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Abstract12

In this paper, we introduce a new problem called Tree-Residue Vertex-Breaking (TRVB): given13

a multigraph G some of whose vertices are marked “breakable,” is it possible to convert G into14

a tree via a sequence of “vertex-breaking” operations (replacing a degree-k breakable vertex by15

k degree-1 vertices, disconnecting the k incident edges)?16

We characterize the computational complexity of TRVB with any combination of the following17

additional constraints: G must be planar, G must be a simple graph, the degree of every breakable18

vertex must belong to an allowed list B, and the degree of every unbreakable vertex must belong19

to an allowed list U . The two results which we expect to be most generally applicable are that20

(1) TRVB is polynomially solvable when breakable vertices are restricted to have degree at most21

3; and (2) for any k ≥ 4, TRVB is NP-complete when the given multigraph is restricted to be22

planar and to consist entirely of degree-k breakable vertices. To demonstrate the use of TRVB,23

we give a simple proof of the known result that Hamiltonicity in max-degree-3 square grid graphs24

is NP-hard.25

We also demonstrate a connection between TRVB and the Hypergraph Spanning Tree prob-26

lem. This connection allows us to show that the Hypergraph Spanning Tree problem in k-uniform27

2-regular hypergraphs is NP-complete for any k ≥ 4, even when the incidence graph of the hy-28

pergraph is planar.29
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1 Introduction38

In this paper, we introduce the Tree-Residue Vertex-Breaking (TRVB) problem. Given39

a multigraph G some of whose vertices are marked “breakable,” TRVB asks whether it40

is possible to convert G into a tree via a sequence of applications of the vertex-breaking41
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All breakable
vertices have
small degree
(B ⊆ {1, 2, 3})

Graph
restrictions

All vertices have large
degree (B ∩ {1, 2, 3, 4} = ∅
and U ∩ {1, 2, 3, 4, 5} = ∅)

TRVB variant
complexity Section

Yes ∗ ∗ Polynomial Time Section 9

No Planar or simple
or unrestricted ∗ NP-complete Sections 4, 5, 6

No Planar and
simple No NP-complete Section 7

No Planar and
simple Yes

Polynomial Time
(every instance is
a “no” instance)

Section 8

Table 1 A summary of this paper’s results (where B and U are the allowed breakable and
unbreakable vertex degrees).

operation: replacing a degree-k breakable vertex with k degree-1 vertices, disconnecting the42

incident edges, as shown in Figure 1.43

In this paper, we analyze the computational complexity of this problem as well as several44

variants (special cases) where G is restricted with any subset of the following additional45

constraints:46

1. every breakable vertex of G must have degree from a list B of allowed degrees;47

2. every unbreakable vertex of G must have degree from a list U of allowed degrees;48

3. G is planar;49

4. G is a simple graph (rather than a multigraph).50

→

Figure 1 The operation of break-
ing a vertex. The vertex (left) is
replaced by a set of degree-1 vertices
with the same edges (right).

Modifying TRVB to include these constraints makes51

it easier to reduce from the TRVB problem to some other.52

For example, having a restricted list of possible breakable53

vertex degrees B allows a reduction to include gadgets54

only for simulating breakable vertices of those degrees,55

whereas without that constraint, the reduction would56

have to support simulation of breakable vertices of any57

degree.58

We prove the following results (summarized in Table 1), which together fully classify the59

variants of TRVB into polynomial-time solvable and NP-complete problems:60

1. Every TRVB variant whose breakable vertices are only allowed to have degrees of at most61

3 is solvable in polynomial time.62

2. Every planar simple graph TRVB variant whose breakable vertices are only allowed to63

have degrees of at least 6 and whose unbreakable vertices are only allowed to have degrees64

of at least 5 is solvable in polynomial time (and in fact the correct output is always “no”).65

3. In all other cases, the TRVB variant is NP-complete. In particular, the TRVB variant66

is NP-complete if the variant allows breakable vertices of some degree k ≥ 4, and in67

the planar graph case, also allows either breakable vertices of some degree b ≤ 5 or68

unbreakable vertices of some degree u ≤ 4. For example, for any k ≥ 4, TRVB is69

NP-complete in planar multigraphs whose vertices are all breakable and have degree k.70

Among these results, we expect the most generally applicable to be the results that (1)71

TRVB is polynomially solvable when breakable vertices are restricted to have degree at most72
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Figure 2 Ab-
straction of a pos-
sible edge gadget
(top) and the local
solution (bottom).
The bold paths are
(forced to be) part of
the traversal while
the “inside” of the
gadget is shown in
grey.

Figure 3 Abstraction of a possible breakable vertex gadget. The gadget
should join some number of edge gadgets (in this case four) as shown on the
left. The center and right figures show the two possible local solutions to the
breakable vertex gadget. One solution connects the interiors of the incoming
edge gadgets within the vertex gadget while the other disconnects them. In
both figures, the bold paths are part of the traversal, while the “inside” of the
gadget is shown in grey.

3; and (2) for any k ≥ 4, TRVB is NP-complete when the given multigraph is restricted to73

be planar and to consist entirely of degree-k breakable vertices.74

Application to proving hardness75

In general, the TRVB problem is useful when proving NP-hardness of what could be called76

single-traversal problems: problems in which some space (e.g., a configuration graph or a77

grid) must be traversed in a single path or cycle subject to local constraints. Hamiltonian78

Cycle and its variants fall under this category, but so do other problems. For example, a79

single traversal problem may allow the solution path/cycle to skip certain vertices entirely80

while mandating other local constraints. In other words, TRVB can be a useful alternative81

to Hamiltonian Cycle when proving NP-hardness of problems related to traversal.82

To prove a single-traversal problem hard by reducing from TRVB, it is sufficient to83

demonstrate two gadgets: an edge gadget and a breakable degree-k vertex gadget for some84

k ≥ 4. This is because TRVB remains NP-hard even when the only vertices present are85

degree-k breakable vertices for some k ≥ 4. Furthermore, since this version of TRVB86

remains NP-hard even for planar multigraphs, this approach can be used even when the87

single-traversal problem under consideration involves traversal of a planar space.88

One possible approach for building the gadgets is as follows. The edge gadget should89

contain two parallel paths, both of which must be traversed because of the local constraints90

of the single-traversal problem (see Figure 2). The vertex gadget should have exactly91

two possible solutions satisfying the local constraints of the problem: one solution should92

disconnect the regions inside all the adjoining edge gadgets, while the other should connect93

these regions inside the vertex gadget (see Figure 3). We then simulate the multigraph from94

the input TRVB instance by placing these edge and vertex gadgets in the shape of the input95

multigraph as shown in Figure 4.96

When trying to solve the resulting single-traversal instance, the only option (while97

satisfying local constraints) is to choose one of the two possible local solutions at each vertex98

gadget, corresponding to the choice of whether to break the vertex. The candidate solution99

produced will satisfy all local constraints, but might still not satisfy the global (single cycle)100

constraint. Notice that the candidate solution is the boundary of the region “inside” the101

local solutions to the edge and vertex gadgets, and that this region ends up being the same102

shape as the multigraph obtained after breaking vertices. See Figure 5 for an example. The103

SWAT 2018
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→

Figure 4 The input multigraph on
the left could be converted into a layout
of edge and vertex gadgets as shown
on the right. In this example, we use
a grid layout; in general, we could use
any layout consistent with the edge and
vertex gadgets.

→ →

Figure 5 A choice of which vertices to break in the input
multigraph (left) corresponds to a choice of local solutions
at each of the breakable vertex gadgets, thereby yielding a
candidate solution to the single-traversal instance (center).
As a result, the shape of the interior of the candidate
solution (right) is essentially the same as the shape of the
residual multigraph after breaking vertices.

boundary of this region is a single cycle if and only if the region is connected and hole-free.104

Since the shape of this region is the same as the shape of the multigraph obtained after105

breaking vertices, this condition on the region’s shape is equivalent to the condition that106

the residual multigraph must be connected and acyclic, or in other words, a tree. Thus, this107

construction yields a correct reduction, and in general this proof idea can be used to show108

NP-hardness of single-traversal problems.109

Outline110

In Section 2, we give an example of an NP-hardness proof following the above strategy. By111

reducing from TRVB, we give a simple proof that Hamiltonian Cycle in max-degree-3 square112

grid graphs is NP-hard (a result previously shown in [3]). We also use the same proof idea113

in manuscript [1] to show the novel result that Hamiltonian Cycle in hexagonal thin grid114

graphs is NP-hard.115

In Section 3, we formally define the variants of TRVB under consideration. In the full116

version of this paper, we prove membership in NP and provide the obvious reductions between117

the variants.118

Sections 4–7 address our NP-hardness results. In Section 4, we reduce from an NP-hard119

problem to show that Planar TRVB with only degree-k breakable vertices and unbreakable120

degree-4 vertices is NP-hard for any k ≥ 4. All the other hardness results in this paper are121

derived directly or indirectly from this one. In Section 5, we prove the NP-completeness122

of the variants of TRVB and of Planar TRVB in which breakable vertices of some degree123

k ≥ 4 are allowed. Similarly, we show in Section 6 that Graph TRVB is also NP-complete124

in the presence of breakable vertices of degree k ≥ 4. Finally, in Section 7, we show that125

Planar Graph TRVB is NP-complete provided (1) breakable vertices of some degree k ≥ 4126

are allowed and (2) either breakable vertices of degree b ≤ 5 or unbreakable vertices of degree127

u ≤ 4 are allowed.128

Next, in Section 8, we proceed to one of our polynomial-time results: that a variant of129

TRVB is solvable in polynomial time whenever the multigraph is restricted to be a planar130

graph, the breakable vertices are restricted to have degree at least 6, and the unbreakable131

vertices are restricted to have degree at least 5. In such a graph, it is impossible to break132

a set of breakable vertices and get a tree. As a result, variants of TRVB satisfying these133

restrictions are always solvable with a trivial polynomial time algorithm.134

In Section 9, we establish a connection between TRVB and the Hypergraph Spanning Tree135

problem (given a hypergraph, decide whether it has a spanning tree). Namely, Hypergraph136
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Figure 6 An
edge gadget con-
sisting of two par-
allel paths a dis-
tance of 2 apart.

Figure 7 A degree-4
breakable vertex gadget.

Figure 8 The two possible solutions to the ver-
tex gadget from Figure 7 that satisfy the local con-
straints imposed by the Hamiltonian Cycle problem
(broken on the left and unbroken on the right).

Spanning Tree on a hypergraph is equivalent to TRVB on the corresponding incidence graph137

with edge nodes marked breakable and vertex nodes marked unbreakable. This equivalence138

allows us to construct a reduction from TRVB to Hypergraph Spanning Tree: given a TRVB139

instance, we can first convert that instance into a bipartite TRVB instance (by inserting140

unbreakable vertices between adjacent breakable vertices and merging adjacent unbreakable141

vertices) and then construct the hypergraph whose incidence graph is the bipartite TRVB142

instance.143

This connection allows us to obtain results about both TRVB and Hypergraph Spanning144

Tree. By leveraging known results about Hypergraph Spanning Tree (see [2]), we prove145

that TRVB is polynomial-time solvable when all breakable vertices have small degrees146

(B ⊆ {1, 2, 3}). This final result completes our classification of the variants of TRVB. We147

also apply the hardness results from this paper to obtain new results about Hypergraph148

Spanning Tree: namely, Hypergraph Spanning Tree is NP-complete in k-uniform 2-regular149

hypergraphs for any k ≥ 4, even when the incidence graph of the hypergraph is planar. This150

improves the previously known result that Hypergraph Spanning Tree is NP-complete in151

k-uniform hypergraphs for any k ≥ 4 (see [5]).152

2 Example of how to use TRVB: Hamiltonicity in max-degree-3153

square grid graphs154

In this section, we show one example of using TRVB to prove hardness of a single-traversal155

problem. Namely, the result that Hamiltonian Cycle in max-degree-3 square grid graphs is156

NP-hard [3] can be reproduced with the following much simpler reduction.157

The reduction is from the variant of TRVB in which the input multigraph is restricted158

to be planar and to have only degree-4 breakable vertices, which is shown NP-complete in159

Section 5. Given a planar multigraph G with only degree-4 breakable vertices, we output a160

max-degree-3 square grid graph by appropriately placing breakable degree-4 vertex gadgets161

(shown in Figure 7) and routing edge gadgets (shown in Figure 6) to connect them. The162

appropriate placement of gadgets can be accomplished in polynomial time by the results163

from [6]. Each edge gadget consists of two parallel paths of edges a distance of two apart,164

and as shown in the figure, these paths can turn, allowing the edge to be routed as necessary165

(without parity constraints). Each breakable degree-4 vertex gadget joins four edge gadgets166

in the configuration shown. Note that, as desired, the maximum degree of any vertex in the167

resulting grid graph is 3.168

Consider any candidate set of edges C that could be a Hamiltonian cycle in the resulting169

SWAT 2018
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Figure 9 Given a multigraph including the piece shown in the top left, the output grid graph
might include the section shown in the bottom left (depending on graph layout). If the top vertex
in this piece of the multigraph is broken, resulting in the piece of multigraph G′ shown in the top
right, then the resulting candidate solution C (shown in bold) in the bottom right contains region R

(shown in grey) whose shape resembles the shape of G′.

grid graph. In order for C to be a Hamiltonian cycle, C must satisfy both the local constraint170

that every vertex is incident to exactly two edges in C and the global constraint that C is171

a cycle (rather than a set of disjoint cycles). It is easy to see that, in order to satisfy the172

local constraint, every edge in every edge gadget must be in C. Similarly, there are only two173

possibilities within each breakable degree-4 vertex gadget which satisfy the local constraint.174

These possibilities are shown in Figure 8.175

We can identify the choice of local solution at each breakable degree-4 vertex gadget176

with the choice of whether to break the corresponding vertex. Under this bijection, every177

candidate solution C satisfying local constraints corresponds with a possible multigraph178

G′ formed from G by breaking vertices. The key insight is that the shape of the region R179

inside C is exactly the shape of G′. This is shown for an example graph-piece in Figure 9.180

The boundary of R, also known as C, is exactly one cycle if and only if R is connected181

and hole-free. Since the shape of region R is the same as the shape of multigraph G′, this182

corresponds to the condition that G′ is connected and acyclic, or in other words that G′ is a183

tree. Thus, there exists a candidate solution C to the Hamiltonian Cycle instance (satisfying184

the local constraints) that is an actual solution (also satisfying the global constraints) if and185

only if G is a “yes” instance of TRVB. Therefore, Hamiltonian Cycle in max-degree-3 square186

grid graphs is NP-hard.187

3 Problem variants188

In this section, we will formally define the variants of TRVB under consideration. In the full189

version of the paper, we also prove some basic results about these variants.190

To begin, we formally define the TRVB problem. The multigraph operation of breaking191
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vertex v in undirected multigraph G results in a new multigraph G′ by removing v, adding a192

number of new vertices equal to the degree of v in G, and connecting these new vertices to193

the neighbors of v in G in a one-to-one manner (as shown in Figure 1 in Section 1). Using194

this definition, we pose the TRVB problem:195

I Problem 1. The Tree-Residue Vertex-Breaking Problem (TRVB) takes as input a multigraph196

G whose vertices are partitioned into two sets VB and VU (called the breakable and unbreakable197

vertices respectively), and asks to decide whether there exists a set S ⊆ VB such that after198

breaking every vertex of S in G, the resulting multigraph is a tree.199

In order to avoid trivial cases, we consider only input graphs that have no degree-0200

vertices.201

Next, suppose B and U are both sets of positive integers. Then we can constrain the202

breakable vertices of the input to have degrees in B and constrain the unbreakable vertices203

of the input to have degrees in U . The resulting constrained version of the problem is defined204

below:205

I Definition 2. The (B, U)-variant of the TRVB problem, denoted (B, U)-TRVB, is the206

special case of TRVB where the input multigraph is restricted so that every breakable vertex207

in G has degree in B and every unbreakable vertex in G has degree in U .208

Throughout this paper we consider only sets B and U for which membership can be209

computed in pseudopolynomial time (i.e., membership of n in B or U can be computed in210

time polynomial in n). As a result, verifying that the vertex degrees of a given multigraph211

are allowed can be done in polynomial time.212

We can also define three further variants of the problem depending on whether G is213

constrained to be planar, a (simple) graph, or both: the Planar (B, U)-variant of the TRVB214

problem (denoted Planar (B, U)-TRVB), the Graph (B, U)-variant of the TRVB (denoted215

Graph (B, U)-TRVB), and the Planar Graph (B, U)-variant of the TRVB problem (denoted216

Planar Graph (B, U)-TRVB).217

3.1 Diagram conventions218

breakable unbreakable

Figure 10 Depiction of
vertex types in this paper.

Throughout this paper, when drawing diagrams, we will use filled219

circles to represent unbreakable vertices and unfilled circles to220

represent breakable vertices. See Figure 10.221

4 Planar ({k}, {4})-TRVB is NP-hard for any k ≥ 4222

The overall goal of this section is to prove NP-hardness for several variants of TRVB. In223

particular, we will introduce an NP-hard variant of the Hamiltonicity problem in Section 4.1224

and then reduce from this problem to Planar ({k}, {4})-TRVB for any k ≥ 4 in Section 4.2.225

This is the only reduction from an external problem in this paper. All further hardness226

results will be derived from this one via reductions between different TRVB variants.227

4.1 Planar Hamiltonicity in Directed Graphs with all in- and228

out-degrees 2 is NP-hard229

The following problem was shown NP-complete in [4]:230

I Problem 3. The Planar Max-Degree-3 Hamiltonicity Problem asks for a given planar directed231

graph whose vertices each have total degree at most 3 whether the graph is Hamiltonian232

(has a Hamiltonian cycle).233

SWAT 2018
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Figure 11 If the planar non-alternating directed graph on
the left is G, and if k = 4, then we first produce multigraph M

on the right. If k > 4, then the output M remains the same
except some edges are duplicated.

Figure 12 We modify M in
the vicinity of one vertex v̂ to get
the output M ′ of our reduction.
This figure shows one possible M ′

for the M in Figure 11, where v̂

is chosen to be the bottom left
vertex.

For the sake of simplicity we will assume that every vertex in an input instance of the234

Planar Max-Degree-3 Hamiltonicity problem has both in- and out-degree at least 1 (and235

therefore at most 2). This is because the existence of a vertex with in- or out-degree 0 in a236

graph immediately implies that there is no Hamiltonian cycle in that graph.237

As it turns out, this problem is not quite what we need for our reduction, so below we238

introduce several new definitions and define a new variant of the Hamiltonicity problem:239

I Definition 4. Call a vertex v ∈ G alternating for a given planar embedding of a planar240

directed graph G if, when going around the vertex, the edges switch from inward to outward241

oriented more than once. Otherwise, call the vertex non-alternating. A non-alternating242

vertex has all its inward oriented edges in one contiguous section and all its outward oriented243

edges in another; an alternating vertex on the other hand alternates between inward and244

outward sections more times.245

We call a planar embedding of planar directed graph G a planar non-alternating embedding246

if every vertex is non-alternating under that embedding. If G has a planar non-alternating247

embedding we say that G is a planar non-alternating graph.248

I Problem 5. The Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem249

asks, for a given planar non-alternating directed graph whose vertices each have in- and250

out-degree exactly 2, whether the graph is Hamiltonian251

In the full version of this paper we prove that this problem is NP-hard by reducing from252

the Planar Max-Degree-3 Hamiltonicity Problem:253

I Theorem 6. The Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem254

is NP-hard.255

4.2 Reduction to Planar ({k}, {4})-TRVB for any k ≥ 4256

Consider the following algorithm Rk:257

I Definition 7. For k ≥ 4, algorithm Rk takes as input a planar non-alternating graph258

G whose vertex in- and out-degrees all equal 2, and outputs an instance M ′ of Planar259

({k}, {4})-TRVB.260
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Figure 13 This figure shows a Hamiltonian cycle in example graph G from Figure 11 (left) and
the corresponding solution of TRVB instance M ′ shown in Figure 12 (right).

To begin, we construct a labeled undirected multigraph M as follows; refer to Figure 11.261

First we build all the vertices (and vertex labels) of M . For each vertex in G, we include262

an unbreakable vertex in M and for each edge in G we include a breakable vertex in M . If v263

is a vertex or e is an edge of G, we define m(v) and m(e) to be the corresponding vertices in264

M .265

Next we add all the edges of M . Fix vertex v in G. Let (u1, v) and (u2, v) be the edges266

into v and let (v, w1) and (v, w2) be the edges out of v. Then add the following edges to M :267

Add an edge from m(v) to each of m((u1, v)), m((u2, v)), m((v, w1)), and m((v, w2)).268

Add an edge from m((v, w1)) to m((v, w2)).269

Add k − 3 edges from m((u1, v)) to m((u2, v)).270

Finally, pick any specific vertex v̂ in G; refer to Figure 12. Let (u1, v̂) and (u2, v̂) be the271

edges into v̂ and let (v̂, w1) and (v̂, w2) be the edges out of v̂. We modify M by removing272

vertex m(v̂) (and all incident edges), and adding the two edges (m((u1, v̂)), m((u2, v̂))),273

and (m((v̂, w1)), m((v̂, w2))). Call the resulting multigraph M ′ and return it as output of274

algorithm Rk.275

We prove in the full version of this paper that algorithm Rk is a polynomial time reduction276

from the Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem to Planar277

({k}, {4})-TRVB. Figure 13 demonstrates the correspondence between a Hamiltonian Cycle278

in input G and a TRVB solution in output Rk(G) = M ′. Thus we have the following:279

I Theorem 8. Planar ({k}, {4})-TRVB is NP-hard for any k ≥ 4.280

5 Planar TRVB and TRVB are NP-complete with high-degree281

breakable vertices282

I Theorem 9. Planar (B, U)-TRVB is NP-complete if B contains any k ≥ 4. Also (B, U)-283

TRVB is NP-complete if B contains any k ≥ 4.284

The basic idea for this theorem is to reduce from Planar ({k}, {4})-TRVB to Planar285

({k}, ∅)-TRVB by creating a gadget which simules the behavior of an unbreakable degree-4286

vertex using only breakable degree-k vertices. Figures 14, 15, and 16 sketch the construction287

of this gadget.288

SWAT 2018
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Q0 Q1

P0 P1

Figure 14 A gadget
simulating an unbreak-
able degree-4 vertex us-
ing a planar arrangement
of only breakable degree-
4 vertices.

Q

P0 P1 P2 P3 P2a-1......

k - 2a edges

...

k - 1 edges

...

Figure 15 A gadget simulating an un-
breakable degree-(k − 2a) vertex using only
breakable degree-k vertices arranged in a pla-
nar manner. For k > 4, choosing a appro-
priately yields an unbreakable degree-3 or
degree-4 gadget.

Figure 16 The degree-
4 unbreakable vertex on
the left can be simu-
lated with two degree-3
unbreakable vertices as
shown on the right while
maintaining planarity.

...

...

Q1 Q2 Q3 Q4 Qk-1 Qk

P1 P2 P3 Pk-2

Figure 17 A gadget simulating an unbreakable degree-2 vertex using only breakable degree-k
vertices arranged without self loops or duplicated edges.

6 Graph TRVB is NP-complete with high-degree breakable vertices289

I Theorem 10. Graph (B, U)-TRVB is NP-complete if B contains any k ≥ 4.290

The basic idea for this theorem is to reduce from (B, U)-TRVB by inserting a gadget into291

each edge which behaves like a degree-2 unbreakable vertices and which is built entirely out292

of breakable degree-k vertices. This converts the multigraph into a simple graph without293

affecting the answer of the TRVB instance and without adding any new values to B or U .294

Figure 17 sketches the construction of this gadget.295

7 Planar Graph TRVB is NP-hard with both low-degree vertices and296

high-degree breakable vertices297

I Theorem 11. Planar Graph (B, U)-TRVB is NP-complete if (1) either B∩{1, 2, 3, 4, 5} 6= ∅298

or U ∩ {1, 2, 3, 4} 6= ∅ and (2) there exists a k ≥ 4 with k ∈ B.299

As in the previous section, the idea for this theorem is to use unbreakable degree-2 vertex300

gadgets to reduce from Planar (B, U)-TRVB, converting the input multigraph into a simple301

graph. We build such a gadget in one of several ways, depending on which vertex types are302

present. Figures 18–24 sketch the gadget construction for the various cases. See the full303

version of this paper for details.304
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k edges

... ...

Figure 18 A gadget simulat-
ing an unbreakable degree-2 ver-
tex using only breakable degree-
k and unbreakable degree-4 ver-
tices arranged in a planar man-
ner without self loops or dupli-
cate edges.

... ...

k edges

Figure 19 A gadget simulat-
ing an unbreakable degree-2 ver-
tex using only breakable degree-
k and unbreakable degree-3 ver-
tices arranged in a planar man-
ner without self loops or dupli-
cate edges.

k - 2 edges

...

Figure 20 A gadget
simulating an unbreakable
degree-2 vertex using only
breakable degree-k and un-
breakable degree-1 vertices
arranged in a planar manner
without self loops or dupli-
cate edges.
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Figure 21 A gadget simu-
lating an unbreakable degree-
(k − 2a) vertex using only
breakable degree-k and degree-
2 vertices arranged in a planar
manner without self loops or
duplicate edges.

Q1 Q2 Q3

P

Figure 22 A gadget simu-
lating an unbreakable degree-
2 vertex using only breakable
degree-3 vertices arranged in
a planar manner without self
loops or duplicate edges.

Figure 23 A gadget simu-
lating an unbreakable degree-
2 vertex using only breakable
degree-4 vertices arranged in
a planar manner without self
loops or duplicate edges.

Figure 24 A gadget simulating an unbreakable degree-2 vertex using only breakable degree-5
vertices arranged in a planar manner without self loops or duplicate edges.
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8 Planar Graph TRVB is polynomial-time solvable without small305

vertex degrees306

The overall purpose of this section is to show that variants of Planar Graph TRVB which307

disallow all small vertex degrees are polynomial-time solvable because the answer is always308

“no.” Consider for example the following theorem.309

I Theorem 12. If b > 5 for every b ∈ B and u > 5 for every u ∈ U , then Planar Graph310

(B, U)-TRVB has no “yes” inputs. As a result, Planar Graph (B, U)-TRVB problem is311

polynomial-time solvable.312

Proof. The average degree of a vertex in a planar graph must be less than 6, so there are no313

planar graphs with all vertices of degree at least 6. Thus, if b > 5 for every b ∈ B and u > 5314

for every u ∈ U , then every instance of Planar Graph (B, U)-TRVB is a “no” instance. J315

In fact, we will strengthen this theorem below to disallow “yes” instances even when316

degree-5 unbreakable vertices are present by using the particular properties of the TRVB317

problem. Note that this time, planar graph inputs which satisfy the degree constraints are318

possible, but any such graph will still yield a “no” answer to the Tree-Residue Vertex-Breaking319

problem.320

Figure 25 A degree-10
vertex with seven degree-
1 neighbors (shown) and
three other neighbors (not
shown). The edges to
the degree-1 neighbors form
two bundles of size 2 and
one bundle of size 3.

We describe the proof idea in Section 8.1 with details available321

in the full version of the paper.322

8.1 Proof idea323

Consider the hypothetical situation in which we have a solution to324

the TRVB problem in a planar graph whose unbreakable vertices325

each have degree at least 5 and whose breakable vertices each326

have degree at least 6. The general idea of the proof is to show327

that this situation is impossible by assigning a scoring function328

(described below) to the possible states of the graph as vertices329

are broken. The score of the initial graph can easily be seen to be330

zero and assuming the TRVB instance has a solution, the score331

of the final tree can be shown to be positive. It is also the case,332

however, that if we break the vertices in the correct order, no333

vertex increases the score when broken, implying a contradiction.334

Next, we introduce the scoring mechanism. Consider one335

vertex in the graph after some number of vertices have been336

broken. This vertex has several neighbors, some of which have337

degree 1. We can group the edges of this vertex that lead to degree-1 neighbors into “bundles”338

seperated by the edges leading to higher degree neighbors. For example, in Figure 25, the339

vertex shown has two bundles of size 2 and one bundle of size 3. Each bundle is given a340

score according to its size, and the score of the graph is equal to the cumulative score of all341

present bundles. In particular, if a bundle has a size of 1, then we assign the bundle a score342

of −1, and otherwise we assign the bundle a score of n− 1 where n is the size of the bundle.343

As it turns out, under this scoring mechanism, any tree all of whose non-leaves have344

degree at least 5 always has a positive score. In fact, it is easy to see that in our TRVB345

instance, if breaking some set of breakable vertices S results in a tree, then this degree346

constraint applies: the non-leaves are vertices from the original graph and therefore have347
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degree at least 5. Thus, the score of the original graph is zero (since there are no bundles),348

and the score after all the vertices in S are broken is positive.349

Next, we define a breaking order for the vertices of S. In short, we will break the350

vertices of S starting on the exterior of the graph and moving inward. More formally, we351

will repeatedly do the following step until all vertices in S have been broken. Consider the352

external face of the graph at the current stage of the breaking process. Since not every vertex353

in S has been broken, the graph is not yet a tree and the current external face is a cycle.354

Every cycle in the graph must contain a vertex from S (in order for the final graph to be a355

tree), so choose a vertex from S on the current external face and break that vertex next.356

Breaking the vertices of S in this order has an interesting effect on the bundles in the357

graph: since every vertex from S is on the external face when it is broken, every degree-1358

vertex ends up within the external face when it appears. Thus all bundles are within the359

external face of the graph at all times.360

Consider the effect that breaking one vertex from S with degree d ≥ 6 has on the score of361

the graph. Any vertex in S on the external face has exactly two edges which border this face.362

The remaining d− 2 edges must all leave the vertex into the interior of the graph. When363

the vertex is broken, each of these d− 2 edges becomes a new bundle (since the interior of364

the graph never has any bundles). Thus, breaking the vertex creates d− 2 new bundles of365

size 1, thereby decreasing the score of the graph by d− 2. On the other hand, the two edges366

which were on the external face are now each added to a bundle, thereby increasing the size367

of that bundle by one and increasing its score by at most two (in the case that the size was368

originally 1). Thus, the increase in the score of the graph due to these two edges is at most369

4. In summary, breaking one vertex decreases the graph’s score by d− 2 ≥ 4 and increases370

the graph’s score by at most 4. Thus, the total score of the graph does not increase.371

Since the score of the graph does not increase with any step of the process, the final372

result should have at most the same score as the original graph. This contradicts the fact373

that the tree at the end of the process has positive score while the original graph has score374

zero. By contradiction, we conclude that S cannot exist, giving us our desired result.375

I Theorem 13. If b > 5 for every b ∈ B and u > 4 for every u ∈ U , then Planar Graph376

(B, U)-TRVB can be solved in polynomial time.377

9 TRVB and the Hypergraph Spanning Tree problem378

In the full version of this paper, we demonstrate the connection between the TRVB problem379

and the Hypergraph Spanning Tree problem.380

In particular, we reduce from (B, U)-TRVB with B ⊆ {1, 2, 3} to a version of the381

Hypergraph Spanning Tree problem in which the hypergraphs are restricted to have only382

edges with at most 3 endpoints. The Hypergraph Spanning Tree problem in such hypergraphs383

is known to be polynomial-time solvable (see [2]), so we can conclude the following:384

I Theorem 14. (B, U)-TRVB with B ⊆ {1, 2, 3} is polynomial-time solvable.385

We also reduce from Planar ({k}, ∅)-TRVB to a version of the Hypergraph Spanning Tree386

problem in which the hypergraphs are restricted to be k-uniform and 2-regular and to have387

planar incidence graphs. Applying the fact that Planar ({k}, ∅)-TRVB is NP-hard for any388

k ≥ 4, we immediately obtain the following:389

I Theorem 15. The Hypergraph Spanning Tree problem is NP-complete in k-uniform 2-390

regular hypergraphs for any k ≥ 4, even when the incidence graph of the hypergraph is391

planar.392
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