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Abstract S = {S51,...,5,} of subsets ofU, and a cost

We prove semi-logarithmic inapproximability for a maximization ~ ¢i Of each subses$;; and given a budgeB. Find
problem calledunique coveragegiven a collection of sets, find a a subcollectionS” C S, whose total cost is at
subcollection that maximizes the number of elements covered ex- MOSt the budgeB, to maximize the total profit of
actly once. Specifically, we prov@(1/log”®) n) inapproxima- elements that areniquely coveredi.e., appear in
bility assuming thaNP ¢ BPTIME(2"") for somes > 0. We exactly one set of’.

also.proveO(l/lqgl/:”*En) inapproximability, for any= > 0, as- Motivation. Logarithmic inapproximability for mini-
suming that refuting random instances of 3SAT is hard on averag&y ation problems is by now commonplace, starting in 1993
and proveO(1/ log n) inapproximability under a plausible hypothith 4 result for the celebrated set cover problzm [36], which
e_35|s. concerning the hardness of_ another problem, balanced blﬁgg since been improved to the optimal consfarit [16] and to
tite independent set. We establish matching upper .bounQS. U ume jusp # NP [41], and has been used to prove other
exponents, even for a more general (budgeted) setting, givingiiht (not necessarily logarithmic) inapproximability results
€(1/log n)-approximation algorithm as well as &i(1/log B)-  for g variety of minimization problems, e.gl, [29,122] 11].
approximation algorithm when every set has at mBstlements. |, contrast, for maximization problemig » inapproxima-

We also show that our inapproximability results extend to envy-frBﬂity seems more difficult, and relatively few results are

pricing, an important problem in computational economics. We q?ﬁown The only two such results of which we know are

scribe how the (budgeted) unique coverage problem, motivated Iiy+ ¢)/Inn inapproximability for domatic number unless
real-world applications, has close connections to other theoretiﬁeﬂ, c DTIME(nO(IOg logn)) [18] andl/log1/3_5 n inap-

E;ng;s including max cut, maximum coverage, and radio IC)roapdr'oximability for the maximum edge-disjoint paths and cy-

cles problems unlesSP C ZPTIME(nPoWlosn) [B] [42].
Although these problems are interesting, they are rather spe-
cific, and we lack a central maximization problem analogous
In this paper we consider the approximability of the followtp set cover to serve as a basis for further reduction to many
ing natural maximization analog of set cover: other maximization problems.

The unique coverage problem defined above is a natural
maximization version of set cover which was brought to
our attention from its applications in wireless networks. In
one (simplified) application, we have a certain budget to
build/place some transmitters at a subset of some specified
set of possible locations. Our goal is to maximize the clients
that are “covered” by (i.e., are within the range of) exactly
We also consider a generalized form of this problem thatdge transmitter; these are the clients that receive signal
useful for several applications (detailed in Secm)n 2): without interference; see Sectipn 2.1 for details. Another
closely related application studied much earlier is the radio

1 Introduction

Unique Coverage Problem. Given a universe
U = {ey,...,e,} of elements, and given a col-
lectionS = {S51,...,S,} of subsets ol/. Find a
subcollectionS’ C S to maximize the number of
elements that areniquely coveredi.e., appear in
exactly one set af’.

Budgeted Unique Coverage Problem.Given a broadcast problem, in which a message (starting from one
universeU' = {ei,...,e,} of elements, and a  node of the network) is to be sent to all the nodes in the
profit p; for each element;; given a collection network in rounds. In each round, some of the nodes that

have already received the message send it to their neighbors,
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These applications along with others are studied in mdees indeed is the case with unique coverage) these problems

detail in Sectiof . naturally decompose int®(logn) subproblems, where at
Known results. To the best of our knowledge, therdeast an(2(1/logn) fraction of the optimum’s value comes

is no explicit study in the literature of the unique coverageom one of these subproblems. In isolation, each subprob-

problem and its budgeted version. However, the closely fem can be approximated up to a constant factor, leading to

lated radio broadcast problem has been studied extensiwei(1/ logn)-approximation algorithm for the whole prob-

in the past, and implicitly include afi(1/logn) approxi- lem. It may appear that this isolation approach is totvea

mation algorithm for the basic (unbudgeted) unique coveragegive the best possible approximation, and that by a clever

problem; see Sectign 2.5 for details. combination of the subproblems, it should be possible to
Concurrently and independently of our work, Guget an{)(1)-approximation algorithm. Our hardness results

ruswami and Trevisan [25] study the so called %&iSAT show to the contrary that such intelligent combination can be

problem, which includes the unique coverage problem (thard, in the sense that theimaisolation approach cannot be

not its budgeted version) as a special case. In particular, teapstantially improved, and suggest how one might obtain

show that there is an approximation algorithm that achievastter hardness results for these problems.

an approximation ratio ol /e on satisfiable instances (in

which all items can be covered by mutually disjoint sets). 2 Applications and Related Problems

Our results. On the positive side, we give am 1 \wireless Networks.Our original motivation for the
Q(1/log n)-approximation for the budgeted unique covefy,qgeted unique coverage problem is a real-world applica-
age problem. We also show that, if each set has a boyjh arising in wireless networl&We are given a map of the
B on the ratio between the maximum profit of a set and thgnsities of mobile clients throughout a service region (e.g.,
minimum profit of an element, then budgeted unique cojje plane with obstacles). We are also given a collection of
erage has a(1/log B)-approximation. Sectiofy4 provesandidate locations for wireless base stations, each with a
these results. . _ ] _ specified building cost and a specified coverage region (typi-
_ The main focus of this paper is proving the followingg|ly a cone or a disk, possibly obstructed by obstacles). This
inapproximability results. We show that it is hard to apsp|iection may include multiple options for base stations at
proximate the unique coverage problem within a factor g¢fe same location, e.g., different powers and different ori-
(1/log” n), for some constant depending or, assum- engations of antennae. The goal is to choose a set of base
ing thatNP ¢ BPTIME(2" ) for somes > 0. This inap- gtations and options to build, subject to a budget on the to-

proximability can be strengthened &(1/log'/*~“n) (for tal building cost, in order to maximize the density of served
anye > 0) under the assumption that refuting random irgjjents.

stances of 3SAT is hard on average (hardness of R3SAT as The difficult aspect of this problem (and what distin-

in [17]). The inapproximability can be further strengthenegliishes it from maximum coverage—see Sedfioh 2.4) is in-
to 1/(elogn) for somee > 0, under a plausible hardnesserference between base stations. In the simplest form, there
hypothesis about a problem called Balanced Bipartite Indg-a limit & on the number of base stations that a mobile
pendent Set; see Hypothepis B.1. Secfibn 3 proves allciént can reasonably hear without conflict between the sig-
these results. nals; any client within range of more thanbase stations

Our hardness results have other implications regardigghnot communicate because of interference and thus is not
the hardness of some well-studied problems. In particulgérviced. More generally, a mobile client’s reception is bet-
for the problem of unlimited-supply single-minded (envyter when it is within range of fewer base stations, and our
free) pricing, a recent resull_[24] proves &l(1/logn) goal is to maximize total reception. To capture these de-
approximation, but no inapproximability result better thagires, the instance specifies thatisfactions; of a client
APX-hardness is known. As we show in Sectjon] 2.2, owithin range of exactly base stations, such that = 0 and
hardness results for the unique coverage problem imply tje> 5, > 55 > ... > 0. The goal is to choose a set of base
same hardness-of-approximation bounds for this versionsgdtions and options, again subject to the budget constraint,
envy-free pricing. For the radio broadcast problem, as V¥eorder to maximize the total satisfaction weighted by client
discuss in Section 2.5, there is essentially a ga@@fgn) densities.
between the approximation and inapproximability factors \when alls;’s are equal, then we just have the maximum
(O(log” n) vs. Q(logn)). We believe that our technique tazoverage problem (Sectién 2.4). When= 1 ands; = 0
prove hardness of unique coverage may shed some light@nall ; + 1, this problem can be formulated as a budgeted
how to obtain a hardness of approximation beyOtbg n) unique coverage problem, by standard discretization of the
for this problem.

More ge_nera”y1 there are many ma_‘X|m!Zat|0n prob- 1The application arises in the context of cellular networks at Bell
lems for which the best known approximation factor isabs. The problem we consider here is a somewhat simplified theoretical
Q(1/logn)—see, e.g.,[[24,18,"37]—and it is not knowrormulation of this application. In the real application, the interference

whether anQ(l)-factor approximation is possible. Ofterpatterns are more complicated, but this problem seems to be the cleanest
theoretical formulation.



density map. More generally, for any assignmen¢;&sf, the an Q(1/(logn + logm))-approximation algorithm for the
problem can be formulated as a generalization of budgetedimited-supplysingle-mindedidder problem, where each
unigue coverage, thbudgeted low-coverage problemn buyer considers only one particular bundle and buys it if the
this problem, we are also given satisfication facterdor cost is less than the valuation. They also give a constant-
an element being covered exactlyimes, zero fori = 0 factor hardness-of-approximation result for this problem, via
and nonincreasing for > 0, and the goal is to maximizea reduction from max-cut. Single-minded bidders were con-
the total satisfication, i.e., the sum over all elements siflered before in the context of combinatorial auctions and
the product of the element’s profit (here, density) and itisechanism desigri [6. 39, 134]. The unlimited-supply as-
satisfication factor (the appropriatg). We show that our sumption in combination with single-mindedness simplifies
approximation algorithms for the budgeted unique coveraipe problem, as the notion efivydoes not play a role in this
problem apply more generally to the budgeted low-coveraggse. The general version of the envy-free pricing problem
problem, yielding arf2(1/ log n)-approximation where is is of course at least as difficult as this special case.
the total number of options for base stations. Of course, We now show that unlimited-supply single-minded
our lower bounds also apply to the budgeted low-covera@avy-free) pricing is as hard to approximate as the unique
problem, proving that this approximation factor is tight up tcoverage problem. The reduction is as follows. EachSset
the constant in the exponent. in the collection maps to an itetf). Each element; of the

While similar problems about base-station placemeamtiversel/ maps to a buyel;. Buyerb; has a valuation of
have been considered before, very few works consider méx-one bundle, namely, the set of itethsthat correspond to
imization forms of the problem, which is the focus of thisetsS; containing the elemert. In this context, every price
paper. Lev-Tov and Pelefg [35] consider the following vemssignment is envy-free, because we have unlimited supply
specialized form of the problem: base stations are unit digks each item so the seller can always sell each buyer its de-
in the plane, and the goal is to maximize the number sifed bundle (if the buyer wants). Because the valuations are
uniquely receiving clients. For this problem they give aall 1, we can assume that all prices are betw@and1. By
nP(V7)_time algorithm, where: is the number of candidaterandomized rounding (see Lemina A.1), we can assume that
disks. In the application of interest, we believe that it is mogdl prices are eitheo or 1, at a loss of a constant factor in
natural to allow clients to be covered more than once, hupfit. In this case, each buyéy will buy its bundle pre-
reduce (or eliminate) the satisfication of these clients; tigisely if at most one item is priced at and the rest of the
removal of an artificial constraint may enable substantiailgms are priced &t. If all items in a bundle are priced 6f
better solutions to the problem. Other wdrk][28,[19, 7] solvéen the seller makes no profit; if exactly one item is priced
the problem of assigning powers to base stations such tiaf, and the rest are priced @t then the seller profits by.
when each client prefers its unique preferred base station, Wis the effective goal is to assign pricesOadr 1 in order
do not violate the capacities of the base stations, provided thenaximize the number of bundles for which exactly one
number of clients is at most the total capacity of the netwoikem is priced atl, which is identical to the original unique

coverage problem.

2.2 Envy-Free Pricing. Fundamental to “fair” equilib- Therefore our hardness-of-approximation results apply
rium pricing in economics is the notion of envy-free prido unlimited-supply single-minded (envy-free) pricing and
ing [43,[23]. This concept has recently received attentionégtablish semi-logarithmic inapproximability.
computer science [1, 24], in the new trend toward an algo-
rithmic understanding of economic game theory; see, e43 Max-Cut. Recall the max-cut problem: given a
[12,[13] for related work. graphG, find a cut(S,S), whereS C V(G) andS =

The following version of envy-free pricing was considV (G)—S, that maximizes the number of edges with one end-
ered in [24]. A single seller prices: different items, each pointin S and the other endpoint ifi. The max-cut problem
with a specified quantity (limited or unlimitezlipply. Each can be seen to be equivalent to a special case of the unique
of n buyers wishes to purchase a subset of itentsuallg, coverage problem, in which every element is in exactly two
and the seller knows the maximum price that each buyeisgis. Simply view every vertex as a set and every edge as an
willing to pay for each bundle (thealuatior). A buyer's element.
utility is the difference between the valuation and the price Max-cut has a 0.87856-approximation[21] and is 0.942-
of the bundle (sum of the prices of the items in the bundlgapproximable[[26]. From these results one can immedi-
as sold to the buyer. The seller must choose the item prieégly obtain constant-factor hardness for unique coverage,
and which bundles are sold to which buyers in such a whyt in this paper we show that unique coverage is in fact
that is envy-free each buyer should be sold a bundle thatuch harder.
has the maximum utility among all bundles. The goal is to
maximize the seller'profit, i.e., the total price of the sold2.4 Maximum Coverage. Our budgeted unique coverage
bundles. problem is also closely related to theidgeted maximum

Among other results, Guruswami et al._[24] giveoveragevariation of set cover: given a collection of subsets



S of a universd/, where each element iri has a specified consists of all nodes that currently have the message and
weight and each subset has a specified cost, and givetheaother side consists of all nodes that do not yet have the
budgetB, find a subcollectiorts’ C S of sets, whose total message. In one round of the greedy algorithm, the goal is to
cost is at mosiB, in order to maximize the total weight offind a subset of nodes in the first side to transmit in order
elements covered bg’. For this problem, there is @l — to maximize the number of nodes in the second side that
1/e)-approximation [[2[7[_29], and this is the best constaatniquely) receive the message. This problem is equivalent
approximation ratio possible unlegs = NP [16, [29]. to unique coverage, viewing nodes on the first side as sets
At first glance, one might expect the gree@ly — 1/e¢)- and the nodes on the second side as elements of the universe.
approximation algorithm to work for unique coverage as One implication of the radio broadcasting work on
well: the only difference between the two problems isnique coverage is an implici2(1/logn)-approximation
whether we count elements that are covered (containedaigorithm for the (unbudgeted) unique coverage problem.
at least one set) or uniquely covered (contained in exadidgmely, there is a randomized broadcasting algorithm that,
one set). However, the natural greedy algorithm can ipeeach round, guarantees transmission toCdm/ log r)
very bad for unique covera&h—md in fact we show that thefraction of ther neighbors of nodes that currently have
(in)approximability of the two problems is quite different. the message. Becauseis an obvious upper bound on
the number of successful transmissions of the message, this
2.5 Radio Broadcast.The unique coverage problem isesultis arf2(1/logr) = ©(1/logn) approximation in this
closely related to a single “round” of theadio broadcast special case. See, e.dl, [9].
problem [9]. This problem considersradio network i.e., To avoid the possibility of misunderstanding, let us
a network of processors (nodes) that communicate syeint out that the known hardness-of-approximation results
chronously in rounds. In each round, a node can either radio broadcasi [14, 15] do not give (neither explicitly
transmit to all of its neighbors in an undirected graph (reper implicitly) any useful hardness-of-approximation result
resenting the communicability between pairs of nodes), for the unique coverage problem (not even a constant fac-
not transmit. A node receives a message if exactly onetof). Likewise, our hardness-of-approximation results for the
its neighbors transmits a message in the round; otherwiseuh&ue coverage problem do not by themselves imply any
messages are lost because of radio interference. In the ragie hardness-of-approximation results for radio broadcast.
broadcast problem, initially one node has a message, andHlegever, they do introduce a component that may be use-
goal is to propagate this message to all nodes in the netwdukin future hardness-of-approximation results for the radio
Radio broadcast is one of the most important corhroadcast problem, as they show that the greedy broadcast
munication primitives in radio networks, and the problegolicy might need to lose a semi-logarithmic factor already
has been studied extensively in the literature. In sumn-a single round (a fact not used in[14] 15]).
mary, the current best algorithms for approximating the min-
imum number of rounds are a (multiplicative)(log” n)- 3  Inapproximability

approximation [[L0[19._31,"30] and an additic¥log” n)- |n this section we prove that it is hard to approximate unique
approximation[20]. Alon, Bar-Noy, Linial, and Peled [3Loyerage within a factor d(1/ log® n) for some constant,

show that, even for graphs with diametefR®log” n) rounds ( ~ . < 1. Our main result is a general reduction from
can be necessary. The problem has also been considgredriation of Balanced Bipartite Independent Set (BBIS)
in the context of .dlstnbuted algorithms [33_.. 32] and |°Wproblem (defined below) to the unique coverage problem.
energy ad-hoc wireless networks [4]. Elkin and Kortsaggom this reduction and the known hardness results for
prove a lower bound of |nappr_OX|mab2|I|ty of a (muIt|pI|caBB|S’ we can derive a®(1/log® n) hardness for unique
tive) Q3(log n) [14] and an additivé)(log” n) [15] assuming coverage. Under a plausible assumption about the hardness
NP ¢ BPTIME(nO(&los ™), of BBIS, this bound can be improved @1/ log n).

The unique coverage problem (but not the budgeted \we consider the natural graph-theoretic model of the
version) can be considered as a single round of a grewque coverage problem. Define the bipartite graf(i’ U
algorithm for the radio broadcast problem, which maximizw F) with a vertexv; € V for every setS; € S and a
the number of nodes that receive the message in each S¥€Rexw; € W for every element; € U, and with an edge
Specifically, consider the bipartite subgraph where one sige_ (vi,w;) € F precisely ife; € S;. Then the unique

coverage problem asks to find a subB&tC V' such that
2A counterexample for a natural class of greedy algorithms is tléhe subgraph in-duce-d dy”u W has the maximum nu-mber
collection of setsS; = {ik + 1Lk +2,....n}fori = 1,2,....k t degreet vertices in?W. We call the degreé-vertices

! i 7 H™ vai
with an infinite budgetB. Consider a greedy algorithm that repeatediyNiquely coveredby the vertices i’
chooses a set to add to the cover, according to some (arbitrary) rule, with

one of two stopping conditions: either when the budget is exhausted, or . . . .
when the number of uniguely covered elements would go down. Then E?gFINITION 3.1. Given abipartite graprG(AUB, E) with

approximation ratio i€(1/n) with the first stopping condition it = 2, |4] = |B| = n, the Ba!anced Bipartite Independent Set
and with the second stopping conditiorkit= n — 2. (BBIS) problem asks to find the largest valug:afuch that




there are setsd’ C A andB’ C B with |A’| = |B’| = k£ THEOREM 3.3. Assuming that refuting random instances of
where the subgraplz’ of G induced byA’ U B’ is an 3SAT is hard on average (hardness of R3SAT a$ih [17]),
independent set. unigue coverage is hard to approximate within a factor of

_ _ Q(1/log'/3=7 n) for an arbitrarily small constant- > 0.
As detailed below, this problem has known hardness

results. In order to prove hardness of the unique coverage Under a stronger (yet plausible) hardness assumption,
problem, we define a variation of BBIS. Then we give We close the gap between the approximation factor and the
reduction from this variation of BBIS. Before stating théardness of approximation, up to the constant multiplicative
main result, we need to define what we mean by(@m)- factor, by proving arO(1/ log n)-hardness result for unique
BIS (Bipartite Independent Set). LE{ AU B, F) be a given coverage.

a bipartite graph. If the subgrajghf induced byA’ C A and
B’ C B, with |A’'| = a and|B’| = b, is an independent se
then we call it ar(a, b)-BIS,

THEOREM3.4. Assuming a specific hardness of factor
tQ(ns) for BBIS for some constaat> 0 (Hypothesi B]1), it
is hard to approximate the unique coverage problem within
h afactor of)(1/log n) where the constant in tHe term de-

DEFINITION 3.2. Given bipartite graph7(A U B, E) wit
P grapiti( ) pends ore.

|A] = |B| = n, and given parameters, ', §, and §’
satisfyingld < 7/ < v < l1land0 < § < ¢§ < 1, . i
the BBIS(v, ', 8, 8") problem is to distinguish between twe+1 _Reduction from BBIS to Unique Coverage.

cases: Construction: Consider an instance of
BBIS(v,~',4,d’): a bipartite graphG(A U B, E) with
1. Yes instance:G has an(n?,n/log® n)-BIS. |A] = |B| = n, and parameters, +/, 4, and §’ with
, , 0<v <~vy<1land0<é < < 1. Weconstruct a graph
2. No instance: G has no(n”’, n/log” n)-BIS. H(V UW, F) as an instance of unique coverage as follows.

First we construct a random graghf (A’ U B, E’)
where A’ is a copy ofA and B’ is a copy ofB. For every
a € A andb € B’ we place the edgéu,b) in E’ with
robability 1 /7. So the expected degree of every vertex in

The main theorem of this section is the following:

THEOREM3.1. There is a polynomial probabilistic reduc-
tion from BBIS to the unique coverage problem with the fof;, i 1=
lowing properties. Given a bipartite grap&(A U B, E '

owt E‘llp :p|B| o giverﬁ) pararr?etggs Vs, aan Now to constructH, let V be a copy ofA. Then
&' satisfyingd < v/ < v < land0 < § < & < 1, Withy” = =2, createp = 7" logn copies of 3, named
the algorithm constructs in randomized polynomial time dff1; - - -» Wp. We define a bipartite grapH;(V' U W, F;),

instance H(V U W, F') of unique coverage withiy| = foreveryl < < p, and at the end? = (J;_, H;. Note
O((y — v/)nlogn) and |V| = n satisfying the following that|V| = n and[W| = pn. The set of edges; (in H.)
two properties: consists of the union of two edge sets: (i) the edges of the

random graph’ induced on the verticeB U W; (V as A’
1. If G is a Yes instance BBIS(v,7/,4,4d'), thenH has andW; asB’), plus (ii) the edges of another random graph
a solution of siz&)((y —4/)nlog' ~° n). G, whereG; is defined recursively as follows. Initiallgs; is
) ) G induced onV U Wy. For everyi > 2, G, is obtained from
2. If G'is a No instance oBBIS(v,7',6,0"), thenH has ¢, | py deleting every edge independently with probability
no solution of siz& (max{(y — 7" )nlog' ~° n,n}). 1. The edges of’ in H; are calledype-1 edgeand the rest

) ) of the edges of{; (which come fromG,;) are calledtype-2
COROLLARY 3.1. Assuming thaBBIS(v,+, 4, d’) is hard edgesof H;.

for constantsy, ', 4, &', we get a hardness of approximation ™ proof overview: Here is the general idea of the proof.
within a factor of2(1/log” ~° n) for unique coverage.  We will show that the number of vertices uniquely covered
by type-2 edges (edges that were originallyGi in this

Next we show how the known hardness results for BB|$/stance isO(n). So let us focus on the vertices uniquely

can be used to derive explicit hardness results for uniqy& o eq by type-1 edges (i.e., edges from the random graph

coverage. In particular, the following theorems follow fror@;/ in eachH,). ’

Theoreni3.L. First suppose thaf’ is a Yes instance, i.e., it has a

THEOREM3.2. Let ¢ > 0 be an arbitrarily small con- (nw’logi‘in)'BIS’ sayA™ U B" (with A C AandB” C B).

stant. Assuming thafP ¢ BPTIME(2"), it is hard to Because the expected degree of every verteX'ifs n' 7,

approximate the unique coverage problem within a factor éfe €xpected number of type-1 edges coming oud o{in
Q(1/1og” n) for some constant = o (¢). G') is n, and because these edges are selected at random,

we expectl /e fraction of the vertices i3’ (in G') and in
Under a different complexity assumption, we can proymarticularl /e fraction of the vertices ilB* to have degreé.
the same hardness result with an explicit valuesfor This implies that the type-1 edges in ed@huniquely cover



a linear number of vertices dB* (at least in expectation), Completeness:Suppose thafr is a Yes instance, i.e.,
i.e., it gives a solution of sizél(log#&n) in H;. Because it has a(n”,n/log’ n)-BIS, say,A* U B* whereA* C A
H = ()_,H; andp = +"logn, we have a total of adB* C B. Assume thal’” and W] are the subsets of

H H " 11 H H
Q(~"n 1ot~ n) vertices uniquely covered by type-1 edge¥ertices inH; a_ndA andB" are the su_bsets of vertices in
(y'nlog ~"n) quely yyp g G’ corresponding tod* and B*, respectively. Becaus@,

Now suppose tha& is a No instance, i.e., it has na . X
(m, n/ log(;/ 1)-BIS. We will show that, although we delete's obtained fromG by deleting edges, there are no type-2

dges inV’ U W! in H; (for any1l < i < p). Therefore,
edges to construck; from Gy, the Ias_t (ar]d most sparse vgry vertexw é w! (f(gr all vglue; ofl g) i < p) has
graphG,, will not have “too large” a bipartite independen egreel if and onlylif the corresponding Vertex ¢ B’
set with high probability. This property will be used to shove{n G') has degred. For everyw € B”, let X,, be a0/1
that, in every graphil;, th?‘ number Of. vertices unlquelyrandom variable that is if and only if w e B” th degreé
covered ;,)y type-l .edges n qpy solution &t is at most (and sow is uniquely covered by a type-1 edge#h for all
O(n/log” n) with high probability. Thus, the total numben < ; < 1) with X = D

" X’u)y
of vertices uniquely covered i (by type-1 or type-2 edges) web

in any solution is at mostD(v”nlogl“sl n + n) with high E[X] = Z Pr[X, = 1]
probability. Becausé’ < 1, this creates a hardness gap of weB"
Q(l/log5 -0 n) ‘A//| 1 1 ‘A“‘—l
Proof of Theorem[3.]: Now we give the details of = |B"|- < ) - (1 - )
the proof. We use the following simplified version of the 1 ny ny
Chernoff bound: - 1B n
iy puiy 5 .
LEMMA 3.1. (QHERNOFF BOUND For independent0/1 € elog”n
random variablesXy, ..., X, X = 37, X, p = E[X], A simple application of the Chernoff bound shows that
and any0 < ¢ < 1, we have PriX < gi5] < e~Un/log”n) - Therefore, if we select
Pr[|X — E[X]| > 6u] < e—0%1/3. the subset of vertices i (in H) corresponding tal* (in G)

then, with high probability, there are at least ;" =
LEMMA 3.2. The number of vertices uniquely covered %(7/,nlog1_5 n) s

) : . . S . vertices inWW uniquely covered (by type-1
type-2 edges in any solution #é is O(n) with high proba edges). Thus, we have proved the following:

bility.
Proof. Let b € B be an arbitrary vertex (i) and COROLLARY 3.2. If G//is a Yes instance thedl has a
assume thatos, ..., w, are its corresponding vertices irt!N'que cover of siz@(y"nlog™ " n).

Wi, ..., W,. Consider any subséf’ C V. Assuming that Soundness: Suppose thatF is a No instance, i.e., it

V' is a solution to unique coverage, we compute the proba- Y s I h h T h
bility that exactlyi vertices out ofuws . . ., w, are uniquely ,'&> no(n”,n/log” n)-BIS. Our goal is to show that, wit
covered by type-2 edges (of the verticesiof). Assume high probablhty, every ??[Sgtlon to unique coverage fér
that j is the first index for whichw; is uniquely covered has sizeO(max{y"nlog"™" n,n}). Because by Lemma
by a type-2 edge and;, ..., w;;_, are the copies that ar@ the number of vertices uniquely covered by type-2 edges
uniquely covered by a type-2 edge. Because every edgéi€ (1), we only need to prove that, with high probability,
deleted with probability% from G, to G,1 (for 1 < t < p), the number of vertices uniquely covered by type-1 edges is

the probability that a single edge survivesounds is2~#. atmostO(y"n log' ™ n). _
Let X, be the number of copies éf(from ws, . .., w,) that Cons_lder any solu_tu_)n to unique coverage fér By
are uniquely covered by a type-2 edge (by the verticdg'pf construction of thed,’s, itis easy to see that, for every vertex
and defineX = ¥, _ ; X;. Therefore, b € B (in G), if the corresponding vertex iWW; is uniquely

. covered by a type-1 edge ii;, then all the corresponding

i vertices ofb in the W,’s, for i < j < p, are also uniquely
E[X] = Z;BE[Xb] - "Zl 91 < 3n. covered by a type-lj edge. Therefore, if we prove that the
S 1=

number of vertices uniquely covered by type-1 edgeH jn

Using the Chernoff bound (Lemrpia B.1), we obtain is upper bounded (with high probability) B9(n/log® n),

—4n then because = +”logn, we obtain the claimed upper

PriX > 6n] < e bound for the total number of vertices uniquely covered by

Because there a®* subsetd/’, a union bound shows thattype-1 edges.
the probability that, for at least one of those sets, the number Suppose that’ C V andW’ C W, are such that all
of vertices inWW that are uniquely covered by type-2 edgebe vertices ii¥’ are uniquely covered bly’, and the edges
is > 6n is at most2” - e~ 4" < e~(")_ This completes the that cover them are all type-1 edges. It is easy to see that
proof of the lemma. O V'UW’ must be a bipartite independent setip (otherwise



there is some type-2 edge incident to some vertex W’ LEMMA 3.4. With high probability, for evenH; (1 < i <
and thereforev is not uniquely covered). p), the number of vertices uniquely covered by type-1 edges

is at mostO(n/ log® n).
LEMMA 3.3. If V/ U W’ (with V! C V andW’' C W,) is (n/log” n)

a bipartite independent set {i,,, then with high probability, Proof. Clearly, for every vertex uniquely covered by a type-1
either|V'| < n( /2 or W’| < 2n/ 10g5' n,i.e., G, has edge inW;, its corresponding copy is also uniquely covered
no (nmﬂ/)/g on/ logél n)-BIS (by atype-1 edge) ifil/; for every: < j < p. So let us focus
’ ' on the number of vertices uniquely covered by type-1 edges
Proof. Suppose that’’ C V and W' C W, satisfy !? H,;-. For.eve:y pair of dsqbsetg)’ g/;/ erllndW%; < Wy,
V| = nO+)/2 and W'l = 20/ loe® n. PartitionV” into 1 W IS uniquely covered i, (by V"), then there exists
|q_|n(7”_7,) i Subset'g/,' ‘7/”‘,/ Rl ‘Eet' " W 2 W such thatV’ U W, is a ([V'|, |W;|)-BIS in
= 1.V . : 3B with hi - . .
andB* (1 < i < g) be the subset of vertices of and B Gp- B);Lemm, \(N'}rh/?/'gh p.rgbab!hty, eithgiV;| <
(in G) corresponding td/ andW’, respectively. Consider2n/1og” nor [V'| <n7T7)/=. Trivially in the former case
the subgraph of! induced byA* U B*. BecauséA?| = n . the number of vertices uniquely coverediy (and therefore
|B*| = 2n/ log® n, and becaus€ has no(n?’, n/ log? n)- in everyH#p)) is at mostO(n/log’ n). So assume that
’ ! =+ /2 * H
BIS, it follows that at least,/ log® 7 vertices inB* mustbe |V < 0t _/ (and of cour§.¢Wp| < n). Inthis case, we
connected to the vertices iti*. Therefore, the total numbershow that, with high probability ;| < O(n!~=7)/2),
of edges in the subgraph induced By U [Ji_, A} is at which is clearlyO(n/log” n). Consider an arbitrary vertex
leastq - n/log’ n = Q(n'*(1=1)/2/10g° n). Because w € W, and letX,, be a0/1 random variable that i$ if
G, = G, V' U W’ forms an independent set @, only if and only ifw is incident to exactly one type-1 edge. With
all of theseQ(n'+(=7)/2 /10g% 1) edges are deleted whileX = 2wew; Xuw:
G, is created. Because in creati6y,; from G;, edges are
deleted with probabilityt, we have EX] = > Pr[X,=1]

weWy
(3.1) Pr[V'UW'is anindependent set #,] <

’ [V/|-1
(1- 2_p)ﬂ(n1+<w—w'>/2/loga' n) _ Z (V |> 1 (1 B 1)
weWx 1 n n
;.

The number of such subséts U W' is ,
n-nOtY/2 . —

n n ny
(-2 (n(7+7')/2> <2n/ log® n) < nlm070/2,

Thus, using[(3]1) and (3.2), the expected number dsing the Chernoff bound,
bipartite independent sets’ U W’ with [V/| = n(?'+7)/2 e o
and|W’| = 2n/log® nin G, is at most Pr[X >2n =77 < e
This bound shows that, with high probability}V/)| <

Q=) /2 /1068 n n o .
(1—277) /o )<n(7+7/)/2> <2n/log‘5' n) O(n'~(0=7)/2) as desired. i

<@ _n—(»y_y)/7)9(n1+(vﬂ’>/2/1og5’ n) . COROLLARY 3.3. If G is a No instance then every so-
- ) I lution to unique coverage forH has size at most
( en )”(”” /2 . ( en ) n/log” n O(max{y"nlog" =% n,n}).

/2 5
n 7)/, ) %n/log " ) Proof. From Lemma| 34 and becauge = ~"logn,
< e~ U EEO0 T log? n) | O 210gm) it follows that, with high probability, the num-
ber of vertices uniquely covered by type-1 edges is
at most O('y”nlogl_é/n). Combining this bound

nl—(v—'v')/2)

eO(n log logn/ log‘s/ n)

e_Q(nIJr(wfw’)/?’) ) eo(n/ log®' /2 n)

< with Lemma[3.:2 shows that, i{G is a No instance
< QT (.e., has no(n”',n/log’ n)-BIS), then the size of

any solution to unique coverage fofH is at most
Therefore, with probabilityl — e OO gor - O(max{y"nlog' % n,n}). O

every bipartite independent sét’ U W’ of G,, either
V| < nO+/2 or (W] < 2n/1og6/ n, i.e., G, has no
(nO+7)/2 2/ 1og® n)-BIS.

Proof of Theorerp 3]1Follows easily from Corollarief 3.2
and[3.3 and the assumption tH3BIS(v,~’,4,4’) is hard.
o



4 Approximation Algorithms The approximate solution computed by this algorithm is

4.1 (1/logn)-Approximation. In this section we de- N0t only within an€3(1/ log n) factor of the optimal unique
velop our main approximation algorithm, proving tightne@verage, but also within af(1/logn) of the optimal

of our inapproximability results up to the constant in the efd@imum coverage. As a consequence, we also obtain
ponent: an Q(1/log n)-approximation for the practical problem of

budgeted low-coverage described in Sedtioh 2.1.

THEOREM4.1. There is ar()(1/log p) = (1/logn) ap- 4.2  Approximation with Bounded Set Size.In this sec-
proximation algorithm for the budgeted unique coveragpn we consider the unique coverage problem with a bound
problem, wherep is one more than the ratio of the maxi on the maximum set size, or more generally, the budgeted
mum number of sets in which an element appears over thfque coverage problem with a bourion the ratio be-
minimum number of sets in which an element appears.  tween the maximum profit of a set and the minimum profit
of an element. In both cases we obtain an approximation ra-
tio of (1/ log B), which our inapproximability results show

Proof. First we find an(1 — 1/e)-approximate solutios’ .~ X .
Irst we Tl ( /€)-approxi solutio® &Ughtuptothe constant in the exponent in the cBse n.

to the maximum coverage problem with the same univer
profits, sets, costs, and buddetl[29]. Because the total prﬁAf_iltEOREN|4 > There is an
of uniguely covered elements is always at most the to o
profit of all covered elements, the optimum solution val
OPT to the unique coverage problem must be at most

optimum solution value to the maximum coverage proble
Thus the total profit of covered elementsShis within an Proof. As before, we first find arfl — 1/¢)

1 —1/e factor of an upper bound o@PT. Symbolically, '/f solutionS’ to the maximum coverage problem with the same
p(S) denotes the total profit of elements in seandU S’ niverse, profits, sets, costs, and budget [29]. As argued
denotes the uniofy s, 5, thenp(J &’) = (1-1/¢) OPT. iy the proof of Theorerfi 4l1p(JS’) > (1 — 1/e) OPT.

We cluster the elements i) S’ into lgp groups as \here) () denotes the total profit of elements in $et J S’

follows: aflelement is iigroups if it is covered by between yonqteg the uniof)g. s S, andOPT denotes the optimum
2" and 2" — 1 sets. The group™ with the most total 5o tion value to the unique coverage problem.

profit must have at least &/1gp fraction of p(S") > We modify S’ to be minimal by removing any sets that
(1 - 1/e) OPT. Now we rgndomily discard sets fro8, 4o not uniquely cover any elements. Thus the set of covered
keeping a set with probability /2" . ‘We claim that, in gements remains the same, so the same upper bound on
expectation, the resulting collectiaf” uniquely covers a opr polds. LetX be the set of elements covered by exactly
constant fraction of the elements in groufy which is o set ofs’. Becauses’ is minimal, each set must uniquely
QOPT /g p). . . , cover at least one element i, so|X| > |S’|. Because

Fix an elementz in group*, and suppose that it WaSevery element has profit at ledstp(X) > | X| > |S'].
coveredd times inS’, 2°° < d < 2" *! — 1. The proba- it p(JS) < 28] < 2p(X) thenS’ is already an
bility that  is covered exactly once bg" is (d/2" )(1 —  (1)-approximate solution to the budgeted unique coverage
1/2%)¢=%. (There is a factor ofi for the choice of which problem. If p(JS') > 2|S’|, then we claim that the
set coversr, al/2* probability that this set is kept, and a5 profit of elements covered at maBttimes by S’ is
1 —1/2' probability that each of thé — 1 other sets is dis- 5 |easy(| ') /2. Otherwise, the elements covered more
carded.) By our bounds af) the probgb”mg?aﬁ: iscovered han B times byS’ would be at leasp(|JS’)/2, and thus
exactly once bys” is atleas{1 — 1/2)* * >1/e*. the total profit of the sets would satisfy ¢ 5 p(5) >

The expected total profit of elements covered exactlyy(| JS’)/2 > B|S’|, contradicting that every set i§
once byS" is at leasty_{p,/e* | « in group i*}, which is (and thussS’) has total profit at mosB. Now we apply
1/¢ times the total profit of elements in grodp, which TheorenfZJ]L above to the elements covered at Bdines
we argued is at leastl — 1/e) OPT /lgp. Therefore by &', for whichp < B. Thus we obtain af(1/log B)-
the expected profit of our randomized solution is at leagsproximation for this subproblem, whose optimal solution

(1/log B)-approximation al-

rithm for instances of the budgeted unique coverage prob-
m in which the minimum element profitliand the total
fofit of every set is at mo#.

-approximate

(1/e2 —1/e*)OPT /g p = Q(OPT /lg p). value is at leastl — 1/e) OPT /2. O
We can derandomize this algorithm by the standard
method of conditional expectation [|38]. For each sefin We note that the unique coverage problem when every

we decide whether to keep it ifi” by trying both options, set has cardinality at mo& = 3 and every element appears
and choosing the option that maximizes the conditional ér-exactly two sets{ = 1), then the problem is exactly max-
pectation of the total profit of elements in groifpuniquely cut in maximum-degre8-graphs, so the problem is APX-
covered byS”. The conditional expectations can be conkard even in this restricted case[[40, 2].

puted easily in polynomial time according to the analysis As before, the approximate solution computed by this
above. O algorithm is in terms of the optimal maximum coverage



value, so as a consequence, we also obtain the same apfi@%-1. CHLAMTAC AND O. WEINSTEIN, The wave expansion
imation factor for the budgeted low-coverage problem.

It would be interesting to generalize our results for the

budgeted low-coverage problem to allow arbitrary satisfald-l]

tion curvessy, s1, So, . .

. without the constraints, = 0 and

81 > 89 > --- > 0. Such a result may be helpful in other

contexts such as envy-free pricing.

(12]
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L. WALRAS, Elements of Pure Economicallen and Unwin, between graphs with independent sets of $iZe/k) and
1954. graphs with no independent set of siZé”, wherek is some

sufficiently large constant. It is plausible (though not certain)
that any refutation of Hypothesiis B.1 would lead to major
improvements in the approximation ratio for maximum in-
dependent sets in general graphs.
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