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Abstract: Computational origami design typically focuses on achieving a desired
shape of folding, treating multiple layers of paper like a single layer. In this
paper, we study when we can achieve a desired shape with a desired constant
number of layers throughout the shape, or a specified pattern of layer thicknesses.
Specifically, we study the case of a rectangular strip of paper, which is the
setting of the first universal computational origami design algorithm [SoCG’99].
Depending on the generality of the target surface and on the number of layers
modulo 4, we give a variety of universal design algorithms, polynomial-time
decision algorithms characterizing what is possible to fold, and NP-hardness
results.

1 Introduction
Since SoCG’99 [Demaine et al. 00], we have known that origami is universal in
the sense that any shape of paper can fold into (a scaling of) any desired polyhedral
surface. Deciding whether a desired surface can be folded a specified piece of paper
remains one of the standard goals in computational origami design. More efficient
universal algorithms include the Origamizer algorithm from SoCG 2017 [Demaine
and Tachi 17]. Such results rely on a key perspective on what it means to “fold a
surface”: multiple overlapping layers of paper are treated the same as a single layer.
In other words, the goal is to cover the surface, not fold it exactly. (The latter is the
notion of polyhedron folding, which is not universal [Demaine and O’Rourke 07].)

The number of layers of coverage can be important, however. Thick material
such as sheet metal cannot easily support many overlapping layers (see, e.g., [Ku
and Demaine 16]), so we may want to upper bound the number of layers at any
point. On the other hand, we may want to lower bound the number of layers at
every point as a proxy for structural stiffness. In particular, to optimally balance
these two constraints, we may aim for a uniform number of layers at every point.
Alternatively, we may want to exactly control the number of layers, varying at
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Figure 2: Illustration of allowed folds in the grid + diagonals model. A square
can be either uncreased (left) or folded along the square’s diagonals (middle), but
cannot be folded along half-grid lines (right). We draw the mid-line of the strip (in
blue) to help visualize the tiling model introduced in Section 2.

different points, to obtain a desired shadow pattern when the folding is held up to
the light; Figure 1 shows a simple example.

Figure 1: The shadow pattern resulting from
folding a strip of paper in a woven pattern.

Our results. In this paper, we
analyze what shapes with a specified
number of layers, possibly varying
throughout the shape, can be folded
from a long rectangular strip of paper.
Folding a paper strip is the approach
taken by the original universality result
[Demaine et al. 00] as well as more
recent work [Benbernou et al. 20],
so it is a natural starting point for
an investigation of layer counts. We
follow the grid + diagonals model of
folding [Aichholzer et al. 21, Czajkowski et al. 20, Benbernou et al. 20]; refer to
Figure 2. The strip is a grid-aligned 1× L rectangle and each crease is between
two integer points at distance 1 (perpendicular to the strip) or

√
2 (diagonal to the

strip). Each perpendicular crease can be folded by ±90◦ or ±180◦, and diagonal
folds can be folded by ±180◦ (to keep the folding grid-aligned).

In this model, the shapes we can build are (connected) polyhedral complexes
made up of grid-aligned unit squares and/or triangular half-squares (right isosceles
triangles with side lengths 1,1,

√
2). We categorize these into the following special

classes; refer to Figure 3. (In the abstract cases, we ignore the constraint that the
creases get folded by ±90◦ or ±180◦.)

• A polyomino is a 2D shape made up of grid-aligned unit squares.
• A polyabolo is a 2D shape made up of grid-aligned unit squares and/or triangular

half-squares.
• A polycube is a manifold without boundary embedded in 3D that is made up

of grid-aligned unit squares; in other words, it is the boundary of the union of
finitely many grid-aligned unit cubes.
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Figure 3: Different classes of target shapes analyzed in this paper. Magenta lines
denote edges where faces are glued together, while black lines are boundary. Dotted
lines indicate long-distance gluings.

• A polyabolo manifold is an abstract manifold, possibly with boundary, made up
of unit squares and/or triangular half-squares joined along disjoint pairs of unit
edges. (Manifolds allow at most two (half-)squares to be attached at a common
edge.)

• A polyomino manifold is a polyabolo manifold made up of just unit squares (no
triangular half-squares).

• A polyomino manifold without boundary is the special case of a polyomino
manifold where exactly two squares are attached at each edge. (This notion
generalizes polycubes to an abstract setting. Because we allow joins along only
unit edges, a manifold without boundary cannot have triangular half-square faces:
any diagonal edge would be a boundary edge.)

• A polyabolo complex is an abstract complex made up of unit squares and/or
triangular half-squares joined arbitrarily along unit edges. (Complexes allow any
number of (half-)squares to be attached at a common edge. This case is the most
general.)

• A polyomino complex is a polyabolo complex made up of just unit squares (no
triangular half-squares).

• An even-degree polyomino complex is the special case of a polyomino complex
where an even number of squares are attached at each edge. (This notion
generalizes polyomino manifold without boundary. For the same reason, it does
not make sense with triangular half-squares: any diagonal edge would have
degree 1.)

In addition, we are given a constraint on the number of layers throughout the
surface. In general, we allow each unit square and triangular half-square f to have
its own target number k f of layers in a valid folding, where k : f 7→ k f is a function.
In particular, we consider the case where k is a constant function such as k = 2 or
k = 4, i.e., we want a uniform-layer folding.

Tables 1 and 2 summarize our results for polyomino and polyabolo shapes,
respectively (forbidding and allowing triangular half-squares, respectively). Each



CHUNG, DEMAINE, DEMAINE, DIOMIDOVA, LYNCH, MUNDILOVA, ZHANG

k Polyomino Polycube
Even-degree

complex
Manifold Complex

k = 1
Only strips
(Thm 6.2)

Nothing
(Thm 6.3)

NP-hard
(Thm 7.2)

Linear time
(Thm 5.1)

NP-hard
(Thm 7.1)

k = 2
Only strips
(Thm 6.4)

Everything (Thm 3.1)
Linear time

(Thm 4.1)
NP-hard
(Thm 7.3)

k f ≡ 1 mod 2,
k f ≥ 3

Only strips
(Thm 6.2)

Nothing
(Thm 6.3)

Polynomial time (Thm 5.2)

k f ≡ 0 mod 2,
k f ≥ 4

Everything (Thm 3.1)

k f ≥ 3 Polynomial time (Thm 5.2)

k f ∈ {2,4} NP-hard
(Thm 7.4)

Everything (Thm 3.1) NP-hard (Thm 7.4)

Table 1: Summary of our results for polyomino shapes (made from unit squares)
with a specified number k of layers (possibly varying as k f for each unit-square
face f ).

k Polyabolo Manifold Complex

k = 1 Only strips (Thm 6.1, 6.2)
Linear time

(Thm 5.1)
NP-hard (Thm 7.1)

k = 2 Linear time (Thm 4.1) NP-hard (Thm 7.3)
k f ≡ 1 mod 2,k f ≥ 3 Only strips (Thm 6.1, 6.2) Polynomial time (Thm 5.2)
k f ≡ 0 mod 4,k f ≥ 4 Everything (Thm 3.2)
k f ≡ 2 mod 4,k f ≥ 6 Polynomial time (Thm 5.2)

k f ≥ 3 Polynomial time (Thm 5.2)
k f ∈ {2,4} NP-hard (Thm 7.4)

Table 2: Summary of our results for polyabolo shapes (made from unit squares and
right-isosceles triangular half-squares) with a specified number k of layers (possibly
varying as k f for each face f ). Throughout, we assume that k f is even for all
triangular half-squares; otherwise, Theorem 6.1 shows that the shape is impossible
to fold.

column corresponds to a class of target shapes as categorized above, and each row
corresponds to a restriction on the number of layers. In each case, we prove one of
the following types of results:

• Universality / everything: Every such shape can be folded with the desired
number of layers, and there is a linear-time algorithm to find such a folding. In
Section 3, we prove the following such results:
– Universality when the number k f of layers for each (half-)square f is at least

4 and either even (for polyomino complexes) or 0 modulo 4 (for polyabolo
complexes).

– Universality when every k f ∈ {2,4} for even-degree polyomino complexes
(e.g., polycubes or polyomino manifolds without boundary).

In particular, these results establish that the grid + diagonals model can
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universally fold all polyabolo complexes with exactly k = 4 layers everywhere.

• Polynomial-time characterization: A polynomial-time algorithm decides
which shapes can be folded with the desired number of layers. Such results can
be further categorized as follows:

– Nothing can be folded, i.e., the algorithm’s answer is always “no”. In
Section 6, we prove such a result for polycubes where all k f are odd, and
if there is any triangular half-square whose k f is odd.

– Only strips (unit-width rectangles) can be folded, so the algorithm can simply
check for such a shape. In Section 6, we prove such results for polyominoes
where all k f are odd and for uniform coverage by k = 2 layers. (These results
show that none of our polynomial-time characterizations could be further
extended to universality.)

– Linear time is possible. In Sections 4 and 5, we prove such results for
polyabolo manifolds with k = 2 and k = 1 respectively. The k = 2 algorithm
is quite complicated and one of our main results.

– Larger polynomial time results. In Section 5, we prove such results when all
k f are at least 3, and for certain classes of k f s modulo 4.

• NP-hardness: It is NP-hard to decide which shapes can be folded with the
desired number of layers. In Section 7, we prove several such results:

– For uniform coverage with k = 1 or k = 2 layers, we prove NP-hardness for
polyomino complexes. The k = 1 result holds even when restricted to even-
degree polyomino complexes, in surprising contrast to k = 2 where we obtain
universality. Both of these results contrast our linear-time algorithms when
further restricted to manifolds.

– For varying coverage with k f ∈ {2,4} layers, we prove NP-hardness for
polyominoes. This result contrasts our positive results for k = 2 and k = 4, and
contrasts our universality result when we change the shapes to even-degree
polyomino complexes (e.g., polycubes).

Related work. Origami design with a uniform number of layers throughout the
folding was considered by [Davis et al. 14]. They show that, for any polygon that
tiles the plane using only finitely many orientations, it is possible to fold multiple
pieces of paper in that shape into a “locked weaving” with a fixed constant number
of layers at every point. The constant they achieve depends on the paper shape (in
particular, they consider folding rectangles of varying aspect ratios) and on whether
the goal is to make a finite-area weaving (with no particular shape) or an infinite
plane, but the main problem they address is which shapes of paper admit a uniform-
layer weaving.

By contrast, our work assumes a single piece of paper in the simple shape
of a unit-width rectangle, and the folding must be in a specific target shape (not
just a specified number of layers). In some sense, [Davis et al. 14] consider the
dual problem, where the piece of paper is in a given shape, while the target has
unspecified shape (only a specified number of layers). (We also do not consider the
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“locked” constraint from [Davis et al. 14], which attempts to model that the folded
model does not “fall apart”.)

2 Tiling Model
Given a polyabolo complex with grid-aligned unit square and triangular half-square
faces F , and a layer assignment k : F → Z+, we characterize when a strip of unit
width can be folded in the grid + diagonals model such that every face f ∈ F is
covered with exactly k( f ) = k f ∈ Z+ layers. In particular, we assume that the
target number of layers is positive, and that the faces are joined along only unit-
length edges. Consequently, the only way to cover a half-square face is by making
a diagonal fold, resulting in an even number of layers on half-squares.

We fix a local intrinsic orientation of each face of the complex. In particular,
we assume all squares are oriented like (axis-aligned) and all half-squares
are oriented like . These orientations let us talk about, e.g., horizontal and
vertical edges and/or neighbors of a particular tile but, except in the 2D cases of
polyominoes or polyaboloes, these notions may differ from tile to tile.

2.1 Tiles
A square tile is a unit square with a multigraph on five labeled vertices: one central
vertex for the face, and one additional vertex for each edge. A half-square tile is
a half-square with a multigraph on three labeled vertices: one central vertex for
the face, and one additional vertex for each unit edge (but nothing for the diagonal
edge). We call the vertices face-vertices and edge-vertices accordingly. In both
cases, we require the multigraph to be bipartite, allowing edges only between the
face-vertex and the edge-vertices. See Figure 4 for some simple examples. Square
tiles that differ by rotations are considered different.

A tiling of a complex C is a function τ mapping each face of C to a tile of the
same shape (square or half-square). By gluing together the multigraphs of each
tile (according to its local orientation) at the edge-vertices, a tiling τ induces a
bipartite multigraph Gτ on the entire complex, with a face-vertex for each face of
the complex and an edge-vertex for each unit edge.

In the rest of this section, we will show that a complex C with layer assignment
k has a strip folding if and only if it has a tiling that satisfies certain conditions.

2.2 Complete Tiling

Figure 4: The three types of
subtiles that form valid tiles.
Face-vertices are colored red.

Call a tile valid if it is an edge-disjoint union of
one or more subtiles shown in Figure 4 (of the same
shape), which we denote in the text by , , and

, respectively. For example, the valid tile results
from the disjoint union of two copies of and one
copy of . Equivalently, a valid square tile has equal
degree at opposite edge-vertices, and a valid half-
square tile has equal degree at the two edge-vertices.
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Figure 5: Folding a strip to place its midline along an Euler path of the multigraph
of a tiling.

The size of a valid tile is the number of subtiles in the union, or equivalently, half
the number of edges.

Definition 2.1. A tiling τ of a complex C with layer assignment k is complete if the
following conditions hold:

1. For each square face f of C, the tile τ( f ) is a valid square tile of size t f = k f .
2. For each half-square face f of C, the tile τ( f ) is a valid half-square tile of size

t f = k f /2. In particular, if k f is odd for some half-square face, then a complete
tiling cannot exist.

3. The multigraph Gτ has an Euler path. Equivalently,

• all but zero or two edge-vertices have even degree; and
• the graph is connected, except possibly for some isolated edge-vertices.

Intuitively, we show that a complex has a complete tiling if and only if it can
be folded from a single strip by tracing the Euler path with the strip’s midline;
see Figures 2 and 5. To only have grid and diagonal folds, the strip needs to start
and end at edge-vertices; this can always be arranged because face-vertices have
even degree. Going straight through a face-vertex corresponds to traversing a face
without a fold. Making an L-turn (right angle) at a face-vertex corresponds to a
diagonal fold. A problem arises if the Euler tour U-turns (doubles back) at a face-
vertex, as it corresponds to the invalid half-grid fold from Figure 2. On the other
hand, U-turns at edge-vertices are allowed: they correspond to folding by 180◦

along a perpendicular crease. Other perpendicular creases may be folded by 0 or
90◦ (or just abstractly) depending on the geometry of the complex.

To fix the problem of U-turns at face-vertices, we prove the following:

Lemma 2.2. For any complete tiling τ of a complex, Gτ has an Euler tour without
U-turns at face-vertices, which can be found in linear time.

Proof sketch. We construct a modified multigraph G̃τ =(Ṽ , Ẽ) that is still Eulerian,
such that any Eulerian path in G̃τ can be converted into an Eulerian path in Gτ .
Furthermore, we ensure that Eulerian paths in G̃τ either go straight or make an
L-turn at each face-vertex, forbidding U-turns. Refer to Figure 6.
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Gτ

G̃τ

Figure 6: Conversion in the proof of Lemma 2.2 from Gτ (top) to G̃τ (bottom).

Finally, we prove that we can trace an Euler path with no U-turns at face-
vertices with the strip’s midline to obtain a strip folding of the complex with k f
layers on face f :

Lemma 2.3. Given a complete tiling τ of a complex C with layer assignment k,
and given an Euler path in Gτ without U-turns at face-vertices, we can construct
in linear time a strip folding (whose midline traces the Euler path) that achieves
the desired layer assignment k.

Combining Lemmas 2.2 and 2.3, we obtain one direction of the desired result:

Theorem 2.4. A complex C with layer assignment k can be folded from a strip if
and only if (C,k) has a complete tiling. Either conversion can be done in linear
time.

A consequence of the argument in Lemma 2.3 in particular is the following
characterization of the strip ends:

Corollary 2.5. If the multigraph Gτ of a complete tiling τ has two odd-degree
edge-vertices, then these two edge-vertices will be the locations of the two ends of
the strip. If the multigraph Gτ has no odd-degree edge-vertices, then the strip starts
and ends at the same location, which can be any non-isolated edge-vertex.

2.3 Reduced Tiling
Next we identify a finite set of “reduced” tiles and show that the existence of
a “reduced tiling” is equivalent to the existence of a complete tiling, and thus
equivalent to the existence of a strip folding. Notably, all reduced tiles have
constant size. This approach simplifies many of the arguments and is used
throughout the paper.

Consider a complete tiling τ of a complex C with layer assignment k, and let f
be a face of C. If tile τ( f ) contains three copies of the same subtile, we can remove
two of them: this change does not affect vertex degree parities, and it does not affect
connectivity, so the graph Gτ remains Eulerian. Conversely, we can always add two
copies of the same subtile: this change does not affect vertex degree parities, and it
can only increase connectivity. Such changes will break the property that the size
of the tile matches k f , however; instead, it will match modulo 2.
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k f = 1 k f = 2 k f ≥ 3,k f ≡ 1 mod 2 k f ≥ 3,k f ≡ 0 mod 2 k f ≡2 mod 4 k f ≡0 mod 4

Figure 7: The reduced tiles T up to rotation. Top row: partial reduction from
removing pairs of identical subtiles. Bottom row: full reduction from also adding
pairs of identical subtiles.

By repeatedly removing pairs of identical subtiles, except the last pair, we can
reduce each tile to one of the tiles shown in the top row of Figure 7 (ignoring
rotations for the moment). We can further reduce the number of candidate tiles for
each face by adding pairs of subtiles, resulting in the tiles shown in the bottom row
of Figure 7 (again ignoring rotations). We call this set T of tiles the reduced tiles:

T = { , , , , , , , , , }.

Definition 2.6. A tiling τ of a complex C with layer assignment k is reduced if

1. Every tile τ( f ) is reduced and its size matches k f modulo 2. Equivalently:

τ( f ) ∈


{ , } if k f = 1,
{ , , } if k f = 2,
{ , } if k f ≥ 3 and k f ≡ 1 mod 2,
{ , } if k f ≥ 3 and k f ≡ 0 mod 2,

for a square face f of C;

τ( f ) =

{
if k f ≡ 2 mod 4,
if k f ≡ 0 mod 4,

for a half-square face f of C.

2. The multigraph Gτ has an Euler path. Equivalently,

• all but zero or two edge-vertices have even degree; and
• the graph is connected, except possibly for some isolated edge-vertices.

For polyabolo manifolds, the even-degree condition can be restated as a
modulo-2 form of tile edge matching:

• For all but zero or two boundary edges of the manifold, the corresponding tile
edge has even parity; and

• Any two tile edges meeting at a nonboundary edge of the manifold have equal
parity.

Corollary 2.7. A complex C with layer assignment k can be folded from a strip if
and only if (C,k) has a reduced tiling. The conversion can be done in linear time.
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3 Universality Results
In this section, we present some corollaries of the tiling model for specific shapes,
which are based on prescribing a tiling of the underlying shape. The presented
tilings are trivially connected and all degrees are even. With Corollary 2.7, the
corresponding strip folding can be computed in linear time. The following two
theorems imply the universality results in Table 1 and Table 2.

Theorem 3.1. Every even-degree polyomino complex with layer assignment k
where every k f ≡ 0 mod 2 has a strip covering.

Theorem 3.1 implies every polycube can be covered with an even number of
layers.

Theorem 3.2. Every polyabolo complex with layer assignment k where every
k f ≥ 4 and k f ≡ 0 mod 2 on squares and k f ≡ 0 mod 4 on half-squares has a strip
covering.

Theorem 3.2 implies that every polyomino, polyomino manifold, polyabolo,
and polyabolo manifold can be covered with an appropriate layer assignment.

4 2-Layer Algorithm
In this section, we develop a linear-time “ray-shooting” algorithm for covering
polyabolo manifolds with exactly k = 2 layers.

Theorem 4.1. There is a linear-time algorithm for determining whether a
polyabolo manifold has a two-layer strip folding, and if so, finding such a folding.

By Corollary 2.5, this problem is equivalent to finding a complete tiling of
the manifold using only tiles { , , , }. The challenge is to assign tiles to the
squares such that (1) the resulting graph Gτ is connected, and (2) there are at most
two parity violations in Gτ .

Given a valid tiling τ of a polyabolo complex C, define the multigraph Hτ

as follows: the vertices of Hτ are the edge-vertices of Gτ , and there is an edge
between two vertices for every subtile of τ that connects those edge-vertices. A
parity violation is an edge-vertex of odd degree. This corresponds either to a unit-
length boundary edge of the manifold with an incident or (odd) tile, or a
unit-length nonboundary edge with two mismatched incident tiles: or (even)
on one side, and or (odd) on the other. Graphs Hτ and Gτ have the same set of
parity violations, because all face-vertices in Gτ have even degree.

Consider the unique tiling µ which uses only the tiles and . A ray is a
connected component of Hµ . Each ray is either a path or a cycle. Intuitively, a ray
is like a bidirectional beam of light that passes through square faces and reflects
off the diagonal edges of half-square faces. It continues in both directions until
they either meet each other (if it is a cycle) or meet boundaries (if it is a path).
The multiplicity belt of a ray r in τ is the sequence of multiplicities assigned by
τ to each edge of r. Here we use “belt” to mean a sequence which may be either
path-shaped or cycle-shaped.
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Definition 4.2. A belt consisting of integers in {0,1,2} is well-formed if all of the
nonzero elements are contiguous, and all instances of “1” are contiguous.

4.1 Layer Constraint Problem
A layer constraint belt is a belt consisting of numbers in {1,2} and occurrences
of two possible types of variables. A group variable is denoted xi and can occur
any number of times in the belt. Link variables come in pairs (yi,y j), where each
occurs exactly once in the belt.

An assignment of values {0,1,2} to the variables of a layer constraint belt φ is
a satisfying assignment if the following are true:

• xi ̸= 0 for each group variable xi;
• yi + y j = 2 for each pair (yi,y j) of link variables; and
• substituting the assigned values for the variables in φ makes a well-formed belt.

The layer constraint problem is to determine, given a layer constraint belt,
whether a satisfying assignment exists. In the full paper, we show that complete
k = 2 tiling reduces to this problem: there is a certain ray such that 0 corresponds to
a / tile perpendicular to the ray, 1 corresponds to a or tile, and 2 corresponds
to a / tile parallel to the ray.

4.2 Solving the Layer Constraint Problem
We now give a linear-time algorithm for solving the layer constraint problem,
starting with the case of a path-shaped layer constraint belt of length n.

A well-formed string s is determined by the natural numbers b02,b21,b12,b20
such that s consists of b02 0s, followed by b21 − b02 2s, then b12 − b21 1s, then
b20 −b12 2s, and finally n−b20 0s. These numbers, which are not always unique,
can be thought of as the locations of the boundaries between contiguous sections
of s. For clarity, we use integers for the locations of boundaries between characters
in the string, and half-integers for the locations of the characters themselves.

Our algorithm will work by finding intervals [l02,r02], [l21,r21], [l12,r12],
[l20,r20], maintaining the invariant that bi ∈ [li,ri] for every possible satisfying
string. These intervals can only become smaller; if any of them become empty,
then the algorithm reports that no satisfying assignment exists.

A basic operation used by the algorithm is assigning a value v ∈ {0,1,2} to a
location ℓ. The outcome of this operation depends on the previous contents of the
layer constraint string at ℓ. If the contents were a value in {0,1,2}, then no more
action is necessary unless the value is different from v, in which case no satisfying
assignment exists. If there was a group variable xi at ℓ, then the algorithm replaces
all occurrences of xi with v, unless v = 0 in which case no satisfying assignment
exists. If there was a link variable yi at ℓ, then the algorithm replaces yi with v and
y j with 2− v where y j is the other link variable in yi’s pair. These replacements
can be performed in amortized linear time by precomputing pointers to allow fast
traversals of group and link variables.

After placing a value at a location ℓ, the algorithm updates intervals as follows.
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• If ℓ is assigned 1, then we update r21 with the information that b21 < ℓ. That is,
we update r21 to min{ℓ− 1

2 ,r21}. Symmetrically, we also learn that b21 > ℓ, i.e.,
we update l21 to max{ℓ+ 1

2 , l21}.
• If ℓ is assigned 2, then we learn that b02 < ℓ and b20 > ℓ. Additionally, if we

know that b12 > ℓ (i.e., l12 > ℓ), then we learn that b21 > ℓ; and symmetrically, if
we know that b21 < ℓ, then we learn that b12 < ℓ.

• If ℓ is assigned 0, then if we know that b20 > ℓ, we learn that b02 > ℓ; and
symmetrically, if we know that b02 < ℓ, then we learn that b20 < ℓ.

We also update intervals to be consistent with each other, using the fact that b02 ≤
b21 ≤ b12 ≤ b20. These updates all take constant time.

The algorithm works by repeatedly selecting one of several possible rules to
apply. These rules are as follows.

(i) Assign 0 to a location in [0, l02] or [r20,n].
(ii) Assign 1 to a location in [r21, l12].

(iii) Assign 2 to a location in [r02, l21] or [r12, l20].
(iv) If ℓ contains an occurrence of a group variable, then we learn that b02 < ℓ <

b20.
(v) If ℓi, ℓ j contain a pair of link variables where ℓi < ℓ j, then we learn that

b20 > ℓi and b02 < ℓ j.
(vi) If ℓi, ℓ j contain a pair of link variables, and we know that ℓi, ℓ j ∈ [b02,b20],

then assign 1 to both ℓi and ℓ j.
(vii) If ℓi < ℓ j contain a pair of link variables, and we know both ℓi < b21 and

b02 < ℓ j < b20, then assign 0 to ℓi and assign 2 to ℓ j.

By tracking which intervals of locations have been scanned for possible rule
applications, we can select and apply a rule in amortized constant time. There are
at most a linear number of rule applications overall, so the algorithm takes linear
time to make as many rule applications as possible.

We can now describe the algorithm in full. For path-shaped layer constraint
belts, the algorithm is as follows.

• Initialize the four intervals to the entire range [0,n].
• Scan the constraint belt for a location ℓ containing a 2; if no such location exists

then return the trivial all-1s satisfying assignment.
• Nondeterministically guess whether ℓ < b21 or ℓ < b12, and update the intervals

according to the guess.
• Make as many rule applications as possible.
• Construct a well-formed string s according to the following two cases:

– If r21 < l12, then s consists of 0 in the range [0, l02]; 2 in the range [l02,r21]; 1
in the range [r21, l12]; 2 in the range [l12, l20]; and 0 in the range [l20,n].

– Otherwise, s consists of 0 in the range [0, l02]; 2 in the range [l02, l20]; and 0 in
the range [l20,n].

• Return the satisfying assignment corresponding to s.
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For cycle-shaped layer constraint belts, we reduce to the path case. The
algorithm scans the belt for a 2; if none exists, then it returns the trivial all-1s
satisfying assignment. Let a,b be the locations of the two link variables closest
to our 2 on either side; if there are no link variables, then the problem is easy.
The algorithm guesses the assignments of values to both link variables; if either
of these guessed values is not 1, then it locates a 0 and reduces to the path-shaped
case. Otherwise, because the 1s must be contiguous, we know that every location
separated from the 2 by a and b must be a 1. This eliminates all link variables, and
the resulting problem is easy.

5 One- and Many-Layer Algorithms
Single-layer covering is easy because turning creates at least two layers.

Theorem 5.1. We can decide in linear time whether a given polyabolo manifold
has a 1-layer covering.

For three or more layers, it is easy to ensure connectivity and thus the problem
essentially reduces to checking parity constraints across possible tilings. This is in
contrast to the NP-hardness results in Section 7.

Theorem 5.2. If all square faces f of a polyomino complex have layer
requirements k f ≥ 3, and all triangle faces have even k f , then there is an O(n4.2131)-
time algorithm to decide whether the polyomino complex has a strip covering. For
the special case of polyomino manifolds, there is an O(n3)-time algorithm.

6 Impossibility Results
Theorem 6.1. If any triangle on the target shape has odd k f , no strip covering
exists.

Theorem 6.2. For layer assignments with all odd k f , only polyominoes of type
1×m rectangles have a strip k-covering.

Theorem 6.3. No polycubes can be folded with an all-odd layer assignment k f .

Theorem 6.4. For polyominoes, only strips have a 2-layer covering.

7 Hardness Results
In this section, we show several NP-hardness results. All of these problems are in
NP, because the crease locations and fold angles all come from a polynomial-size
discrete set.

7.1 1-Layer Polyomino Complexes are NP-Hard
Theorem 7.1. Deciding whether a polyomino complex can be exactly covered by
a strip of paper is NP-hard.
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We reduce from positive E1-in-3-SAT [Schaefer 78]. Figure 8 shows the
variable gadget and Figure 9 shows the clause gadget. Colored lines indicate glued
edges; when multiple lines of the same color intersect, this represents multiple
edges being joined at the same place in the complex. These self-joined faces mean
the complex is not embeddable. Figure 10 shows how to attach extra cells to an
edge in the prior reduction, strengthening the result to even-degree complexes.

Figure 8: Start square
followed by two
variable gadgets.

auxaux

Figure 9: Clause
gadget.

Figure 10: Extra
edge gadget.

Theorem 7.2. Deciding whether an even-degree polyomino complex can be exactly
covered by a strip of paper is NP-hard.

7.2 2-Layer Polyomino Complexes are NP-Hard
Theorem 7.3. Deciding whether a polyomino complex can be double covered by a
strip of paper is NP-hard.

We reduce from Constraint Logic Satisfaction [Hearn and Demaine 09]. Vertex
gadgets are shown in Figures 11 and 12. Edge gadgets are each a single cell shared
by two vertex gadgets. Again this theorem only applies to abstract complexes.

7.3 kkk fff ∈∈∈ {222,,,444} Polyominoes are NP-Hard
When k = 2, we have a polynomial-time algorithm. When k = 4, we can make
everything. What if some cells have to be covered 2 times and others have to be
covered 4 times? We show this to be NP-complete by a reduction from Planar
Monotone Rectilinear 3SAT-3 [Darmann et al. 18].

Figure 11: AND gadget. Cells with
∗ are edge gadgets and are shared
by two vertex gadgets.

Figure 12: OR gadget. Cells with ∗
are edge gadgets and are shared by
two vertex gadgets.
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Figure 13: Variable gadget with two
positive and one negated literal.

Figure 13 shows a variable gadget. Blue
lines show the orientation of forced double
lines in a tile, specifically , , or . Squares
marked with a 4 require 4 layers; all others
require 2 layers. Assigning the ∗ squares to
be either all or all corresponds to setting
the variable TRUE or FALSE. Variables are
connected along the middle horizontal lines.
Clauses attach vertically and are paths of
tiles connecting the variables. A clause must
be connected through at least one variable
gadget, which occurs if the ∗ tiles are aligned
to connect the corresponding top or bottom
section of the variable gadget.

Theorem 7.4. Deciding whether a polyomino can be exactly covered when each
cell is specified to need to be covered exactly 2 or exactly 4 times is NP-hard.

8 Open Problems
• Is single/double covering polyomino complexes still hard when those complexes

are required to be embeddable in R3, ideally grid-aligned?
• What is the complexity when the required number of layers satisfies k f ∈ {1,2}?
• Can we improve the running time of our polynomial-time algorithms?
• What if each face f has a desired range [a f ,b f ] for the number of layers?
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