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Abstract. We analyze the puzzle video game This Game Is Not Going
To Load Itself, where the player routes data packets of three different
colors from given sources to given sinks of the correct color. Given the
sources, sinks, and some previously placed arrow tiles, we prove that
the game is in X3 ; in NP for sources of equal period; and NP-complete
for three colors and six equal-period sources with player input. Without
player input, we prove that just simulating the game is in AY, and both
NP- and coNP-hard for two colors and many sources with different pe-
riods. On the other hand, we characterize which locations for three data
sinks admit a perfect placement of arrow tiles that guarantee correct
routing no matter the placement of the data sources, effectively solving
most instances of the game as it is normally played.

1 Introduction

This Game Is Not Going To Load Itself (TGINGTLI) [6] is a free game created
in 2015 by Roger “atiaxi” Ostrander for the Loading Screen Jam, a game jam
hosted on [itch.io, where it finished 7th overall out of 46 entries. This game jam
was a celebration of the expiration of US Patent 5,718,632 [2], which covered the
act of including mini-games during video game loading screens. In this spirit,
TGINGTLI is a real-time puzzle game themed around the player helping a game
load three different resources of itself — save data, gameplay, and music, colored
red, green, and blue — by placing arrows on the grid cells to route data entering
the grid to a corresponding sink cell. Figure |1| shows an example play-through.

We formalize TGINGTLI as follows. You are given an m X n grid where
each unit-square cell is either empty, contains a data sink, or contains an arrow
pointing in one of the four cardinal directions. (In the implemented game, m =
n = 12 and no arrows are placed initially.) Each data sink and arrow has a
color (resource) of red, green, or blue; and there is exactly one data sink of
each color in the grid. In the online version (as implemented), sources appear
throughout the game; in the offline version considered here, all sources are known
a priori. Note that an outer edge of the grid may have multiple sources of different
colors. Finally, there is a loading bar that starts at an integer ky and has a goal
integer k*.

During the game, each source periodically produces data packets of its color,
which travel at a constant speed into the grid. If a packet enters the cell of an
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Fig. 1: Left: The (eventual) input for a real-world Level 16 in TGINGTLI. Right: A
successful human play-through that routes every packet to its corresponding sink.

arrow of the same color, then the packet will turn in that direction. (Arrows of
other colors are ignored, as are other packets.) If a packet reaches the sink of its
color, then the packet disappears and the loading bar increases by one unit of
data. If a packet reaches a sink of the wrong color, or exits the grid entirely, then
the packet disappears and the loading bar decreases by one unit of data, referred
to as taking damage. Packets may also remain in the grid indefinitely by going
around a cycle of arrows; this does not increase or decrease the loading bar. The
player may at any time permanently fill an empty cell with an arrow, which may
be of any color and pointing in any of the four directions. If the loading bar hits
the target amount k*, then the player wins; but if the loading bar goes below
zero, then the player loses.

In Section [2] we prove NP-hardness of the TGINGTLI decision problem:
given a description of the grid (including sources, sinks, and preplaced arrows),
is there a placement of arrows that causes the player to win? This reduction
works even for just six equal-period sources and three colors; it introduces a new
problem, 3DSAT, where variables have three different colors and each clause
mixes variables of all three colors. In Section [3] we introduce more detailed
models for the periodic behavior of sources, and show that many sources of
differing periods enable both NP- and coNP-hardness of winning the game, even
without player input (just simulating the game). On the positive side, we prove
that the game is in ¥ with player input, and in AY without player input. We
also prove membership in NP when the source periods are all equal, as in our
first NP-hardness proof, so this case is in fact NP-complete.

In Section [ we consider how levels start in the implemented game: a grid
with placed sinks but no preplaced arrows. We give a full characterization of
when there is a perfect layout of arrows, where all packets are guaranteed
to route to the correct sink, no matter where sources get placed. In particular,
this result provides a winning strategy for most sink arrangements in the imple-
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mented game. Notably, because this solution works independent of the sources,
it works in the online setting.

The theme of TGINGTLI — routing from source(s) to the correct sinks —
is conceptually related to other games and problems in theoretical computer
science. The road coloring theorem [7] characterizes which directed graphs have
a coloring of edges that the resulting deterministic finite automaton has a “syn-
chronizing” word which brings any start state to a common state. The Nikoli
pencil-and-paper puzzle Roma asks the player to complete a square grid with
arrows such that every square routes to a given sink square, similar to a one-
color version of TGINGTLI, but with additional constraints on arrow placement
(given regions that cannot contain arrows in the same direction); this problem
is NP-complete [I].

2 NP-Hardness for Three Colors and Six Sources

We first prove that TGINGTLI is NP-hard in the case where there are just six
sources of equal period T. That is, every T seconds all six sources simultaneously
emit a single packet.
We prove NP-hardness via reduction from a new problem called 3- Dimensional

SAT (8DSAT), defined by analogy to 3-Dimensional Matching (3DM). 3DSAT

is a variation of 3SAT where, in addition to a 3CNF formula, the input specifies
one of three colors (red, green, or blue) to each variable of the CNF formula,
and the CNF formula is constrained to have trichromatic clauses, i.e., to have
exactly one variable (possibly negated) of each color.

Lemma 1. 3DSAT is NP-complete and ASP-complete.

Proof. We reduce from 3SAT to 3DSAT by converting a 3CNF formula ¢ into

a 3D CNF formula ¢’. For each variable xz of ¢, we create three variables

M 2 2G) in ¢’ (intended to be equal copies of z of the three different colors)
and add six clauses to ¢ to force z() = z(2) = z(3):
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Thus the clauses on the left are equivalent to the implication loop z() —
2? = 20 — (I which is equivalent to () = () = z®),

For each clause ¢ of ¢ using variables x in the first literal, y in the second
literal, and z in the third literal, we create a corresponding clause ¢’ in ¢’ using
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M, y?) and 2 (with the same negations as in ¢). All clauses in ¢ (including
the variable duplication clauses above) thus use a variable of the form z(?) in the
ith literal for i € {1,2, 3}, so we can 3-color the variables accordingly.

This reduction is parsimonious: because we force ;vgl) = $§2) = x§3)7 any
solution to ¢’ is just three identical copies of a solution to ¢. Thus we also obtain
an efficiently computable bijection between solutions to ¢ and ¢’. Because 3SAT

is ASP-complete [8], so is 3DSAT.

Theorem 1. TGINGTLI is NP-hard, even with three colors and six sources of
equal period T'.

Proof. Our reduction is from 3DSAT. Figure[2) gives a high-level sketch: variables
of the same color are connected in a chain, with a source of the same color on
the left and a corresponding sink on the right, which splits and merges for each
variable. The split for variable z; allows the player to choose where to route the
packet stream of that color, into at most one of two possible literal paths z;
and Z;. The literal path taken by the packet stream is viewed as false; an empty
literal path is viewed as true. Literal paths pass through a clause gadget for each
clause containing that literal.

Each clause gadget allows at most two packet streams to successfully pass
through its three literal paths of three different colors, corresponding to the
constraint that at most two literals are false. If the player attempts to pass three
packet streams (three false literals) through the same clause gadget, one of those
streams becomes trapped in a cycle; the reduction is designed so that this results
in a loss. Thus a clause containing paths labeled {73, 7;, 21} corresponds to the
3DSAT clause z; V y; V Zg.

If all three packet streams reach their sinks, then all clauses must have been
satisfied by the chosen literals, corresponding to a satisfying assignment, and the
loading bar increases by 3. Conversely, if any packet stream gets stuck in a loop
(e.g., because a clause was unsatisfied and blocked it), then the loading bar will
increase by at most 2. We will arrange for a loss in this case.

Now we describe the reduction in detail; refer to Figure [§|for a full example.
Most cells of the game board will be prefilled, leaving only a few empty cells
(denoted by question marks in our figures) that the player can fill. Any blank
space in figures is filled arbitrary, say with a downward red arrow.

For each color, say red, we place a red source on the left edge of the construc-
tion and a corresponding red sink on the far right. Then, for each red variable x;
in sequence, we place a variable gadget of Figure [3] To prevent the packets from
entering a loop, the player must choose between sending the stream upward or
downward by placing a red arrow, which results in it following one of the two
rightward literal paths, representing the literals x; and T; respectively. Recall
that a literal whose path is followed by the packet stream is viewed as false.
Then we recombine these two literal paths with the merge gadget of Figure [4]
before splitting for the next red variable, or finally routing to the red sink.

Next we route each literal path to sequentially visit every clause containing it.
Figure[6]shows a crossover gadget to enable such routing, which works regardless
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Fig. 2: Sketch of our NP-hardness reduction. The clause gadget in (b—c) corresponds
to the 3DSAT clause x; V y; V Z.

of the colors of the paths; in particular, the central cell has a different color to
allow for the case of two crossing paths of the same color.

Figure 5| shows the clause gadget, which has just two empty cells (question
marks). If neither of these cells has an upward red arrow, then any red packets
entering on the left will cycle, going right, left, or down and then bouncing back
(given the red arrow placements in the gadget). By symmetry, the same holds
for all three colors. Thus any incoming packet stream can reach its exit on the
right only if the player places an upward arrow of that color. Given that only
two such arrows can be placed, at most two packet streams can pass through
from entrance on the left to exit on the right. Therefore, if all three literals are
false, then at least one stream of data must enter a cycle. On the other hand, if
the clause is satisfied (at least one literal is true), then the (at most two) literal
paths carrying data can pass their data to the clause’s exits (i.e., the next clause
containing the corresponding variable).

After routing the literal paths for z; and Z; to visit all clauses containing
those literals (as illustrated in Figure , we lengthen these two paths to have
the same length. This lengthening is not illustrated in Figure [§ but is easy to
do as follows. The two literal paths for a variable connect the same two squares
on the grid, so their length has the same parity. We can repeatedly lengthen any
shorter path by 2 by replacing two consecutive arrows with a diversion around
a 2 X 2 square.

Similarly, we lengthen the red, green, and blue streams to all have the same
length ¢. To achieve this property, we enforce that all three stream lengths have
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Fig. 8: An example of four variables x1,y1, 21, z2 and two clauses forming the 3DSAT
formula (z1 Vy1 VZ1) A (T1 V y1 V Z2). Path length adjustments and damage gadgets
are not depicted here.

the same parity, by placing all sources on the left edge to emit packets simulta-
neously into a common (leftmost) column, placing all sinks in a common (right-
most) column, and placing equally colored sources and sinks in a common row,
as in Figure |8 Then we can lengthen the end of any shorter stream by a multi-
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ple of 2 (in between splits into literal paths so they remain balanced) to reach
a common length ¢. These diversions may require additional rows or columns
compared to Figure [8]

If the player successfully satisfies all clauses, then they route all three colors
from source to sink, so the loading bar will increase by 3 units (1 per color) every
t seconds after an initial delay of £. We set the target and initial loading scores
to satisfy k* — kg = 3 so that the player wins in this case. If at least one color
gets stuck in a loop before reaching its sink, then the loading bar increases by at
most 2 units every t seconds after a delay of £. To ensure that the player loses
in this case, we add three copies of the damage gadget in Figure [7 adjusted in
length to incur a total of 3 damage every t seconds after an initial delay of £+ 1.
Thus in total the loading bar decreases by 1 unit every ¢ seconds, so the player
eventually loses even if kg is large. Our reduction thus allows any ky > 0 and
k* = ko + 3. For the sake of fully specifying a reduction, we can set kg = 0 and
k* = 3.

Finally, we prove correctness of the reduction.

Let ¢ be a 3D CNF formula with satisfying assignment (1, ..., Zn, Y1, -+, Ym,
21y ...,2k); we will show that there exists a solution to the TGINGTLI puzzle
produced from ¢ by our reduction. First, place up or down arrows into each
variable gadget to match the Boolean setting of the corresponding variable, so
that the packets flow to the path of the false literal. Next, for each clause of ¢, if
it has a false literal x; or Z;, we place a red up arrow into one empty cell of the
corresponding clause gadget. Similarly, for a false literal y; or 7, place a green
up arrow, and for a false literal z or Zx, place a blue up arrow; since there are
two empty cells in the gadget and at most two false literals in each clause, this
is always possible.

With this arrow placement, the three sources send packets which enter a
variable gadget of the given color, branching onto a path representing either the
negated or unnegated literal through every clause gadget that the literal appears
in, then merging into the next variable gadget of that color, repeating until the
last variable. The arrow placements in the clause gadgets ensure that, if packets
enter along a path corresponding to a false literal, then the packets will pass
through the clause. The arrow placements in the variable gadgets ensure that, if
x; is true in the assignment, then any packets that enter are routed to the path
for 77, and vice versa if false. By induction, we see that both types of placements
ensure that, during the course of the game execution, packets will (1) reach every
variable gadget, (2) traverse every false literal path, (3) pass through each clause
gadget along the false literal paths without getting stuck, and thus (4) reach the
end of the length-¢ streams and enter the correctly colored sinks. As detailed
above, the parameters are set such that when no packets get stuck, the player
will win, and therefore this placement is a solution.

Conversely, suppose ¢ is a 3D CNF formula for which the TGINGTLI puzzle
produced from ¢ by our reduction has an arrow placement layout that wins the
game; we will show that ¢ must be satisfiable. Because there are only three
sources in the damage gadgets (whose packets can never reach a matching sink)
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and three sources pointing at the first variable gadgets of each color, in order
for this layout to win the game, there must be a path for packets to traverse
from the sources to the matching sink. Those packets must be of all three colors
to offset the damage gadgets effect on the loading bar, as described above. By
construction, these paths pass through every variable gadget of the same color,
meaning that there must be a player-placed arrow pointing up or down in each.

From this analysis, we can derive an assignment to ¢ from the arrows placed
in each variable gadget: set x; to true if the arrow in the corresponding gadget
routes packets into the path for the negated literal T;, otherwise set it to false,
and similarly for each y; and zj. According to this assignment, we see that during
the game execution each clause gadget will receive packets along each false literal
path and no true literal paths. Because the packets must pass through the clause
gadget to reach the end, there must be player-placed up arrows in the empty
cells of each color of packet that enters along the false literal paths. Because
there are only two empty cells in a clause gadget, we conclude that at most two
of the literals in the corresponding clause of ¢ may be false. Thus one literal
must be true in every clause of ¢, meaning that ¢ is satisfied by this assignment.

If we allow more than six sources, we can duplicate some of the gadgets
in the reduction to adjust how much the loading bar increases and decreases,
which lets us set kg and k* to any desired values with 0 < ky < k*. For example,
we can match TGINGTLI as implemented: in level ¢ > 1, kg = max{i,3} and
k* =5+ 5i.

We also consider the parsimony of the above reduction. The only actions a
player can take in the TGINGTLI puzzle produced from a 3DSAT formula ¢ are
to place arrows into the designated empty cells (marked with question marks
in our figures) of the variable and clause gadgets. Given a satisfying assignment
to ¢, a solution to the TGINGTLI puzzle must place up or down arrows into
each variable gadget to match the boolean setting of the corresponding variable.
However, in a clause gadget, when other placements direct a packet stream of
a given color into a clause gadget, there must be a placement of an up arrow
into one of its two empty cells. Since the variable values satisfy ¢, packets of at
most two colors will pass into a clause so this is always possible, but there are
multiple ways to accomplish this: if zero packets ever enter a clause, then each
empty cell could be left empty or arbitrarilly filled with one of three colored
arrows pointing in one of four directions, thus 132 possibilities; if only one color
of packets pass through, then its up arrow can be in one of two locations and the
other empty cell again has 13 possibilities; if two colors of packets pass through,
then there only remains one binary choice of which empty cell gets which colored
arrow. Thus we see that each solution to ¢ with ¢ clauses maps to between 2°¢
and 132¢ possible layouts that will solve the corresponding TGINGTLI puzzle,
so the above reduction is not parsimonious.
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3 Membership in A} /¥? and Hardness from Source
Periodicity

In this section, we consider the effect of allowing each source to have a different
period. We show that carefully setting periods together with the unbounded
length of the game results in both NP- and coNP-hardness of determining the
outcome of TGINGTLI, even when the player is not making moves. Conversely,
we prove that the problem is in A when forbidding player input and in X¥
when allowing player input.

3.1 Model and Problems

More precisely, we model each source s as emitting data packets of its color into
the grid with its own period ps, after a small warmup time w,; during which
the source may emit a more specific pattern of packets. More generally, we can
allow an arbitrary pattern of emitted packets during the period; we will allow
this for our upper bounds, but use the simpler model of “one packet every p;
time units” for our lower bounds. We assume that periods and warmup times are
integers encoded in unary, so that the entire behavior (at which integer times
packets get emitted) during the warmup and periodic phases can be explicitly
encoded. Equivalently, the emitting pattern of a source can be defined by a tally
DFA (deterministic finite automaton over a unary alphabet [3]) where accepting
states correspond to emitted packets.

TGINGTLI as implemented has a warmup behavior of each source initially
(upon creation) waiting 5 seconds before the first emitted packet, then emitting
a packet after 2 seconds, after 1.999 seconds, after 1.998 seconds, and so on, until
reaching a fixed period of 0.5 seconds. This is technically a warmup period of
1881.25 seconds with 1500 emitted packets, followed by a period of 0.5 seconds.

In the simulation problem, we are given the initial state of the grid, a list
of timestamped events for when each source emits a packet during its warmup
period, when each source starts periodic behavior, when each source emits a
packet during its periodic phase, and when and where the player places each
arrow. We assume that event timestamps are integers encoded in binary. The
problem then asks to predict whether the player wins (the loading bar reaches k*)
before a loss (the loading bar goes below zero).

In the game problem, we are given the same list of events related to sources,
but are not given the player’s arrow placements. Instead, the problem asks
whether there exist timestamped arrow placements such that the player wins
before a loss. If we allow nondeterministic algorithms, the game problem re-
duces to the simulation problem: just guess what arrows we place, where, and
at what times.

A natural approach to solving the simulation problem is to simulate the game
from the initial state to each successive event. Specifically, given a state of the
game (a grid with sinks, sources of differing periods and offsets, placed arrows,
and the number of in-flight packets at each location) and a future timestamp ¢,
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we wish to determine the state of the game at time ¢. Using this computation, we
can compute future states of the game quickly by “skipping ahead” over the time
between events. On an m x n grid, there are O(mn) events, so we can determine
the state of the game at any time ¢ by simulating polynomially many intervals
between events.

This computation is easy to do. Given the time ¢, we can divide by each
source’s period and the period of each cycle of arrows to determine how many
packets each source produces and where the arrows route them — either to a
sink which affects loading, off the grid, stuck in a cycle, or in-flight outside a
cycle — and then sum up the effects to obtain the new amount loaded and the
number of packets at each location.

However, being able to compute future states does not suffice to solve the sim-
ulation and game problems because there might be an intermediate time where
the loading amount drops below 0 or reaches the target amount £*. Nonetheless,
this suffices to show that the problems are in appropriate complexity classes in
the polynomial hierarchy, by binary searching to find the earliest win time and
verifying that there are no earlier loss times:

Lemma 2. The simulation problem is in ALY, and the game problem is in X¥.
Proof. To prove membership in AY = PN
polynomially many queries to an NP oracle.

We will use the NP oracle to solve the following problems, which we claim
are in NP.

, we give an algorithm that makes

— “Win in [t1,t2]?” Does the loading bar reach t* at some time t € [ty, t2]?
— “Lose in [t1, t2]?” Does the loading bar go below 0 at some time ¢ € [ty, t2]?

In both cases, an NP algorithm works as follows. Guess the time ¢t € [t1, 2],
which requires guessing as many bits as are in t; and t5. Then compute the state
of the game at time ¢ in polynomial time, using the algorithm described above to
quickly compute states at individual timestamps. Finally, accept if the loading
bar has the desired value and reject otherwise.

Next we argue that, if the player ever wins, they do so within an exponential
amount of time. After time max, wy, all sources are periodic. All given event
timestamps are encoded in binary, so their values are at most exponential. Af-
terward, all behavior is periodic, with period given by the least common multiple
of the source periods and all arrow cycles; each such period is polynomial, so the
lem is at most exponential.

Now we use binary search to find the earliest time at which the player wins,
between 0 and this exponential upper bound 7. First we use an NP oracle to
decide “Win in [0,7]?”, and if not, return “no” immediately. Given an interval
[¢,u] (initially [0,T7]), we use an NP oracle to decide “Win in [¢, (¢ +u)/2]?”, and
if so, recurse on this interval; otherwise, we recurse on [(£ + u)/2,u]. Once we
reach a unit interval, we obtain the earliest time ¢ at which the player wins.

It remains to check that the player does not lose before time ¢. This can be
done via a single oracle call to “Lose in [0, ¢]?”
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Thus we solve the simulation problem in PNF = AF. To solve the game
problem, we first existentially guess the details of the arrow placements, and
then run the same algorithm. Thus we have an NP algorithm making calls to an
NP oracle, which proves membership in NPNY = P

An easier case is when the source periods are all the same after warmup,
as implemented in the real game. Theorem [I] proved this version of the game
NP-hard, and we can now show that it is NP-complete:

Lemma 3. If all sources have the same polynomial-length period after a poly-
nomial number of time steps, then the simulation problem is in P and the game
problem is in NP.

Proof. First we assume no player input (no additional placed arrows). In this
case, we can afford to check for wins or losses in each interval between events
by explicitly simulating the step-by-step motion of all packets, and checking for
score underflow or overflow along the way. If we explicitly simulate for a duration
longer than all packet paths, then the loading bar value becomes periodic with
the common source period. (Cycles of arrows may have different periods but
these do not affect the loading bar, and thus do not matter when checking for
wins and losses.) If the game continues past the last event, then we explicitly
simulate for one period, and (assuming no score overflow or underflow) measure
the sign of the net score change over the period. If it is positive, then the player
will eventually win; if it is negative, then the player will eventually lose; and if
it is zero, then the game will go on forever.

Now we allow player input, either given as events in the simulation problem or
guessed nondeterministically in the game problem. Because the timestamps are
encoded in binary, these inputs can occur at exponentially large times. We use
the algorithm above to simulate each interval between player inputs, explicitly
simulating during the warmup phase until packet behavior becomes periodic,
explicitly simulating the first period to determine the effect of one period, then
multiplying this effect to fast-forward through most of the periodic phase until
the last full period, and then explicitly simulating the last full period and the
last partial period before the next player input. Given the periodic behavior, if
the game did not end during the last full period, then it did not end during any
previous period.

In the remainder of this section, we consider the case where each source can
be assigned any integer period, and the period does not change over time.

3.2 Periodic Sum Threshold Problem

With differing source periods, the challenge is that the overall periodic behavior
of the game can have an extremely large (exponential) period. For example, if
we allow arbitrary behavior of n sources during the periodic phaseE| then merely

L A general packet-emitting pattern during the periodic phase is relatively easy to
simulate by stacking multiple sources, each with simple “emit every k time steps”
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deciding whether all sources emit a packet at the same time is the intersection
problem of n tally DFAs, which is NP-complete [3], even with no warmup periods
where the problem is known as Periodic Full Character Alignment [5].

To model the TGINGTLI loading bar with winning and losing values, we
define the closely related Periodic Sum Threshold Problem as follows. We
are given a function f(x) = ), ¢i(x) where each g; has unary integer period
T; and unary maximum absolute value M;. In addition, we are given a unary
integer 7 > 0 and a binary integer time x*. The goal is to determine whether
there exists an integer x in [0,2*) such that f(z) > 7. (Intuitively, reaching 7
corresponds to winning.)

Theorem 2. The Periodic Sum Threshold Problem is NP-complete, even under
the following restrictions:

1. Each |g;| is a one-hot function, i.e., g;(x) = 0 everywhere except for exactly
one x in its period where g;(x) = £1.

2. We are given a unary integer A < 0 such that f(x) > X for all 0 < z < x*
and f(x*) < A. (Intuitively, dipping down to A corresponds to losing.)

Proof. First, the problem is in NP: we can guess x € [0,z*) and then evaluate
whether f(z) < ¢ in polynomial time.

For NP-hardness, we reduce from 3SAT. We map each variable v; to the ith
prime number p; excluding 2. Using the Chinese Remainder Theorem, we can
represent a Boolean assignment ¢ as a single integer 0 < « < [[, p; where z =1
mod p; when ¢ sets v; to true, and x = 0 mod p; when ¢ sets v; to false. (This
mapping does not use other values of x modulo p;. In particular, it leaves z = —1
mod p; unused, because p; > 3.)

Next we map each clause such as C' = (v; V v; V Tx) to the function

go(z) =max{[r =1 mod p;],[xr =1 mod p;],[r =0 mod pgl},

i.e., positive literals check for x = 1 and negated literals check for z = 0. This
function is 1 exactly when z corresponds to a Boolean assignment that satis-
fies C. This function has period p;p;pr, whose unary value is bounded by a
polynomial. Setting 7 to the number of clauses, there is a value x where the sum
is 7 if and only if there is a satisfying assignment for the 3SAT formula. (Setting
7 smaller, we could reduce from Max 3SAT.)

To achieve Property [T} we split each g¢ function into a sum of polynomially
many one-hot functions (bounded by the period). In fact, seven functions per
clause suffice, one for each satisfying assignment of the clause.

To achieve Property [2| for each prime p;, we add the function h;(z) = —[z =
—1 mod p;]. This function is —1 only for unused values of « which do not corre-
spond to any assignment ¢, so it does not affect the argument above. Setting —\
to the number of primes (variables) and z* =[], p; — 1, we have ), h;(z*) = A

periodic behavior, at the same location. But we will not need this extra functionality,
beyond relating the problem to tally DFAs and Periodic Full Character Alignment.
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because h;(z*) = —1 mod p; for all i, while >, hi(z) > A for all 0 < z < z*.
All used values = are smaller than z*.

In total, f(z) is the sum of the constructed functions and we obtain the
desired properties.

3.3 Simulation Hardness for Two Colors

We can use our hardness of the Periodic Sum Threshold Problem to prove hard-
ness of simulating TGINGTLI, even without player input.

Theorem 3. Simulating TGINGTLI and determining whether the player wins
is NP-hard, even with just two colors.

Proof. We reduce from the Periodic Sum Threshold Problem proved NP-complete
by Theorem [2}

For each function g; with one-hot value g;(z;) = 1 and period T;, we create
a blue source b; and a red sources 7, of the same emitting period T;, and route
red and blue packets from these sources to the blue sink. By adjusting the path
lengths and/or the warmup times of the sources, we arrange for a red packet to
arrive one time unit after each blue packet which happens at times = x; mod T;.
Thus the net effect on the loading bar value is +1 at time x; but returns to 0 at
time x; + 1. Similarly, for each function g; with one-hot value g;(x;) = —1, we
perform the same construction but swapping the roles of red and blue.

Setting kg = —A —1 > 0, the loading bar goes negative (and the player loses)
exactly when the sum of the functions g; goes down to A. Setting k* = kg + 7,
the loading bar reaches k* (and the player wins) exactly when the sum of the
functions g; goes up to 7.

This NP-hardness proof relies on completely different aspects of the game
from the proof in Section [2} instead of using player input, it relies on differing
(but small in unary) periods for different sources. More interesting is that we
can also prove the same problem coNP-hard:

Theorem 4. Simulating TGINGTLI and determining whether the player wins
18 coNP-hard, even with just two colors.

Proof. We reduce from the complement of the Periodic Sum Threshold Problem,
which is coNP-complete by Theorem [2] The goal in the complement problem is
to determine whether there is no integer = in [0,2*) such that f(z) > 7. The
idea is to negate all the values to flip the roles of winning and losing.

For each function g;, we construct two sources and wire them to a sink in the
same way as Theorem but negated: if g;(x;) = %1, then we design the packets
to have a net effect of F1 at time x; and 0 otherwise.

Setting kg = 7 — 1, the loading bar goes negative (and the player loses)
exactly when the sum of the functions g; goes up to 7, i.e., the Periodic Sum
Threshold Problem has a “yes” answer. Setting k* = kg — A, the loading bar
reaches k* (and the player wins) exactly when the sum of the functions g; goes
down to A, i.e., the Periodic Sum Threshold Problem has a “no” answer.
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4 Characterizing Perfect Layouts

Suppose we are given a board which is empty except for the location of the three
data sinks. Is it possible to place arrows such that all possible input packets get
routed to the correct sink? We call such a configuration of arrows a perfect
layout. In particular, such a layout guarantees victory, regardless of the data
sources. In this section, we give a full characterization of boards and sink place-
ments that admit a perfect layout. Some of our results work for a general number
c of colors, but the full characterization relies on ¢ = 3.

4.1 Colors Not Arrows

We begin by showing that we do not need to consider the directions of the arrows,
only their colors and locations in the grid.

Let B be a board with specified locations of sinks, and let 0B be the set of
edges on the boundary of B. Suppose we are given an assignment of colors to
the cells of B that agrees with the colors of the sinks; let C; be the set of grid
cells colored with color i. We call two cells of Cj, or a cell of C; and a boundary
edge e € 9B, wisible to each other if and only if they are in the same row or
the same column and no sink of a color other than 7 is between them. Let G; be
the graph whose vertex set is C; U9B, with edges between pairs of vertices that
are visible to each other.

Lemma 4. Let B be a board with specified locations of sinks. Then B admits a
perfect layout if and only if it is possible to choose colors for the remaining cells
of the grid such that, for each color i, the graph G; is connected.

Proof. (=) Without loss of generality, assume that the perfect layout has the
minimum possible number of arrows. Color the cells of the board with the same
colors as the sinks and arrows in the perfect layout. (If a cell is empty in the
perfect layout, then give it the same color as an adjacent cell; this does not
affect connectivity.) Fix a color . Every boundary edge is connected to the sink
of color ¢ by the path a packet of color ¢ follows when entering from that edge. (In
particular, the path cannot go through a sink of a different color.) By minimality
of the number of arrows in the perfect layout, every arrow of color ¢ is included
in such a path. Therefore G; is connected.

(<) We will replace each cell by an arrow of the same color to form a
perfect layout. Namely, for each color i, choose a spanning tree of G; rooted at
the sink of color ¢, and direct arrows from children to parents in this tree. By
connectivity, any packet entering from a boundary edge will be routed to the
correct sink, walking up the tree to its root.

4.2 Impossible Boards

Next we show that certain boards cannot have perfect layouts with ¢ colors. First
we give arguments about boards containing sinks too close to the boundary or
each other. Then we give an area-based constraint on board size.
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Lemma 5. If there are fewer than ¢ — 1 blank cells in a row or column between
a sink and a boundary of the grid, then there is no perfect layout.

Proof. A perfect layout must prevent packets of the other ¢ — 1 colors entering
at this boundary from reaching this sink; this requires enough space for ¢ — 1
arrows.

Lemma 6. For ¢ = 3, a board has no perfect layout if either (as shown in
Figure@

(a) a data sink is two cells away from three boundaries and adjacent to another
sink;

(b) a data sink is two cells away from two incident boundaries and is adjacent
to two other sinks;

(c) a data sink is two cells away from two opposite boundaries and is adjacent
to two other sinks; or

(d) a data sink is two cells away from three boundaries and is one blank cell
away from a pair of adjacent sinks.

(2) (b) (c) (d)

Fig. 9: Sink configurations with no perfect layout. Dots indicate arrows of forced colors
(up to permutation within a row or column).

Proof. Assume by symmetry that, in each case, the first mentioned sink is red.

Cases (a), (b), and (c): The pairs of cells between the red sink and the
boundary (marked with dots in the figure) must contain a green arrow and a
blue arrow to ensure those packets do not reach the red sink. Thus there are no
available places to place a red arrow in the same row or column as the red sink,
so red packets from other rows or columns cannot reach the red sink.

Case (d): The pairs of cells between the red sink and the boundary (marked
with green and blue dots in the figure) must contain a green arrow and a blue
arrow to ensure those packets do not collide with the red sink. Thus the blank
square between the red sink and the other pair of sinks must be a red arrow
pointing toward the red sink, to allow packets from other rows and columns
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to reach the red sink. Assume by symmetry that the sink nearest the red sink
is green. As in the other cases, the pairs of cells between the green sink and
the boundary must be filled with red and blue arrows. Thus there are no green
arrows to route green packets from other rows or columns to the green sink.

‘We now prove a constraint on the sizes of boards that admit a perfect layout.

Lemma 7. Let ¢ be the number of colors. Suppose there is a perfect layout on
a board where m and n are respectively the number of rows and columns, and p
and q are respectively the number of rows and columns that contain at least one
sink. Then

clm+n)+(c=2)(p+q) <mn—c. (4.1)

Proof. Each of the m — p unoccupied rows must contain ¢ vertical arrows in
order to redirect packets of each color out of the row. Each of the p occupied
rows must contain ¢ —1 vertical arrows to the left of the leftmost sink in order to
redirect incorrectly colored packets from the left boundary edge away from that
sink; similarly, there must be ¢ — 1 vertical arrows to the right of the rightmost
sink. Thus we require ¢(m —p)+2(c—1)p = ecm+ (¢ —2)p vertical arrows overall.
By the same argument, we must have cn + (¢ — 2)q horizontal arrows, for a total
of e(m+n)+ (c—2)(p+ q) arrows. There are mn — ¢ cells available for arrows,
which proves the claim.

Up to insertion of empty rows or columns, rotations, reflections, and recolor-
ings, there are six different configurations that ¢ = 3 sinks may have with respect
to each other, shown in Figure We define a board’s type according to this
configuration of its sinks (C, I, J, L, Y, or /).

I(b) () J (d) L (Y () /

Fig. 10: The six possible configurations of three sinks up to rotations, reflections,
recolorings, and removal of empty rows.

A board’s type determines the values of p and ¢ and thus the minimal board
sizes as follows. Define a board to have size at least m x n if it has at least m
rows and at least n columns, or vice versa.

Lemma 8. For a perfect layout to exist with ¢ = 3, it is necessary that:

— Boards of type Y or / have size at least 7 x 8.
— Boards of type C or J have size at least T X 8 or 6 X 9.
— Boards of type L have size at least 7 X 7 or 6 x 9.
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— Boards of type I have size at least 7T X 7,6 X9, or 5 x 11.

Proof. These bounds follow from Lemma [7] together with the requirement from
Lemma [5] that it be possible to place sinks at least two cells away from the
boundary.

4.3 Constructing Perfect Layouts

In this section, we complete our characterization of boards with perfect layouts
for ¢ = 3. We show that Lemmas [5] [6] and [§] are the only obstacles to a perfect
layout:

Theorem 5. A board with ¢ = 3 sinks has a perfect layout if and only if the
following conditions all hold:

1. All sinks are at least two cells away from the boundary (Lemma @

2. The board does not contain any of the four unsolvable configurations in Fig-
ure[9 (Lemma [G).

3. The board obeys the size bounds of Lemma[8

We call a board minimal if it has one of the minimal dimensions for its type
as defined in Lemmal 8] Our strategy for proving Theorem [5| will be to reduce the
problem to the finite set of minimal boards, which we then verify by computer.
We will accomplish this by removing empty rows and columns from non-minimal
boards to reduce their size, which we show can always be done while preserving
the above conditions.

Lemma 9. All minimal boards satisfying the three conditions of Theorem[J have
a perfect layout.

Proof. The proof is by exhaustive computer search of all such minimal boards.
We wrote a Python program to generate all possible board patterns, reduce each
perfect layout problem to Satisfiability Modulo Theories (SMT), and then solve
it using Z3 [4]. The results of this search are in Appendix

If By and B are boards, then we define Bg < B to mean that By can be
obtained by removing a single empty row or column from Bj.

Lemma 10. If By < By and By has a perfect layout, then By also has a perfect
layout.

Proof. By symmetry, consider the case where By has an added empty row, say 1.
By Lemmal[4] it suffices to show that we can color the cells of the new row ¢ while
preserving connectivity in each color. Given a connected coloring of By, we copy
the coloring over to the corresponding rows of Bj, and then color the new row i
to match one of the neighboring rows, ¢ & 1 where the sign is chosen such that
1+ 1 is a row. In particular, if row ¢ & 1 has a sink of color ¢, then we color the
corresponding cell of row ¢ with color ¢ (but do not add a sink). Because row @
of B; was empty of sinks, we are free to color it arbitrarily. Connectivity of the
Bj coloring follows from connectivity of the By coloring.
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Lemma 11. Let By be a non-minimal board satisfying the three conditions of
Theorem[5. Then there exists a board By that also satisfies all three conditions
and such that By < Bj.

Proof. By symmetry, suppose Bj is non-minimal in its number m of rows. By
removing a row from B; that is not among the first or last two rows and does
not contain a sink, we obtain a board B{ satisfying conditions (1) and (3) such
that B{ < By. If By, also satisfies condition (2), then we are done, so we may
assume that it does not.

Then Bj must contain one of the four unsolvable configurations, and B; is
obtained by inserting a single empty row or column to remove the unsolvable
configuration. Figure shows all possibilities for By, as well as the locations
where rows or columns may be inserted to yield a corresponding possibility for
By. (B} may have additional empty rows and columns beyond those shown, but
this does not affect the proof.) For each such possibility, Figure highlights
another row or column which may be deleted from Bj to yield By < B; where
By satisfies all three conditions.

L

=

o
1
* *
|

|

o

(a) L, 7x7 (b) L,6x9 (c) I, 5x 11 @) I,5x11 (e) I,5x11

Fig.11: All boards satisfying conditions (1) and (3) but not (2), up to rotations,
reflections, and recolorings. An empty row or column may be inserted in any of the
locations marked “+” to yield a board satisfying all three conditions. Removing the
row or column marked “—” then preserves the conditions. In case (c), remove a row
that does not contain the blue sink. In case (d), I: denotes zero or more rows.

Proof (Proof of Theorem @ It follows from Lemmas @ and [8| that all boards
with perfect layouts must obey the three properties of the theorem. We prove
that the properties are also sufficient by induction on the size of the board. As
a base case, the claim holds for minimal boards by Lemma [9] For non-minimal
boards B;, Lemma shows that there is a smaller board By that satisfies all
three conditions and such that By < B;. By the inductive hypothesis, By has a
perfect layout. Lemma [10| shows that B; also has a perfect layout.
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5 Open Questions

The main complexity open question is whether TGINGTLI simulation is A}-
complete, and whether the game problem is XF-complete. Given our NP- and
coNP-hardness results, we suspect that both of these results hold.

One could also ask complexity questions of more restrictive versions of the
game. For example, what if the board has a constant number of rows?

When characterizing perfect layouts, we saw many of our lemmas generalized
to different numbers of colors. It may be interesting to further explore the game
and try to characterize perfect layouts with more than three colors.

A related problem is which boards and configurations of sinks admit a damage-
free layout, where any packet entering from the boundary either reaches the sink
of the correct color or ends up in an infinite loop. Such a layout avoids losing,
and in the game as implemented, such a layout actually wins the game (because
the player wins if there is ever insufficient room for a new source to be placed).
Can we characterize such layouts like we did for perfect layouts?

Perfect and damage-free layouts are robust to any possible sources. However,
for those boards that do not admit a perfect or damage-free layout, it would
be nice to have an algorithm that determines whether a given set of sources or
sequence of packets still has a placement of arrows that will win on that board.
Because the board starts empty except for the sinks, our hardness results do not

apply.
Having a unique solution is often a desirable property of puzzles. Thus it

is natural to ask about ASP-hardness [8] and whether counting the number of
solutions is #P-hard.
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A Perfect Layouts from the Automated Solver

The following 13 figures show all cases found by the automated solver. Figures[I2]
and [14] correspond to sinks in the C pattern. Figures[15} [16] and[I7]correspond
to sinks in the I pattern. Figures and [20] correspond to sinks in the
J pattern. Figures 21] and [22] correspond to sinks in the L pattern. Figure [23]
corresponds to sinks in the Y pattern. Finally, Figure 24 corresponds to sinks in
the / pattern.
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Fig. 13: Solutions from the automated solver for sinks in the C pattern of size 7 x 8.

Fig. 14: Solutions from the automated solver for sinks in the C pattern of size 8 x 7.
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Fig. 15: Solutions from the automated solver for sinks in the I pattern of size 5 x 11.
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Fig. 16: Solutions from the automated solver for sinks in the I pattern of size 6 x 9.
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Fig. 18: Solutions from the automated solver for sinks in the J pattern of size 6 x 9.
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Fig. 19: Solutions from the automated solver for sinks in the J pattern of size 7 x 8.
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Fig. 20: Solutions from the automated solver for sinks in the J pattern of size 8 x 7.
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Fig. 21: Solutions from the automated solver for sinks in the L pattern of size 6 x 9.
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Fig. 22: Solutions from the automated solver for sinks in the L pattern of size 7 x 7.

Fig. 23: Solutions from the automated solver for sinks in the Y pattern of size 7 x 8.
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Fig. 24: Solutions from the automated solver for sinks in the / pattern of size 7 x 8.
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