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1. Introduction

A general formulation of discrete opti-
mization is to maximize a given function
f : D → R over a discrete (finite) do-
main D. In general, of course, this problem
may require |D| probes to f . One approach
to making optimization more tractable is
to be satisfied with finding a local max-
imum, i.e., a point at which f attains a
value larger than all “neighboring” points,
for some definition of neighborhoods. In
particular, for the standard 1D domain
D = {1, 2, . . . , n}, Fibonacci search [Kie53]
finds a local maximum using logφ n + O(1)

probes, where φ = (1+
√
5)/2 is the golden

ratio. Surprisingly, even for a square 2D do-
main D = {1, 2, . . . , n} × {1, 2, . . . , n}, the
problem complexity grows exponentially:
Mityagin [Mit03] proved that Θ(n) probes
to such an f are sufficient and sometimes
necessary. Thus weakening the problem to
finding local maxima does not cause the
exponential speedup from 1D in higher di-
mensions.
Another approach to making optimiza-

tion more tractable is to add assumptions
about the function f . For example, if we
assume that f is unimodal (denoted “¯
unimodal”), i.e., it has exactly one local
maximum, then finding local maxima and

finding global maxima are equivalent. One
could hope that having this structural in-
formation about the function would also
help in finding that maximum. Unfortu-
nately, a careful reading of the construction
in [Mit03] of 2D functions f requiring Θ(n)
probes are in fact unimodal.
We study the related condition that the

2D function f is unimodal in every row
(↔ unimodal) and/or in every column (l
unimodal). (These properties are satisfied
by e.g. convex functions.) While seemingly
weaker than unimodality, these properties
are incomparable to unimodality, and in
fact result in exponential speedup for find-
ing local maxima.
Table 1 summarizes all of our results. Our

upper bounds all follow from a combination
of linear search and/or Fibonacci search in
each dimension. Matching local bounds for
global optimization follow in some cases
from independence of the columns. Some
bounds are tight only up to logarithmic
factors, leaving intriguing open questions.
In the full paper, we provide the omitted
proof and prove the comforting fact that a
natural random probing algorithm makes
Ω(lgm lg n) expected probes even for a
convex function, as in our dual Fibonacci
search.
Other properties of matrices facilitating

optimization have been studied; see [GP92].

2. Lower Bound for l Unimodal

Theorem 1 If n ≥ mε where 0 < ε ≤ 1,
there is an adversary that (a) generates
l-unimodal functions each with a unique
local optimum, and (b) forces any local
or global optimization algorithm to make
(ε2/4) lgm lg n−O(lgm lg lg n) probes.

The adversary gives the algorithm extra
information, which can only help. When-
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Assumption Local optimization Global optimization

None ≤ min(lg max

min
+ 4) +O(lgmax ) [Mit03] ≤ m · n [lin.×lin.]

≥ min{min,max/2} [Mit03] ≥ m · n [indep.]
¯ unimodal ≤ min(lg max

min
+ 4) +O(lgmax ) [Mit03] same as local

≥ min{min,max/2} [Mit03]
l unimodal ≤ logφm lg n+O(lgm) [Fib.×Fib.] ≤ n logφm+O(n) [Fib.×lin.]

≥ (ε2/4) lgm lg n−O(lgm lg lg n) ∗ [Thm. 1] ≥ n logφm+O(n) [indep.]
l, ↔ ≤ lgm lg n/ lg φ+O(lgmin) [Fib.×Fib.] ≤ min logφ max +O(min) [Fib.×lin.]
unimodal ≥ lgm+ lg n [info. theo.] Ω(min) [omitted]
¯, l ≤ logφm lg n+O(lgm) [Fib.×Fib.] same as local
unimodal ≥ (ε2/4) lgm lg n−O(lgm lg lg n) ∗ [Thm. 1]
¯, l, ↔ ≤ lgm lg n/ lg φ+O(lgmin) [Fib.×Fib.] same as local
unimodal ≥ lgm+ lg n [info. theo.]
Table 1
Worst-case bounds on the number of probes required to maximize a function f : {1, 2, . . . ,m} × {1, 2, . . . , n} → R. In the
bounds, max = max{m,n} and min = min{m,n}. ∗ indicates that the bound holds only when n ≥ mε for some 0 < ε ≤ 1.

ever the algorithmprobes the value at a par-
ticular point (x, y), the adversary reveals
not only that value, but also the slope of
that value in that column, i.e., whether the
mode in that column x is above or below
that point (x, y). Furthermore, if the mode
of column x is above the probe point (x, y),
then the adversary reveals all values in the
column x below the point (x, y); symmetri-
cally, if the mode is below the probe point,
the adversary reveals all values above the
point in its column. If the algorithm dis-
covers the mode of column x, the adver-
sary reveals all values in the column x. Thus
we maintain the invariant that every col-
umn that is not totally revealed has some re-
vealed values in the topmost few rows, some
revealed values in the bottommost few rows,
and the algorithm knows that the mode of
the column is somewhere in between.
If the unrevealed region ever becomes

disconnected, the adversary reveals all val-
ues in all connected components except
the largest connected component. Thus we
maintain the invariant that the unrevealed
region is connected. We also maintain the
invariant that the algorithm cannot dis-
cover the unique local optimum until every
value has been revealed. Together these two

invariants make the goal of the algorithm
to disconnect the unrevealed region; other-
wise, the algorithm must make at least one
probe per column, for a total of at least n
probes.
The main task of the adversary is to de-

cide whether a probe point is above or be-
low the mode of that column, and then to
choose the revealed values below or above
the probe point. The adversary bases its de-
cision on matching the “nearest” previous
decision, according to a particular distance
function. Define the (biased) distance be-
tween two points (x1, y1) and (x2, y2) to be
|x1−x2|+ |y1− y2|/m1−ε/2. Also define the
(biased) distance between a point (x, y) and
the top horizontal wall to be y/m1−ε/2, and
similarly define the biased distance to the
bottom wall to be (m+ 1− y)/m1−ε/2.
Suppose that the algorithm probes the

point (x, y). If point (x, y) is closer to a hor-
izontal wall than every revealed point, then
the adversary reveals all values in column x
between (x, y) and the nearest wall, specify-
ing that the mode is in the other direction.
Otherwise, the adversary specifies (x, y) to
be above or below the mode in its column
x according to whether the revealed point
(x∗, y∗) nearest to (x, y) is above or below
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the mode in its column x∗. Then the adver-
sary reveals all unrevealed values starting
from (x, y) in the opposite direction to the
mode in column x. (In the special case de-
scribed below that the algorithm discovers
the mode among these revealed values, the
specification that the mode is above or be-
low (x, y) is false; in this case the adversary
reveals all values in column x.)
The adversary chooses the revealed val-

ues as follows. Suppose that the algorithm
probes (x, y) and say that the adversary
decides that probe point (x, y) is above the
mode in its column x. If the to-be-revealed
points keep the unrevealed region con-
nected, then the adversary repeatedly re-
veals that the bottommost unrevealed value
in column x is one more than the largest
previously revealed value, until reaching
point (x, y). In this way the revealed val-
ues increase in an integer sequence from
the bottommost unrevealed value to (x, y).
Equivalently, the adversary reveals every
unrevealed point (x, y′) below (x, y) in col-
umn x to have value m − d more than the
largest previously revealed value, where
d = y − y′ is the Manhattan distance be-
tween the unrevealed point (x, y′) and the
probe point (x, y).
On the other hand, if the to-be-revealed

points disconnect the unrevealed region,
then we isolate a point (x, ŷ) in column x
that is adjacent to the largest resulting con-
nected component, and assign that point
(x, ŷ) to be the mode of column x. (As men-
tioned above, this assignment contradicts
the recent decision of the adversary that
the mode is above (x, y); this situation is
the only one in which such a contradiction
arises.) Then the adversary reveals every
unrevealed point (x, y′) in column x to have
valuem+ n− d more than the largest pre-
viously revealed value, where d = |y′ − ŷ|

is the Manhattan distance between unre-
vealed point (x, y′) and the assigned mode
(x, ŷ) of column x. Simultaneously, we re-
veal every point (x′, y′) in every connected
component except the largest to have value
m+ n− dmore than the largest previously
revealed value, where d is the Manhattan
distance between point (x′, y′) and the as-
signed mode (x, ŷ) of column x. Thus point
(x, ŷ) indeed becomes the mode of column
x, with d = 0.

Lemma 2 The only point to become a lo-
cal maximum according to the adversary is
the mode of the final column to become com-
pletely revealed.

PROOF. The key property is that the val-
ues revealed by the adversary are strictly
larger as we proceed from one probe to the
next, becausewe always addapositive num-
ber to the largest previously revealed value.
Thus, within a column, every point except
the mode has an adjacent point with larger
revealed value, and therefore only the mode
could be a local maximum. But in the final
phase of a column, the mode is chosen so
that it is adjacent to the largest connected
component, and all values to be revealed
in that component are strictly larger. Thus
even themode of the column cannot be a lo-
cal maximum, unless the largest connected
component is in fact empty, i.e., the last col-
umn has been completely revealed. 2

Lemma 3 Biased distance satisfies the tri-
angle inequality.

Lemma 4 The algorithm must make
min{n, (ε/2) lgm} probes before the unre-
vealed region first disconnects into multiple
connected components.

PROOF. To disconnect the unrevealed re-
gion horizontally, the algorithm must make
at least n probes. We claim that discon-
necting the unrevealed region vertically re-
quires at least (ε/2) lgm probes. Consider
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the minimum (biased) distance D between
a revealed point above the mode in its col-
umn (or the top wall) and a revealed point
below the mode in its column (or the bot-
tom wall). Initially D is m/m1−ε/2 = mε/2.
If the unrevealed region disconnects, D
must have become at most 1 because ε ≤ 1.
Whenever the algorithm probes a point

(x, y) that does not disconnect the unre-
vealed region, we claim thatD can decrease
by at most a factor of 2. Suppose that (x, y)
is closest to a previously revealed point
above the mode in its column (or the top
wall). Then every newly revealed point
(x, y′) is also closest to a previously revealed
point above the mode in its column. By the
triangle inequality (Lemma 3), the sum of
the distances from every such point (x, y′)
to the nearest point above the mode in its
column (or the top wall) and to the near-
est point below the mode in its column (or
the bottom wall) is at least D. The former
distance is smaller, so the latter distance is
at least D/2. Therefore the new value of D
after this probe is at least D/2.
In conclusion, for D to reduce from mε/2

to at most 1, the algorithm must make at
least lgmε/2 = (ε/2) lgm probes. 2

Lemma 5 The nearest point or horizontal
wall to a point (x, y) is in a column x′ such
that |x− x′| ≤ mε/2.

Finally we conclude the proof of Theo-
rem 1. Consider an algorithm that makes
fewer than lg n lgm probes. As mentioned
above, the algorithm must disconnect the
unrevealed region or else it is doomed to
make at least n probes. Lemma 4 says
that the algorithm must make at least
min{n, (ε/2) lgm} probes for the first dis-
connection. Consider the final probe that
caused the disconnection. By the pigeon-
hole principle, the (lg n lgm)mε/2 consecu-
tive columns including and to the right of

this final probe must have a gap of at least
mε/2 consecutive empty columns, because
there are at most lg n lgm probes total.
We remove columns starting from the fi-
nal probe up to but not including this gap
of mε/2 consecutive empty columns. Sim-
ilarly, we remove at most (lg n lgm)mε/2

columns to the left of the final probe up
to but not including a gap of mε/2 con-
secutive empty columns. Thus we obtain
two subproblems (one left and one right)
that by Lemma 5 act completely indepen-
dently from each other and from the probes
causing the disconnection, as far as probes
made so far. We recursively consider the
subproblem corresponding to the larger
connected component that remains. This
recursive subproblem is a rectangle withm
rows and at least bn/2c − (lg n lgm)mε/2

columns. The recursive subproblem may
have already been probed, but we can con-
sider such probes as happening after this
subproblem, because Thus the recursion
applies until n′/2 < (lg n lgm)mε/2.
Therefore we obtain the lower

bound of min{n′, (ε/2) lgm} probes,
where n′ ≥ 2(lg n lgm)mε/2, recursively
lg(n/(2(lg n lgm)mε/2)) times. In total we
obtain a lower bound of (ε/2)(lgm)(lg n −
1− lg lg n− lg lgm− (ε/2) lgm) which sim-
plifies to the bound stated in Theorem 1.
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