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Snipperclips: Cutting Tools into Desired Polygons using Themselves
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Abstract

We study Snipperclips, a computer puzzle game whose
objective is to create a target shape with two tools. The
tools start as constant-complexity shapes, and each tool
can snip (i.e., subtract its current shape from) the other
tool. We study the computational problem of, given a
target shape represented by a polygonal domain of n
vertices, is it possible to create it as one of the tools’
shape via a sequence of snip operations? If so, how
many snip operations are required? We show that a
polynomial number of snips suffice for two different vari-
ants of the problem.

1 Introduction

Snipperclips: Cut It Out, Together! [8] is a puzzle game
developed by SFB Games and published by Nintendo
worldwide on March 3, 2017 for their new console, Nin-
tendo Switch. In the game, up to four players cooper-
ate to solve puzzles. Each player controls a character1

whose shape starts as a rectangle in which two corners
have been rounded so that one short side becomes a
semicircle. The main mechanic of the game is snipping :
when two such characters partially overlap, one charac-
ter can snip the other character, i.e., subtract the cur-
rent shape of the first character from the current shape
of the latter character; see Figure 1. In addition, a reset
operation allows a character to restore its original shape.
An unreleased 2015 version of this game, Friendshapes
by SFB Games, had the same mechanics, but supported
only up to two players [4].

Puzzles in Snipperclips have varying goals, but an
omnipresent subgoal is to form one or more players into
desired shape(s), so that they can carry out required ac-
tions. In particular, a core puzzle type (“Shape Match”)
has one target shape which must be (approximately)
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Figure 1: Cropped screenshots of Snipperclips: snip-
ping, resetting, and solving a Shape Match puzzle.
Sprites copyright SFB/Nintendo and included here un-
der Fair Use.

formed by the union of the character’s shapes. When
the target shape has one connected component per char-
acter, the puzzle is equivalent to the characters reach-
ing a desired set of target shapes, one per character. In
this paper, we study when this goal is attainable, and
when it is, analyze the minimum number of operations
required.

2 Problems and Results

For the remainder of the paper we consider the case of
exactly two characters or tools T1 and T2. For geometric
simplicity, we assume that the initial shape of both tools
is a unit square. Most of the results in this paper work
for nice (in particular, fat) constant-complexity initial
shapes, such as the rounded rectangle in Snipperclips,
but would result in a more involved description.

We view each tool as an open set of points that can
be rotated and translated freely.2 After any rigid trans-
formation, if the two tools have nonempty intersection,

2In the actual game, the tools’ translations are limited by grav-
ity, jumping, crouching, stretching, standing on each other, etc.,
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Figure 2: By translating and rotating the two tools we
can make them partially overlap (left figure). In the
right we see the resulting shape of both tools after the
snip operation.

we can snip (or cut) one of them, i.e., remove from one
of the tools the closure of the intersection of the two
tools (or equivalently, the closure of the other tool); see
Figure 2. (The closure is used to preserve the invari-
ant that both tools remain open sets.) In addition to
the snip operation, we can reset a tool, which returns it
back to its original unit-square shape.

Although we forbid it in our study, the actual game
has an additional undo/redo operation, allowing each
tool to change into its previous shape (before its last
snip or undo/redo operation, but not before its last re-
set operation), effectively implementing an undo stack
of size 1. Our positive results are stronger without need-
ing this operation; our negative results (Section 3) are
weaker without allowing this operation, and may not
hold in the stronger undo/redo model.

After a snip operation, the changed tool could be-
come disconnected. There are two natural variants on
the problem of how to deal with disconnection. In the
connected model, we force each tool to be a single con-
nected component. Thus, if the snip operation discon-
nects a tool, we can choose which component to keep.
In the disconnected model, we allow the tool to become
disconnected, viewing a tool as a set of points to which
we apply rigid transformations and the snip/reset oper-
ation. The Snipperclips game by Nintendo follows the
disconnected model, but we find the connected model
an interesting alternative to consider.

Ideally, given two target shapes P1 and P2, we would
like to find a sequence of snip/reset operations that
transform tool T1 into P1 and at the same time trans-
form T2 into P2. However, as we show in Observation 1,
this is not always possible, even when P1 = P2. Instead,
we consider creating a single target shape P1 by one of
the tools T1. Because our initial shape is polygonal, and
we allow only finitely many snips, the target shape must
be a polygonal domain, say of n vertices. The primary
goal of this paper is to design an algorithm that, for
any target shape P1, can transform tool T1 into the de-
sired shape P1 using as few snip and reset operations

though in practice this is not a huge limitation. Rotation is indeed
arbitrary.

as possible. Specifically, our aim is for the number of
snip and reset operations to depend only on n (and not
depend on other parameters such as the feature size of
the target shape).

2.1 Results

For negative results (Section 3), we show a pair of shapes
that cannot be simultaneously realized by both tools.
We also provide a shape that requires Ω(n) snips when
we aim to construct it in a single tool (in both the con-
nected and disconnected models). For positive results,
we give constructive algorithms to create any target
shape in the connected model using O(n) snips (Sec-
tion 4) and in the disconnected model using O(n2) snips
(Section 5).

2.2 Related Work

Computational geometry has considered a variety of
problems related to cutting out a desired shape using
a tool such as circular saw [3], hot wire [5], and glass
cutting [6, 7]. The Snipperclips model is unusual in that
the tools are themselves the material manipulated by
the tools. This type of model arises in real-world man-
ufacturing, for example, when using physical objects to
guide the cutting/stamping of other objects—a feature
supported by the popular new Glowforge laser cutter [1]
via a camera system.

Our problem can also be seen as finding the optimal
Constructive Solid Geometry (CSG) expression tree,
where leaves represent base shapes (in our model, rect-
angles), internal nodes represent shape subtraction, and
the root should evaluate to the target shape, such that
the tree can be evaluated using only two registers. Ap-
plegate et al. [2] studied a rectilinear version of this
problem (with union and subtraction, and a different
register limitation).

3 Lower Bounds

We begin with the intuitive observation that not all
combinations of target shapes can be constructed.

Observation 1 In both the connected and disconnected
models (without undo/redo), there is a target shape that
cannot be realized by both tools at the same time.

Proof. Consider the target shape shown in Figure 3:
a unit square in which we have removed a very thin
hole in the middle. First observe that, if we perform
no resets, neither tool has space to spare to construct a
thin auxiliary needle to carve out the middle section of
the other tool. Thus, after we have completed carving
one tool, the other one would need to reset. This implies
that we cannot have the target shape in both tools at
the same time.
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Figure 3: A target shape that cannot be realized by
both tools at the same time.

Now assume that we can transform both tools into
the target shape by performing a sequence of snips and
resets. Consider the state of the tools just after the last
reset operation. One of the two shapes is the unit square
and thus we still need to remove the thin hole using
the other shape. However, because no more resets are
executed, the other tool is currently and must remain a
superset of the target shape. In particular, it can differ
from the square only in the thin hole, so it does not
have any thin portions that can carve out the hole of
the other tool.

Because the above argument is based solely on the
shape of the figure, it holds in both the connected and
disconnected model. �

Next we show that constructing a target shape in only
one of the two tools may require a linear number of op-
erations in both the connected and disconnected model.

Theorem 2 There are target shapes that require Θ(n)
snips to construct, both in the connected and discon-
nected model (without undo/redo).

Proof. Consider the target shape P1 to be a set of n/3
triangles on a line such that the distance between two
consecutive triangles grows exponentially. In the con-
nected model, we add a strip to connect these triangles;
see Figure 4. We complete the construction by scaling
it so that the width and height of P1 is unit (and thus
fits in either tool).

Figure 4: The target shape used in the lower bound.

First observe that it is straightforward to construct
P1 into one of the two tools by making the other tool a
rectangle with width smaller to or equal to the shortest
segment of P1. Thus, we now proceed to prove the lower
bound.

Consider now a sequence of snip and reset operations
that can be used to construct P1 in one of the tools.
If we only have tools that cut out a constant number

of edges or we have a linear number of tools, the lower
bound follows, so we focus on tools that cut out multi-
ple edges from different triangles. We observe that due
to the spacing between the triangles, these tools can-
not be reused to cut out multiple edges from any other
triangles. Hence, if we can show that the number of
snips required to construct these tools is linear in their
complexity, we are done.

Let us consider such a tool that cuts out multiple
edges from different triangles. Note that this tool has
strictly fewer vertices than P1. Using similar arguments
as above, we can assume that each such tool was not
constructed using only tools that cut out a constant
number of edges nor using a linear number of tools.
If we continue this recursion, each time we recurse into
strictly smaller tools. Hence, in the final step, we end up
with tools that are constructed using tools that cut out a
constant number of edges or we have a linear number of
tools in total. Regardless, the lower bound follows. �

4 Connected Model

In the connected model, the shapes must remain con-
nected and we enforce this by choosing a connected com-
ponent whenever a snip breaks the shape into multiple
pieces. In this model, we show that O(n) snips suffice
to create any polygonal shape of n vertices.

Theorem 3 We can cut one of the tools into any tar-
get polygonal domain P1 of n vertices using O(n) snip
operations (and no reset) in the connected model.

Proof. The idea is that we can shape T2 into a very
narrow triangle, a needle, and use that to cut along the
edges of the target shape P1. Whenever a snip discon-
nects the shape, we simply keep the one containing the
target shape. Initially, we start with a long needle to
cut the long edges of T2 and we gradually shrink the
needle to cut the smaller edges.

More formally, let α be the smallest angle between
any two adjacent edges of P1. As it will be seen later,
we need α to be small. Thus, if α > 1◦, we simply lower
it to 1◦ instead. Furthermore, let h be the shortest
distance between any vertex and a non-adjacent edge.
Our needle will be an isosceles triangle, with the two
equal-length edges making an angle of at most α and
the base edge with length equal to h (if this would cause
the equal length segments to have length greater than
one we reduce them to unit length, see Figure 5).

Now we group all edges of P1 into sets based on their
length. Let E denote the full set of edges defining P1

and let Ei, for 0 ≤ i, be the set of edges whose length is
between 2−i−1 and 2−i. To cut along the edges of Ei, we
use a needle where the equal-length edges have length
2−i−2. Such a needle can construct each edge in Ei us-
ing at most four snips; see Figure 5. For an edge e, its
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≤ α
< h

Figure 5: The needle is an equilateral triangle with apex
at most α and a base edge of length at most h. The
edges of equal length have length at most 1 so that the
whole triangle can fit inside a tool.

nearest other features of P1 are its two adjacent edges,
the vertices closest to the edge, and the edges closest to
its endpoints. We avoid cutting into the adjacent edges
by placing the tip of the needle at the vertex when cut-
ting near a vertex and we cannot cut out non-adjacent
vertices and edges, because the base of the needle is at
most h.

By making the cuts along the edges in the sets Ei
in increasing order of i the needle has to only shrink,
which is easily done by cutting it with any outer edge
of the current polygon (all are guaranteed to be at least
length h). Making the initial needle requires two snips,
cutting each edge requires at most four snips and hence
O(n) snips in total, and reducing the needle length re-
quires one snip per nonempty set Ei of which there are
at most O(n). Thus, in total the required number of
snips is O(n). �

5 Disconnected Model

Recall that in the disconnected model, we allow the tool
to become disconnected, i.e., when a snip disconnects
the tool, we keep both components.

In order to carve out a target shape P1, we virtu-
ally fix a location of P1 inside T1, pick a corner c of T1
(say, the lower right one) and consider the set of dis-
tances d1, . . . , dn′ from each of the vertices in the fixed
location of the target shape P1 to c in decreasing or-
der under the L∞-metric. For simplicity assume that
all distances are distinct, and thus n′ = n (this can be
achieved with symbolic perturbation). We refer to the
part of T1 not in P1, i.e., T1 \ P1, as the free-space. We
will remove the free-space in n steps, where in each step
i we remove the free-space from an L-shaped region Qi

that is the intersection of T1 and an annulus formed by
removing the L∞-ball of radius di from the L∞-ball of
radius di−1. We argue that in each step we will need
O(n) snips and resets, thus creating the target shape in
O(n2) operations.

Lemma 4 The free-space in region Qi can be re-
moved in O(n) snips and reset operations provided that⋃

j≤iQj is a square in T1.

S2

c

S1

Q1

Figure 6: The squares S1 and S2 along with L-shaped
region Q1 and corner c.

Si+1

Tr

Tb

Tt`
Qi

Figure 7: An L-shaped region Qi, the edges of the target
shape that cross it (thick edges) define Fi. We further
triangulate each face (thin edges), and consider the cor-
responding dual graph (dotted edges).

Proof. Let Si be the bounding square containing Qi

(see Figure 6) and let Fi be the set of faces created when
removing the boundary edges of the target shape from
Qi. By definition all vertices of the target shape on Qi

must be on its inner or outer L-shaped boundary and
all boundary segments must fully traverse Qi, i.e., they
cannot have an endpoint inside Qi. It then follows that
the set Fi of faces consists of O(n) constant complexity
pieces. Now triangulate all faces of Fi and let Ti denote
the resulting set of triangles (Figure 7). Note that our
aim is to remove some of the triangles of Ti. We will
show that we can remove any triangle that fits in Si \
Si+1 with a constant number of cuts.

For simplicity in the exposition we first consider the
case in which Si+1 is large. That is, the side length
of Si+1 is at least half the side length of Si. Consider
a triangle T ∈ Fi that needs to be removed. To create
a cutting tool move T2 so that its only overlap with T1
is Si. Let S′i denote the area in T2 corresponding to
Si and let T ′ be the projection of T on T2. Our goal
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Figure 8: A triangle T in Si is cut out of T2 at T ′.

`

Si+1

Si S′
i

T T ′

Figure 9: If Si+1 is large, we can use it to carve out any
desired shape in T2 with O(1) snips.

will be to remove S′i\T ′ from T2 without affecting T ′.
Note that we can create a cut where only S′i overlaps T1
in Si, so the shape of T2\S′i does not influence the cut
(Figure 8). That means we do not have to cut it away
and we do not need to worry about cutting part of it
while creating a cutting tool within S′i.

Consider the halfspaceH defined by one of the bound-
ing lines ` of T ′ that does not contain T ′. We can remove
H∩S′i by rotating T1 so that one of the sides of T1 along
which Si+1 is situated aligns with ` and repeatedly snip
with Si+1 in a grid-pattern as shown in Figure 9. Be-
cause Si+1 is large compared to S′i we can remove H∩S′i
in O(1) snips. We then apply the same procedure for
the other two halfspaces that should be removed to ob-
tain the cutting tool for T . This means that, under the
assumption that Si+1 is large, each triangle can be re-
moved in O(1) snips. Since there are O(n) triangles in
Si, the linear bound holds.

It remains to consider the case in which Si+1 is
small. (that is, the side length of Si+1 is less than half
that of Si, and potentially much smaller). Although the
main idea is the same, we need to remove the triangles
in order, and use portions of Qi that are still solid to
create the cutting tools.

Let Gi be the dual graph of Ti. This graph is a tree
with at most three leaves. Two leaves correspond to

the unique triangles Tb and Tr that share an edge with
the lower and right boundary of Qi respectively and the
third exists only if the top-left corner of Qi is contained
in a single triangle Tt`, that is, there is at least one
segment contained in Qi that connects the top and left
boundaries; see Figure 7. Finally, we change the coor-
dinate system so that c is the origin, and Si is a unit
square (note that the vertices of this square are (−1, 1),
(−1, 0), (0, 1), and c = (0, 0)).

We process the triangles in the following order. We
first process the cross-triangles, triangles with one end-
point on the left boundary and one on the top boundary,
(if any exist) starting from Tt` following Gi until we find
a triangle that has degree three in Gi which we do not
process yet. The remaining fan-triangles form a path in
Gi which we process from Tb to Tr.

Cross-triangles. Recall that, by the way in which
we nest regions Qi, there cannot be vertices to the right
or below Si. In particular, cross-triangles have all three
vertices in the top and left boundaries of Qi. Hence,
while we have some cross-triangle that has not been
processed, the triangle of vertices (−1, 0), (0, 1) and c
must be present in T1. This triangle has half the area of
Qi and can be used to create cutting pieces in the same
way as when Si+1 is large. Thus, we conclude that any
cross-triangle of Qi can be removed from T1 with O(1)
cuts.

Fan-triangles. We now process the fan-triangles in
the path from Tb to Tr in Gi. We treat this sequence
in two phases. First consider the triangles that have at
least one vertex on the left edge of Si (that is, we process
triangles up to and including the triangle that has de-
gree three in Gi if it exists); out of these triangles, only
the triangle of degree three can intersect the triangle of
vertices (0, 1), (0, 3/4), and (−3/4, 3/4). This triangle
has 1/32 of the total area of Si, and as before we can
use it as cutting tool to create any desired triangle with
O(1) snips.

The remaining triangles have their vertices in the up-
per edge of Si and on the upper or left edge of Si+1. In
this case we must be more careful as we cannot guar-
antee the existence of a large square in T1. However,
we do not have to clear the entire space S′i any longer.
Instead it suffices to clear a much smaller area.

Let T denote the next triangle to be removed and let
B denote the bounding box of T and c (see Figure 10).
As before consider moving T2 so that the only overlap
with T1 is B, let B′ denote this area in T2 and T ′ the
projection of T onto B′. To create a cutting tool we
need only remove the area B′\T ′.

As before, we look for a region in T1 that has roughly
the area of T to use for carving the desired shape in T2.
Let w be the width of B. Also, let h′ the height of Si+1.
Note that the height of B is 1, and since Si+1 is small,
we have h′ < 1/2. By construction of the bounding box,
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Si

Si+1

T

B

Figure 10: The solid areas (grey) and bounding box B
when cutting fan-triangles with no vertices on the left
boundary of Si.

one of the vertices of T will have x coordinate equal to
−w; let q denote this vertex. The y coordinate yq of q
is either 1 or h′ as it must be on the upper edge of Si or
on the upper boundary of Si+1—if T has vertices on left
boundary of Si+1, then there is a vertex on the upper
boundary of Si with lower x coordinate. Now consider
with vertices (0, 1), (0, h′), q. This triangle has height
at least 1 − h′ > 1/2 and width w, and thus its area is
at least 1/4 of the area of B. As in the previous cases,
we use this triangle to create a cutting tool from T2 to
remove triangle T from T1.

Thus, it follows that all free-space triangles can be
removed with a cutting tool that is constructed from T2
in O(1) snips and reset operations, hence we can clear
Qi of free-space in total O(n) operations. �

Because there are at most n distinct distances, we
repeat this procedure at most n times, giving us the
desired result.

Theorem 5 We can cut one of the tools into any target
polygonal domain P1 of n vertices using O(n2) snips and
reset operations in the disconnected model.

6 Open Problems

For cutting one tool into a desired polygonal shape, our
results are tight in the connected model (Θ(n)), but
the disconnected model (as implemented by the Snip-
perclips game) still has a gap between Ω(n) and O(n2).
What is the optimal worst-case number of cuts as a
function of n? What about the algorithmic question
of cutting out a given shape with the fewest possible
cuts for that shape (instead of the worst case)? Is this
problem NP-hard, and does it have a constant-factor
approximation algorithm?

For cutting two tools (or more tools) simultaneously
into desired polygonal shapes, the main open problem
is to characterize when this is possible. Is the decision

problem NP-hard? How does the problem change if we
allow the undo/redo operation described in Section 2?

It would also be interesting to consider the initial
shape implemented in the Snipperclips game (instead of
the unit squares we used for simplicity), namely, a unit
square adjoined with half a unit-diameter disk. This ini-
tial shape opens up the possibility of making curved tar-
get shapes bounded by line segments and circular arcs
of matching curvature. Can all such shapes be made,
and if so, by how many cuts?
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