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The goal of a 2D assembly puzzle is to arrange a
given set of polygonal pieces in a way that they do
not overlap and form a target polygonal silhouette.
For example, there are over 5,000 Tangram assem-
bly puzzles [4], and many more similar 2D assembly
puzzles; see, e.g., [2]. A recent trend in the puzzle
world is a relatively new type of 2D assembly puzzle
which we call symmetric assembly puzzles. In these
puzzles the target shape is not specified. Instead, the
objective is to rearrange the polygonal pieces so that
they form a symmetric silhouette (as before, overlap
of the pieces is not allowed).

The first symmetric assembly puzzle, “Sym-
metrix”, was designed in 2003 by Japanese puzzle
designer Tadao Kitazawa, and was distributed as
his exchange puzzle at the 2004 International Puzzle
Party (IPP) in Tokyo [3]. In this paper, we aim for
an arrangement that creates mirror symmetry (re-
flection through a line), but other symmetries such
as central symmetry or 180◦ rotation (or all of the
above) could be considered. The lack of a target
shape specification makes these puzzles quite diffi-
cult to solve in practice, even for relatively few and
simple pieces.

In this paper, we study the computational com-
plexity of symmetric assembly puzzles in their gen-
eral form. Given n simple polygons P1, P2, . . . , Pn,
with m1,m2, . . . ,mn vertices respectively, the goal
is to find a mirror-symmetric polygon that can be
exactly covered by P1, P2, . . . , Pn. We may either al-
low or forbid the pieces to flip over (reflect). Given
the difficulty humans have with few low-complexity
shapes, we consider two different generalizations:
bounded piece complexity (mi = O(1)) and bounded
piece number (n = O(1)). In the former case, we
prove strong NP-hardness, while in the latter case,
we solve the problem in polynomial time (but the
exponent depends on the number of pieces).

Theorem 1 Symmetric assembly puzzles are
strongly NP-hard even if each piece is a polyomino
that has at most six vertices and its area is upper
bounded by a polynomial function of the number of
pieces.
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We reduce from the Rectangle Packing Puz-
zle problem, known to be strongly NP-hard [1].
Specifically, it is (strongly) NP-complete to decide
whether n given rectangular pieces—sized 1×x1, 1×
x2, . . . , 1 × xn, where the xi’s are positive integers
bounded above by a polynomial in n—can be ex-
actly packed into a specified rectangular box of area
x1 + x2 + · · ·+ xn.

Let I = (x1, . . . , xn, w, h) be a rectangle packing
puzzle. Without loss of generality, we assume that
w ≥ h. Now let I ′ = (P1, . . . , Pn, F ) be the symmet-
ric assembly puzzle where Pi is the 1× xi rectangle
for each i ∈ {1, . . . , n}, and F is the polyomino in
Figure 1. We call F the frame piece of I ′. We show
that I has a rectangle packing if and only if I ′ has a
symmetric assembly.

H = 3w

W = 4w

w

h (≤ w)

Figure 1: The frame piece F .

Clearly, if I has a rectangle packing, then the
pieces P1, . . . , Pn can be packed into a w × h rect-
angle, which combined with the frame piece cre-
ate a W × H rectangle. A rectangle is mirror-
symmetric, solving the symmetric assembly puzzle.
Now we show the reverse implication. Assume that
I ′ has a symmetric arrangement, and let O∗ be
a mirror-symmetric polygon formed by the pieces
{P1, . . . , Pn, F}. We claim that O∗ must be a W×H
rectangle, which will imply that I is a yes-instance
of RPP. Fix a placement of the pieces of I ′ that
forms O∗, and ` be one of its lines of symmetry. As-
sume without loss of generality that ` is a vertical
line. Let F ` be the mirror-symmetry of F with re-
spect to `. It can be shown that area(F ∩ F `) ≥
WH − 2wh ≥ 10w2, implying that ` passes through
an interior point of F . Let `B be the line containing
the segment of F with length 4w. Let c be the center
of the frame piece’s bounding box.

Lemma 2 `B is either parallel or orthogonal to `.
Further, ` passes through c.

So ` passes through c and is either parallel or or-
thogonal to `B (see Figure 4). In either case, F ∪FL
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Figure 2: If ` and `B form an angle of π/4, then
F ∩ F ` is contained in a rectangle in an H ×H and
thus O∗ cannot be mirror-symmetric.

F ∩ F ℓ F ∩ F ℓ

Figure 3: When ` passes to the left of c, the portion
of F to the left of ` is too small [Left]. If it passes
to the right [Right], the right portion would be too
small.

is a W ×H rectangle, and thus O∗ = F ∪ FL. This
implies that O∗ \ F is a w× h rectangle which must
contain the remaining pieces of I ′. In particular, we
have that this placement gives a solution to the in-
stance I of RPP, completing the proof of Theorem 1.
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Figure 4: If ` passes through c, and is either orthogo-
nal or parallel to `B , the symmetric assembly puzzle
can only be completed into a rectangle.

Next we turn to symmetric assembly puzzles with
a constant number of polygonal pieces with many
vertices, and show that this generalization can be
solved in polynomial time.

Theorem 3 Symmetric assembly puzzles with a
constant number of polygonal pieces, having a total
of n vertices, are polynomial-time (in n) solvable.

The proof is a careful case analysis, focusing on
the special case of two pieces, P1 and P2, which are
simple polygons having n1 and n2 vertices (respec-
tively). Detecting whether or not a simple n-gon has

a line of symmetry can be done in time O(n) [5]. For
symmetric assembly puzzles, our goal is to determine
if there exists a mirror-symmetric simple polygon R
such that R can be exactly covered (without over-
lap) by P1 and P2, allowing them to be flipped and
rotated.

Here, we consider R to be a nondegenerate simple
polygon, disallowing, e.g., that it have a cut vertex.
The degenerate case can be handled easily, assuming
that P1 and P2 are nondegenerate simple polygons
(without cut vertices themselves), since the presence
of a cut vertex at v of R implies that v is a vertex
of either P1 or P2 that is in contact with a vertex
or edge of the other piece, and that any valid line of
symmetry, `, must pass through v (by the assump-
tion that each piece Pi has no cut vertex); thus, each
of P1 and P2 would have to be mirror-symmetric,
with at least one of them mirror-symmetric with re-
spect to a line through one of its vertices. We then
considers how the line of symmetry, `, lies with re-
spect to R, P1, and P2; refer to Fig. 5 for a depiction
of the cases; analysis not presented here.
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Figure 5: Case analysis for how the line of symmetry
` lies with respect to R, P1, and P2.

The main remaining open question is whether
symmetric assembly puzzles are fixed-parameter
tractable with respect to the number of pieces. We
conjecture, however, that the problem is W[1]-hard.
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