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Abstract1

We prove that the following problem is co-RE-complete and thus undecidable: given three simple2

polygons, is there a tiling of the plane where every tile is an isometry of one of the three polygons3

(either allowing or forbidding reflections)? This result improves on the best previous construction4

which requires five polygons.5
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“Three Rings for the Elven-kings under the sky, . . . ”6

— J. R. R. Tolkien, The Lord of the Rings, epigraph7

1 Introduction8

A tiling of the plane [9] is a covering of the plane by nonoverlapping polygons called tiles,9

isometric copies of one or more geometric shapes called prototiles, without gaps or overlaps.10

In this paper, we study the most fundamental computational problem about tilings:11

▶ Problem 1 (Tiling). Given one or more prototiles, can they tile the plane?12

The tiling problem is undecidable — solved by no finite algorithm. Golomb [6] was first13

to prove this result, by building n polyominoes that simulate n Wang tiles [15] — unit14

squares with edge colors that must match — by adding color-specific bumps and dents to15

each edge. Four years earlier, Berger [1] proved that tiling with Wang tiles is undecidable16

(disproving Wang’s original conjecture [15]) by showing how they can simulate a Turing17

machine. Robinson [13] later simplified Berger’s proof. The worst-case number n of tiles18

(Wang or polyomino) is Θ(|Q| · |Σ|), where |Q| and |Σ| are the number of states and symbols19

in the simulated Turing machine, respectively.20

Constant Number of Prototiles. The first constant and previously best upper bound on21

the number of prototiles required to make the tiling problem undecidable is 5, as proved by22

Ollinger fifteen years ago [11]. Our main result, proved in Section 3, is an improvement of23

this upper bound to 3:24
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39:2 Tiling with Three Polygons is Undecidable

▶ Theorem 1.1. Given three simple-polygon prototiles, determining whether they tile the25

plane is undecidable.26

It remains open whether tiling with one or two given prototiles is decidable. Periodic27

tilings (tilings with two translational symmetries) can be found algorithmically by enumerating28

fundamental domains, as we show in the full paper. (Surprisingly, this intuitive fact does29

not seem to have been explicitly proved before, except in special settings like Wang tiles30

[15].) Thus a necessary condition for undecidability is the existence of prototile(s) with only31

aperiodic tilings. Recently, Smith, Myers, Kaplan, and Goodman-Strauss [14] found a single32

prototile with this property, so there are no obvious obstacles to undecidability.33

Tiling by Translation. Our construction relies on rotation of the prototiles (but works34

independent of whether we allow reflections). If we restrict to tiling by translation only,35

then Ollinger’s construction can be modified to use 11 prototiles, by adding some rotations36

of the five polyominoes [11]. This upper bound was improved to 10 by Yang [17] and to 837

by Yang and Zhang [18]. All of these constructions use polyominoes. In higher dimensions,38

Yang and Zhang [19] improved the upper bound to five polycube prototiles in 3D, and four39

polyhypercube prototiles in 4D.40

The tiling-by-translation problem also has a lower bound of 2 for undecidability: any41

single polygon that tiles the plane by translation can do so by periodic (even isohedral)42

tiling [5]. This result also holds for disconnected polyominoes [2]. If we generalize to tiling a43

specified periodic subset of d-dimensional space, where d is part of the input, then Greenfeld44

and Tao [8] recently proved tiling to be undecidable with a single disconnected polyhypercube.45

Periodic Target. We show that Greenfeld and Tao’s generalization to tiling a specified46

periodic subset [8] changes the best known results also for undecidability of tiling the plane.47

Our 3-polygon construction and Ollinger’s 5-polyomino construction [11], and Yang and48

Zhang’s 8-polyomino translation-only construction [18] all have one prototile (our shurikens,49

and their jaws) that appear periodically in any tiling of the plane. Thus, if we remove that50

pattern from the target, we obtain a periodic subset of the plane which can be tiled using a51

reduced number of prototiles of 2, 4, and 7, respectively. In particular, we prove52

▶ Corollary 1.2. Given two simple-polygon prototiles, and given a periodic subset of the53

plane, determining whether the two prototiles tile the periodic subset is undecidable.54

Logical Undecidability. Algorithmic undecidability implies logical undecidability (as55

explained in [7] in the context of tilings). In particular, our result implies that there are56

three polygon prototiles that cannot be proved or disproved to tile the plane, for any fixed57

set of axioms (e.g., ZFC). Otherwise, we would obtain a finite algorithm to decide tileability,58

by enumerating all proofs.59

▶ Corollary 1.3. For any fixed set of axioms, there are three fixed simple-polygon prototiles60

such that both “these prototiles tile the plane” and “these prototiles do not tile the plane”61

have no proof.62

Tiling Completion. Undecidability of tiling requires the set of prototiles to depend on the63

Turing machine simulation. To obtain undecidability with a fixed set of prototiles, we can64

generalize the tiling problem as follows [13]:65

▶ Problem 2 (Tiling Completion). Given one or more prototiles, and given some already66

placed tiles, can this placement be extended to a tiling of the plane?67



E. D. Demaine and S. Langerman 39:3

Robinson [13] gave the first result on this problem: a set of 36 prototiles (Wang tiles or68

polygons) for which tiling completion is undecidable. This result applies the general Turing69

machine simulation to Minsky’s 4-symbol 7-state universal Turing machine, so only a finite70

number of tiles need to be preplaced to represent the Turing machine to simulate. Likely71

this result could be improved using newer smaller universal Turing machines [16]. If we72

allow for (countably) infinitely many tiles to be preplaced, we can use semi-universal Turing73

machines and simulate Rule 110, enabling undecidability with just six supertiles (Wang tile74

or polygons) [20]. Our main result reduces this upper bound to 3, in the stronger model of75

finitely many preplaced tiles:76

▶ Corollary 1.4. There are three fixed simple-polygon prototiles such that, given a finite set77

of already placed tiles, determining whether this placement can be extended to a tiling of the78

plane is undecidable.79

Co-RE-completeness. While past results on tiling and tiling completion have focused80

on undecidability, all such proofs actually show co-RE-hardness: the simulated Turing81

machine halts if and only if the prototiles fail to tile. Co-RE-hardness is a more precise82

statement than undecidability, so we use that phrasing here. But it raises the question: are83

tiling and tiling completion in co-RE? Surprisingly, this question does not seem to have been84

solved (or even asked) in the literature before. In Section 4, we prove the answer is “yes”:85

▶ Theorem 1.5. Given a finite set of polygon prototiles, and given a (possibly empty)86

connected set of already placed tiles, determining whether this placement can be extended to a87

tiling of the plane is in co-RE.88

This result holds in a very general model for polygons: the angles and edge lengths can89

be represented as computable numbers (meaning that a Turing machine can output the first90

n bits, given n). Our three-polygon construction uses a more restricted model, where the91

angles are rational multiples of π and the edge lengths are constant-size radical expressions,92

showing the problem to be co-RE-complete for every model in between.93

▶ Corollary 1.6 (Stronger form of Theorem 1.1). Given three simple-polygon prototiles, where94

the edge lengths and angles in degrees are specified by computable numbers or by constant-size95

radical expressions, determining whether they tile the plane is co-RE-complete.96

2 Wang Tiling: Signed and Unsigned97

We reduce from Wang tiling, which is known to be undecidable. A Wang tile is a square with98

a glue on each edge. Classically, Wang tiles are unsigned, meaning that glues match if they99

are equal, and translation-only, meaning they have a specified orientation of which edge is100

north, east, south, and west. In 1966, Berger proved unsigned Wang tiling undecidable:101

▶ Theorem 2.1 ([1]). Given a set of Wang tiles, it is co-RE-hard to determine whether they102

tile the plane by translation only, matching glues of equal value.103

Our first reduction converts unsigned Wang tiling to a variant that is signed, meaning104

every glue has a sign (+ or −) and value, and glues match if they have opposite sign and105

equal value, and free, meaning the tile can be rotated and/or reflected. This result was106

proved by Robinson [13, p. 179]. Figure 1 sketches the reduction; the full paper gives the107

details for completeness.108

SoCG 2025



39:4 Tiling with Three Polygons is Undecidable

▶ Lemma 2.2 ([13]). Given a set of unsigned translation-only Wang tiles T , we can construct109

a set of signed free Wang tiles T ′ that has the same tilings as T up to global isometry, allowing110

or forbidding reflection.111

(a) 11 unsigned translation-only Wang tiles T that tile only aperiodically, the minimum possible [10]112

(b) Equivalent 11 signed free Wang tiles T ′. Bumps/dents denote signs.113

Figure 1 Example of converting unsigned translation-only Wang tiles to signed free Wang tiles.114

Henceforth when we say “Wang tiles” we mean signed free Wang tiles.115

3 Three Tiles That Simulate n Signed Wang Tiles116

We implement any set of n Wang tiles with three tiles, illustrated in Figure 2:117

1. the wheel which encodes all of the Wang tiles,118

2. the staple which covers the unused Wang tiles of each wheel, and119

3. the shuriken which fills in the remaining gaps.120

(a) Wheel121 (b) Shuriken122 (c) Staple123

Figure 2 The three tiles in our construction, to scale; Figure 3 shows zoomed details of the
construction. The wheel is just an example; it depends on the n Wang tiles being simulated. The
shuriken depends (only) on n.

124

125

126

3.1 Construction and Intended Tiling136

Suppose we are given a set of n Wang tiles, where the ith tile (1 ≤ i ≤ n) has signed glues137

ni, ei, si, wi on its north, east, south, and west edges respectively. Assume n is an odd integer138
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α

β β

β β

α

(a) Wheel: Tweedledee (0)127

α

β β

β β

α

(b) Wheel: Tweedledum (1)128

α

β 2β β

α

(c) Shuriken: Notch129

β β

ββ

2α

(d) Staple130 (e) Combining the tweedle, notch, and sta-
ple.

131

132

Figure 3 Zoomed views of portions of the three tiles in our construction (15× scale vs. Figure 2).133

0 0 1 1 0 0 1

0 0 1 1 0 0 1

Figure 4 Matching a glue (top) and its negative (bottom) between two wheels.134

≥ 5 by possibly adding duplicate tiles.139

The wheel is a regular 4n-gon with each edge adorned by bumps and notches representing142

the 4n glues. For tile i, the glues ni, ei, si, wi adorn sides i, n + i, 2n + i, 3n + i of the 4n-gon,143

respectively. To encode a glue, we encode its value in binary using b = O(log n) bits, prepend144

a 00 at the beginning, and append 01 at the end. For negative glues, we reverse the order of145

the bits, which puts a 10 at the beginning and a 00 at the end. Then we represent each bit146

with a tweedledee (0) or tweedledum (1) gadget, which are rotationally symmetric zig-zags147

shown in Figures 3(a) and 3(b). Both follow the sequence of angles α, β, β, β, β, α (where α148

and β are defined below); for tweedledee, this sequence measures defect, angle, angle, defect,149

defect, angle, respectively; while for tweedledum, this measures the opposite (angle, defect,150

defect, angle, angle, defect).1 As shown in Figure 4, two adjacent glues match exactly if and151

only if they have the same value and opposite sign (where the opposite sign is enforced by152

the 00 and 01 at either end). This representation also ensures that reflecting a wheel will153

1 It is also possible to use two different convex angles β1, β2 in place of each repetition β, β, but the
notation is messier, so we opt for this simpler construction.

140

141
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39:6 Tiling with Three Polygons is Undecidable

Figure 5 Example tiling with the wheel, shuriken, and staple.135

produce reflected glues that do not match unreflected glues: a reflection causes the bits of a154

glue to be reversed and negated, so the reflection of a positive glue starts with 01 and ends155

with 11, and the reflection of a negative glue starts with 11 and ends with 10, both of which156

are incompatible with unreflected glues.157

By this construction, rotating the wheel so that its ith side is horizontal and at the top158

will have its north, east, south, and west sides represent the glues ni, ei, si, wi of tile i. Given159

a tiling of the plane using this set of Wang tiles, we can place copies of the rotated wheel160

exactly as in the Wang tiling, and the glues will match exactly. Some space remains between161

the wheels, which we fill with “staples” and “shurikens”. See Figure 5.162

The shuriken is composed of four regular concave chains of n − 1 sides, matching the163

lengths and complementary to the angles of the regular 4n-gon. Each side is adorned with164

b reflectionally symmetric notches, shown in Figure 3(c), each consisting of convex angle165

α; reflex deficits β, 2β, β; and convex angle α. As shown in Figure 3(e), each notch can166

fit a tweedle of either kind, leaving a space that is filled exactly by a staple (shown in167

Figure 3(d), and consisting of convex angles β, β, β, β and reflex deficit 2α). Thus each side168
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of the shuriken can exactly match any glue, effectively hiding the unused tiles of each wheel169

(the glues that are not on the north, east, south, or west sides). Thus we have shown:170

▶ Lemma 3.1. Given a set of n Wang tiles and a tiling of the plane with them, we can171

construct a tiling of the plane with the wheel, the shuriken, and the staple constructed above.172

It remains to show that this is the only way our three tiles can tile the plane.173

3.2 Angle Structure174

We start with a few definitions and observations on the angles of the tiles.175

Call an angle clean (and color it purple) if it is an integer multiple of π
2n . The sum of176

clean angles is clean, and the sum of clean angles and one nonclean angle is not clean.177

The vertices of the convex 4n-gon, which we call corners, have clean convex angle178

π(1 − 1
2n ). The matching shuriken reflex anticorners have a matching defect π(1 − 1

2n ),179

and each of the four concave chains are connected at the convex tip vertices, which have a180

clean convex angle of π
n .181

Define angles α = π
2 − 2ε and β = π

2 − ε, and pick ε = π
16 .2 These angles and their184

combinations are not clean:185

▶ Property 1. For any θ1, θ2 ∈ {α, β}, neither θ1 nor θ1 + θ2 is clean.186

Proof. The relevant angles are α = π
2 − 2ε = 3π

8 , β = π
2 − ε = 7π

16 , 2α = 3π
4 , 2β = 7π

8 , and187

α + β = 13π
16 , which all have a doubly even denominator (divisible by 4). Because n is odd,188

these numbers cannot be equal to iπ
2n for any integer i, so none of these angles are clean. ◀189

190 Shape angle of convex vertices defect of reflex vertices
191 staple β 2α

192 shuriken α, π
n

β, 2β, π(1 − 1
2n

)
193 wheel α, β, π(1 − 1

2n
) α, β

Table 1 Angles used in the wheel, shuriken, and staple. For convex vertices, we give the interior
angle, while for reflex vertices, we give the defect (2π minus the interior angle).

194

195

Table 1 lists the angles used by each polygon, colored to indicate which are clean. Angles196

α, β are all a bit less than 90◦, so a sum of two of them is a bit less than 180◦, and a sum of197

three of them is a bit less than 270◦. More precisely:198

▶ Lemma 3.2. For any θ1, θ2, θ3 ∈ {α, β}, θ1 ∈ ( 3
8 π, 7

16 π), θ1 + θ2 ∈ ( 3
4 π, 7

8 π) which is < π,199

and θ1 + θ2 + θ3 ∈ ( 9
8 π, 21

16 π) which is > π. Note that these intervals are disjoint, so the value200

of a sum
∑

i θi with at most three terms determines the number of terms in the sum.201

3.3 Edge Lengths202

We design the edge lengths of the tweedledee and tweedledum in Figures 3(a) and 3(b) so203

that the near-vertical and near-horizontal edges all have the same length, which we call 1,204

2 Other choices of ε also work; the choice here is so that all edge lengths can be expressed by radical
expressions, and all angles are rational multiples of π (or equivalently, rational numbers of degrees).

182

183
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39:8 Tiling with Three Polygons is Undecidable

and the total horizontal traversal is exactly 4. Equivalently, we choose the sequence of edge205

lengths for either tweedle to be206 〈
2 − sin β + cos α, 1, 1, 2(sin α + cos β), 1, 1, 2 − sin β + cos α

〉
207

=
〈
2 − cos ε + sin 2ε, 1, 1, 2(cos 2ε + sin ε), 1, 1, 2 − cos ε + sin 2ε

〉
.208

Given our choice of ε = π
16 ,209

cos ε = 1
2

√
2 +

√
2 +

√
2, sin ε = 1

2

√
2 −

√
2 +

√
2,210

cos 2ε = 1
2

√
2 +

√
2, sin 2ε = 1

2

√
2 −

√
2211

are all radical expressions, so all our edge lengths can be expressed by radical expressions.212

To prevent the notches from intersecting each other at the tip of the shuriken (with the213

sharp angle of π/n), we place the notches of the shuriken and the tweedles of the wheel at a214

distance of n from the anticorners of the shuriken and the corners of the wheel respectively.215

That is, each side of the shuriken is composed of an edge of length n, followed by the b216

notches, followed by an edge of length n; and each side of the wheel is composed of an edge217

of length n, followed by the b tweedles composing the glue, followed by an edge of length n.218

3.4 Forced Tiling Structure219

▶ Lemma 3.3. The staple does not tile the plane (even allowing reflections).220

Proof. The staple has convex vertices just of angle β and one reflex vertex of defect 2α.221

In any tiling of staples, every reflex vertex must have its defect 2α filled by some convex222

angles. But 2α = 3
4 π, so by Lemma 3.2, it must be filled by exactly two convex angles. But223

2β = 7
8 π > 2α, so two of the convex angles do not fit. Thus it is impossible to exactly fill224

the deficit. ◀225

▶ Lemma 3.4. The staple and shuriken do not tile the plane (even allowing reflections).226

Proof. By Lemma 3.3, any tiling with staples and shurikens has a shuriken. Any shuriken227

has a reflex anticorner of defect π(1 − 1
2n ), which is clean and less than π. This defect must228

be filled by some convex angles, of which we have three: α, β, π
n . By Lemma 3.2, this defect229

can be filled by at most two angles ∈ {α, β}. But by Property 1, summing one or two of230

these angles is not clean, while the remaining convex angle π
n and the target sum π(1 − 1

2n )231

are. Thus we cannot use any angles ∈ {α, β} to fill the deficit, leaving only the convex angle232

π
n . But π

n is an even multiple of π
2n , while the target sum is an odd multiple of π

2n . Thus it233

is impossible to exactly fill the deficit. ◀234

▶ Lemma 3.5. Any tiling of the plane with staples, shurikens, and wheels (even allowing235

reflections) must consist of an infinite square grid of wheels corresponding to a Wang tiling.236

Proof. By Lemma 3.4, any tiling with staples, shurikens, and wheels has a wheel. Any wheel237

has a convex corner of angle π(1 − 1
2n ), which has a deficit of π(1 + 1

2n ), which is clean. We238

claim that this deficit can be filled in exactly two ways: one reflex anticorner of a shuriken of239

deficit π(1 − 1
2n ), or one convex tip vertex of a shuriken of angle π

n and one convex corner of240

a wheel of angle π(1 − 1
2n ).241

Because the target deficit is > π, we need to consider both convex and reflex angles as242

well as flat edges (of angle π) for possible fillings. First consider the unclean angles starting243
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with reflex angles of deficit α, β, 2α, 2β. But α < β < 2α < 2β = 7
8 π = π(1 − 1

8 ) < π(1 − 1
2n )244

for any n ≥ 5. Thus none of the unclean reflex angles can be used to fill the deficit. The only245

remaining reflex angle that can fill the deficit is a shuriken anticorner of deficit π(1 − 1
2n ),246

and if we use that angle, we are done.247

Next consider the unclean convex angles α and β. Because π(1 + 1
2n ) < 9

8 π for any248

n ≥ 5, by Lemma 3.2 this deficit can be filled by at most two angles ∈ {α, β}. But by249

Lemma 1, summing one or two of these angles is not clean, while the remaining convex250

angles π
n , π(1 − 1

2n ), flat edge of angle π, and the target sum π(1 + 1
2n ) are all clean. Thus251

we cannot use any angles ∈ {α, β} to fill the deficit.252

This leaves only the flat edge of angle π and two convex angles: the shuriken tip of angle253

π
n and the wheel corner of angle π(1 − 1

2n ). If we used only copies of the tip π
n , we would254

get an even multiple of π
2n , but the target sum π(1 + 1

2n ) is an odd multiple of π
2n . Using a255

flat edge π would leave a gap of angle π
2n , which is too small to fill with any of the available256

angles. Finally, using the wheel corner π(1 − 1
2n ) (gluing a second wheel to the first) will257

leave a gap of angle π
n , which can only be filled by the tip angle π

n .258

Thus we have shown that, in all cases, the wheel’s convex angle π(1 − 1
2n ) has to be259

matched with an anticorner or a tip of the shuriken. Furthermore, an edge of the wheel260

adjacent to a corner must be glued to an edge of the concave chain adjacent to a tip or261

anticorner of the shuriken. We can follow the path of both the wheel and the concave chain262

of the shuriken and observe that the n − 2 anticorners and the two tips of that concave chain263

will be glued to consecutive corners of the wheel.264

At the end of the concave chain of the shuriken, we find a tip glued to the corner of a265

wheel, leaving a deficit of π(1 − 1
2n ) to fill. As shown in Lemma 3.4, this can only be filled266

by another wheel corner. Therefore, the surround of a wheel must be filled by an alternating267

sequence of wheels and shurikens (omitting the small gaps left between the tweedles and the268

notches, which are filled by staples).269

Pick one wheel T in the tiling, translate the tiling so that its center3 is at the origin (0, 0),271

and rotate the plane so that edge i of its 4n-gon is glued to another wheel at a horizontal272

edge of the 4n-gon, with T below that edge. Also rescale so that the width of a wheel’s273

4n-gon (the distance between parallel edges, without adornments) is 1. Then the wheel274

adjacent to edge i of T will have its center at coordinate (0, 1). Following the boundary of275

T clockwise, we find a shuriken glued to the edges i + 1, . . . , i + n − 1 of T , and a wheel276

glued to the edge i + n of T . The wheel glued to edge i + n has its center at coordinates277

(1, 0). Continuing this reasoning, we find that the tiling is a grid of wheels with centers on278

all integer lattice points. The shurikens and staples ensure that all spaces are filled, and the279

tweedles ensure that the tiles are compatible as in a Wang tiling. Therefore, for any tiling280

with the three tiles, we can produce a tiling of the plane with the original Wang tiles. ◀281

3.5 Undecidability282

The angles of the polygons, as listed in Table 1, are all rational multiples of π. The edge283

lengths of the polygons, as listed in Section 3.3, can all be expressed as radical expressions.284

We call polygons with such angles and edge lengths nice.285

▶ Theorem 3.6. Given n Wang tiles, we can construct three nice polygons that can tile the286

plane (allowing or forbidding reflections) if and only if the Wang tiles can tile the plane.287

3 Define the center of a wheel to be the center of gravity of its 4n-gon, without adornments.270

SoCG 2025



39:10 Tiling with Three Polygons is Undecidable

Proof. Combine Lemma 3.1 (if) and Lemma 3.5 (only if). ◀288

Combining this with membership of the tiling problem in co-RE (to be proved in the289

next section), we obtain:290

▶ Corollary 3.7 (Nice form of Corollary 1.6). Given three nice polygons in the plane, deciding291

whether they tile the plane is co-RE-complete and thus undecidable.292

In a recent paper, Greenfeld and Tao [8] consider a generalized version of the tiling293

problem, where only a periodic subset of space needs to be covered by the tiles. In our294

reduction, the union of the shurikens form a periodic subset of R2, and so does its complement.295

Thus, tiling the complements of the shurikens with the two remaining tiles is undecidable:296

▶ Corollary 3.8 (Stronger form of Corollary 1.2). Given two nice polygons, deciding whether297

they tile a periodic subset of the plane is co-RE-complete and thus undecidable.298

By plugging in Wang tiles that simulate a universal Turing machine, such as Robinson’s299

36 Wang tiles [13], we also obtain undecidability of tiling completion with three specific tiles:300

▶ Corollary 3.9 (Stronger form of Corollary 1.4). There exist three fixed tiles for which301

completing a given finite partial tiling is co-RE-complete and thus undecidable.302

We implemented our construction in an open-source web application [4], where the user303

can input any set of Wang tiles and see the resulting polygons. Figure 6 shows the output304

for the 11 Wang tiles from Figure 1.305

4 Membership in Co-RE309

The previous sections show the co-RE-hardness of the tiling problem for three given tiles, and310

the tiling completion problem for three fixed tiles. We counterbalance these intractability311

results by showing that the tiling problem and tiling completion problem are in co-RE, for312

any finite set of prototiles. Refer to the full paper for omitted proofs in this section.313

4.1 Model: Computable Polygons314

To make these positive results as strong as possible, we use the weakest possible model of315

computation. We use a standard Turing machine, and represent polygons by their sequences316

of angles and edge lengths (equivalently, instructions in the Logo/Turtle graphics language),317

which need not be given explicitly but can be computed to any desired precision. More318

precisely, we assume the input polygons are “computable” in the following sense:319

▶ Definition 4.1. A real number a is computable [3] if there is a Turing machine Ta that,320

given a natural number n, outputs an integer Ta(n) such that Ta(n)−1
n ≤ a ≤ Ta(n)+1

n . A321

polygon is computable if it is promised to be simple and closed, and its n angles and edge322

lengths are computable.323

Computability is likely the most general representation of real numbers that is still usable324

for our problem. Computable numbers include all rational numbers, algebraic numbers,325

and transcendental numbers that can be computed to any desired precision. In particular326

they are closed under addition, subtraction, multiplication, division, integer roots and even327

trigonometric functions:328
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Figure 6 Output of our implemented reduction [4] for the 11 Wang tiles from Figure 1, focusing
on the wheel and how the shuriken fits around the bottom-right corner. The wheel is annotated
with edge colors from Figure 1(b).

306

307

308

▶ Theorem 4.2 ([3, Theorem 4.14]). If x, y, and z are computable real numbers with z > 0,329

then x + y, x − y, xy, x/z, |x|, min(x, y), max(x, y), exp(x), sin(x), cos(x), log(z), and
√

z330

are computable as well.331

Note that some basic operations can be intractable for computable numbers. For instance,332

determining whether a computable number is zero, or the equality between two computable333

numbers, is undecidable (in fact, co-RE-complete). To see this, given a Turing machine T ,334

define a number aT to have its nth bit after the binary point be 1 if T halts after n steps,335

and 0 otherwise. The number aT is computable, and is zero if and only if T does not halt.336

For our problem, we can show a similar undecidability:337

▶ Theorem 4.3. Given a single computable pentagon, determining whether it tiles the plane338

is co-RE-hard and thus undecidable.339

Proof. Pick a generic quadrilateral, and glue a very flat isosceles triangle to one of its edges,340
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where the apex angle is 180◦ − r/100 for a given constructible number r ∈ [0, 1]. The other341

angles and edge lengths of the triangle are constructible via trigonometric functions.342

The resulting pentagon tiles the plane only in the degenerate case where the triangle is343

degenerate, i.e., a line segment, which happens exactly when the obtuse angle of the triangle344

is exactly 180◦. Thus the tiling problem is equivalent to testing whether r = 0 for a given345

constructible number r ∈ [0, 1], which is co-RE-hard as shown above. ◀346

Of course, this result is quite unsatisfying, as the reason for undecidability stems from347

the extreme weakness of the model and generality of the representation of the polygons, and348

the inability to even check locally that a tiling is valid. Yet surprisingly, in this same model,349

we are able to show membership in co-RE.350

4.2 Co-RE Algorithm351

The high-level idea of our algorithm is to try to build partial tilings that cover a larger and352

larger disk. If we ever fail to cover a disk, then we know that the plane cannot be tiled;353

and if we never fail, the well-known Extension Theorem (Theorem 4.11 below) guarantees354

that the plane can be tiled. To determine whether we can tile enough to cover a disk, we355

bound the number of tiles that could possibly intersect the disk, then enumerate all possible356

combinatorial ways for these tiles to fit together, and for each, check whether the tiles fit357

together properly. Checking fit is limited to tiles that share vertices, however, so we need to358

take care to handle the case that there are seam lines in the tiling where no tiles on opposite359

sides of the line share a vertex (as in, e.g., the classic brick tiling). We also avoid checking360

for global intersection between tiles (because doing so is tricky in our model), opting instead361

to check just locally that angles add up correctly at vertices and that edge lengths add up362

correctly along edges. Our notion of “neat carpet” handles both of these issues by forbidding363

only local self-overlap, and guaranteeing that every boundary vertex is either outside the364

specified disk or has total angle 180◦ so potentially forms a seam boundary. We are then365

able to show that arbitrarily large neat carpets imply the existence of a plane tiling.366

Our co-RE algorithm will in particular need to repeatedly test for equality among367

constructible numbers, a co-RE-complete problem. Thus we need a way to compose co-RE368

decisions. We use the following standard result (mentioned, e.g., in [12]):369

▶ Lemma 4.4. Finite disjunctions and recursively enumerable conjunctions of co-RE decision370

problems are in co-RE.371

Let T be a set of prototiles, where each tile is a (simple closed) computable polygon.372

Define a carpet to be a topological disk produced by gluing together a finite collection of373

tiles from T , where every interior vertex has 360◦ total angle from incident tiles. We assume374

that the carpet is laid out in the Euclidean plane, that is, every point in a tile has real375

coordinates, but we allow the surface to be self-overlapping, that is, a point of the plane376

might be covered by more than one tile. A patch is a carpet whose embedding in the plane377

is not self-overlapping.378

A carpet can be described by its combinatorial gluing, which specifies (1) the set of379

tiles, each of which is an instance of a prototile; (2) a partition of the tile vertices into380

coincident (glued together) points; and (3) for each tile edge, the sequence of other tile edges381

and/or boundary that the edge has positive-length overlap with, in order along the edge.382

Call a carpet or a patch seamless if the position of all tiles in the carpet is fully determined383

by the combinatorial gluing and the position of its first tile. This notion forbids carpets384

whose tiles can be separated by a line along which the two sides could slide (causing an385
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uncountable infinity of solutions). To verify seamlessness, build the incidence graph on386

the tiles of the carpet, where two tiles are connected by an edge if they share a vertex, and387

check that the graph is connected. For the case of tiling completion, we can ensure that the388

given patch is seamless by adding a vertex along each seam, common to both adjacent tiles;389

as this modification to the preplaced tiles does not change their shape, it does not change390

the outcome of the decision.391

First we show how to verify that a carpet is valid:392

▶ Lemma 4.5. Given a combinatorial gluing of a possible seamless carpet, deciding whether393

it corresponds to a seamless carpet is co-RE-complete.394

Define the distance between two points in a carpet to be the Euclidean distance between395

those two points when the carpet is laid out in the Euclidean plane (note that this embedding396

may be self-overlapping, and this distance is no larger than the intrinsic distance within the397

carpet). Call a vertex of a carpet neat if it is either interior to the carpet and surrounded by398

tiles summing up to an angle of 2π, or is on the boundary of the carpet and is surrounded399

by contiguous tiles summing up to an angle of π. A carpet is neat within radius < r if400

every vertex at distance < r from the origin is neat. In an anchored carpet, we assume one401

anchored tile in the combinatorial gluing has been chosen to be placed with its center of402

gravity at the origin, and with a canonical rotation (say, matching its prototile).403

▶ Lemma 4.6. Given an anchored carpet and a computable positive number r, deciding404

whether it is neat within radius < r is in co-RE.405

Let ρ be the maximum “radius” of tiles in T , meaning that a disk of radius ρ centered at406

the center of gravity of each tile in T covers that tile. Let Amin be the minimum area of a407

tile in T . Let Dr denote the disk of radius r centered at the origin.408

▶ Lemma 4.7. If T can tile the plane, then for any r > 0, (a) there is an anchored patch409

with a finite number N(r) of tiles that covers the disk Dr, and (b) there is an anchored410

seamless patch with ≤ N(r) tiles that is neat within radius < r.411

If a seamless patch P can be extended to tile the plane, then for any r > 0, (a) there is an412

anchored patch containing P with a finite number |P | + N(r) of tiles that covers the disk Dr,413

and (b) there is a seamless patch containing P with ≤ |P | + N(r) tiles that is neat within414

radius < r.415

Proof. For the (a) statements, translate (and rotate) the tiling so that one of its tiles is416

anchored; and if we are given a seamless patch P , choose to anchor one of its tiles. Consider417

the disk Dr+2ρ of radius r + 2ρ centered at the origin (the anchored tile’s center of gravity).418

Take all the tiles in the plane tiling that are fully inside Dr+2ρ, and take all the tiles of419

P (if given). Because the tiles do not overlap and are each of area ≥ Amin, there are at420

most π(r + 2ρ)2/Amin tiles inside Dr+2ρ. Take the connected component that contains the421

origin (and thus the tiles of P , if given), which only decreases the number of tiles. This is an422

anchored patch that covers the smaller disk Dr.423

For the (b) statements, build the incidence graph on the tiles of the carpet, where two424

tiles are connected by an edge if they share a vertex. If this graph is connected, then the425

patch is seamless. If this graph is disconnected, it is because of seams. Seam lines cannot426

intersect: otherwise, their intersection point is a vertex common to both sides of the seams.427

Thus, cutting the patch along all seams, or equivalently taking one connected component of428

the incidence graph, will create neat vertices on the new boundary, where the seams were.429

Take the component that contains a tile covering the origin. This is a seamless patch that is430

neat within radius < r. ◀431
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▶ Lemma 4.8. Given prototiles T and a computable radius r, deciding whether there is an432

anchored carpet that is neat within radius < r is in co-RE. If there is no such carpet, then T433

cannot tile the plane.434

Given prototiles T , a seamless patch P , and a computable radius r, deciding whether P435

can be extended to a carpet that is neat within radius < r is in co-RE. If there is no such436

carpet, then P cannot be extended to tile the plane.437

▶ Lemma 4.9. If an anchored carpet is neat within radius < r + 2ρ, then the carpet contains438

an anchored patch that is neat within radius < r.439

Proof. Consider the intersection between the carpet C and the disk Dr+2ρ, which might440

have multiple connected components and/or be self-overlapping. Pick the component S that441

contains the anchored tile. The boundary of S is composed of straight lines (the edges of442

the tiles connected by neat vertices) and circular arcs (portions of the boundary of Dr+2ρ),443

connected together at convex angles. Thus S is convex, so non-self-overlapping.444

Back in the carpet, remove all tiles that are not entirely contained in Dr+2ρ. Again, this445

possibly results in several connected components. Retain the component C ′ that contains the446

anchored tile, where connectivity is defined by interior paths, so that C ′ does not have pinch447

points. By construction, this component is contained in S and thus is not self-overlapping.448

Also C ′ is a topological disk: a hole in C ′ could only come from a removed tile, which449

must touch the outside of Dr+2ρ, contradicting that it is surrounded by C ′ (by planarity).450

Therefore, C ′ is a patch.451

Finally, because all tiles removed have diameter ≤ 2ρ, none of the deleted tiles intersect452

the disk Dr, and therefore all vertices within radius < r remain untouched. Therefore the453

patch C ′ is neat within radius < r. ◀454

▶ Lemma 4.10. If there exists an anchored carpet C that is neat within radius < r + 2ρ,455

then there exists a patch that covers the disk Dr/2. Furthermore, that patch contains all tiles456

of C that intersect Dr/2.457

Proof. Suppose we have a carpet that is neat within radius < r + 2ρ. By Lemma 4.9, we458

have a patch that is neat within radius < r. The intersection of the patch and the disk Dr is459

a disk cut by noncrossing chords; refer to Figure 7. Note that any chord of Dr that intersects460

Dr/2 cuts off an arc of angle 2
3 π from Dr. Because the chords defined by the patch do not461

intersect in Dr, at most two of them intersect Dr/2.462

r

r /2

r

r /2

r

q
r /2

Figure 7 A neat patch within < r, and how it can interact with the smaller disk Dr/2. From left
to right: no chords, one chord, and two chords.

463

464

If no chord intersects Dr/2, then the patch covers Dr/2, and we are done.465

If exactly one chord intersects Dr/2, then the patch is contained in a half-plane that466

contains the origin and is bounded by the extension of the cord. Rotate a copy of the patch467
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by 180◦ about the center of the cord, and glue the two pieces together. This produces a468

patch that covers Dr/2.469

If two chords intersect Dr/2, then the patch is contained in a wedge defined by the470

extensions of the two chords. Let q be the apex of the wedge, and assume q is on the x axis,471

with one of the chords above the x axis and the other chord below. Assume without loss472

of generality that the chord below is the longest one. Repeatedly stitch copies of the patch473

by rotating it about q, upward, gluing the longer chord of the previous copy to the shorter474

chord of the next copy, until the upper half of Dr/2 is covered. Now repeat the procedure for475

a single chord. The resulting patch covers the disk of radius r/2. ◀476

▶ Theorem 4.11 (Extension Theorem [9, p. 151]). Given a finite collection T of prototiles,477

if they tile arbitrarily large disks, then they admit a tiling of the plane.478

Given a finite collection T of prototiles and patch P using tiles of T , if P can be extended480

to cover arbitrarily large disks centered in P , then P can be completed to tile the plane.4481

We translate the above theorem to seamless anchored patches.482

▶ Lemma 4.12. Given a collection T of prototiles, if there exist anchored carpets that are483

neat within radius < r for arbitrarily large r, then T admits a tiling of the plane.484

Given a collection T of prototiles, and given an anchored patch P using tiles of T , if P485

can be extended to a carpet that is neat within radius < r for arbitrarily large r, then P can486

be completed to tile the plane.487

▶ Theorem 4.13 (Precise form of Theorem 1.5). Given a set T of k polygons in our model,488

deciding whether they tile the plane is in co-RE. Also given a patch P of tiles from T , deciding489

whether P can be completed to tile the plane is in co-RE.490

Proof. For every positive integer k, set r = kρ and use Lemma 4.8 to determine whether491

there exists an anchored carpet that is neat within radius < r, or whether P can be completed492

to produce such a carpet. This is a recursively enumerable disjunction of co-RE problems,493

so by Lemma 4.4 is in co-RE. By Lemma 4.12, if all of these problems output true, then494

the polygons tile the plane or complete P to tile the plane. By Lemma 4.8, if any of these495

problems outputs false, then the polygons do not tile or complete P to tile the plane. ◀496
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