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Abstract:
We present algorithms to fold a convex sheet of paper into a maze formed by ex-
truding from a floor, a subset of edges from either a regular triangular or hexago-
nal grid. The algorithm provides constructions which are efficient, seamless, and
watertight.

1 Introduction
At 5OSME, [Demaine et al. 10] presented an efficient construction to fold orthogo-
nal mazes, computable in polynomial time. The approach was to produce a constant
number of fixed gadgets comprising all possible maze intersections in an orthogo-
nal grid, such that compatible orthogonal boundaries of the gadgets match, allow-
ing their combination into arbitrary configurations. In this paper, we present two
similar construction approaches to efficiently fold mazes on both triangular and
hexagonal grids.

As in the referenced orthogonal maze construction, our constructions are ef-
ficient, i.e. foldable from paper that is a small scale factor larger than the final
maze, watertight [Demaine and Tachi 17], i.e. the boundary of the paper maps to
the boundary of the model, and seamless, i.e. designated visible faces of the target
input are covered by only one uncreased and visible layer of paper in the folding.
For these mazes, each cell of the base grid viewed from above, and each rectangu-
lar wall between grid points viewed from either direction comprises the seamless
faces of our target. While a hexagonal maze could be folded using a triangular
maze construction, doing so would not maintain the seamless property on cells of
the hexagonal grid, so we present both constructions here.

Whereas orthogonal mazes include vertices with maximum degree four, trian-
gular and hexagonal grids have maximum degrees of six and three respectively. So
while the orthogonal construction required six distinct intersection gadgets, a trian-
gular grid requires thirteen gadgets up to reflection and rotation, while a hexagonal
grid requires only four.

Similarly to the original orthogonal construction, all of our triangular grid in-
tersection gadgets require only a single pleat of paper to construct a maze wall of
height h, achieving conjectured optimal scale factor 2h+1. However, we show that
if maze walls connect at an angle of more than 90◦, additional paper must be used
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to fold them if the foldings are to remain both seamless and watertight. Thus, the
walls of our hexagonal grid gadgets use additional paper in their construction.

2 Algorithm
The algorithm follows the same construction template as [Demaine et al. 10]. A
target input maze on a regular grid is specified by labeling grid edges as either
extruded or not extruded. To construct the maze, each vertex of the grid is replaced
by an appropriate folded gadget corresponding to the extrusion profile of the edges
incident to the vertex. By constructing the folded gadgets to expose the boundary of
the paper along the boundary of the folding in a consistent way (i.e. symmetric and
watertight), these gadgets can be stitched together to form a single sheet folding
of the input maze. There are a constant number of vertex gadgets, so selecting the
corresponding gadget for each vertex takes constant time, allowing gadgets to be
tiled in linear time with respect to the number of grid intersections contained in the
grid.

Given a regular grid having vertices of degree d, there are 2d possible assign-
ments of edges incident to the vertex; however many of the assignments are equiv-
alent up to rotation or reflection. For a rectangular grid, d = 4 but there are only
six possible extrusion profiles for a vertex, up to reflection and rotation. Thus, [De-
maine et al. 10] provided corresponding folded states for six grid gadgets. In this
paper, we provide folded gadgets corresponding to vertex extrusion profiles for
regular hexagonal and triangular grids. A regular hexagonal grid has degree d = 3,
admitting only four possible extrusion profiles, while a regular triangular grid has
degree d = 6, admitting thirteen possible extrusion profiles. These profiles are
shown in Figure 1.

d = 3 d = 4 d = 6

Figure 1: Extrusion profiles for the three regular grid tilings. Thick black denotes
extruded edges, while dotted lines denote not extruded.

Crease patterns for our four regular hexagonal grid intersection gadgets are
shown in Figure 2, while Figure 3 depicts crease patterns for our thirteen regu-
lar triangular grid intersection gadgets. Red and blue lines denote mountain folds
(folding backward) and valley folds (folding forward) respectively, while line thick-
ness is proportional to fold angle in the folded state. Gray regions denote paper
that is not visible from the top surface of the model, while the white regions are the
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Figure 2: The four hexagonal grid maze intersection gadgets.

seamless faces that make up the walls and floor of the folded maze. Similarly to
the orthogonal construction of [Demaine et al. 10], these gadgets can be adjusted to
allow for arbitrary extrusion height h relative to a normalized unit grid by sinking
the gray regions appropriately.

Assuming unit distance between grid points and extrusion height h, each tri-
angular grid gadget can be folded from a hexagon of side length 2h+ 1, the same
scale factor that was achieved by the orthogonal grid construction (and is within
a constant factor of optimal for similar reasons). We suspect our folding is opti-
mal for the complete triangular grid, where all edges are extruded, at least among
watertight foldings. The hexagonal grid gadgets achieve strictly worse scale factor
6h+ 1, a ratio chosen partially to ensure that crease pattern vertices lie on a grid.
Is it possible to achieve scale factor 2h+ 1 for hexagonal grid gadgets? In fact, if
we constrain our design to produce modular grid-aligned gadgets that are seamless
and watertight, the answer is no, a scale factor of 2h+1 is not achievable.

Theorem 1. No set of watertight, seamless hexagonal grid-aligned maze gadgets
can be achieve a scale factor of 2h+1 or less.

Proof. Consider the particular hexagonal extrusion profile containing a single ex-
truded edge, and the grid-aligned unfolding of its seamless faces embedded in a
paper with scale factor 2h+ 1 as shown in Figure 4. The watertight property re-
quires that the boundary of the seamless folded faces, map to the boundary of the
unfolded paper, so this unfolding is fixed. Now, consider the distance between the
central vertex of the extruded wall (marked with a black circle in the figure) and an
edge of the boundary not containing the extruded edge (marked with thick black
line). The shortest path between them in the unfolding is shown by the red line,
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Figure 3: The thirteen triangular grid maze intersection gadgets.
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Figure 4: When θ is larger than 90◦, the distance between the dark point and the
marked edge along the boundary in the unfolded paper [Left] is shorter than the
intrinsic distance between the marked point and the marked edge in a correspond-
ing folding of the white and green regions [Right]; so if the maze folding is to be
watertight, a larger equilateral triangle of paper must be used.

while a path achieving the intrinsic distance between the black dot and any point
on that boundary edge in the folding is marked in purple. The purple path is longer
than the red path, thus since folding cannot increase intrinsic distances, no folding
exists from a triangle with scale factor 2h+1 to the desired folding.

Thus while our hexagonal construction has a lower scale factor than the orthog-
onal or triangular grid constructions, the same scale factor is not attainable under
the specified design constraints. To demonstrate the regular triangular grid gadgets
presented in this paper, Figure 5 depicts a folded version of the MIT logo embedded
on a triangular grid.
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Figure 5: A triangular grid maze representing the letters MIT folded by M. Yoder
using the gadgets and construction described in this paper.
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