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Complexity of 2D Snake Cube Puzzles
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Abstract

Given a chain of HW cubes where each cube is marked
“turn 90◦” or “go straight”, when can it fold into a
1×H ×W rectangular box? We prove several variants
of this (still) open problem NP-hard: (1) allowing some
cubes to be wildcard (can turn or go straight); (2) allow-
ing a larger box with empty spaces (simplifying a proof
from CCCG 2022); (3) growing the box (and the number
of cubes) to 2×H×W (improving a prior 3D result from
height 8 to 2); (4) with hexagonal prisms rather than
cubes, each specified as going straight, turning 60◦, or
turning 120◦; and (5) allowing the cubes to be encoded
implicitly to compress exponentially large repetitions.

1 Introduction

Snake Cube [1] is a physical puzzle consisting of
wooden unit cubes joined in a chain by an elastic string
running through the interior of each cube. For every
cube other than the first and last, the string constrains
the two neighboring cubes to be at opposite or adja-
cent faces of this cube, in other words, whether the
chain must continue straight or turn at a 90◦ angle.
In the various manufactured puzzles, the objective is to
re-arrange a chain of 27 cubes into a 3× 3× 3 box.

To generalize this puzzle, we ask: given a chain of
DHW cubes, where D,H,W are positive integers, is
it possible to rearrange the cubes to form a D × H ×
W rectangular box? We call this problem D × H ×
W Snake Cube. Previous results on its complexity
include:

• Abel et al. [1] proved 8 ×H ×W Snake Cube is
NP-complete by reduction from 3-Partition.

• Demaine et al. [2] proved 2D Snake Cube Pack-
ing—deciding whether a chain of cubes can pack
(but not necessarily fill) a 1 × H × W rectangu-
lar box where all cubes are constrained to align
with the box—is NP-complete by reduction from
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Linked Planar 3SAT. This result also holds for
a closed chain [2].

Both [1] and [2] pose the (still) open problem of deter-
mining the complexity of 1×H ×W Snake Cube:

Open Problem 1 (2D Snake Cube) Is 1 ×H ×W
Snake Cube NP-hard?

1.1 Our Results

In this paper, we prove NP-hardness of several varia-
tions of Open Problem 1:

• In Section 4, we prove NP-completeness of 2D
Snake Cube with Wildcards where at some
cubes there is a free choice between straight or turn.
This is motivated by a variant of the snake cube
puzzle where a slit cut into a cube allows the chain
to continue at a 90◦ or 180◦ angle.

We also give an alternative proof that 2D Snake
Cube Packing is NP-complete, simplifying [2].

• In Section 5, we prove that 2×H×W Snake Cube
is NP-complete. This improves the result of Abel
et al. [1] from D = 8 to D = 2.

• In Section 6, we prove NP-completeness of Hexag-
onal 2D Snake Cube Packing: deciding
whether a chain of hexagonal prisms each specified
as going straight, turning 60◦, or turning 120◦ can
be packed into a 60◦, H ×W parallelogram. Sim-
ilar to [2], we extend this result to closed chains.
One can view this as an improvement to [3] in that
angles can be restricted to be in {60◦, 120◦}.

• In Section 7, we prove weak NP-hardness of 2D
Snake Cube, allowing the chain of cubes to be
encoded to efficiently represent repeated sequences.

The first three results are reductions from Numeri-
cal 3D Matching following a similar framework de-
tailed in Section 3, while the last result is a reduction
from 2-Partition. We introduce both base problems
in Section 2.

Not all results are proven fully in this paper. All
omitted details can be found in the full version of the
paper.
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2 Preliminaries

We define our exact problems in mathematical terms.
A box is the D×H ×W rectangular cuboid that the

cubes of the snake-cube puzzle must fit into. This box
can be visualized as a cubic grid where each cube oc-
cupies one space of the grid. A program is a length-k
string of instructions P = p1 . . . pk, where each in-
struction is either the character T or S. The chain is the
corresponding sequence of adjacent cubes (c1, . . . , ck)
following the program such that each instruction pi
(where i ∈ {2, . . . , k − 1}) constrains the angle between
the 3 cubes ci−1, ci, ci+1 to be 90

◦ for pi = T (i.e., a turn)
and 180◦ for pi = S (i.e., a straight). A length-k seg-
ment refers to a length-k subchain where all cubes are
constrained to form a straight line (e.g., the subchain
following the instructions TSSST refers to a length-5 seg-
ment). If s is a sequence of instructions, let (s)k denote s
repeated k times (e.g., T(ST)3 is equivalent to TSTSTST).
The input to all problems is the box and program. In
2D Snake Cube with Wildcards, each instruction
may also be a third character * denoting that the angle
can be either 90◦ or 180◦. The instructions in Hexag-
onal 2D Snake Cube Packing use three different
characters introduced in Section 6.

2D Snake Cube with Wildcards, 2 × H × W
Snake Cube, and Hexagonal 2D Snake Cube
Packing are in NP, because verification only requires
checking all constraints, which takes linear time with
respect to the size of the box.

2.1 Reduction Base Problems

Given a multiset A = {a1, a2, . . . , an} of positive inte-
gers, 2-Partition is the problem of deciding whether
there exists a partition of A into disjoint union A1 ⊔A2

such that the sums of elements in A1 and in A2 are
equal. This problem is known to be weakly NP-hard
when the number ai’s are encoded in binary (thus may
have exponential value) [4, Section A3.2].

For any given target sum t and sequences (ai)
n
i=1,

(bi)
n
i=1, and (ci)

n
i=1, each consisting of n posi-

tive integers, Numerical 3-Dimensional Matching
(N3DM) is a problem to decide whether there exist
permutations σ and π of set {1, . . . , n} that satisfies
ai + bσ(i) + cπ(i) = t for all i. This problem is known
to be NP-hard even when the numbers are encoded in
unary [4, Section A3.2]. We refer to a solution to an
instance of N3DM as a matching .

Since we can transform an instance of N3DM by set-
ting a′i = ai + 4X, b′i = bi + 2X, c′i = ci + X, and
t′ = t + 7X, for a large integer X (linear in t), the
following proposition holds.

Proposition 2 N3DM is NP-hard even when we as-
sume that ai ∈ (0.5t, 0.6t), bi ∈ (0.25t, 0.3t), and
ci ∈ (0.125t, 0.15t) for all 1 ≤ i ≤ n.

3 Overview of Reductions from N3DM

The reductions in Sections 4, 5, and 6 all share a very
similar infrastructure, which we informally outline here.
In this overview, we letD = 1. We explain how to adapt
this framework to D = 2 in Section 5.
We reduce from the variant of N3DM in Proposi-

tion 2. Let (ai)
n
i=1, (bi)

n
i=1, (ci)

n
i=1, and t be an instance

of N3DM. We choose the following parameters: the gap
width g = Θ(n), the height of the block h = Θ(n2), and
the width multiplier m = Θ(n3).

The structure of the reduction is as follows. The di-
mensions of the box areD×H×W = 1×(nh+(n+1)g)×
(mt + 4g). The numbers (ai)

n
i=1, (bi)

n
i=1, and (ci)

n
i=1

are represented by block gadgets (⟨Ai⟩)ni=1, (⟨Bi⟩)ni=1,
and (⟨Ci⟩)ni=1, which are instructions that can gener-
ate blocks (Ai)

n
i=1, (Bi)

n
i=1, and (Ci)

n
i=1 of dimensions

1 × h × mai, 1 × h × mbi, and 1 × h × mci, respec-
tively. Blocks typically consist of h segments as shown
in Figure 1a, but details vary in different variants. In
the instructions, each block gadget will be separated by
a wiring gadget , a sequence of instructions that al-
lows connecting between two adjacent blocks no matter
where they are in the grid.

mai

h

(a) A typical block

A1

A2

...

An

Bσ(1)

Bσ(2)

...

Bσ(n)

Cπ(1)

Cπ(2)

...

Cπ(n)

h

ma1

g

H

W

(b) The high-level structure of the reduction

Figure 1: The reduction

If a matching exists (i.e., there exist two permutations
σ and π of {1, 2, . . . , n} such that ai + bσ(i) + cπ(i) = t
for all i), then (ignoring the wiring gadget) one can ar-
range the blocks into a perfect 1 × nh × mt rectangle
by aligning each triple of blocks Ai, Bσ(i), and Cπ(i) to-
gether in the same row. Since our box is slightly larger
than 1 × nh × mt, we can place the blocks such that
there is a gap g between neighboring blocks and be-
tween each block and the boundary of the rectangular
box. The gap g is chosen so there is sufficient space
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for a subchain following the wiring gadget to connect
all the blocks. Wires detour around blocks and do not
cross; the explicit algorithm will be given in Lemma 4.
Finally, depending on the variant, there may be addi-
tional instructions at the end of the program to fill in
the remaining space in the box. Figure 1b depicts the
overall reduction structure.

In the other direction, we also need to show that the
existence of a chain following the program forces the ex-
istence of matching, even if the block gadgets ⟨Ai⟩, ⟨Bi⟩,
and ⟨Ci⟩ do not fold into perfectly aligned and evenly
spaced blocks (e.g., if part of a subchain following ⟨Bi⟩
may go into gaps between subchains following ⟨Ai⟩). In
the following subsection, we prove Lemma 3 that shows
the existence of a chain following the program necessi-
tates the existence of a matching, even if blocks do not
fold ideally.

3.1 Segment Packing Lemma

We view each block as h segments; for instance,
the block gadget ⟨Ai⟩ specifies h consecutive mai-
segments. Thus, we have 3nh segments, h of each length
ma1, . . . ,man, mb1, . . . ,mbn, mc1, . . . ,mcn to pack into
the box. This motivates the following “Segment Pack-
ing Lemma”.

Lemma 3 (Segment Packing Lemma) Let (ai)
n
i=1,

(bi)
n
i=1, (ci)

n
i=1, t be an instance of N3DM satisfying

the conditions in Proposition 2. Let m and h be positive
integers, and consider a 1×H ×W box where W > mt
and nh < H < m. Suppose there are 3nh segments of
3n types A1, . . . , An, B1, . . . , Bn, and C1, . . . , Cn. If all
of the following are true, then there exists an N3DM
matching:

• W < m(t+ 1) and H < nh+ h
40 ;

• for all 1 ≤ i ≤ n, all segments of type Ai, Bi, and
Ci have lengths mai, mbi, and mci, respectively;

• there are exactly h segments of each type; and

• no two segments of the same type are more than h
rows vertically apart (note that since m > H, all
3nh segments must lie horizontally in the box.).

Proof. (Sketch) We call mai-segments A-segments,
and analogously for B-segments and C-segments. From
constraints in Proposition 2, each row of the box must
be of one of the following four categories: (1) a good row,
which contains exactly one A-segment, one B-segment,
and one C-segment; (2) an A-bad row, which contains
no A-segment; (3) a B-bad row, which contains one A-
segment but contains no B-segment; and (4) a C-bad
row, which contains one A-segment, one B-segment, but
no C-segment. Let ngood, nA, nB , and nC denote the

number of good rows, A-bad rows, B-bad rows, and C-
bad rows, respectively. Due to the constraints of Propo-
sition 2 and W < m(t+1), we count the number of A-,
B-, and C-segments to derive the following inequalities:

nA = H − nh < h
40

nB ≤ 2nA + h
40 < 3h

40

nC ≤ 6nA + 2nB + h
40 < 13h

40 .

Therefore, nA + nB + nC < h.
Finally, we color each row by its residue modulo h.

Thus, there are either n or n+1 of each color. Moreover,
there exists color c that colors only good rows. Since
segment of the same type are less than h rows apart,
there is exactly one segment of each type colored c and
exactly n rows of color c. For each row of color c, let
mai, mbj , and mck be the segment lengths. Then,

mai+mbj +mck ≤ W < m(t+1) =⇒ ai+ bj + ck ≤ t.

Summing the inequality for each row of color c gives
nt ≤ nt, so all inequalities must be equalities. There-
fore, ai + bj + ck = t for each row of color c, forming a
solution to the instance of N3DM. □

3.2 Connecting Wires

This subsection concerns the wiring part. It guaran-
tees that, if the gap is large enough, there exists a way
to place wiring gadgets without crossing, regardless of
the arrangement of blocks forced by a solution to the
instance of N3DM. This lemma was adapted from [5,
Lemma 5].

X2s2

f2

X1s1

f1

X3s3

f3

wX

s4 f0

Figure 2: Example of the setup for wire packing when
n = 3. Red area represents available space.

The setup for this lemma is depicted in Figure 2
and goes as follows: given a bounding box of size
H ′ × wX and locations of rectangles X1, X2, . . . , Xn

with widths x1, x2, . . . , xn, respectively, and the same
height h′. Each row contains at most one rectangle, but
the rectangles are in arbitrary order from top to bottom.
Note that the “rectangles” are not the same as blocks; a
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rectangle consists of squares, and a square is filled with
2× 2 cubes which will be discussed further in Section 4
when applying this lemma to prove the existence of a
chain. Define a wire connecting squares a and b to be a
sequence of adjacent squares with the first and the last
squares are adjacent to a and b, respectively.

Lemma 4 (Wire Lemma) Assume the above setup
with mini xi > wX/2, and all rectangles are at least
g′ ≥ 100n squares apart. Define the available space
to be a set of squares in the extension of all rectangles
on each edge by g′/2. For each i = 0, 1, . . . , n, let ℓi
be an even integer in [8nwX , 12nwX ]. Let si and fi
be the bottom-left and top-left corners of rectangle Xi,
and f0, sn+1 be two chosen squares at the bottom-left
of the available space. Then, one can draw n + 1 dis-
joint wires W0, . . . ,Wn in the available space, where Wi

has length exactly ℓi and Wi connects fi to si+1 for all
i ∈ {0, 1, . . . , n}. Furthermore, no two cells from differ-
ent wires Wi and Wj are adjacent.

Proof. (Sketch) We will briefly explain an algorithm
to place the wires W0, . . . ,Wn inductively. First, mark
squares m0 = f0,m1, . . . ,mn,mn+1 = sn+1 in the same
row in this order; all of these should be near the bottom-
left of overall available space. We will construct wires
(Ui)

n
i=1 and (Vi)

n
i=1 such that Ui connecting mi−1 to

si, and Vi connecting mi to fi. Then, Wi is a con-
catenation of wire Ui+1, square mi, and wire Vi for all
i ∈ {1, . . . , n − 1}. Moreover, W0 = U0 and Wn = Vn.
We also reserve space of width 40n squares above and
below each rectangle and 10n squares on the left of each
rectangle. The two main stages of placing wires are

(a) Place Ui and Vi without crossing U1, V1, . . . , Ui−1,
Vi−1. This process is done inductively.

(b) Adjust the length of the wire Wi to be exactly ℓi
by placing the remaining length Ui and Vi inside
reserved space of rectangle Xi, which has size at
least 40n × xi; the space can fit a wire of length
> 20nwX , large enough to contain the extra length.

To accomplish (a), place Ui and Vi by following these
steps simultaneously for each i.

(i) Create a sequence of squares from mi to the top of
the available space, following along the left gaps.

(ii) Draw the wire down to the same row as si between
the wires we have placed in (i) and the left edges of
all rectangles, and then draw the wire horizontally
to si.

(iii) The current wire may cross Uj or Vj for some j < i
when they are horizontally connected to sj or fj .
In this case, replace the current wires by making
then go around other edges of rectangle Xj .

To justify the size of available space, each of Ui and Vi

may contribute to at most 2 layers of wires on each edge
of the block with a space of one square between each
layer of wires. Combine this with the reserved space; we
need available space with width 40n+ 2 · 2 · (2n) < 50n
on each edge of the rectangles.

The dominant contribution to the length of the wire
occurs when the wires have to go around other rectan-
gles since wX ≫ nh′ + (n + 1)g′. However, there are
at most n blocks that a wire has to go around. Includ-
ing all other distances, the sufficient length of a wire is
8nwX . □

4 Snake Cube Puzzles in 1 × H × W box

In this section, we consider the 2-dimensional variants of
Snake Cube. We first consider 2D Snake Cube with
Wildcards, where we allow the wildcard * that could
be used as either S or T. We will prove the following:

Theorem 5 2D Snake Cube with Wildcards is
NP-hard.

Section 4.1 will sketch the proof of Theorem 5. Then,
in Section 4.2, we will explain how to modify this proof
to give an alternative proof of the following, which was
first proved in [2].

Theorem 6 2D Snake Cube Packing is NP-hard.

4.1 Proof with Wildcard Option

Given an instance of N3DM with target sum t, (ai)
n
i=1,

(bi)
n
i=1, (ci)

n
i=1, where ai ∈ (0.5t, 0.6t), bi ∈ (0.25t, 0.3t),

and ci ∈ (0.125t, 0.15t) for all i (Proposition 2), we de-
fine these parameters to construct a string input to 2D
Snake Cube with Wildcards.

g = gap width = 200n

m = multiplier of widths = 30000n3

h = height of blocks = 20000n2

H = height of the grid = nh+ (n+ 1)g

W = width of the grid = mt+ 4g

Then, construct block gadgets Ai, Bi, and Ci for all
1 ≤ i ≤ n. The sequence for Ai is given below, and the
sequences for Bi, Ci are analogous. These blocks will
fold into rectangles of size h×mai, h×mbi, or h×mci.

⟨Ai⟩ = (S)mai−1(TT(S)mai−2)h−1

The program is given by

⟨A1⟩(*)16nW ⟨A2⟩(*)16nW . . . (*)16nW ⟨An⟩(*)16nW

⟨B1⟩(*)8nW ⟨B2⟩(*)8nW . . . (*)8nW ⟨Bn⟩(*)8nW

⟨C1⟩(*)4nW ⟨C2⟩(*)4nW . . . (*)4nW ⟨Cn⟩(*)4nW (*)ℓ,
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where the number ℓ of *’s at the end is to make the
length of the whole program exactly WH.

Chain ⇒ Matching. Each block gadget ⟨Ai⟩, ⟨Bi⟩,
⟨Ci⟩ contains h segments that must be horizontal due
to its length. Thus, we have 3nh segments of 3n types
that fit the condition of Lemma 3. The lemma forces
the existence of matching.
Matching ⇒ Chain. Suppose there is a matching, so

we can place all blocks as shown in Figure 1b.
Apply the wire lemma to connect all these blocks

where each square in the lemma corresponds to 2 × 2
cubes in this construction. Hence, each block is at least
g′ = g/2 = 100n squares apart, and the width of the
bounding box is wX = W/2 squares. For wires among
Ai blocks, Lemma 4 implies that there exists a sequence
of 8nwX = 4nW squares of size 2 × 2 that connect all
of Ai blocks. These squares can be filled with 16nW
* cubes as demonstrated in Figure 3. For wires among
Bi blocks, the block size is roughly half of Ai; thus,
we can reduce the parameter wX in the lemma by half.
Similarly, the parameter is reduced to a quarter for Ci

blocks.

Figure 3: Example of filling a wire with * tiles.

The wire between An and B1 is long enough to con-
nect the following cubes in order: (1) the last cube of
block An, (2) the cube at the square marked as fn in
the application of Lemma 4 to connect wires between Ai

blocks, (3) the cube at the square marked as s0 in the
application of Lemma 4 to connect wires between Bi,
and (4) the first cube of block B1. This is always possi-
ble since gaps are all connected, and the length needed
never exceeds 8nW + 4W + 4nW ≤ 16nW . The wire
between Bn and C1 can be placed similarly.
Lastly, notice that the construction we described so

far is aligned with the 2×2 polygrid, and the remaining
squares are connected because the blocks and wires are
topologically equivalent to a path with no closed loop.
From [6], there exists a Hamiltonian cycle in any con-
nected shape aligned with 2 × 2 polygrid. Thus, the
remaining wildcards can fill all the remaining space.

4.2 Proof Outline for Packing

To prove Theorem 6, the setup and the main proof are
almost the same. The only difference is that we cannot
use the wildcard *. To fix this, we make two modifi-
cations. First, we remove (∗)ℓ at the end because we
do not need to fill the box. Second, we replace all ∗’s
between block gadgets with an equally long string of
T’s. By making squares in Lemma 4 correspond to 2×2

cubes, wiring gadgets can connect different block gad-
gets using only T’s. This is possible because not all
cubes in the wires need to be used, and cubes outside
the wires may be used. We can make the wire length
exactly as specified by varying how the chain fills the
wires at turns. More details are available in the full
version of the paper.

5 Snake Cube Puzzles in 2 × H × W box

In this section, we outline our reduction from N3DM
to 2 × H × W Snake Cube. A detailed proof can be
found in the full version of the paper.

Theorem 7 2×H ×W Snake Cube is NP-hard.

We follow the block and wire reduction infrastructure
introduced in Section 3. Consider an instance of N3DM
(ai)

n
i=1, (bi)

n
i=1, (ci)

n
i=1, and t satisfying the conditions

in Proposition 2. Define the parameters as follows.

g = 1200n, h = 60000n2, m = 60000n3,

H = n(h+ 6g + 4) + 2, W = 4g +mt+ 6.

In this variant, the blocks generated by the block gad-
gets have depth 2 (e.g., block Ai is of size 2×h×mai).
Like previously, the program consists of block gadgets
separated by wire gadgets. However, unlike previous
1×H ×W variants, a second layer results in fewer con-
straints on the shape of subchains following the block
gadget, so Lemma 3 no longer applies. To bypass this
issue, we introduce additional instructions at the be-
ginning of the program that specifies a shelf — the
structure shown in Figure 4 that constrains the folding
of the ⟨Ai⟩, ⟨Bi⟩, and ⟨Ci⟩ subchains. The shelf is de-
signed so that it can only be made into a subchain the
intended way. The program is given by

⟨shelf⟩⟨A1⟩(T)96nW ⟨A2⟩(T)96nW . . . (T)96nW ⟨An⟩(T)96nW

⟨B1⟩(T)48nW ⟨B2⟩(T)48nW . . . (T)48nW ⟨Bn⟩(T)48nW

⟨C1⟩(T)24nW ⟨C2⟩(T)24nW . . . (T)24nW ⟨Cn⟩(T)ℓ,

where (T)ℓ pads the string to length 2HW and ⟨Ai⟩ =
(S)mai−1(TT(S)mai−2)2h−1S; ⟨Bi⟩ and ⟨Ci⟩ are defined
analogously.

Chain ⇒ Matching. Since the gap to the right of
each shelf is small (g ≪ m), all cubes within a block
must fit entirely within one row of the shelf. By a similar
counting argument as in Lemma 3, there exists a row
containing exactly one Ai, Bj , and Ck block in each
shelf, and the corresponding ai, bj , and ck must sum
to t.
Matching ⇒ Chain. Place all blocks as in Figure 1b

where segments in the blocks fill the top and bottom lay-
ers alternately. The remaining grid can be partitioned
into 2× 4× 4 blocks of space. We cite a result from [1]:
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g

4
H

W

mt+ 3g

h+ 6g

Figure 4: One layer of the “shelf” with 3 rows. The
chain moves to the other layer at discontinuities.

given a sequence (T)8 of cubes entering a 2×2×2 block
of space, the cube chain can exit from any face. Thus,
traversing between 2× 2× 2 blocks of space with (T)8’s
has the same movement freedom as traversing between
cells in a 2D grid with wildcards. Thus, by grouping
2 × 2 × 2 cubic blocks together, the remaining proof is
equivalent to that in Section 4, except the wires are 3

2
times long to allow for detours around the shelf.

6 Snake Cube Puzzles with Hexagonal Prisms

In this section, we consider a version of a 2D Snake cube
with a chain of hexagonal prisms. When the prisms are
represented by points, the movement patterns form a
triangular grid. Thus, the problem becomes a triangular
grid variant of the flattening fixed-angle chains problem
in [2].

An infinite triangular grid is a two-dimensional lat-
tice generated by vectors v1 = ( 10 ) and v2 =

(
cos 60◦

sin 60◦

)
;

each point represents a hexagonal prism. Two points
in a triangular grid are adjacent if they are distance 1
apart. A 60◦ parallelogram box of dimension H×W
is the set of HW points obtained by translating the set
{iv1 + jv2 : i ∈ {1, . . . ,W}, j ∈ {1, . . . ,H}} by some
lattice vector.

For this section, a program is a string that consists
of only characters S, T60, and T120, where S denotes
straights, T60 denotes 60◦ turns (forming 120◦ angle),
and T120 denotes 120

◦ turns (forming 60◦ angle). We say
that a chain C = (p1, p2, . . . , p|s|) (length |s|) satisfies s
if and only if for every i ∈ {2, 3, . . . , |s| − 1}, the angle
between pi−1, pi, pi+1 is 180◦ if si = S, 60◦ if si = T120,
and 120◦ if si = T60. C is closed if and only if p1 = p|s|.

Theorem 8 Both of the following problems are NP-
complete.

• Bounded Triangular Path Packing: given a
60◦ parallelogram box B, a program P, and two ad-
jacent vertices u and v on a boundary of B, decide

mai

h

Figure 5: The frame gadget and an example block gad-
get inside.

whether there is a chain connecting u and v satis-
fying P.

• Triangular Closed Chain: given a program P,
decide whether there is a closed chain satisfying P.

To prove the first problem NP-Hard, we use the same
reduction, except that block gadgets are 60◦ parallelo-
grams shown in Figure 5. Then, we can reduce the first
problem to the second problem, creating a frame gad-
get to force the chain by modulo a large prime condition
similar to [2] shown in Figure 5.

7 Weak-NP-hardness of 2D Snake Cube Puzzle

In this section, we consider 2D Snake Cube, where the
chain must fill a 1×H×W rectangle. However, we allow
the instructions to be encoded using the shorthand no-
tation, which keeps the inputs polynomial with respect
to the input integers. Since this modification means the
problem may no longer be in NP, this reduction only
proves NP-hardness. For any set S, let

∑
S be the sum

of its elements.

Let A be the multiset of positive integers, a 2-
Partition instance. We select H = 2|A| + 4 and
W = 4

∑
A + 1. The program comprises the caps at

either end and |A| layers in between, encoding each ai
in A sequentially. The swivel points join each gadget
and allow the layers to flip horizontally. The orientation
of each layer left or right corresponds to assigning each
ai to either partition (Figure 6).

Cap

Cap

Layers

Figure 6: Chain for A = {1, 2, 1}, emphasizing the dif-
ferent gadgets, highlighting the swivel points (in bolded
red), and demonstrating the 3 variants of layers.
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7.1 Gadgets

The starting cap is the subsequence (the ending cap
being the reverse):

(S)
W−1

2 −1TT(S)W−2TT(S)
W+1

2 −1T . . . .

Since W > H, the W -segments in the caps can only fit
horizontally. They must be at the top and bottom since
any other position would create an unfillable empty
space. This forces the position of the swivel points join-
ing the caps and the layers to be horizontally centered.
For each i, let Ai = {aj : j ∈ {1, . . . , i}}, wi =

4
∑

(A\Ai−1)+1, xi = (wi−1)/2, and hi = 2|A\Ai−1|.
There are 3 variants of the corresponding layer gadget.
If 4ai ≤ xi and hi > 2, the layer is the subsequence

(sections named for ease of discussion, see Figure 7):

. . . T(S)xi−1T “arm”

(S)hi−2(TT(S)hi−3)4ai−1T “padding”

(S)xi−4ai+1(T)2(2ai−1) “shift”

(S)xi−2aiTT(S)xi−2ai+1T . . . “return.”

Padding

Arm Return

Shift

Figure 7: Sample layer gadget with ai = 1, wi = 17,
hi = 6 with labeled sections.

If 4ai > xi and h > 2, informally the padding spills
over into the shift, resulting in these differences:

(S)h−2(TT(S)h−3)xi(TT(S)h−2)4ai−xi−1 “padding”

(T)2(2ai−1−(4ai−xi−1)) “shift.”

If h = 2, informally the padding can be visualized
as degenerating and subsuming the shift and return,
resulting in these changes from the first variant:

T(S)xi(T)2(2ai−1)+1S “padding.”

Each layer gadget has a wi × hi space available to it
and leaves behind a wi+1 × hi+1 space while displac-
ing the swivel point horizontally by 2ai left or right.
To show this, we use induction starting from the first
layer. Note that the arm and padding sections are all
forced by space constraints. The shift section is forced
since turning the chain outward in the subsequence of

repeated turns (T) would leave behind a 1 × 1 space.
This space can only be filled by the endpoints, which is
impossible because their positions are forced by the cap
gadgets. Then, the return section is also forced.

7.2 Reduction

If there exists a solution to 2-Partition, then construct
all the gadgets and flip the layer gadgets so that arms
for all numbers in A1 point to the left, and those for
numbers in A2 point to the right. The horizontal dis-
placements of the swivel points must sum to 0, so the
last layer can connect to the upper cap.

If there exists a solution for 2D Snake Cube, then
we have demonstrated the gadgets are forced to be con-
structed in the correct orientation. Since the last layer
gadget connects to the upper cap gadget, the horizon-
tal displacements of the swivel points must sum to 0.
Reversing the above process produces a solution to the
2-Partition instance.
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