
Computational Complexity of Motion Planning of1

a Robot through Simple Gadgets2

Erik D. Demaine3

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA4

edemaine@mit.edu5

Isaac Grosof1
6

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA7

isaacg@alum.mit.edu8

Jayson Lynch9

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA10

jaysonl@mit.edu11

Mikhail Rudoy2
12

MIT CSAIL, 32 Vassar Street, Cambridge, MA 02139, USA13

mrudoy@gmail.com14

Abstract15

We initiate a general theory for analyzing the complexity of motion planning of a single robot16

through a graph of “gadgets”, each with their own state, set of locations, and allowed traversals17

between locations that can depend on and change the state. This type of setup is common18

to many robot motion planning hardness proofs. We characterize the complexity for a natural19

simple case: each gadget connects up to four locations in a perfect matching (but each direction20

can be traversable or not in the current state), has one or two states, every gadget traversal is21

immediately undoable, and that gadget locations are connected by an always-traversable forest,22

possibly restricted to avoid crossings in the plane. Specifically, we show that any single nontrivial23

four-location two-state gadget type is enough for motion planning to become PSPACE-complete,24

while any set of simpler gadgets (effectively two-location or one-state) has a polynomial-time25

motion planning algorithm. As a sample application, our results show that motion planning26

games with “spinners” are PSPACE-complete, establishing a new hard aspect of Zelda: Oracle27

of Seasons.28

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-29

pleteness30

Keywords and phrases PSPACE, hardness, motion planning, puzzles31

Digital Object Identifier 10.4230/LIPIcs.FUN.2018.1832

1 Introduction33

Many hardness proofs are based on gadgets — local pieces, each often representing corre-34

sponding pieces of the input instance, that combine to form the overall reduction. Garey and35

Johnson [7] called gadgets “basic units” and the overall technique “local replacement proofs”.36

The search for a hardness reduction usually starts by experimenting with small candidate37

1 Now at Carnegie Mellon University.
2 Now at Google Inc.

© Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy;
licensed under Creative Commons License CC-BY

9th International Conference on Fun with Algorithms (FUN 2018).
Editors: Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edemaine@mit.edu
mailto:isaacg@alum.mit.edu
mailto:jaysonl@mit.edu
mailto:mrudoy@gmail.com
http://dx.doi.org/10.4230/LIPIcs.FUN.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


18:2 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

gadgets, seeing how they behave, and repeating until amassing a sufficient collection of38

gadgets to prove hardness.39

This approach leads to a natural question: what gadget sets suffice to prove hardness?40

There are many possible answers to this question, depending on the precise meaning of41

“gadget” and the style of problem considered. Schaefer [11] characterized the complexity of42

all “Boolean constraint satisfiability” gadgets, including easy problems (2SAT, Horn SAT,43

dual-Horn SAT, XOR SAT) and hard problems (3SAT, 1-in-3SAT, NAE 3SAT). Constraint44

Logic [8] proves sufficiency of small sets of gadgets on directed graphs that always satisfy one45

local rule (weighted in-degree at least 2), in many game types (1-player, 2-player, 2-team,46

polynomially bounded, unbounded), although the exact minimal sets of required gadgets47

remain unknown. Both of these general techniques naturally model “global” moves that can48

be made anywhere at any time (while satisfying the constraints). Nonetheless, the techniques49

have been successful at proving hardness for problems where moves must be made local to50

an agent/robot that traverses the instance.51

In this paper, we introduce a general model of gadgets that naturally arises from single-52

agent motion planning problems, where a single agent/robot traverses a given environment53

from a given start location to a given goal location. Our model is motivated by the plethora54

of existing hardness proofs for such problems, such as Push-1, Push-∗, PushPush, and55

Push-X [3]; Push-2-F [5]; Push-1 Pull-1 [4,9]; as well as several Nintendo video games studied56

at recent FUN conferences [1, 6].57

1.1 Gadget model58

In general, we model a gadget as consisting of one or more locations (entrances/exits) and one59

or more states. (In this paper, we will focus on gadgets with at most two states.) Each state60

s of the gadget defines a labeled directed graph on the locations, where a directed edge (a, b)61

with label s′ means that the robot can enter the gadget at location a and exit at location b,62

and that such a traversal forcibly changes the state of the gadget to s′. Equivalently, a gadget63

is specified by its state space, a directed graph whose vertices are state/location pairs, where64

a directed edge from (s, a) to (s′, b) represents that the robot can traverse the gadget from a65

to b if it is in state s, and that such traversal will change the gadget’s state to s′. Gadgets66

are local in the sense that traversing a gadget does not change the state of any other gadgets.67

A system of gadgets consists of gadgets, their initial states, and connections between68

disjoint pairs of locations (forming a matching). If two locations a, b of two gadgets (or the69

same gadget) are connected, then the robot can traverse freely between a and b (outside the70

gadgets). (Equivalently, we can think of locations a and b as being identified.) These are71

all the ways that the robot can move: exterior to gadgets using connections, and traversing72

gadgets according to their current states. In a puzzle, we are given a system of gadgets, the73

robot starts at a specified start location, and we want to find a sequence of moves that brings74

the robot to a specified goal location. The main problem we consider here is the obvious75

decision problem: is the given puzzle solvable?76

Figure 1 Branching
hallway gadget

One type of gadget we always allow in this paper is the branch-77

ing hallway gadget, which has one state and three locations, and78

always allows traversal between all pairs of locations; see Figure 1.79

In other words, upon reaching such a gadget, the robot is free to80

choose and move to any of the three locations. Connecting together81

multiple branching hallways allows us to effectively connect the other82

gadgets’ locations according to an arbitrary forest (as described in83

the abstract).84



E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:3

All other gadgets we consider in this paper are “deterministic” and “reversible”. A gadget85

is deterministic if its state space has maximum out-degree ≤ 1, i.e., a robot entering the86

gadget at some location a in some state s (if possible) can exit at only one location b and87

one new state s′. A gadget is reversible if its state space has the reverse of every edge, i.e., it88

is the bidirectional version of an undirected graph. Thus a robot can immediately undo any89

gadget traversal.3 Together, determinism and reversibility are equivalent to requiring that90

the state space is the bidirectional version of a matching.91

Other than the (one-state) branching hallway, we further require that the states of a92

gadget differ only in their orientations of the possible traversals. More precisely, a k-tunnel93

gadget has 2k locations, paired in a perfect matching whose pairs are called tunnels, such94

that each state defines which direction or directions each tunnel can be traversed.95

We also consider planar systems of gadgets, where the gadgets and connections are drawn96

in the plane without crossings. Planar gadgets are drawn as small regions (say, disks) with97

their locations as points in a fixed clockwise order along their boundary. A single gadget type98

thus corresponds to multiple planar gadget types, depending on the choice of the clockwise99

order of locations. Connections are drawn as paths connecting the points corresponding to100

the endpoint locations, without crossing gadget interiors or other connections.101

1.2 Our results102

We characterize the computational complexity of deciding puzzle solvability when the allowed103

gadgets consist of the branching hallway and any number of deterministic reversible ≤ 2-state104

k-tunnel gadgets, for any k. Specifically, if there is at least one gadget type that is not105

equivalent to a 1-state or 1-tunnel gadget, then the problem is PSPACE-complete; and106

otherwise, the problem is in P. The same characterization holds for planar systems of gadgets;107

thus, in applications, we do not have to worry about building a crossover gadget (which is108

often the most difficult).109

In Section 3, we sketch our proof from [4] that motion planning with two-toggle-locks110

and crossovers is PSPACE-complete. In Section 4, we prove that one particular gadget,111

the antiparallel two-toggle, can simulate a variety of other gadgets, eventually including a112

two-toggle-lock and a crossover. As a consequence, motion planning with the antiparallel113

two-toggle is PSPACE-complete. In Section 5, we show that all nontrivial deterministic114

reversible 2-state, 2-tunnel gadgets can simulate the antiparallel two-toggle. As a consequence,115

each corresponding motion planning problem is PSPACE-complete. In Section 7, we extend116

these results to give a precise hardness characterization for the motion planning problem117

with each deterministic reversible 2-state k-tunnel gadget.118

We also partially characterize the computational complexity of deterministic reversible119

≤ 2-state gadgets with three locations. In particular, we study spinners and deterministic120

forks, as described in Section 6.121

We hope that our approach will be useful for establishing hardness of many real-world122

motion planning problems and puzzles. As a sample application, our results allow us to123

establish a new PSPACE-hard aspect of the Nintendo video game Zelda: Oracle of Seasons124

(which features spinners) Section 6.125

3 This notion is different than the sense of “reversible” in reversible computing, which would mean that
we could derive which move to undo from the current state.

FUN 2018



18:4 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

2 Gadget Basics126

To categorize the possible deterministic reversible 2-state 2-tunnel gadget types, we first127

categorize the possible tunnel types in such a gadget. A tunnel is trivial if it is either never128

traversable or always traversable. A trivial tunnel can always be split into a separate 1-state129

1-tunnel gadget, so we can ignore them. What remain are three possible nontrivial tunnel130

types:131

Tripwire A tunnel that can always be traversed in either direction,
but traversing it switches the gadget’s state.

Lock In the unlocked state (shown above), the tunnel can be
traversed in either direction; in the locked state (shown
below), the tunnel cannot be traversed in either direction.

Toggle A tunnel that can always be traversed in a single direction,
where the direction differs in the two states of the gadget.
The state is switched when the gadget is traversed.

132

There are six ways to combine these tunnel types into pairs. Two combinations, Lock–Lock133

and Tripwire–Tripwire, are trivial combinations equivalent to one-state gadgets in which134

each tunnel is either always traversable in both directions or never traversable. Thus we135

restrict our attention to the four other combinations, listed below. Because we are interested136

in planar systems, we consider the multiple planar gadgets for each nontrivial combination.137

(We do, however, treat a gadget and its reflection as equivalent.) As a result, there are nine138

different nontrivial two-tunnel two-state gadgets, abbreviated and listed below. The bulk of139

our paper focuses on the six gadgets shown in Figure 2, which omits most crossing variants.140

1. Tripwire–Lock: Traversing the tripwire makes the other tunnel flip between being141

passable and impassable, causing it to ‘lock’ or ‘unlock’. There are crossing and non-142

crossing varieties, abbreviated CWL (crossing wire lock) and NWL (non-crossing wire143

lock).144

2. Toggle–Lock: Traversing the toggle flips the lock tunnel between being passable and145

impassable. Crossing the lock tunnel, by definition, does not change the state of the146

gadget. Notice that one direction of the toggle corresponds to an open lock and the other147

direction to the closed lock. There are crossing and non-crossing varieties, abbreviated148

CTL (crossing toggle lock) and NTL (non-crossing toggle lock).149

3. Tripwire–Toggle: Here traversing either the tripwire or the toggle flips the direction of150

the toggle. There are crossing and non-crossing varieties, abbreviated CWT (crossing151

wire toggle) and NWT (non-crossing wire toggle).152

4. Toggle–Toggle: Also known as a 2-toggle [4]. Traversing either toggle flips the direction153

of both of them. This is the only case where there are two directed tunnels, leading154

to three possibilities: crossing, parallel, and anti-parallel. They are abbreviated C2T155

(crossing 2-toggle), P2T (parallel 2-toggle), and AP2T (anti-parallel 2-toggle).156

In this paper we will often need to discuss putting gadgets together to create new behavior.157

We will do so by creating a system of gadgets that is “equivalent” to some target gadget,158

thereby “simulating” that gadget. Two systems of gadgets are equivalent if there is a bijective159

correspondence between their locations and a correspondence between their states such160

that the allowed transitions for all (locations, state) pairs are the same under these two161

correspondences. We will say that a gadget or set of gadgets simulates a target gadget if it is162



E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:5

(a) NWL (b) NTL (c) NWT (d) P2T (e) AP2T (f) C2T

Figure 2 Six of the nine deterministic reversible 2-state gadgets on two tunnels. We leave out
the CWL, CTL, and CWT gadgets as they are not heavily used in the paper.

possible to combine gadgets from the set (possibly using duplicates) such that the resulting163

system is equivalent to the target gadget. We will always implicitly allow the use of the164

branching hallway gadget in these constructions. In all cases, these constructions will be165

planar.166

2.1 Closure Properties167

I Lemma 2.1. Any system of gadgets composed of two reversible gadgets is reversible.168

Proof. Consider any transition through the system formed by composing two reversible169

gadgets. This transitions is a walk through the gadgets and connections that form a system.170

Since both gadgets are reversible, it is possible for the robot to enact the exact reverse of171

this walk after the walk is done. This will exactly reverse the effect of the walk within each172

gadget. Thus, it is possible to reverse the entire transition.173

Since every transition of the system can be reversed, the system is reversible. J174

Since all of the gadgets we consider in this paper are reversible, Lemma 2.1 means our175

systems will all be reversible as well.176

I Lemma 2.2. Any system of gadgets composed of two deterministic reversible gadgets is177

deterministic and reversible.178

Proof. The state space of a reversible, deterministic gadget is an undirected matching of179

some (state, location) pairs to each other. This a necessary and sufficient characterization of180

reversible, deterministic gadgets.181

When we compose two such gadgets, we create paths through the pair of gadgets. However,182

no (state, location) pair has more than two edges: One connection to the other gadget, and183

one edge through its original gadget. Moreover, any (state, location) pair that forms an184

external location has a most one edge, as it does not connect to the other gadget. As a185

consequence, the path from any external location through the gadget is either a deterministic186

path to another external location, or a dead end. There is no branching, as branching would187

require a location with three edges.188

Thus, the resultant object is deterministic. By Lemma 2.1 it is reversible as well. J189

2.2 PSPACE Membership190

I Lemma 2.3. Deciding puzzle solvability is in PSPACE.191

Proof. The entire state of the system can be described by the current state of the gadgets192

and the location of the agent. The gadgets have a polynomial number of states and there193

can only be a polynomial number of gadgets. Since the entire state of the board fits in a194

FUN 2018



18:6 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

polynomial amount of space, we can non-deterministically search for a solution, showing195

containment in NPSPACE. Savich’s Theorem [10] gives PSPACE = NPSPACE. J196

3 2-toggle-lock and crossover motion planning is PSPACE-complete197

In [4] we showed that motion planning with 4-toggles and crossovers is PSPACE-complete.198

In that construction, the crucial gadget turned out to be a 2-toggle-lock, which is a 3-tunnel,199

2-state gadget with two locks and a tunnel. The 4-toggle was not used in any way after the200

construction of the 2-toggle-lock, showing that 2-toggle-locks and crossovers are PSPACE-201

hard. For convenience we sketch the proof, with some refinement. One should refer to the202

prior paper for a more detailed and rigorous proof.203

I Definition 3.1. 3QSAT is the following decision problem. Given a fully quantified boolean204

formula in prenex normal form and in conjunctive normal form with no more than three205

variables per clause, decide whether the formula is true.206

I Theorem 3.2. Motion planning with 2-toggle-locks and crossovers is PSPACE-hard.207

We reduce from 3QSAT to motion-planning with 2-toggle-locks and crossovers. To do so we208

need to construct clauses, universal variables, and existential variables. Literals will consist209

of a 2-toggle-lock which will be set from the 2-toggle side and checked by passing through the210

lock. Clauses are composed of a branching hallway that leads through each of its associated211

literals.212

Existential variables will be a branching hall with a group of toggle-locks in series. Passing213

through in one direction opens the locks of the gadgets representing true literals of that214

variable while closing the locks of the false ones. Going through the other way allows this to215

be undone, as the system is reversible.216

To construct universal quantifiers we connect up the 2-toggle sections as in Figure 3,217

where each universal gadget consists of several antiparallel 2-toggles with locks. Each of these218

gadgets sends the robot forward in one state or back to the beginning in the other state, and219

flips the state. Repeatedly entering from the left iterates through all configurations of the220

states, so the robot must check all of the possible values for the universal variables. The goal221

state lies at the far end of the eries of universal gadgets.222

For both the existentials and the universals, the variables are actually a long series of223

2-toggle-locks with one lock for each literal of the variable in the formula.224

When putting this all together, as in Figure 3, we need to ensure that the robot cannot225

sneak back into the variable gadget and change existential settings it shouldn’t be allowed226

to access, namely those existentials beyond the universal it just emerged from. To do this227

we construct a simple system that puts a lock on the return pathway at the end of each228

universal variable which only allows passage if the prior variable is set to false. Since the229

robot will have just exited from a variable which was set to true, this prevents the robot230

from moving forward in the variable chain. In addition, all earlier variables are false allowing231

the robot to travel back to the formula, since the universal gadgets take on incrementing232

binary values with each loop through the gadget. Since those existential variables are ones233

the robot was allowed to set to any value on the prior passage, going back and changing234

them now gives no advantage over having set them to that value earlier.235

This safeguard is the one difference from the prior construction, which checked the values236

of all prior universal variables, requiring a quadratic blow-up in number of gadgets. The need237

for crossovers and a 2D layout will still create a quadratic blowup in problem size overall,238



E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:7

∀y1 ∃x1 ∀y2

y1 =? 0

∃x2 ∀y3

y2 =? 0
formula

∃x3

Figure 3 Structure of the QSAT reduction.

but this simplification seemed worth noting and should allow for the 3D result to cause only239

a linear blowup in problem size.240

With this guard in place, the robot can only reach the goal state by demonstrating a241

solution to the 3QSAT instance, after iterating through all settings of the universal gadget. J242

4 Antiparallel 2-toggle motion planning is PSPACE-complete243

We will show that the question of whether a robot in a system of antiparallel 2-toggle gadgets244

can reach a specified goal location is PSPACE-complete. To do so, we will simulate various245

other gadgets using AP2T gadgets, eventually simulating 2-toggle-locks and crossovers. Since246

motion planning with 2-toggle-locks and crossovers is PSPACE-complete, this implies that247

AP2T motion planning is PSPACE-complete.248

I Theorem 4.1. Motion Planning with AP2T gadgets is PSPACE-complete.249

We will simulate the gadgets needed for the PSPACE-completeness proof, and a wide250

variety of other intermediate gadgets to help us get there. The steps are as follows:251

1. Simulate a C2T, using AP2Ts. Lemma 4.2.252

2. Simulate a P2T, using C2Ts. Lemma 4.3.253

3. Simulate a NTL, using AP2Ts, C2Ts and P2Ts. Lemma 4.4.254

4. Simulate various types of 2-toggle locks, with “round” and “stacked” internal connections.255

The types of internal connections are described in Section 4.1, and the constructions are256

given in Lemmas 4.6 and 4.7.257

5. Simulate a NWL, using the stacked antiparallel 2-toggle lock. Lemma 4.8.258

6. Simulate a stacked tripwire-lock-tripwire, using NWLs. Lemma 4.9259

7. Simulate a crossover, using stacked tripwire-lock-tripwires. Lemma 4.10260

With a 2-toggle lock and a crossover constructed, we can apply Theorem 3.2 to show261

that motion planning with AP2Ts is PSPACE-hard. Adding in Lemma 2.3, we find that it is262

PSPACE-complete. J263

I Lemma 4.2. Antiparallel 2-toggles (AP2Ts) simulate a crossing 2-toggle (C2T).264

Proof. The construction is given in Figure 4. In the state of the construction shown in the265

figure, there are two possible transitions: the robot can move from the upper left to the266

bottom right of the construction, or from the upper right to the bottom left. Either of those267

transitions toggles both AP2Ts, leaving the construction mirrored top to bottom. Thus, the268

construction has two states. The possible traversals in one state (as shown above) are from269

FUN 2018



18:8 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 4 Anti-parallel 2-toggles simulate
a crossing 2-toggle

Figure 5 Crossing 2-toggles simulate a
parallel 2-toggle

 1

3 4

2

5 6

Figure 6 2-toggles simulate 1-toggle-lock.

the top left to the bottom right and from the top right to the bottom left, while the possible270

traversals in the other state are (by symmetry) from the bottom left to the top right and271

from the bottom right to the top left. Following any of these traversals swaps the state of272

the construction. Notice that this is exactly the behavior of a C2T.273

If the robot enters the construction shown from the upper left, upon reaching the center274

the robot can only proceed to the bottom right, or come back the way it came. Therefore, the275

upper left to bottom right transition is the only possible transition from that location. By276

symmetry, the same is true from top left to bottom right. Thus, the one traversal described277

for each location in each state is the only one possible. J278

I Lemma 4.3. Crossing 2-toggles (C2Ts) simulate a parallel 2-toggle (P2T).279

Proof. The construction is given in Figure 5. In the state of the construction shown in280

the figure, there are two possible transitions: the robot can move from the top left to the281

top right of the construction, or from the bottom left to the bottom right. Either of these282

transitions toggles both C2Ts, leaving the construction mirrored left to right. The allowed283

traversals in one state (as shown above) are from the top left to the top right and from284

the bottom left to the bottom right, while the allowed traversals in the other state are (by285

symmetry) from the top right to the top left and from the bottom right to the bottom left.286

Following any of these traversals swaps the state of the construction. Notice that this is287

exactly the behavior of a P2T.288

Since the system is composed entirely of C2Ts (without even branching hallways), which289

are both reversible and deterministic, the result is also both reversible and deterministic, by290

Lemma 2.2. Thus, the one transition described for each location in each state is the only291

transition possible. J292

I Lemma 4.4. 2-toggles (AP2Ts, P2Ts and C2Ts) simulate a noncrossing toggle lock (NTL).293

Proof. The construction is shown in Figure 6.294

In this lemma, we will refer to toggles 1 and 2 in the figure as the “outer toggles”, toggles295

3 and 4 as the “middle toggles”, and toggles 5 and 6 as the “bottom toggles”. We will call296

the pathway through the lower tunnels of the bottom toggles the “bottom tunnel” of the297

overall gadget, and the rest of the gadget the “middle tunnel” of the overall gadget.298

An NTL has two externally observable states: locked, and unlocked. The locked state299

corresponds to the upper tunnels of the bottom toggles oriented out, and the unlocked state300

corresponds to the bottom toggles oriented in. The unlocked state is shown in Figure 6.301



E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:9

In this gadget, there are two internal states corresponding to each external state: with302

the horizontal tunnels of the middle toggles both oriented left, and with both oriented right.303

The only accessible states of this gadget are the states with the outer toggles oriented in, the304

middle toggles oriented both left or both right, and upper pathways of the bottom toggles305

oriented both in or both out. We will show that the gadget allows exactly the traversals of306

the NTL from these configurations, and cannot be left in any other configuration.307

The bottom tunnel traversals are straightforward — the bottom tunnel acts as a toggle,308

and a traversal flips both bottom toggles, and hence the externally observable state.309

Also clearly, the robot cannot move between the bottom tunnel and the middle tunnel.310

Now, we wish to establish that in the unlocked state, the robot can always traverse the311

middle tunnel in either direction. In the state shown, the middle tunnel may be traversed312

from external location to external location as follows:313

The robot can get across, left to right, by traversing the following toggles in the following314

order: enter through toggle 1’s lower tunnel, down to toggle 5, up to toggle 4’s vertical315

tunnel, through toggle 1’s upper tunnel, around the top to toggle 2’s top tunnel, back316

down through toggle 4, back out through toggle 5, across through toggle 3’s horizontal317

tunnel, then through toggle 4’s horizontal tunnel, then out through toggle 2’s lower318

tunnel.319

The robot can get across, right to left, by traversing the following toggles in the following320

order: enter through toggle 2’s lower tunnel, down to toggle 6, up to toggle 4’s vertical321

tunnel, through toggle 2’s top tunnel, around to toggle 1’s top tunnel, down through322

toggle 3’s vertical tunnel, back out through toggle 6, across through toggle 4’s horizontal323

tunnel, then through toggle 3’s horizontal tunnel, then out through toggle 1’s lower324

tunnel.325

If the middle toggles are in the opposite orientation, the system is simply mirrored, left326

to right, and the traversals are still possible.327

Next, we wish to establish that the robot cannot cross the middle tunnel in the locked328

state. After entering from either middle tunnel location, the only traversable toggles are the329

middle toggles. After traversing those, the robot can go no further. The bottom toggles330

can’t be traversed, so the entire middle region is inaccessible. As a consequence, the opposite331

outer toggle’s upper pathway can’t be accessed. Therefore the robot can only leave via its332

original location.333

We also must establish that if the gadget starts in one of the configurations mentioned,334

the robot must leave it in the proper state, and can’t leave it in a configuration that wasn’t335

mentioned. This is straightforward for the bottom tunnel, so we will focus on the middle336

two locations.337

We will show that the accessible configurations of the gadget are exactly as described.338

To do so, we will make use of the concept of a cut in a gadget.339

I Lemma 4.5. Let A be a connected region of a planar embedding of a gadget system which340

does not contain any locations. Then the boundary of A, which we will call a cut, is traversed341

an even number of times during any traversal of the construction.342

Proof. Whenever the boundary of A is crossed, the robot goes from inside A to outside or343

vice versa. Since the robot starts a traversal outside A and ends it outside A, it must cross344

the boundary an even number of times. J345

The upper pathways of the outer toggles form a cut, and the lower pathways of the outer346

toggles form a cut. Thus, the upper pathways of the outer toggles are crossed an even number347

FUN 2018



18:10 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

of times, and the lower pathways are passed an even number of times, so the outer toggles348

must be passed an even number of times in total. Thus, the toggles must either be both349

oriented in or both out when leaving. However, when leaving the gadget, the outer toggle350

which the robot exited through must end up oriented in, so both outer toggles must end up351

oriented in.352

The vertical pathways of the middle toggles form a cut. The horizontal pathways form a353

cut. Thus, upon leaving, the middle toggles must have been traversed an even number of354

times in total, and hence must end up both left or both right.355

The upper pathways of the bottom toggles must be passed an even number of times. So356

the upper pathways of those toggles must either be both in or both out when leaving the357

gadget system.358

Thus, the gadget system must be left in a state where the outer toggles are oriented in,359

the middle toggles are oriented either both left or both right, and the upper pathways of360

the bottom toggles are oriented either both in or both out. Therefore, these are exactly the361

accessible configurations, as desired.362

Finally, we show that the robot leaves the gadget in the same state it was entered in,363

if it is entered on the middle tunnel. If the robot passes through one of the upper tunnels364

of the bottom toggles, when it leaves the region bounded by the bottom toggles’ upper365

tunnels, it must leave one of the bottom toggle’s upper tunnels oriented in. By the parity366

constraint, both bottom toggles’ upper tunnels will be oriented in, thus leaving the gadget in367

the unlocked state. If the central tunnels are entered in the unlocked state, they will be left368

in the unlocked state. In the locked state, the upper tunnels of the bottom toggles cannot be369

passed, and so the gadget will be left in the locked state.370

Thus, the construction correctly simulates a NTL. J371

4.1 2-toggles and non-crossing toggle locks simulate 2-toggle locks372

Figure 7 Round antipar-
allel 2-toggle-lock construc-
tion

We introduce some new three tunnel objects. There are several373

distinct planar topologies of the tunnels in a three tunnel object.374

We will focus on the two topologies which can be drawn with375

no internal crossing tunnels: three tunnels around the perimeter,376

and three tunnels in parallel. We will call the former a “round”377

topology, and the latter a “stacked” topology. Note that in the378

stacked topology, the order of the tunnels is relevant. In either379

topology, if there are multiple toggles, the relative orientation380

must still be specified.381

I Lemma 4.6. 2-toggles and noncrossing toggle locks simulate a382

round antiparallel 2-toggle-lock (RAP2TL) and a round parallel383

2-toggle-lock (RP2TL).384

Proof. The construction shown in Figure 7 simulates the behav-385

ior of a round antiparallel 2-toggle-lock. It has two externally386

accessible states: as shown, and with the middle two gadgets387

flipped. These correspond to the 2-toggle of the RAP2TL being388

pointed counterclockwise and clockwise respectively.389

We will demonstrate that this gadget is equivalent to a RAP2TL by examining all possible390

traversals. From the two locations that are on the lock tunnel of the NTL, the only possible391

traversals are to each other, if the lock tunnel is unlocked. This forms the lock tunnel of the392

RAP2TL.393



E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:11

Figure 8 A round parallel 2-toggle lock
is used to construct a stacked antiparallel
2-toggle lock

Figure 9 A noncrossing tripwire lock con-
structed from an anti-parallel 2-toggle and
lock with the lock on the side

Traversals from the top left location: The robot must go down and to the right, due to394

the orientation of the toggle of the NTL. Then, the robot can go through the C2T, at which395

point it is blocked by the orientation of the bottom P2T. Thus, no traversal is possible from396

this location in this state.397

Traversals from the top right location: The robot can go through the C2T, then through398

the NTL. At this point, the robot cannot go through the C2T again, because the C2T has399

been toggled. Therefore, its only option is to go through the upper P2T and leave at the400

top left location. This traversal toggles both of the middle two gadgets, and toggles the401

upper P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent of402

traversing the upper toggle of the RAP2TL that we are simulating.403

Traversals from the bottom left location: The robot must go up and to the left, due to404

the orientation of the C2T. Then, the robot can go through the NTL. Due to the orientation405

of the upper P2T, the robot must now go through the C2T. Now, the robot can leave at the406

bottom right location. This traversal toggles both of the middle two gadgets, and toggles407

the lower P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent408

of traversing the lower toggle of the RAP2TL that we are simulating.409

Traversals from the bottom right location: The robot is blocked by the orientation of the410

C2T. Thus, no traversal is possible from this location in this state.411

The opposite state is equivalent to a top-bottom mirror reversal, except for a change412

in the state of the lock, which does not affect which traversals are possible. Thus, in every413

state, this system of gadgets is equivalent to a round antiparallel two-toggle-lock (RAP2TL).414

Consider the gadget which is the same as the one in Figure 7, except that the bottom P2T415

is replaced with a C2T with its toggles allowing traversals from the bottom locations into416

the gadget. Clearly, the effect of this change is to swap the roles of the bottom two locations.417

As a result, this new construction is a round parallel two-toggle-lock, a RP2TL. J418

I Lemma 4.7. RP2TLs and 2Ts simulate a stacked antiparallel 2-toggle-lock (SAP2TL).419

Proof. A SAP2TL is a three tunnel gadget where the three tunnels cross the gadget in420

parallel, with the two antiparallel toggle tunnels next to each other.421

Starting with a RP2TL and two C2Ts, we can simulate a SAP2TL as shown in Figure 8.422

The lock tunnel is straightforward. The two other traversals are from the top left to the423

bottom left, and from the bottom right to the top right. Both of these traversals pass through424

every gadget. In the other state, all three gadgets are flipped, and the same traversals are425

possible in the opposite direction.426

FUN 2018



18:12 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 10 A stacked tripwire-lock-tripwire
constructed from non-crossing tripwire locks. Figure 11 A crossover constructed from

stacked tripwire-lock-tripwires

Since every state-affecting traversal traverses all gadgets, the states of the three gadgets427

always switch together, and the behavior is that of an SAP2TL. Equivalently, by Lemma 2.2,428

the system of gadgets is deterministic and reversible, so the three traversals mentioned are429

the only ones possible, and the construction simulates a SAP2TL. J430

4.2 2-toggle locks simulate non-crossing wire locks431

I Lemma 4.8. AP2TLS simulates a NWL.432

Proof. By connecting the locations of the SAP2TL as shown in Figure 9, we can simulate a433

NWL.434

Each traversal of either connected toggle tunnel flips the state. The connections between435

these two tunnels ensure that travel in either direction is always possible. As a result, the436

combination of these connected pathways acts as a tripwire, always allowing the robot to437

pass in either direction and opening or closing the lock with each traversal. J438

4.3 Non-crossing wire locks simulate crossovers439

On our way to simulating a crossover, we will simulate another three tunnel gadget, a stacked440

tripwire-lock-tripwire (SWLW). Note that the lock tunnel is specifically the center tunnel.441

I Lemma 4.9. NWLs simulate a stacked tripwire-lock-tripwire (SWLW).442

Proof. The construction is shown in Figure 10. There are four accessible states of this443

gadget, which are any of the states where there is one locked and one unlocked NWL among444

the two top NWLs, and one of each among the two bottom NWLs.445

The states can only be changed by traversing the tripwire tunnels, and doing so flips446

both NWLs on the side traversed, maintaining the invariant.447

If both left NWLs are locked, or both right NWLs are locked, the center tunnel is not448

passable. In the other two accessible states, the center tunnel is passable. The two pairs449

correspond to the two external states, with the lock locked and unlocked respectively. In any450

state, traversing either tripwire moves the gadget to a state with the opposite passability of451

the lock tunnel. Thus, this construction simulates a SWLW. J452

I Lemma 4.10. SWLWs simulate a crossover.453

Proof. The gadget shown in Figure 11 implements a crossover. The robot may always cross454

from left to right, right to left, top to bottom and bottom to top, but in no other directions.455

There is a single accessible state, the one with all four SWLWs in the unlocked state.456



E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:13

When the robot enters from any of the four external locations it has only a single option457

up until the point where it reaches the four-way intersection at the center. Upon reaching458

this point, the robot has traversed the tripwire tunnels of two of the SWLWs, locking them.459

In particular, the SWLWs whose lock tunnels are on the two orthogonal pathways are locked.460

For instance, if the robot entered from the top, the left and right pathway’s SWLWs would461

be locked at this point. As a result, the only way for the robot to continue is to go straight,462

passing through the other tripwires of the same two SWLWs, and emerging from the other463

side. The robot has completed a crossover traversal, with no other options.464

Because the robot passed through the tripwires of two SWLWs twice, and only the lock465

tunnels of the other two SWLWs, the object is left in its original state, making the state shown466

in Figure 11 the only accessible state. This construction correctly simulates a crossover. J467

For the PSPACE-completeness result, we make use of 2-toggle locks and crossovers.468

Combining the lemmas in Section 4, we have the result we will make use of:469

I Theorem 4.11. AP2Ts simulate crossovers and all 2-toggle-locks.470

Proof. By composing the lemmas in Section 4, we see that AP2Ts simulate crossovers and471

RAP2TLs. By using the crossover to effectively rearrange locations, we can simulate an472

arbitrary 2-toggle-lock. J473

5 Everything simulates everything else474

The remaining gadgets of interest are each individually (when combined with branching475

hallways) sufficient to make motion planning problems PSPACE-complete. Moreover, each476

gadget can be simulated by a constant number of each other gadget. To prove this, we give477

simple gadgets to show how to construct noncrossing-tripwire-toggles from anti-parallel-2-478

toggles, and anti-parallel 2-toggles from each of noncrossing-toggle-locks, noncrossing-wire-479

locks, noncrossing-wire-toggles and parallel-2-toggles. We then show that a crossing version480

of a gadget can very simply make a non-crossing version of the same gadget.481

I Theorem 5.1. The 2-toggles, toggle-locks, tripwire-locks and tripwire-toggles, in all orien-482

tations, can each simulate each other.483

Proof. We have already established that AP2Ts can simulate P2Ts, C2Ts, NTLs and NWLs484

and crossovers. We will establish that:485

AP2Ts can simulate NWTs. Lemma 5.3.486

P2Ts, NTLs, NWTs and NWLs can each simulate AP2Ts. Lemmas 5.4, 5.5, 5.6, 5.7,487

respectively.488

C2Ts can simulate P2Ts by Lemma 4.3, and hence AP2Ts as well.489

CTLs can simulate NTLs, CWLs can simulate NWLs, and CWTs can simulate NWTs.490

Lemma 5.8.491

Thus, every gadget can simulate AP2Ts, and AP2Ts can simulate every non-crossing gadget,492

as well as crossovers. By combining non-crossing gadgets with crossovers, AP2Ts can simulate493

every gadget. This gives a simulation of every gadget by every other gadget, via AP2Ts as494

an intermediate step. J495

I Corollary 5.2. Motion planning with any one of the gadgets in Theorem 5.1 (and branching496

hallways) is PSPACE-complete.497

FUN 2018



18:14 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 12 A noncrossing wire toggle constructed from a toggle, four noncrossing tripwire locks,
and two crossovers.

Proof. Corollary 5.2 follows from Theorem 5.1, which establishes that each gadget can498

simulate a AP2T, and Theorem 4.1, which establishes that motion planning with AP2Ts is499

PSPACE-complete. J500

I Lemma 5.3. AP2Ts simulate an NWT.501

Proof. We will construct a NWT as shown in Figure 12. This requires NWLs, crossovers,502

and 1-toggles. We already have existing constructions of NWLs and crossovers with AP2Ts.503

We can also build a 1-toggle with an AP2T simply by ignoring one of the two tunnels. Thus,504

all that’s left is to show that the construction successfully simulates a NWT.505

There are four accessible states: As shown in Figure 12, with all of the NWLs flipped, with506

the toggle flipped, and with everything flipped. The first and last correspond to the external507

state where the toggle is pointed right, while the other two correspond to the external state508

where the toggle is pointed right. The horizontal tunnel corresponds to the toggle, while the509

U-shaped tunnel corresponds to the tripwire in the composed gadget. In the state shown in510

the figure, the toggle is oriented to the right from the external perspective.511

Clearly, traversing the U-shaped tunnel will flip all of the tripwires of the NWL, resulting512

in a state which corresponds to the opposite external state, as desired.513

In the state shown in the figure, the horizontal tunnel may be traversed from left to right514

along a unique pathway due to the placement of the locks, flipping the toggle along the way.515

The orientation of the toggle blocks the right to left traversal. Thus, in this state, the upper516

tunnel may be traversed in one direction resulting in an allowed state which corresponds to517

the opposite external state, as desired.518

Placing the toggle in the opposite state is equivalent to a rotation by π of the upper519

tunnel, showing this state also correctly simulates an NWT.520

Flipping the states of all of the NWLs is equivalent to a vertical reflection of the upper521

tunnel, showing this state also correctly simulates an NWT. J522

I Lemma 5.4. P2Ts simulate an AP2T.523



E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:15

Figure 13 Parallel 2-toggles simulate anti-parallel 2-toggles

Proof. Figure 13 gives a construction of an antiparallel-2-toggle out of parallel-2-toggles.524

There are two accessible states: As shown, and with the four inner P2Ts flipped. The525

former corresponds to the AP2T having a tunnel connecting the left two locations with its526

toggle oriented upward, and a tunnel connecting the right locations with its toggle oriented527

downward, while the latter corresponds to the two toggles flipped.528

First, let us examine the bottom right location in the state shown in the figure. After529

passing the rightmost P2T, the robot is blocked. No transitions or state changes are possible.530

This matches the desired behavior, because the right toggle in the AP2T being simulated is531

oriented down.532

Next, let us examine the top right location in the state shown in Figure 13. After passing533

the rightmost P2T, then the upper right P2T, the robot may now either proceed along the534

top tunnel, or down to the central loop. In the former case, the robot may pass through the535

upper left P2T, but then is blocked. In the later case, the robot may either proceed around536

the loop to the left or to the right. If the robot goes to the right, it can pass through the537

lower tunnel of the upper right P2T, but then is stuck. If the robot goes to the left, it can538

pass through the lower tunnel of the upper left P2T, then the upper tunnel of the lower left539

P2T.540

At this point, the robot may either continue around the loop, or exit the loop downward.541

If the robot continues around the loop, it can pass through the upper tunnel of the lower542

right P2T, but then is stuck. If it exits the loop, it can either go left or right on the bottom543

tunnel. If it goes left, it can pass through the lower tunnel of the lower left P2T, but then is544

stuck. If it goes right, it can pass through the lower tunnel of the lower right P2T, then the545

lower tunnel of the rightmost P2T, and exit the gadget.546

Overall, we observe that the robot can make exactly one transition, from top right to547

bottom right. The right toggle is traversed twice, and the inner toggles are all traversed548

once, leaving the gadget in the other accessible state. No other transition or state change is549

possible, from that entrance.550

Since the gadget is rotationally symmetric about its center, the possible transitions from551

the right mirror the possible transitions from the left. Since the other state is simply the state552

shown in the figure mirrored top-to-bottom, the transitions described mirror the transitions553

in the other state as well. J554

I Lemma 5.5. NTLs simulate an AP2T.555

Proof. The construction is shown in Figure 14. The two accessible states are the state shown556

in the figure and the state with all of the NTLs flipped, but the one-toggles still oriented557

inward. These correspond to an AP2T with the top tunnel directed left and bottom tunnel558

directed right, and the left-right mirror image.559

FUN 2018



18:16 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 14 Noncrossing-toggle-lock simulates anti-parallel-2-toggle

Figure 15 Noncrossing-wire-toggle simulates anti-parallel-2-toggle

If the robot enters from the top right, after passing the lock of the top right NTL, it560

must pass the upper one-toggle and proceed into the central loop. Since the lower toggle is561

directed upward, the robot must eventually leave the central loop via the upper toggle. The562

robot may now proceed around the loop. The loop may only be traversed counterclockwise,563

and it may only be traversed once. The robot may of course backtrack at any point, but564

when it leaves via the upper toggle, it must have either traversed the loop zero or one times.565

In the former case, the robot must leave via the top right location, leaving the system in566

its original state. In the latter case, the robot must leave via the top left location, as all of567

the locks have flipped. Thus, the top tunnel may be traversed via a right to left traversal,568

flipping the state, and that is the only traversal in that direction.569

If the robot enters from the top left, it is immediately blocked by the lock, and no traversal570

is possible. Thus, the top tunnel works as desired.571

Since the gadget possesses rotational symmetry around its center, the bottom tunnel is572

exactly the same, allowing only a left to right traversal, flipping the state.573

The opposite state is the same as the original state except for a left-right right mirror574

reversal, so it also functions exactly as desired from the AP2T. J575

I Lemma 5.6. NWTs simulate an AP2T.576

Proof. A noncrossing wire toggle can simulate an anti-parallel 2-toggle with the simple577

construction shown in Figure 15. The direction of each tunnel is dictated by the toggle on578

the tunnel, and the wire ensures both toggles are synchronized. Thus when either tunnel is579

traversed, both NWTs flip and the direction each tunnel can be traversed flips. J580

I Lemma 5.7. NWLs simulate an AP2T.581

Proof. The construction of an anti-parallel 2-toggle from non-crossing tripwire locks can582

be seen in Figure 16. Note that a 1-toggle can be constructed from an NWL by simply583

connecting one location of the wire to one location of the lock. A closed lock will prevent584

travel in one direction, but crossing the tripwire in the other direction will open the lock585

and allow the robot to proceed. An open lock will allow travel in the other direction. In586



E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:17

Figure 16 Noncrossing-wire-lock simulates anti-parallel-2-toggle

the direction starting from the tripwire, the tripwire will close the lock in front of the robot587

preventing traversal. In either traversal, the tripwire is crossed, flipping the state.588

There are two main parts to this gadget, the top and bottom tunnels, and the inner589

loop. As with the NTL construction from Lemma 5.5, the 1-toggles ensure that the loop590

must be exited from the same place it was entered, which ensures all gadgets on the loop are591

traversed the same number of times. Since all wires are on this loop, in a given traversal of592

this gadget system, all of the NWLs will change state the same number of times, keeping593

them in sync. The upper and lower paths each contain a locked and unlocked tunnel. The594

locked portion prevents entry and interaction with the gadget. From the unlocked side, the595

robot is able to enter the gadget and flip its state an arbitrary number of times. If the state596

is flipped an even number of times, the robot’s only path out is the way it came. If an odd597

number of flips have occurred, the robot can now exit through the opposite side of its path,598

leaving the gadget in the opposite state.599

Therefore, the gadget may traversed right to left along the top tunnel, flipping the state,600

and left to right along the bottom tunnel, flipping the state. We have built an AP2T. J601

I Lemma 5.8. CWTs simulate an NWT, CWLs simulate an NWL, CTLs simulate an NTL.602

Figure 17 Crossing 2-toggles sim-
ulate parallel 2-toggle

In general, one can very easily simulate a non-crossing603

version of a 2-tunnel gadget from the crossing version.604

Figure 17 shows a parallel-2-toggle being constructed605

from a crossing-2-toggle. The same construction works606

for uncrossing the other gadgets we have analyzed, namely607

tripwire-toggles, tripwire-locks and toggle-locks. Going608

from non-crossing to crossing versions is significantly609

more complicated (except in the case of anti-parallel-2-610

toggle to crossing-2-toggle) but we are rescued from the611

need of such constructions by being able to simulate a general crossover in Lemma 4.10.612

6 More reasons Zelda is hard613

In this section we use this framework to give an alternate proof that The Legend of Zelda:614

Oracle of Seasons is PSPACE-complete. Along the way, we will show that motion planning615

with reversible deterministic gadgets we call ‘spinners’ is also PSPACE-complete.616

A k-spinner is a two state deterministic reversible gadget on k locations. In one state,617

each location is connected to its neighbor by a directed edge in a clockwise direction. In the618

other state, all locations are likewise connected in a counterclockwise direction. A 4-spinner619

is shown in Figure 18. The study of 4-spinners was posed by Jeffrey Bosboom due to620

FUN 2018



18:18 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

Figure 18 Example of a 4-spinner in The
Legend of Zelda: Oracle of Seasons.

Figure 19 4-spinners simulate deterministic
forks which simulate crossing 2-toggles

their appearance in The Legend of Zelda: Oracle of Seasons. We show that for any k ≥ 4,621

path-planning problems with k-spinners and branching hallways is PSPACE-complete.622

First, we can take a k spinner and have all but three consecutive locations lead to dead623

ends. The remaining three locations form a gadget that we call a deterministic fork. A624

deterministic fork is a reversible, deterministic gadget on three locations. In one state, it625

allows the robot to go from the center to the right location and return from the left to626

the center location. In the other state these directions are reversed. Figure 19 shows the627

construction of a crossing 2-toggle from two 4-spinners or equivalently two deterministic628

forks.629

I Theorem 6.1. For any k ≥ 4, the path-planning problem with k-spinners and branching630

hallways is PSPACE-complete.631

Proof. We construct a deterministic fork by ignoring k − 3 of the edges in the spinner.632

Two deterministic forks together simulate a crossing 2-toggle as shown in Figure 19. By633

Corollary 5.2, the motion planning problem with crossing 2-toggles is PSPACE-complete. J634

I Corollary 6.2. Determining if a player can beat a level in generalized The Legend of Zelda:635

Oracle of Seasons is PSPACE-hard.636

Proof. The Legend of Zelda: Oracle of Seasons contains 4-spinners and requires the player637

to navigate from one location to a target location in a grid. Since planar graphs can be laid638

out in a grid with only quadratic blowup [2], we can reduce from motion planning problems639

with 4-spinners which are PSPACE-complete by Theorem 6.1. J640

The complexity of motion planning with 3-spinners, as well as the two other reversible,641

deterministic, 2 state, 3 location gadgets, remains open. Since 2-spinners are the same as an642

edge in a graph, this would give a tight characterization for the spinner gadget. The authors643

would also be interested to know what other games and puzzles use spinners.644

7 General hardness characterization645

Here, we tightly characterize the hardness of the motion planning problem with all determin-646

istic, reversible, 2-state, k-tunnel gadgets.647

I Theorem 7.1. Motion planning with any deterministic, reversible, 2-state, k-tunnel planar648

gadget (with branching hallways) is PSPACE-complete if and only if the gadget has two toggle649



E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:19

tunnels, a toggle tunnel and a tripwire tunnel, a toggle tunnel and a lock tunnel or a tripwire650

tunnel and a lock tunnel. Motion planning with all other such gadgets is in P.651

First, we provide upper bounds for some classes of simpler gadgets. This shows that, for652

their category, our hardness results are minimal in the sense that path planning with simpler653

gadgets in the same class can be solved in P.654

I Theorem 7.2. Gadgets with only one state are in NL.655

Proof. One state gadgets cannot change in any way. Thus they must all be comprised of656

static descriptions of allowed traversals from one location to another. This can be modeled657

as a mixed graph. Path planning in mixed graphs is in NL [10]. J658

The only nontrivial gadget on 1 tunnel with two states which is reversible and deterministic659

is the 1-toggle.660

I Theorem 7.3. Motion planning with 1-toggles is in NL.661

Proof. We reduce this problem to ST connectivity in mixed graphs. To solve this problem662

we simply treat every 1-toggle as a directed edge pointed in the direction the 1-toggle is663

initially oriented and then run the standard algorithm. It is obvious that if a solution here664

exists then a path in the 1-toggle planning problem also exists. What is less clear is that665

this is sufficient to find any such path.666

Consider a path which traverses at least one toggle more than once. Consider the last667

toggle on the path which is traversed more than once. After this toggle is traversed, only668

toggles which are traversed at most once are on the path. Call this toggle t, and let its final669

traversal be from u to v. Since t was traversed repeatedly, there was some previous point670

in the path where the robot was at v, before it traversed t the second-to-last time. Let us671

create a new path where the robot skips the cycle in the original path from v through t to u,672

then eventually back to u through t to v. This path must successfully reach the end, as every673

toggle after t is traversed at most once, and so is in the same state regardless of whether the674

cycle is omitted.675

Thus, under the assumption that there is a path which traverses toggle more than once,676

there is another, shorter path. Thus, the shortest path must not traverse toggles more than677

once, and so such a path must exist if any path exists. J678

The remaining two-state two-tunnel deterministic reversible gadgets are also in P. We note679

that a wire-wire never changes its connectivity and is thus no different then two undirected680

edges. A lock-lock can never change its state and thus is reducible to a one state gadget,681

simply zero, one, or two undirected edges. A gadget with a tunnel which does not change682

and is not changed by the state of the gadget is reducible to two gadgets on one tunnel each,683

which are in P by Theorem 7.3. This exhausts the 2-state 2-tunnel reversible undirected684

gadgets.685

Proof of Theorem 7.1. Now, we can characterize all two state, deterministic, reversible686

gadgets on any number of tunnels.687

Any gadget with two toggle tunnels, a toggle tunnel and a tripwire tunnel, a toggle tunnel688

and a lock tunnel or a tripwire and a lock tunnel is sufficient to make motion planning hard,689

by ignoring all other tunnels and using one of the constructions from this paper.690

We can divide all other gadgets into three categories: those with tripwires and trivial691

tunnels, those with locks and trivial tunnels, and those with a single toggle and trivial692

tunnels. The passability of a tunnel in a gadget with only tripwires and trivial tunnels never693

FUN 2018



18:20 Computational Complexity of Motion Planning of a Robot through Simple Gadgets

changes, making motion planning equivalent to st-connectivity. A gadget with only locks694

and trivial tunnels can never have its state change, allowing us to apply Theorem 7.2. A695

gadget with a single toggle and some number of trivial tunnels can be treated as a one-toggle696

together with some number of undirected edges. Thus, any system of gadgets of these types697

is equivalent to a system of 1-toggles and undirected edges. After that, the same argument698

as in Theorem 7.3 can be used to solve the motion planning problem in that system. J699

8 Open Problems / Conclusion700

This framework for abstract motion planning problems leaves open the question of the701

computational complexity of motion planning with many other types of gadgets. One can702

examine gadgets with more states, without the tunnel restriction, or without the deterministic703

and reversible restrictions. Since this is a vast undertaking with many of the gadgets and704

their combinations likely to be uninteresting, we suggest some of the following categories to705

be of particular interest.706

3 spinners are the only size of spinner for which motion planning remains open.707

Three location, 2-state, deterministic, reversible gadgets seem like the obvious ‘simplest’708

category of gadgets.709

Are there any sets of purely deterministic and reversible gadgets for which motion planning710

is PSPACE-complete (e.g. without branching hallways, which are non-deterministic)?711

What about reversible but nondeterministic gadgets on two tunnels or three locations?712

There is currently significant partial progress on all of the listed topics. Please contact us713

before spending significant time working on the open problems listed to prevent duplication714

of effort.715

Acknowledgments716

This work grew out of an open problem session from the MIT class on Algorithmic Lower717

Bounds: Fun with Hardness Proofs (6.890) from Fall 2014. We particularly thank Jeffrey718

Bosboom for posing the problem of analyzing 4-spinners from Legend of Zelda: Oracle of719

Seasons (in 2015), for simplifying the 2-state k-tunnels proof, and for other helpful discussions.720

References721

1 Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo games722

are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015. Originally723

at FUN 2014.724

2 H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.725

Combinatorica, 10(1):41–51, Mar 1990. URL: https://doi.org/10.1007/BF02122694, doi:726

10.1007/BF02122694.727

3 Erik D. Demaine, Martin L. Demaine, Michael Hoffmann, and Joseph O’Rourke. Pushing728

blocks is hard. Computational Geometry: Theory and Applications, 26(1):21–36, August729

2003.730

4 Erik D. Demaine, Isaac Grosof, and Jayson Lynch. Push-pull block puzzles are hard.731

In Proceedings of the 10th International Conference on Algorithms and Complexity, pages732

177–195, Athens, Greece, May 2017. URL: https://doi.org/10.1007/978-3-319-57586-5_16,733

doi:10.1007/978-3-319-57586-5_16.734

https://doi.org/10.1007/BF02122694
http://dx.doi.org/10.1007/BF02122694
http://dx.doi.org/10.1007/BF02122694
http://dx.doi.org/10.1007/BF02122694
https://doi.org/10.1007/978-3-319-57586-5_16
http://dx.doi.org/10.1007/978-3-319-57586-5_16


E. D. Demaine, I. Grosof, J. Lynch, and M. Rudoy 18:21

5 Erik D. Demaine, Robert A. Hearn, and Michael Hoffmann. Push-2-f is pspace-complete.735

In Proceedings of the 14th Canadian Conference on Computational Geometry, pages 31–35,736

Lethbridge, Alberta, Canada, August 12–14 2002.737

6 Erik D. Demaine, Giovanni Viglietta, and Aaron Williams. Super Mario Bros. is hard-738

er/easier than we thought. In Proceedings of the 8th International Conference on Fun with739

Algorithms, pages 13:1–13:14, La Maddalena, Italy, June 8–10 2016.740

7 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the741

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.742

8 Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A. K. Peters,743

Ltd., Natick, MA, USA, 2009.744

9 André G. Pereira, Marcus Ritt, and Luciana S. Buriol. Pull and PushPull745

are PSPACE-complete. Theoretical Computer Science, 628:50–61, 2016. URL:746

http://www.sciencedirect.com/science/article/pii/S030439751600205X, doi:https://doi.747

org/10.1016/j.tcs.2016.03.012.748

10 Walter J. Savitch. Relationships between nondeterministic and deterministic tape749

complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.750

URL: http://www.sciencedirect.com/science/article/pii/S002200007080006X, doi:http:751

//dx.doi.org/10.1016/S0022-0000(70)80006-X.752

11 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th753

Annual ACM Symposium on Theory of Computing, pages 216–226, San Diego, California,754

May 1978.755

FUN 2018

http://www.sciencedirect.com/science/article/pii/S030439751600205X
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2016.03.012
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2016.03.012
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2016.03.012
http://www.sciencedirect.com/science/article/pii/S002200007080006X
http://dx.doi.org/http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/http://dx.doi.org/10.1016/S0022-0000(70)80006-X

	Introduction
	Gadget model
	Our results

	Gadget Basics
	Closure Properties
	PSPACE Membership

	2-toggle-lock and crossover motion planning is PSPACE-complete
	Antiparallel 2-toggle motion planning is PSPACE-complete
	2-toggles and non-crossing toggle locks simulate 2-toggle locks
	2-toggle locks simulate non-crossing wire locks
	Non-crossing wire locks simulate crossovers

	Everything simulates everything else
	More reasons Zelda is hard
	General hardness characterization
	Open Problems / Conclusion

