
Symmetric Assembly Puzzles are Hard,
Beyond a Few Pieces

Erik D. Demaine1, Matias Korman2, Jason S. Ku1, Joseph S. B. Mitchell3,
Yota Otachi4, André van Renssen5,6, Marcel Roeloffzen5,6,

Ryuhei Uehara4, and Yushi Uno7

1 MIT, {edemaine,jasonku}@mit.edu
2 Tohoku University, mati@dais.is.tohoku.ac.jp.

3 Stony Brook University, joseph.mitchell@stonybrook.edu
4 JAIST, {otachi,uehara}@jaist.ac.jp

5 National Institute of Informatics, {andre,marcel}@nii.ac.jp
6 JST, ERATO, Kawarabayashi Large Graph Project

7 Osaka Prefecture University, uno@mi.s.osakafu-u.ac.jp

Abstract. We study the complexity of symmetric assembly puzzles:
given a collection of simple polygons, can we translate, rotate, and pos-
sibly flip them so that their interior-disjoint union is line symmetric?
On the negative side, we show that the problem is strongly NP-complete
even if the pieces are all polyominos. On the positive side, we show that
the problem can be solved in polynomial time if the number of pieces is
a fixed constant.

1 Introduction

The goal of a 2D assembly puzzle is to arrange a given set of pieces so that they
do not overlap and form a target silhouette. The most famous example is the
Tangram puzzle, shown in Fig. 1. Its earliest printed reference is from 1813 in
China, but by whom or exactly when it was invented remains a mystery [5].
There are over 2,000 Tangram assembly puzzles [5], and many more similar 2D
assembly puzzles [3]. A recent trend in the puzzle world is a relatively new type
of 2D assembly puzzle which we call symmetric assembly puzzles. In these puzzles
the target shape is not specified. Instead, the objective is to arrange the pieces
so that they form a symmetric silhouette without overlap.

The first symmetric assembly puzzle, “Symmetrix”, was designed in 2003
by Japanese puzzle designer Tadao Kitazawa and was distributed by Naoyuki
Iwase as his exchange puzzle at the 2004 International Puzzle Party (IPP) in
Tokyo [4]. In this paper, we aim for arrangements that are line symmetric (re-
flection through a line), but other symmetries such as rotational symmetry could
also be considered. The lack of a specified target shape makes these puzzles quite
difficult to solve.

We study the computational complexity of symmetric assembly puzzles in
their general form. We define a symmetric assembly puzzle or SAP to be a set
of k simple polygons P = {P1, P2, . . . , Pk}, with n = |P1| + · · · + |Pk| the total

(1)

(2)
(3)

Q: Can you make a line symmetric
 shape from these two pieces?
 (Two solutions)

Fig. 1. [Left] The seven Tangram pieces (1) can be assembled into non-simple sil-
houettes (2) and (3). [Right] A symmetric assembly puzzle invented by Hiroshi Ya-
mamoto [7]: given the two black pieces (right) from the classic T puzzle (left), make
two different line symmetric shape. (Used with permission.)

number of vertices in all pieces. By simple polygon we mean a closed subset of
R2 homeomorphic to a disk bounded by a closed path of straight line segments
where nonadjacent edges and vertices do not intersect. A symmetric assembly
f : P → R2 of a SAP P is a planar isometric embedding of the pieces so that their
mapped interiors are disjoint and their mapped union forms a simple polygon
that is line symmetric. We allow pieces to flip over (reflect), but other variants of
the puzzle may disallow this. Given that humans have difficulty SAPs with even
few low-complexity pieces, we consider two different generalizations: bounded
piece complexity (|Pi| = O(1)) and bounded piece number (k = O(1)). In the
former case, we prove strong NP-completeness, while in the latter case, we solve
the problem in polynomial time (the exponent is linear in k).

2 Many Pieces

First we show that it is hard to solve symmetric assembly puzzles with a large
number of pieces, even if each piece has bounded complexity (|Pi| = O(1)).

Theorem 1. Symmetric assembly puzzles are strongly NP-complete even if each
piece is a polyomino with at most six vertices and area upper bounded by a
polynomial function of the number of pieces.

If a SAP has a solution, the location and orientation of each piece within
a symmetric assembly is a solution certificate of polynomial size checkable in
polynomial time, so symmetric assembly puzzles are in NP. We reduce from
the Rectangle Packing Puzzle problem, known to be strongly NP-hard [2].
Specifically, it is (strongly) NP-complete to decide whether k given rectangular
pieces—sized 1×x1, 1×x2, . . . , 1×xk, where the xi’s are positive integers bounded
above by a polynomial in k—can be exactly packed into a specified rectangular
box with given width w and height h and area x1 + x2 + · · ·+ xk = wh.

Let I = (x1, . . . , xk, w, h) be a rectangle packing puzzle. Without loss of
generality, we assume that w ≥ h. Now let I ′ = (P1, . . . , Pk, F) be the SAP
where Pi is the 1× xi rectangle for each i ∈ {1, . . . , k}, and F is the polyomino
in Fig. 2. We call F the frame piece of I ′. We show that I has a rectangle packing
if and only if I ′ has a symmetric assembly.

Clearly, if I has a rectangle packing, then the pieces P1, . . . , Pk can be packed
into the w×h hole in the frame piece creating a line symmetric W×H rectangle,

H = 3w

W = 4w

w

h (≤ w)

F ∩ F

α

F F

αL

αR

βL

βR

Fig. 2. [Left] The frame piece F . [Middle] If ` and `B form an angle of π/4, then F ∩F `

is contained in a rectangle in an H ×H and thus O∗ cannot be line symmetric. [Right]
The angles αL, βL, αR, and βR.

solving the SAP. Now we show the reverse implication. Assume that I ′ has a
symmetric assembly, and let O∗ be a line symmetric polygon formed by the
pieces {P1, . . . , Pk, F}. We claim that O∗ must be a W × H rectangle, which
will imply that I is a yes-instance of RPP. Fix a placement of the pieces of I ′

that forms O∗, and let ` be one of its lines of symmetry. Assume, without loss
of generality, that ` is a vertical line. Let F ` be the reflection of F about `.

Observation 1 area(F ∩ F `) ≥WH − 2wh ≥ 10w2

Proof. Since O∗ contains F ` and F , it holds that area(F ` \F) ≤ area(O∗ \F) =
wh. Since F ∪ F ` is mirror-symmetric, area(F ` \ F) = area(F \ F `). Hence, it
follows that area(F ∩ F `) = area(F)− area(F \ F `) ≥WH − 2wh ≥ 10w2. ut

Observation 1 implies that ` passes through an interior point of F . Let `B
be the line containing the segment of F with length 4w. Let c be the center of
the frame piece’s bounding box.

Lemma 1. `B is either parallel or orthogonal to `.

Proof. Suppose for contradiction that `B is neither parallel nor orthogonal to
`. Let α be the smaller angle made by `B and `. We partition the edges of F
crossed by ` into two at their intersection points. Let FL and FR be the sets of
segments on the left and right portions of F , respectively. Consider the set of
counter-clockwise angles between ` and the lines containing segments of FL. The
assumptions that `B and ` are neither parallel nor orthogonal, and that F is a
polyomino together imply that the set contains exactly two angles αL and βL,
where αL ≤ βL and αL + π/2 = βL. Similarly, let αR and βR be the clockwise
angles between ` and the lines containing segments of FR, where αR ≤ βR and
αR + π/2 = βR. Since αL + βR = π, it holds that αL + αR = π/2. Note that
α ∈ {αL, αR}.

Two distinct pieces of I ′ are connected if the fixed placement of the two pieces
to form O∗ have a non-degenerate line segment on their edges in common. Let
P be the subset of {P1, . . . , Pn, F} such that each Pi ∈ P can be reached from
F by repeatedly following connected pieces in O∗.

As before, consider the angles formed by ` and the lines containing segments
in the left and right parts of P. Since all pieces are polyominoes, these lines

cannot make angles other than αL, βL, αR, and βR with `. Further note that
the subset O′ of O∗ covered by P must be mirror-symmetric with respect to `, or
else O∗ would not be. This implies that αL = αR. Since αL+αR = π/2, the only
solution in which ` is not parallel or orthogonal to `B is when αL = αR = π/4
and α = π/4. However, if α = π/4, then F ∩F ` is a subset of an H×H rectangle
(see Fig. 2), whose area is at most H2 = 9w2, contradicting Observation 1. ut

F ∩ F F ∩ F

cc w
h

w

h

Fig. 3. [Left] When ` passes to the left of c, the portion of F to the left of ` is too
small. If it passes to the right, the right portion would be too small. [Right] If ` passes
through c, and is either orthogonal or parallel to `B , the symmetric assembly puzzle
can only be completed into a rectangle.

So ` is either parallel or orthogonal to `B . Further, it passes through c (see
Fig. 3). In either case, F ∪F ` is a W ×H rectangle, and thus O∗ = F ∪F `. This
implies that O∗ \ F is a w× h rectangle that must contain the remaining pieces
of I ′. In particular, we have that this placement packing of P1, . . . , Pn gives a
solution to the instance I of RPP, completing the proof of Theorem 1.

3 Constant Pieces

Next we analyze symmetric assembly puzzles with a constant number of pieces
but many vertices, and show they can be solved in polynomial time.

Theorem 2. Given a symmetric assembly puzzle with a constant number of
pieces k containing at most n vertices in total, deciding whether it has a sym-
metric assembly can be decided in polynomial time with respect to n.

To prove this theorem, we present a brute force algorithm for solving a SAP
that runs in polynomial time for constant k. We say two pieces in a symmetric
assembly are connected to each other if their intersection in the symmetric as-
sembly contains a non-degenerate line segment, and let the connection between
two connected pieces be their intersection not including isolated points. We will
call two pieces fully connected if their connection is exactly an edge of one of the
pieces, and partially connected otherwise. Call a piece a leaf if it connects to at
most one piece, and a branch otherwise. Given a leaf, let its parent be the piece
connected to it (if it exists), and let its siblings be all other pieces connected to
its parent. An illustration demonstrating these terms can be found in Fig. 4.

We will use a few utility functions in our algorithm. Deciding whether a
single simple polygon has a line of symmetry can be done in linear time [6]. We
will use isSym(P) to denote this algorithm, returning TRUE if polygon P has
a line of symmetry and FALSE otherwise. In addition, we can test congruence

of polygons in linear time using cong(P,Q), returning TRUE if P and Q are
congruent polygons, and FALSE otherwise.

In addition, we will need to construct simple polygons from provided simple
polygons by laying them next to each other along an edge. Let EP denote the set
of directed edges (pi, pj) from a vertex pi to an adjacent vertex pj of some simple
polygon P . Given an edge e ∈ EP , we denote its length by λ(e). Let eP = (p1, p2)
be a directed edge of a polygon P , let eQ = (q1, q2) be a directed edge of a
polygon Q, and let d be a nonnegative length strictly less than λ(eP) + λ(eP).
Translate Q so that q1 is incident to the point on the ray from p1 containing eP
a distance d from p1; then rotate Q so eQ is collinear and in the same direction
as eP ; and finally possibly reflect Q about eQ if necessary so that the respective
interiors of P and Q incident to eP and eQ lie in different half planes. Call these
transformations the mapping g : P ∪ Q → R2. Then we define join(eP , eQ, d)
to be either, g(P)∪ g(Q) if it is a simple polygon and the interior of g(P)∩ g(Q)
is empty (forms a simple polygon without overlapping pieces), or otherwise the
empty set. See Fig. 4.

P
a

b
c

d

join(eP , eQ, d)

eP

eQ

d
P

Q

p1

p2

q1

q2

Fig. 4. [Left] Visualization of a join operation. [Right] Example symmetric assembly
P showing its connection graph. Pieces a and d are fully connected to piece b, with c
partially so. Pieces b, c, and d are branches. Piece a is a leaf, with b its parent and c
and d the siblings of a.

If a SAP has a symmetric assembly, let its connection graph be a graph on the
pieces with an edge connecting two pieces if they are connected in the symmetric
assembly. Because a symmetric assembly is a simple polygon by definition, its
connection graph is connected and has a spanning tree; we can then construct the
assembly using a concatenation of join procedures in breadth-first-search order
from an arbitrary root. Because parameter d is not discrete, the total solution
space of simple polygons that are constructible from the pieces of a SAP may
be uncountable. However, we can exploit the structure of symmetric assemblies
to search only a finite set of configurations.

Case 2:Case 1: Case 3:

Fig. 5. Examples of symmetric assemblies belonging to each case. Case 1 highlights
vertices of connected pieces that intersect. Case 2 highlights join operations using
lengths of piece edges. Case 3 is constructed from one symmetric piece and a pair of
congruent pieces.

In order to enumerate possible configurations, we would like to distinguish
between three cases of puzzle (see Fig. 5), specifically:

Case 1: the puzzle has a symmetric assembly in which two connected pieces
share a vertex on their connection;

Case 2: the puzzle has a symmetric assembly not satisfying Case 1 in which
the distance between vertices from the connecting edges between two
connected pieces has the same length as an edge from a third piece (we
say the connection between two pieces constructs the length of another
edge); or

Case 3: the puzzle has a symmetric assembly not satisfying Case 1 or Case 2
where a nonempty set of pieces are symmetric about the line of sym-
metry of the symmetric assembly, and any remaining pieces are pairs of
congruent pieces.

Lemma 2. If a SAP has a symmetric assembly, it can be described by one to
the above three cases.

Proof. Suppose for contradiction we have a symmetric assembly f : P → R2 of
a SAP P that does not satisfy any of the above cases let s : f(P) → f(P) be
an automorphism reflecting f(P) across a line of symmetry L, and let µ = s ◦ f ,
mapping a point p ∈ P to the reflection of f(p) across L.

Consider the connection graph of f(P). Because the symmetric assembly
forms a simple polygon and no two connected pieces share a vertex, by exclusion
from Case 1 the connection graph is a tree which we call a connection tree, or
else the symmetric assembly would not be homeomorphic to a disk. Further, all
connections are single non-degenerate line segments.

Let P be a leaf in the symmetric assembly, whose siblings include at most
one branch. We claim that either P is a line symmetric polygon, or µ(P) is itself
a piece of the SAP congruent to P contradicting exclusion from Case 3. First,
if P has no parent and is the only piece in the symmetric assembly, P must be
a line symmetric polygon. Otherwise, let Q be the parent of P with edge eP
from EP touching edge eQ from EQ. Let eQP denote the subset of eQ that maps
to the intersection f(eP) ∩ f(eQ). Segment f(eQP) cannot lie along L or else
one of f(eP) or f(eQ) would share a vertex with another piece, contradicting
exclusion from Case 1. Alternatively suppose f(eQP) and µ(eQP) are the same
line segment. As a leaf, P connects to the rest of the symmetric assembly only
through f(eQP), so for the assembly to be symmetric, f(P) must be the same
as µ(P), and piece P is a line symmetric polygon.

Lastly, suppose f(eQP) and µ(eQP) are not the same line segment; we claim
µ(P) is itself a piece of the SAP congruent to P . Suppose for contradiction it
were not. Then µ(P) either (a) contains a piece as a strict subset, (b) does not
fully contain a piece but intersects interiors of multiple pieces, or (c) is a strict
subset of a single piece (see Fig. 6).

First suppose (a), so µ(P) contains some piece S as a strict subset. Root
the connection tree at a piece R with the shortest graph distance to S in the
connection tree for which f(R) ∩ µ(P) 6= ∅ and f(R) \ µ(P) 6= ∅ which exists

(b)(a) (c)

Q

P

P

Q

f(P) µ(P)

Q∗
eP

ePQeQ

Fig. 6. Possible topological configurations of µ(P).

because µ(ePQ) must intersect some piece. Then a leaf P ′ with a longest root
to leaf path that contains S is also fully contained in µ(P). Let Q′ be its parent
with edge e′P from P ′ touching edge e′Q from Q′. Because R is the piece crossing
the boundary of µ(P) closest to S in the connection tree and P ′ has the longest
root to leaf path, e′Q connects to at most one branch piece that intersects µ(P).
Segment f(e′P) cannot contain an edge of the symmetric assembly or else it
would construct a length equal to an edge of P , contradicting exclusion from
Case 2. So every leaf fully contained in µ(P) connected to e′Q is fully connected
to Q′. Each endpoint of the subset of e′Q in µ(P) has shortest Euclidean distance
to the connection of one leaf intersecting µ(P) connected to e′Q. But at least one
of these leaves is fully contained in µ(P) which that would construct a length
equal to an edge of P , contradicting exclusion from Case 2. So µ(P) does not
fully contain a leaf, contradicting case (a).

Now suppose (b), and suppose two connected pieces intersect µ(P). The edges
connecting these two pieces must overlap in µ(P) to construct a length equal to
an edge of P , contradicting exclusion from Case 2. So µ(P) does not intersect
the interior of multiple branch pieces.

Finally suppose (c), and let µ(P) be the strict subset of some piece Q∗.
Segment f(eP) cannot contain an edge of the symmetric assembly or else it would
create a length equal to an edge of Q∗, contradicting exclusion from Case 2. So P
is fully connected. A useful corollary of the preceding three arguments is that the
reflection of any partially connected leaf of a symmetric assembly that conforms
to neither Case 1 nor Case 2, must itself be a piece congruent to the leaf. We
will refer to this property later as partial leaf congruence.

Here we note that none of the arguments so far have required P to be a
leaf having at most one branch sibling; we will use that fact in the argument
to follow. Let ` be the line collinear with segment f(eQP), and let e` be the
subset of Q that maps to the largest connected subset of ` ∩ f(Q) containing
f(eQP). Consider the two disconnected sections of the boundary of Q between
an endpoint of ePQ and an endpoint of e`, which must each be more than an
isolated point or exclusion from Case 1 would be violated. Piece P has at most
one branch sibling, so at most one of these sections can be connected to a branch.
Let q be an endpoint of e` in a section not connected to a branch.

Consider the boundary of Q between eQP and q. Suppose this boundary were
a line segment subset of eQ, implying the internal angle of Q at q is less than
π; see Fig. 7. Then µ(q) is in f(Q∗) or else Q∗ would connect to another piece
somewhere on the segment between eQP and q and construct an edge of the same
length as a leaf connected to eQ, contradicting exclusion from Case 2. If µ(q)

f(P) µ(P)

P

Q

e

ePQ q
Q∗

µ(q)

× ×<π

µ(P)

Q∗

f(P)

P

Q

e

ePQ q
q

× µ(q)>π

Fig. 7. Considering if µ(P) is a strict subset of Q∗ and the boundary between ePQ and
q is a [Left] straight line or [Right] not a straight line.

is in f(Q∗) and Q does not connect with any other piece at q, then µ(q) must
be a vertex of f(Q∗). Alternatively, q partially connects to a leaf through eQ.
By partial leaf congruence, the reflection of this leaf must itself be a congruent
piece, so µ(q) is a vertex of f(Q∗). In either case, the edge of Q∗ adjacent to
µ(q) contained in µ(eQ) will have the same length as the subset of eQ between
q and a vertex of a leaf, contradicting exclusion from Case 2.

Thus, the boundary of Q between eQP and q is not a line segment, so f(Q)
must cross `, and the endpoint q′ of eQ in this section is a vertex of Q with
internal angle greater than π; see Fig. 7. By the same argument as in the pre-
ceding paragraph, µ(q′) must be in f(Q∗), and if it were a vertex, we would
have the same contradiction as before. However this time µ(q′) need not be a
vertex of f(Q∗) because f(Q∗) may extend past µ(q′), with Q∗ connecting to
another piece on the other side of e`. However, the connection between these
pieces will construct an edge that is the same length as an edge in either Q or
a leaf connected to Q, and we have arrived at our final contradiction. So if P is
not line symmetric, µ(P) is itself a piece of the SAP congruent to P .

Thus, our SAP has a leaf that is either a line symmetric piece, symmetric
about the line of symmetry, and/or exists in a pair of two leaf pieces that are
congruent and symmetric about the line of symmetry. If we remove such an
identified leaf piece or pair from the SAP, what remains is a SAP with fewer
pieces also admitting a symmetric assembly. Further, removing pieces cannot
make the new SAP belong to one of the cases that the original SAP did not
before. Repeatedly removing pieces using this process identifies every piece as
either symmetric, or uniquely paired with a piece congruent to it, contradicting
exclusion from Case 3. ut

Since every symmetric assembly can be classified as one of these cases, we
can check for each case to decide if the SAP has a symmetric assembly. Given a
SAP that does not satisfy Case 1 or Case 2, by Lemma 2 it must satisfy Case 3
if it has a symmetric assembly. Satisfying Case 3 is not sufficient to ensure a
symmetric assembly. For example, two congruent regular polygons with many
sides and a single regular star with many spikes cannot by themselves form a
symmetric assembly though they satisfy Case 3 because no pair of edges can be
joined without making the pieces overlap. Thus given a SAP in Case 3, we must
search the configuration space of possible connected arrangements of the pieces
for an arrangement that forms a simple polygon.

Recall that the connection graph for a symmetric assembly not in Case 1
must be a tree. For a SAP with k pieces, Cayley’s formula says the number of
distinct connection trees is kk−2 [1]. However, even if two pieces are connected,

they could be connected through O(n2) different pairs of edges, so the number
of different edge distinguishing connection trees, connection trees distinguishing
between which pairs of edges are connected, can be no more than n2kkk = O(n2k)
(k is constant). As an instance of Case 3, P consists of one or more symmetric
pieces, with the rest being congruent pairs. Let DP and D′P be maximal disjoint
subsets of P such that there exists a matching η : D′P → DP between pieces
in DP and D′P such that matched pairs are congruent. Let SP be the set of
symmetric pieces in P not in DP or D′P . Let ST denote some subset of the
symmetric pieces contained in DP , and define a trunk to be a subset of symmetric
pieces RT = SP ∪ ST ∪ η(ST) that can be connected into a simple polygon
without overlap while aligning each of their lines of symmetry to a common
line L (see Fig. 8). Define a half tree T to be an edge distinguishing connection
tree on RT ∪ DP such that every piece in DP connected to a piece R in RT

connects through an edge of R intersecting the same half-plane bounded by L.
We call this half-plane the connecting half-plane, with the other half-plane the
free half-plane. The reason we define half trees is if we can find a point in their
configuration space for which pieces do not intersect and for which pieces in DP
not in the trunk do not intersect the free half-plane, we can place the remaining
congruent pieces in DP \ ST at the mirror image of their respective matched
pairs to complete a symmetric assembly.

Let TP be the set of possible half trees. Let LT be the set of undirected
edges {P,Q} where piece P is connected to piece Q in tree T ∈ TP , and let
m = |LT | < k. For a fixed edge distinguishing connection tree, the orientation of
each piece is fixed as pieces may only translate along their specified connection.
We want to define a set of intervals IT {P,Q} where we could join eP to eQ
while together forming a simple polygon, without overlap between P and Q.
For each {P,Q} ∈ LT with eP and eQ the respective connecting edges of P
and Q with λ(eP) ≥ λ(eQ), let IT {P,Q} be defined as follows. If P and Q are
both in RT , let IT {P,Q} be the empty set if join(eP , eQ, dPQ) is the empty
set and {dPQ} otherwise, where we use dPQ to denote |λ(eP) − λ(eQ)|/2, the
distance d would need to be in order to align the midpoints of eP and eQ.
Alternatively if P or Q are not in RT , let IT {P,Q} be the closure of the set
of distances d for which join(eP , eQ, d) is nonempty. The number of distinct
intervals in IT {P,Q} is at most linear in the number of vertices, O(n). Any
fixed arrangement of the pieces consistent with edge distinguishing connection
tree T joins each pair of pieces by fixing one point in every IT {P,Q}, so the set
of configurations is a subset of Rm. Ignoring overlap between pieces that are not
connected, the configuration space CT of possible arrangements is equal to the
cartesian product of IT {P,Q} for every {P,Q} ∈ LT . Thus CT is a set of O(nm)
disjoint m-dimensional hyperrectangles in Rm.

We now describe the subset of Rm where intersection occurs between two
pieces that are not connected in T . If two pieces in a configuration overlap, by
continuity there exist two edges eP and eQ from two distinct pieces P and Q
that also intersect. The positions of eP and eQ are translations parameterized by
a point in CT and the region in which the two edges intersect is a convex region

A

L
B

C
G

H

D

E

F

B,E}

{E,F }

{E,F }

I {B,E}

Rm
T

T

C

IT

IT

I {T

Fig. 8. An example showing a SAP P satisfying Case 3, with SP = {A,B}, DP =
{C,E, F}, D′P = {D,G,H}, ST = {C}, η(ST) = {D}, and trunk RT = {A,B,C,D}.
IT for two connected pieces in the trunk is just a single point as shown by the midpoint
of their connection. Pieces not in the trunk have a degree of freedom sliding along their
connection. IT {E,F} is a single interval where F can attach to E, while IT {B,E} is
a four intervals. The right diagram shows CT the cartesian product of each IT .

1 Function hasAssemblyCase3(P)
2 input : Symmetric assembly puzzle P that satisfies Case 3.
3 output : TRUE if P has a symmetric assembly, FALSE otherwise.
4 for T ∈ TP do
5 C′T ← CT
6 for {P,Q} ∈ LT do
7 C′T ← C′T \ XT {eP , eQ}
8 if int(C′T) 6= ∅ then
9 return TRUE

10 else if C′T 6= ∅ and DP = ∅ then
11 return TRUE

12 return FALSE

Algorithm 1: Pseudocode for function hasAssemblyCase3(P)

XT {eP , eQ} ⊂ Rm bounded by four hyperplanes forming the m-dimensional
parallelogram representing the intersection of the two edges. For each O(n2)
pair of edges from distinct pieces that are not connected, we can subtract each
XT {eP , eQ} from CT to form C′T . If C′T contains any point in its interior, then
there exists a symmetric assembly since it will be a point in the configuration
space avoiding overlap between pieces. However, the boundary of C′T may contain
configurations that are weakly simple as the boundaries of each IT not between
two pieces in RT and the boundaries of each XT all correspond to configuration
containing non-simple touching between pieces. Thus we require C′T to have a
point on its interior unless all pieces exist in RT , where C′T may be a single point
corresponding to a symmetric assembly.

Consider the function hasAssemblyCase3 described in Algorithm 1.

Lemma 3. Given symmetric assembly puzzle P that satisfies Case 3, function
hasAssemblyCase3(P) returns TRUE if and only if P has a symmetric assem-
bly, and terminates in O(n5k) time.

Proof. If P has a symmetric assembly satisfying Case 3 with nonempty DP ,
C′T will have a point on its interior for some tree T as argued above; or if DP
is empty, C′T will be nonempty. There are O(n2k) elements of TP . There are
m = O(k) interval sets IT {P,Q} each having computational complexity O(n),

so we can construct CT naively in O(nk) time. The union XT of the O(n2)
regions XT {eP , eQ}, which are m-dimensional convex regions, has computational
complexity at most O(n2m), so the final computational complexity of C′T =
CT \ XT is at most O(n3m) and can be computed in as much time. Thus, the
running time of hasAssemblyCase3 is bounded by O(n5k). ut

1 Function hasAssembly(P)
2 input : Symmetric assembly puzzle P.
3 output : TRUE if P satisfies Case 1 or Case 2 or Case 3, FALSE otherwise.
4 for eP ∈ EP , eQ ∈ EQ, {P,Q} ⊂ P do
5 S ← join(eP , eQ, 0)
6 P ′ ← (P \ {P,Q}) ∪ {S}
7 if S 6= ∅ and hasAssembly(P ′) then
8 return TRUE // Case 1

9 for eR ∈ ER, R ∈ P do
10 if λ(eR) < λ(eP) then
11 S ← join(eP , eQ, λ(eR))
12 P ′ ← (P \ {P,Q}) ∪ {S}
13 if S 6= ∅ and hasAssembly(P ′) then
14 return TRUE // Case 2

15 return hasAssemblyCase3(P) // Case 3

Algorithm 2: Pseudocode for function hasAssembly(P)

Our brute force algorithm hasAssembly(P) is described in Algorithm 2.

Lemma 4. Function hasAssembly(P) returns TRUE if and only if P has a
symmetric assembly that satisfies either Case 1, Case 2, or Case 3, and termi-
nates in O(n5k) time.

Proof. We prove by induction. For the base case, P consists of only a single
piece satisfying Case 3, which will drop directly to the last line of the algo-
rithm checking Case 3 which, by Lemma 3 will evaluate correctly. Now suppose
hasAssembly returns a correct evaluation for SAPs containing k−1 pieces. Then
we show hasAssembly returns a correct evaluation for SAPs containing k pieces.

The outer for loop of hasAssembly cycles through every pair of directed
edges eP = (p1, p2) and eQ = (q1, q2) taken from different pieces P and Q. For
each pair, hasAssembly first checks to see if there exists a symmetric assembly
for which eP is connected to eQ with p1 coincident to q1, which would satisfy
Case 1. If one exists, then joining P and Q into one piece as described would
produce a SAP P ′ with one fewer piece that also has a symmetric assembly.
Then evaluating hasAssembly on the smaller instance will return correctly by
induction. Since the outer for loop checks every possible pair of edges that could
be joined in a symmetric assembly satisfying Case 1, hasAssembly will return
TRUE if P satisfies Case 1.

Next hasAssembly checks to see if there exists a symmetric assembly for
which eP is connected to eQ with p1 and q1 separated by a distance equal to the
length of some other edge eR in P, which would satisfy Case 2. In the same way

as with Case 1, both for loops check every possible pair of edges and that could
be joined at every possible length that could produce a symmetric assembly
satisfying Case 2, so hasAssembly will return TRUE if P satisfies Case 2.

Otherwise, no symmetric assembly exists satisfying Case 1 or Case 2. By
Lemma 3, hasAssemblyCase3 correctly evaluates if P is in Case 3, so hasAssembly
returns a correct evaluation for SAPs containing k pieces. Let T (k) be the run-
ning time of hasAssembly on an instance with k pieces. Then the recurrence
relation for hasAssembly is T (k) = O(n3)T (k − 1) + O(n5k), where O(n5k) is
the running time given by Lemma 3. Running time for Case 3 dominates the
recurrence relation so hasAssembly terminates in O(n5k). ut

Now we can determining whether a symmetric assembly puzzle with a con-
stant number of pieces has a symmetric assembly in polynomial time.

Proof (of Theorem 2). By Lemma 2, if the SAP has a symmetric assembly, it
satisfies either Case 1, Case 2, or Case 3, and by Lemma 4 hasAssembly(P) can
correctly determine if it has a symmetric assembly satisfying one of the cases in
polynomial time, proving the claim. ut

Open questions include whether SAPs: are hard for simpler shapes (we con-
jecture SAPs containing only right triangles are still hard), are hard for non-
simple target shapes with constant pieces, or are fixed-parameter tractable with
respect to the number of pieces (we conjecture W[1]-hardness).

Acknowledgements: Many of the authors were introduced to symmetric as-
sembly puzzles during the 30th Winter Workshop on Computational Geometry
at the Bellairs Research Institute of McGill University, March 2015. Korman
is supported in part by the ELC project (MEXT KAKENHI No. 24106008).
Mitchell is supported in part by the National Science Foundation (CCF-1526406).
Uno is supported in part by the ELC project (MEXT KAKENHI No. 15H00853).

References

[1] A. Cayley. A theorem on trees. Quart. J. Math, 23:376–378, 1889.
[2] E. D. Demaine and M. L. Demaine. Jigsaw puzzles, edge matching, and

polyomino packing: Connections and complexity. Graphs and Combinatorics,
23(Supplement):195–208, 2007.

[3] E. Fox-Epstein and R. Uehara. The convex configurations of “Sei Shonagon Chie no
Ita” and other dissection puzzles. In 26th Canadian Conference on Computational
Geometry (CCCG 2014), pages 386–389, 2014.

[4] N. Iwase. Symmetrix. In 24th International Puzzle Party (IPP 24), page 54. IPP24
Committee, unpublished, 2005.

[5] J. Slocum. The Tangram Book: The Story of the Chinese Puzzle with Over 2000
Puzzle to Solve. Sterling Publishing, 2004.

[6] J. D. Wolter, T. C. Woo, and R. A. Volz. Optimal algorithms for symmetry detec-
tion in two and three dimensions. The Visual Computer, 1(1):37–48, 1985.

[7] H. Yamamoto. Personal communication. 2014.

