
Complexity of Solo Chess with Unlimited Moves

Josh Brunner1, Lily Chung1, Michael Coulombe1, Erik D. Demaine1,
Timothy Gomez1, and Jayson Lynch1

Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA 02139, USA,

{brunnerj,lkdc,mcoulomb,edemaine,tagomez7,jaysonl}@mit.edu

Abstract. We analyze Solo Chess puzzles, where the input is an n× n
board containing some standard Chess pieces of the same color, and the
goal is to make a sequence of capture moves to reduce down to a single
piece. Prior work analyzes this puzzle for a single piece type when each
piece is limited to make at most two capture moves (as in the Solo Chess
puzzles on chess.com). By contrast, we study when each piece can make
an unlimited number of capture moves. We show that any single piece
type can be solved in polynomial time in a general model of piece types,
while any two standard Chess piece types are NP-complete. We also
analyze the restriction (as on chess.com) that one piece type is unique
and must be the last surviving piece, showing that in this case some pairs
of piece types become tractable while others remain hard.

1 Introduction

The classic two-player game of Chess is PSPACE-complete [13] or EXPTIME-
complete [7] depending on whether the number of moves is limited to a polyno-
mial. Recent work analyzes Chess-based puzzles, including Helpmate Chess and
Retrograde Chess which are PSPACE-complete [2] and Solo Chess which is NP-
complete [1]. In this paper, we extend the analysis of Solo Chess to unbounded
moves per piece.

First we review standard Solo Chess as implemented on chess.com [3]. All
pieces are of the same color and may capture any piece except a king. Every
move must be a capture. The objective is to find a sequence of moves (captures)
that results in only one piece remaining on the board. If there is a king on the
board, it must be last remaining piece. Further, each piece can make a maximum
of k = 2 moves. Past work [1] generalizes Solo Chess to an arbitrary limit k on
the number of moves per piece (and arbitrary board size), denoting this game
by (Generalized) Solo-Chess(S, k) where S is the set of allowed piece types.
They proved that Solo-Chess({ }, 2) and Solo-Chess(S, 1) can be solved
in linear time, while Solo-Chess({ }, 2), Solo-Chess({ }, 2), and Solo-
Chess({ }, 2) are NP-complete.

This paper analyzes the complexity of Solo Chess puzzles without the re-
striction on the number of moves per piece, or equivalently when the move limit
per piece is larger than the number of pieces. We denote this game by Solo-
Chess(S), which is equivalent to Solo-Chess(S,∞). We also consider the game

{brunnerj,lkdc,mcoulomb,edemaine,tagomez7,jaysonl}@mit.edu

2 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

both with and without the restriction of a single uncapturable king, using 1

to denote the game with this restriction and to denote the more general case
that permits multiple capturable kings. We also extend this notion to T 1 for any
piece type T , meaning that there is one uncapturable piece of type T (so it
must be the last piece standing).

Our results. We prove that, for any single standard Chess piece type (|S| = 1),
Solo-Chess(S) can be solved in polynomial time. In fact, this result holds for
a very general model of piece type defined in Section 2.1. For any two distinct
standard Chess piece types (|S| = 2), neither of which are uncapturable, we prove
that Solo-Chess(S) is NP-complete, by a variety of reductions. (All problems
considered here are trivially in NP.)

For the single uncapturable king 1, we prove that the pair S = { 1, }
can in fact be solved in polynomial time, essentially because king moves are a sub-
set of queen moves. On the other hand, S = { 1, }, { 1, }, { 1, } are
all NP-complete. We also give polynomial-time algorithms and NP-completeness
results for several other pairs of the form {S1, T} where S1 is uncapturable; see
Table 1 for our results restricted to standard Chess pieces.

1 P, Thm. 1 P, 2 NP-c, Thm. 6 OPEN P, Thm. 2 P, Thm. 2
1NP-c, Thm. 5 P, Thm. 1 NP-c, Thm. 6 OPEN NP-c, Thm. 7 P, Thm. 2
1NP-c, Thm. 3NP-c, Thm. 3 P, Thm. 1 NP-c, Thm. 8NP-c, Thm. 8NP-c, Thm. 8
1NP-c, Thm. 4 NP-c, Cor. 4 NP-c, Cor. 4 P, Thm. 1 NP-c, Cor. 5 P, Thm. 2
1 NP-c, Cor. 6 NP-c, Cor. 6 NP-c, Cor. 6 NP-c, Cor. 7 P, Thm. 1 P, Thm. 2
1 NP-c, Cor. 5 NP-c, Cor. 5 NP-c, Cor. 5 NP-c, Cor. 7 NP-c, Cor. 5 P, Thm. 1

Table 1: Summary of our results for one Chess piece type, on the diagonal; and
for two Chess piece types, one of which (the row label on the left) is constrained
to be uncapturable and the last piece.

This paper is divided by algorithmic vs. hardness results. Section 2 describes
our algorithmic results for a single piece type (Section 2.2) and for certain pairs
of capturable and uncapturable piece types (Section 2.3), which both apply to a
very general model of piece type defined in Section 2.1. Section 3 describes our
hardness results, which fall into two main categories: reductions from Hamil-
tonian Path (Section 3.1) and reductions from SAT (Section 3.2). Section 4
concludes with some open problems.

2 Algorithmic Results

In this section, we present polynomial-time algorithms for several cases of Solo
Chess. First, in Section 2.1, we define a generalized abstract notion of moves in
which pieces must always capture another piece. Then, in Section 2.2, we show

Complexity of Solo Chess with Unlimited Moves 3

that any single piece type in this general game (which covers all normal Chess
pieces) can be solved in polynomial time. Finally, in Section 2.3, we consider two
piece types, one of which consists of a single uncapturable piece, and show that
this problem can also be solved in polynomial time in many cases.

2.1 Generalized Chess Model

Our algorithmic results apply to a very general model of pieces moving on a
board, which includes all standard piece types from Chess, as well as many
other Fairy Chess pieces such as riders and leapers.

Define a board to be a set L of locations together with a set of pieces each
assigned a unique location. Thus, no two pieces can occupy the same location,
but some locations may be empty .

Define a move to be a sequence ⟨ℓ0, ℓ1, . . . , ℓk⟩ of locations. This move is
valid (in the sense of a capture) if ℓ0 and ℓk each have a piece while ℓ1, . . . , ℓk−1

are empty. Executing such a valid move removes the piece at location ℓk, and
moves the piece at location ℓ0 to location ℓk.

Define a piece type to be a set of moves that that type of piece can make
(when valid). Effectively, a piece type lists, for every possible starting location,
which locations the piece can move to given that certain other intermediate
locations are empty.

For example, the Chess piece type is defined by the moves{〈
(x, y), (x+ 1, y), . . . , (x+ i, y)

〉
,
〈
(x, y), (x, y + 1), . . . , (x, y + i)

〉
,〈

(x, y), (x− 1, y), . . . , (x− i, y)
〉
,
〈
(x, y), (x, y − 1), . . . , (x, y − i)

〉 ∣∣∣ i > 0
}
,

while the Chess piece type is defined by the moves{〈
(x, y), (x+ s, y + 2t)

〉
,
〈
(x, y), (x+ 2s, y + t)

〉 ∣∣∣ s, t ∈ {−1,+1}
}
,

where the board is either infinite or we restrict to moves whose locations are all
on the board. Note how the example implements the blocking nature of rook
moves — all locations along the way must be empty — while the example
has no such blocking. In general, if all moves are sequences of two locations, then
the piece type is nonblocking .

We require every piece type T to be closed under submoves meaning
that, if ⟨ℓ0, ℓ1, . . . , ℓk⟩ is a move in T , then ⟨ℓi, ℓi+1, . . . , ℓj⟩ is a move in T for
any integers 0 ≤ i < j ≤ k. (This restriction is automatically satisfied by all
nonblocking piece types.)

The definition of piece type supports pieces that move asymmetrically, such
as the Chess piece type :{〈

(x, y), (x+ s, y + 1)
〉 ∣∣∣ s ∈ {−1,+1}

}
.

4 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

If a piece type is closed under reversal of the sequences representing moves, we
call it symmetric.

Examples of Chess-like piece types not represented by this model include the
following:

1. The horses and elephants from Xiangqi (Chinese chess) and Janggi (Korean
chess), whose movement can be blocked by a piece they cannot capture (so
their moves are not closed under submoves);

2. The cannons from Xiangqi and Janggi, which require a piece to jump over
before performing a capture; and

3. Checkers, which land in a space past the piece captured.

In Solo Chess, any location that is initially empty will remain empty for-
ever, so such locations can be omitted from the board. (Recall that a board
can be any set of locations, not necessarily a square grid.) More precisely,
if ℓi is initially empty, then we can replace any move ⟨ℓ0, . . . , ℓi, . . . , ℓk⟩ with
⟨ℓ0, . . . , ℓi−1, ℓi+1 . . . , ℓk⟩; and any move ⟨ℓ0, . . . , ℓi, . . . , ℓk⟩ for which ℓ0 or ℓk is
initially empty can be deleted entirely. These changes do not change the outcome
of the Solo Chess puzzle, so we assume henceforth that all locations are initially
occupied.

Now we define a few useful structures and prove some useful facts about
general Solo Chess puzzles and their solutions.

Define the Split operation to split a given move into a sequence of sub-
moves that capture any pieces along the way. Precisely, suppose we have a
move m = ⟨ℓ0, ℓ1, . . . , ℓk⟩ and a set L of locations including both ℓ0 and ℓk. Let
ℓj0 , ℓj1 , . . . , ℓjk′ be the subsequence of ℓ0, ℓ1, . . . , ℓk obtained by intersecting with
L. Define Split(m,L) to be the sequence of submoves ⟨ℓjr , ℓ(jr)+1, . . . , ℓj(r+1)

⟩ for
r = 0, 1, . . . , k′ − 1 in increasing order. If m is a move for piece type T closed
under submoves, then Split(m,L) is a sequence of moves for piece type T . If
furthermore L contains all locations in m currently occupied by pieces, then
Split(m,L) is a sequence of valid moves.

Lemma 1. Let r be the location of the final piece in a valid solution.

1. For every location v other than r, there is exactly one move out of v in the
solution.

2. Let v0, v1, . . . be the sequence of locations obtained by repeatedly following
the unique move out of vi in the solution, starting at v0. Then the sequence
is finite and terminates at r.

Proof. We prove each property separately.

1. If there is no such move, then v would remain occupied forever, contradicting
that the solution is valid. After the first such move, v is forever empty, so
there cannot be a second move out of v.

2. Suppose not. Because the number of locations is finite, the sequence must
enter a cycle among locations other than r. But then there is no move out of
this cycle in the solution, so at least one of the locations in the cycle must
remain occupied forever, which contradicts the validity of the solution.

Complexity of Solo Chess with Unlimited Moves 5

2.2 One Piece Type is Easy

In this section, we prove that Solo Chess puzzles with any single piece type is
solvable in polynomial time, even for the very general piece types defined in
Section 2.1.

Theorem 1. Solo-Chess({T}) can be solved in polynomial time for any single
piece type T closed under submoves.

Proof. Define the immediate capture graph ICG to be the directed graph
with a vertex ℓ for each location ℓ, and a directed edge (ℓ0, ℓk) for every move
⟨ℓ0, ℓ1, . . . , ℓk⟩ that is valid in the initial board (without being blocked by other
pieces). By the assumption above that all locations are occupied in the initial
board, such moves consist of just k = 2 locations. This graph can be computed
in polynomial time.

We claim that the instance is solvable if and only if the immediate capture
graph ICG has a spanning in-arborescence , i.e., a set of edges such that every
vertex has a unique path to a common root r.1 (For symmetric piece types, the
immediate capture graph is undirected, so it suffices to find a spanning tree and
root it.) This property can be checked in polynomial time via Edmonds’ 1967
Algorithm [5], or its O(|E|+ |V | log |V |) optimization [8]; or in O(|E|+ |V |) time
using a modified depth-first search [11, Exercise 6.10].

If a spanning in-arborescence exists, we can solve the instance as follows.
Every in-arborescence with more than one vertex has a leaf vertex, i.e., a vertex
with no incoming edges and one outgoing edge. Repeatedly find a leaf and make
the corresponding move from the leaf to its parent (the vertex reached via the
one outgoing edge), deleting the leaf. Every move is valid because it corresponds
to an edge in the immediate capture graph and, by construction, the two relevant
pieces have not yet been captured. Because the in-arborescence is spanning, we
reduce to a single piece at location r in the end.

Conversely, suppose that the instance is solvable via a sequence of moves.
Let r be the location of the final piece in the solution. We will show that ICG
admits a spanning in-arborescence rooted at r. It suffices to show that there is
a directed walk in ICG from each location to r [11, Theorem 2.5(d)].

Let v0 be any location and let v0, v1, . . . , r be the sequence of locations from
Lemma 1. For each pair (vi, vi+1) of locations, there is a move m from vi to
vi+1 in the solution. Then Split(m,L) (where L is the set of all locations) is a
sequence of two-location moves, each of which by definition corresponds to an
edge of ICG. Hence we obtain a walk from vi to vi+1 in ICG. By concatenating
these walks, we obtain a walk from v0 to r in ICG. Therefore ICG admits a
spanning in-arborescence.

1 An (out-)arborescence is usually defined in the reverse way, with a unique path
from the root r to every vertex. For this proof, we need the flipped in version. Exist-
ing algorithms for out-arborescence can be applied to in-arborescence by reversing
all edges in the graph.

6 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

2.3 One Hero and Villains are Easy

In this section, we present an algorithm for solving certain Solo Chess puzzles
consisting of n copies of one piece type, and a single copy of a second piece type
which is required to be the final piece on the board (and is thus uncapturable).
This is a generalization of the one-king restriction from Solo Chess which says
that, if there is a king in the initial puzzle, it must be the final piece on the
board in a valid solution.

We call the single uncapturable piece the hero, and the pieces that we have
n copies villains. Let S be the hero piece type, and T be the villain piece type.
We require that S ⊆ T , that is, every move for a hero is also a move for a
villain. We also require that T is symmetric. Two useful cases to think about are
when the hero is a Chess king or pawn, and the villain is a Chess queen. Among
Chess pieces, {S1, T} includes { 1, }, { 1, }, { 1, }, { 1, }, and
{ 1, }.

The basic idea of the algorithm is to use villains capturing villains to collapse
the pieces down onto a path which the hero can traverse, thus capturing every
villain. The main difficulty with this approach is blocking : the hero itself prevents
villains from moving through it, which may require moves to be delayed until
after the hero is out of the way.

Walks in Immediate Capture Graphs. Let V and B be disjoint sets of
locations. Define the immediate capture graph ICG(V,B) to be the di-
rected graph whose vertex set is V , and which has an edge (ℓ0, ℓm) whenever
⟨ℓ0, ℓ1, . . . , ℓm⟩ ∈ T is a villain move such that none of ℓ1, ℓ2, . . . , ℓm−1 are in
V ∪ B. (Note that ℓ1, ℓ2, . . . , ℓm−1 may not be in V .) This is the graph of valid
villain moves when villains are placed on the locations in V and immobile un-
capturable blocking pieces are placed on the locations in B.

We now prove some useful facts ensuring the existence of (directed) walks in
ICG(V,B).

Lemma 2. Let V and B be disjoint sets of locations. Suppose ⟨ℓ0, ℓ1, . . . , ℓm⟩ ∈
T is a villain move such that ℓ0, ℓm ∈ V and {ℓ0, ℓ1, . . . , ℓm}∩B = ∅. Then there
is a directed walk in ICG(V,B) from ℓ0 to ℓm.

Proof. Because ℓ0, ℓm ∈ V , ℓ0 and ℓm are both vertices of ICG(V,B). Consider
the sequence of villain moves Split(⟨ℓ0, ℓ1, . . . , ℓm⟩, V). By definition of Split, each
such move ⟨ℓs, ℓs+1, . . . ℓs+r⟩ has the property that {ℓs+1, ℓs+2, . . . , ℓs+r−1} ∩
(V ∪ B) = ∅ while ℓs, ℓs+r ∈ V . Thus (ℓs, ℓs+r) is an edge of ICG(V,B). By
concatenating these edges together, we obtain a directed walk in ICG(V,B)
from ℓ0 to ℓm.

Corollary 1. Let V and B be disjoint sets of locations, and let m0,m1, . . . ,mk ∈
T be a sequence of villain moves such that

1. the destination of mi is the source of mi+1;
2. each move’s source and destination is in V ; and

Complexity of Solo Chess with Unlimited Moves 7

3. no move passes through a location in B.

Then there is a directed walk in ICG(V,B) from the source of m0 to the desti-
nation of mk.

Proof. Each move satisfies the conditions of Lemma 2, and so there is a directed
walk in ICG(V,B) from the source to the destination of each move. Concatenat-
ing these walks together gives the desired walk.

Corollary 2. Let V and B be disjoint sets, and let V ′ and B′ be disjoint sets
such that V ⊆ V ′ and B′ ⊆ B. (Note the asymmetry.) Suppose there is a directed
walk from ℓ0 to ℓ1 in ICG(V,B). Then there is also a directed walk from ℓ0 to
ℓ1 in ICG(V ′, B′).

Proof. A walk from ℓ0 to ℓ1 in ICG(V,B) is a sequence of moves, each of whose
source and destination is in V ⊆ V ′ and none of which pass through locations
in B ⊇ B′. Thus, by Corollary 1, there is a directed walk from ℓ0 to ℓ1 in
ICG(V ′, B′).

Hero Paths. Given a board, a hero location sequence is any sequence of
locations p0, p1, . . . , pk where p0 is the hero’s initial position in the given board.
A hero path is a hero location sequence with the additional property that the
hero has a sequence of valid moves ⟨p0, . . . , p1⟩, ⟨p1, . . . , p2⟩, . . . , ⟨pk−1, . . . , pk⟩
in the initial board (without any other moves being made). This definition is
particularly simple for e.g. Chess kings or pawns, but more generally, hero moves
could be blocked by the villain pieces. We will prove below in Lemma 6 that it
suffices to look at solutions where the hero follows a hero path, but for now we
know that the hero at least follows a hero location sequence.

For a fixed hero location sequence p0, p1, . . . , pk (collectively denoted p) and
an index i with 0 ≤ i < k, we define Hi(p) = ICG(L \ {p0, p1, . . . , pi}, {pi})
to be the immediate capture graph (as defined above) of the villains on the
board after making just the first i hero moves (so that the hero is now at pi and
p0, p1, . . . , pi−1 are empty). We will just write Hi (omitting the hero location
sequence p) when it is clear from context.

Define a villain at location v to be strongly capturable by hero location
sequence p0, p1, . . . , pk if, for some index i with 0 ≤ i < k, there is a directed
walk in Hi from v to pi+1. Intuitively, when the hero is at location pi, the villain
can move to hero location pi+1, and then get captured by the hero’s next move.
By definition, all of p1, p2, . . . , pk are strongly capturable.

Lemma 3. Let p0, p1, . . . , pk be a hero location sequence. Suppose there is a
directed walk in Hi from v to pj, with i < j. Then v is strongly capturable by
p0, p1, . . . , pk.

Proof. Without loss of generality we can assume the walk is minimal, so that pj is
the first place the walk visits any of {pi+1, pi+2, . . . , pk}. Then this walk forms a
sequence of moves each of whose source and destination is in L\{p0, p1, . . . , pj−1}

8 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

and which do not pass through pj−1 (because they are edges of Hi). By Corol-
lary 1, there is a directed walk from v to pj in Hj−1, and so v is strongly
capturable by p0, p1, . . . , pk using index j − 1.

Next we show that knowing the sequence of locations the hero visits suffices
to solve the puzzle. That is, given a hero path p0, p1, . . . , pk, we will show how
to determine in polynomial time whether there a valid solution such that the
hero makes exactly k moves through this sequence of locations. Specifically, we
show that it is a necessary and sufficient condition for all villains to be strongly
capturable by p0, p1, . . . , pk, in two parts.

Lemma 4. Suppose there is a solution such that the hero makes exactly k moves
along the hero location sequence p0, p1, . . . , pk. Then all villains are strongly cap-
turable by p0, p1, . . . , pk.

Proof. Consider a villain at location v0. Let v0, v1, . . . , pk be the sequence of
locations from Lemma 1 applied to the solution. Truncate the sequence at the
first location vr = pi+1 where vr ∈ {p0, p1, . . . , pk}, so that in particular vj /∈
{p0, p1, . . . , pi} for 0 ≤ j ≤ r.

For each pair (vj , vj+1) with 0 ≤ j < r, there is a villain move ⟨vj =
ℓ0, ℓ1, . . . , ℓm = vj+1⟩ in the solution. These villain moves must occur in the
solution before the hero move from pi to pi+1, because the hero must make the
last move to pi+1. Thus pi /∈ {ℓ0, ℓ1, . . . , ℓm} as pi is still occupied when each
villain move occurs.

Therefore we have a sequence of moves each of whose source and destination
is in L \ {p0, p1, . . . , pi} and none of which passes through pi. By Corollary 1,
there is a directed walk from v0 to pi+1 in Hi, and so v0 is strongly capturable.

Lemma 5. Let p0, p1, . . . , pk be a hero path such that every villain is strongly
capturable by p0, p1, . . . , pk. Then there is a solution such that the hero makes
exactly k moves through the sequence of locations p0, p1, . . . , pk.

Proof. For every villain starting at location v, by the definition of strongly cap-
turable, we obtain an index i with 0 ≤ i < k, which we call the villain’s rank ,
and a directed walk in Hi from v to pi+1. By removing any cycles in the walk,
we can assume that the walk is in fact a simple path.

We will output in reverse order a sequence of moves that solves the instance.
Sort the villains by rank, breaking ties arbitrarily, and process the villains in
order from highest rank to lowest. For each index i with 0 ≤ i < k, add the
hero move from pi to pi+1 to the output, and process the villains of rank i as
follows. For each villain starting at location v and having rank i, find the earliest
location v′ in the simple path from v to pi+1 such that a move to or from v′ is
already in our output list of moves. Such a location always exists because we
just added a hero move to pi+1. Add (in reverse order) the sequence of villain
moves corresponding to the subpath from v to v′. (In particular, we do not add
any moves if v = v′.) Define each villain move added by processing a villain of
rank i to also have rank i.

Complexity of Solo Chess with Unlimited Moves 9

We claim that there are no villain moves out of p0, p1, . . . , pk and that no
villain move of rank i captures pi. This is because the path from v to pi+1 does
not include any of p0, p1, . . . , pi, because those are not vertices ofHi; and because
there are already hero moves involving all of pi, pi+1, . . . , pk.

We must show that the resulting sequence of moves is a solution that uses the
hero path p0, p1, . . . , pk. The full hero path p0, p1, . . . , pk appears in the solution
by construction. Every location except pk appears exactly once as the start of a
move in the output, and there is no output move out of pk. Each villain move
of rank i occurs when the hero is at pi, having captured all of p0, p1, . . . , pi. No
villain move captures the hero because no villain move of rank i captures pi.

It remains to show that every move is legal at the time it is made. There
are two ways a move could have been illegal: either it was made to or from
a location that is now empty, or it was blocked by an intervening piece. The
source of a move cannot be empty because each location occurs as the source
of a move at most once. The destination of a move cannot be empty because
every move is either to pk or to a location for which the unique move from that
location occurs later in time. No hero move is blocked by the definition of hero
path: p0, p1, . . . , pk must be a legal sequence of moves even without moving the
villains. No villain move is blocked because villain moves of rank i are made
only along edges of Hi; by definition of Hi, such a move can be blocked only by
p0, p1, . . . , pi−1, which are empty when the hero is at pi.

Note that Lemma 4 applies to any hero location sequence p0 . . . pk, but
Lemma 5 requires a hero path. There is a technical issue here, because the hero
moves might be blocked in a hero location sequence, which a solution might
avoid by moving villains out of the way. However, we can show that there is
always an alternate solution that avoids doing so:

Lemma 6. Suppose a puzzle has a solution. Then there is a solution such that
the sequence of locations visited by the hero forms a hero path.

Proof. Consider taking just the subsequence of hero moves from the solution,
and attempting to play them without making any villain moves. When doing so,
we may encounter a hero move m that is illegal because it is blocked by some set
Vm of villains which have not yet been captured. Replace each such hero move
m with Split(m,Vm), which is a sequence of valid moves. The resulting sequence
of hero moves forms a hero path p0, p1, . . . , pk, which contains the original hero
location sequence and also contains all of the Vm sets.

It remains to show that there exists a solution such that the hero makes
exactly k moves following this hero path. By Lemma 5, it suffices to show that
every villain is strongly capturable by p0, p1, . . . , pk. We do this using a similar
argument to Lemma 4.

Consider a villain at location v0. Let v0, v1, . . . , vr be the sequence of locations
from Lemma 1 applied to the original solution. Truncate the sequence at the
first location vr = pi+1 where vr ∈ {p0, p1, . . . , pk}, so that in particular vj /∈
{p0, p1, . . . , pi} for 0 ≤ j ≤ r.

10 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

Let ps be the location of the hero in the original solution when the villain
move from vr−1 to pi+1 gets made, so that all of the above villain moves occur
in the solution before the unique hero move out of ps. None of these villain
moves passes through ps because it is occupied when they occur. It must be that
s < i + 1, for in the solution the hero cannot move into or through pi+1 until
after the last villain move to pi+1, which occurs after the hero move to ps.

By Corollary 1, there is a directed walk from v0 to pi+1 in Hs(p), and so by
Lemma 3, v0 is strongly capturable by p0, p1, . . . , pk.

By the above lemmas, we can consider a solution to the puzzle to consist of
just a hero path for which all villains strongly capturable.

Next we define the notion of “weak capturability”, which can be used to
rule out prefixes of solution hero paths. For a hero path p0, p1, . . . , pk, define
Gi(p) = ICG(L \ {p0, p1, . . . , pi}, ∅) to be the immediate capture graph of the
board if we remove p0, p1, . . . , pi entirely. Define a villain at location v to be
weakly capturable after p0, p1, . . . , pk if there is a hero path p0, p1, . . . , pk′

with p0, p1, . . . , pk as a prefix, such that there is a directed walk in Gk from v to
pk′ . While Hi(p) is a subgraph of Gi(p), weak capturability does not necessarily
imply strong capturability with the same hero path because only the latter
gets to pick an index i; weak capturability must use i = k. (Intuitively, strong
capturability means that the villain has effectively already been captured, while
weak capturability means that the villain could be in the future.)

We show that hero paths can be ruled out as potential prefixes of solutions
if they do not at least make all the villains weakly capturable:

Lemma 7. Let p0, p1, . . . , pk be a hero path, and suppose that there is a solution
whose hero path has p0, p1, . . . , pk as a prefix. Then every villain is either strongly
capturable by p0, p1, . . . , pk or weakly capturable after p0, p1, . . . , pk.

Proof. Let p0, p1, . . . , pk′ be the hero path in the solution, and let v be the
location of a villain. By Lemma 4, v is strongly capturable by p0 . . . pk′ . That is,
there exists an index i < k′ and a directed walk in Hi from v to pi+1. If i < k,
then v is strongly capturable by p0 . . . pk, so suppose i ≥ k.

By Corollary 2, a directed walk inHi = ICG(L\{p0, p1, . . . , pi}, {pi}) extends
to a directed walk in Gk = ICG(L \ {p0, p1, . . . , pk}, ∅). Thus there is a directed
walk from v to pi+1 in Gk, and so v is weakly capturable after p0, p1, . . . , pk.

Interesting Hero Paths. Consider a villain at location v. Define a hero path
p0 . . . pk to be v-interesting if

1. v is not strongly capturable by p0, p1, . . . , pk; and
2. v is weakly capturable after p0, p1, . . . , pk.

We will show that v-interesting paths form a tree for any v, and that hero
paths have v-interesting prefixes for some v. Together these limit the number of
possible hero paths we need to search.

Complexity of Solo Chess with Unlimited Moves 11

Lemma 8. If p0, p1, . . . , pk is a v-interesting path, then every prefix of the path
is also.

Proof. Let p0, p1, . . . , pj be a prefix of p0, p1, . . . , pk, i.e., j ≤ k.
If v is strongly capturable by p0 . . . pj , then it is strongly capturable by

p0 . . . pk also, using the same index.
Suppose v is weakly capturable after p0, p1, . . . , pk. Then there is some hero

path p0, p1, . . . , pk′ with p0, p1, . . . , pk as a prefix and a directed walk from v
to pk′ in Gk = ICG(L \ {p0, p1, . . . , pk}, ∅). By Corollary 2, this directed walk
extends to a directed walk in Gj = ICG(L\{p0, p1, . . . , pj}, ∅). Thus v is weakly
capturable after p0, p1, . . . , pj .

Corollary 3. Suppose p0, p1, . . . , pk with k > 0 is a minimal solution; that
is, no prefix is also a solution. Then there is a villain at location v such that
p0, p1, . . . , pj is v-interesting for all j < k.

Proof. Because p0, p1, . . . , pk−1 is not a solution, by Lemma 5, there is some v
that is not strongly capturable by p0, p1, . . . , pk−1. By Lemma 7, v is weakly
capturable after p0, p1, . . . , pk−1. Hence p0, p1, . . . , pk−1 is v-interesting. Finally,
by Lemma 8, p0, p1, . . . , pj is v-interesting for all j < k.

Lemma 9. Suppose the villain piece type T is symmetric. If v is weakly cap-
turable after a hero path p0, p1, . . . , pk, then v is connected to pk in Gk−1.

Proof. By definition of weakly capturable, there is a hero path p0, p1, . . . , pk,
pk+1, . . . , pk′ such that there is a path P1 from v to pk′ in Gk. By Corollary 2,
P1 extends to a path P ′

1 in Gk−1.
Consider the suffix of hero moves pk, pk+1, . . . , pk′ from the hero path. Be-

cause the hero piece type S is a subset of the villain piece type T , we know by
Corollary 1 that this sequence of hero moves extends to a path P2 from pk to pk′

in ICG({pk, pk+1, . . . , pk′}, ∅). By Corollary 2, P2 extends to a path P ′
2 in Gk−1.

Concatenating P ′
1 with the reverse of P ′

2 (by symmetry of villain moves), we
obtain a path from v to pk in Gk−1.

Lemma 10. Suppose the villain piece type T is symmetric. If p0, p1, . . . , pk and
q0, q1, . . . , qj are two different hero paths with the same start and end points,
then at most one of them is v-interesting.

Proof. Suppose for contradiction that both paths are v-interesting. Let i+ 1 be
the first index at which the two paths diverge, so pi = qi but pi+1 ̸= qi+1. By
Lemma 8, we can assume without loss of generality that k and j are the smallest
integers > i for which pk = qj . By Lemma 8, p0, p1, . . . , pi+1 is v-interesting.
By Lemma 9, there is a path P1 in Gi from v to pi+1. Truncate P1 at the first
point that it enters R = {pi+1, pi+2, . . . , pk, qi+1, qi+2, . . . , qj}; without loss of
generality, suppose that this point is qr for some i+1 ≤ r ≤ j. Thus P1 becomes
a path in ICG

(
(L \ (p ∪ q)) ∪ {qr}, R \ {qr}

)
. By Corollary 2, P1 extends to a

path P ′
1 in Hk−1(p).

12 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

Consider the suffix of hero moves qr, qr+1, . . . , qj from the corresponding hero
path. By the definition of hero path and minimality of j, none of these moves pass
through any of pi+1, pi+2, . . . , pk−1. Because the hero move type S is a subset of
the villain piece type T , we know by Corollary 1 that this sequence of hero moves
extends to a path P2 from qr to qj in ICG({qr, qr+1, . . . , qj}, {pi+1, pi+2, . . . ,
pk−1}). By Corollary 2, P2 extends to a path P ′

2 in Hk−1(p).
Finally, concatenating P ′

1 and P ′
2, we obtain a path in Hk−1(p) from v to

qj = pk. But then v is strongly capturable by p0, p1, . . . , pk, contradicting that
it was v-interesting.

Call a hero path interesting if it is v-interesting for some villain location v.

Lemma 11. Given a hero path p0, p1, . . . , pk, we can compute in polynomial
time whether it is interesting and whether it is a solution.

Proof. We can compute whether a villain location v is strongly capturable by
constructing the graphs Hi and checking whether pi+1 is reachable from Q for
each i.

We can also compute whether a villain location v is weakly capturable by
constructing the graph Gk and searching over all locations for a location ℓ such
that ℓ is reachable from v in Gk and also reachable from pk in the graph of
possible hero moves.

Theorem 2. Solo-Chess({S1, T}) can be solved in polynomial time for any
two piece types S ⊆ T closed under submoves where T is symmetric.

Proof. By Corollary 3, every prefix of a minimal solution is necessarily inter-
esting. Furthermore, by Lemma 10, there is at most one interesting hero path
ending at each location.

Our algorithm finds a minimal solution by searching over the tree of all inter-
esting hero paths. By Lemma 11, we can test whether a hero path is interesting
in polynomial time, as well as whether it solves the instance. There are only
polynomially many locations, interesting paths, and moves to try, so this search
takes polynomial time.

3 Hardness Results

In this section, we prove that Solo-Chess(S) is NP-complete for any set S of
two distinct standard Chess pieces. These reductions also work when one of the
piece types is denoted special , restricting that there is only one copy of that
piece and that it must be the last piece on the board. This is a generalization
of the one-king restriction 1; we use the same notation T 1 for other piece
types T . But all of our hardness reductions also work when piece type T is not
constrained and could be captured.

We divide the section into two subsections based on the source of reduction.
In Section 3.1, we give multiple reductions from Hamiltonian Path, where the
special piece needs to visit the other pieces. In Section 3.2, we reduce from a
special case of 3SAT, where the special piece sets variables and satisfies clauses.

Complexity of Solo Chess with Unlimited Moves 13

3.1 Hamiltonian Path Reductions

All of these reductions are from Hamiltonian Path in maximum-degree-3 grid
graphs with a specified start vertex and possibly a specified end vertex, each of
degree 1, or generalizations thereof (e.g., sometimes we do not need the grid-
graph or degree-1 property). This problem is NP-hard by a slight modification
to [12] described in Appendix A.

The first reduction, when the special piece is a knight, is particularly easy:

Theorem 3. For any T ∈ { , }, Solo-Chess({ 1, T}) and Solo-
Chess({ , T}) are NP-hard.

Proof. The reduction is from Hamiltonian Path in grid graphs with a given start
vertex s (Lemma 12). Figure 1 shows an example of the reduction. We rotate the
grid graph by arctan 1

2 and scale it so that adjacent vertices form valid knight
moves. We place pawns or kings at the grid-graph vertices, except for s where we
place a knight (the only knight in the construction). The pawns or kings cannot
make any captures, so they are immobile. Thus the knight must capture all of
the other pieces; such a sequence of captures corresponds to a Hamiltonian path
starting at s.

(a) Pawns and one knight (b) Kings and one knight

Fig. 1: Placing pawns or kings and one knight to simulate Hamiltonian Path in
a grid graph with a specified start vertex.

Next we give a reduction from Hamiltonian Path to Solo-Chess({ 1, }).
This reduction forms the basis for proving NP-hardness of several other piece
combinations by scaling and/or rotation. Like the previous reduction, the main
idea behind these constructions is to place many pieces of one type so that they
have no available moves, and a single piece of the special type which must then
capture all the other pieces, requiring a Hamiltonian path.

Theorem 4. Solo-Chess({ 1, }) and Solo-Chess({ , }) are NP-hard.

14 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

Proof. The reduction is from Hamiltonian Path in a maximum-degree-3 graph
with a given start vertex s and destination vertex t, both of degree 1 (Lemma 12).

Refer to Figure 2. Each vertex other than s and t consists of seven pawns
arranged among two rows, with four pawns marking the corners of a very-wide
height-2 rectangle, and three pawns on the bottom row of the rectangle which
each form half of an edge to another vertex. More precisely, if we label each
vertex with an integer 1 through |V | and each edge with an integer 1 through
|E|, then vertex i places its four corner pawns at positions (i, 3i), (i, 3i+1), (4|V |+
i, 3i), (4|V |+ i, 3i+1); and edge k connecting vertices i and j adds pawns at the
locations (|V |+ k, 3i), (|V |+ k, 3j), in the bottom rows of vertex i’s and vertex
j’s rectangles respectively. Thus every column has zero or two pawns, and each
row has between zero and five pawns. For the start vertex s with incident edge
ks, we add a single rook at (ks, 1). Similarly for the destination vertex t with
incident edge kt, we add a single pawn at (kt, 0).

In this construction, none of the pawns can make any captures, so only the
rook can ever move. The rook can only enter or exit a vertex via its three edge
pawns, and thus can enter a vertex at most once: entering, exiting, and entering
again would prevent ever exiting again in a maximum-degree-3 graph, preventing
us from getting to t (which itself has degree 1 so it cannot ever be exited). In
order to visit all the pawns, the rook must therefore enter and exit each vertex
other than s and t exactly once. Once the rook enters a vertex it must therefore
visit all seven pawns of the vertex. By going clockwise or counterclockwise around
the vertex rectangle, the rook can choose to leave along either of the two other
edges incident to the vertex. Thus the rook capturing all pawns from its starting
location in s if and only if there is a Hamiltonian path from s to t.

Corollary 4. For any T ∈ { , }, Solo-Chess({ 1, T}) and Solo-
Chess({ , T}) are NP-hard.

Proof. Scale the construction from Theorem 4 by a factor of 4 in both dimen-
sions, and replace each pawn with a piece of type T . This scaling prevents kings
or knights from making captures, without affecting rook moves.

Corollary 5. For any S ∈ { , } and T ∈ { , , , }. Solo-
Chess({S1, T}) and Solo-Chess({S, T}) are NP-hard.

Proof. Scale the construction from Theorem 4 by h+1 in the x direction, where h
is the height of the original construction. (In other words, add h empty columns
between every consecutive pair of columns of pieces.) This scaling spaces out the
pieces far enough so that no diagonal captures are possible. If S = , replacing
the rook with a queen does not add any additional diagonal moves. Finally we
replace each pawn with a piece of type T . If T ∈ { , }, these pieces cannot
move because there are no diagonal moves. If T ∈ { , }, we scale by an
additional factor of 4 in both dimensions (as in Corollary 4) to guarantee these
pieces have no moves.

Corollary 6. For any T ∈ { , , }, Solo-Chess({ 1, T}) and Solo-
Chess({ , T}) are NP-hard.

Complexity of Solo Chess with Unlimited Moves 15

Fig. 2: Placing pawns and one rook to simulate Hamiltonian Path in a maximum-
degree-3 graph with specified start and end vertices. Two vertices connected by
an edge are shown, as well as the start and destination vertices.

Proof. Rotate the construction from Theorem 4 by 45◦ and scale by
√
2; see

Figure 3. This transformation turns rook moves into bishop moves: vertices that
were orthogonally adjacent are now diagonally adjacent. Replace the rook with a
bishop, and replace each pawn with a piece of type T . For T ∈ { , }, we scale
by an additional factor of 4 in both dimensions (as in Corollary 4) to guarantee
that these pieces have no moves.

Corollary 7. For any T ∈ { , }, Solo-Chess({T 1, }) and Solo-
Chess({T, }) are NP-hard.

Proof. First scale the construction from Theorem 4 by h+ 1 in the x direction,
as in Corollary 4. Then rotate by 45◦ and scale by

√
2, as in Corollary 6. The

initial scaling eliminates diagonal alignments in the original construction, thus
preventing pieces from aligning orthogonally in the rotated version. Then replace
the rook with a piece of type T , and replace each pawn with a rook.

The next reduction is also from Hamiltonian Path, but does not use the same
framework as the previous reductions.

Theorem 5. Solo-Chess({ 1, }) and Solo-Chess({ , }) are NP-hard.

Proof. The reduction is from Hamiltonian Path in maximum-degree-3 grid graphs
with a specified start vertex s (Lemma 12). Figure 4 shows an example of the
construction. First, we rotate the given grid graph by 45◦ and scale it by 3

√
2,

placing pawns at the vertices and along the edges. Pawns at vertices are drawn

16 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

Fig. 3: Placing pawns and one bishop to simulate Hamiltonian Path in a
maximum-degree-3 graph with specified start and end vertices, by rotating the
construction in Figure 2.

blue. Adjacent vertex pawns are three spaces apart diagonally, and have a diag-
onal chain of two (black) pawns between them. All of these pawns forming the
grid graph are placed on the light squares of the board.

Assume pawns capture upward. Now, for each vertex with at least one upward
incident edge, we place a green pawn on an adjacent dark square: if there are
two upward incident edges, then we place it above the vertex, and otherwise we
place it below the vertex. Note that vertices with only downward incident edges
do not get a green pawn; in this case, we color the vertex pawn green. The result
is that every vertex has exactly one green pawn, which has no legal captures,
while all other pawns have legal captures. All of the other pawns (black or blue
in Figure 4) have at least one legal capture. The king replaces the green pawn on
the starting vertex s of the Hamiltonian Path problem (the bottommost vertex
in Figure 4).

If there is a Hamiltonian path, then we claim that there is a valid capture
sequence that leaves only the king at the end. The king will capture along the
Hamiltonian path, making sure to divert and capture the green pawn at each
vertex. Before the king moves, though, any pawns on squares which are not
part of the Hamiltonian path capture a pawn above them, starting from the
bottommost pawns. These pawns always have legal captures because, by our

Complexity of Solo Chess with Unlimited Moves 17

Fig. 4: Placing pawns and one king to represent Hamiltonian Path in a maximum-
degree-3 grid graph with a specified start vertex. Blue pawns are at grid-graph
vertices, while green pawns have no capture move.

construction, every pawn either has a legal capture or is a green pawn that is
part of the Hamiltonian path. After these captures happen, the only remaining
pawns are those on the Hamiltonian path, so the king can simply walk along
that path, taking all the pawns.

18 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

Conversely, if there is a valid solution to the Solo Chess problem, then we
claim that there must exist a Hamiltonian path in the underlying grid graph.
Because the green pawns can never move, the king must at some point capture
every green pawn. Thus the king’s path starts at the king’s initial position, passes
through pawns, never captures the same square twice, and captures every green
pawn. Because the graph has maximum degree 3, the king can visit each vertex
at most once, and because every vertex has a green pawn adjacent to it, the
king’s path must be able to visit each vertex at least once. Thus the king’s path
provides a Hamiltonian path in the graph. (This argument works even without
the 1 restriction because, if the king gets captured before reaching all the
green pawns, the puzzle cannot be solved.)

At this point, we have completed our proof that Solo-Chess(S) is NP-
complete for any two standard Chess pieces:

Corollary 8. Solo-Chess(S) is NP-complete for any set S of two distinct
standard Chess pieces.

Proof. Corollary 5 and 5 together cover all cases where ∈ S or ∈ S, leaving
S ⊆ { , , , }. Corollary 6 covers all remaining cases where ∈ S, leaving
S ⊆ { , , }. Theorem 3 covers all remaining cases where ∈ S, leaving
S ⊆ { , }. Theorem 5 covers the final case S = { , }.

3.2 SAT Reductions

Next we turn to the uncapturable restriction for some of the piece types not
covered by previous reductions. The reductions in this section are from a special
case of 3SAT2 with at most two occurrences of each literal, which was shown to
be NP-hard by Tovey [14, Theorem 2.1].

It is convenient here to reduce from a planar version of 3SAT. De Berg and
Khosravi [4, Theorem 1] prove NP-hardness of Planar Monotone 3SAT . In
this variation of 3SAT, the graph with a vertex for each clause, a vertex for each
variable, edges between each clause and the variables it contains, and a Hamil-
tonian cycle passing through all the variables, must have a planar embedding.
Furthermore, in this embedding, all clauses containing positive literals must be
placed inside the Hamiltonian cycle, while all clauses containing negative literals
must be placed outside it; in particular, every clause either consists entirely of
positive literals or consists entirely of negative literals. (A more precise name for
this problem is “Sided Var-Linked Planar Monotone 3SAT” [6].) Equivalently,
one can imagine arranging the variables along a line in the plane, with all posi-
tive clauses (and their edges) on one side of the line, and all negative clauses on
the other side.

We also want the condition that each literal occurs at most twice. In Ap-
pendix B, we show that the combined problem — Planar Monotone 3SAT with
at most two occurrences of each literal — remains NP-hard.
2 By 3SAT , we mean CNF Satisfiability with at most three variables per clause,
rather than exactly three variables per clause (E3SAT).

Complexity of Solo Chess with Unlimited Moves 19

Theorem 6. For any T ∈ { , }, Solo-Chess({T 1, }) is NP-hard.

Proof. We reduce from Planar Monotone 3SAT with at most two occurrences of
each literal (Lemma 13). Refer to Figure 5.

For each variable xi, we construct a variable gadget consisting of two pawn-
traversable paths. Each path contains two literal knights (drawn green) cor-
responding to literals for that variable: the literal knights on the left path cor-
respond to the positive literal xi, while the literal knights on the right path
correspond to the negative literal ¬xi. These literal knights are connected to-
gether by noncrossing paths of knights corresponding to the 3SAT clauses. The
stipulation that each literal occurs at most twice ensures that we have enough
literal knights to construct the 3SAT instance.

Assume pawns capture upward. The lone pawn or king must traverse the
board from bottom to top, visiting each variable gadget in turn. At each variable
gadget, it is presented with a choice of two paths, allowing it to visit either the
positive literal knights or the negative literal knights for that variable, but not
both. (A king could go up one literal path and down the other literal path,
but then it would get stuck, unable to reach a final knight at the top of the
construction.) In order to capture the knights used in clauses, at least one literal
knight from each clause must be visited by the pawn or king. All other knights,
including literal knights not used in a clause, are connected to both sides of the
gadget, so that they may be captured regardless of which path is taken. Thus the
Solo Chess instance can be solved if and only if the 3SAT instance is satisfiable.

The other reductions in this section are similar; we just have to design a
suitable variable gadget in each case.

Theorem 7. Solo-Chess({ 1, }) is NP-hard.

Proof. We reduce from Planar Monotone 3SAT with at most two occurrences of
each literal, similar to Theorem 6. Instead, we use the variable gadget shown in
Figure 6. We add bishops to connect literal bishops in each clause, or to connect
unused literal bishops to both paths so that they may be captured regardless of
which is chosen.

Theorem 8. For any T ∈ { , , }, Solo-Chess({ 1, T}) is NP-hard.

Proof. We reduce from Planar Monotone 3SAT with at most two occurrences of
each literal, similar to Theorem 6. Instead, we use the variable gadget shown in
Figure 7 (for the case T =). Note that all non-literal pieces are connected to
both paths even if the queens in the diagram are replaced by rooks or bishops.
We add queens/rooks/bishops to connect literal queens/rooks/bishops in each
clause, or to connect unused literal queens/rooks/bishops to both paths.

20 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

Fig. 5: Variable gadget (left) and example reduction output (right) for Solo-
Chess({ 1, }). This instance corresponds to the formula (x1 ∨ x2 ∨ x3) ∧
(¬x1∨¬x2∨¬x3)∧(¬x2∨¬x3). At least one green literal knight must be visited
in each clause.

4 Open Problems

Our results in Table 1 leave open the complexity of two cases: { 1, } and
{ 1, }. We suspect that both of these problems can be solved in polynomial
time, essentially because a king or pawn cannot slip by a rook, but it remains
to generalize the algorithm in Section 2.3. Similarly, it is open whether the
algorithm can be generalized to non-symmetric pieces.

From the prior paper [1], the complexities of Solo-Chess({ }, O(1)) and
Solo-Chess({ }, O(1)) are still open. It may help to show hardness for the

Complexity of Solo Chess with Unlimited Moves 21

Fig. 6: Variable gadget for Solo-Chess({ 1, }).

Fig. 7: Variable gadget for Solo-Chess({ 1, }).

more nonblocking piece types on a graph, possibly constrained to have maximum
degree 8 or to be a grid graph.

Finally, although Solo Chess puzzles are not designed to ensure a unique
solution, it is interesting to determine whether the problem is ASP-complete
and whether counting the number of solutions is #P-complete. Some, but not
all, of our reductions are parsimonious.

22 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

Acknowledgments

This work was initiated during extended problem solving sessions with the par-
ticipants of the MIT class on Algorithmic Lower Bounds: Fun with Hardness
Proofs (6.892) taught by Erik Demaine in Spring 2019. We thank the other
participants for their insights and contributions. In particular, we thank Dylan
Hendrickson for helpful discussions around algorithms for one piece type.

Most figures of this paper were drawn using SVG Tiler [https://github.
com/edemaine/svgtiler]. Chess piece images are based on Wikipedia’s https:
//commons.wikimedia.org/wiki/Standard chess diagram, drawn by Colin M.L.
Burnett and licensed under a BSD License.

A Hamiltonian Path in Maximum-Degree-3 Grid Graphs
with Specified Start/End Vertices

Itai, Papadimitriou, and Szwarcfiter [9] prove NP-hardness of deciding whether
a grid graph has a Hamiltonian path with specified start and end vertices.3 Pa-
padimitriou and Vazirani [12] prove NP-hardness of deciding whether amaximum-
degree-3 grid graph has a Hamiltonian path (with no specified start/end ver-
tices). Neither result is exactly what we need in this paper:

Lemma 12. It is NP-hard to decide whether a maximum-degree-3 grid graph
has a Hamiltonian path that

1. starts at a specified start vertex s, which is degree 1 (but without a specified
end vertex); or

2. starts at a specified start vertex s and ends at a specified end vertex t, both
of which are degree 1.

Proof. We modify the proof of Papadimitriou and Vazirani [12]. Their proof
reduces from Hamiltonian Circuit in a planar directed graph G1 where each
vertex has either in-degree 2 and out-degree 1 or in-degree 1 and out-degree 2.

Their first modification to G1 [12, Figure 2] forms an undirected graph G2

such that G1 has a Hamiltonian cycle if and only if G2 has a Hamiltonian path.
Part of this modification [12, Figure 2(b)] replaces one vertex v1 of G1 with a
gadget of four vertices that includes two degree-1 vertices vin′1 and vout1. Clearly
if G2 has a Hamiltonian path, then it must start and end at vin′1 and vout1.

Next their proof forms a maximum-degree-3 grid graph G′
4 such that G′

4 has
a Hamiltonian path if and only if G2 has a Hamiltonian path. G′

4 is essentially
a grid drawing of G2 (which turns out to be bipartite), expanded by a constant
factor, and replacing each vertex and edge by a thickened gadget. The degree-1

3 They also describe how to reduce this problem to deciding whether a graph has
a Hamiltonian path (with no specified start/end vertices), but their reduction (at-
taching a degree-1 vertex to each of the specified start and end vertices) does not
obviously preserve being a grid graph.

https://github.com/edemaine/svgtiler
https://github.com/edemaine/svgtiler
https://commons.wikimedia.org/wiki/Standard_chess_diagram
https://commons.wikimedia.org/wiki/Standard_chess_diagram

Complexity of Solo Chess with Unlimited Moves 23

v

(a) A dumbbell with a pin
connection, based on [12,
Figure 12(b)]

v

ℓ

(b) Adding a degree-1 ver-
tex

v

ℓ

(c) Resulting Hamiltonian
path

Fig. 8: The hardness reduction to Hamiltonian path in maximum-degree-3 grid
graphs from [12] has two copies of the gadget in (a). This graph is Hamiltonian
if and only if the modification in (b) is, which forces the Hamiltonian path to
look like (c), in particular starting or ending at ℓ.

vertices of G2, vin
′
1 and vout1, are each mapped in G4 to a “dumbbell” (two

length-8 cycles connected via a length-6 path) attached to a single “tentacle”
(a 2 × n rectangle with length-8 cycles at turns) via a “pin connection” (single
adjacency); see Figure 8a. Because the dumbbell is connected to the rest of the
graph via only a single edge (the pin connection), any Hamiltonian path must
start or end within each such dumbbell. In particular, we can choose a particular
start or end vertex within the dumbbell to be either vertex adjacent to the far
end (relative to the pin connection) of the path between the two cycles; we label
such a vertex v in Figure 8a. By [12, Lemma] or Figure 8c, if we declare this
vertex v to be the specified start or end vertex, then we preserve the existence
of a Hamiltonian path in G4. This vertex v has degree 2, and has a neighboring
grid point (below v in Figure 8a) with no neighboring vertices, so we can add a
degree-1 vertex ℓ at that point as shown in Figure 8b, increasing v’s degree from
2 to 3 (preserving maximum-degree-3), and then the degree-1 vertex ℓ must be
the start or end of any Hamiltonian path. Figure 8c shows the local configuration
any Hamiltonian path must have (in particular verifying the preservation of the
existence of a Hamiltonian path). We can declare the vertex from vin′1 to be the
start vertex, and optionally declare the vertex from vout1 to be the end vertex,
to prove the two variations NP-hard.

B Sided Var-Linked Planar Monotone 3SAT with
Restricted Variable Occurrences

Lemma 13. Sided Var-Linked Planar Monotone 3SAT is NP-hard, even when
each literal occurs at most twice and each variable occurs at most three times.

Knuth and Raghunathan [10] observe that any instance of Var-Linked Planar
3SAT has a rectilinear layout. That is, the clauses and variables can be drawn
as horizontal line segments in the plane with vertical line segments connecting

24 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

incident variables to clauses, such that no line segments intersect each other
otherwise and all variables lie on the same horizontal line. Thus this result also
extends to the version of the problem where such a rectilinear layout is provided.

Proof. The reduction is from Sided Var-Linked Planar Monotone 3SAT. Refer
to Figure 9. We show that each variable can be replaced by a set of new variables
and clauses to form an equisatisfiable instance of Sided Var-Linked Planar Mono-
tone 3SAT, such that the new variables each have at most three occurrences, at
most two of which have the same sign. In the following we assume each vari-
able has at least one occurrence of each sign; any variable which doesn’t can be
deleted without affecting satisfiability.

Let x be a variable with n negative occurrences in clauses N1, . . . , Nn and
m positive occurrences in clauses P1, . . . , Pm. We replace x by two sequences of
variables x1, . . . , xn+m and y1, . . . , yn+m−1. For each 1 ≤ i ≤ m+n−1 we add a
new positive clause xi∨yi and a new negative clause ¬yi∨¬xi+1. Finally for each
1 ≤ k ≤ n we replace each occurrence of ¬x in clause Nk with an occurrence of
¬xk, and for each 1 ≤ j ≤ m we replace each occurrence of x in clause Pj with
an occurrence of xn+j . This completes the construction. Each new variable xi or
yi occurs at most three times and at most twice with the same sign. It can be
seen from Figure 9 that this construction preserves the sided planarity property.
We must show that the resulting instance is equisatisfiable with the original.

In one direction, let v be a satisfying assignment (i.e. a mapping from vari-
ables to {0, 1}) for the original instance. Define a new assignment w by w(xi) =
v(x) and w(yi) = ¬v(x) for each original variable x. Then w is a satisfying
assignment for the new instance.

In the other direction, let w be a satisfying assignment for the new instance.
Define an assignment v over the original variables x by v(x) = w(xn) where
n is the number of negative occurrences of x. We claim that v is a satisfying
assignment for the original instance. In order to do this it suffices to show for
each variable x with n negative and m positive occurrences, that

w(xk) ≥ v(x)

w(xn+j) ≤ v(x)
(1)

for 1 ≤ k ≤ n and 1 ≤ j ≤ m. For then any clause Nk or Pj which was satisfied
by having w(xk) = 0 or w(xn+j) = 1 is also satisfied by the value of v(x).

The clauses xi ∨ yi and ¬yi ∨ ¬xi+1 together require xi+1 → xi for 1 ≤
i ≤ m + n − 1. Thus w is weakly monotonically decreasing on x1, . . . , xn+m.
Since v(x) = w(xn) this immediately yields (1). Thus the new instance of Sided
Var-Linked Planar Monotone 3SAT is equisatisfiable with the original.

References

1. N. R. Aravind, Neeldhara Misra, and Harshil Mittal. Chess is hard even for a
single player. In Pierre Fraigniaud and Yushi Uno, editors, Proceedings of the 11th
International Conference on Fun with Algorithms, volume 226 of LIPIcs, pages
5:1–5:20, 2022.

Complexity of Solo Chess with Unlimited Moves 25

x

P1 P2 P3

N1 N2 N3

y1 y2 y3 y4 y5x1 x2 x3 x4 x5 x6

N1 N2 N3

P1 P2 P3

Fig. 9: Transforming a variable in Sided Var-Linked Monotone Planar 3SAT to
reduce the number of occurrences. Clauses above the line of variables (red) are
positive; clauses below the line of variables (blue) are negative. Above: A vari-
able with three positive occurrences and three negative occurrences. Below: An
equivalent collection of clauses and variables. Each variable occurs at most three
times and has at most two occurrences with the same sign.

2. Josh Brunner, Erik D. Demaine, Dylan H. Hendrickson, and Julian Wellman. Com-
plexity of retrograde and helpmate chess problems: Even cooperative chess is hard.
In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, Proceedings of the 31st
International Symposium on Algorithms and Computation, volume 181 of LIPIcs,
pages 17:1–17:14, 2020.

3. Chess.com. Solo chess. https://www.chess.com/solo-chess.

4. Mark de Berg and Amirali Khosravi. Optimal binary space partitions in the plane.
In My T. Thai and Sartaj Sahni, editors, Computing and Combinatorics, pages
216–225, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

5. Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau
of Standards B, 71:233–240, 1967.

6. Ivan Tadeu Ferreira Antunes Filho. Characterizing boolean satisfiability variants.
M.eng. thesis, Massachusetts Institute of Technology, 2019.

7. Aviezri S. Fraenkel and David Lichtenstein. Computing a perfect strategy for n×n
chess requires time exponential in n. Journal of Combinatorial Theory, Series A,
31:199–214, 1981.

8. Harold N. Gabow, Zvi Galil, Thomas H. Spencer, and Robert Endre Tarjan. Ef-
ficient algorithms for finding minimum spanning trees in undirected and directed
graphs. Combinatorica, 6(2):109–122, 1986.

9. Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths
in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

https://www.chess.com/solo-chess

26 Brunner, Chung, Coulombe, Demaine, Gomez, Lynch

10. Donald E. Knuth and Arvind Raghunathan. The problem of compatible represen-
tatives. SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992.

11. Bernhard Korte and Jens Vygen. Spanning trees and arborescences. In Combina-
torial Optimization: Theory and Algorithms, pages 119–141. Springer, 2006.

12. Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems
related to the travelling salesman problem. Journal of Algorithms, 5(2):231–246,
June 1984.

13. James A. Storer. On the complexity of chess. Journal of Computer and System
Sciences, 27(1):77–100, 1983.

14. Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics, 8(1):85–89, 1984.

	Complexity of Solo Chess with Unlimited Moves

