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Curves in the Sand: Algorithmic Drawing

Mirela Damiarf Erik D. Demainé Martin L. Demainé Vida Dujmovict Dania El-Khecheh

Robin Flatland John lacond Stefan Langermari  Henk Meijef  Suneeta Ramaswahi
Diane L. Souvain®é Perouz TaslakiaH! Godfried T. Toussairffl!ll
1 Introduction In this paper we describe algorithms that generate sona

drawings under a variety of different models and constraints,

Ethnomathematics is the study of mathematics in the worksin particular settling some of the open questions fromn [6]
of art of various cultures [3,/4, 10, 14]. The concepts in this and raising several new questions. In particular, we study
paper are inspired by the visual artsafnd drawingshat has sona drawings that turn only clockwise and adhere to a given
developed independently in different forms in diverse cul- 2-coloring of the points (Sectidr] 3), sona drawings that turn
tures. Generally speaking, the artist draws a set of dots ononly clockwise and minimize the total turn angle (Secfipn 4),
some flat surface (usually in the sand or in powder on the polygonal sona drawings with the fewest links (Secfipn 5),
floor) and then draws one continuous curve that surroundsand sona drawings on the square grid (Sedtion 6). We also
the dots and crosses itself repeatedly. Although not univer- show that the minimum-length sona drawing of a given point
sally the case, we focus on drawings in which there is exactly set is within a constant factor of a TSP tour (Secfipn 7).
one dot per bounded face (and no dots in the outside face).
In particular, sand drawings made by fhehokwepeople in
the West Central Bantu area of Africa are caléeha

Sona drawings have been considered in the field of topol-
ogy under an equivalent guise as generic planar closed
curves (immersions of the unit circle into the plane). Sev-
eral topological invariants about such curves are proved by
Arnol’d [2], who also enumerated all sona drawings on small
numbers of dots. Carvalh@][5] considers curves that are
“maximally looped”. Ozawal[12] considers the number of
bitangents, tangents shared by different points on the curve.

From a graph-theoretic perspective, sona drawings can b
viewed ast-regular planar maps with the additional property

that some Eulerian cycle “goes straight” at every vertex. This sona edges. A curve or sona drawingcisckwise-turning

class of Utft'dgf'g"g% graphs IS catl_léalaus(sjla% gré‘stéhe __if it can be drawn continuously with all changes in direction
name is attributed to an observation made by Carl Gauss inpain “locally right turns,

1830 [9] that was proved by Julius v. Sz. Nagy almost a hun-
dred years latef [13]. More recently, Michael Gargano and
John Kennedy[8] introduced a more formal notion of Gaus- 3 Two-Color Clockwise-Turning Sona Drawings

sian graphs, which was later generalized by John Kennedy

and Brigitte and Herman Servatius [11]. The connection In this section, we consider the problem of finding a
between Gaussian graphs, generic closed curves, and songlockwise-turning sona drawing for 2-colored point set
drawings was first unveiled in[6], where many open prob- such that no two adjacent faces contain points of the same

2 Definitions

A sona drawingor sona mags a closed curve drawn in the
plane such that the curve does not touch itself without cross-
ing itself, and no more than two pieces of the curve intersect
at the same point. Aona drawing of a point sehust ad-
ditionally have exactly one point in each bounded face, and
zero points in the outside face. gona vertexs a point at
which the curve self-intersects. gona edgés a piece of a
curve incident to exactly two sona vertices at its endpoints.
€A sona facds an empty region bounded by a cycle of sona
edges. Two sona faces adjacentf they share one or more

lems about the topic are also posed. color. Because every sona drawing has even vertex degrees,
its dual is bipartite, so it has a fa@ecoloring; the goal is
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FCSAIL, Massachusetts Institute of Technology ing of the corresponding points inside the faces. As observed
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Proof sketch: First we show that it suffices to consider
points that lie arbitrarily close to the axis, by a generic
rotation and scaling af by . Then we show how to decom-
pose the point sef into intervalsSy, So, . .., Sk, the last of
which wraps around from right to left, such that each interval
consists of zero or more points of one color followed by one
cap point of the opposite color, and such that the cap col-
ors alternate cyclicly red/blue. Then we visit each interval in

order as shown in Figufég 1. a
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Figure 1: A color-respecting clockwise-turning sona drawing
for S. The drawing incrementally incorporat8s, S2, Ss, Sa.

Any monochromatic point set with at least one point in-
terior to the convex hull has a color-respecting clockwise-
turning sona drawing—a “star” of loops around that point—
completing the characterization of point sets with color-
respecting clockwise-turning sona drawings.

4 Min-Winding Clockwise-Turning Sona Drawings

In this section, we consider the problem of finding a
clockwise-turning sona drawing for a given point sethat

has the minimum possible winding number, or equivalently,
the minimum possible absolute total turn angle. Wiad-

ing numberof a sona drawing is the winding number of
the underlying closed curve, that is, the number of com-
plete clockwise turns made by a normal to the curve as we
continuously move its base along one complete cycle of the

curve. Here we suppose that the curve has finite length and,

for simplicity, is differentiable everywhere. Equivalently,
the total clockwise turn angle i860° times the winding
number. For clockwise-turning sona drawings, the wind-
ing number is always positive, and it can be computed as
the number of times a particular normal direction (say,)
occurs as we trace one complete cycle of the curve. With-
out the clockwise-turning constraint, this problem is similar
to the NP-complete angular-metric traveling salesman prob-
lem, where the goal is to find a tour of a given set of points
with minimum total absolute turn anglel[1].

Proposition 2 The winding number of any clockwise-
turning sona drawing of two or more points is at least
4.1 Points in Convex Position

Proposition 3 For any setS of n points in convex position,
there is a clockwise-turning sona drawing with winding num-
ber equal ta2 if |S| is even, o if |:S| is odd.

Proof sketch: Figure[2 shows the casess {2, 3}. Figurd 3
shows the construction for > 4. O

4.2 Convex Peeling Layers

In this section, we relate the minimum winding number to
the number of convex-hull (onion) peeling layers:

@ (b) ©

Figure 2: Clockwise-turning sona drawings. (a) Winding number
is 2. (b—c) Winding number i8.

(a) Even number of points, wind-
ing number2.

(b) Odd number of points, wind-
ing numbers.

Figure 3:Clockwise-turning sona drawings for convex point sets.

Proposition 4 For any setS of points in general position de-
composing intd: nested convex layers, there is a clockwise-

turning sona drawing with winding number at md#t— 1.

Proof sketch: We pierce all convex layers with a spike, then

visit each layer from the innermost out. In between two lay-

ers, we loop around a chosen pagirtb ensure enough angu-
lar freedom to visit the next layer. FigUrg 4 shows examples
of the construction. a

(a) A three-point
convex layer.

(b) A four-point
convex layer.

(c) More than four
points.

Figure 4:Transitioning from one layer to the next begins by wrap-
ping aroundp.

4.3 Radial Convex Partitions

Figure[$ shows a limitation to the convex-layers approach of
Sectior] 4.R: the number of convex layers can be large (here,
n/3) yet the point set can be partitioned into few disjoint
convex polygons (here}). While it remains open whether
the winding number of a clockwise-turning sona drawing is
at most a constant factor times the size of such a minimum
convex partition, we consider here one type of convex parti-
tion which includes the one in Figuré 5(b). Namely, a convex
partition isradial if every convex polygon shares a point with
the convex hull of the entire point set.
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1 By the scaling transformation described in Secfipn 3, we

1 can assume that the points lie arbitrarily close toathexis.
Call a straight-line sona drawingoxedif the leftmost and
rightmost links are vertical, the leftmost link is arbitrarily

\ close to the leftmost point, the rightmost link is arbitrarily

. close to the rightmost point, both of these links are symmet-

. ric about ther axis, and all other links are within the vertical
. strip between these two links.

Lemma 6 Givenn points wheren € {2,5,7}, there is a
boxed straight-line sona drawings with four links for= 2,
seven links fon = 5, and eight links fom = 7.

(a) Nested convex partition. (b) Radial convex partition.

Figure 5:Nested convex partitions are bad approximations to min-

imum convex partitions. Proof sketch: See Figurg¢]7. |
Proposition 5 Given a radial convex  partition
S1,52,...,5, of a setS of points in general position,
we can construct a clockwise-turning sona drawing for /q
with winding number at most: + 1. 4

Figure[§ shows an ex- £

ample of our approach ap-
plied to a point set simi-
lar to Figurg 5. For clarity,
we have reduced the size of
each component in to just
three points, but by using ) ) .
the construction from Fig- Lemma 7 Given constructions for boxed sona drawings on
ure[3, the approach extends Z ny points usinge, links and onn, points usinge; links, we

to point sets of arbitrary Spike can construct a boxed sona drawing an + ny — 1 given

sizes. Note that it was nec- points withe; + ex — 2 links.

i Figure 6: Clockwise-turnin e .
essary to remove one point sogr]\a drawing for a radial Cogn_ Lemma 8 For every positive integen, there is a set of.

from a convex component " i iri links if n is odd, and iri
_ vex partition. points requiringn + 1links i 7 1s 0dd, and requiring: + 2
to cover the middle face. links if n is even, in any straight-line sona drawing.

(a)2 points,4 links.  (b) 5 points,7 links. (c) 7 points,8 links.

Figure 7:Examples of boxed straight-line sona.

Proof sketch: Considem collinear points. |

5 Minimum-Link Sona Drawings Combining Lemmafs|] 7, apdl 8, we obtain the main result:

In a straight-line sona drawing, the curve is a polygonal Theorem 9 Givenn points in the plane, the following num-
chain of line segments callduhks. In this section, we con-  ber of links are sufficient and sometimes necessary for a
sider the problem of constructing straight-line sona drawings straight-line sona drawing:

on a given point set with the minimum possible number of L(n) = 4 forn =2,

links: thesona link numbed.(.S) is the minimum number 4 < L(n) <6 forn = 3,

of links of a straight-line sona drawing on the planar point 6 < L(n) < 8 forn =4,

setS. We consider worst-case bounds on this numtiér:) L(n) = n+2  forn=0 (mod 4) withn > 8,

is the maximumLs(n) over all point setsS of sizen. We n+1l < L(n) < n+2 forn=1 (mod 4)withn > 1,

prove nearly matching upper and lower bounds.gn). n+2 < L(n) < n+3  forn=2 (mod 4) withn > 6,
Lin) = n+1 forn =3 (mod 4) withn > 7.

Straight-line sona drawing closely relates to shattering:
separating a given set of objects such that each falls in a sin-
gle cell of the subdivision of space. In particular, straight- 6 Grid Sona Drawings
line sona is related to shattering a setqfoints in the plane
by an arrangements of lines. It is known ti§at,/n) lines Givenn points in the centers of cells in the square gridrid
are required to shatter points in general position, and that sona drawingis a sona drawing whose edges are drawn as
the problem of finding the minimum number of lines shatter- polygonal lines along the orthogonal grid lines. Not all point
ingn points is NP-completé [7]. The difference between the sets have a grid sona drawing. However, if the points are
problems is that, in sona, we use polygonal chains instead of“far enough” from each other, then we can always find a grid
lines and we do not allow empty regions. However, if we ex- sona drawing: loop around each point except the last one,
tend the edges of a sona drawing on a set of points, we obtainsurround the last point, and return to the starting position. To
a shattering of those points. Thus, the shattering number ofquantify “far enough”, consider the following process: start
n points is a lower bound on the minimum number of links with an arbitrary set of points in the centers of grid cells, and
in a straight-line sona drawing. then scale the point set by an integeso that between any
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two distinct points there are at leashorizontal or vertical
grid lines. Our goal is to find grid sona drawings with the
minimum possible scaling. We prove thats = 3 always
suffices, and show some instances where?2 also suffices.

Proposition 10 Any point set has a (clockwise-turning) grid
sona drawing after scaling by.

Proposition 11 For any positive integers: andn, them xn
grid of points has a grid sona drawing after scaling by

Proof sketch: The construction varies slightly depending on
the parity of the number of rows and columns. All cases
share a common “core” construction, shown in Figdrer8.

7 Minimum-Length Sona Drawings

The lengthof a sona drawing is the total arc length of the
underlying curve. In this section, we show that the length of

Proof sketch: We use connections between TSP, the nearest-
neighbor graph, and Eulerian tours. a

8 Open Problems

We highlight some open problems:

Open Problem 1 What is the complexity of finding the
minimum-winding clockwise-turning sona drawing on a
given set of points?

Open Problem 2 Are the upper or lower bounds in Theo-
rem[9 on the minimum-link sona drawing tight?

Open Problem 3 Which point sets have grid sona drawings
without any scaling? Do all point sets have grid sona draw-
ings after scaling by?

Open Problem 4 What is the complexity of finding the
minimum-length sona drawing on a given set of points?

the minimum-length sona drawing is atIeastaconstantfactorAckn0W|edgments_ This work was initiated at the 21st Bel-
times the TSP tour of the given points, thus settling the open |ajrs Winter Workshop on Computational Geometry held January

problem posed iri |6, Open Problem 6]. By a matching upper 27—-February 3, 2006. We thank the other participants of that
bound of [6], the two values are thus within constant factors workshop—Greg Aloupis, Prosenjit Bose, David Bremner, Fran-

of each other.

Theorem 12 Every sona drawing has length greater than
TSP/c wherec = ™2 ~ 1.63662.
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Figure 8: Core construction for grid sona drawing on anx n
grid of points after scaling bg. Can you fill in the rest? What if
we add one more row and/or column of points?

cisco Gomez-Martin, Danny Krizanc, Erin McLeish, Pat Morin,

David Rappaport, Dmitri Tymoczko, David Wood, and Stefanie
Wuhrer—for helpful discussions and contributing to a fun and cre-
ative atmosphere.
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