
Minimizing the Diameter of a Network
using Shortcut Edges

Erik D. Demaine and Morteza Zadimoghaddam

MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar St., Cambridge, MA 02139, USA

{edemaine,morteza}@mit.edu

Abstract. We study the problem of minimizing the diameter of a graph
by adding k shortcut edges, for speeding up communication in an existing
network design. We develop constant-factor approximation algorithms
for different variations of this problem. We also show how to improve the
approximation ratios using resource augmentation to allow more than
k shortcut edges. We observe a close relation between the single-source
version of the problem, where we want to minimize the largest distance
from a given source vertex, and the well-known k-median problem. First
we show that our constant-factor approximation algorithms for the gen-
eral case solve the single-source problem within a constant factor. Then,
using a linear-programming formulation for the single-source version, we
find a (1 + ε)-approximation using O(k logn) shortcut edges. To show
the tightness of our result, we prove that any (3

2
− ε)-approximation for

the single-source version must use Ω(k logn) shortcut edges assuming
P 6= NP.

Keywords: approximation algorithms, network design, network repair

1 Introduction

Diameter is an important metric of network performance, measuring the worst-
case cost of routing a point-to-point message or a broadcast. Such communi-
cation operations are ubiquitous in a variety of networks, such as information
networks, data networks, telephone networks, multicore networks, and trans-
portations networks. In information networks, search engines need to access all
nodes (or sometimes just “important” nodes) in the shortest possible time; nodes
might represent webpages and edges links. We can also see this problem as the
information diffusion time in information networks [8, 9]. In transportation net-
works, passengers want short commutes. In telephone networks, we want to
reduce the length of the paths between the nodes to reduce connection lag. In
multicore processors, we want to build an underlying network to have short paths
between different cores [2]; in many cases, the bottleneck in running time is the
time spent on communication between cores.

Each of these applications has several constraints on the network design, from
existing infrastructure to connectivity or fault tolerance. Minimizing diameter

may be at odds with some of these constraints, yet small diameter remains
important. Thus we consider the problem of augmenting an existing network
design with a limited number of additional edges to reduce the diameter as
much as possible.

Many variations are also of interest. We might want to reduce the shortest-
path distances among the nodes in a just special subset of the nodes. In a
telephone or transportation network, a company might only care about distances
among their own nodes (e.g., phone numbers or airports), though doing so might
require adding edges (e.g., cables or flights) anywhere in the network. In an
information network, we might ignore all spam pages.

In the single-source version of the problem, a node wants to construct edges
in order to minimize its distances from the other nodes. This problem has been
considered in selfish agent networks [1, 4–6], where every node simultaneously
tries to solve the single-source problem. Agents have high incentive to join social
networks with low diameter because messages spread in short time with small
delays. Because the budget of these selfish agents is limited in many applications
[10], they can not add more than a few edges, and they want to minimize their
distances to the other nodes.

Model. In all these applications, we can assume that we are given a weighted
undirected graph G = (V,E, `), a positive integer k, and a nonnegative real
number δ. The length of edge e is represented by `(e). Our goal is to add k
shortcut edges of length δ in order to minimize the diameter of the resulting
graph. Recall that the diameter of a graph is the maximum distance between
two nodes, and the distance between two nodes is the length of the shortest
path between them. In most applications, including [11], δ is a small constant
compared to the diameter of the graph.

Related Work. Meyerson and Tagiku [11] considered the problem of minimizing
the average distance between the nodes instead of the maximum distance. This
is the only work that considers the problem with a hard limit on the budget (the
number of edges we can add). They obtained several constant-factor approxima-
tions using the k-median with penalties problem. They also improved the best
known approximation ratio for metric k-median with penalties, to get better
approximation factors for the other problems they consider. If α denotes the
best approximation known for metric k-median with penalties, they presented
an α-approximation for the single-source average-shortest-path problem, and a
2α-approximation for the general average shortest-path problem.

Our Results. We start with a simple clustering algorithm, and find a lower
bound on the diameter of optimum solution. In Section 2, we find a (4 + ε)-
approximation algorithm (using at most k shortcut edges).

Next we study approximation algorithms with resource augmentation: by
allowing the algorithm to add more than k edges, but still comparing to the
optimal solution with just k edges, we can decrease the approximation ratio. To
do so, we study the structure of the optimum solutions in more detail to get a

better lower bound. In Section 3, we obtain a (2 + ε)-approximation using at
most 2k shortcut edges for small values of δ. Previous work assumes that δ is
zero for simplicity [11], and in most of the applications, it is negligible comparing
to the diameter of the graph.

In Section 4, we study the single-source version of the problem in which we
want to minimize the maximum distance of all nodes from a specified node, called
the source, by adding k shortcut edges. We prove that any α-approximation
algorithm for the original problem (minimizing diameter of the whole graph)
can be seen as a 2α-approximation for the single-source version of the prob-
lem. We present linear-programming approaches to get better approximations
for the single-source version with resource augmentation. We obtain a (1 + ε)-
approximation for the single-source problem using O(k log n) shortcut edges. Our
linear program is similar to that for the k-median problem studied in [3]. To show
the optimality of our algorithm, we prove that any (3

2−ε)-approximation for the
single-source problem uses at least Ω(k log n) shortcut edges assuming P 6= NP.

In Section 5, we consider the multicast version of our problems in which
only a given subset of nodes is important, and we want to reduce the maximum
distance between the nodes in the given subset. This problem also has a single-
source variant in which we want to minimize the maximum distance of the nodes
in the subset from a given source node. We show that all of our results apply
just as well to these multicast variations.

2 (4 + ε)-Approximation using k Shortcut Edges

Let D be the diameter of the current graph G (without any shortcut edges). The
diameter of the optimum solution is a value D′ ≤ D. In fact, there exists a set
of at most k edges S such that the diameter of graph G = (V,E ∪ S) is D′. We
want to find and add k shortcut edges, such that the new graph after adding
our edges has diameter at most a constant times D′.

At first, we estimate the value of D′ with an iterative process as follows. We
need to find a lower bound and an upper bound for D′. We know that D′ is not
more than D. So D can be seen as an upper bound. Let a be the minimum length
of the edges in G. We know that D′ can not be less than min{a, δ} because every
path between any pair of vertices should use at least either one of the current
edges in G or one of the shortcut edges. We can also assume that a is not zero
otherwise we can contract the zero edges, and solve the problem for the graph
after these contractions. If δ is also nonzero, we can use min{a, δ} as a nonzero
lower bound for D′. Otherwise if k is at least n− 1, we can add n− 1 shortcut
zero edges to build a spanning tree with only zero edges. This way, the diameter
of graph would be zero. So the problem is solved. Otherwise we can not reduce
the diameter to δ = 0, and the distance between some pairs of vertices would be
at least a after adding k < n − 1 shortcut edges. So in all cases, we can find a
positive lower bound for D′ which is either min{a, δ} or a. Define L to be this
lower bound. So we can assume that 0 < L ≤ D′ ≤ D.

Choose an arbitrary small ε > 0. There exists an 0 ≤ i ≤ log1+ε (D/L) such
that D/(1 + ε)(i+1) < D′ ≤ D/(1 + ε)i.

Clustering algorithm. This algorithm receives an input parameter x ≥ 0. We
partition the vertices of our graph into clusters of diameter at most 2x as follows.
At first we pick a subset of vertices S as the centers of our clusters. This set
should satisfy the following properties. The distance between any pair of vertices
of set S in graph G should be greater than 2x− δ. For every vertex u /∈ S, there
should be a vertex v in S whose distance to v is at most 2x − δ. We find a set
S with above properties as follows. Choose an arbitrary vertex from G like v
and put it in S. While there exists a vertex like u outside S whose distance to
every vertex in S is greater than 2x − δ, we add u to S. Clearly this iterative
process finishes in at most n iterations because there are n vertices in G. For
every vertex u outside S, there exists a vertex v in S such that dist(u, v) is at
most 2x−δ where dist(u, v) is the distance between u and v. Otherwise we would
add u to S. Let k′ be |S|, and v1, v2, . . . , vk′ be the vertices in S.

If we add k′ − 1 shortcut edges from v1 to all other center vertices in set S
(v2, v3, . . . , vk′), the diameter of the new graph is at most 2[2x − δ] + 2δ = 4x.
Consider two vertices u and w in the new graph. There are two vertices in vi and
vj in S such that dist(vi, u) ≤ 2x−δ and dist(vj , w) ≤ 2x−δ. We also know that
the distance between vi and vj is at most 2δ in the new graph because they are
both connected to v1 using two shortcut edges. We conclude that we can reduce
the diameter of G to a value at most 4x using k′ − 1 edges. Following we show
how to use this clustering algorithm to solve our problem. Note that D′ is the
diameter of the optimum solution. We show that without using at least k′ − 1
edges, the diameter of graph can not be reduced to x or less. So the number of
edges used in the optimum solution, which is k, should be at least k′− 1 if D′ is
at most x.

Lemma 1. If D′ is at most x, the number of edges used in the optimum solution
is at least k′ − 1, and therefore k is at least k′ − 1.

Proof. Assume that there are less than k′−1 edges used in the optimum solution.
Let G′ be the new graph after addition of shortcut edges of the optimum solution.
Consider a shortest path tree T from vertex v1 in G′. The shortest path tree T
is a tree that contains a shortest path from v1 to every other vertex of graph G′,
i.e., the result of the Dijkstra’s algorithm in graph G′ from source v1. Note that
the distance between v1 and vi in G is greater than 2x−δ because they are both
in S. Their distance in G′ is at most D′. Note that x ≥ D′, and δ can not be
greater than D′ otherwise addition of some edges with length δ does not reduce
the diameter of the graph to some value less than D′. So 2x − δ is at least D′,
and therefore the distance between vi and v1 is reduced during addition of the
new edges. So there exists at least one shortcut edge in the new shortest path
from vi to v1. Let ei be the first shortcut edge in the shortest path from vi to v1
in T ′. For each 2 ≤ i ≤ k′, we have a shortcut edge ei. But there are less than
k′ − 1 shortcut edges in the whole graph. So some of these edges must be the
same.

Suppose ei and ej are the same edge (u′, w′). Let Pi and Pj be the shortest
paths from vi and vj to v1 that both use the edge (u′, w′). Without loss of
generality, assume that the distance from u′ to v1 is less than the distance from
w′ to v1 in graph G′. So both paths Pi and Pj should use this edge in direction
u′ to w′. Let Qi and Qj be the first parts of the paths Pi and Pj that connects
vi and vj to u′ respectively. So Qi and Qj are two paths that do not use any
shortcut edge (note that we picked the first shortcut edge in each path). Because
the length of Pi and Pj are both at most D′, and they both use at least one
shortcut edge, the lengths of paths Qi and Qj are at most D′ − δ. Because Qi
and Qj are two paths from vi and vj to the same destination u′, and they do not
use any shortcut edge, the length of the shortest path between vi and vj in graph
G is at most the sum of the lengths of Qi and Qj which is 2(D′ − δ) ≤ 2x− 2δ.
This is a contradiction because dist(vi, vj) should be greater than 2x − δ. This
contradiction shows that the number of shortcut edges in the optimum solution
is at least k′ − 1. ut

Now we can use the clustering algorithm iteratively to find a (4 + ε)-
approximation algorithm. Recall that an instance of the problem consists of a
graph G and two parameters k and δ. We should use k shortcut edges of length
δ to minimize the diameter of the graph.

Theorem 1. For any ε′ > 0, there exists a polynomial-time (4 + ε′)-
approximation algorithm that uses at most k shortcut edges.

Proof. We choose an arbitrary small ε > 0. There exists an 0 ≤ i ≤ log1+ε (D/L)
such that D/(1 + ε)(i+1) < D′ ≤ D/(1 + ε)i. We can run the clustering algo-
rithm with x = D/(1 + ε)j for different values of 0 ≤ j ≤ log1+ε (D/L), so for
one of these values, the above inequality holds, and we can estimate D′ with
multiplicative error ε. If the number of clusters k′ is at most k+ 1, we can find a
solution with diameter 4x by adding k′ − 1 ≤ k edges. If the number of clusters
is more than k + 1, using Lemma 1, we know that D′ > x.

Let x = D/(1+ε)j
′

be the smallest value of x for which the number of clusters
is at most x. We can find a solution with diameter 4x = 4D/(1+ε)j

′
in this case.

On the other hand, we know that the number of clusters for x = D/(1+ε)j
′+1 is

more than k+1, so D/(1+ε)j
′+1 is less than D′. We conclude that the diameter

of our solution is at most 4D/(1 + ε)j
′ ≤ 4(1 + ε)D′. By choosing ε = ε′/4, we

find a (4 + ε′)-approximation. ut

3 Improving the Approximation Ratio using 2k Edges

In this section, we show how to use the clustering algorithm to find a solution
with at most 2k additional edges having diameter at most (2 + ε)D′+ 2δ, where
D′ is the diameter of the optimum solution using k additional edges.

We change our clustering algorithm slightly as follows. We pick the vertices
of S such that their distance is greater than 2x instead of 2x − δ. Like before,
we iteratively add a vertex u to S if its distance to all vertices in S is more than

2x. We stop when we can not insert anything to S. Again we run the clustering
algorithm with x = D/(1 + ε)j for different values of 0 ≤ j ≤ log1+ε (D/L). We
prove that this time the number of clusters is not more than 2k when x is at
least D′/2 as follows.

Lemma 2. If x is at least D′/2, the number of clusters in our algorithm is not
more than 2k + 1.

Proof. Here we show why our algorithm acts like a clustering algorithm. Let
v1, v2, . . . , vk′ be the k′ centers we pick in our algorithm. Partition the vertices of
graph G into k′ clusters as follows. Put v1, v2, . . . , vk′ in clusters C1, C2, . . . , Ck′

respectively. For every other vertex u, find the center vi (1 ≤ i ≤ k′) with
minimum distance dist(vi, u), and put u in cluster Ci (remember dist(vi, u) is
the distance between vi and u in graph G). This distance is at most 2x for every
vertex u by definition of our algorithm (otherwise we could add u to S in the
clustering algorithm). The distance between each pair of the k′ centers is greater
than 2x. We conclude that all vertices in graph G whose distance to vi is at
most x are in cluster Ci for each 1 ≤ i ≤ k′. We can prove this by contradiction.
Assume vertex u whose distance to vi is at most x in in another cluster Cj . It
means that center vj is the closest center to u so the distance between u and vj
is also at most x. Therefore vertex u has distance at most x from both centers
vi and vj . So the distance between two centers vi and vj is at most x+ x = 2x
which is a contradiction. We conclude that each cluster contains the vertices
around its own center with radius x (and probably some other vertices as well).

Now consider the optimum solution that uses at most k edges. If the number
of clusters k′ is at most 2k + 1, the claim is proved. Otherwise there exists at
least two clusters like Ci and Cj such that the additional edges are not incident
to the vertices of Ci ∪ Cj . Because every additional edge has two endpoints,
therefore it can be incident to at most two clusters. So the number of clusters
that are incident to some additional edges is not more than twice the number
of additional edges. Because we have at least 2k + 2 clusters, there exists two
clusters like Ci and Cj whose vertices are not incident to any additional edge.

Let G′ be the new graph after adding additional edges in the optimum solu-
tion. The distance between vi and vj should be at most D′ in G′. Their distance
is greater than 2x ≥ D′ in graph G. This means that the shortest path between
vi and vj in G′ should use at least one of the additional edges. Let P be this
shortest path between vi and vj in G′. Suppose vi = u1, u2, u3, . . . , ul = vj are
the vertices of this path. Assume that edge (ua, ua+1) is the first additional edge
in this path, and edge (ub, ub+1) is the last additional edge in this path where
a ≤ b. Let P1 be the first part of the path P before the first additional edge, i.e.,
P1 = (vi = u1, u2, . . . , ua). And let P2 be the last part of the path P after the
last additional edge, i.e., P2 = (ub+1, ub+2, . . . , ul = vj).

The paths P1 and P2 are two shortest paths in graph G′ and G between pairs
of vertices (vi, ua) and (ub+1, vj). Vertices ua and ub+1 are outside clusters Ci
and Cj because these two clusters are not incident to any additional edge, but
vertices ua and ub+1 are both incident to some additional edges. So the distance

between ua and vi is greater than x otherwise ua would be in cluster Ci (as
proved above). So the length of path P1 is more than x. With the same proof,
the length of path P2 is also more than x. So the length of P is greater than
x + x + δ ≥ 2x ≥ D′. This is a contradiction because the distance between vi
and vj should be at most D′ in the new graph G′. This shows that the number
of clusters k′ is at most 2k + 1. ut

Now if we add k′ − 1 from v1 to all other centers, the diameter of the new
graph would be at most 2x+2δ. If we choose x such that D′/2 ≤ x ≤ D′(1+ε)/2,
the number of additional edges in our solution would not be more than 2k, and
the diameter of our graph would be at most (2 + ε) times the optimum solution.

Theorem 2. There is a polynomial-time algorithm which finds a solution with
diameter at most (2 + ε)D′ + 2δ using at most 2k edges.

Proof. Similar to our previous approach, we know that there exists an 0 ≤
i ≤ log1+ε (D/L) such that D/(1 + ε)(i+1) < D′ ≤ D/(1 + ε)i. We can run
our clustering algorithm with x = D/(1 + ε)j for different values of 0 ≤ j ≤
log1+ε (D/L). This way we can find x such that D′/2 ≤ x ≤ D′(1 + ε)/2 in one
of our runs. In that run, we find the desired solution. ut

4 Single-Source Version

In this section, we study the problem of adding k shortcut edges in order to
minimize the maximum distance of all vertices from a given source s. Let e(s)
denote the maximum distance of vertex s from all other vertices, known as the
eccentricity of vertex s.

At first we show that constant-factor approximations for the diameter-
minimization problem can be converted to constant-factor approximations for
the single-source version.

Lemma 3. If there exists an α-approximation for diameter minimization prob-
lem, then there also exists a 2α-approximation for the single-source version.

Proof. Consider a graph G. Let D′ be the minimum possible diameter of G after
adding k shortcut edges. Let rs be the minimum possible e(s) after adding k
shortcut edges. We show that D′/2 ≤ rs ≤ D′. If we add the k edges to reduce
the diameter of G to D′, the eccentricity of s would be also at most D′. So rs
can not be greater than D′. On the other hand, if we add the k edges such that
the distance of every vertex to s is at most rs, the distance between any pair of
vertices can not be greater than rs + rs = 2rs using the triangle inequality. So
the diameter of this graph is at most 2rs. We conclude that D′ ≤ 2rs.

So if we use the α-approximation to minimize diameter, we get a graph with
diameter at most αD′. The eccentricity of s is also at most αD′ which is at most
2αrs. So using the same algorithm we get a 2α-approximation for the single-
source version of the problem. ut

In the remainder of this section, we show how to obtain a (1 + ε)-
approximation algorithms using more additional edges. We use a linear-
programming formulation similar to the linear-programming formulations of fa-
cility location and k-median problems. Then we show how the single-source
version of the problem can solve the set-cover problem. We conclude that any
(3
2−ε)-approximation for the single-source version should use at least Ω(k log n)

edges. This shows the optimality of our linear-programming algorithm.
We need the following lemma in our algorithm.

Lemma 4. There exists an optimal solution for the single-source version in
which all k shortcut edges are incident to the given source s.

Proof. The proof is similar to the proof of Lemma 1 in [11]. ut

First we solve a decision problem using linear programming. The decision
problem is the following: can we add k shortcut edges to reduce the eccentricity
of vertex s to some value at most x where x is a given value in the input graph?
In the other words, is rs at most x? If rs is at most x, then the following linear
program has a feasible integral solution.

Let v1, v2, . . . , vn be the vertices of the input graph G. Without loss of gen-
erality assume that s is v1. For every vertex vi put a variable yi in the linear
program where 2 ≤ i ≤ n. For every pair of vertices vi and vj put a variable xi,j
where 2 ≤ i, j ≤ n. All these variables are between 0 and 1. If we assume the
integer programming version of this linear program. The variable yi is equal to 1
if there is a shortcut edge from vi to s = v1, and it is zero when there is no such
an edge. We add the constraint

∑n
i=2 yi ≤ k because we know that the number

of shortcut edges is at most k in the optimum solution. Variable xi,j is equal
to 1 if the shortest path from vertex vj to s in the optimum solution uses the
shortcut edge vi to v1. If xi,j is 1, there should be an edge from vi to s. So we
add the constraint xi,j ≥ yi for any 2 ≤ i, j ≤ n. On the other hand, vertex vj
can not use shortcut edge (vi, s) if the distance between vj and vi is more than
x− δ. So we define the variable xi,j only for a pair of vertices (vi, vj) such that
dist(vi, vj) is at most x − δ. If the distance between s and vj is at most x, the
vertex vj does not need to use any shortcut edge to reach s. But if dist(vj , s) is
greater than x, it has to use one of this edges, so we have

dist(vj , s) > x :
∑

i:dist(vi,vj)≤x−δ

xi,j = 1 for 1 ≤ j ≤ n.

Here is the whole formulation of our linear program, or more precisely, our
linear feasibility problem, as we do not want to minimize or maximize anything.

n∑
i=2

yi ≤ k,

xi,j ≤ yi for 2 ≤ i, j ≤ n,∑
i:dist(vi,vj)≤x−δ

xi,j = 1 for 1 ≤ j ≤ n with dist(vj , s) > x.

As described above, if x is at least the optimum solution rs, then the above
linear program has a feasible solution. Next we show how to solve our problem
using this linear program, and then show how to find the best x.

Lemma 5. If there exists a feasible solution to the above linear program, then
there exists a polynomial-time algorithm that finds O(k log n) shortcut edges
whose addition reduces the eccentricity of vertex s to some value at most x.

Proof. The algorithm proceeds as follows. Solve the linear program and find a
feasible solution. While there exists some vertex in graph whose distance to s is
greater than x, do the following. Add a shortcut edge (vi, s) to the graph with
probability yi for each 2 ≤ i ≤ n. After adding these edges, if there still exist
a set of vertices whose distance to s is greater than x, do the same. Iteratively
add edges to the graph until the distances of all vertices to s are at most x.

When this algorithm stops, the eccentricity of s is at most x. Now we show
that the algorithm does not add a lot of edges compared to the optimum solution.
The expected number of edges we add in each phase is

∑n
i=2 yi, which is at most

k. So we do not add more than k edges in each iteration in expectation. We now
prove that the number of iterations is at most O(log n) with high probability
(probability 1− 1/nc for arbitrary constant c).

Consider a vertex vj whose distance to s is greater than x. Let {va1 , va2 , . . .,
val
} be the set of vertices whose distance to vj is at most x− δ. We know that∑l
i=1 xai,j is equal to 1. On the other hand, we have that yai

is at least xai,j .
So

∑l
i=1 yai

is at least 1. If we add a shortcut edge from one of these l vertices
to s, the distance of vj to s reduces to at most x. So if its distance to s is still
greater than x after one iteration, it means that we did not add any of these
edges in this iteration.

The probability of the event that we do not add any edge from these k edges
to s in one iteration is

∏k
i=1(1−yai

) which is at most [1−(
∑l
i=1 yai

/l)]l. Because∑l
i=1 yai

is at least 1. This probability is at most (1−1/l)l which is at most 1/e.
So the probability of not choosing any of these edges in p iterations is at most
1/ep. If we do this iterative process for (c+ 1) ln (n) times, the distance of vj to
s is greater than x with probability at most 1/e(c+1) ln (n) = 1/n(c+1). Using the
union bound, we can prove that there exists a vertex with distance greater than
x from s with probability at most n · (1/n(c+1)) = 1/nc. So with high probability
(at least 1 − 1/nc) all distances from s are at most x, and the algorithm stops
after (c+ 1) ln (n) iterations. ut

Theorem 3. For any ε > 0, there exists a polynomial-time algorithm that adds
O(k log n) edges to reduce the eccentricity of s to at most 1+ε times the optimum
eccentricity rs for k shortcut edges.

Proof. Let r be the eccentricity of the source in the input graph G. The optimum
eccentricity rs is at most r. We also know that rs can not be less than δ. So rs is in
range [δ, r]. Run the above algorithm for x = r/(1+ε)i for 0 ≤ i ≤ log(1+ε) (r/δ).
Consider the smallest x for which the linear program has a feasible solution, and

return the result of the above algorithm in that case. There exists a j for which
rs is in range [r/(1+ε)j+1, r/(1+ε)j]. The linear program has a feasible solution
for x = r/(1 + ε)j because r/(1 + ε)j is at least rs. So we can find a solution
with eccentricity x which is at most (1 + ε)rs using O(k log n) shortcut edges.

ut

Now we reduce the set-cover problem to our single-source problem in order
to show that using o(k log n) shortcut edges, we can not get an approximation
ratio of better than 3

2 .

Theorem 4. Any polynomial-time (3
2 − ε)-approximation algorithm for the

single-source version of our problem needs Ω(k log n) shortcut edges assuming
P 6= NP.

Proof. Consider an instance of set cover. There are m sets S1, S2, . . . , Sm, and
we want to find the smallest collection of these sets whose union is equal to the
union of all these m sets. Suppose there are n items in the union of these m sets.
Construct a graph as follows. Let v1, v2, . . . , vn be the items. Put a vertex for
each of these n items. For each set Sj , put a vertex uj . Connect uj and vi for
each 1 ≤ i ≤ n, and 1 ≤ j ≤ m if item vi is in set Sj . Add two other vertices s
and s′. Vertex s is the source of our instance, and is only connected to s′. The
vertex s′ has also m edges to all vertices u1, u2, . . . , um. Set the length of all
edges, and δ to be equal to 1. Now the problem is to add k shortcut edges in
order to minimize the eccentricity of source s in this graph.

The eccentricity of s is now equal to 3. We prove that there exists a set of k
shortcut edges whose addition reduces the eccentricity of s to at most 2 if and
only if there is a solution for set-cover instance with size at most k. Assume that
the set-cover instance has a solution with size at most k. We can add k edges
from s to the vertices associated with these k sets (k subsets in the solution
of the set-cover instance). This way the eccentricity of s would be at most 2.
We now prove that if we can reduce the eccentricity of s using only k edges,
the set-cover instance has a solution of size k. Note that the only vertices whose
distance to s is more than 2 are v1, v2, . . . , vn. Using Lemma 4, we know that the
k edges are all incident to s. We prove that there is an optimal solution in which
all edges are between s and the vertices u1, u2, . . . , um. Assume that there is an
additional edge from s to vi. Any path from s to vj (j 6= i) that uses this edge,
has length at least 3. So the only usage of this edge is reducing the distance of
vi to s from 3 to 1. There exists a vertex ul such that there is an edge from vi
to ul (the item vi is in some set Sl). We can add an edge from ul to s instead
of an edge from vi to s. The eccentricity of s would be still at most 2. So we
can assume that all edges are from s to vertices u1, u2, . . . , um. The distances
of all vertices v1, v2, . . . , vn are also at most 2. So for each vi there exists an
additional edge (s, ul) such that item vi is in set Sl. So the k additional edges
form a solution of size k for the set-cover instance.

Assume that there exists a (3
2 −ε)-approximation algorithm A for the single-

source problem. For any k, if there is a solution of size at most k for the set-
cover instance, the eccentricity of s in the optimum solution of the single-source

instance is at most 2. So the eccentricity of s in the solution of algorithm A
can not be 3 or more. Because algorithm A is a (3

2 − ε)-approximation, so it
has to find a solution with eccentricity at most 2 · (3

2 − ε) < 3. The fact that
the eccentricity can only take integer values shows that the result of algorithm
A also has eccentricity at most 2. The result of algorithm A can be converted
to a solution for the set-cover instance. We also know that there is no o(log n)-
approximation for set-cover problem [7], so algorithm A uses at least O(k log n)
in its solution. This completes the proof. ut

5 Multicast Version

In this section we show that our results and techniques are all applicable in the
multicast version of the problem in which we just care about a subset of the
nodes. Formally we are given an undirected weighted graph G = (V,E, `), and
a subset of vertices V ′ ⊆ V . We want to add k shortcut edges (of a fixed given
length δ) in order to minimize the maximum distance between the nodes in set
V ′. In previous parts, we showed how to solve this problem when V ′ is equal
to V . In the single-source version of the multicast problem, we are also given a
source node s, and we want to minimize the maximum distance of nodes in V ′

from source s.
For our clustering algorithm, we just need to pick centers from vertex set V ′.

So we do not select any vertex outside V ′ as a center in our algorithm. We stop
when we can not select any vertex of set V ′. We get the same approximation
ratio by this method, and all proofs and claims work similarly in this case as
well.

For the linear-programming approach, we have to write the constraint∑
i:dist(vi,vj)≤x−δ xi,j = 1 for vertex vj if vj is in set V ′, and its distance from s

is greater than x, i.e., dist(vj , s) > x. Because the distances of vertices outside
V ′ from s are not important for us. Again all claims can be proved in the same
way in this case as well. To make it more clear, the new linear-programming
formulation is the following:

n∑
i=2

yi ≤ k,

xi,j ≤ yi for 2 ≤ i, j ≤ n,∑
i:dist(vi,vj)≤x−δ

xi,j = 1 for j ∈ V ′ with dist(vj , s) > x.

References

1. Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Roditty.
On Nash equilibria for a network creation game. In Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms. Miami, FL, pages 89–98, 2006.

2. Luca Benini and Giovanni De Micheli. Networks on chips: A new SoC paradigm.
Computer, 35(1):70-78, 2002.

3. Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for the
facility location and k-median problems. In Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science, pages 378–388, 1999.

4. Erik D. Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, and Morteza Zadi-
moghaddam. The price of anarchy in cooperative network creation games. SIGecom
Exchanges 8(2), December 2009.

5. Erik D. Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, and Morteza Zadi-
moghaddam The price of anarchy in network creation games. In Proceedings of
the 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, pages 292–298, 2007. To appear in ACM Transactions on Algorithms.

6. Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadimitriou, and
Scott Shenker. On a network creation game. In Proceedings of the 22nd Annual
Symposium on Principles of Distributed Computing. Boston, MA, pages 347–351,
2003.

7. Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
45(4):634–652, July 1998.

8. Jon Kleinberg. Small-world phenomena and the dynamics of information. Advances
in Neural Information Processing Systems 14:431–438, 2001.

9. Jon Kleinberg. The small-world phenomenon: An algorithmic perspective. In Pro-
ceedings of the 32nd ACM Symposium on Theory of Computing, pages 163–170,
2000.

10. Nikolaos Laoutaris, Laura Poplawski, Rajmohan Rajaraman, Ravi Sundaram, and
Shang-Hua Teng. Bounded budget connection (BBC) games or how to make friends
and influence people, on a budget. In Proceedings of the 27th ACM Symposium on
Principles of Distributed Computing, pages 165–174, 2008.

11. Adam Meyerson and Brian Tagiku. Minimizing average shortest path distances via
shortcut edge addition. In Proceedings of the International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization Problems, vol. 5687 of Lecture
Notes in Computer Science, pages 272–285, 2009.

