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Abstract. We present a new method for unfolding a convex polyhedron into one piece without overlap,
based on shortest paths to a convex curve on the polyhedron. Our “sun unfoldings” encompass source
unfolding from a point, source unfolding from an open geodesic curve, and a variant of a recent method
of Itoh, O’Rourke, and Vı̂lcu.

Introduction

The easiest way to show that any convex polyhedron can be unfolded is via the source
unfolding from a point s, where the polyhedron surface is cut at the ridge tree of points
that have more than one shortest path to s; see [2]. The unfolding does not overlap
because the shortest paths from s to every other point on the surface develop to straight
lines radiating from s, forming a star-shaped unfolding.
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Figure 1. Source unfolding from an open geodesic: (a) a pyramid with
an open geodesic curve S crossing two faces; (b) the ridge tree R lies in
two faces, the base and face D. (The dashed lines, together with segments
of S delimit a “dual” unfolding where the paths are attached to R.);
(c) the source unfolding showing paths emanating radially from the open
geodesic, and showing the convex curve C relevant to sun unfolding.

Our main result is a generalized unfolding, called a sun unfolding, that preserves
the property that shortest paths emanate in a radially monotone way, although they no
longer radiate from a point. We begin with an easy generalization where the point is
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2 A generalization of the source unfolding

replaced by a curve S that unfolds to a straight line segment (an open geodesic curve).
Cutting at the ridge tree of points that have more than one shortest path to S produces
an unfolding in which the shortest paths from S radiate from the unfolded S; see Figure 1.
(All proofs can be found in the long version of the paper.)

For our general sun unfolding, the paths emanate radially, not from a point or a
segment, but from a tree S, and the paths are not necessarily shortest paths from S. We
define both S and the paths based on a convex curve C on the surface of the polyhedron.
Let S be the ridge tree of C on the convex side and let R be the ridge tree of C on the
other side. Let G be the set of all shortest paths to C, where we glue together any paths
that reach the same point of C from opposite sides. We prove that the paths emanate
in a radially monotone way from the unfolded S, and hence that the polyhedron unfolds
into a non-overlapping planar surface if we make the following cuts: cut R and, for every
vertex v on the convex side of C, cut a shortest path from v to C and continue the cut
across C, following a geodesic path, until reaching R. See Figure 2.

Our result generalizes source unfolding from a point or an open geodesic, by taking
C to be the locus of points at distance ε from the source. See the curve C in Figure 1(c).
Our result is related to recent work of Itoh, O’Rourke, and Vı̂lcu on “star unfolding via
a quasigeodesic loop” [4]. A quasigeodesic loop is a special case of a convex polygonal
curve. Itoh et al. cut the polyhedron at the loop, unfold both halves (keeping R and
S intact) and attach the resulting two pieces. Their unfolding of the convex side is the
same one that we use. See Figure 3. Itoh, O’Rourke, and Vı̂lcu also have an interesting
alternative unfolding where the convex curve C remains connected (developing as a path)
while S and R are cut [3, 5]. This is possible only for special convex polygonal curves.

1 Sun unfolding

We define sun unfolding of a convex polyhedron P relative to a closed convex curve
C on P . For the purpose of this note, we consider only curves composed of a finite
number of line segments and circular arcs. In the long version of the paper we discuss
more general convex curves. The curve C splits P into two “halves”, the convex or
interior side CI , and the exterior side CE . For a point c on C (notated c ∈ C), let αI(c)
be the surface angle of CI between the left and right tangents at c, and let αE(c) be the
surface angle of CE between those tangents. Then αI(c) + αE(c) ≤ 2π, with equality
unless c is a vertex of P . Also, αI(c) ≤ π. A point c with αI(c) < π is called an internal
corner of C. A point c ∈ C with αE(c) < π is called an external convex corner of C.

The ridge tree (a.k.a “cut locus”) in CI [or CE ] is the closure of the set of points
that have more than one shortest path to C. Let S be the ridge tree of C in CI , and let
R be the ridge tree in CE . Among all the shortest paths from points of CI to C, let GI
be the maximal ones. Among all the shortest paths from points of CE to C, let GE be
the maximal ones. If c ∈ C has αI(c) = αE(c) = π, then we concatenate together the
unique paths of GI and GE that are incident to c. Let G be the resulting set of paths,
together with any leftover paths of GI and any leftover paths of GE .

Lemma 1.1 Both R and S are trees. Every vertex of P lies in R or S (or both). Every
internal corner of C is a leaf of S. Every external convex corner of C is a leaf of R.
Every path of G goes from S to R and includes a point of C. The surface of P is covered
by S, R, and G. Furthermore, any point not on S or R is in a unique path of G.
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Figure 2. Sun unfolding with respect to a convex curve: (a) a cube with
a convex curve C and the ridge tree S on the convex side; (b) the ridge
tree R on the non-convex side of C. (The dashed lines delimit a “dual”
unfolding where the paths are attached to R.); (c) the sun unfolding
showing paths emanating radially from S. Note that the two vertices on
S require cuts γ(·) to R, shown with dashed lines.

Let v be a vertex of P . If v is not in R, then it is in S, and we let γ(v) be a path of G
incident to v. The choice of γ(v) is not unique in general, but we fix one γ(v). Observe
that each γ(v) is a path from v to R, consisting of a shortest path from v to C possibly
continued geodesically to R. We define sun cuts with respect to C to consist of R and
the paths γ(v), for v a vertex of P in CI ∪ C. Note that a vertex on C may be a leaf of
R, in which case γ(v) has length 0.

Theorem 1.2 Let C be a closed convex curve on the surface of a convex polyhedron P ,
such that C is composed of a finite number of line segments and circular arcs. Then sun
cuts with respect to C unfold the surface of P into the plane without overlap.

To prove the theorem, we first show that the sun cuts form a tree that reaches all
vertices of P—hence the surface unfolds to the plane. To show that the unfolded surface
does not overlap, we prove by shrinking C and applying induction that S unfolds without
overlap and that the paths of G emanate from the unfolded S in a radially monotone
way, defined as follows. Make a tour clockwise around the unfolded S, travelling in the
plane an infinitesimal distance away from the unfolded S. See Figure 3(b). Parts of the
tour are off the unfolded surface P . In particular, whenever a cut reaches S, there will
be a gap in the unfolding. Apart from the gaps, at any point of the tour we are at a
point p of P − (S ∪ R), so by Lemma 1.1 there is a unique path γ(p) ∈ G containing
p and extending to R. Extend this path to a ray, and let f(p) be the corresponding
point on the circle at infinity. We say that G emanates from the unfolded S in a radially
monotone way if, as p tours clockwise around S, f(p) progresses clockwise around the
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circle at infinity, i.e., if p′′ > p′ > p along the tour then f(p′′) ≥ f(p′) ≥ f(p) clockwise
around the circle at infinity.
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Figure 3. The sun unfolding with respect to a geodesic loop Q on a cube,
based on an example from Fig. 1 of Itoh et al. [4]: (a) the ridge trees S
and R on the two sides of the curve Q (superimposed on the unfolding
from [4]); (b) the sun unfolding with respect to Q, showing a tour around
S and the paths emanating in a radially monotone way from S. The faint
horizontal and vertical lines in (a) are the edges of the cube.

2 Conclusion

Our sun unfolding generalizes one of the basic unfolding methods for convex polyhedra,
namely the source unfolding from a point. The other basic unfolding method is the star
unfolding from a point s, where the polyhedron surface is cut along a shortest path from
every vertex to s [1]. This is dual to the source unfolding in that the shortest paths are
attached in one case to s (for source unfolding) and in the other case to the ridge tree
(for star unfolding). The dual of our sun unfolding would be to attach the paths of G
to the ridge tree R and cut the ridge tree S and paths of G from vertices to S. See for
example Figure 1(b) and Figure 2(b). We conjecture that this unfolds without overlap.
A first step would be to prove that the star unfolding from an open geodesic unfolds
without overlap.
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