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Abstract. The edit distance between two ordered rooted trees with vertex labels is the minimum cost
of transforming one tree into the other by a sequence of elementary operations consisting of deleting
and relabeling existing nodes, as well as inserting new nodes. In this paper, we present a worst-case
O(n3)-time algorithm for this problem, improving the previous best O(n3 log n)-time algorithm [9]. Our
result requires a novel adaptive strategy for deciding how a dynamic program divides into subproblems,
together with a deeper understanding of the previous algorithms for the problem. We prove the op-
timality of our algorithm among the family of decomposition strategy algorithms—which also includes
the previous fastest algorithms—by tightening the known lower bound of Ω(n2 log2 n) [6] to Ω(n3),
matching our algorithm’s running time. Furthermore, we obtain matching upper and lower bounds of
Θ(nm2(1 + log n

m
)) when the two trees have sizes m and n where m < n.
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1 Introduction

The problem of comparing trees occurs in diverse areas such as structured text databases like XML, computer
vision, compiler optimization, natural language processing, and computational biology [2,3,10,13,15]. One
major application is the analysis of RNA molecules in computational biology. The secondary structure of
RNA, which plays a significant role in its biological function [11], is naturally represented as an ordered
rooted tree [7,18] as depicted in Fig. 1. Computing the similarity between the secondary structure of two
RNA molecules therefore helps determine the functional similarities of these molecules.

The tree edit distance metric is a common similarity measure for rooted ordered trees. It was introduced
by Tai in the late 1970’s [15] as a generalization of the well-known string edit distance problem [17]. Let F
and G be two rooted trees with a left-to-right order among siblings and where each vertex is assigned a label
from an alphabet Σ. The edit distance between F and G is the minimum cost of transforming F into G by
a sequence of elementary operations consisting of deleting and relabeling existing nodes, as well as inserting
new nodes (allowing at most one operation to be performed on each node). These operations are illustrated
in Fig. 2. The cost of elementary operations is given by two functions, cdel and cmatch , where cdel(τ) is the cost
of deleting or inserting a vertex with label τ , and cmatch(τ1, τ2) is the cost of changing the label of a vertex
from τ1 to τ2. Since a deletion in F is equivalent to an insertion in G and vice versa, we can focus on finding
the minimum cost of a sequence of just deletions and relabels in both trees that transform F and G into
isomorphic trees.

Previous results. To state running times, we need some basic notation. Let n and m denote the sizes |F | and
|G| of the two input trees, ordered so that n ≥ m. Let nleaves and mleaves denote the corresponding number
of leaves in each tree, and let nheight and mheight denote the corresponding height of each tree, which can be
as large as n and m respectively.

Tai [15] presented the first algorithm for computing tree edit distance, which requires O(n2
leavesm

2
leavesnm)

time and space, and thus has a worst-case running time of O(n3m3) = O(n6). Shasha and Zhang [13] improved
this result to an O(min{nheight, nleaves} · min{mheight,mleaves} · nm) time algorithm using O(nm) space. In
the worst case, their algorithm runs in O(n2m2) = O(n4) time. Klein [9] improved this result to a worst-case
O(m2n log n) = O(n3 log n) time algorithm using O(nm) space. These last two algorithms are based on closely
related dynamic programs, and both present different ways of computing only a subset of a larger dynamic
? A preliminary version of this paper appeared in [5].
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Fig. 1. Two different ways of viewing an RNA sequence. In (a), a schematic 2-dimensional description of an
RNA folding. In (b), the RNA as a rooted ordered tree.
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Fig. 2. The three editing operations on a tree with vertex labels.

program table; these entries are referred to as relevant subproblems. In [6], Dulucq and Touzet introduced
the notion of a decomposition strategy (see Section 2.3) as a general framework for algorithms that use this
type of dynamic program, and proved a lower bound of Ω(nm log n log m) time for any such strategy.

Many other solutions have been developed; see [1,2,16] for surveys. The most recent development is by
Chen [4], who presented a different approach that uses results on fast matrix multiplication. Chen’s algorithm
uses O(nm + nm2

leaves + nleavesm
2.5
leaves) time and O(n + (m + n2

leaves)min{nleaves, nheight}) space. In the worst
case, this algorithm runs in O(nm2.5) = O(n3.5) time. Among all these algorithms, Klein’s is the fastest
in terms of worst-case time complexity, and previous improvements to Klein’s O(n3 log n) time bound were
achieved only by constraining the edit operations or the scoring scheme [3,12,14,19].

Our results. We present a new algorithm for computing the tree edit distance that falls into the same
decomposition strategy framework of [6,9,13]. In the worst-case, our algorithm requires O(nm2(1 + log n

m )) =
O(n3) time and O(nm) space. The corresponding sequence of edit operations can easily be obtained within
the same time and space bounds. We therefore improve upon all known algorithms in the worst-case time
complexity. Furthermore, we prove a worst-case lower bound of Ω(nm2(1+log n

m )) time for all decomposition
strategy algorithms. This bound improves the previous best lower bound of Ω(nm log n log m) time [6], and
establishes the optimality of our algorithm among all decomposition strategy algorithms. Our algorithm
is simple, making it easy to implement, but the analysis of the upper and lower bound proofs is quite
complicated.

Roadmap. In Section 2 we give a simple and unified presentation of the two well-known tree edit algorithms,
on which our algorithm is based, and on the class of decomposition strategy algorithms. We present and
analyze the time complexity of our algorithm in Section 3, and prove the matching lower bound in Section 4.
An explicit O(nm) space complexity version of our algorithm is given in Section 5 and final conclusions are
presented in Section 6.
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2 Background and Framework

Both the existing algorithms and ours compute the edit distance of finite ordered Σ-labeled forests, henceforth
forests. The unique empty forest/tree is denoted by ∅. The vertex set of a forest F is written simply as F , as
when we speak of a vertex v ∈ F . For a forest F and v ∈ F , σ(v) denotes the Σ-label of v, Fv denotes the
subtree of F rooted at v, and F − v denotes the forest F after deleting v. The spacial case of F − root(F )
where F is a tree is denoted F ◦. The leftmost and rightmost trees of F are denoted by LF and RF and their
roots by `F and rF . We denote by F − LF the forest F after deleting the entire leftmost tree LF ; similarly
F − RF . A forest obtained from F by a sequence of any number of deletions of the leftmost and rightmost
roots is called a subforest of F .

Given forests F and G and vertices v ∈ F and w ∈ G, we write cdel(v) instead of cdel(σ(v)) for the cost
of deleting or inserting v, and we write cmatch(v, w) instead of cmatch(σ(v), σ(w)) for the cost relabeling v to
w. δ(F, G) denotes the edit distance between the forests F and G.

Because insertion and deletion costs are the same (for a node of a given label), insertion in one forest
is tantamount to deletion in the other forest. Therefore, the only edit operations we need to consider are
relabels and deletions of nodes in both forests. In the next two sections, we briefly present the algorithms
of Shasha and Zhang, and of Klein. This presentation, inspired by the tree similarity survey of Bille [2], is
somewhat different from the original presentations and is essential for understanding our algorithm.

2.1 Shasha and Zhang’s Algorithm [13]

Given two forests F and G of sizes n and m respectively, the following lemma is easy to verify. Intuitively,
the lemma says that in any sequence of edit operations the two rightmost roots in F and G must either be
matched with each other or else one of them is deleted.

Lemma 1 ([13]). δ(F, G) can be computed as follows:

• δ(∅, ∅) = 0

• δ(F, ∅) = δ(F − rF , ∅) + cdel(rF )

• δ(∅, G) = δ(∅, G− rG) + cdel(rG)

• δ(F,G) = min





δ(F − rF , G) + cdel(rF ),
δ(F, G− rG) + cdel(rG),
δ(R◦F , R◦G) + δ(F −RF , G−RG) + cmatch(rF , rG)

Lemma 1 yields an O(m2n2) dynamic program algorithm. If we index the vertices of the forests F and
G according to their left-to-right postorder traversal position, then entries in the dynamic program table
correspond to pairs (F ′, G′) of subforests F ′ of F and G′ of G where F ′ contains vertices {i1, i1 + 1, . . . , j1}
and G′ contains vertices {i2, i2 + 1, . . . , j2} for some 1 ≤ i1 ≤ j1 ≤ n and 1 ≤ i2 ≤ j2 ≤ m.

However, as we will presently see, only O(min{nheight, nleaves} ·min{mheight,mleaves} · nm) different rele-
vant subproblems are encountered by the recursion computing δ(F, G). We calculate the number of relevant
subforests of F and G independently, where a forest F ′ (respectively G′) is a relevant subforest of F (respec-
tively G) if it occurs in the computation of δ(F,G). Clearly, multiplying the number of relevant subforests of
F and of G is an upper bound on the total number of relevant subproblems.

We now count the number of relevant subforests of F ; the count for G is similar. First, notice that
for every node v ∈ F , F ◦v is a relevant subproblem. This is because the recursion allows us to delete the
rightmost root of F repeatedly until v becomes the rightmost root; we then match v (i.e., relabel it) and get
the desired relevant subforest. A more general claim is stated and proved later on in Lemma 3. We define
keyroots(F ) = {the root of F} ∪ {v ∈ F | v has a left sibling}. It is easy to see that every relevant subforest
of F is a prefix (with respect to the postorder indices) of F ◦v for some node v ∈ keyroots(F ). If we define
cdepth(v) to be the number of keyroot ancestors of v, and cdepth(F ) to be the maximum cdepth(v) over all
nodes v ∈ F , we get that the total number of relevant subforest of F is at most

∑

v∈keyroots(F )

|Fv| =
∑

v∈F

cdepth(v) ≤
∑

v∈F

cdepth(F ) = |F |cdepth(F ).
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This means that given two trees, F and G, of sizes n and m we can compute δ(F,G) in
O(cdepth(F )cdepth(G)nm) = O(nheightmheightnm) time. Shasha and Zhang also proved that for any tree
T of size n, cdepth(T ) ≤ min{nheight, nleaves}, hence the result. In the worst case, this algorithm runs in
O(m2n2) = O(n4) time.

2.2 Klein’s Algorithm [9]

Klein’s algorithm is based on a recursion similar to Lemma 1. Again, we consider forests F and G of sizes
|F | = n ≥ |G| = m. Now, however, instead of recursing always on the rightmost roots of F and G, we recurse
on the leftmost roots if |LF | ≤ |RF | and on the rightmost roots otherwise. In other words, the “direction”
of the recursion is determined by the (initially) larger of the two forests. We assume the number of relevant
subforests of G is O(m2); we have already established that this is an upper bound.

We next show that Klein’s algorithm yields only O(n log n) relevant subforests of F . The analysis is based
on a technique called heavy path decomposition introduced by Harel and Tarjan [8]. Briefly: we mark the root
of F as light. For each internal node v ∈ F , we pick one of v’s children with maximal number of descendants
and mark it as heavy, and we mark all the other children of v as light. We define ldepth(v) to be the number
of light nodes that are ancestors of v in F , and light(F ) as the set of all light nodes in F . By [8], for any
forest F and vertex v ∈ F , ldepth(v) ≤ log |F |+O(1). Note that every relevant subforest of F is obtained by
some i ≤ |Fv| consecutive deletions from Fv for some light node v. Therefore, the total number of relevant
subforests of F is at most

∑

v∈light(F )

|Fv| =
∑

v∈F

ldepth(v) ≤
∑

v∈F

(log |F |+ O(1)) = O(|F | log |F |).

Thus, we get an O(m2n log n) = O(n3 log n) algorithm for computing δ(F,G).

2.3 The Decomposition Strategy Framework

Both Klein’s and Shasha and Zhang’s algorithms are based on Lemma 1. The difference between them lies
in the choice of when to recurse on the rightmost roots and when on the leftmost roots. The family of
decomposition strategy algorithms based on this lemma was formalized by Dulucq and Touzet in [6].

Definition 1 (Strategy, Decomposition Algorithm). Let F and G be two forests. A strategy is a map-
ping from pairs (F ′, G′) of subforests of F and G to {left, right}. A decomposition algorithm is an algorithm
based on Lemma 1 with the directions chosen according to a specific strategy.

Each strategy is associated with a specific set of recursive calls (or a dynamic program algorithm). The
strategy of Shasha and Zhang’s algorithm is S(F ′, G′) = right for all F ′, G′. The strategy of Klein’s algorithm
is S(F ′, G′) = left if |LF ′ | ≤ |RF ′ |, and S(F ′, G′) = right otherwise. Notice that Shasha and Zhang’s strategy
does not depend on the input trees, while Klein’s strategy depends only on the larger input tree. Dulucq and
Touzet proved a lower bound of Ω(mn log m log n) time for any decomposition strategy algorithm.

3 The Algorithm

In this section we present our algorithm for computing δ(F,G) given two trees F and G of sizes |F | =
n ≥ |G| = m. The algorithm recursively uses a decomposition strategy in a divide-and-conquer manner to
achieve O(nm2(1 + log n

m )) = O(n3) running time in the worst case. For clarity we describe the algorithm
recursively and analyze its time complexity. In section 5 we prove that the space complexity can be made
O(mn) = O(n2).

We begin with the observation that Klein’s strategy always determines the direction of the recursion
according to the F -subforest, even in subproblems where the F -subforest is smaller than the G-subforest.
However, it is not straightforward to change this since even if at some stage we decide to choose the direction
according to the other forest, we must still make sure that all subproblems previously encountered are
entirely solved. At first glance this seems like a real obstacle since apparently we only add new subproblems
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(F)

Fig. 3. A tree F with n nodes. The black nodes belong to the heavy path. The white nodes are in TopLight(F ),
and the size of each subtree rooted at a white node is at most n

2 .

to those that are already computed. Our key observation is that there are certain subproblems for which it
is worthwhile to choose the direction according to the currently larger forest, while for other subproblems we
had better keep choosing the direction according to the originally larger forest.

For a tree F of size n, define the set TopLight(F ) to be the set of roots of the forest obtained by removing
the heavy path of F (i.e., the unique path starting from the root along heavy nodes). Note that TopLight(F )
is the set of light nodes with ldepth 1 in F (see the definition of ldepth in section 2.2). This definition is
illustrated in Fig. 3. Note that the following two conditions are always satisfied:

(∗)
∑

v∈TopLight(F )

|Fv| ≤ n. Because Fv and Fv′ are disjoint ∀ v, v′ ∈ TopLight(F ).

(∗∗) |Fv| < n
2 for every v ∈ TopLight(F ). Otherwise v would be a heavy node.

The Algorithm. We compute δ(F,G) recursively as follows:

(1) If |F | < |G|, compute δ(G,F ) instead. That is, make F the larger forest.

(2) Recursively compute δ(Fv, G) for all v ∈ TopLight(F ). Along the way, δ(F ◦v′ , G
◦
w) is computed and

stored for all v′ not in the heavy path of F and for all w ∈ G.

(3) Compute δ(F, G) using the following decomposition strategy: S(F ′, G′) = left if F ′ is a tree, or if
`F ′ is not the heavy child of its parent. Otherwise, S(F ′, G′) = right. However, do not recurse into
subproblems that were previously computed in step (2).

The algorithm is evidentally a decomposition strategy algorithm, since for all subproblems, it either deletes
or matches the leftmost or rightmost roots. The correctness of the algorithm follows from the correctness of
decomposition strategy algorithms in general.

Time Complexity. We show that our algorithm has a worst-case runtime of O(m2n(1+ log n
m )) = O(n3). We

proceed by counting the number of subproblems computed in each step of the algorithm. Let R(F, G) denote
the number of relevant subproblems encountered by the algorithm in the course of computing δ(F, G).

In step (2) we compute δ(Fv, G) for all v ∈ TopLight(F ). Hence, the number of subproblems encountered
in this step is

∑
v∈TopLight(F ) R(Fv, G). For step (3), we bound the number of relevant subproblems by

multiplying the number of relevant subforests in F and in G. For G, we count all possible O(|G|2) subforests
obtained by left and right deletions. Note that for any node v′ not in the heavy path of F , the subproblem
obtained by matching v′ with any node w in G was already computed in step (2). This is because any such v′

is contained in Fv for some v ∈ TopLight(F ), so δ(F ◦v′ , G
◦
w) is computed in the course of computing δ(Fv, G)

(we prove this formally in Lemma 3). Furthermore, note that in step (3), a node v on the heavy path of F
cannot be matched or deleted until the remaining subforest of F is precisely the tree Fv. At this point, both
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matching v or deleting v result in the same new relevant subforest F ◦v . This means that we do not have to
consider matchings of nodes when counting the number of relevant subproblems in step (3). It suffices to
consider only the |F | subforests obtained by deletions according to our strategy. Thus, the total number of
new subproblems encountered in step (3) is bounded by |G|2|F |.

We have established that if |F | ≥ |G| then

R(F, G) ≤ |G|2|F |+
∑

v∈TopLight(F )

R(Fv, G)

and if |F | < |G| then
R(F, G) ≤ |F |2|G|+

∑

w∈TopLight(G)

R(F, Gw)

We first show, by a crude estimate, that this leads to an O(n3) runtime. Later, we analyze the dependency
on m and n accurately.

Lemma 2. R(F, G) ≤ 4(|F ||G|)3/2.

Proof. We proceed by induction on |F | + |G|. The base of the induction is trivial. For the inductive step
there are two symmetric cases. If |F | ≥ |G| then R(F, G) ≤ |G|2|F |+∑

v∈TopLight(F ) R(Fv, G). Hence, by the
inductive assumption,

R(F, G) ≤ |G|2|F |+
∑

v∈TopLight(F )

4(|Fv||G|)3/2 = |G|2|F |+ 4|G|3/2
∑

v∈TopLight(F )

|Fv|3/2

≤ |G|2|F |+ 4|G|3/2
∑

v∈TopLight(F )

|Fv| max
v∈TopLight(F )

√
|Fv|

≤ |G|2|F |+ 4|G|3/2|F |
√
|F |
2

= |G|2|F |+
√

8(|F ||G|)3/2 ≤ 4(|F ||G|)3/2

Here we have used facts (∗) and (∗∗) and the fact that |F | ≥ |G|. The case where |F | < |G| is symmetric. ut
This crude estimate gives a worst-case runtime of O(n3). We now analyze the dependence on m and n

more accurately. Along the recursion defining the algorithm, we view step (2) as only making recursive calls,
but not producing any relevant subproblems. Rather, every new relevant subproblem is created in step (3)
for a unique recursive call of the algorithm. So when we count relevant subproblems, we sum the number
of new relevant subproblems encountered in step (3) over all recursive calls to the algorithm. We define sets
A,B ⊆ F as follows:

A =
{
a ∈ light(F ) : |Fa| ≥ m

}

B =
{
b ∈ F−A : b ∈ TopLight(Fa) for some a ∈ A

}

Note that the root of F belongs to A. Intuitively, the nodes in both A and B are exactly those for which
recursive calls are made with the entire G tree. The nodes in B are the last ones, along the recursion, for
which such recursive calls are made. We count separately:

(i) the relevant subproblems created in just step (3) of recursive calls δ(Fa, G) for all a ∈ A, and
(ii) the relevant subproblems encountered in the entire computation of δ(Fb, G) for all b ∈ B (i.e.,∑

b∈B R(Fb, G)).

Together, this counts all relevant subproblems for the original δ(F,G). To see this, consider the original call
δ(F,G). Certainly, the root of F is in A. So all subproblems generated in step (3) of δ(F, G) are counted in (i).
Now consider the recursive calls made in step (2) of δ(F, G). These are precisely δ(Fv, G) for v ∈ TopLight(F ).
For each v ∈ TopLight(F ), notice that v is either in A or in B; it is in A if |Fv| ≥ m, and in B otherwise.
If v is in B, then all subproblems arising in the entire computation of δ(Fv, G) are counted in (ii). On the
other hand, if v is in A, then we are in analogous situation with respect to δ(Fv, G) as we were in when
we considered δ(F, G) (i.e., we count separately the subproblems created in step (3) of δ(Fv, G) and the
subproblems coming from δ(Fu, G) for u ∈ TopLight(Fv)).
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Earlier in this section, we saw that the number of subproblems created in step (3) of δ(F, G) is |G|2|F |.
In fact, for any a ∈ A, by the same argument, the number of subproblems created in step (3) of δ(Fa, G) is
|G|2|Fa|. Therefore, the total number of relevant subproblems of type (i) is |G|2 ∑

a∈A |Fa|. For v ∈ F , define
depthA(v) to be the number of ancestors of v that lie in the set A. We claim that depthA(v) ≤ 1 + log n

m for
all v ∈ F . To see this, consider any sequence a0, . . . , ak in A where ai is a descendent of ai−1 for all i ∈ [1, k].
Note that |Fai

| ≤ 1
2 |Fai−1 | for all i ∈ [1, k] since the ais are light nodes. Also note that Fa0 ≤ n and that

|Fak
| ≥ m by the definition of A. It follows that k ≤ log n

m , i.e., A contains no sequence of descendants of
length > 1 + log n

m . So clearly every v ∈ F has depthA(v) ≤ 1 + log n
m .

We now have the number of relevant subproblems of type (i) as

|G|2
∑

a∈A

|Fa| = m2
∑

v∈F

depthA(v) ≤ m2
∑

v∈F

(1 + log
n

m
) = m2n(1 + log

n

m
).

The relevant subproblems of type (ii) are counted by
∑

b∈B R(Fb, G). Using Lemma 2, we have

∑

b∈B

R(Fb, G) ≤ 4|G|3/2
∑

b∈B

|Fb|3/2 ≤ 4|G|3/2
∑

b∈B

|Fb|max
b∈B

√
|Fb| ≤ 4|G|3/2|F |√m = 4m2n.

Here we have used the facts that |Fb| < m and
∑

b∈B |Fb| ≤ |F | (since the trees Fb are disjoint for different
b ∈ B). Therefore, the total number of relevant subproblems for δ(F, G) is at most m2n(1+ log n

m )+4m2n =
O(m2n(1 + log n

m )). This implies:

Theorem 1. The runtime of the algorithm is O(m2n(1 + log n
m )). ut

4 A Tight Lower Bound for Decomposition Algorithms

In this section we present a lower bound on the worst-case runtime of decomposition strategy algorithms. We
first give a simple proof of an Ω(m2n) lower bound. In the case where m = Θ(n), this gives a lower bound of
Ω(n3) which shows that our algorithm is worst-case optimal among all decomposition algorithms. To prove
that our algorithm is worst-case optimal for any m ≤ n, we analyze a more complicated scenario that gives a
lower bound of Ω(m2n(1+ log n

m )), matching the running time of our algorithm, and improving the previous
best lower bound of Ω(nm log n log m) time [6].

In analyzing strategies we will use the notion of a computational path, which corresponds to a specific
sequence of recursion calls. Recall that for all subforest-pairs (F ′, G′), the strategy S determines a direction:
either right or left. The recursion can either delete from F ′ or from G′ or match. A computational path is the
sequence of operations taken according to the strategy in a specific sequence of recursive calls. For convenience,
we sometimes describe a computational path by the sequence of subproblems it induces, and sometimes by
the actual sequence of operations: either “delete from the F -subforest”, “delete from the G-subforest”, or
“match”.

The following lemma states that every decomposition algorithm computes the edit distance between every
two root-deleted subtrees of F and G.

Lemma 3. Given a decomposition algorithm with strategy S, the pair (F ◦v , G◦w) is a relevant subproblem for
all v ∈ F and w ∈ G regardless of the strategy S.

Proof. First note that a node v′ ∈ Fv (respectively, w′ ∈ Gw) is never deleted or matched before v (respec-
tively, w) is deleted or matched. Consider the following computational path:

– Delete from F until v is either the leftmost or the rightmost root.
– Next, delete from G until w is either the leftmost or the rightmost root.

Let (F ′, G′) denote the resulting subproblem. There are four cases to consider.

1. v and w are the rightmost (leftmost) roots of F ′ and G′, and S(F ′, G′) = right (left).

Match v and w to get the desired subproblem.
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2. v and w are the rightmost (leftmost) roots of F ′ and G′, and S(F ′, G′) = left (right).

Note that at least one of F ′, G′ is not a tree (since otherwise this is case (1)). Delete from one which is
not a tree. After a finite number of such deletions we have reduced to case (1), either because S changes
direction, or because both forests become trees whose roots are v, w.

3. v is the rightmost root of F ′, w is the leftmost root of G′.

If S(F ′, G′) = left, delete from F ′; otherwise delete from G′. After a finite number of such deletions this
reduces to one of the previous cases when one of the forests becomes a tree.

4. v is the leftmost root of F ′, w is the rightmost root of G′.

This case is symmetric to (3). ut
We now turn to the Ω(m2n) lower bound on the number of relevant subproblems for any strategy.

Lemma 4. For any decomposition algorithm, there exists a pair of trees (F,G) with sizes n,m respectively,
such that the number of relevant subproblems is Ω(m2n).

(F) (G)

v

rv�v
�w rw

w

Fig. 4. The two trees used to prove an Ω(m2n) lower bound.

Proof. Let S be an the strategy of the decomposition algorithm, and consider the trees F and G depicted in
Fig. 4. According to lemma 3, every pair (F ◦v , G◦w) where v ∈ F and w ∈ G is a relevant subproblem for S.
Focus on such a subproblem where v and w are internal nodes of F and G. Denote v’s right child by vr and
w’s left child by w`. Note that F ◦v is a forest whose rightmost root is the node vr. Similarly, G◦w is a forest
whose leftmost root is w`. Starting from (F ◦v , G◦w), consider the computational path cv,w that deletes from
F whenever the strategy says left and deletes from G otherwise. In both cases, neither vr nor w` is deleted
unless one of them is the only node left in the forest. Therefore, the length of this computational path is at
least min{|Fv|, |Gw|} − 1. Recall that for each subproblem (F ′, G′) along cv,w, the rightmost root of F ′ is vr

and the leftmost root of G′ is w`. It follows that for every two distinct pairs (v1, w1) 6= (v2, w2) of internal
nodes in F and G, the relevant subproblems occurring along the computational paths cv1,w1 and cv2,w2 are
disjoint. Since there are n

2 and m
2 internal nodes in F and G respectively, the total number of subproblems

along the cv,w computational paths is given by:

∑

(v,w) internal nodes

min{|Fv|, |Gw|} − 1 =

n
2∑

i=1

m
2∑

j=1

min{2i, 2j} = Ω(m2n) ut
The Ω(m2n) lower bound established by Lemma 4 is tight if m = Θ(n), since in this case our algorithm

achieves an O(n3) runtime. To establish a tight bound when m is not Θ(n), we use the following technique for
counting relevant subproblems. We associate a subproblem consisting of subforests (F ′, G′) with the unique
pair of vertices (v, w) such that Fv, Gw are the smallest trees containing F ′, G′ respectively. For example,
for nodes v and w with at least two children, the subproblem (F ◦v , G◦w) is associated with the pair (v, w).
Note that all subproblems encountered in a computational path starting from (F ◦v , G◦w) until the point where
either forest becomes a tree are also associated with (v, w).
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Lemma 5. For every decomposition algorithm, there exists a pair of trees (F,G) with sizes n ≥ m such that
the number of relevant subproblems is Ω(m2n log n

m ).

(F) (G)

v
rv�v �w

rw

w

Fig. 5. The two trees used to prove Ω(m2n log n
m ) lower bound.

Proof. Consider the trees illustrated in Fig. 5. The n-sized tree F is a complete balanced binary tree, and
G is a “zigzag” tree of size m. Let w be an internal node of G with a single node wr as its right subtree
and w` as a left child. Denote m′ = |Gw|. Let v be a node in F such that Fv is a tree of size n′ + 1 where
n′ ≥ 4m ≥ 4m′. Denote v’s left and right children v` and vr respectively. Note that |Fv`

| = |Fvr | = n′
2

Let S be the strategy of the decomposition algorithm. We aim to show that the total number of relevant
subproblems associated with (v, w) or with (v, w`) is at least n′

4 (m′ − 2). Let c be the computational path
that always deletes from F (no matter whether S says left or right). We consider two complementary cases.

Case 1: n′
4 left deletions occur in the computational path c, and at the time of the n′

4 th left deletion, there

were fewer than n′
4 right deletions.

We define a set of new computational paths {cj}1≤j≤n′
4

where cj deletes from F up through the jth left
deletion, and thereafter deletes from F whenever S says right and from G whenever S says left. At the time
the jth left deletion occurs, at least n′

4 ≥ m′ − 2 nodes remain in Fvr and all m′ − 2 nodes are present in
Gw`

. So on the next m′ − 2 steps along cj , neither of the subtrees Fvr and Gw`
is totally deleted. Thus, we

get m′ − 2 distinct relevant subproblems associated with (v, w). Notice that in each of these subproblems,
the subtree Fv`

is missing exactly j nodes. So we see that, for different values of j ∈ [1, n′
4 ], we get disjoint

sets of m′ − 2 relevant subproblems. Summing over all j, we get n′
4 (m′ − 2) distinct relevant subproblems

associated with (v, w).

Case 2: n′
4 right deletions occur in the computational path c, and at the time of the n′

4 th right deletion,

there were fewer than n′
4 left deletions.

We define a different set of computational paths {γj}1≤j≤n′
4

where γj deletes from F up through the jth
right deletion, and thereafter deletes from F whenever S says left and from G whenever S says right (i.e.,
γj is cj with the roles of left and right exchanged). Similarly as in case 1, for each j ∈ [1, n′

4 ] we get m′ − 2
distinct relevant subproblems in which Fvr is missing exactly j nodes. All together, this gives n′

4 (m′ − 2)
distinct subproblems. Note that since we never make left deletions from G, the left child of w` is present in
all of these subproblems. Hence, each subproblem is associated with either (v, w) or (v, w`).

In either case, we get n′
4 (m′ − 2) distinct relevant subproblems associated with (v, w) or (v, w`). To get a

lower bound on the number of problems we sum over all pairs (v, w) with Gw being a tree whose right subtree
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is a single node, and |Fv| ≥ 4m. There are m
4 choices for w corresponding to tree sizes 4j for j ∈ [1, m

4 ]. For
v, we consider all nodes of F whose distance from a leaf is at least log(4m). For each such pair we count the
subproblems associated with (v, w) and (v, w`). So the total number of relevant subproblems counted in this
way is

∑
v,w

|Fv|
4

(|Gw| − 2) =
1
4

∑
v

|Fv|
m
4∑

j=1

(4j − 2) =
1
4

log n∑

i=log 4m

n

2i
·2i

m
4∑

j=1

(4j − 2) = Ω(m2n log
n

m
)

ut
Theorem 2. For every decomposition algorithm and n ≥ m, there exist trees F and G of sizes Θ(n) and
Θ(m) such that the number of relevant subproblems is Ω(m2n(1 + log n

m )).

Proof. If m = Θ(n) then this bound is Ω(m2n) as shown in Lemma 4. Otherwise, this bound is Ω(m2n log n
m )

which was shown in Lemma 5. ut

5 The Algorithm in O(mn) Space

The recursion presented in Section 3 for computing δ(F, G) translates into an O(m2n(1 + log n
m )) time and

space algorithm. In this section we reduce the space complexity of this algorithm to O(mn). We achieve this
by ordering the relevant subproblems in such a way that we need to record the edit distance of only O(mn)
relevant subproblems at any point in time. For simplicity, we assume the input trees F and G are binary. At
the end of this section, we show how to remove this assumption.

The algorithm TED fills a global n by m table ∆ with values ∆vw = δ(F ◦v , G◦w) for all v ∈ F and w ∈ G.

TED(F, G)

1: If |F | < |G| do TED(G,F ).
2: For every v ∈ TopLightF do TED(Fv, G).
3: Fill ∆vw for all v ∈ HeavyPathF and w ∈ G.

1p-v
pv

1p-v

1p-v1p-v

1p-v

1p-v

0F

1F

2F

3F

4F

5F

Fig. 6. The intermediate subforest enumeration with respect to Fvp−1 and Fvp is the sequence of forests
Fvp−1 = F0, F1, . . . , F5 = Fvp .
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Step 3 runs in O(|F ||G|2) time and assumes ∆vw has already been computed in step 2 for all v ∈
F − HeavyPathF and w ∈ G (see Section 3). In the remainder of this section we prove that it can be done
in O(|F ||G|) space.

In step 3 we go through the nodes v1, . . . , vk on the heavy path of F starting with the leaf v1 and ending
with the root vk. Throughout the computation we maintain a table T of size |G|2. When we start handling
vp, the table T holds the edit distance between Fvp−1 and all possible subforests of G. We use these values to
calculate the edit distance between Fvp and all possible subforests of G and store the newly computed values
back into T . We refer to the process of updating the entire T table (for a specific vp) as a period.

Note that before the first period, in which Fv1 is a leaf, we set T to hold the edit distance between ∅ and
G′ for all subforests G′ of G (this is just the cost of deleting G′). We now explain what goes into computing
a period. This process, which we refer to as ComputePeriod(vp), both uses and updates tables T and ∆.
At the heart of this procedure is a dynamic program.

Let left(v) and right(v) denote the left and right children of a node v (recall that we assume F and G
are binary). We denote by F ′ ≤ F that F ′ is a nonempty subforest of F . If F ′ can be obtained from F
by left deletions, the intermediate subforest enumeration with respect to F ′ and F is the sequence F ′ =
F0, F1 . . . , Fk−1, Fk = F such that Fi−1 = Fi − `Fi

for all 1 ≤ i ≤ k. This concept is illustrated in Fig. 6.
For a tree G and a nonempty subforest G′ ≤ G, the right index of G′ is the pair (i, j) where the rightmost

leaf of G′ is the ith rightmost leaf of G and j = |G′|. Fig. 7 illustrates this definition. It is easy to see
that distinct nonempty subforests of G have distinct right indices. We can thus enumerate the nonempty
subforests of G in a sequence

G1,1, . . . , G1,j(1), G2,1, . . . , G2,j(2), . . . , Gi,1, . . . , Gi,j(i)

where i is the number of leaves in G and j(i′) is the size of the largest G′ ≤ G whose rightmost leaf is the i′th
rightmost leaf of G. This sequence is called the right subforest enumeration of G. As a matter of notation,
we define Gi′,0 = ∅ for all 1 ≤ i′ ≤ i. There are obvious “left” and “right” analogues of everything we have
just defined.

(1,11)

12345

(G)

(1,9)

12345

(2,6)

2345

(1,4)

123

Fig. 7. The right index for various subforests (shown in solid black) of G (shown in gray). For each subforest
G′ of G, the right index is the pair (i, j), where the rightmost leaf of G′ is the ith rightmost leaf of G and
j = |G′|. The index of G itself is (1,11).
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ComputePeriod(vp)

Overwrites T with values δ(Fvp , G′) for every G′ ≤ G, and fills in ∆ with values δ(F ◦vp
, G◦w) for every

w ∈ G.

Assumes T stores δ(Fvp−1 , G
′) for all G′ ≤ G, and vp−1 = right(vp) (if vp−1 = left(vp) then reverse roles

of “left” and “right” below).

1: F0, . . . , Fk ← IntermediateSubforestEnum(Fvp−1 , Fvp)

2: G1,1, . . . , G1,j(1), G2,1, . . . , G2,j(2), . . . , Gi,1, . . . , Gi,j(i) ← RightSubforestEnum(G)

3: for i′ = 1, . . . , i do

4: compute table S ←
(
δ(Fk′ , Gi′,j′)

)
1≤k′≤k
1≤j′≤j(i′)

via the dynamic program:

δ(Fk′ , Gi′,j′) = min





cdel(`Fk′ ) + δ(Fk′−1, Gi′,j′)a,
cdel(`Gi′,j′ ) + δ(Fk′ , Gi′,j′−1)b,

cmatch(`Fk′ , `Gi′,j′ ) + δ(L◦Fk′
, L◦Gi′,j′

)c + δ(Fk′–LFk′ , Gi′,j′–LGi′,j′ )
d

5: T ← δ(Fvp , Gi′,j′) for all 1 ≤ j′ ≤ j(i′), via S

6: ∆ ← δ(F ◦vp
, G◦i′,j′) for all j′ such that Gi′,j′ is a tree, via S

7: discard table S

8: end do

a if k′ = 1 then δ(F0, Gi′,j′) is already stored in T
b when j′ = 1, recall that Gi′,0 = ∅, so δ(Fk′ , ∅) is the cost of deleting all vertices of Fk′
c this value was computed previously (in step 2 of TED) as ∆vw for some v ∈ F −HeavyPathF and w ∈ G
d note that Fk′ − LFk′ = Fk′′ where k′′ = k′ − |LFk′ | and Gi′,j′ − LGi′,j′ = Gi′,j′′ where j′′ = j′ − |LGi′,j′ |, so

δ(Fk′′ , Gi′,j′′) was already computed by this dynamic program

The space required by this algorithm is evidently O(mn) since the size of S is at most mn, the size of
T is at most m2 and the size of ∆ is mn. The time complexity does not change, since we still handle each
relevant subproblam exactly once, in constant time per relevant subproblem.

Note that in the last time ComputePeriod() is called, the table T stores (among other things) the edit
distance between the two input trees. In fact, our algorithm computes the edit distance between any subtree
of F and any subtree of G. We could store these values without changing the space complexity.

This concludes the description of our O(mn) space algorithm. All that remains to show is why we may
assume the input trees are binary. If they are not, we construct in O(m + n) time binary trees F ′ and G′

where |F ′| ≤ 2n, |G′| ≤ 2m, and δ(F,G) = δ(F ′, G′) using the following procedure: Pick a node v ∈ F with
k > 2 children, which are in left to right order left(v) = v1, v2, . . . , vk = right(v). We leave left(v) as it is,
and set right(v) to be a new node with a special label ε whose children are v2, v3, . . . , vk. To ensure this does
not change the edit distance, we set the cost of deleting ε to zero, and the cost of relabeling ε to ∞. Repeat
the same procedure for G. We note that another way to remove the binary trees assumption is to modify
ComputePeriod() to work directly with non-binary trees at the cost of slightly complicating it. This can
be done by splitting it into two parts, where one handles left deletions and the other right deletions.

6 Conclusions

We presented a new O(n3)-time and O(n2)-space algorithm for computing the tree edit distance between two
rooted ordered trees. Our algorithm is both symmetric in its two inputs as well as adaptively dependent on
them. These features make it faster than all previous algorithms in the worst case. Furthermore, we proved
that our algorithm is optimal within the broad class of decomposition strategy algorithms, by improving the
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previous lower bound for this class. Our algorithm is simple to describe and implement; our implementation
in Python spans just a few dozen lines of code.
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