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1 Introduction

Let S be a set of n points in the plane, which we assume to be in general position, i.e., no three
points of S lie on the same line. A triangulation of S is a simplicial decomposition of its convex
hull having S as vertex set.

In this work we consider several perfect-information combinatorial games involving the vertices,
edges (straight-line segments) and faces (triangles) of some triangulation. We describe main
broad categories of these games and provide in various situations polynomial-time algorithms to
determine who wins a given game under optimal play, and ideally, to find a winning strategy.

We present games where two players R(ed) and B(lue) play in turns, as well as solitaire games
for one player. In some bichromatic versions, player R will use red and player B will use blue,
respectively, to color some element of the triangulation. In monochromatic variations, all players
(maybe the single one) use the same color, green.

Games on triangulations come in three main flavors:

e Constructing (a triangulation). The players construct a triangulation 7'(S) on a given point
set S. Starting from no edges, players R and B play in turn by drawing one or more edges
in each round. In some variations, the game stops as soon as some structure is achieved. In
other cases, the game stops when the triangulation is complete, the last move or possibly
some counting decides then who is the winner.

e Transforming (a triangulation). A triangulation T'(S) on top of S is initially given, all edges
originally being black. In each turn, a player applies some local transformation to the current
triangulation, resulting in a new triangulation. The game stops when a specific configuration
is achieved or no more moves are possible.

e Marking (a triangulation). A triangulation T'(S) on top of S is initially given, all edges and
nodes originally being black. In each turn, some of its elements are marked (e.g. colored)
in a game-specific way. The game stops when some configuration of marked elements is
achieved (possibly the whole triangulation) or no more moves are possible.

For each of the variety of games described in Section 2, we are interested in characterizing who
wins the game, and designing efficient algorithms to determine the winner and compute a winning
strategy. More details about the games can be found in the full papers [1] and [2].
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2 Examples of Games

We describe next the rules of several specific games that we have studied. Our intention here is
to make clear which kind of games we are dealing with.

2.1 Constructing

2.1.1 Monochromatic Complete Triangulation. The players construct a triangulation 7'(S) on a
given point set S. Starting from no edges, players R and B play in turn by drawing one edge in
each round. Each time a player completes one or more empty triangle(s), it is (they are) given to
this player and it is again her turn (an “extra move”). Once the triangulation is complete, the
game stops and the player who owns more triangles is the winner.

2.1.2 Monochromatic Triangle. Starts as in 2.1.1, but has a different stopping condition: the first
player who completes one empty triangle is the winner.

2.1.8 Bichromatic Complete Triangulation. As in 2.1.1, but the two players use red and blue
edges. Only monochromatic triangles count.

2.1.4 Bichromatic Triangle. As in 2.1.2, but with red and blue edges. The first empty triangle
must be monochromatic.

2.2 Transforming

2.2.1 Monochromatic Flipping. Two players start with a triangulation whose edges are initially
black. Each move consists of choosing a black edge, flipping it, and coloring the new edge green.
The winner is determined by normal play, meaning that the goal is to make the last complete
move.

2.2.2 Monochromatic Flipping to Triangle. Same rules as for 2.2.1, except now the winner is who
completes the first empty green triangle.

2.2.8 Bichromatic Flipping. Two players play in turn, selecting a flippable black edge e of T'(5)
and flipping it. Then e as well as any still-black boundary edges of the enclosing quadrilateral
become red if it was player R’s turn, and blue if it was player B’s move. The game stops if no
more flips are possible. The player who owns more edges of her color wins.

2.2.4 All-Green Solitaire. In each move, the player flips a flippable black edge e of T'(S); then
e becomes green, as do the four boundary edges of the enclosing quadrilateral. The goal of the
game is to color all edges green.

2.2.5 Green-Wins Solitaire. As in 2.2.4, but the goal of the game is to obtain more green edges
than black edges.

2.3 Marking

2.3.1 Triangulation Coloring Game. Two players move in turn by coloring a black edge of T'(.5)
green. The first player who completes an empty green triangle wins.

2.3.2 Bichromatic Coloring Game. Two players R and I3 move in turn by coloring red respectively
blue a black edge of T'(.S). The first player who completes an empty monochromatic triangle wins.
2.8.83 Four-Cycle Game. Same as 2.3.1 but the goal is to get an empty quadrilateral.

2.3.4 Nimstring Game. Nimstring is a game defined in Winning Ways [4] as a special case of
the classic children’s (but nonetheless deep) combinatorial game Dots and Boxes [3, 4]. In the
context of triangulations, players in Nimstring alternate marking one-by-one the edges of a given
triangulation (i.e., coloring green an edge, initially black), and whenever a triangle has all three
of its edges marked, the completing player is awarded an extra move and must move again. The
winner is determined by normal play. Thus, the player marking the last edge of the triangulation
actually loses, because that last edge completes one or two triangles, and the player is forced to
move again, which is impossible.



Besides beauty and entertainment, games keep attracting the interest of mathematicians and
computer scientists because they also have applications to modeling several areas and because
they often reveal deep mathematical properties of the underlying structures, in our case the com-
binatorics of planar triangulations.

Games on triangulations belong to the more general area of combinatorial games which typically
involve two players, R(ed) and B(lue). A game position consists of a set of options for Red’s moves
and a set of options for Blue’s moves, where each option is itself a game, representing the game
position resulting from the move. We define next a few more terms from combinatorial game
theory that we will use in this paper. For more information, refer to the books [4, 5] and the
survey [6]. The paper [7] contains a list of more than 900 references.

We consider games with perfect information (no hidden information as in many card games) and
there are no chance moves (like rolling dice). Most of the games we consider (the monochromatic
games) are also impartial in the sense that the options for Red are the same as the options for
Blue. In this case, a game is simply a set of games, and can thus be viewed as a tree. The leaves
of this tree correspond to the empty-set game, meaning that no options can be played; this game
is called the zero game, denoted 0.

In general, each leaf game might be assigned a label of whether the current player reaching
that node is a winner or loser, or the players tied. However, a common and natural assumption is
that the zero game is a losing position, because the next player to move has no move to make. We
usually make this assumption, called normal play, so that the goal is to make the last move. In
contrast, misére play is just the opposite: the last player able to move loses. In more complicated
games, the winner is determined by comparing scores.

Any impartial perfect-information combinatorial game without ties has one of two outcomes
under optimal play (when the players do their best to win): a first-player win or a second-player
win. In other words, whoever moves first can force herself to reach a winning leaf, or else whoever
moves second can force herself to reach a winning leaf, no matter how the other player moves
throughout the game. Such forcing procedures are called winning strategies. For example, under
normal play, the game 0 is a second-player win, and the game having a single move to 0 is a
first-player win, in both cases no matter how the players move. More generally, impartial games
may have a third outcome: that one player can force a tie.

The Sprague-Grundy theory of impartial games (see e.g. [4], Chapter 3) says that, under
normal play, every impartial perfect-information combinatorial game is equivalent to the classic
game of Nim. In (single-pile) Nim, there is a pile of ¢ > 0 beans, denoted *i, and players alternate
removing any positive number of beans from the pile. Only the empty pile %0 results in a second-
player win (because the first player has no move); for any other pile, the first player can force a
win by removing all the beans. If a game is equivalent to *¢, then ¢ is called the Nim value of the
game.

3 Overview of Results

In this section we briefly summarize some of our results from the papers [1] and [2], where all
proofs and details can be found.

Theorem 1. Deciding whether the Triangulation Coloring Game on a simple-branching trian-
gulation (no two inner triangles share a common diagonal) on n points in convex position is a
first-player win or a second-player win, as well as finding moves leading to an optimal strategy,
can be solved in time linear in the size of the triangulation.

Theorem 2. The Monochromatic Triangle Game on n points in convex position is an incarnation
of a known game called Dawson’s Kayles [4]. It is thus a second-player win whenn =5,9,21,25,29
(mod 34) and for the special cases n = 15 and n = 35; otherwise it is a first-player win. FEach
move in a winning strateqy can be computed in time linear in the size of the triangulation.

Theorem 3. The outcome of the Monochromatic Complete Triangulation Game on n points in
convex position is a first-player win for n odd, and a tie for n even.



Theorem 4. Whether a player can win the All-Green Solitaire Game for a given triangulation
of n points in convex position can be decided in time O(n). When the player can win, a winning
sequence of moves can be found within the same time bound.

Theorem 5. The player of the Green-Wins Solitaire Game can obtain from any given triangula-
tion on m points at least 1/6 of the edges to be green at the end of the game. There are triangulated
point sets such that no sequence of flips of black edges provides more than 5/9 of the edges to be
green at the end. (In the above fractions we don’t pay attention to additive constants).

Theorem 6. The player of the Green-Wins Solitaire Game can always win for any given trian-
gulation on n > 4 points in convex position.

Theorem 7. Nimstring in a fan with an even number of vertices is a first-player win.
Theorem 8. Nimstring in a wheel with an odd number of vertices is a second-player win.
Theorem 9. Four-Cycle in a triangulation whose dual is a path is a first-player win.
Theorem 10. Four-Cycle in a wheel with more than four triangles is a second-player win.

Theorem 11. Monochromatic Flipping on top of n points in convex position is a first-player win
if n is even and a second-player win if n is odd.

Theorem 12. There is a constant N such that Monochromatic Flipping to Triangle in a triangu-
lation (whose dual is a path) of n > N points in convex position is a first-player win for n even,
and a second-player win for n odd.
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