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New Results in Sona Drawing: Hardness and TSP Separation
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Abstract

Given a set of point sites, a sona drawing is a single
closed curve, disjoint from the sites and intersecting
itself only in simple crossings, so that each bounded
region of its complement contains exactly one of the
sites. We prove that it is NP-hard to find a minimum-
length sona drawing for n given points, and that such a
curve can be longer than the TSP tour of the same points
by a factor > 1.5487875. When restricted to tours that
lie on the edges of a square grid, with points in the grid
cells, we prove that it is NP-hard even to decide whether
such a tour exists. These results answer questions posed
at CCCG 2006.

1 Introduction

In April 2005, Godfried Toussaint visited the second
author at MIT, where he proposed a computational
geometric analysis of the “sona” sand drawings of the
Tshokwe people in the West Central Bantu area of Africa.
Godfried encountered sona drawings, in particular the
ethnomathematical work of Ascher [1] and Gerdes [7],
during his research into African rhythms. Together with
his then-student Perouz Taslakian, we came up with a
formal model of sona drawing of a set P of point sites

— a closed curve drawn in the plane such that

1. wherever the curve touches itself, it crosses itself;

2. each crossing involves only two arcs of the curve;

3. exactly one site is in each bounded face formed by
the curve; and

4. no sites lie on the curve or within its outside face.
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Our first paper on sona drawings appeared at
BRIDGES 2006 [5], detailing the related cultural prac-
tices, proving and computing combinatorial results and
drawings, and posing several open problems. In early
2006, we brought these open problems to Godfried’s
Bellairs Winter Workshop on Computational Geometry,
where a much larger group tackled sona drawings, re-
sulting in a CCCG 2006 paper later the same year [4].
Next we highlight some of the key prior results and open
problems as they relate to the results of this paper.

Sona vs. TSP. Every TSP tour can be easily converted
into a sona drawing of roughly the same length: instead
of visiting a site, loop around it, except for one site
that we place slightly interior to the tour [5, Lemma 11].
Conversely, every sona drawing can be converted into a
TSP tour of length at most a factor π+2

π ≈ 1.63661977
larger [4, Theorem 12], settling [5, Open Problem 6]. Is
this constant tight? The best previous lower bound was a
four-site example proving a TSP/sona separation factor

of 2
3 + 2

√
3

9 ≈ 1.05156685 [5, Lemma 12]. In Section 2, we
construct a recursive family of examples proving a much

larger TSP/sona separation factor of 14+8
√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

≈
1.54878753. We also study L1 and L∞ metrics, where
we prove that the worst-case TSP/sona separation factor
is exactly 1.5.

Length minimization. The relation to TSP implies a
constant-factor approximation algorithm for finding the
minimum-length sona drawing on a given set of sites.
But is this problem NP-hard? In Section 3, we prove NP-
hardness for L1, L2, and L∞ metrics, settling [5, Open
Problem 5] and [4, Open Problem 4].

Grid drawings. The last variant we consider is when
the sona drawing is restricted to lie along the edges of a
unit-square grid, while sites are at the centers of cells of
the grid. Not all point sets admit a grid sona drawing;
however, if we scale the sites’ coordinates by a factor of
3, then they always do [4, Proposition 10]. A natural
remaining question [4, Open Problem 3] is which point
sets admit grid sona drawings. In Section 4, we prove
that this question is in fact NP-hard.
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2 Separation from TSP Tour

We first show an example which gives a large TSP/sona
separation factor under the L2 metric in the plane.

Theorem 1 There exists a set of sites for which
the length of the minimum-length TSP tour is
14+8

√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

≈ 1.54878753 times the length of the

minimum-length sona drawing.

The full proof can be found in Appendix A.

Sketch of Proof. We construct a problem instance
whose minimum-length TSP tour is longer than its
minimum-length sona drawing by a factor within ε of
14+8

√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

. Our construction is illustrated in Fig-

ure 1 and follows a fractal approach with ε−1 levels (for
simplicity, we assume that ε−1 is an integer).

1. We start by defining a few auxiliary points:

(a) The initial set of auxiliary points A0 is
the intersection between a slightly shifted
integer lattice and the L1 ball B(0, ε−1)
of radius ε−1 centered at the origin.
That is, A0 =

{
( 2i+1

2 , 2j+1
2 ) : i, j ∈ Z

}
∩{

(x, y) : |x|+ |y| ≤ ε−1
}

. In Figure 1a, the
auxiliary points are exactly the intersections
of solid red lines.

(b) Then, in Step i (starting with i = 1), for each
auxiliary point p ∈ Ai−1, we add five points to
Ai: p itself, and four new points at distance(

1
1+
√
2

)2i
from p in each of the four cardinal

directions. Let A = Aε−1 . By construction, we
have |Ai| = 5i|A0| and |A0| = 2ε−2 +O(ε−1).
We note that set A contains auxiliary points
(not sites). These points will not be part of
the instance.

2. We now use the auxiliary points to create some sites
(the isolated black points of Figure 1):

(a) For any i ≥ 1 we define set Pi of sites as follows:
for each auxiliary point q ∈ Ai−1 we add the
four sites whose x and y coordinates each differ

from q by 1
2

(
1

1+
√
2

)2i
. We note that all the

added sites are distinct sites.

(b) We define P0 as the set of integer lattice points
in B(0, ε−1). Equivalently, for each auxiliary
point q ∈ A0 we add the sites whose x and y
coordinates each differ from q by 1

2 , but we do
not add sites that lie outside B(0, ε−1), which
affects O(ε−1) sites (out of Ω(ε−2) sites of P0).

In this case, the sites created by different
auxiliary points may lie in the same spot.

In total, P0 contains only one site per aux-
iliary point of A0 (except for O(ε−1) auxil-
iary points near the boundary). Thus, |Pi| =
4 · |Ai−1| = 4 · 5i−1 · |A0| (for i ≥ 1) and
|P0| = |A0|+O(ε−1) = (2ε−2 +O(ε−1)).

Let P (1) = P0 ∪ P1 ∪ · · · ∪ Pε−1 .

3. Next, we place additional sona sites packing line
segments and/or curves. Whenever we pack any
curve, we place sites spaced at a distance δ small
enough that the length of the shortest path that
passes within δ of all of them is within a factor
(1− ε) of the length of the curve.

(a) Solid lines as drawn in red in Figure 1a: for
each x ∈ {i+ 1

2 : −(ε−1+1) ≤ i ≤ ε−1 and i ∈
Z}, we pack the vertical line segment with
endpoints (x, ε−1+1−|x|) and (x, |x|−ε−1−1),
and analogously with y for the horizontal line
segments.

(b) In Step i of the above recursive definition (start-
ing with i = 1), when we create four new aux-
iliary points of Ai from a point p ∈ Ai−1, we
also pack the boundary of the region within

Euclidean distance 1
2

(
1

1+
√
2

)2i
of the square

whose vertices are the four auxiliary points
of Ai. Note that this boundary region forms a
square with rounded corners as in Figure 1b.
With these extra points we preserve the invari-
ant that the auxiliary points are exactly the
intersections of packed curves.

Let P (2) be the set of sites created in Step 3 in our
construction, and P = P (1) ∪ P (2). This is a complete
description of the construction.

In the full proof we show that the length of the packed
curves is a (1 + ε)-approximation of the total length
of the minimum-length sona drawing of P . Careful
calculations then yield that the length of the minimum-

length sona drawing is (2ε−2 + O(ε−1))
(

2 + 4+π
2
√
2−2

)
.

We then argue that the minimum-length TSP has
an additional length of (2ε−2 + O(ε−1))(2

√
2 + 3).

Thus, the TSP/sona separation factor for the construc-

tion is, ignoring lower-order terms,
2+ 4+π

2
√

2−2
+2
√
2+3

2+ 4+π

2
√

2−2

=

14+π(
√
2+1)+8

√
2

8+4
√
2+π(

√
2+1)

≈ 1.54878753.

We have presented a construction for the L2 metric in
the plane showing that the ratio between the lengths of
the minimum-length TSP and the minimum-length sona
drawing can be strictly greater than 1.5. Our next result
shows that this cannot be the case for the L1 and L∞
metrics in the plane.
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(a) First step of our construction for ε−1 = 2: points of A0

lie in the intersection of solid lines (packed segments). In
the construction, P1 contains thirteen sites (shown as black
dots).

(b) Final construction for ε−1 = 2. Sets P1, P2, and P3 are
shown as black dots of varying sizes. Additional sites of P (2)

pack lines and rounded squares nearby the auxiliary points
of A0, A1, and A2.

Figure 1: Recursive construction of sites requiring ≈ 1.54878753 factor shorter sona tour (drawn in red) compared to
TSP tour (red plus doubled radius of each grey circle). All red lines have black sites sprinkled densely along them.

Theorem 2 For the Manhattan (L1) and the Chebyshev
(L∞) metrics, the minimum-length TSP tour for a set of
sites P has length at most 1.5 times that of the minimum-
length sona drawing for P . Moreover, this bound is tight
for both metrics.

Proof. The proof of the upper bound on the length
of the minimum-length TSP tour follows the lines of
the (unpublished) proof of [4, Theorem 12]. Let P =
{p1, . . . , pn} be a set of n sites, S(P ) the minimum-length
sona drawing for P , and TSP(P ) the minimum-length
TSP tour for P . The sona drawing S(P ) must have n
bounded faces, each containing a site of P . Let fi be
the face of S(P ) containing the site pi. In this proof,
for an edge-weighted graph H, |H| denotes the sum of
the weights/lengths of all the edges of H. In particular,
|S(P )| denotes the length of the sona drawing S(P ).

For each site pi, let c(pi) be the closest point in S(P )
to pi and ri the distance between pi and c(pi). By the
definition of c(pi), the open disk centered at pi and
with radius ri does not intersect S(P ). This implies
that the length of the boundary of fi is at least the
perimeter of a disk with radius ri, that for both the L1

and the L∞ metrics is 8ri. That is, |fi| ≤ 8ri. Moreover,
the sum of the lengths of all the faces is 2|S(P )|, so
|f1| + · · · + |fn| < 2|S(P )| since we do not sum the
length of the unbounded face.

We define a multigraph G whose vertex set is the
union of the set of sites P , the set of vertices of S(P ),
and {c(pi) ∈ S : pi ∈ P}. The edge set of G is the
union of the set of edges of S and two parallel edges
{pi, c(pi)} for each pi ∈ P . The weight of each edge is
its length in the drawing. By the observations above,
|G| = |S(P )|+ 2r1 + · · ·+ 2rn ≤ |S(P )|+ |f1|/4 + · · ·+
|fn|/4 < |S(P )|+ |S(P )|/2 = 1.5|S(P )|.

To obtain the desired upper bound on |TSP(P )| it
remains to show that |TSP(P )| ≤ |G|. By construction,
since S(P ) is Eulerian, so is G. An Euler tour of G
defines a TSP tour for the vertices of G by skipping
vertices that were already visited (as in the Christofides
1.5-approximation algorithm for TSP on instances where
the distances form a metric space [3]). This TSP tour
has length at most |G| and can be shortcut so that it
only visits the sites of P . By the triangle inequality, the
length of the tour does not increase with these shortcuts.
Thus, we have that |TSP(P )| ≤ |G| < 1.5|S(P )|.

The construction for the matching this bound is similar
to the one in the proof of Theorem 1, but simpler. An
illustration can be found in Figure 1a. For every ε > 0 we
construct a set of sites Pε (the set of TSP vertices/sona
sites) such that |TSP(Pε)| ≥ (1.5− ε)|S(Pε)|.

We fix k = d1/(2ε)e. The set of sites Pε includes
every integer lattice point (x, y) such that |x|+ |y| ≤ k.
Consider drawing Q resulting from the union of the axis-
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aligned unit squares centered at these sites. It is easy
to see, for example by rotating the construction, that
so far we have added (k + 1)2 + k2 sites to Pε and that
the length of Q is 4(k + 1)2. Straightforward compu-

tations show that 4(k+1)2+(k+1)2+k2

4(k+1)2 = 5/4 + k2

4(k+1)2 ≥

5/4 + 1
4(2ε+1)2 = 1.5 − ε + ε2(4ε+3)

(2ε+1)2 > 1.5 − ε. Thus, a

dense-enough packing of sites along Q yields the desired
result. �

We next consider sona drawings on the sphere. By the
definition of sona drawings in the plane, the unbounded
face contains no sites. For the sphere we consider the
following analogue: if there is a face that contains in
its interior a half-sphere then this face contains no sites.
Note that there is at most one such face. The following
theorem shows a tight upper bound on the TSP/sona sep-
aration factor for drawings on the sphere. (We consider
the usual metric inherited from the Euclidean metric
in R3.)

Theorem 3 For drawings on the sphere, the length of
the minimum-length TSP tour for a set of sites P is
at most 2 times the length of the minimum-length sona
drawing for P . Moreover, this bound is tight.

Proof. The proof of the upper bound on the length of
the minimum-length TSP tour again follows the lines of
the (unpublished) proof of [4, Theorem 12]. It only differs
slightly from the first part of the the proof of Theorem 2.
Using the same notation, in this case, the distance ri
between a site pi ∈ P and its closest point c(pi) in S(P )
corresponds to the length of the shortest arc on the great
circle through pi and c(pi). The open disk centered at
pi and with radius ri is an open spherical cap that does
not intersect S(P ). Assuming that the sphere has radius
ρ, the boundary of this cap has length 2πρ sin(ri/ρ).
Since the face containing a site cannot contain a half-
sphere in its interior we have that 0 ≤ ri/ρ ≤ π/2.
The function sin(x)/x in the interval 0 ≤ x ≤ π/2 is
decreasing. Thus, ρ/ri sin(ri/ρ) ≥ 2/π sin(π/2) = 2/π.
This implies that 2πρ sin(ri/ρ) ≥ 4ri. Thus, the face
fi of S(P ) containing the site pi has length |fi| ≥ 4ri.
Moreover, |f1| + · · · + |fn| ≤ 2|S(P )|. With the same
arguments and defining the same multigraph as in the
proof of Theorem 2 we obtain that |TSP(P )| ≤ 2|S(P )|.

The construction showing that this bound is tight
places two sites on the north and south poles of the
sphere and packs the equator densely with sites. Then
the minimum-length sona drawing goes along the equator
while the minimum-length TSP must reach both poles,
yielding a 2− ε TSP/sona separation factor. �

3 Complexity of Length Minimization

In this section and Appendix B, we prove that finding
a sona drawing of minimum length for given sites is

NP-hard, even when the sites lie on a polynomially sized
grid. The complexity of minimum-length sona drawing
was posed as an open problem in 2006 by Damian et
al. [4, Open Problem 4]. We use a reduction from the
problem of finding a Hamiltonian cycle in a grid graph
(a graph whose n vertices are a subset of the points in
an integer grid, and whose edges are the unit-length line
segments between pairs of vertices), proven NP-complete
by Itai, Papadimitriou, and Szwarcfiter [8].

Let V be the set of n vertices in a hard instance for
Hamiltonian cycle in grid graphs. If V is a yes instance,
its Hamiltonian cycle forms a Euclidean traveling sales-
man tour with length exactly n. If it is a no instance,
the shortest Euclidean traveling salesman tour through
its vertices has length at least 1 for every grid edge, and
length at least

√
2 for at least one edge that is not a

grid edge (as this is the shortest distance between grid
points that are non-adjacent), so its total length is at
least n+

√
2− 1 ≈ n+ 0.414. For the L1 distance, the

increase in length is larger, at least 1. Our reduction
replaces each point of V by two points, close enough
together to make the increase in length from converting
a TSP to a sona drawing negligible with respect to this
gap in tour length.

Theorem 4 It is NP-hard to find a sona drawing for
a given set of sites whose length is less than a given
threshold L, for any of the L1, L2, and L∞ metrics.

4 Complexity of Grid Drawing Existence

While minimizing the length of sona drawings in general
is hard, if we restrict the drawing to lie on a grid, then
even determining the existence of a sona drawing is hard.

Given n sites at the centers of some cells in the unit-
square grid, a grid sona drawing is a sona drawing
whose edges are drawn as polygonal lines along the
orthogonal grid lines (like orthogonal graph drawing).

We show that finding a grid sona drawing for a given
set of sites is NP-hard by a reduction from Planar CNF
SAT [9].

4.1 Construction

In this section we view the grid as a graph, thus by
edge we mean a unit segment of a grid line, and by
vertex we mean a grid vertex — these terms are distinct
from “sona edge” etc. We say that an edge is either on
or off according to as it belongs in the sona drawing.
The subgraph of the grid that is on is the path graph .
Observe that two grid-adjacent sites always require the
edge between them to be on; otherwise both would be
in the same sona face (connected). Also, every vertex
must have even degree in the path graph.

Here we are concerned with internal properties of the
gadgets. Their exteriors are lined with unconnected
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A

B
C
D
F

E

Figure 2: Wire
gadget

Figure 3:
Constant gadget

Figure 4: Turn /
Split / Invert
gadget

edges; we will show later how to connect them.

Wire. The wire gadget is shown in Figure 2. One of
edges A and B must be on, otherwise two sites would
be connected. Assume without loss of generality that
A is on. Now, suppose C is off. Then D must be too,
to preserve even vertex degree. Then, B and E must
both be on to prevent sites from being connected, but
this is impossible with C off. Therefore C and D are
on. The same reasoning shows that the entire line A, D,
etc. is on, as well as edges C, F , etc. Then E must be
off to prevent an empty face, and thus the entire line B,
E, etc. is off. The wire thus has two states: the upper
line can be on and the lower off, or vice-versa. We can
extend a wire as long as necessary. An unconnected wire
end serves as a variable.

In Figures 2 through 5, all marked edge states (red for
on, gray for off) are forced by the indicated wire states.
These marks were generated by computer search, but
are easy to verify by local analysis.

Constant. The gadget shown in Figure 3 forces the
attached wire to be in the up state: the edge between
the two left sites must be on, forcing the rest.

Turn / Split / Invert. The gadget shown in Figure 4
is multi-purpose. If we view the left wire as the input,
then the upper and lower outputs represent turned sig-
nals, and the right output represents an inverted signal.
(Unused outputs can be left unattached, thus uncon-
strained.)

Any wire state forces all the others. Given that the
left wire is in the up state, suppose the right wire is also
up. Then the top wire and bottom wire must be in the
same left/right state, otherwise we will have degree-three
vertices in the middle. But this would leave the central
site connected to another site, so the right wire is forced
down. Then, if the (top, bottom) wires are not in the
(left, right) states, again the central site will be connected
to another one. (This figure contains multiple loops, but
these will be eliminated in the final configuration by
adding more edges.)

OR. Figure 5 shows the OR gadget. The upper wire is
interpreted as an output, with the left state representing
true; the other wires are inputs, with true represented
as down on the left wire and up on the right wire. (We
can easily adjust truth representations between gadgets
with inverters.) If either input is true, then the output
may be set true, as shown. If both inputs are false, the
output may be set false. Figure 5e shows that setting
the output to true when both inputs are false is not
possible: all marked edge states are forced by the wire
properties, but two sites are left connected.

4.2 Hardness

Theorem 5 It is NP-hard to find a grid sona drawing
for a given set of sites at the centers of grid cells.

Proof. Given a CNF Boolean formula with a planar
incidence graph, we connect the above gadgets to rep-
resent this graph: unconstrained wire ends represent
variables, and are connected to splitters and inverters to
reach clause constructions. A clause is implemented with
chained OR gadgets, with the final output constrained to
be true with a constant gadget. By the gadget properties
described above, we will be able to consistently choose
wire states if and only if the formula is satisfiable.

We must still show that all edges can be joined to-
gether into a single closed loop, while retaining the sona
properties. Our basic strategy for connecting loose ends
is to border each gadget with “crenellations”, as shown
in Figure 6. This figure also shows how to pass pairs of
path segments across a wire without affecting its internal
properties, which we will use to help form a single loop.

Adding crenellations to the other gadgets is straight-
forward, and we defer explicit figures to Appendix C,
with one exception. (The crenellations do add a parity
constraint when wiring gadgets together; we show in the
appendix how to shift parity.) When we use the gadget
in Figure 4 to turn a wire, it will be useful to use the
crenellated version in Figure 7. With the connections
to other gadgets on the left and top, the right and bot-
tom portions are unconstrained. We can place edges as
shown, so that they leave the gadget identically regard-
less of which state it is in. Then, all paths entering from
the left or the top leave on the bottom or the right as
loose edges, except that in Figure 7a, one path connects
the left to the top. If we connect a right turn to the top
port, this path will also terminate in an unconnected
edge. If every wire contains a left turn and matching
right turn, then every path in the sona graph must end
in two unconnected edges in turn gadgets, because there
are no internal loops in any of the gadgets.

The space occupied by the loose ends of a turn lies
either in an internal face of the wiring graph, or on its
exterior. We route the interior ends to pass-through
pairs as shown in Figure 6, so all unconnected edges
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(a) false + true →
true

(b) true + true →
true

(c) true + false →
true

(d) false + false →
false

(e) Bad state

Figure 5: OR gadget

Figure 6: Wire gadget with crenellations and pass-
through

(a) State 1 (b) State 2

Figure 7: Crenellated turn

wind up on the outer border of the graph. Because
the terminal edges are placed identically in Figures 7a
and 7b, we can plan their routing without knowing the
wire states. As a result, we can place additional sites as
required for the property that a single site lies in each
internal sona face. (We can lengthen the wires as needed
to create additional routing space in the internal faces.)

Now we are in a state where all paths end on the
exterior of the construction. If we join these paths
together without crossing, the number of extra sites
needed in the outer face is just the number of paths. We
place that many sites in a widely spaced grid (spacing
proportional to number of paths) surrounding the inner
construction. Then, we can complete the path greedily
by repeatedly connecting one outer path end to one of
its neighboring path ends, surrounding one of the added
sites. Only one of its two neighboring path ends can
come from the same path, so there’s always another one
to connect to. The wide grid spacing of the outer sites

means there is always room to route the connection. �
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A Separation from TSP Tour under the L2 Metric

Theorem 1 There exists a set of sites for which
the length of the minimum-length TSP tour is
14+8

√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

≈ 1.54878753 times the length of the

minimum-length sona drawing.

Proof. We construct a problem instance whose
minimum-length TSP tour is longer than its minimum-
length sona drawing by a factor within ε of
14+8

√
2+π(

√
2+1)

8+4
√
2+π(

√
2+1)

. Our construction is illustrated in Fig-

ure 1 and follows a fractal approach with ε−1 levels (for
simplicity, we assume that ε−1 is an integer).

1. We start by defining a few auxiliary points:

(a) The initial set of auxiliary points A0 is
the intersection between a slightly shifted
integer lattice and the L1 ball B(0, ε−1)
of radius ε−1 centered at the origin.
That is, A0 =

{
( 2i+1

2 , 2j+1
2 ) : i, j ∈ Z

}
∩{

(x, y) : |x|+ |y| ≤ ε−1
}

. In Figure 1a, the
auxiliary points are exactly the intersections
of solid red lines.

(b) Then, in Step i (starting with i = 1), for each
auxiliary point p ∈ Ai−1, we add five points to
Ai: p itself, and four new points at distance(

1
1+
√
2

)2i
from p in each of the four cardinal

directions. Let A = Aε−1 . By construction, we
have |Ai| = 5i|A0| and |A0| = 2ε−2 +O(ε−1).
We note that set A contains auxiliary points
(not sites). These points will not be part of
the instance.

2. We now use the auxiliary points to create some sites
(the isolated black points of Figure 1):

(a) For any i ≥ 1 we define set Pi of sites as follows:
for each auxiliary point q ∈ Ai−1 we add the
four sites whose x and y coordinates each differ

from q by 1
2

(
1

1+
√
2

)2i
. We note that all the

added sites are distinct sites.

(b) We define P0 as the set of integer lattice points
in B(0, ε−1). Equivalently, for each auxiliary
point q ∈ A0 we add the sites whose x and y
coordinates each differ from q by 1

2 , but we do
not add sites that lie outside B(0, ε−1), which
affects O(ε−1) sites (out of Ω(ε−2) sites of P0).

In this case, the sites created by different
auxiliary points may lie in the same spot.
In total, P0 contains only one site per aux-
iliary point of A0 (except for O(ε−1) auxil-
iary points near the boundary). Thus, |Pi| =
4 · |Ai−1| = 4 · 5i−1 · |A0| (for i ≥ 1) and
|P0| = |A0|+O(ε−1) = (2ε−2 +O(ε−1)).

Let P (1) = P0 ∪ P1 ∪ · · · ∪ Pε−1 .

3. Next, we place additional sona sites packing line
segments and/or curves. Whenever we pack any
curve, we place sites spaced at a distance δ small
enough that the length of the shortest path that
passes within δ of all of them is within a factor
(1− ε) of the length of the curve.

(a) Solid lines as drawn in red in Figure 1a: for
each x ∈ {i+ 1

2 : −(ε−1+1) ≤ i ≤ ε−1 and i ∈
Z}, we pack the vertical line segment with
endpoints (x, ε−1+1−|x|) and (x, |x|−ε−1−1),
and analogously with y for the horizontal line
segments.

(b) In Step i of the above recursive definition (start-
ing with i = 1), when we create four new aux-
iliary points of Ai from a point p ∈ Ai−1, we
also pack the boundary of the region within

Euclidean distance 1
2

(
1

1+
√
2

)2i
of the square

whose vertices are the four auxiliary points
of Ai. Note that this boundary region forms a
square with rounded corners as in Figure 1b.

http://dx.doi.org/10.1080/17513470701413451
https://cs.smith.edu/~jorourke/TOPP/P33.html
http://dx.doi.org/10.1137/0211056
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http://dx.doi.org/10.2307/2321488
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With these extra points we preserve the invari-
ant that the auxiliary points are exactly the
intersections of packed curves.

Let P (2) be the set of sites created in Step 3 in our
construction, and P = P (1) ∪ P (2). This is a complete
description of the construction.

We now find the minimum-length sona drawing of P .
Each pair of consecutive points in a packed curve must
be in a separate sona region, so any sona drawing must
pass between them; in particular, any sona drawing must
pass within δ of each of them, and so the length of any
valid sona drawing is at least 1−ε times the length of the
packed curves. Also, there’s a valid sona drawing that’s
at most 1+ε times the length of the packed curves: follow
all the packed curves exactly, adding small loops around
the sona sites of the packed curves as necessary (loops
small enough to lengthen the curve by a factor of at most
1 + ε). The graph of packed curves is Eulerian (because
it’s defined as a union of boundaries of regions, which are
cycles), so the TSP tour can follow an Eulerian circuit
through it. At an intersection of packed curves, we have
two options for the sona drawing (as shown in the inset
images of Figure 1). We can have one sona path cross
over the other in the Eulerian circuit (by including every
site of the packed curve in a small loop). Alternatively,
we can have one sona path cross over the other in two
places p and q at the intersection, and leaving one sona
site of the packed curve out of a small loop to be the
sona site of the extra region between p and q. In either
case, we conclude that there is a valid sona path that
follows an Eulerian circuit of the packed curves within
(1 + ε). Note that, although our description focused in
the sites of P (2), this is a valid sona tour for P since the
sites of P (1) lie in different faces.

The total length of the packed curves is hence a (1+ε)-
approximation of the total length of the minimum-length
sona drawing.

The total length of the packed segments of P (2) (the
square lattice) is 4ε−2 + O(ε−1), since the area of the
region |x|+ |y| < ε−1 and the number of lattice points
in it are each 2ε−2 +O(ε−1).

Now we bound the length of the packed curves
(rounded squares). In Step i of the construction (starting
with i = 1), we added a packed curve that is the bound-

ary of the region within Euclidean distance 1
2

(
1

1+
√
2

)2i
of a square of side length

(
1

1+
√
2

)2i
(with a total length

of (4 + π)
(

1
1+
√
2

)2i
).

Recall that we added one such curve for each of the
points of Ai−1 and that |Ai| = 5i−1(2ε−2 + O(ε−1)).
Thus, the total length of the sona drawings introduced

at Step i is (4 + π)
(

1
1+
√
2

)2i
5i−1(2ε−2 +O(ε−1)).

For ε small, this series is well-approximated

by an infinite geometric series with sum

(2ε−2 + O(ε−1))

(
4+π

(1+
√
2)2·

(
1− 5

(1+
√

2)2

)
)

=

(2ε−2 + O(ε−1))
(

4+π
2
√
2−2

)
, and adding in the length of

the packed segments of P (2) (the square lattice) gives

(2ε−2 +O(ε−1))
(

2 + 4+π
2
√
2−2

)
.

We have approximated the minimum length of a valid
sona drawing; now we approximate the minimum length
of a TSP tour.

Any TSP tour must also come within δ of every point
on every packed curve, which requires a length at least

(2ε−2 +O(ε−1))
(

2 + 4+π
2
√
2−2

)
as above. Also, the TSP

tour must visit each site of P (1). We observe some
properties of this set:

• Set P (1) is defined so that sites are far from each
other. Specifically, the Euclidean ball centered at

any site p ∈ Pi of radius ri = 1
2

(
1

1+
√
2

)2i
does not

contain other sona sites. This means that we must
include at least 2ri in the length of the TSP tour for
each point in Pi, for the part of the tour that passes
from the boundary of this ball to Pi and then back
to the boundary.

• There are 4 · 5i−1(2ε−2 + O(ε−1)) sites in Pi (for
i ≥ 1) and (2ε−2 +O(ε−1)) sites in P0.

When ε tends to zero, the additional length needed
in the TSP tour is

(2ε−2 +O(ε−1))(1 +
∑
i≥1

2ri · 4 · 5i−1)

= (2ε−2 +O(ε−1))(1 +
4

5

∑
i≥1

(
5

3 + 2
√

2

)i
)

= (2ε−2 +O(ε−1))(1 +
4

3 + 2
√

2
· 1

1− 5
3+2
√
2

)

= (2ε−2 +O(ε−1))(1 +
4

2
√

2− 2
)

= (2ε−2 +O(ε−1))(2
√

2 + 3).

So, the total length of the TSP tour is at least

(2ε−2 + O(ε−1))
(

2 + 4+π
2
√
2−2 + 2

√
2 + 3

)
. Hence the

ratio of the length of the TSP tour to the length
of the sona drawing is, ignoring lower-order terms,
2+ 4+π

2
√

2−2
+2
√
2+3

2+ 4+π

2
√

2−2

= 14+π(
√
2+1)+8

√
2

8+4
√
2+π(

√
2+1)

≈ 1.54878753. �

B Complexity of Length Minimization

Theorem 4 It is NP-hard to find a sona drawing for
a given set of sites whose length is less than a given
threshold L, for any of the L1, L2, and L∞ metrics.
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Figure 8: Local modifications to convert a grid Hamilto-
nian cycle into a short sona drawing for a set of doubled
sites

Proof. Let V be the set of n vertices in a hard instance
for finding a Hamiltonian cycle in grid graphs. We
may form a hard instance of the minimum-length sona
drawing problem for L1 or L2 distances by replacing
each vertex in V by a pair of sites, one at the original
vertex position and the other at distance less than ε from
it, where ε = Θ(1/n) is chosen to be small enough that
4nε <

√
2 − 1. We set L = n + 2nε. For L∞ distance,

we use a hard instance for L1 distance, rotated by 45◦.

If V is a yes-instance for Hamiltonian cycle, let C be a
Hamiltonian cycle of length n for V . We may form a sona
drawing of length less than L by modifying C within a
neighborhood of each pair of sites so that, for all but
one of these pairs, it makes two loops, one surrounding
each site (Figure 8), and so that for the remaining pair it
makes one loop around one of the two sites and surrounds
the other point by the face formed by C itself. In this
way, each face of the modified curve surrounds a single
site of our instance. Each of these local modifications to
C may be performed using additional length less than
2ε, so the total length of the resulting sona drawing is
less than L.

If V is a no instance for Hamiltonian cycle, let C
be any sona drawing for the resulting instance of the
minimum-length sona drawing problem. Then C must
pass between each pair of sites in the instance, and by
making a local modification of length at most 2ε near
each pair, we can cause it to touch the point in the
pair that belongs to V itself. Thus, we have a curve of
length |C|+ 2nε touching all points of V . Because V is
a no instance, the length of this curve must be at least
n+
√

2− 1, from which it follows that the length of C
is at least n+

√
2− 1− 2nε ≥ L. �

By scaling the sites by a factor of Θ(1/ε) = O(n) we
may obtain a hard instance of the minimum-length sona
drawing problem in which all sites lie in an integer grid
whose bounding box has side length O(n2).

It is possible to represent a minimum-length sona
drawing combinatorially, as a conveyor belt [2] formed
by bitangents and arcs of infinitesimally small disks

centered at each site, and to verify in polynomial time
that a representation of this form is a valid sona drawing.
However, this does not suffice to prove that the decision
version of the minimum-length sona drawing problem
belongs to NP. The reason is that, when the sites have
integer coordinates, the limiting length of a sona drawing,
represented combinatorially in this way, is a sum of
square roots (distances between pairs of given points)
and we do not know the computational complexity of
testing inequalities involving sums of square roots [6,10].
(Euclidean TSP has the same issue.)

C Crenellations for Grid Drawing

Figures 9, 10, and 11 show how to add crenellations to the
Constant gadget, an unconstrained wire end (variable),
and the OR gadget, respectively. The crenellated Split
/ Invert is the same as in Figure 7, extended in the
obvious way for ports that are used. In no case do
the crenellations affect the internal properties described
in the main text; these figures simply show that it is
possible to add the crenellations appropriately.

As mentioned in the main text, the crenellations do
add a parity constraint when connecting gadgets with
wires; we can no longer make wires of arbitrary length,
but must match the crenellations to the gadgets at each
end. In order to do that we need one additional gadget,
an inverting turn, shown in Figure 12. Unlike in Figure 7,
the wire state is switched during the turn. Observe that
in Figure 7, turning does not change crenellation parity,
but the straight-through path, which would invert if
not terminated, does change crenellation parity. The
inverting turn also does not change crenellation parity.
Therefore, to change the crenellation parity of a wire,
we can invert it (straight through), changing the parity,
and add a sequence left inverting turn, right turn, right
turn, left turn to restore the original line of the wire.
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Figure 9: Crenellated Constant gadget

(a) State 1 (b) State 2

Figure 10: Crenellated unconstrained wire end

(a) false + true → true (b) true + true → true

(c) true + false → true (d) false + false → false

Figure 11: Crenellated OR gadget

Figure 12: Crenellated inverting Turn gadget
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