 ◦ · · · ◦ (xm)(li)m where (li)1, (li)2, . . . , (li)m

are the bits of li. Also define bi = (ai)−1 ◦ yi ◦ ai for 1 ≤ i ≤ n. Then we define t to be
a1 ◦ b1 ◦ b2 ◦ · · · ◦ bn.

Outputting (t, k) completes the reduction from the Promise Cubical Hamiltonian Path
problem to the Group Rubik’s Square problem. To reduce from the Promise Cubical
Hamiltonian Path problem to the Rubik’s Square problem we simply output (Ct, k) =
(t(C0), k). These reductions clearly run in polynomial time.

4.2 Intuition
The key idea that makes this reduction work is that the transformations bi for i ∈ {1, . . . , n}
all commute. This allows us to rewrite t = a1 ◦ b1 ◦ b2 ◦ · · · ◦ bn with the bis in a different
order. If the order we choose happens to correspond to a Hamiltonian path in the cubical
graph specified by l1, . . . , ln, then when we explicitly write the bis and a1 in terms of xjs and
yis, most of the terms cancel. In particular, the number of remaining terms will be exactly k.
Since we can write t as a combination of exactly k xjs and yis, we can invert t using at most
k xjs and yis. In other words, if there is a Hamiltonian path in the cubical graph specified
by l1, . . . , ln, then (t, k) is a “yes” instance to the Group Rubik’s Square problem.

In order to more precisely describe the cancellation of terms in t, we can consider just one
local part: bi ◦ bi′ . We can rewrite this as (ai)−1 ◦ yi ◦ ai ◦ (ai′)−1 ◦ yi′ ◦ ai′ . The interesting
part is that ai ◦ (ai′)−1 will cancel to become just one xj . Note that

ai ◦ (ai′)−1 = (x1)(li)1 ◦ (x2)(li)2 ◦ · · · ◦ (xm)(li)m ◦ (x1)−(li′)1 ◦ (x2)−(li′)2 ◦ · · · ◦ (xm)−(li′)m ,

which we can rearrange as

(x1)(li)1−(li′)1 ◦ (x2)(li)2−(li′)2 ◦ · · · ◦ (xm)(li)m−(li′)m .

Next, if bi and bi′ correspond to adjacent vertices li and li′ , then (li)j − (li′)j is zero for all j

except one for which (li)j − (li′)j = ±1. Thus the above can be rewritten as (xj)1 or (xj)−1

for some specific j. Since xj = (xj)−1 this shows that (ai1)−1 ◦ ai2 simplifies to xj for some j.
This intuition is formalized in the following sequence of results.

I Lemma 4.1. The transformations bi all commute.

I Theorem 4.2. If l1, . . . , ln is a “yes” instance to the Promise Cubical Hamiltonian Path
problem, then (t, k) is a “yes” instance to the Group Rubik’s Square problem.

I Corollary 4.3. If l1, . . . , ln is a “yes” instance to the Promise Cubical Hamiltonian Path
problem, then (Ct, k) is a “yes” instance to the Rubik’s Square problem.

STACS 2018

25:8 Solving the Rubik’s Cube Optimally is NP-complete

−15−14−13−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14

−15

−15−14−13−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14

−15

−15−14−13−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14

−15

−15−14−13−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14

−15

Figure 3 Applying b2 to C0 step by step (only top face shown).

4.3 Coloring of Ct

In order to show the other direction of the proof, it will be helpful to consider the coloring of
the stickers on the top and bottom faces of the Rubik’s Square. In particular, if we define
b = b1 ◦ · · · ◦ bn (so that t = a1 ◦ b), then it will be very helpful for us to know the colors of
the top and bottom stickers in configuration Cb = b(C0).

Consider for example the instance of Promise Cubical Hamiltonian Path with n = 5 and
m = 3 defined by l1 = 011, l2 = 110, l3 = 111, l4 = 100, l5 = 000. For this example, C0 is an
s× s Rubik’s Square with s = 2(max(m, n) + 2n) = 30.

To describe configuration Cb, we need to know the effect of transformation bi. For
example, Figure 3 shows the top face of a Rubik’s Square in configurations C0, a2(C0),
(y2 ◦ a2)(C0), and b2(C0) = ((a2)−1 ◦ y2 ◦ a2)(C0) where a2 and y2 are defined in terms of
l2 = 110 as in the reduction.

The exact behavior of a Rubik’s Square due to bi is described by the following lemma:

I Lemma 4.4. Suppose i ∈ {1, . . . , n}, and c, r ∈ {1, . . . , s/2}. Then
1. if r = i and c ≤ m such that bit c of li is 1, then bi swaps the cubies in positions (c,−r)

and (−c, r) without flipping either;
2. if r = i and either c > m or c ≤ m and bit c of li is 0, then bi swaps the cubies in

positions (c, r) and (−c, r) and flips them both;
3. all other cubies are not moved by bi.

−15−14−13−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14

−15

(a) The top face of Cb

for the example input
l1, . . . , ln.

−15−14−13−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

−13

−14

−15

(b) The top face of Ct

for the example input
l1, . . . , ln.

Figure 4 The coloring of the Rubik’s Square
for the example input l1, . . . , ln.

We can apply the above to figure out the
effect of transformation b1 ◦ b2 ◦ · · · ◦ bn on
configuration C0. In particular, that allows
us to learn the coloring of configuration Cb.

I Theorem 4.5. In Cb, a cubie has top face
blue if and only if it is in position (c, r) such
that 1 ≤ r ≤ n and either |c| > m or |c| ≤ m

and bit |c| of lr is 0.

This concludes the description of Cb in
terms of colors. The coloring of configu-
ration Ct—the configuration that is actu-
ally obtained by applying the reduction to
l1, . . . , ln—can be obtained from the coloring
of configuration Cb by applying transforma-
tion a1.

Applying Theorem 4.5 to the previously given example, we obtain the coloring of the
Rubik’s Square in configuration Cb as shown in Figure 4a. Note that the n×m grid of bits
comprising l1, . . . , ln is actually directly encoded in the coloring of a section of the Rubik’s

E.D. Demaine, S. Eisenstat, and M. Rudoy 25:9

Square. In addition, the coloring of the Rubik’s Square in configuration Ct is shown for the
same example in Figure 4b.

4.4 (Group) Rubik’s Square solution → Promise Cubical Hamiltonian
Path solution

In the full paper, [4], we prove the following theorem:

I Theorem 4.6. If (Ct, k) is a “yes” instance to the Rubik’s Square problem, then l1, . . . , ln
is a “yes” instance to the Promise Cubical Hamiltonian Path problem.

By Lemma 2.1, this immediately implies the following corollary:

I Corollary 4.7. If (t, k) is a “yes” instance to the Group Rubik’s Square problem, then
l1, . . . , ln is a “yes” instance to the Promise Cubical Hamiltonian Path problem.

4.5 Conclusion
Theorems 4.2 and 4.6 and Corollaries 4.3 and 4.7 show that the polynomial-time reductions
given are answer preserving. As a result, we conclude that

I Theorem 4.8. The Rubik’s Square and Group Rubik’s Square problems are NP-complete.

5 (Group) STM/SQTM Rubik’s Cube is NP-complete

5.1 Reductions
Below, we introduce the reductions used for the Rubik’s Cube case. These reductions very
closely mirror the Rubik’s Square case, and the intuition remains exactly the same: the bi

terms commute, and so if the input Promise Cubical Hamiltonian Path instance is a “yes”
instance then the bis can be reordered so that all but k moves in the definition of t will
cancel; therefore in that case t can be both enacted and reversed in k moves.

There are, however, several notable differences from the Rubik’s Square case. The first
difference is that in a Rubik’s Cube, the moves xi, yi, and zi are all quarter turn rotations
rather than self-inverting row or column flips. One consequence is that unlike in the Rubik’s
Square case, the term ai does not have the property that (ai)−1 = ai. A second difference
is that in a Rubik’s Square, the rows never become columns or visa versa. In a Rubik’s
Cube on the other hand, rotation of the faces can put rows of stickers that were once aligned
parallel to one axis into alignment with another axis. To avoid allowing a solution of the
puzzle due to this fact in the absence of a solution to the input Promise Cubical Hamiltonian
Path instance, the slices in this construction which take the role of rows 1 through n in the
Rubik’s Square case and the slices which take the role of columns 1 through m in the Rubik’s
Square case will be assigned entirely distinct indices.

To prove that the STM/SQTM Rubik’s Cube and Group STM/SQTM Rubik’s Cube
problems are NP-complete, we reduce from the Promise Cubical Hamiltonian Path problem
of Section 3 as described below.

Suppose we are given an instance of the Promise Cubical Hamiltonian Path problem
consisting of n biststrings l1, . . . , ln of length m (with ln = 00 . . . 0). To construct a Group
STM/SQTM Rubik’s Square instance we need to compute the value k indicating the allowed
number of moves and construct the transformation t in RCs.

The value k can be computed directly as k = 2n− 1.

STACS 2018

25:10 Solving the Rubik’s Cube Optimally is NP-complete

The transformation t will be an element of group RCs where s = 6n + 2m. Define ai for
1 ≤ i ≤ n to be (x1)(li)1 ◦ (x2)(li)2 ◦ · · · ◦ (xm)(li)m where (li)1, (li)2, . . . , (li)m are the bits of li.
Also define bi = (ai)−1 ◦ zm+i ◦ ai for 1 ≤ i ≤ n. Then we define t to be a1 ◦ b1 ◦ b2 ◦ · · · ◦ bn.

Outputting (t, k) completes the reduction from the Promise Cubical Hamiltonian Path
problem to the Group STM/SQTM Rubik’s Cube problem. To reduce from the Promise
Cubical Hamiltonian Path problem to the STM/SQTM Rubik’s Cube problem we simply
output (Ct, k) = (t(C0), k). As with the Rubik’s Square case, these reductions are clearly
polynomial-time reductions.

5.2 Promise Cubical Hamiltonian Path solution → (Group)
STM/SQTM Rubik’s Cube solution

The proof of this direction is not substantively different from the proof of the first direction
for the Rubik’s Square problems. The differences in these proofs are all minor details that
are only present to account for the differences (listed above) between the Rubik’s Square and
Rubik’s Cube reductions. See [4], the full paper, for details.

5.3 Coloring of Ct

As in the Rubik’s Square case, it is helpful for the second direction of the proof to know the
coloring of the Cube’s configuration. As before, we define b = b1 ◦ · · · ◦ bn (so that t = a1 ◦ b)
and determine the colors of the stickers in configuration Cb = b(C0).

Consider the example instance of Promise Cubical Hamiltonian Path with n = 5 and
m = 3 introduced in Section 4.3. For this example instance, the Rubik’s Cube configuration
produced by the reduction is an s× s× s Rubik’s Cube with s = 2m + 6n = 36. Furthermore,
the coloring of the stickers in Cb for this example is shown in Figure 5. Note that the n×m

grid of bits comprising l1, . . . , ln is actually directly encoded in the coloring of each face.
In the full paper, we formalize the general pattern of colors intuited from this example.

5.4 (Group) STM/SQTM Rubik’s Cube solution → Promise Cubical
Hamiltonian Path solution: proof outline

In [4], the full paper, we prove the following:

I Theorem 5.1. If (Ct, k) is a “yes” instance to the STM Rubik’s Cube problem, then
l1, . . . , ln is a “yes” instance to the Promise Cubical Hamiltonian Path problem.

By Lemmas 2.2 and 2.3, this immediately implies the following corollary:

I Corollary 5.2. If (t, k) is a “yes” instance to the Group STM/SQTM Rubik’s Cube problem
or (Ct, k) is a “yes” instance to the STM/SQTM Rubik’s Cube problem, then l1, . . . , ln is a
“yes” instance to the Promise Cubical Hamiltonian Path problem.

The intuition behind the proof of Theorem 5.1 is similar to that used in the Rubik’s
Square case, but there is added complexity due to the extra options available in a Rubik’s
Cube. Most of the added complexity is due to the possibility of face moves (allowing rows of
stickers to align in several directions over the course of a solution). Below, we describe an
outline of the proof using several high-level steps.

Consider a hypothetical solution to the (Ct, k) instance of the STM Rubik’s Cube problem
consisting of a sequence of STM Rubik’s Cube moves m1, . . . , mk′ with k′ ≤ k such that
C ′ = (mk′ ◦ · · · ◦m1)(Ct) is a solved configuration of the Rubik’s Cube.

E.D. Demaine, S. Eisenstat, and M. Rudoy 25:11

Figure 5 The faces of Cb for the example input l1, . . . , ln. In this figure, the top and bottom
faces are the +z and −z faces, while the faces in the vertical center of the figure are the +x, +y,
−x, and −y faces from left to right.

Using the fact that the side-length of the cube is large compared to the number of allowed
moves, we prove the following preliminary facts:

There are no indices i ∈ {1, . . . , n} such that m1, . . . , mk′ contains exactly zero index-
(m + i) moves.
If m1, . . . , mk′ contains exactly one index-(m + i) move, then the sole index-(m + i) move
must be a counterclockwise z turn. In this case, call the move in question an O-move
(where O stands for “one”).
If m1, . . . , mk′ contains exactly two index-(m + i) moves, then the two index-(m + i)
moves must be a clockwise z turn and a z flip in some order. In this case, call the moves
in question T -moves (where T stands for “two”).
All O- and T -moves must occur at a time when faces +x, +y, −x, and −y all have zero
rotation and any move of z slice −(m + i) must occur at a time when these faces all have
rotation 180◦.

Next, we introduce a new concept, paired stickers, and use it to prove the following.
Suppose that j ∈ {1, 2, . . . , m} is a value such that li1 and li2 differ in bit j, and i1, i2 ∈
{1, . . . , n} are indices for which m1, . . . , mk′ contains an index-(m + i1) O-move and an
index-(m + i2) O-move. Then it must be the case that between these two moves there is
either at least one index-j move or at least one face move of faces +x, +y, −x, and −y

(which by the previous results actually requires at least two such face moves).

STACS 2018

25:12 Solving the Rubik’s Cube Optimally is NP-complete

After that, we use a counting argument to significantly restrict the possible moves in
m1, . . . , mk′ . In particular, we classify the moves into several types and use the previous
results to bound the number of moves of each type. Adding these bounds together and
simplifying, we find that k′ ≥ k. Since we already know that k′ ≤ k, we learn that equality
must hold in each of our computed bounds. This immediately constrains the quantity of each
type of move even further. In particular, we learn that m1, . . . , mk′ consists of three types
of moves: O-moves, T -moves, and index-j moves for j ∈ {1, 2, . . . , m} (call these J-moves).
Furthermore, there is exactly one J-move between every consecutive pair of O-moves.

After the types of moves in m1, . . . , mk′ are restricted to this extent, several possibilites
that we previously had to consider are no longer relevent (i.e. there are no face moves). As a
consequence, the earlier results are actually strengthened and can be reapplied to learn even
more about the types of O-, T -, and J-moves in m1, . . . , mk′ .

Finally, by applying the idea of paired stickers to our now-highly-constrained sequence
of moves m1, . . . , mk′ , we are able to show that there are no T -moves in m1, . . . , mk′ . At
this point, we can conclude that m1, . . . , mk′ consists entirely of alternating O- and J-moves
with one O-move of an index-(m + i) slice for every i ∈ {1, . . . , n}. If three consecutive O-,
J-, and O-moves rotate index-(m + i1), index-j, and index-(m + i2) slices, then it must be
the case that li1 and li2 differ in bit j and in no other bit. Thus, if we consider all of the
O-moves in the order in which they occur, the corresponding elements i ∈ {1, . . . , n} in the
same order have the property that each bitstring li is at Hamming distance one from the
next. In other words, we have our desired result: that l1, . . . , ln is a “yes” instance to the
Promise Cubical Hamiltonian Path problem.

5.5 Conclusion

Sections 5.2 and 5.4 show that the polynomial-time reductions given are answer preserving.
As a result, we conclude that

I Theorem 5.3. The STM/SQTM Rubik’s Cube and Group STM/SQTM Rubik’s Cube
problems are NP-complete.

6 Future work

In this paper, we resolve the complexity of optimally solving Rubik’s Cubes under move
count metrics for which a single move rotates a single slice. It could be interesting to consider
the complexity of this problem under other move count metrics.

Of particular interest are the Wide Turn Metric (WTM) and Wide Quarter Turn Metric
(WQTM), in which the puzzle solver can rotate any contiguous group of layers including a
face. These metrics correspond most directly to how one would physically solve a real-world
n× n× n Rubik’s Cube: by grabbing some number of layers (including a face) from the side
of the cube and rotating thm together. We can also consider the 1× n× n analogue of the
Rubik’s Cube with WTM move count metric: this would be a Rubik’s Square in which a
single move flips a contiguous sequence of rows or columns including a row or column at the
edge of the Square. Solving this toy model could help point us in the right direction for the
WTM and WQTM Rubik’s Cube problems. If the toy model resists analysis, it could be
interesting to consider this toy model with missing stickers.

E.D. Demaine, S. Eisenstat, and M. Rudoy 25:13

References
1 Stephen A. Cook. Can computers routinely discover mathematical proofs? Proceedings

of the American Philosophical Society, 128(1):40–43, 1984. URL: http://www.jstor.org/
stable/986492.

2 Cride5. Move count metrics for big cubes - standards and preferences. Speed Solving
Forum, August 2010. URL: https://www.speedsolving.com/forum/showthread.php?
23546-Move-count-metrics-for-big-cubes-standards-and-preferences.

3 Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, and Andrew Winslow.
Algorithms for solving Rubik’s Cubes. In Proceedings of the 19th European Conference
on Algorithms, ESA’11, pages 689–700, Berlin, Heidelberg, 2011. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=2040572.2040647.

4 Erik D. Demaine, Sarah Eisenstat, and Mikhail Rudoy. Solving the Rubik’s Cube optimally
is NP-complete. arXiv:1706.06708, 2017. https://arXiv.org/abs/1706.06708.

5 Jeff Erickson. Is optimally solving the n×n×n Rubik’s Cube NP-hard? Theoretical Com-
puter Science Stack Exchange. URL: https://cstheory.stackexchange.com/q/783 (ver-
sion: 2010-10-23).

6 Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in grid
graphs. SIAM Journal on Computing, 11(4):676–686, November 1982.

7 Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of NP-complete
puzzles. ICGA Journal, 31:13–34, 2008.

8 Daniel Ratner and Manfred Warmuth. The (n2−1)-puzzle and related relocation problems.
Journal of Symbolic Computation, 10(2):111–137, July 1990. URL: http://dx.doi.org/
10.1016/S0747-7171(08)80001-6, doi:10.1016/S0747-7171(08)80001-6.

9 Wiki. Metric. Speed Solving Wiki, May 2010. URL: https://www.speedsolving.com/
wiki/index.php/Metric.

STACS 2018

http://www.jstor.org/stable/986492
http://www.jstor.org/stable/986492
https://www.speedsolving.com/forum/showthread.php?23546-Move-count-metrics-for-big-cubes-standards-and-preferences
https://www.speedsolving.com/forum/showthread.php?23546-Move-count-metrics-for-big-cubes-standards-and-preferences
http://dl.acm.org/citation.cfm?id=2040572.2040647
https://arXiv.org/abs/1706.06708
https://cstheory.stackexchange.com/q/783
http://dx.doi.org/10.1016/S0747-7171(08)80001-6
http://dx.doi.org/10.1016/S0747-7171(08)80001-6
http://dx.doi.org/10.1016/S0747-7171(08)80001-6
https://www.speedsolving.com/wiki/index.php/Metric
https://www.speedsolving.com/wiki/index.php/Metric

	Introduction
	Rubik's Cube and Rubik's Square problems
	Rubik's Square
	Rubik's Cube
	Notation
	Group-theoretic approach

	Hamiltonicity variants
	(Group) Rubik's Square is NP-complete
	Reductions
	Intuition
	Coloring of Ct
	(Group) Rubik's Square solution Promise Cubical Hamiltonian Path solution
	Conclusion

	(Group) STM/SQTM Rubik's Cube is NP-complete
	Reductions
	Promise Cubical Hamiltonian Path solution (Group) STM/SQTM Rubik's Cube solution
	Coloring of Ct
	(Group) STM/SQTM Rubik's Cube solution Promise Cubical Hamiltonian Path solution: proof outline
	Conclusion

	Future work

