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Abstract

Large volumes of available data have led to the emergence of new computational models for
data analysis. One such model is captured by the notion of streaming algorithms: given a
sequence of 𝑁 items, the goal is to compute the value of a given function of the input items by
a small number of passes and using a sublinear amount of space in 𝑁 . Streaming algorithms
have applications in many areas such as networking and large scale machine learning. Despite
a huge amount of work on this area over the last two decades, there are multiple aspects
of streaming algorithms that remained poorly understood, such as (a) streaming algorithms
for combinatorial optimization problems and (b) incorporating modern machine learning
techniques in the design of streaming algorithms.

In the first part of this thesis, we will describe (essentially) optimal streaming algorithms
for set cover and maximum coverage, two classic problems in combinatorial optimization.
Next, in the second part, we will show how to augment classic streaming algorithms of the
frequency estimation and low-rank approximation problems with machine learning oracles
in order to improve their space-accuracy tradeoffs. The new algorithms combine the benefits
of machine learning with the formal guarantees available through algorithm design theory.
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Chapter 1

Introduction

In recent decades, massive datasets arose in numerous application areas such as genomics,

finance, social networks and Internet of things. The main challenge of massive datasets is that

the traditional data-processing architectures are not capable of analyzing them efficiently.

This state of affairs has led to the emergence of new computational models for data analysis.

In particular, since a large fraction of datasets are generated as a stream, algorithms for such

data have been studied in the streaming algorithms model extensively. Formally, given a

sequence of 𝑁 items, the goal is to compute the value of a given function of the input items

by a small number of passes and using a sublinear amount of space in 𝑁 .

In this thesis, we advance the development of streaming algorithms in two new directions:

(a) designing streaming algorithms for new classes of problems and (b) designing streaming

algorithms using modern machine learning approaches.

The streaming model has been studied since early 80s. The focus of the early work was

on processing numerical data such as estimating heavy hitters, number of distinct elements

and quantiles [74, 35, 13, 129]. Over the last two decades, there has been a significant body

of work on designing streaming algorithms for discrete optimization and in particular graph

problems [102, 143, 73]. However, until recently not much was known about the complexity

of coverage problems, which is a well-studied class of problems in discrete optimization, in

the streaming setting. In the first part of this thesis (Chapters 2-5), we provide optimal

streaming algorithms for several variants of set cover and maximum coverage problems, two
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well-studied problems in discrete optimization.

Since the classical algorithms have formal worst-case guarantees, they tend to work

equally well on all inputs. However, in most applications, the underlying data has certain

properties that, if discovered and harnessed, could enable much better performance. Inspired

by the success of machine learning, in the second part of this thesis (Chapters 6-7), we de-

sign such “learning-based” algorithms for two fundamental tasks in data analysis: frequency

estimation and low-rank approximation. We remark that these are the first learning-based

streaming algorithms. For both of these problems, we design learning-based algorithms that,

in theory and practice, achieve better performance (e.g., space complexity or approximation

quality) than the existing algorithms, as long as the input stream has certain patterns. At

the same time, the algorithms (usually) retain the worst-case guarantees of the existing

algorithms for these problems even on adversarial inputs.

1.1. Streaming Algorithms for Coverage Problems

A fundamental class of problems in the area of combinatorial optimization involves minimiz-

ing a given cost function under a set of covering constraints. Perhaps the most well-studied

problem in this family is set cover: given a collection 𝒮 of sets whose union is [𝑛], the goal

is to identify the smallest sub-collection of 𝒮 whose union is [𝑛]. In the presence of massive

data, new techniques are required to solve even this classic problem.

The first part of this thesis is devoted to the design of efficient sublinear (space or time)

algorithms for Set Cover and a closely related problem Max 𝑘-Cover, here collectively called

coverage problem, that have in many areas, including operations research, machine learning,

information retrieval and data mining [86, 155, 48, 2, 115, 26, 117].

Although both Set Cover and Max 𝑘-Cover are NP-complete, a natural greedy algorithm

which iteratively picks the “best” remaining set is provably the optimal algorithm for these

problems unless P = NP [72, 152, 14, 138, 63] and it is widely used in practice. The algorithm

often finds solutions that are very close to optimal. Unfortunately, due to its sequential na-

ture, this algorithm does not scale very well to massive data sets (e.g., see Cormode et al. [56]

for an experimental evaluation). This difficulty has motivated a considerable research effort

whose goal was to design algorithms that are capable of handling large data efficiently on
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modern architectures. Of particular interest are data stream algorithms, which compute the

solution using only a small number of sequential passes over the data using a limited memory.

The study of streaming Set Cover problem initiated in [155] and since then there has been a

large body of work on coverage problems in massive data analysis models and in particular

streaming model [67, 61, 42, 97, 20, 29, 17, 105, 106, 107, 18, 123, 131, 17, 29, 19, 147, 5].

1.1.1. Streaming Algorithms for Set Cover

In the Set Cover problem, given a ground set of 𝑛 elements 𝒰 = {𝑒1, · · · , 𝑒𝑛}, and a family

of 𝑚 sets ℱ = {𝑆1, . . . , 𝑆𝑚} where 𝑚 ≥ 𝑛, the goal is to select a subset ℐ ⊆ ℱ such that ℐ
covers 𝒰 and the number of the sets in ℐ is as small as possible. In the streaming Set Cover

problem as introduced in [155], the set of elements 𝒰 is stored in the memory in advance;

the sets 𝑆1, · · · , 𝑆𝑚 are stored consecutively in a read-only repository and an algorithm can

access the sets only by performing sequential scans of the repository. However, the amount

of read-write memory available to the algorithm is limited, and is smaller than the input

size (which could be as large as 𝑚𝑛). The objective is to design efficient approximation

algorithms for the Set Cover problem that performs few passes over the data, and uses as

little memory as possible. In Chapter 2, we present an efficient streaming algorithm for this

problem which has been proved to be optimal [17].

1.1.2. Streaming Algorithms for Fractional Set Cover

The LP relaxation of Set Cover is one of the well-studied mathematical programs in ap-

proximation algorithms design. It is a continuous relaxation of the problem where each set

𝑆 ∈ ℱ can be selected “fractionally”, i.e., assigned a number 𝑥𝑆 from [0, 1], such that for each

element 𝑒 its “fractional coverage”
∑︀

𝑆:𝑒∈𝑆 𝑥𝑆 is at least 1, and the sum
∑︀

𝑆 𝑥𝑆 is minimized.

To the best of our knowledge, it is not known whether there exists an efficient and accurate

algorithm for this problem that uses only a logarithmic (or even a polylogarithmic) number of

passes. This state of affairs is perhaps surprising, given the many recent developments on fast

LP solvers [119, 174, 124, 12, 11, 167]. The only prior results on streaming Packing/Covering

LPs were presented in [6], which studied the LP relaxation of Maximum Matching.

In Chapter 3, we present the first (1 + 𝜀)-approximation algorithm for the fractional

Set Cover in the streaming model with constant number of passes and using sublinear amount
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of space.

1.1.3. Sublinear Algorithms for Set Cover

Another related natural question to streaming Set Cover is the following: “is it possible to

solve minimum set cover in sub-linear time?” This question was previously addressed in

[145, 172], who showed that one can design constant running-time algorithms by simulating

the greedy algorithm, under the assumption that the sets are of constant size and each

element occurs in a constant number of sets. However, those constant-time algorithms have

a few drawbacks: they only provide a mixed multiplicative/additive guarantee (the output

cover size is guaranteed to be at most 𝑘 · ln𝑛+𝜀𝑛), the dependence of their running times on

the maximum set size is exponential, and they only output the (approximate) minimum set

cover size, not the cover itself. From a different perspective, [119] (building on [84]) showed

that an 𝑂(1)-approximate solution to the fractional version of the problem can be found

in ̃︀𝑂(𝑚𝑘2 + 𝑛𝑘2) time.1 Combining this algorithm with the randomized rounding yields an

𝑂(log 𝑛)-approximate solution to Set Cover with the same complexity.

In Chapter 4, we initiate a systematic study of the complexity of sub-linear time algo-

rithms for set cover with multiplicative approximation guarantees. Our upper bounds com-

plement the aforementioned result of [119] by presenting algorithms which are fast when 𝑘 is

large, as well as algorithms that provide more accurate solutions (even with a constant-factor

approximation guarantee) that use a sub-linear number of queries.2 Equally importantly, we

establish nearly matching lower bounds, some of which even hold for estimating the optimal

cover size.

1.1.4. Streaming Algorithms for Maximum Coverage

In Max 𝑘-Cover, given a ground set 𝒰 of 𝑛 elements, a family of 𝑚 sets ℱ (each subset of 𝒰),
and a parameter 𝑘, the goal is to select 𝑘 sets in ℱ whose union has the largest cardinality.

Moreover, Max 𝑘-Cover is an important problem in submodular maximization.

The initial algorithms were developed in the set arrival model, where the input sets are

listed contiguously. This restriction is natural from the perspective of submodular optimiza-

1The method can be further improved to ̃︀𝑂(𝑚+ 𝑛𝑘) (N. Young, personal communication).
2Note that polynomial time algorithms with sub-logarithmic approximation are unlikely to exist.
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tion, but limits the applicability of the algorithms3. Avoiding this limitation can be difficult,

as streaming algorithms can no longer operate on sets as “unit objects”. As a result, the

first maximum coverage algorithm for the general edge arrival model, where pairs of (set,

element) can arrive in arbitrary order, have been developed recently. In particular [29] was

first to (explicitly) present a one-pass algorithm with space linear in 𝑚 and constant approx-

imation factor. We remark that many of the prior bounds (both upper and lower bounds) on

set cover and max 𝑘-cover problems in set-arrival streams also work in edge arrival streams

(e.g. [61, 97, 20, 131, 17, 105]).

A particularly interesting line of research in set arrival streaming set cover and max

𝑘-cover is to design efficient algorithms that only use ̃︀𝑂(𝑛) space [155, 22, 67, 42, 131]. Pre-

vious work have shown that we can adopt the existing greedy algorithm of Max 𝑘-Cover to

achieve constant factor approximation in ̃︀𝑂(𝑛) space [155, 22] (which later improved to ̃︀𝑂(𝑘)

by [131]). However, the complexity of the problem in the “low space” regime is very different

in edge-arrival streams: [29] showed that as long as the approximation factor is a constant,

any algorithm must use Ω(𝑚) space. Still, our understanding of approximation/space trade-

offs in the general case is far from complete. In Chapter 5, we provide tight bounds for the

approximation/space tradeoffs of Max 𝑘-Cover in the general edge-arrival streams.

1.2. Learning-Based Streaming Algorithms

Classical algorithms are best known for providing formal guarantees over their performance,

but often fail to leverage useful patterns in their input data to improve their output. However,

in most applications, the underlying data has certain properties that can lead to much better

performance if exploited by algorithms. On the other hand, machine learning approaches (in

particular, deep learning models) are highly successful at capturing and utilizing complex

data patterns, but often lack formal error bounds. The last few years have witnessed a

growing effort to bridge this gap and introduce algorithms that can adapt to data properties

while delivering worst case guarantees. For example, “learning-based” models have been

integrated into the design of data structures [120, 137, 91], online algorithms [128, 151, 81],

3For example, consider a situation where the sets correspond to neighborhoods of vertices in a directed
graph. Depending on the input representation, for each vertex, either the ingoing edges or the outgoing
edges might be placed non-contiguously.
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graph optimization [59], similarity search [156, 169] and compressive sensing [33]. This

learning-based approach to algorithm design has attracted a considerable attention due to its

potential to significantly improve the efficiency of some of the most widely used algorithmic

tasks.

Indeed, many applications involve processing streams of data (e.g., videos, data logs,

customer activities and social media) by executing the same algorithm on an hourly, daily or

weekly basis. These data sets are typically not “random” or “worst-case”; instead, they come

from some distribution with useful properties which does not change rapidly from execution

to execution. This makes it possible to design better streaming algorithms tailored to the

specific data distribution, trained on past instances of the problem. In the second part of

this thesis, we developed first learning-based algorithms in the streaming model and design

such algorithms for two basic problems in this area frequency estimation (in Chapter 6) and

low-rank approximation (in Chapter 7). For both of these problems, we design learning-

based algorithms that empirically (and provably) achieve better performance (e.g., space

complexity or approximation quality) compared to the existing algorithms if the input stream

has certain patterns while achieving the worst-case guarantees of the existing algorithms for

these problems even on adversarial inputs.

1.2.1. Learning-Based Algorithms for Frequency Estimation

Estimating the frequencies of elements in a data stream is one of the most fundamental sub-

routines in data analysis. It has applications in many areas of machine learning, including

feature selection [4], ranking [66], semi-supervised learning [164] and natural language pro-

cessing [82]. It has been also used for network measurements [70, 175, 127] and security [158].

Frequency estimation algorithms have been implemented in popular data processing libraries,

such as Algebird at Twitter [36]. They can answer practical questions like: what are the

most searched words on the Internet? or how much traffic is sent between any two machines

in a network?

The frequency estimation problem is formalized as follows: given a sequence 𝑆 of elements

from some universe 𝑈 , for any element 𝑖 ∈ 𝑈 , estimate 𝑓𝑖, the number of times 𝑖 occurs in 𝑆.

If one could store all arrivals from the stream 𝑆, one could sort the elements and compute
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their frequencies. However, in big data applications, the stream is too large (and may be

infinite) and cannot be stored. This challenge has motivated the development of streaming

algorithms, which read the elements of 𝑆 in a single pass and compute a good estimate of

the frequencies using a limited amount of space. Over the last two decades, many such

streaming algorithms have been developed, including Count-Sketch [43], Count-Min [57] and

multi-stage filters [70]. The performance guarantees of these algorithms are well-understood,

with upper and lower bounds matching up to 𝑂(·) factors [110].
However, such streaming algorithms typically assume generic data and do not leverage

useful patterns or properties of their input. For example, in text data, the word frequency

is known to be inversely correlated with the length of the word. Analogously, in network

data, certain applications tend to generate more traffic than others. If such properties

can be harnessed, one could design frequency estimation algorithms that are much more

efficient than the existing ones. Yet, it is important to do so in a general framework that

can harness various useful properties, instead of using handcrafted methods specific to a

particular pattern or structure (e.g., word length, application type). In Chapter 6, we

introduce “learning-based” frequency estimation streaming algorithms.

1.2.2. Learning-Based Algorithms for Low-Rank Approximation

Low-rank approximation is one of the most widely used tools in massive data analysis, ma-

chine learning and statistics, and has been a subject of many algorithmic studies. Formally,

in low-rank approximation, given an 𝑛 × 𝑑 matrix 𝐴, and a parameter 𝑘, the goal is to

compute a rank-𝑘 matrix

[𝐴]𝑘 = argmin
𝐴′: rank(𝐴′)≤𝑘

‖𝐴− 𝐴′‖𝐹 .

In particular, multiple algorithms developed over the last decade use the “sketching”

approach, see e.g., [157, 171, 92, 52, 53, 144, 132, 34, 54]. Its idea is to use efficiently com-

putable random projections (a.k.a., “sketches”) to reduce the problem size before performing

low-rank decomposition, which makes the computation more space and time efficient. For

example, [157, 52] show that if 𝑆 is a random matrix of size𝑚×𝑛 chosen from an appropriate
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distribution4, for 𝑚 depending on 𝜀, then one can recover a rank-𝑘 matrix 𝐴′ such that

‖𝐴− 𝐴′‖𝐹 ≤ (1 + 𝜖)‖𝐴− [𝐴]𝑘‖𝐹

by performing an SVD on 𝑆𝐴 ∈ R𝑚×𝑑 followed by some post-processing. Typically the

sketch length 𝑚 is small, so the matrix 𝑆𝐴 can be stored using little space (in the context of

streaming algorithms) or efficiently communicated (in the context of distributed algorithms).

Furthermore, the SVD of 𝑆𝐴 can be computed efficiently, especially after another round of

sketching, reducing the overall computation time.

In light of the success of learning-based approaches, it is natural to ask whether similar

improvements in performance could be obtained for other sketch-based algorithms, notably

for low-rank decompositions. In particular, reducing the sketch length 𝑚 while preserving

its accuracy would make sketch-based algorithms more efficient. Alternatively, one could

make sketches more accurate for the same values of 𝑚. In Chapter 7, we design the first

“learning-based” (streaming) algorithm for the low-rank approximation problem.

4Initial algorithms used matrices with independent sub-gaussian entries or randomized Fourier/Hadamard
matrices [157, 171, 92]. Starting from the seminal work of [53], researchers began to explore sparse binary
matrices, see e.g., [144, 132].
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Chapter 2

Streaming Set Cover

2.1. Introduction

In the streaming Set Cover problem as defined in [155], the set of elements 𝒰 = {𝑒1, · · · , 𝑒𝑛}
is stored in the memory in advance; the sets 𝑆1, · · · , 𝑆𝑚 are stored consecutively in a read-

only repository and an algorithm can access the sets only by performing sequential scans

of the repository. However, the amount of read-write memory available to the algorithm is

limited, and is smaller than the input size (which could be as large as 𝑚𝑛). The objective is

to design an efficient approximation algorithm for the Set Cover problem that performs few

passes over the data, and uses as little memory as possible.

The last few years have witnessed a rapid development of new streaming algorithms for

the Set Cover problem, in both theory and applied communities, see [155, 56, 122, 67, 61, 42].

Table 2.1.1 presents the approximation and space bounds achieved by those algorithms, as

well as the lower bounds.1

2.1.1. Related Work

The semi-streaming Set Cover problem was first studied by Saha and Getoor [155]. Their

result for Max 𝑘-Cover problem implies a 𝑂(log 𝑛)-pass 𝑂(log 𝑛)-approximation algorithm

for the Set Cover problem that uses ̃︀𝑂(𝑛2) space. Adopting the standard greedy algorithm of

Set Cover with a thresholding technique leads to 𝑂(log 𝑛)-pass 𝑂(log 𝑛)-approximation using

1Note that the simple greedy algorithm can be implemented by either storing the whole input (in one
pass), or by iteratively updating the set of yet-uncovered elements (in at most 𝑛 passes).
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Result Approximation Passes Space Note

Greedy Algorithm ln𝑛
1 𝑂(𝑚𝑛)

Deterministic
𝑛 𝑂(𝑛)

[155] 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(𝑛2 ln𝑛) Deterministic

[67] 𝑂(
√
𝑛) 1 ̃︀Θ(𝑛)

Randomized (tight bounds)

& deterministic algorithm

[42] 𝑂(𝑛
𝛿

𝛿
) 1

𝛿
− 1 ̃︀Θ(𝑛)

Randomized (tight bounds)

& deterministic algorithm

[146] 1
2
log 𝑛 𝑂(log 𝑛) ̃︀Ω(𝑚) Randomized

[61] 𝑂(4
1
𝛿 𝜌) 𝑂(4

1
𝛿 ) ̃︀𝑂(𝑚𝑛𝛿) Randomized

[61] 𝑂(1) 𝑂(log 𝑛) ̃︀Ω(𝑚𝑛) Deterministic

Theorem 2.2.8 𝑂(𝜌
𝛿
) 2

𝛿
̃︀𝑂(𝑚𝑛𝛿) Randomized

Theorem 2.3.8 3
2

1 Ω(𝑚𝑛) Randomized

Theorem 2.5.4 1 1
2𝛿
− 1 ̃︀Ω(𝑚𝑛𝛿) Randomized

Geometric Set Cover

(Theorem 2.4.6)
𝑂(𝜌𝑔) 𝑂(1) ̃︀𝑂(𝑛) Randomized

𝑠-Sparse Set Cover

(Theorem 2.6.6)
1 1

2𝛿
− 1 ̃︀Ω(𝑚𝑠) Randomized

Table 2.1.1: Summary of past work and our results. Parameters 𝜌 and 𝜌g respectively
denote the approximation factor of off-line algorithms for Set Cover and its geometric variant.̃︀𝑂(𝑛) space. In ̃︀𝑂(𝑛) space regime, Emek and Rosen studied designing one-pass streaming

algorithms for the Set Cover problem [67] and gave a deterministic greedy based 𝑂(
√
𝑛)-

approximation for the problem. Moreover they proved that their algorithm is tight, even for

randomized algorithms. The lower/upper bound results of [67] applied also to a generaliza-

tion of the Set Cover problem, the 𝜀-Partial Set Cover(𝒰 ,ℱ) problem in which the goal is to

cover (1− 𝜀) fraction of elements 𝒰 and the size of the solution is compared to the size of an

optimal cover of Set Cover(𝒰 ,ℱ). Very recently, Chakrabarti and Wirth extended the result

of [67] and gave a trade-off streaming algorithm for the Set Cover problem in multiple passes

[42]. They gave a deterministic algorithm with 𝑝 passes over the data stream that returns a

(𝑝+1)𝑛1/(𝑝+1)-approximate solution of the Set Cover problem in ̃︀𝑂(𝑛) space. Moreover they
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proved that achieving 0.99𝑛1/(𝑝+1)/(𝑝+1)2 in 𝑝 passes using ̃︀𝑂(𝑛) space is not possible even

for randomized protocols which shows that their algorithm is tight up to a factor of (𝑝+1)3.

Their result also works for the 𝜀-Partial Set Cover problem.

In a different regime which was first studied by Demaine et al., the goal is to design a

“low” approximation algorithms (depending on the computational model, it could be 𝑂(log 𝑛)

or 𝑂(1)) in the smallest possible space [61]. They proved that any constant pass determin-

istic (log 𝑛/2)-approximation algorithm for the Set Cover problem requires ̃︀Ω(𝑚𝑛) space. It

shows that unlike the results in ̃︀𝑂(𝑛)-space regime, to obtain a sublinear “low” approxima-

tion streaming algorithm for the Set Cover problem in a constant number of passes, using

randomness is necessary. Moreover, [61] presented a 𝑂(41/𝛿)-approximation algorithm that

makes 𝑂(41/𝛿) passes and uses ̃︀𝑂(𝑚𝑛𝛿) memory space.

The Set Cover problem is not polynomially solvable even in the restricted instances with

points in R2 as elements, and geometric objects (either all disks or axis parallel rectangles

or fat triangles) in plane as sets [71, 75, 99]. As a result, there has been a large body of

work on designing approximation algorithms for the geometric Set Cover problems. See for

example [142, 3, 15, 51] and references therein.

2.1.2. Our Results

Despite the progress outlined above, however, some basic questions still remained open. In

particular:

(A) Is it possible to design a single pass streaming algorithm with a “low” approximation

factor2 that uses sublinear (i.e., 𝑜(𝑚𝑛)) space?

(B) If such single pass algorithms are not possible, what are the achievable trade-offs

between the number of passes and space usage?

(C) Are there special instances of the problem for which more efficient algorithms can be

designed?

2Note that the lower bound in [61] excluded this possibility only for deterministic algorithms, while the
upper bound in [67, 42] suffered from a polynomial approximation factor.
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In this chapter, we make a significant progress on each of these questions. Our upper and

lower bounds are depicted in Table 2.1.1.

On the algorithmic side, we give a 𝑂(1/𝛿)-pass algorithm with a strongly sub-linear̃︀𝑂(𝑚𝑛𝛿) space and logarithmic approximation factor. This yields a significant improvement

over the earlier algorithm of Demaine et al. [61] which used exponentially larger number of

passes. The trade-off offered by our algorithm matches the lower bound of Nisan [146] that

holds at the endpoint of the trade-off curve, i.e., for 𝛿 = Θ(1/ log 𝑛), up to poly-logarithmic

factors in space3. Furthermore, our algorithm is very simple and succinct, and therefore easy

to implement and deploy.

Our algorithm exhibits a natural tradeoff between the number of passes and space, which

resembles tradeoffs achieved for other problems [87, 88, 90]. It is thus natural to conjecture

that this tradeoff might be tight, at least for “low enough” approximation factors. We present

the first step in this direction by showing a lower bound for the case when the approximation

factor is equal to 1, i.e., the goal is to compute the optimal set cover. In particular, by an

information theoretic lower bound, we show that any streaming algorithm that computes set

cover using ( 1
2𝛿
−1) passes must use ̃︀Ω(𝑚𝑛𝛿) space (even assuming exponential computational

power) in the regime of 𝑚 = 𝑂(𝑛). Furthermore, we show that a stronger lower bound holds

if all the input sets are sparse, that is if their cardinality is at most 𝑠. We prove a lower

bound of ̃︀Ω(𝑚𝑠) for 𝑠 = 𝑂(𝑛𝛿) and 𝑚 = 𝑂(𝑛).

We also consider the problem in the geometric setting in which the elements are points in

R2 and sets are either discs, axis-parallel rectangles, or fat triangles in the plane. We show

that a slightly modified version of our algorithm achieves the optimal ̃︀𝑂(𝑛) space to find an

𝑂(𝜌)-approximation in 𝑂(1) passes.

Finally, we show that any randomized one-pass algorithm that distinguishes between

covers of size 2 and 3 must use a linear (i.e., Ω(𝑚𝑛)) amount of space. This is the first

result showing that a randomized, approximate algorithm cannot achieve a sub-linear space

bound.

Recently Assadi et al. [20] generalized this lower bound to any approximation ratio 𝛼 =

3Note that to achieve a logarithmic approximation ratio we can use an off-line algorithm with the ap-
proximation ratio 𝜌 = 1, i.e., one that runs in exponential time (see Theorem 2.2.8).
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𝑂(
√
𝑛). More precisely they showed that approximating Set Cover within any factor 𝛼 =

𝑂(
√
𝑛) in a single pass requires Ω(𝑚𝑛

𝛼
) space.

Our techniques: basic idea. Our algorithm is based on the idea that whenever a large

enough set is encountered, we can immediately add it to the cover. Specifically, we guess

(up to factor two) the size of the optimal cover 𝑘. Thus, a set is “large” if it covers at

least 1/𝑘 fraction of the remaining elements. A small set, on the other hand, can cover

only a “few” elements, and we can store (approximately) what elements it covers by storing

(in memory) an appropriate random sample. At the end of the pass, we have (in memory)

the projections of “small” sets onto the random sample, and we compute the optimal set

cover for this projected instance using an offline solver. By carefully choosing the size of

the random sample, this guarantees that only a small fraction of the set system remains

uncovered. The algorithm then makes an additional pass to find the residual set system

(i.e., the yet uncovered elements), making two passes in each iteration, and continuing to

the next iteration.

Thus, one can think about the algorithm as being based on a simple iterative “dimension-

ality reduction” approach. Specifically, in two passes over the data, the algorithm selects a

“small” number of sets that cover all but 𝑛−𝛿 fraction of the uncovered elements, while using

only ̃︀𝑂(𝑚𝑛𝛿) space. By performing the reduction step 1/𝛿 times we obtain a complete cover.

The dimensionality reduction step is implemented by computing a small cover for a random

subset of the elements, which also covers the vast majority of the elements in the ground set.

This ensures that the remaining sets, when restricted to the random subset of the elements,

occupy only ̃︀𝑂(𝑚𝑛𝛿) space. As a result the procedure avoids a complex set of recursive calls

as presented in Demaine et al. [61], which leads to a simpler and more efficient algorithm.

Geometric results. Further using techniques and results from computational geometry

we show how to modify our algorithm so that it achieves almost optimal bounds for the

Set Cover problem on geometric instances. In particular, we show that it gives a 𝑂(1)-pass

𝑂(𝜌)-approximation algorithm using ̃︀𝑂(𝑛) space when the elements are points in R2 and the

sets are either discs, axis parallel rectangles, or fat triangles in the plane. In particular, we
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Figure 2.1.1: A collection of 𝑛2/4 distinct rectangles (i.e., sets), each containing two points.

use the following surprising property of the set systems that arise out of points and disks:

the the number of sets is nearly linear as long as one considers only sets that contain “a few”

points.

More surprisingly, this property extends, with a twist, to certain geometric range spaces

that might have quadratic number of shallow ranges. Indeed, it is easy to show an example of

𝑛 points in the plane, where there are Ω(𝑛2) distinct rectangles, each one containing exactly

two points, see Figure 2.1.1. However, one can “split” such ranges into a small number of

canonical sets, such that the number of shallow sets in the canonical set system is near linear.

This enables us to store the small canonical sets encountered during the scan explicitly in

memory, and still use only near linear space.

We note that the idea of splitting ranges into small canonical ranges is an old idea in

orthogonal range searching. It was used by Aronov et al. [15] for computing small 𝜀-nets for

these range spaces. The idea in the form we use, was further formalized by Ene et al. [68].

Lower bounds. The lower bounds for multi-pass algorithms for the Set Cover problem

are obtained via a careful reduction from Intersection Set Chasing. The latter problem is a

communication complexity problem where 𝑛 players need to solve a certain “set-disjointness-

like” problem in 𝑝 rounds. A recent paper [90] showed that this problem requires 𝑛1+Ω(1/𝑝)

𝑝𝑂(1)

bits of communication complexity for 𝑝 rounds. This yields our desired trade-off of ̃︀Ω(𝑚𝑛𝛿)

space in 1/2𝛿 passes for exact protocols for Set Cover in the communication model and hence

in the streaming model for 𝑚 = 𝑂(𝑛). Furthermore, we show a stronger lower bound on

memory space of sparse instances of Set Cover in which all input sets have cardinality at

most 𝑠. By a reduction from a variant of Equal Pointer Chasing which maps the problem to
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Algorithm 1 A tight streaming algorithm for the (unweighted) Set Cover problem. Here,
OfflineSC is an offline solver for Set Cover that provides 𝜌-approximation, and 𝑐 is some
appropriate constant.

1: procedure IterSetCover((𝒰 ,ℱ), 𝛿)
2: ◁ try (in parallel) all possible (2-approx) sizes of optimal cover
3: for 𝑘 ∈ {2𝑖 | 0 ≤ 𝑖 ≤ log 𝑛} in parallel do ◁ 𝑛 = |𝒰|
4: sol← ∅
5: for 𝑖 = 1 to 1/𝛿 do
6: let S be a sample of 𝒰 of size 𝑐𝜌𝑘𝑛𝛿 log𝑚 log 𝑛
7: L← S, ℱS ← ∅
8: for 𝑆 ∈ ℱ do ◁ by doing one pass
9: if |L ∩ 𝑆| ≥ |S|/𝑘 then ◁ size test
10: sol← sol ∪ {𝑆}
11: L← L ∖ 𝑆
12: else
13: ℱS ← ℱS ∪ {𝑆 ∩ L} ◁ store the set 𝑆 ∩ L explicitly in memory

14: 𝒟 ← OfflineSC(L,ℱS, 𝑘)
15: sol← sol

⋃︀𝒟
16: 𝒰 ← 𝒰 ∖⋃︀𝑆∈sol 𝑆 ◁ by doing additional pass over data

17: return best sol computed in all parallel executions.

a sparse instance of Set Cover, we show that in order to have an exact streaming algorithm

for 𝑠-Sparse Set Cover with 𝑜(𝑚𝑠) space, Ω(log 𝑛) passes is necessary. More precisely, any

( 1
2𝛿
− 1)-pass exact randomized algorithm for 𝑠-Sparse Set Cover requires ̃︀Ω(𝑚𝑠) memory

space, if 𝑠 ≤ 𝑛𝛿 and 𝑚 = 𝑂(𝑛).

Our single pass lower bound proceeds by showing a lower bound for a one-way commu-

nication complexity problem in which one party (Alice) has a collection of sets, and the

other party (Bob) needs to determine whether the complement of his set is covered by one

of the Alice’s sets. We show that if Alice’s sets are chosen at random, then Bob can decode

Alice’s input by employing a small collection of “query” sets. This implies that the amount

of communication needed to solve the problem is linear in the description size of Alice’s sets,

which is Ω(𝑚𝑛).

2.2. Streaming Algorithm for Set Cover

In this section, we design an efficient streaming algorithm for the Set Cover problem that

matches the lower bound results we already know about the problem. In the Set Cover

problem, for a given set system (𝒰 ,ℱ), the goal is to find a subset ℐ ⊆ ℱ , such that ℐ covers
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𝒰 and its cardinality is minimum. In Algorithm 1, we sketch the IterSetCover algorithm.

In the IterSetCover algorithm, we have access to the OfflineSC subroutine that

solves the given Set Cover instance offline (using linear space) and returns a 𝜌-approximate

solution where 𝜌 could be anywhere between 1 and Θ(log 𝑛) depending on the computational

model one assumes. Under exponential computational power, we can achieve the optimal

cover of the given instance of the Set Cover (𝜌 = 1); however, under P ̸= NP assumption, 𝜌

cannot be better than 𝑐 · ln𝑛 where 𝑐 is a constant [72, 152, 14, 138, 63] given polynomial

computational power.

Let 𝑛 = |𝒰| be the initial number of elements in the given ground set. The IterSet-

Cover algorithm, needs to guess (up to a factor of two) the size of the optimal cover of

(𝒰 ,ℱ). To this end, the algorithm tries, in parallel, all values 𝑘 in {2𝑖 | 0 ≤ 𝑖 ≤ log 𝑛}. This
step will only increase the memory space requirement by a factor of log 𝑛.

Consider the run of the IterSetCover algorithm, in which the guess 𝑘 is correct (i.e.,

|OPT| ≤ 𝑘 < 2|OPT|, where OPT is an optimal solution). The idea is to go through 𝑂(1/𝛿)

iterations such that each iteration only makes two passes and at the end of each iteration the

number of uncovered elements reduces by a factor of 𝑛𝛿. Moreover, the algorithm is allowed

to use ̃︀𝑂(𝑚𝑛𝛿) space.

In each iteration, the algorithm starts with the current ground set of uncovered elements

𝒰 , and copies it to a leftover set L. Let S be a large enough uniform sample of elements

𝒰 . In a single pass, using S, we estimate the size of all large sets in ℱ and add 𝑆 ∈ ℱ to

the solution sol immediately (thus avoiding the need to store it in memory). Formally, if 𝑆

covers at least Ω(|𝒰|/𝑘) yet-uncovered elements of L then it is a heavy set, and the algorithm

immediately adds it to the output cover. Otherwise, if a set is small, i.e., its covers less than

|𝒰|/𝑘 uncovered elements of L, the algorithm stores the set 𝑆 in memory. Fortunately, it is

enough to store its projection over the sampled elements explicitly (i.e., 𝑆∩L) – this requires
remembering only the 𝑂(|S|/𝑘) indices of the elements of 𝑆 ∩ L.

In order to show that a solution of the Set Cover problem over the sampled elements

is a good cover of the initial Set Cover instance, we apply the relative (𝑝, 𝜀)-approximation

sampling result of [100] (see Definition 2.2.4) and it is enough for S to be of size ̃︀𝑂(𝜌𝑘𝑛𝛿).

Using relative (𝑝, 𝜀)-approximation sampling, we show that after two passes the number of
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uncovered elements is reduced by a factor of 𝑛𝛿. Note that the relative (𝑝, 𝜀)-approximation

sampling improves over the Element Sampling technique used in [61] with respect to the

number of passes.

Since in each iteration we pick 𝑂(𝜌𝑘) sets and the number of uncovered elements decreases

by a factor of 𝑛𝛿, after 1/𝛿 iterations the algorithm picks 𝑂(𝜌𝑘/𝛿) sets and covers all elements.

Moreover, the memory space of the whole algorithm is ̃︀𝑂(𝜌𝑚𝑛𝛿) (see Lemma 2.2.2).

2.2.1. Analysis of IterSetCover

In the rest of this section we prove that the IterSetCover algorithm with high probabil-

ity returns a 𝑂(𝜌/𝛿)-approximate solution of Set Cover(𝒰 ,ℱ) in 2/𝛿 passes using ̃︀𝑂(𝑚𝑛𝛿)

memory space.

Lemma 2.2.1. The number of passes the IterSetCover algorithm makes is 2/𝛿.

Proof: In each of the 1/𝛿 iterations of the IterSetCover algorithm, the algorithm makes

two passes. In the first pass, based on the set of sampled elements S, it decides whether to

pick a set or keep its projection over S (i.e., 𝑆 ∩ L) in the memory. Then the algorithm calls

OfflineSC which does not require any passes over ℱ . The second pass is for computing

the set of uncovered elements at the end of the iteration. We need this pass because we

only know the projection of the sets we picked in the current iteration over S and not over

the original set of uncovered elements. Thus, in total we make 2/𝛿 passes. Also note that

for different guesses for the value of 𝑘, we run the algorithm in parallel and hence the total

number of passes remains 2/𝛿. �

Lemma 2.2.2. The memory space used by the IterSetCover algorithm is ̃︀𝑂(𝑚𝑛𝛿).

Proof: In each iteration of the algorithm, it picks during the first pass at most 𝑚 sets (more

precisely at most 𝑘 sets) which requires 𝑂(𝑚 log𝑚) memory. Moreover, in the first pass we

keep the projection of the sets whose projection over the uncovered sampled elements has

size at most |S|/𝑘. Since there are at most 𝑚 such sets, the total required space for storing

the projections is bounded by 𝑂
(︀
𝜌𝑚𝑛𝛿 log𝑚 log 𝑛

)︀
.

Since in the second pass the algorithm only updates the set of uncovered elements, the

amount of space required in the second pass is 𝑂(𝑛). Thus, the total required space to

41



perform each iteration of the IterSetCover algorithm is ̃︀𝑂(𝑚𝑛𝛿). Moreover, note that

the algorithm does not need to keep the memory space used by the earlier iterations; thus,

the total space consumed by the algorithm is ̃︀𝑂(𝑚𝑛𝛿). �

Next we show the sets we picked before calling OfflineSC has large size on 𝒰 .

Lemma 2.2.3. With probability at least 1 − 𝑚−𝑐 all sets that pass the “size test” in the

IterSetCover algorithm have size at least |𝒰|/𝑐𝑘.

Proof: Let 𝑆 be a set of size less than |𝒰|/𝑐𝑘. In expectation, |𝑆 ∩ S| is less than (|𝒰|/𝑐𝑘) ·
(|S|/|𝒰|) = 𝜌𝑛𝛿 log𝑚 log 𝑛. By Chernoff bound for large enough 𝑐,

Pr(|𝑆 ∩ S| ≥ 𝑐𝜌𝑛𝛿 log𝑚 log 𝑛) ≤ 𝑚−(𝑐+1).

Applying the union bound, with probability at least 1−𝑚−𝑐, all sets passing “size test” have

size at least |𝒰|/(𝑐𝑘). �

In what follows we define the relative (𝑝, 𝜀)-approximation sample of a set system and men-

tion the result of Har-Peled and Sharir [100] on the minimum required number of sampled

elements to get a relative (𝑝, 𝜀)-approximation of the given set system.

Definition 2.2.4. Let (V,ℋ) be a set system, i.e., V is a set of elements and ℋ ⊆ 2V is a

family of subsets of the ground set V. For given parameters 0 < 𝜀, 𝑝 < 1, a subset 𝑍 ⊆ V is

a relative (𝑝, 𝜀)-approximation for (V,ℋ), if for each 𝑆 ∈ ℋ, we have that if |𝑆| ≥ 𝑝|V| then

(1− 𝜀)
|𝑆|
|V| ≤

|𝑆 ∩ 𝑍|
|𝑍| ≤ (1 + 𝜀)

|𝑆|
|V| .

If the range is light (i.e., |𝑆| < 𝑝|V|) then it is required that

|𝑆|
|V| − 𝜀𝑝 ≤ |𝑆 ∩ 𝑍|

|𝑍| ≤ |𝑆||V| + 𝜀𝑝.

Namely, 𝑍 is (1 ± 𝜀)-multiplicative good estimator for the size of ranges that are at least

𝑝-fraction of the ground set.

The following lemma is a simplified variant of a result in Har-Peled and Sharir [100] –

indeed, a set system with𝑀 sets, can have VC dimension at most log𝑀 . This simplified form
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also follows by a somewhat careful but straightforward application of Chernoff’s inequality.

Lemma 2.2.5. Let (𝒰 ,ℱ) be a finite set system, and 𝑝, 𝜀, 𝑞 be parameters. Then, a random

sample of 𝒰 such that |𝒰| = 𝑐′

𝜀2𝑝

(︁
log |ℱ| log 1

𝑝
+ log 1

𝑞

)︁
, for an absolute constant 𝑐′ is a relative

(𝑝, 𝜀)-approximation, for all ranges in ℱ , with probability at least (1− 𝑞).

Lemma 2.2.6. Assuming |OPT| ≤ 𝑘 ≤ 2|OPT|, after any iteration, with probability at

least 1 − 𝑚1−𝑐/4 the number of uncovered elements decreases by a factor of 𝑛𝛿, and this

iteration adds 𝑂(𝜌|OPT|) sets to the output cover.

Proof: Let V ⊆ 𝒰 be the set of uncovered elements at the beginning of the iteration and

note that the total number of sets that is picked during the iteration is at most (1+ 𝜌)𝑘 (see

Lemma 2.2.3). Consider all possible such covers, that is 𝒢 = {ℱ ′ ⊆ ℱ| |ℱ ′| ≤ (1 + 𝜌)𝑘},
and observe that |𝒢| ≤ 𝑚(1+𝜌)𝑘. Let ℋ be the collection that contains all possible sets

of uncovered elements at the end of the iteration, defined as ℋ =
{︀
V ∖⋃︀𝑆∈𝒞 𝑆

⃒⃒
𝒞 ∈ 𝒢

}︀
.

Moreover, set 𝑝 = 2/𝑛𝛿, 𝜀 = 1/2 and 𝑞 = 𝑚−𝑐 and note that |ℋ| ≤ |𝒢| ≤ 𝑚(1+𝜌)𝑘. Since

𝑐′

𝜀2𝑝
(log |ℋ| log 1

𝑝
+ log 1

𝑞
) ≤ 𝑐𝜌𝑘𝑛𝛿 log𝑚 log 𝑛 = |S| for large enough 𝑐, by Lemma 2.2.5, S is a

relative (𝑝, 𝜀)-approximation of (V,ℋ) with (1− 𝑞) probability. Let 𝒟 ⊆ ℱ be the collection

of sets picked during the iteration which covers all elements in S. Since S is a relative (𝑝, 𝜀)-

approximation sample of (V,ℋ) with probability at least 1−𝑚−𝑐, the number of uncovered

elements of V (or 𝒰) by 𝒟 is at most 𝜀𝑝|V| = |𝒰|/𝑛𝛿.

Hence, in each iteration we pick 𝑂(𝜌𝑘) sets and at the end of iteration the number of

uncovered elements reduces by 𝑛𝛿. �

Lemma 2.2.7. The IterSetCover algorithm computes a set cover of (𝒰 ,ℱ), whose size
is within a 𝑂(𝜌/𝛿) factor of the size of an optimal cover with probability at least 1−𝑚1−𝑐/4.

Proof: Consider the run of IterSetCover for which the value of 𝑘 is between |OPT| and
2|OPT|. In each of the (1/𝛿) iterations made by the algorithm, by Lemma 2.2.6, the number

of uncovered elements decreases by a factor of 𝑛𝛿 where 𝑛 is the number of initial elements

to be covered by the sets. Moreover, the number of sets picked in each iteration is 𝑂(𝜌𝑘).

Thus after (1/𝛿) iterations, all elements would be covered and the total number of sets in

the solution is 𝑂(𝜌|OPT|/𝛿). Moreover by Lemma 2.2.6, the success probability of all the

iterations, is at least 1− 1
𝛿𝑚𝑐/4 ≥ 1− (1/𝑚)

𝑐
4
−1. �
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Theorem 2.2.8. The IterSetCover(𝒰 ,ℱ , 𝛿) algorithm makes 2/𝛿 passes, uses ̃︀𝑂(𝑚𝑛𝛿)

memory space, and finds a 𝑂(𝜌/𝛿)-approximate solution of the Set Cover problem with high

probability.

Furthermore, given enough number of passes the IterSetCover algorithm matches

the known lower bound on the memory space of the streaming Set Cover problem up to a

polylog(𝑚) factor where 𝑚 is the number of sets in the input.

Proof: The first part of the proof implied by Lemma 2.2.1, Lemma 2.2.2, and Lemma 2.2.7.

As for the lower bound, note that by a result of Nisan [146], any randomized ( log𝑛
2
)-

approximation protocol for Set Cover(𝒰 ,ℱ) in the one-way communication model requires

Ω(𝑚) bits of communication, no matter how many number of rounds it makes. This implies

that any randomized 𝑂(log 𝑛)-pass, ( log𝑛
2
)-approximation algorithm for Set Cover(𝒰 ,ℱ) re-

quires ̃︀Ω(𝑚) space, even under the exponential computational power assumption.

By the above, the IterSetCover algorithm makes 𝑂(1/𝛿) passes and uses ̃︀𝑂(𝑚𝑛𝛿)

space to return a 𝑂(1
𝛿
)-approximate solution under the exponential computational power

assumption (𝜌 = 1). Thus by letting 𝛿 = 𝑐/ log 𝑛, we will have a ( log𝑛
2

)-approximation

streaming algorithm using ̃︀𝑂(𝑚) space which is optimal up to a factor of polylog(𝑚). �

Theorem 2.2.8 provides a strong indication that our trade-off algorithm is optimal.

2.3. Lower Bound for Single Pass Algorithms

In this section, we study the Set Cover problem in the two-party communication model and

give a tight lower bound on the communication complexity of the randomized protocols

solving the problem in a single round. In the two-party Set Cover, we are given a set of

elements 𝒰 and there are two players Alice and Bob where each of them has a collection of

subsets of 𝒰 , ℱ𝐴 and ℱ𝐵. The goal for them is to find a minimum size cover 𝒞 ⊆ ℱ𝐴 ∪ ℱ𝐵

covering 𝒰 while communicating the fewest number of bits from Alice to Bob (In this model

Alice communicates to Bob and then Bob should report a solution).

Our main lower bound result for the single pass protocols for Set Cover is the following

theorem which implies that the naive approach in which one party sends all of its sets to the

the other one is optimal.
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Theorem 2.3.1. Any single round randomized protocol that approximates Set Cover(𝒰 ,ℱ)
within a factor better than 3/2 and error probability 𝑂(𝑚−𝑐) requires Ω(𝑚𝑛) bits of commu-

nication where 𝑛 = |𝒰| and 𝑚 = |ℱ| and 𝑐 is a sufficiently large constant.

We consider the case in which the parties want to decide whether there exists a cover of

size 2 for 𝒰 in ℱ𝐴 ∪ℱ𝐵 or not. If any of the parties has a cover of size at most 2 for 𝒰 , then
it becomes trivial. Thus the question is whether there exist 𝑆𝑎 ∈ ℱ𝐴 and 𝑆𝑏 ∈ ℱ𝐵 such that

𝒰 ⊆ 𝑆𝑎 ∪ 𝑆𝑏.

A key observation is that to decide whether there exist 𝑆𝑎 ∈ ℱ𝐴 and 𝑆𝑏 ∈ ℱ𝐵 such that

𝒰 ⊆ 𝑆𝑎 ∪ 𝑆𝑎, one can instead check whether there exists 𝑆𝑎 ∈ ℱ𝐴 and 𝑆𝑏 ∈ ℱ𝐵 such that

𝑆𝑎 ∩ 𝑆𝑏 = ∅. In other words we need to solve OR of a series of two-party Set Disjointness

problems. In two-party Set Disjointness problem, Alice and Bob are given subsets of 𝒰 , 𝑆𝑎

and 𝑆𝑏 and the goal is to decide whether 𝑆𝑎 ∩ 𝑆𝑏 is empty or not with the fewest possible

bits of communication. Set Disjointness is a well-studied problem in the communication

complexity and it has been shown that any randomized protocol for Set Disjointness with

𝑂(1) error probability requires Ω(𝑛) bits of communication where 𝑛 = |𝒰| [27, 111, 153].
We can think of the following extensions of the Set Disjointness problem.

I. Many vs One: in this variant, Alice has𝑚 subsets of 𝒰 , ℱ𝐴 and Bob is given a single set

𝑆𝑏. The goal is to determine whether there exists a set 𝑆𝑎 ∈ ℱ𝐴 such that 𝑆𝑎 ∩𝑆𝑏 = ∅.

II. Many vs Many: in this variant, each of Alice and Bob are given a collection of subsets

of 𝒰 and the goal for them is to determine whether there exist 𝑆𝑎 ∈ ℱ𝐴 and 𝑆𝑏 ∈ ℱ𝐵

such that 𝑆𝑎 ∩ 𝑆𝑏 = ∅.

Note that deciding whether two-party Set Cover has a cover of size 2 is equivalent to

solving the (Many vs Many)-Set Disjointness problem. Moreover, any lower bound for

(Many vs One)-Set Disjointness clearly implies the same lower bound for the (Many vs

Many)-Set Disjointness problem. In the following theorem we show that any single-round

randomized protocol that solves (Many vs One)-Set Disjointness(𝑚,𝑛) with 𝑂(𝑚−𝑐) error

probability requires Ω(𝑚𝑛) bits of communication.

Theorem 2.3.2. Any randomized protocol for (Many vs One)-Set Disjointness(𝑚,𝑛) with
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error probability that is 𝑂(𝑚−𝑐) requires Ω(𝑚𝑛) bits of communication if 𝑛 ≥ 𝑐1 log𝑚 where

𝑐 and 𝑐1 are large enough constants.

The idea is to show that if there exists a single-round randomized protocol for the problem

with 𝑜(𝑚𝑛) bits of communication and error probability 𝑂(𝑚−𝑐), then with constant proba-

bility one can distinguish Ω(2𝑚𝑛) distinct inputs using 𝑜(𝑚𝑛) bits which is a contradiction.

Suppose that Alice has a collection of 𝑚 uniformly and independently random subsets of

𝒰 (in each of her subsets the probability that 𝑒 ∈ 𝒰 is in the subset is 1/2). Lets assume that

there exists a single round protocol I for (Many vs One)-Set Disjointness(𝑛,𝑚) with error

probability 𝑂(𝑚−𝑐) using 𝑜(𝑚𝑛) bits of communication. Let ExistsDisj be Bob’s algorithm

in protocol I. Then we show that one can recover 𝑚𝑛 random bits with constant probability

using ExistsDisj subroutine and the message 𝑠 sent by the first party in protocol I. The

RecoverBit which is shown in Algorithm 2, is the algorithm to recover random bits using

protocol I and ExistsDisj.

To this end, Bob gets the message 𝑠 communicated by protocol I from Alice and considers

all subsets of size 𝑐1 log𝑚 and 𝑐1 log𝑚+1 of 𝒰 . Note that 𝑠 is communicated only once and

thus the same 𝑠 is used for all queries that Bob makes. Then at each step Bob picks a random

subset 𝑆𝑏 of size 𝑐1 log𝑚 of 𝒰 and solve the (Many vs One)-Set Disjointness problem with

input (ℱ𝐴, 𝑆𝑏) by running ExistsDisj(𝑠, 𝑆𝑏). Next we show that if 𝑆𝑏 is disjoint from a set

in ℱ𝐴, then with high probability there is exactly one set in ℱ𝐴 which is disjoint from 𝑆𝑏

(see Lemma 2.3.3). Thus once Bob finds out that his query, 𝑆𝑏, is disjoint from a set in ℱ𝐴,

he can query all sets 𝑆+
𝑏 ∈ {𝑆𝑏 ∪ 𝑒|𝑒 ∈ 𝒰 ∖ 𝑆𝑏} and recover the set (or union of sets) in ℱ𝐴

that is disjoint from 𝑆𝑏. By a simple pruning step we can detect the ones that are union of

more than one set in ℱ𝐴 and only keep the sets in ℱ𝐴.

In Lemma 2.3.6, we show that the number of queries that Bob is required to make to

recover ℱ𝐴 is 𝑂(𝑚𝑐) where 𝑐 is a constant.

Lemma 2.3.3. Let 𝑆𝑏 be a random subset of 𝒰 of size 𝑐 log𝑚 and let ℱ𝐴 be a collection

of m random subsets of 𝒰 . The probability that there exists exactly one set in ℱ𝐴 that is

disjoint from 𝑆𝑏 is at least
1

𝑚𝑐+1 .
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Algorithm 2 RecoverBit uses a protocol for (Many vs One)-Set Disjointness(𝑚,𝑛) to
recover Alice’s sets, ℱ𝐴 in Bob’s side.

1: procedure RecoverBit(𝒰 , 𝑠)
2: ℱ𝑎 ← ∅
3: for 𝑖 = 1 to 𝑚𝑐 log𝑚 do
4: let 𝑆𝑏 be a random subset of 𝒰 of size 𝑐1 log𝑚
5: if ExistsDisj(𝑠, 𝑆𝑏) = true then
6: ◁ discovering the set (or union of sets)
7: ◁ in ℱ𝐴 disjoint from 𝑆𝑏

8: 𝑆 ← ∅
9: for 𝑒 ∈ 𝒰 ∖ 𝑆𝑏 do
10: if ExistsDisj(𝑆𝑏 ∪ 𝑒, 𝑠) = false then
11: 𝑆 ← 𝑆 ∪ 𝑒
12: if ∃𝑆 ′ ∈ ℱ𝑎 s.t. 𝑆 ⊂ 𝑆 ′ then ◁ pruning step
13: ℱ𝑎 ← ℱ𝑎 ∖ {𝑆 ′}
14: ℱ𝑎 ← ℱ𝑎 ∪ {𝑆}
15: else if @𝑆 ′ ∈ ℱ𝑎 s.t. 𝑆 ′ ⊂ 𝑆 then
16: ℱ𝑎 ← ℱ𝑎 ∪ {𝑆}
17: return ℱ𝑎

Proof: The probability that 𝑆𝑏 is disjoint from exactly one set in ℱ𝐴 is

Pr(𝑆𝑏 is disjoint from ≥ 1 set in ℱ𝐴)−Pr(𝑆𝑏 is disjoint from ≥ 2 sets in ℱ𝐴)

≥ (
1

2
)𝑐 log𝑚 −

(︂
𝑚

2

)︂
(
1

2
)2𝑐 log𝑚 ≥ 1

𝑚𝑐+1
.

First we prove the first term in the above inequality. For an arbitrary set 𝑆 ∈ ℱ𝐴, since any

element is contained in 𝑆 with probability 1
2
, the probability that 𝑆 is disjoint from 𝑆𝑏 is

(1/2)𝑐 log𝑚.

Pr(𝑆𝑏 is disjoint from at least one set in ℱ𝐴) ≥ 2−𝑐 log𝑚.

Moreover since there exist
(︀
𝑚
2

)︀
pairs of sets in ℱ𝐴, and for each 𝑆1, 𝑆2 ∈ ℱ𝐴, the probability

that 𝑆1 and 𝑆2 are disjoint from 𝑆𝑏 is 𝑚−2𝑐,

Pr(𝑆𝑏 is disjoint from at least two sets in ℱ𝐴) ≤ 𝑚−(2𝑐−2). �

A family of setsℳ is called intersecting if and only if for any sets 𝐴,𝐵 ∈ℳ either both
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𝐴 ∖ 𝐵 and 𝐵 ∖ 𝐴 are non-empty or both 𝐴 ∖ 𝐵 and 𝐵 ∖ 𝐴 are empty; in other words, there

exists no 𝐴,𝐵 ∈ ℳ such that 𝐴 ⊆ 𝐵. Let ℱ𝐴 be a collection of subsets of 𝒰 . We show

that with high probability after testing 𝑂(𝑚𝑐) queries for sufficiently large constant 𝑐, the

RecoverBit algorithm recovers ℱ𝐴 completely if ℱ𝐴 is intersecting. First we show that

with high probability the collection ℱ𝐴 is intersecting.

Observation 2.3.4. Let ℱ𝐴 be a collection of 𝑚 uniformly random subsets of 𝒰 where

|𝒰| ≥ 𝑐 log𝑚. With probability at least 1−𝑚−𝑐/4+2, ℱ𝐴 is an intersecting family.

Proof: The probability that 𝑆1 ⊆ 𝑆2 is (34)
𝑛 and there are at most 𝑚(𝑚− 1) pairs of sets in

ℱ𝐴. Thus with probability at least 1−𝑚2(3
4
)𝑛 ≥ 1− 1/𝑚

𝑐
4
−2, ℱ𝐴 is intersecting. �

Observation 2.3.5. The number of distinct inputs of Alice (collections of random subsets

of 𝒰), that is distinguishable by RecoverBit is Ω(2𝑚𝑛).

Proof: There are 2𝑚𝑛 collections of 𝑚 random subsets of 𝒰 . By Observation 2.3.4, Ω(2𝑚𝑛)

of them are intersecting. Since we can only recover the sets in the input collection and not

their order, the distinct number of input collection that are distinguished by RecoverBit

is Ω(2
𝑚𝑛

𝑚!
) which is Ω(2𝑚𝑛) for 𝑛 ≥ 𝑐 log𝑚. �

By Observation 2.3.4 and only considering the case such that ℱ𝐴 is intersecting, we have the

following lemma.

Lemma 2.3.6. Let ℱ𝐴 be a collection of 𝑚 uniformly random subsets of 𝒰 and suppose

that |𝒰| ≥ 𝑐 log𝑚. After testing at most 𝑚𝑐 queries, with probability at least (1 − 1
𝑚
)𝑝𝑚

𝑐
,

ℱ𝐴 is fully recovered, where 𝑝 is the success rate of protocol I for the (Many vs One)-Set

Disjointness problem.

Proof: By Lemma 2.3.3, for each 𝑆𝑏 ⊂ 𝒰 of size 𝑐1 log𝑚 the probability that 𝑆𝑏 is disjoint

from exactly one set in a random collection of sets ℱ𝐴 is at least 1/𝑚𝑐1+1. Given 𝑆𝑏 is disjoint

from exactly one set in ℱ𝐴, due to symmetry of the problem, the chance that 𝑆𝑏 is disjoint

from a specific set 𝑆 ∈ ℱ𝐴 is at least 1
𝑚𝑐1+2 . After 𝛼𝑚𝑐1+2 log𝑚 queries where 𝛼 is a large

enough constant, for any 𝑆 ∈ ℱ𝐴, the probability that there is not a query 𝑆𝑏 that is only

disjoint from 𝑆 is at most (1− 1
𝑚𝑐1+2 )𝛼𝑚

𝑐1+2 log𝑚 ≤ 𝑒−𝛼 log𝑚 = 1
𝑚𝛼 .

Thus after trying 𝛼𝑚𝑐1+2 log𝑚 queries, with probability at least (1− 1
2𝑚𝛼−1 ) ≥ (1− 1

𝑚
),
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for each 𝑆 ∈ ℱ𝐴 we have at least one query that is only disjoint from 𝑆 (and not any other

sets in ℱ𝐴 ∖ 𝑆).
Once we have a query subset 𝑆𝑏 which is only disjoint from a single set 𝑆 ∈ ℱ𝐴, we can

ask 𝑛−𝑐 log𝑚 queries of size 𝑐1 log𝑚+1 and recover 𝑆. Note that if 𝑆𝑏 is disjoint from more

than one sets in ℱ𝐴 simultaneously, the process (asking 𝑛−𝑐 log𝑚 queries of size 𝑐1 log𝑚+1)

will end up in recovering the union of those sets. Since ℱ𝐴 is an intersecting family with

high probability (Observation 2.3.4), by pruning step in the RecoverBit algorithm we are

guaranteed that at the end of the algorithm, what we returned is exactly ℱ𝐴. Moreover the

total number of queries the algorithm makes is at most

𝑛× (𝛼𝑚𝑐1+2 log𝑚) ≤ 𝛼𝑚𝑐1+3 log𝑚 ≤ 𝑚𝑐

for 𝑐 ≥ 𝑐1 + 4.

Thus after testing 𝑚𝑐 queries, ℱ𝐴 will be recovered with probability at least (1− 1
𝑚
)𝑝𝑚

𝑐

where 𝑝 is the success probability of the protocol I for (Many vs One)-Set Disjointness(𝑚,𝑛).�

Corollary 2.3.7. Let I be a protocol for (Many vs One)-Set Disjointness(𝑚,𝑛) with error

probability 𝑂(𝑚−𝑐) and 𝑠 bits of communication such that 𝑛 ≥ 𝑐 log𝑚 for large enough 𝑐.

Then RecoverBit recovers ℱ𝐴 with constant success probability using 𝑠 bits of communi-

cation.

By Observation 2.3.5, since RecoverBit distinguishes Ω(2𝑚𝑛) distinct inputs with con-

stant probability of success (by Corollary 2.3.7), the size of message sent by Alice, should be

Ω(𝑚𝑛). This proves Theorem 2.3.2.

Proof of Theorem 2.3.1: As we showed earlier, the communication complexity of (Many vs

One)-Set Disjointness is a lower bound for the communication complexity of Set Cover.

Theorem 2.3.2 showed that any protocol for (Many vs One)-Set Disjointness(𝑛, |ℱ𝐴)| with
error probability less than 𝑂(𝑚−𝑐) requires Ω(𝑚𝑛) bits of communication. Thus any single-

round randomized protocol for Set Cover with error probability 𝑂(𝑚−𝑐) requires Ω(𝑚𝑛) bits

of communication. �

Since any 𝑝-pass streaming 𝛼-approximation algorithm for problem P that uses 𝑂(𝑠)
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memory space, is a 𝑝-round two-party 𝛼-approximation protocol for problem P using 𝑂(𝑠𝑝)

bits of communication [88], and by Theorem 2.3.1, we have the following lower bound for

Set Cover problem in the streaming model.

Theorem 2.3.8. Any single-pass randomized streaming algorithm for Set Cover(𝒰 ,ℱ) that

computes a (3/2)-approximate solution with probability Ω(1−𝑚−𝑐) requires Ω(𝑚𝑛) memory

space (assuming 𝑛 ≥ 𝑐1 log𝑚).

2.4. Geometric Set Cover

In this section, we consider the streaming Set Cover problem in the geometric settings. We

present an algorithm for the case where the elements are a set of 𝑛 points in the plane R2

and the 𝑚 sets are either all disks, all axis-parallel rectangles, or all 𝛼-fat triangles (which for

simplicity we call shapes) given in a data stream. As before, the goal is to find the minimum

size cover of points from the given sets. We call this problem the Points-Shapes Set Cover

problem.

Note that, the description of each shape requires 𝑂(1) space and thus the Points-Shapes

Set Cover problem is trivial to be solved in 𝑂(𝑚 + 𝑛) space. In this setting the goal is to

design an algorithm whose space is sub-linear in 𝑂(𝑚 + 𝑛). Here we show that almost the

same algorithm as IterSetCover (with slight modifications) uses ̃︀𝑂(𝑛) space to find an

𝑂(𝜌)-approximate solution of the Points-Shapes Set Cover problem in constant passes.

2.4.1. Preliminaries

A triangle△ is called 𝛼-fat (or simply fat) if the ratio between its longest edge and its height

on this edge is bounded by a constant 𝛼 > 1 (there are several equivalent definitions of 𝛼-fat

triangles).

Definition 2.4.1. Let (𝒰 ,ℱ) be a set system such that 𝒰 is a set of points and ℱ is a

collection of shapes, in the plane R2. The canonical representation of (𝒰 ,ℱ) is a collection ℱ ′

of regions such that the following conditions hold. First, each 𝑆 ′ ∈ ℱ ′ has 𝑂(1) description.

Second, for each 𝑆 ′ ∈ ℱ ′, there exists 𝑆 ∈ ℱ such that 𝑆 ′ ∩ 𝒰 ⊆ 𝑆 ∩ 𝒰 . Finally, for each

𝑆 ∈ ℱ , there exists 𝑐1 sets 𝑆 ′
1, · · · , 𝑆 ′

𝑐1
∈ ℱ ′ such that 𝑆 ∩ 𝒰 = (𝑆 ′

1 ∪ · · · ∪ 𝑆 ′
𝑐1
) ∩ 𝒰 for some

constant 𝑐1.
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The following two results are from [68] which are the formalization of the ideas in [15].

Lemma 2.4.2. (Lemma 4.18 in [68]) Given a set of points 𝒰 in the plane R2 and a parameter

𝑤, one can compute a set ℱ ′
total of 𝑂(|𝒰|𝑤2 log |𝒰|) axis-parallel rectangles with the following

property. For an arbitrary axis-parallel rectangle 𝑆 that contains at most 𝑤 points of 𝒰 , there
exist two axis-parallel rectangles 𝑆 ′

1, 𝑆
′
2 ∈ ℱ ′

total whose union has the same intersection with

𝒰 as 𝑆, i.e., 𝑆 ∩ 𝒰 = (𝑆 ′
1 ∪ 𝑆 ′

2) ∩ 𝒰 .

Lemma 2.4.3. (Theorem 5.6 in [68]) Given a set of points 𝒰 in R2, a parameter 𝑤 and

a constant 𝛼, one can compute a set ℱ ′
total of 𝑂(|𝒰|𝑤3 log2 |𝒰|) regions each having 𝑂(1)

description with the following property. For an arbitrary 𝛼-fat triangle 𝑆 that contains at

most 𝑤 points of 𝒰 , there exist nine regions from ℱ ′
total whose union has the same intersection

with 𝒰 as 𝑆.

Using the above lemmas we get the following lemma.

Lemma 2.4.4. Let 𝒰 be a set of points in R2 and let ℱ be a set of shapes (discs, axis-parallel

rectangles or fat triangles), such that each set in ℱ contains at most 𝑤 points of 𝒰 . Then, in
a single pass over the stream of sets ℱ , one can compute the canonical representation ℱ ′ of

(𝒰 ,ℱ). Moreover, the size of the canonical representation is at most 𝑂(|𝒰|𝑤3 log2 |𝒰|) and
the space requirement of the algorithm is ̃︀𝑂(|ℱ ′|) = ̃︀𝑂(|𝒰|𝑤3).

Proof: For the case of axis-parallel rectangles and fat triangles, first we use Lemma 2.4.2 and

Lemma 2.4.3 to get the set ℱ ′
total offline which require ̃︀𝑂(ℱ ′

total) =
̃︀𝑂(|𝒰|𝑤3 log2 |𝒰|) memory

space. Then by making one pass over the stream of sets ℱ , we can find the canonical

representation ℱ ′ by picking all the sets 𝑆 ′ ∈ ℱ ′
total such that 𝑆 ′ ∩ 𝒰 ⊆ 𝑆 ∩ 𝒰 for some

𝑆 ∈ ℱ . For discs however, we just make one pass over the sets ℱ and keep a maximal subset

ℱ ′ ⊆ ℱ such that for each pair of sets 𝑆 ′
1, 𝑆

′
2 ∈ ℱ ′ their projection on 𝒰 are different, i.e.,

𝑆 ′
1 ∩ 𝒰 ≠ 𝑆 ′

2 ∩ 𝒰 . By a standard technique of Clarkson and Shor [50], it can be proved that

the size of the canonical representation, i.e., |𝑆 ′|, is bounded by 𝑂(|𝒰|𝑤2). Note that this is

just counting the number of discs that contain at most 𝑤 points, namely the at most 𝑤-level

discs. �
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2.4.2. Description of GeomSC Algorithm

The outline of the GeomSC algorithm (shown in Algorithm 3) is very similar to the Iter-

SetCover algorithm presented earlier in Section 2.2.

In the first pass, the algorithm picks all the sets that cover a large number of yet-uncovered

elements. Next, we sample S. Since we have removed all the ranges that have large size, in

the first pass, the size of the remaining ranges restricted to the sample S is small. Therefore

by Lemma 2.4.4, the canonical representation of (S,ℱS) has small size and we can afford to

store it in the memory. We use Lemma 2.4.4 to compute the canonical representation ℱS in

one pass. The algorithm then uses the sets in ℱS to find a cover solS for the points of S.

Next, in one additional pass, the algorithm replaces each set in solS by one of its supersets

in ℱ .
Finally, note that in IterSetCover, we are assuming that the size of the optimal

solution is 𝑂(𝑘). Thus it is enough to stop the iterations once the number of uncovered

elements is less than 𝑘. Then we can pick an arbitrary set for each of the uncovered elements.

This would add only 𝑘 more sets to the solution. Using this idea, we can reduce the size of

the sampled elements down to 𝑐𝜌𝑘(𝑛
𝑘
)𝛿 log𝑚 log 𝑛 which would help us in getting near-linear

space in the geometric setting. Note that the final pass of the algorithm can be embedded

into the previous passes but for the sake of clarity we write it separately.

2.4.3. Analysis

By a similar approach to what we used in Section 2.2 to analyze the pass count and approx-

imation guarantee of IterSetCover algorithm, we can show that the number of passes of

the GeomSC algorithm is 3/𝛿 + 1 (which can be reduced to 3/𝛿 with minor changes), and

the algorithm returns an 𝑂(𝜌/𝛿)-approximate solution. Next, we analyze the space usage

and the correctness of the algorithm. Note that our analysis in this section only works for

𝛿 ≤ 1/4.

Lemma 2.4.5. The algorithm uses ̃︀𝑂(𝑛) space.

Proof: Consider an iteration of the algorithm. The memory space used in the first pass of

each iteration is ̃︀𝑂(𝑛). The size of S is 𝑐𝜌𝑘(𝑛/𝑘)𝛿 log𝑚 log 𝑛 and after the first pass the size
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Algorithm 3 A streaming algorithm for the Points-Shapes Set Cover problem.

1: procedure GeomSC((𝒰 ,ℱ), 𝛿)
2: for 𝑘 ∈ {2𝑖 | 0 ≤ 𝑖 ≤ log 𝑛} in parallel do ◁ 𝑛 = |𝒰|
3: let L← 𝒰 and sol← ∅
4: for 𝑖 = 1 to 1/𝛿 do
5: for all 𝑆 ∈ ℱ do ◁ one pass
6: if |𝑆 ∩ L| ≥ |𝒰|/𝑘 then
7: sol← sol ∪ {𝑆}
8: L← L ∖ 𝑆
9: S← sample of L of size 𝑐𝜌𝑘(𝑛/𝑘)𝛿 log𝑚 log 𝑛

10: ℱS ← CompCanonicalRep(S,ℱ , |S|
𝑘
) ◁ one pass

11: solS ← OfflineSC(S,ℱS)
12: for 𝑆 ∈ ℱ do ◁ one pass
13: if ∃𝑆 ′ ∈ solS s.t. 𝑆 ′ ∩ S ⊆ 𝑆 ∩ S then
14: sol← sol ∪ {𝑆}
15: solS ← solS ∖ {𝑆 ′}
16: L← L ∖ 𝑆
17: for 𝑆 ∈ ℱ do ◁ final pass
18: if 𝑆 ∩ L ̸= ∅ then
19: sol← sol ∪ {𝑆}
20: L← L ∖ 𝑆
21: return smallest sol computed in parallel

of each set is at most |𝒰|/𝑘. Thus using Chernoff bound for each set 𝑆 ∈ ℱ ∖ sol,

Pr |𝑆 ∩ S| > (1 + 2)
|𝒰|
𝑘
× |S||𝒰| ≤ exp

(︂
−4|S|

3𝑘

)︂
≤ (

1

𝑚
)𝑐+1.

Thus, with probability at least 1−𝑚−𝑐 (by the union bound), all the sets that are not picked

in the first pass, cover at most 3|S|/𝑘 = 𝑐𝜌(𝑛/𝑘)𝛿 log𝑚 log 𝑛 elements of S. Therefore, we can

use Lemma 2.4.4 to show that the number of sets in the canonical representation of (S,ℱS)

is at most

𝑂(|S|
(︂
3|S|
𝑘

)︂3

log2 |S|) = 𝑂(𝜌4𝑛 log4𝑚 log6 𝑛),

as long as 𝛿 ≤ 1/4. To store each set in a canonical representation of (S,ℱ) only constant

space is required. Moreover, by Lemma 2.4.4, the space requirement of the second pass is̃︀𝑂(|ℱS|) = ̃︀𝑂(𝑛). Therefore, the total required space is ̃︀𝑂(𝑛) and the lemma follows. �

Theorem 2.4.6. Given a set system defined over a set 𝒰 of 𝑛 points in the plane, and a
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set of 𝑚 ranges ℱ (which are either all disks, axis-parallel rectangles, or fat triangles). Let

𝜌 be the quality of approximation to the offline set-cover solver we have, and let 0 < 𝛿 < 1/4

be an arbitrary parameter.

Setting 𝛿 = 1/4, the algorithm GeomSC with high probability returns an 𝑂(𝜌)-approximate

solution of the optimal set cover solution for the instance (𝒰 ,ℱ). This algorithm uses ̃︀𝑂(𝑛)

space, and performs constant passes over the data.

Proof: As before consider the run of the algorithm in which |OPT| ≤ 𝑘 < 2|OPT|. Let

V be the set of uncovered elements L at the beginning of the iteration and note that the

total number of sets that is picked during the iteration is at most (1 + 𝑐1𝜌)𝑘 where 𝑐1

is the constant defined in Definition 2.4.4. Let 𝒢 denote all possible such covers, that is

𝒢 =
{︀
ℱ ′ ⊆ ℱ

⃒⃒
|ℱ ′| ≤ (1 + 𝑐1𝜌)𝑘

}︀
. Let ℋ be the collection that contains all possible set of

uncovered elements at the end of the iteration, defined as ℋ =
{︀
V ∖⋃︀𝑆∈𝒞 𝑆

⃒⃒
𝒞 ∈ 𝒢

}︀
. Set

𝑝 = (𝑘/𝑛)𝛿, 𝜀 = 1/2 and 𝑞 = 𝑚−𝑐. Since for large enough 𝑐, 𝑐′

𝜀2𝑝
(log |ℋ| log 1

𝑝
+ log 1

𝑞
) ≤

𝑐𝜌𝑘(𝑛/𝑘)𝛿 log𝑚 log 𝑛 = |S| with probability at least 1 − 𝑚−𝑐, by Lemma 2.2.5, the set of

sampled elements S is a relative (𝑝, 𝜀)-approximation sample of (V,ℋ).
Let 𝒞 ⊆ ℱ be the collection of sets picked in the third pass of the algorithm that covers all

elements in S. By Lemma 2.4.4, |𝒞| ≤ 𝑐1𝜌𝑘 for some constant 𝑐1. Since with high probability

S is a relative (𝑝, 𝜀)-approximation sample of (V,ℋ), the number of uncovered elements of

V (or L) after adding 𝒞 to sol is at most 𝜀𝑝|V| ≤ |𝒰|(𝑘/𝑛)𝛿. Thus with probability at least

(1 − 𝑚−𝑐), in each iteration and by adding 𝑂(𝜌𝑘) sets, the number of uncovered elements

reduces by a factor of (𝑛/𝑘)𝛿.

Therefore, after 4 iterations (for 𝛿 = 1/4) the algorithm picks 𝑂(𝜌𝑘) sets and with high

probability the number of uncovered elements is at most 𝑛(𝑘/𝑛)𝛿/𝛿 = 𝑘. Thus, in the final

pass the algorithm only adds 𝑘 sets to the solution sol, and hence the approximation factor

of the algorithm is 𝑂(𝜌). �

Remark 2.4.7. The result of Theorem 2.4.6 is similar to the result of Agarwal and Pan [3]

– except that their algorithm performs 𝑂(log 𝑛) iterations over the data, while the algorithm

of Theorem 2.4.6 performs only a constant number of iterations. In particular, one can use

the algorithm of Agarwal and Pan [3] as the offline solver.
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Figure 2.5.1: (a) shows an example of the communication Set Chasing(4, 3) and (b) is an
instance of the communication Intersection Set Chasing(4, 3).

2.5. Lower bound for Multipass Algorithms

In this section we give lower bound on the memory space of multipass streaming algorithms

for the Set Cover problem. Our main result is Ω(𝑚𝑛𝛿) space for streaming algorithms that

return an optimal solution of the Set Cover problem in 𝑂(1/𝛿) passes for 𝑚 = 𝑂(𝑛). Our

approach is to reduce the communication Intersection Set Chasing(𝑛, 𝑝) problem introduced

by Guruswami and Onak [90] to the communication Set Cover problem.

Consider a communication problem P with 𝑛 players 𝑃1, · · · , 𝑃𝑛. The problem P is a

(𝑛, 𝑟)-communication problem if players communicate in 𝑟 rounds and in each round they

speak in order 𝑃1, · · · , 𝑃𝑛. At the end of the 𝑟th round 𝑃𝑛 should return the solution.

Moreover we assume private randomness and public messages. In what follows we define the

communication Set Chasing and Intersection Set Chasing problems.

Definition 2.5.1. The Set Chasing(𝑛, 𝑝) problem is a (𝑝, 𝑝− 1) communication problem in

which the player 𝑖 has a function 𝑓𝑖 : [𝑛]→ 2[𝑛] and the goal is to compute 𝑓1(𝑓2(· · · 𝑓𝑝({1}) · · · ))
where 𝑓𝑖(𝑆) =

⋃︀
𝑠∈𝑆 𝑓𝑖(𝑠). Figure 2.5.1(a) is an instance of the communication Set Chasing(4, 3).

Definition 2.5.2. The Intersection Set Chasing(𝑛, 𝑝) is a (2𝑝, 𝑝− 1) communication prob-

lem in which the first 𝑝 players have an instance of the Set Chasing(𝑛, 𝑝) problem and the

other 𝑝 players have another instance of the Set Chasing(𝑛, 𝑝) problem. The output of the In-

tersection Set Chasing(𝑛, 𝑝) is 1 if the solutions of the two instances of the Set Chasing(𝑛, 𝑝)

intersect and 0 otherwise. Figure 2.5.1(b) shows an instance of the Intersection Set Chasing

(4, 3). The function 𝑓𝑖 of each player 𝑃𝑖 is specified by a set of directed edges form a copy of

vertices labeled {1, · · · , 𝑛} to another copy of vertices labeled {1, · · · , 𝑛}.

The communication Set Chasing problem is a generalization of the well-known commu-
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Figure 2.5.2: The gadgets used in the reduction of the communication Intersection Set
Chasing problem to the communication Set Cover problem. (a) and (c) shows the construc-
tion of the gadget for players 1 to 𝑝 and (c) and (d) shows the construction of the gadget for
players 𝑝+ 1 to 2𝑝.

nication Pointer Chasing problem in which player 𝑖 has a function 𝑓𝑖 : [𝑛] → [𝑛] and the

goal is to compute 𝑓1(𝑓2(· · · 𝑓𝑝(1) · · · )).
[90] showed that any randomized protocol that solves Intersection Set Chasing(𝑛, 𝑝)

with error probability less than 1/10, requires Ω( 𝑛1+1/(2𝑝)

𝑝16 log3/2 𝑛
) bits of communication where

𝑛 is sufficiently large and 𝑝 ≤ log𝑛
log log𝑛

. In Theorem 2.5.4, we reduce the communication

Intersection Set Chasing problem to the communication Set Cover problem and then give

the first superlinear memory lower bound for the streaming Set Cover problem.

Definition 2.5.3 (Communication Set Cover(𝒰 ,ℱ , 𝑝) Problem). The communication

Set Cover(𝑛, 𝑝) is a (𝑝, 𝑝 − 1) communication problem in which a collection of elements 𝒰
is given to all players and each player 𝑖 has a collection of subsets of 𝒰 , ℱ𝑖. The goal is to

solve Set Cover(𝒰 ,ℱ1 ∪ · · · ∪ ℱ𝑝) using the minimum number of communication bits.

Theorem 2.5.4. Any (1/2𝛿−1) passes streaming algorithm that solves the Set Cover(𝒰 ,ℱ)

optimally with constant probability of error requires ̃︀Ω(𝑚𝑛𝛿) memory space where 𝛿 ≥ log log𝑛
log𝑛

and 𝑚 = 𝑂(𝑛).
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Consider an instance ISC of the communication Intersection Set Chasing(𝑛, 𝑝). We con-

struct an instance of the communication Set Cover(𝒰 ,ℱ , 2𝑝) problem such that solving Set

Cover(𝒰 ,ℱ) optimally determines whether the output of ISC is 1 or not.

The instance ISC consists of 2𝑝 players. Each player 1, · · · , 𝑝 has a function 𝑓𝑖 : [𝑛]→ 2[𝑛]

and each player 𝑝 + 1, · · · , 2𝑝 has a function 𝑓 ′
𝑖 : [𝑛] → 2[𝑛] (see Figure 2.5.1). In ISC, each

function 𝑓𝑖 is shown by a set of vertices 𝑣1𝑖 , · · · , 𝑣𝑛𝑖 and 𝑣1𝑖+1, · · · , 𝑣𝑛𝑖+1 such that there is a

directed edge from 𝑣𝑗𝑖+1 to 𝑣ℓ𝑖 if and only if ℓ ∈ 𝑓𝑖(𝑗). Similarly, each function 𝑓 ′
𝑖 is denoted

by a set of vertices 𝑢1
𝑖 , · · · , 𝑢𝑛

𝑖 and 𝑢1
𝑖+1, · · · , 𝑢𝑛

𝑖+1 such that there is a directed edge from 𝑢𝑗
𝑖+1

to 𝑢ℓ
𝑖 if and only if ℓ ∈ 𝑓 ′

𝑖(𝑗) (see Figure 2.5.4(a) and Figure 2.5.4(b)).

In the corresponding communication Set Cover instance of ISC, we add two elements

in(𝑣𝑗𝑖 ) and out(𝑣𝑗𝑖 ) per each vertex 𝑣𝑗𝑖 where 𝑖 ≤ 𝑝 + 1, 𝑗 ≤ 𝑛. We also add two elements

in(𝑢𝑗
𝑖 ) and out(𝑢𝑗

𝑖 ) per each vertex 𝑢𝑗
𝑖 where 𝑖 ≤ 𝑝+1, 𝑗 ≤ 𝑛. In addition to these elements,

for each player 𝑖, we add an element 𝑒𝑖 (see Figure 2.5.4(c) and Figure 2.5.4(d)).

Next, we define a collection of sets in the corresponding Set Cover instance of ISC. For

each player 𝑃𝑖, where 1 ≤ 𝑖 ≤ 𝑝, we add a single set 𝑆𝑗
𝑖 containing out(𝑣𝑗𝑖+1) and in(𝑣ℓ𝑖 ) for

all out-going edges (𝑣𝑗𝑖+1, 𝑣
ℓ
𝑖 ). Moreover, all 𝑆𝑗

𝑖 sets contain the element 𝑒𝑖. Next, for each

vertex 𝑣𝑗𝑖 we add a set 𝑅𝑗
𝑖 that contains the two corresponding elements of 𝑣𝑗𝑖 , in(𝑣

𝑗
𝑖 ) and

out(𝑣𝑗𝑖 ). In Figure 2.5.4(c), the red rectangles denote 𝑅-type sets and the curves denote

𝑆-type sets for the first half of the players.

Similarly to the sets corresponding to players 1 to 𝑝, for each player 𝑃𝑝+𝑖 where 1 ≤ 𝑖 ≤ 𝑝,

we add a set 𝑆𝑗
𝑝+𝑖 containing in(𝑢𝑗

𝑖 ) and out(𝑢ℓ
𝑖+1) for all in-coming edges (𝑢ℓ

𝑖+1, 𝑢
𝑗
𝑖 ) of 𝑢

𝑗
𝑖

(denoting 𝑓 ′−1
𝑖 (𝑗)). The set 𝑆𝑗

𝑝+𝑖 contains the element 𝑒𝑝+𝑖 too. Next, for each vertex 𝑢𝑗
𝑖 we

add a set 𝑇 𝑗
𝑝+𝑖 that contains the two corresponding elements of 𝑢𝑗

𝑖 , in(𝑢
𝑗
𝑖 ) and out(𝑢𝑗

𝑖 ). In

Figure 2.5.4(d), the red rectangles denote 𝑇 -type sets and the curves denote 𝑆-type sets for

the second half of the players.

At the end, we merge 𝑣𝑖1s and 𝑢𝑖
1s as shown in Figure 2.5.3. After merging the corre-

sponding sets of 𝑣𝑗1s (𝑅
1
1, · · · , 𝑅𝑛

1 ) and the corresponding sets of 𝑢𝑗
1s (𝑇

1
1 , · · · , 𝑇 𝑛

1 ), we call

the merged sets 𝑇 1
1 , · · · , 𝑇 𝑛

1 .

The main claim is that if the solution of ISC is 1 then the size of an optimal solution of

its corresponding Set Cover instance SC is (2𝑝+ 1)𝑛+ 1; otherwise, it is (2𝑝+ 1)𝑛+ 2.
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Figure 2.5.3: In (b) two Set Chasing instances merge in their first set of vertices and (c)
shows the corresponding gadgets of these merged vertices in the communication Set Cover.
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Figure 2.5.4: In (𝑎), path 𝑄 is shown with black dashed arcs and (𝑏) shows the correspond-
ing cover of path 𝑄.

Lemma 2.5.5. The size of any feasible solution of SC is at least (2𝑝+ 1)𝑛+ 1.

Proof: For each player 𝑖 (1 ≤ 𝑖 ≤ 𝑝), since out(𝑣𝑗𝑖+1)s are only covered by 𝑅
𝑗
𝑖+1 and 𝑆𝑗

𝑖 , at least

𝑛 sets are required to cover out(𝑣1𝑖+1), · · · , out(𝑣𝑛𝑖+1). Moreover for player 𝑃𝑝, since in(𝑣
𝑗
𝑝+1)s

are only covered by 𝑅𝑗
𝑝+1 and 𝑒𝑝 is only covered by 𝑆1

𝑝 , all 𝑛+1 sets 𝑅1
𝑝+1, · · · , 𝑅𝑛

𝑝+1, 𝑆
1
𝑝 must

be selected in any feasible solution of SC.

Similarly for each player 𝑝+𝑖 (1 ≤ 𝑖 ≤ 𝑝), since in(𝑢𝑗
𝑖 )s are only covered by 𝑇

𝑗
𝑖 and 𝑆𝑗

𝑝+𝑖, at

least 𝑛 sets are required to cover in(𝑢1
𝑖 ), · · · , in(𝑢𝑛

𝑖 ). Moreover, considering 𝑢1
𝑝+1, · · · , 𝑢𝑛

𝑝+1,

since in(𝑢𝑗
𝑝+1) is only covered by 𝑇 𝑗

𝑝+1, all 𝑛 sets 𝑇 1
𝑝+1, · · · , 𝑇 𝑛

𝑝+1 must be selected in any

feasible solution of SC.

All together, at least (2𝑝+1)𝑛+1 sets should be selected in any feasible solution of SC.�

Lemma 2.5.6. Suppose that the solution of ISC is 1. Then the size of an optimal solution

of its corresponding Set Cover instance is exactly (2𝑝+ 1)𝑛+ 1.

Proof: By Lemma 2.5.5, the size of an optimal solution of S is at least (2𝑝 + 1)𝑛 + 1.

Here we prove that (2𝑝 + 1)𝑛 + 1 sets suffice when the solution of ISC is 1. Let 𝑄 =
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𝑣1𝑝+1, 𝑣
𝑗𝑝
𝑝 , . . . , 𝑣𝑗22 , 𝑣𝑗11 , 𝑢ℓ1

1 , 𝑢
ℓ2
2 , . . . , 𝑢

ℓ𝑝
𝑝 , 𝑢1

𝑝+1 be a path in ISC such that 𝑗1 = ℓ1 (since the solu-

tion of ISC is 1 such a path exists). The corresponding solution to 𝑄 can be constructed as

follows (See Figure 2.5.4):

∙ Pick 𝑆1
𝑝 and all 𝑅𝑗

𝑝+1s (𝑛+ 1 sets).

∙ For each 𝑣𝑗𝑖𝑖 in 𝑄 where 1 < 𝑖 ≤ 𝑝, pick the set 𝑆𝑗𝑖
𝑖−1 in the solution. Moreover, for each

such 𝑖 pick all sets 𝑅𝑗
𝑖 where 𝑗 ̸= 𝑗𝑖 (𝑛(𝑝− 1) sets).

∙ For 𝑣𝑗11 (or 𝑢ℓ1
1 ), pick the set 𝑆𝑗1

𝑝+1. Moreover, pick all sets 𝑇 𝑗
1 where 𝑗 ̸= 𝑗1 (𝑛 sets).

∙ For each 𝑢ℓ𝑖
𝑖 in 𝑄 where 1 < 𝑖 ≤ 𝑝, pick the set 𝑆ℓ𝑖

𝑝+𝑖 in the solution. Moreover, for each

such 𝑖 pick all sets 𝑇 ℓ
𝑖 where ℓ ̸= ℓ𝑖 (𝑛(𝑝− 1) sets).

∙ Pick all 𝑇 𝑗
𝑝+1s (𝑛 sets).

It is straightforward to see that the solution constructed above is a feasible solution. �

Lemma 2.5.7. Suppose that the size of an optimal solution of the corresponding Set Cover

instance of ISC, SC, is (2𝑝+ 1)𝑛+ 1. Then the solution of ISC is 1.

Proof: As we proved earlier in Lemma 2.5.5, any feasible solution of SC picks𝑅1
𝑝+1, · · · , 𝑅𝑛

𝑝+1, 𝑆
1
𝑝

and 𝑇 1
𝑝+1, · · · , 𝑇 𝑛

𝑝+1. Moreover, we proved that for each 1 ≤ 𝑖 < 𝑝, at least 𝑛 sets should

be selected from 𝑅1
𝑖+1, · · · , 𝑅𝑛

𝑖+1, 𝑆
1
𝑖 , · · · , 𝑆𝑛

𝑖 . Similarly, for each 1 ≤ 𝑖 ≤ 𝑝, at least 𝑛 sets

should be selected from 𝑇 1
𝑖 , · · · , 𝑇 𝑛

𝑖 , 𝑆
1
𝑝+𝑖, · · · , 𝑆𝑛

𝑝+1. Thus if a feasible solution of SC, OPT,

is of size (2𝑝+ 1)𝑛+ 1, it has exactly 𝑛 sets from each specified group.

Next we consider the first half of the players and second half of the players separately.

Consider 𝑖 such that 1 ≤ 𝑖 < 𝑝. Let 𝑆𝑗1
𝑖 , · · · , 𝑆𝑗𝑘

𝑖 be the sets picked in the optimal solution

(because of 𝑒𝑖 there should be at least one set of form 𝑆𝑗
𝑖 in OPT). Since each out(𝑣𝑗𝑖+1)

is only covered by 𝑆𝑗
𝑖 and 𝑅𝑗

𝑖+1, for all 𝑗 /∈ {𝑗1, . . . , 𝑗𝑘}, 𝑅𝑗
𝑖+1 should be selected in OPT.

Moreover, for all 𝑗 ∈ {𝑗1, · · · , 𝑗𝑘}, 𝑅𝑗
𝑖+1 should not be contained in OPT (otherwise the size

of OPT would be larger than (2𝑝 + 1)𝑛 + 1). Consider 𝑗 ∈ {𝑗1, . . . , 𝑗𝑘}. Since 𝑅𝑗
𝑖+1 is not

in OPT, there should be a set 𝑆ℓ
𝑖+1 selected in OPT such that in(𝑣𝑗𝑖+1) is contained in 𝑆ℓ

𝑖+1.

Thus by considering 𝑆𝑖s in a decreasing order and using induction, if 𝑆𝑗
𝑖 is in OPT then 𝑣𝑗𝑖+1

is reachable form 𝑣1𝑝+1.

Next consider a set 𝑆𝑗
𝑝+𝑖 that is selected in OPT (1 ≤ 𝑖 ≤ 𝑝). By similar argument,

𝑇 𝑗
𝑖 is not in OPT and there exists a set 𝑆ℓ

𝑝+𝑖−1 (or 𝑆ℓ
1 if 𝑖 = 1) in OPT such that out(𝑢𝑗

𝑖 )
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is contained in 𝑆ℓ
𝑝+𝑖−1. Let 𝑢ℓ1

𝑖+1, · · · , 𝑢ℓ𝑘
𝑖+1 be the set of vertices whose corresponding out

elements are in 𝑆𝑗
𝑝+𝑖. Then by induction, there exists an index 𝑟 such that 𝑣𝑟1 is reachable

from 𝑣1𝑝+1 and 𝑢𝑟
1 is also reachable from all 𝑢ℓ1

𝑖+1, · · · , 𝑢ℓ𝑘
𝑖+1. Moreover, the way we constructed

the instance SC guarantees that all sets 𝑆1
2𝑝, · · · , 𝑆𝑛

2𝑝 contains out(𝑢
1
𝑝+1). Hence if the size of

an optimal solution of SC is (2𝑝+ 1)𝑛+ 1 then the solution of ISC is 1. �

Corollary 2.5.8. Intersection Set Chasing(𝑛, 𝑝) returns 1 if and only if the size of optimal

solution of its corresponding Set Cover instance (as described here) is (2𝑝+ 1)𝑛+ 1.

Observation 2.5.9. Any streaming algorithm for Set Cover, ℐ, that in ℓ passes solves the

problem optimally with a probability of error err and consumes 𝑠 memory space, solves the

corresponding communication Set Cover problem in ℓ rounds using 𝑂(𝑠ℓ2) bits of communi-

cation with probability error err.

Proof: Starting from player 𝑃1, each player runs ℐ over its input sets and once 𝑃𝑖 is done

with its input, she sends the working memory of ℐ publicly to other players. Then next

player starts the same routine using the state of the working memory received from the

previous player. Since ℐ solves the Set Cover instance optimally after ℓ passes using 𝑂(𝑠)

space with probability error err, applying ℐ as a black box we can solve P in ℓ rounds using

𝑂(𝑠ℓ2) bits of communication with probability error err. �

Proof of Theorem 2.5.4: By Observation 2.5.9, any ℓ-round 𝑂(𝑠)-space algorithm that solves

streaming Set Cover (𝒰 ,ℱ) optimally can be used to solve the communication Set Cover(𝒰 ,ℱ , 𝑝)

problem in ℓ rounds using 𝑂(𝑠ℓ2) bits of communication. Moreover, by Corollary 2.5.8, we

can decide the solution of the communication Intersection Set Chasing(𝑛, 𝑝) by solving its

corresponding communication Set Cover problem. Note that while working with the corre-

sponding Set Cover instance of Intersection Set Chasing(𝑛, 𝑝), all players know the collection

of elements 𝒰 and each player can construct its collection of sets ℱ𝑖 using 𝑓𝑖 (or 𝑓 ′
𝑖).

However, by a result of [90], we know that any protocol that solves the communication

Intersection Set Chasing(𝑛, 𝑝) problem with probability of error less than 1/10, requires

Ω( 𝑛1+1/(2𝑝)

𝑝16 log3/2 𝑛
) bits of communication. Since in the corresponding Set Cover instance of the

communication Intersection Set Chasing(𝑛, 𝑝), |𝒰| = (2𝑝 + 1) × 2𝑛 + 2𝑝 = 𝑂(𝑛𝑝) and

|ℱ| ≤ (2𝑝 + 1)𝑛 + 2𝑝𝑛 = 𝑂(𝑛𝑝), any (𝑝 − 1)-pass streaming algorithm that solves the
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Set Cover problem optimally with a probability of error at most 1/10, requires Ω( 𝑛1+1/(2𝑝)

𝑝18 log3/2 𝑛
)

bits of communication. Then using Observation 2.5.9, since 𝛿 ≥ log log𝑛
log𝑛

, any ( 1
2𝛿
− 1)-pass

streaming algorithm of Set Cover that finds an optimal solution with error probability less

than 1/10, requires ̃︀Ω(|ℱ| · |𝒰|𝛿) space. �

2.6. Lower Bound for Sparse Set Cover in Multiple Passes

In this part we give a stronger lower bound for the instances of the streaming Set Cover

problem with sparse input sets. An instance of the Set Cover problem is 𝑠-Sparse Set Cover,

if for each set 𝑆 ∈ ℱ we have |𝑆| ≤ 𝑠. We can us the same reduction approach described

earlier in Section 2.5 to show that any (1/2𝛿− 1)-pass streaming algorithm for 𝑠-Sparse Set

Cover requires Ω(|ℱ|𝑠) memory space if 𝑠 < |𝒰|𝛿 and ℱ = 𝑂(𝒰). To prove this, we need

to explain more details of the approach of [90] on the lower bound of the communication

Intersection Set Chasing problem. They first obtained a lower bound for Equal Pointer

Chasing(𝑛, 𝑝) problem in which two instances of the communication Pointer Chasing(𝑛, 𝑝)

are given and the goal is to decide whether these two instances point to a same value or not;

𝑓𝑝(· · · 𝑓1(1) · · · ) = 𝑓 ′
𝑝(· · · 𝑓 ′

1(1) · · · ).

Definition 2.6.1 (𝑟-non-injective functions). A function 𝑓 : [𝑛] → [𝑛] is called 𝑟-non-

injective if there exists 𝐴 ⊆ [𝑛] of size at least 𝑟 and 𝑏 ∈ [𝑛] such that for all 𝑎 ∈ 𝐴,

𝑓(𝑎) = 𝑏.

Definition 2.6.2 (Pointer Chasing Problem). Pointer Chasing(𝑛, 𝑝) is a (𝑝, 𝑝− 1) com-

munication problem in which the player 𝑖 has a function 𝑓𝑖 : [𝑛] → [𝑛] and the goal is to

compute 𝑓1(𝑓2(· · · 𝑓𝑝(1) · · · )).

Definition 2.6.3 (Equal Limited Pointer Chasing Problem). Equal Pointer Chasing(𝑛, 𝑝)

is a (2𝑝, 𝑝 − 1) communication problem in which the first 𝑝 players have an instance of the

Pointer Chasing(𝑛, 𝑝) problem and the other 𝑝 players have another instance of the Pointer

Chasing(𝑛, 𝑝) problem. The output of the Equal Pointer Chasing(𝑛, 𝑝) is 1 if the solutions

of the two instances of Pointer Chasing(𝑛, 𝑝) have the same value and 0 otherwise. Further-

more in another variant of pointer chasing problem, Equal Limited Pointer Chasing(𝑛, 𝑝, 𝑟),

if there exists 𝑟-non-injective function 𝑓𝑖, then the output is 1. Otherwise, the output is the
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same as the value in Equal Pointer Chasing(𝑛, 𝑝).

For a boolean communication problem P, OR𝑡(P) is defined to be OR of 𝑡 instances of P

and the output of OR𝑡(P) is true if and only if the output of any of the 𝑡 instances is true.

Using a direct sum argument, [90] showed that the communication complexity of OR𝑡(Equal

Limited Pointer Chasing(𝑛, 𝑝, 𝑟)) is 𝑡 times the communication complexity of Equal Limited

Pointer Chasing(𝑛, 𝑝, 𝑟).

Lemma 2.6.4 ([90]). Let 𝑛, 𝑝, 𝑡 and 𝑟 be positive integers such that 𝑛 ≥ 5𝑝, 𝑡 ≤ 𝑛
4
and

𝑟 = 𝑂(log 𝑛). Then the amount of bits of communication to solve OR𝑡(Equal Limited

Pointer Chasing(𝑛, 𝑝, 𝑟)) with error probability less than 1/3 is Ω( 𝑡𝑛
𝑝16 log𝑛

)−𝑂(𝑝𝑡2).

Lemma 2.6.5 ([90]). Let 𝑛, 𝑝, 𝑡 and 𝑟 be positive integers such that 𝑡2𝑝𝑟𝑝−1 < 𝑛/10. Then

if there is a protocol that solves Intersection Set Chasing(𝑛, 𝑝) with probability of error less

than 1/10 using 𝐶 bits of communication, there is a protocol that solves OR𝑡(Equal Lim-

ited Pointer Chasing(𝑛, 𝑝, 𝑟)) with probability of error at most 2/10 using 𝐶 + 2𝑝 bits of

communication.

Consider an instance of OR𝑡(Equal Limited Pointer Chasing (𝑛, 𝑝, 𝑟)) in which 𝑡 ≤ 𝑛𝛿, 𝑟 =

log(𝑛), 𝑝 = 1
2𝛿
− 1 where 1

𝛿
= 𝑜(log 𝑛). By Lemma 2.6.4, the required amount of bits of com-

munication to solve the instance with constant success probability is ̃︀Ω(𝑡𝑛). Then,applying
Lemma 2.6.5, to solve the corresponding Intersection Set Chasing, ̃︀Ω(𝑡𝑛) bits of communi-

cation is required.

In the reduction from OR𝑡(Equal Limited Pointer Chasing(𝑛, 𝑝, 𝑟)) to Intersection Set

Chasing(𝑛, 𝑝) (proof of Lemma 2.6.5), the 𝑟-non-injective property is preserved. In other

words, in the corresponding Intersection Set Chasing instance each player’s functions 𝑓𝑖 :

[𝑛] → 2[𝑛] is union of 𝑡 𝑟-non-injective functions 𝑓𝑖(𝑎) := 𝑓𝑖,1(𝑎) ∪ · · · ∪ 𝑓𝑖,𝑡(𝑎)
4. Given that

none of the 𝑓𝑖,𝑗 functions is 𝑟-non-injective, the corresponding Set Cover instance will have

sets of size at most 𝑟𝑡 (𝑆-type sets are of size at most 𝑡 for 1 ≤ 𝑖 ≤ 𝑝 and of size at most 𝑟𝑡 for

𝑝+1 ≤ 𝑖 ≤ 2𝑝). Since 𝑟 = 𝑂(log 𝑛), the corresponding Set Cover instance is ̃︀𝑂(𝑡)-sparse. As

we showed earlier in the reduction from Intersection Set Chasing to Set Cover, the number

4The Intersection Set Chasing instance is obtained by overlaying the 𝑡 instances of Equal Pointer
Chasing(𝑛, 𝑝, 𝑟). To be more precise, the function of player 𝑖 in instance 𝑗 is 𝜋𝑖,𝑗 ∘ 𝑓𝑖,𝑗 ∘ 𝜋−1

𝑖+1,𝑗 (𝜋 are
randomly chosen permutation functions) and then stack the functions on top of each other.
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of elements (and sets) in the corresponding Set Cover instance is 𝑂(𝑛𝑝). Thus we have the

following result for 𝑠-Sparse Set Cover problem.

Theorem 2.6.6. For 𝑠 ≤ |𝒰|𝛿, any streaming algorithm that solves 𝑠-Sparse Set Cover(𝒰 ,ℱ)

optimally with probability of error less than 1/10 in ( 1
2𝛿
− 1) passes requires ̃︀Ω(|ℱ|𝑠) memory

space for ℱ = 𝑂(𝒰).
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Chapter 3

Streaming Fractional Set Cover

3.1. Introduction

The LP relaxation of Set Cover (called SetCover-LP) is a continuous relaxation of the prob-

lem where each set 𝑆 ∈ ℱ can be selected “fractionally”, i.e., assigned a number 𝑥𝑆 from

[0, 1], such that for each element 𝑒 its “fractional coverage”
∑︀

𝑆:𝑒∈𝑆 𝑥𝑆 is at least 1, and the

sum
∑︀

𝑆 𝑥𝑆 is minimized.

Despite the significant developments in streaming Set Cover [67, 42, 61, 97, 20, 29, 17],

the results for the fractional variant of the problem are still unsatisfactory. To the best of

our knowledge, it is not known whether there exists an efficient and accurate algorithm for

this problem that uses only a logarithmic (or even a poly logarithmic) number of passes.

This state of affairs is perhaps surprising, given the many recent developments on fast LP

solvers [119, 174, 124, 12, 11, 167]. To the best of our knowledge, the only prior results on

streaming Packing/Covering LPs were presented in [6], which studied the LP relaxation of

Maximum Matching.

3.1.1. Our Results

In this chapter, we present the first (1 + 𝜀)-approximation algorithm for the fractional

Set Cover in the streaming model with constant number of passes. Our algorithm performs

𝑝 passes over the data stream and uses ̃︀𝑂(𝑚𝑛𝑂( 1
𝑝𝜀

) + 𝑛) memory space to return a (1 + 𝜀)

approximate solution of the LP relaxation of Set Cover for positive parameter 𝜀 ≤ 1/2.
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We emphasize that similarly to the previous work on variants of Set Cover in streaming

setting, our result also holds for the edge arrival stream in which the pair of (𝑆𝑖, 𝑒𝑗) (edges)

are stored in the read-only repository and all elements of a set are not necessarily stored

consecutively.

3.1.2. Other Related Work

Set Cover. The Set Cover problem was first studied in the streaming model in [155],

which presented an 𝑂(log 𝑛)-approximation algorithm in 𝑂(log 𝑛) passes and using ̃︀𝑂(𝑛)

space. This approximation factor and the number of passes can be improved to 𝑂(log 𝑛)

by adapting the greedy algorithm thresholding idea presented in [56] . In the low space

regime ( ̃︀𝑂(𝑛) space), Emek and Rosen [67] designed a deterministic single pass algorithm

that achieves an 𝑂(
√
𝑛)-approximation. This is provably the best guarantee that one can

hope for in a single pass even considering randomized algorithms. Later Chakrabarti and

Wirth [42] generalized this result and provided a tight trade-off bounds for Set Cover in

multiple passes. More precisely, they gave an 𝑂(𝑝𝑛1/(𝑝+1))-approximate algorithm in 𝑝-

passes using ̃︀𝑂(𝑛) space and proved that this is the best possible approximation ratio up to

a factor of poly(𝑝) in 𝑝 passes and ̃︀𝑂(𝑛) space.

A different line of work started by Demaine et al. [61] focused on designing a “low” ap-

proximation algorithm (between Θ(1) and Θ(log 𝑛)) in the smallest possible amount of space.

In contrast to the results in the ̃︀𝑂(𝑛) space regime, [61] showed that randomness is neces-

sary: any constant pass deterministic algorithm requires Ω(𝑚𝑛) space to achieve constant

approximation guarantee. Further, they provided a 𝑂(4𝑝 log 𝑛)-approximation algorithm

that makes 𝑂(4𝑝) passes and uses ̃︀𝑂(𝑚𝑛1/𝑝 + 𝑛). Later Har-Peled et al. [97] improved the

algorithm to a 2𝑝-pass 𝑂(𝑝 log 𝑛)-approximation with memory space ̃︀𝑂(𝑚𝑛1/𝑝 + 𝑛)1. The

result was further improved by Bateni et al. where they designed a 𝑝-pass algorithm that

returns a (1 + 𝜀) log 𝑛-approximate solution using 𝑚𝑛Θ(1/𝑝) memory [29].

As for the lower bounds, Assadi et al. [20] presented a lower bound of Ω(𝑚𝑛/𝛼) memory

for any single pass streaming algorithm that computes a 𝛼-approxime solution. For the prob-

lem of estimating the size of an optimal solution they prove Ω(𝑚𝑛/𝛼2) memory lower bound.

1In streaming model, space complexity is of interest and one can assume exponentital computation power.
In this case the algorithms of [61, 97] save a factor of log 𝑛 in the approximation ratio.
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For both settings, they complement the results with matching tight upper bounds. Further-

more, Assadi [17] proved a lower bound on the space complexity of streaming algorithms for

Set Cover with multiple passes which is tight up to polylog factors: any 𝛼-approximation

algorithm for Set Cover requires Ω(𝑚𝑛1/𝛼) space, even if it is allowed polylog(𝑛) passes

over the stream, and even if the sets are arriving in a random order in the stream. Fur-

ther, [17] provided the matching upper bound: a (2𝛼 + 1)-pass algorithm that computes a

(𝛼+ 𝜀)-approximate solution in ̃︀𝑂(𝑚𝑛1/𝛼

𝜀2
+ 𝑛

𝜀
) memory (assuming exponential computational

resource).

Maximum Coverage. The first result on streaming Max 𝑘-Cover showed how to com-

pute a (1/4)-approximate solution in one pass using ̃︀𝑂(𝑘𝑛) space [155]. It was improved

by Badanidiyuru et al. [22] to a (1/2 − 𝜀)-approximation algorithm that requires ̃︀𝑂(𝑛/𝜀)

space. Moreover, their algorithm works for a more general problem of Submodular Max-

imization with cardinality constraints. This result was later generalized for the problem

of non-monotone submodular maximization under constraints beyond cardinality [46]. Re-

cently, McGregor and Vu [131] and Bateni et al. [29] independently obtained single pass

(1 − 1/𝑒 − 𝜀)-approximation with ̃︀𝑂(𝑚/𝜀2) space. On the lower bound side, [131] showed

a lower bound of ̃︀Ω(𝑚) for constant pass algorithm whose approximation is better than

(1 − 1/𝑒). Moreover, [17] proved that any streaming (1 − 𝜀)-approximation algorithm of

Max 𝑘-Cover in polylog(𝑛) passes requires ̃︀Ω(𝑚/𝜀2) space even on random order streams

and the case 𝑘 = 𝑂(1). This bound is also complemented by the ̃︀𝑂(𝑚𝑘/𝜀2) and ̃︀𝑂(𝑚/𝜀3)

algorithms of [29, 131]. For more detailed survey of the results on streaming Max 𝑘-Cover

refer to [29, 131, 17, 107].

Covering/Packing LPs. The study of LPs in streaming model was first discussed in the

work of Ahn and Guha [6] where they used multiplicative weights update (MWU) based tech-

niques to solve the LP relaxation of Maximum (Weighted) Matching problem. They used

the fact that MWU returns a near optimal fractional solution with small size support: first

they solve the fractional matching problem, then solve the actual matching only considering

the edges in the support of the returned fractional solution.
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Our algorithm is also based on the MWU method, which is one of the main key techniques

in designing fast approximation algorithms for Covering and Packing LPs [150, 173, 76, 16].

We note that the MWU method has been previously studied in the context of streaming and

distributed algorithms, leading to efficient algorithms for a wide range of graph optimization

problems [6, 23, 7].

For a related problem, covering integer LP (covering ILP), Assadi et al. [20] designed

a one pass streaming algorithm that estimates the optimal solution of {min c⊤x | A⊤x ≥
b,x ∈ {0, 1}𝑛} within a factor of 𝛼 using ̃︀𝑂(𝑚𝑛

𝛼2 · 𝑏max +𝑚+ 𝑛 · 𝑏max) where 𝑏max denotes the

largest entry of b. In this problem, they assume that columns of A, constriants, are given

one by one in the stream.

In a different regime, [65] studied approximating the feasibility LP in streaming model

with additive approximation. Their algorithm performs two passes and is most efficient when

the input is dense.

3.1.3. Our Techniques

Preprocessing. Let 𝑘 denote the value of the optimal solution. The algorithm starts by

picking a uniform fractional vector (each entry of value 𝑂( 𝑘
𝑚
)) which covers all frequently

occurring elements (those appearing in Ω(𝑚
𝑘
) sets), and updates the uncovered elements in

one pass. This step considerably reduces the memory usage as the uncovered elements have

now lower occurrence (roughly 𝑚
𝑘
). Note that we do not need to assume the knowledge of

the correct value 𝑘: in parallel we try all powers of (1 + 𝜀), denoting our guess by ℓ.

Multiplicative Weight Update (MWU). To cover the remaining elements, we employ

the MWU framework and show how to implement it in the streaming setting. In each

iteration of MWU, we have a probability distribution p corresponding to the constraints

(elements) and we need to satisfy the average covering constraint. More precisely, we need

an oracle that assigns values to 𝑥𝑆 for each set 𝑆 so that
∑︀

𝑆 𝑝𝑆𝑥𝑆 ≥ 1 subject to ‖x‖1 ≤ ℓ,

where 𝑝𝑆 is the sum of probabilities of the elements in the set 𝑆. Then, the algorithm

needs to update p according to the amount each element has been covered by the oracle’s

solution. The simple greedy realization of the oracle can be implemented in the streaming
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setting efficiently by computing all 𝑝𝑆 while reading the stream in one pass, then choosing

the heaviest set (i.e., the set with largest 𝑝𝑆) and setting its 𝑥𝑆 to ℓ. This approach works,

except that the number of rounds 𝑇 required by the MWU framework is large. In fact,

𝑇 = Ω(𝜑 log𝑛
𝜀2

), where 𝜑 is the width parameter (the maximum amount an oracle solution

may over-cover an element), which is Θ(ℓ) in this naïve realization. Next, we show how to

decrease 𝑇 in two steps.

Step 1. A first hope would be that there is a more efficient implementation of the oracle

which gives a better width parameter. Nonetheless, no matter how the oracle is implemented,

if all sets in ℱ contain a fixed element 𝑒, then the width is inevitably Ω(ℓ). This observation

implies that we need to work with a different set system that has small width, but at the

same time, it has the same objective value as of the optimal solution. Consequently, we

consider the extended set system where we replace ℱ with all subsets of the sets in ℱ . This
extended system preserves the optimality, and under this system we may avoid over-covering

elements and obtain 𝑇 = 𝑂(log 𝑛) (for constant 𝜀).

In order to turn a solution in our set system into a solution in the extended set system

with small width, we need to remove the repeated elements from the sets in the solution

so that every covered element appears exactly once, and thereby getting constant width.

However, as a side effect, this reduces the total weight of the solution (
∑︀

𝑆∈sol 𝑝𝑆𝑥𝑆), and

thus the average covering constraint might not be satisfied anymore. In fact, we need to

come up with a guarantee that, on one hand, is preserved under the pruning step, and on

the other hand, implies that the solution has large enough total weight

Therefore, to fulfill the average constraint under the pruning step, the oracle must instead

solve the maximum coverage problem: given a budget, choose sets to cover the largest (frac-

tional) amount of elements. We first show that this problem can be solved approximately

via the MWU framework using the simple oracle that picks the heaviest set, but this MWU

algorithm still requires 𝑇 passes over the data. To improve the number of passes, we perform

element sampling and apply the MWU algorithm to find an approximate maximum cover-

age of a small number of sampled elements, whose subproblem can be stored in memory.

Fortunately, while the number of fractional solutions to maximum coverage is unbounded,
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by exploiting the structure of the solutions returned by the MWU method, we can limit the

number of plausible solutions of this oracle and approximately solve the average constraint,

thereby reducing the space usage to ̃︀𝑂(𝑚) for a 𝑂( log𝑛
𝜀2

)-pass algorithm.

Step 2. To further reduce the number of required passes, we observe that the weights of

the constraints change slowly. Thus, in a single pass, we can sample the elements for multiple

rounds in advance, and then perform rejection (sub-)sampling to obtain an unbiased set of

samples for each subsequent round. This will lead to a streaming algorithm with 𝑝 passes

and 𝑚𝑛𝑂(1/𝑝) space.

Extension. We also extend our result to handle general covering LPs. More specifically,

in the LP relaxation of Set Cover, maximize c⊤x subject to Ax ≥ b and x ≥ 0, A has

entries from {0, 1} whereas entries of b and c are all ones. If the non-zero entries instead

belong to a range [1,𝑀 ], we increase the number of sampled elements by poly(𝑀) to handle

discrepancies between coefficients, leading to a poly(𝑀)-multiplicative overhead in the space

usage.

3.2. MWU Framework of the Streaming Algorithm for

Fractional Set Cover

In this section, we present a basic streaming algorithm that computes a (1+ 𝜀)-approximate

solution of the LP-relaxation of Set Cover for any 𝜀 > 0 via the MWU framework. We will,

in the next section, improve it into an efficient algorithm that achieves the claimed 𝑂(𝑝)

passes and ̃︀𝑂(𝑚𝑛1/𝑝) space complexity.

SetCover-LP ◁ Input: 𝒰 ,ℱ

minimize
∑︁
𝑆∈ℱ

𝑥𝑆

subject to
∑︁
𝑆:𝑒∈𝑆

𝑥𝑆 ≥ 1 ∀𝑒 ∈ 𝒰

𝑥𝑆 ≥ 0 ∀𝑆 ∈ ℱ

Figure 3.2.1: LP relaxation of Set Cover.
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Algorithm 4 FracSetCover returns a (1 + 𝜀)-approximate solution of SetCover-LP.

1: procedure FracSetCover(𝜀)
2: ◁ finds a feasible (1 + 𝜀)-approximate solution in 𝑂( log𝑛

𝜀
) iterations

3: for ℓ ∈ {(1 + 𝜀/3)𝑖 | 0 ≤ 𝑖 ≤ log1+𝜀/3 𝑛} in parallel do
4: xℓ ← FeasibilityTest(ℓ, 𝜀/3)
5: ◁ returns a solution of objective value at most (1 + 𝜀/3)ℓ when ℓ ≥ 𝑘.

6: return 𝑥ℓ* where ℓ* ← min{ℓ : 𝑥ℓ is not INFEASIBLE}

Let 𝒰 and ℱ be the ground set of elements and the collection of sets, respectively, and

recall that |𝒰| = 𝑛 and |ℱ| = 𝑚. Let x ∈ R𝑚 be a vector indexed by the sets in ℱ , where
𝑥𝑆 denotes the value assigned to the set 𝑆. Our goal is to compute an approximate solution

to the LP in Figure 3.2.1. Throughout the analysis we assume 𝜀 ≤ 1/2, and ignore the case

where some element never appears in any set, as it is easy to detect in a single pass that no

cover is valid. For ease of reading, we write ̃︀𝑂 and ̃︀Θ to hide polylog(𝑚,𝑛, 1
𝜀
) factors.

Outline of the algorithm. Let 𝑘 denote the optimal objective value, and 0 < 𝜀 ≤ 1/2 be

a parameter. The outline of the algorithm is shown in FracSetCover (Algorithm 4). This

algorithm makes calls to the subroutine FeasibilityTest, that given a parameter ℓ, with

high probability, either returns a solution of objective value at most (1+𝜀/3)ℓ, or detects that

the optimal objective value exceeds ℓ. Consequently, we may search for the right value of ℓ by

considering all values in {(1+𝜀/3)𝑖 | 0 ≤ 𝑖 ≤ log1+𝜀/3 𝑛}. As for some value of ℓ it holds that

𝑘 ≤ ℓ ≤ 𝑘(1 + 𝜀/3), we obtain a solution of size (1 + 𝜀/3)ℓ ≤ (1 + 𝜀/3)(1 + 𝜀/3)𝑘 ≤ (1 + 𝜀)𝑘

which gives an approximation factor (1 + 𝜀). This whole process of searching for 𝑘 increases

the space complexity of the algorithm by at most a multiplicative factor of log1+𝜀/3 𝑛 ≈ 3 log𝑛
𝜀

.

The FeasibilityTest subroutine employs the multiplicative weights update method

(MWU) which is described next.

3.2.1. Preliminaries of the MWU method for solving covering LPs

In the following, we describe the MWU framework. The claims presented here are standard

results of the MWU method. For more details, see e.g. Section 3 of [16]. Note that we

introduce the general LP notation as it simplifies the presentation later on.

Let Ax ≥ b be a set of linear constraints, and let 𝒫 , {x ∈ R𝑚 : x ≥ 0} be the polytope
of the non-negative orthant. For a given error parameter 0 < 𝛽 < 1, we would like to solve
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an approximate version of the feasibility problem by doing one of the following:

∙ Compute x̂ ∈ 𝒫 such that A𝑖x̂− 𝑏𝑖 ≥ −𝛽 for every constraint 𝑖.

∙ Correctly report that the system Ax ≥ b has no solution in 𝒫 .

The MWU method solves this problem assuming the existence of the following oracle that

takes a distribution p over the constraints and finds a solution x̂ that satisfies the constraints

on average over p.

Definition 3.2.1. Let 𝜑 ≥ 1 be a width parameter and 0 < 𝛽 < 1 be an error parameter.

A (1, 𝜑)-bounded (𝛽/3)-approximate oracle is an algorithm that takes as input a distribution

p and does one of the following:

∙ Returns a solution x̂ ∈ 𝒫 satisfying

– p⊤Ax̂ ≥ p⊤b− 𝛽/3, and

– A𝑖x̂− 𝑏𝑖 ∈ [−1, 𝜑] for every constraint 𝑖.

∙ Correctly reports that the inequality p⊤Ax ≥ p⊤b has no solution in 𝒫 .

The MWU algorithm for solving covering LPs involves 𝑇 rounds. It maintains the (non-

negative) weight of each constraint in Ax ≥ b, which measures how much it has been

satisfied by the solutions chosen so far. Let w𝑡 denote the weight vector at the beginning

of round 𝑡, and initialize the weights to w1 , 1. Then, for rounds 𝑡 = 1, . . . , 𝑇 , define

the probability vector p𝑡 proportional to those weights w𝑡, and use the oracle above to

find a solution x𝑡. If the oracle reports that the system p⊤Ax ≥ p⊤b is infeasible, the

MWU algorithm also reports that the original system Ax ≥ b is infeasible, and terminates.

Otherwise, define the cost vector incurred by x𝑡 as m𝑡 , 1
𝜑
(Ax−b), then update the weights

so that 𝑤𝑡+1
𝑖 , 𝑤𝑡

𝑖(1−𝛽𝑚𝑡
𝑖/6) and proceed to the next round. Finally, the algorithm returns

the average solution x = 1
𝑇

∑︀𝑇
𝑡=1 x

𝑡.

The MWU theorem (e.g., Theorem 3.5 of [16]) shows that 𝑇 = 𝑂(𝜑 log𝑛
𝛽2 ) is sufficient to

correctly solve the problem, yielding A𝑖x̂ − 𝑏𝑖 ≥ −𝛽 for every constraint, where 𝑛 is the

number of constraints. In particular, the algorithm requires 𝑇 calls to the oracle.
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Theorem 3.2.2 (MWU Theorem [16]). For every 0 < 𝛽 < 1, 𝜑 ≥ 1 the MWU algorithm

either solves the Feasibility-Covering-LP problem up to an additive error of 𝛽 (i.e., solves

A𝑖x−𝑏𝑖 ≥ −𝛽 for every 𝑖) or correctly reports that the LP is infeasible, making only 𝑂(𝜑 log𝑛
𝛽2 )

calls to a (1, 𝜑)-bounded 𝛽/3-approximate oracle of the LP.

3.2.2. Semi-streaming MWU-based algorithm for factional Set Cover

Setting up our MWU algorithm. As described in the overview, we wish to solve, as

a subroutine, the decision variant of SetCover-LP known as Feasibility-SC-LP given in

Figure 3.2.2a, where the parameter ℓ serves as the guess for the optimal objective value.

Feasibility-SC-LP ◁ Input: 𝒰 ,ℱ , ℓ∑︁
𝑆∈ℱ

𝑥𝑆 ≤ ℓ∑︁
𝑆:𝑒∈𝑆

𝑥𝑆 ≥ 1 ∀𝑒 ∈ 𝒰

𝑥𝑆 ≥ 0 ∀𝑆 ∈ ℱ

(a) LP relaxation of Feasibility Set Cover.

Feasibility-Covering-LP ◁ Input: A,b, c, ℓ

c⊤x ≤ ℓ (objective value)

Ax ≥ b (covering)

x ≥ 0 (non-negativity)

(b) LP relaxation of Feasibility Covering.

Figure 3.2.2: LP relaxations of the feasibility variant of set cover and general covering
problems.

To follow the conventional notation for solving LPs in the MWU framework, consider

the more standard form of covering LPs denoted as Feasibility-Covering-LP given in Fig-

ure 3.2.2b. For our purpose, A𝑛×𝑚 is the element-set incidence matrix indexed by 𝒰 × ℱ ;
that is, 𝐴𝑒,𝑆 = 1 if 𝑒 ∈ 𝑆, and 𝐴𝑒,𝑆 = 0 otherwise. The vectors b and c are both all-ones

vectors indexed by 𝒰 and ℱ , respectively. We emphasize that, unconventionally for our

system Ax ≥ b, there are 𝑛 constraints (i.e. elements) and 𝑚 variables (i.e. sets).

Employing the MWU approach for solving covering LPs, we define the polytope

𝒫ℓ , {x ∈ R𝑚 : c⊤x ≤ ℓ and x ≥ 0}.

Observe that by applying the MWU algorithm to this polytope 𝒫 and constraints Ax ≥ b,

we obtain a solution x ∈ 𝒫ℓ such that A𝑒

(︁
x

1−𝛽

)︁
≥ 𝑏𝑒−𝛽

1−𝛽
= 1 = 𝑏𝑒, where A𝑒 denotes the row

of A corresponding to 𝑒. This yields a (1 +𝑂(𝜀))-approximate solution for 𝛽 = 𝑂(𝜀).

Unfortunately, we cannot implement the MWU algorithm on the full input under our
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streaming context. Therefore, the main challenge is to implement the following two subtasks

of the MWU algorithm in the streaming settings. First, we need to design an oracle that

solves the average constraint in the streaming setting. Moreover, we need to be able to

efficiently update the weights for the subsequent rounds.

Covering the common elements. Before we proceed to applying the MWU framework,

we add a simple first step to our implementation of FeasibilityTest (Algorithm 5) that

will greatly reduce the amount of sapce required in implementing the MWU algorithm.

This can be interpreted as the fractional version of Set Sampling described in [61]. In our

subroutine, we partition the elements into the common elements that occur more frequently,

which will be covered if we simply choose a uniform vector solution, and the rare elements

that occur less frequently, for which we perform the MWU algorithm to compute a good

solution. In one pass we can find all frequently occurring elements by counting the number

of sets containing each element. The amount of required space to perform this task is

𝑂(𝑛 log𝑚).

we call an element that appears in at least 𝑚
𝛼ℓ

sets common, and we call it rare otherwise,

where 𝛼 = Θ(𝜀). Since we are aiming for a (1 + 𝜀)-approximation, we can define xcmn as a

vector whose all entries are 𝛼ℓ
𝑚
. The total cost of xcmn is 𝛼ℓ and all common elements are

covered by xcmn. Thus, throughout the algorithm we may restrict our attention to the rare

elements.

Our goal now is to construct an efficient MWU-based algorithm, which finds a solution

xrare covering the rare elements, with objective value at most ℓ
1−𝛽
≤ (1 + 𝜀 − 𝛼)ℓ. We

note that our implementation does not explicitly maintain the weight vector w𝑡 described in

Section 3.2.1, but instead updates (and normalizes) its probability vector p𝑡 in every round.

3.2.3. First Attempt: Simple Oracle and Large Width

A greedy solution for the oracle. We implement the oracle for MWU algorithm such

that 𝜑 = ℓ, and thus requiring Θ(ℓ log 𝑛/𝛽2) iterations (Theorem 3.2.2). In each iteration,

we need an oracle that finds some solution x ∈ 𝒫ℓ satisfying p⊤Ax ≥ p⊤b− 𝛽/3, or decides

that no solution in 𝒫ℓ satisfies p⊤Ax ≥ p⊤b.
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Algorithm 5 A generic implementation of FeasibilityTest. Its performance depends on
the implementations of Oracle, UpdateProb. We will investigate different implementa-
tions of Oracle.
1: procedure FeasibilityTest(ℓ, 𝜀)
2: 𝛼, 𝛽 ← 𝜀

3
, pcurr ← 1𝑚×1◁ the initial prob. vector for the MWU algorithm on 𝒰

3: ◁ compute a cover of common elements in one pass
4: xcmn ← 𝛼ℓ

𝑚
· 1𝑚×1, freq← 0𝑛×1

5: for all set 𝑆 in the stream do
6: for all element 𝑒 ∈ 𝑆 do
7: freq𝑒 ← freq𝑒 + 1
8: if 𝑒 appears in more than 𝑚

𝛼ℓ
sets (i.e. freq𝑒 >

𝑚
𝛼ℓ
) then ◁ common element

9: 𝑝curr𝑒 ← 0

10: pcurr ← pcurr

‖pcurr‖ ◁ pcurr represents the current prob. vector

11: xtotal ← 0𝑚×1

12: ◁ multiplicative weight update algorithm for covering rare elements
13: for 𝑖 = 1 to 𝑇 do
14: ◁ solve the corresp. oracle of MWU and decide if the solution is feasible
15: try x← Oracle(pcurr, ℓ,ℱ)
16: xtotal ← xtotal + x ◁ in one pass, update p according to x
17: z← 0𝑛×1

18: for all set 𝑆 in the stream do
19: for all element 𝑒 ∈ 𝑆 do
20: 𝑧𝑒 ← 𝑧𝑒 + 𝑥𝑆

21: if (pcurr)⊤z < 1− 𝛽/3 then ◁ detect infeasible solutions returned by Oracle
22: report INFEASIBLE

23: pcurr ← UpdateProb(pcurr, z)

24: xrare ← xtotal

(1−𝛽)𝑇
◁ scaled up the solution to cover rare elements

25: return xcmn + xrare

Observe that p⊤Ax is maximized when we place value ℓ on 𝑥𝑆* where 𝑆* achieves the

maximum value 𝑝𝑆 ,
∑︀

𝑒∈𝑆 𝑝𝑒. Further, for our application, b = 1 so p⊤b = 1. Our im-

plementation HeavySetOracle of Oracle given in Algorithm 6 below is a deterministic

greedy algorithm that finds a solution based on this observation. As A𝑒x ≤ ‖x‖1 ≤ ℓ,

HeavySetOracle implements a (1, ℓ)-bounded (𝛽/3)-approximate oracle. Therefore, the

implementation of FeasibilityTest with HeavySetOracle computes a solution of ob-

jective value at most (𝛼 + 1
1−𝛽

)ℓ < (1 + 𝜀
3
)ℓ when ℓ ≥ 𝑘 as promised.

Finally, we track the space usage which concludes the complexities of the current version

of our algorithm: it only stores vectors of length 𝑚 or 𝑛, whose entries each requires a

logarithmic number of bits, yielding the following theorem.
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Algorithm 6 HeavySetOracle computes 𝑝𝑆 of every set given the set system in a stream
or stored memory, then returns the solution x that optimally places value ℓ on the corre-
sponding entry. It reports INFEASIBLE if there is no sufficiently good solution

1: procedure HeavySetOracle(p, ℓ,ℱ)
2: compute 𝑝𝑆 for all 𝑆 ∈ ℱ while reading the set system
3: 𝑆* ← argmax𝑆∈ℱ𝑝𝑆
4: if 𝑝𝑆 < (1− 𝛽/3)/ℓ then
5: report INFEASIBLE

6: x← 0𝑛×1, 𝑥𝑆 ← ℓ
7: return x

Theorem 3.2.3. There exists a streaming algorithm that w.h.p. returns a (1+𝜀)-approximate

fractional solution of SetCover-LP(𝒰 ,ℱ) in 𝑂(𝑘 log𝑛
𝜀2

) passes and using ̃︀𝑂(𝑚 + 𝑛) memory

for any positive 𝜀 ≤ 1/2. The algorithm works in both set arrival and edge arrival streams.

The presented algorithm suffers from large number of passes over the input. In particular,

we are interested in solving the fractional Set Cover in constant number of passes using

sublinear space. To this end, we first reduce the required number of rounds in MWU by a

more complicated implementation of Oracle.

3.3. Max Cover Problem and its Application to Width

Reduction

In this section, we improve the described algorithm in the previous section and prove the

following result.

Theorem 3.3.1. There exists a streaming algorithm that w.h.p. returns a (1+𝜀)-approximate

fractional solution of SetCover-LP(𝒰 ,ℱ) in 𝑝 passes and uses ̃︀𝑂(𝑚𝑛𝑂(1/𝑝𝜀)+𝑛) memory for

any 2 ≤ 𝑝 ≤ polylog(𝑛) and 0 < 𝜀 ≤ 1/2. The algorithm works in both set arrival and edge

arrival streams.

Recall that in implementing Oracle, we must find a solution x of total size ‖x‖1 ≤ ℓ

with a sufficiently large weight p⊤Ax. Our previous implementation chooses only one good

entry 𝑥𝑆 and places its entire budget ℓ on this entry. As the width of the solution is roughly

the maximum amount an element is over-covered by x, this implementation induces a width

of ℓ. In this section, we design an oracle that returns a solution in which the budget is

distributed more evenly among the entries of x to reduce the width. To this end, we design
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an implementation of Oracle of the MWU approach based on the Max ℓ-Cover problem

(whose precise definition will be given shortly). The solution to our Max ℓ-Cover aids in

reducing the width of our Oracle solution to a constant, so the required number of rounds

of the MWU algorithm decreases to 𝑂( log𝑛
𝜀2

), independent of ℓ. Note that, if the objective

value of an optimal solution of Set Cover(𝒰 ,ℱ) is ℓ, then a solution of width 𝑜(ℓ) may

not exist, as shown in Lemma 3.3.2. This observation implies that we need to work with

a different set system. Besides having small width, an optimal solution of the Set Cover

instance on the new set system should have the same objective value of the optimal solution

of Set Cover(𝒰 ,ℱ).

Lemma 3.3.2. There exists a set system in which, under the direct application of the MWU

framework in computing a (1 + 𝜀)-approximate solution, induces width 𝜑 = Ω(𝑘), where 𝑘

is the optimal objective value. Moreover, the exists a set system in which the approach from

the previous section (which handles the frequent and rare elements differently) has width

𝜑 = Θ(𝑛) = Θ(
√︀

𝑚/𝜀).

Proof: For the first claim, we consider an arbitrary set system, then modify it by adding a

common element 𝑒 to all sets. Recall that the MWU framework returns an average of the

solutions from all rounds. Thus there must exist a round where the oracle returns a solution

x of size ‖x‖1 = Θ(𝑘). For the added element 𝑒, this solution has
∑︀

𝑆:𝑒∈𝑆 𝑥𝑆 =
∑︀

𝑆∈ℱ 𝑥𝑆 =

Θ(𝑘), inducing width 𝜑 = Ω(𝑘).

For the second claim, consider the following set system with 𝑘 =
√︀

𝑚/𝜀 and 𝑛 = 2𝑘+ 1.

For 𝑖 = 1, . . . , 𝑘, let 𝑆𝑖 = {𝑒𝑖, 𝑒𝑘+𝑖, 𝑒2𝑘+1}, whereas the remaining 𝑚 − 𝑘 sets are arbitrary

subsets of {𝑒1, . . . , 𝑒𝑘}. Observe that 𝑒𝑘+𝑖 is contained only in 𝑆𝑖, so 𝑥𝑆𝑖
= 1 in any valid set

cover. Consequently the solution x where 𝑥𝑆1 = · · · = 𝑥𝑆𝑘
= 1 and 𝑥𝑆𝑘+1

= · · · = 𝑥𝑆2𝑘+1
= 0

forms the unique (fractional) minimum set cover of size 𝑘 =
√︀
𝑚/𝜀. Next, recall that an

element is considered rarely occurring if it appears in at most 𝑚
𝛼ℓ

> 𝑚
𝜀𝑘

sets. As 𝑒𝑘+1, . . . , 𝑒2𝑘

each only occurs once, and 𝑒2𝑘+1 only appears in 𝑘 =
√︀

𝑚/𝜀 = 𝑚
𝜀𝑘

sets, these 𝑘 + 1 elements

are deemed rare and thus handled by the MWU framework.

The solution computed by the MWU framework satisfies
∑︀

𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1− 𝛽 for every 𝑒,

and in particular, for each 𝑒 ∈ {𝑒𝑘+1, . . . , 𝑒2𝑘}. Therefore, the average solution places a total
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weight of at least (1 − 𝛽) · Θ(𝑘) on 𝑥𝑆1 , . . . , 𝑥𝑆𝑘
, so there must exist a round that places at

least the same total weight on these sets. However, these 𝑘 sets all contain 𝑒2𝑘+1, yielding∑︀
𝑆:𝑒2𝑘+1∈𝑆 𝑥𝑆 ≥ (1− 𝛽) ·Θ(𝑘) = Ω(𝑘), implying a width of Ω(𝑘) = Ω(

√︀
𝑚/𝜀). �

Extended set system. First, we consider the extended set system (𝒰 , ℱ̆), where ℱ̆ is the

collection containing all subsets of sets in ℱ ; that is,

ℱ̆ , {𝑅 : 𝑅 ⊆ 𝑆 for some 𝑆 ∈ ℱ}.

It is straightforward to see that the optimal objective value of Set Cover over (𝒰 , ℱ̆) is

equal to that of (𝒰 ,ℱ): we only add subsets of the original sets to create ℱ̆ , and we may

replace any subset from ℱ̆ in our solution with its original set in ℱ . Moreover, we may

prune any collection of sets from ℱ into a collection from ℱ̆ of the same cardinality so that,

this pruned collection not only covers the same elements, but also each of these elements is

covered exactly once. This extended set system is defined for the sake of analysis only: we

will never explicitly handle an exponential number of sets throughout our algorithm.

We define ℓ-cover as a collection of sets of total weight ℓ. Although the pruning of an

ℓ-cover reduces the width, the total weight p⊤Ax of the solution will decrease. Thus, we

consider the weighted constraint of the form

∑︁
𝑒∈𝒰

(︃
𝑝𝑒 ·min{1,

∑︁
𝑆:𝑒∈𝑆

𝑥𝑆}
)︃
≥ 1;

that is, we can only gain the value 𝑝𝑒 without any multiplicity larger than 1. The problem of

maximizing the left hand side is known as the weighted max coverage problem: for a param-

eter ℓ, find an ℓ-cover such that the total value 𝑝𝑒’s of the covered elements is maximized.

3.3.1. The Maximum Coverage Problem

In the design of our algorithm, we consider the weighted Max 𝑘-Cover problem, which is

closely related to Set Cover. Extending upon the brief description given earlier, we fully

specify the LP relaxation of this problem. In the weighted Max 𝑘-Cover(𝒰 ,ℱ , ℓ,p), given
a ground set of elements 𝒰 , a collection of sets ℱ over the ground set, a budget parameter
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MaxCover-LP ◁ Input: 𝒰 ,ℱ , ℓ,p

maximize
∑︁
𝑒∈𝒰

𝑝𝑒𝑧𝑒

subject to
∑︁
𝑆:𝑒∈𝑆

𝑥𝑆 ≥ 𝑧𝑒 ∀𝑒 ∈ 𝒰∑︁
𝑆∈ℱ

𝑥𝑆 = ℓ

0 ≤ 𝑧𝑒 ≤ 1 ∀𝑒 ∈ 𝒰
𝑥𝑆 ≥ 0 ∀𝑆 ∈ ℱ

Figure 3.3.1: LP relaxation of weighted Max 𝑘-Cover.

ℓ, and a weight vector p, the goal is to return ℓ sets in ℱ whose weighted coverage, the

total weight of all covered elements, is maximized. Moreover, since we are aiming for a

fractional solution of Set Cover, we consider the LP relaxation of weighted Max 𝑘-Cover,

MaxCover-LP (see Figure 3.3.1); in this LP relaxation, 𝑧𝑒 denotes the fractional amount

that an element is covered, and hence is capped at 1.

As an intermediate goal, we aim to compute an approximate solution of MaxCover-LP,

given that the optimal solution covers all elements in the ground set, or to correctly detect

that no solution has weighted coverage of more than (1− 𝜀). In our application, the vector

p is always a probability vector: p ≥ 0 and
∑︀

𝑒∈𝒰 𝑝𝑒 = 1. We make the following useful

observation.

Observation 3.3.3. Let 𝑘 be the value of an optimal solution of SetCover-LP(𝒰 ,ℱ) and
let p be an arbitrary probability vector over the ground set. Then there exists a fractional

solution of MaxCover-LP(𝒰 ,ℱ , ℓ,p) whose weighted coverage is one if ℓ ≥ 𝑘.

𝛿-integral near optimal solution of MaxCover-LP. Our plan is to solve MaxCover-

LP over a randomly projected set system, and argue that with high probability this will

result in a valid Oracle. Such an argument requires an application of the union bound

over the set of solutions, which is generally of unbounded size. To this end, we consider a

more restrictive domain of 𝛿-integral solutions: this domain has bounded size, but is still

guaranteed to contain a sufficiently good solution.

Definition 3.3.4 (𝛿-integral solution). A fractional solution x𝑛×1 of an LP is 𝛿-integral
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Algorithm 7 MaxCoverOracle returns a fractional ℓ-cover with weighted coverage at
least 1− 𝛽/3 w.h.p. if ℓ ≥ 𝑘. It provides no guarantee on its behavior if ℓ < 𝑘.

1: procedure MaxCoverOracle((𝒰 ,ℱ), ℓ)
2: x← solution returned by MWU using HeavySetOracle on MaxCover-LP
3: return x

if 1
𝛿
· x is an integral vector. That is, for each 𝑖 ∈ [𝑛], 𝑥𝑖 = 𝑣𝑖𝛿 where each 𝑣𝑖 is an integer.

Next we claim thatMaxCoverOracle given in Algorithm 7 below, which is the MWU

algorithm with HeavySetOracle for solving MaxCover-LP, results in a 𝛿-integral solu-

tion.

Lemma 3.3.5. Consider a MaxCover-LP with the optimal objective value OPT (where

the weights of elements form a probability vector). There exists a Θ(
𝜀2
MC

log𝑛
)-integral solution

of MaxCover-LP whose objective value is at least (1 − 𝜀MC)OPT. In particular, if an

optimal solution covers all elements 𝒰 (ℓ ≥ 𝑘), MaxCoverOracle returns a solution

whose weighted coverage is at least 1− 𝜀MC in polynomial time.

Proof: Let (x*, z*) denote the optimal solution of valueOPT to MaxCover-LP, which implies

that ‖x*‖1 ≤ ℓ and Ax* ≥ z*. Consider the following covering LP: minimize ‖x‖1 subject

to Ax ≥ z* and x ≥ 0. Clearly there exists an optimal solution of objective value ℓ, namely

x*. This covering LP may be solved via the MWU framework. In particular, we may use the

oracle that picks one set 𝑆 with maximum weight (as maintained in the MWU framework)

and places its entire budget on 𝑥𝑆. For an accurate guess ℓ′ = Θ(ℓ) of the optimal value, this

algorithm returns an average of 𝑇 = Θ( ℓ
′ log𝑛
𝜀2
MC

) = Θ( ℓ log𝑛
𝜀2
MC

) oracle solutions. Observe that the

outputted solution x is of the form 𝑥𝑆 = 𝑣𝑆ℓ
′

𝑇
= 𝑣𝑆𝛿 where 𝑣𝑆 is the number of rounds in which

𝑆 is chosen by the oracle, and 𝛿 = ℓ′

𝑇
=

ℓ′𝜀2
MC

ℓ log𝑛
= Θ(

𝜀2
MC

log𝑛
). In other words, x is ( 𝜀

2
MC

log𝑛
)-integral.

By Theorem 3.2.2, x satisfies Ax ≥ (1 − 𝜀MC)z
*. Then in MaxCover-LP, the solution

(x, (1−𝜀MC)z*) yields coverage at least p⊤((1−𝜀MC)z*) = (1−𝜀MC)p⊤z* = (1−𝜀MC)OPT.�

Pruning a fractional ℓ-cover. In our analysis, we aim to solve the Set Cover problem

under the extended set system. We claim that any solution x with coverage z in the actual

set system may be turned into a pruned solution x̆ in the extended set system that provides

the same coverage z, but satisfies the strict equality
∑︀

𝑆∈ℱ̆ :𝑒∈𝑆 𝑥̆𝑆 = 𝑧𝑒. Since 𝑧𝑒 ≤ 1, the

pruned solution satisfies the condition for an oracle with width one.
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Algorithm 8 The Prune subroutine lifts a solution in ℱ to a solution in ℱ̆ with the same
MaxCover-LP objective value and width 1. The subroutine returns z, the amount by which
members of ℱ̆ cover each element. The actual pruned solution x̆ may be computed but has
no further use in our algorithm and thus not returned.

1: procedure Prune(x)
2: x̆← 0|ℱ̆ |×1, z← 0𝑛×1 ◁ maintain the pruned solution and its coverage amount
3: for all 𝑆 ∈ ℱ do
4: 𝑆 ← 𝑆
5: while 𝑥𝑆 > 0 do
6: 𝑟 ← min{𝑥𝑆,min𝑒∈𝑆(1− 𝑧𝑒)} ◁ weight to be moved from 𝑥𝑆 to 𝑥̆𝑆

7: 𝑥𝑆 ← 𝑥𝑆 − 𝑟, 𝑥𝑆 ← 𝑥𝑆 + 𝑟 ◁ move weight to the pruned solution
8: for all 𝑒 ∈ 𝑆 do
9: 𝑧𝑒 ← 𝑧𝑒 + 𝑟 ◁ update coverage accordingly

10: 𝑆 ← 𝑆 ∖ {𝑒 ∈ 𝑆 : 𝑧𝑒 = 1} ◁ remove 𝑒 with 𝑧𝑒 = 1 from 𝑆

11: return z

Lemma 3.3.6. A fractional ℓ-cover x of (𝒰 ,ℱ) can be converted, in polynomial time, to a

fractional ℓ-cover x̆ of (𝒰 , ℱ̆) such that for each element 𝑒, its coverage 𝑧𝑒 =
∑︀

𝑆∈ℱ̆ :𝑒∈𝑆 𝑥̆𝑆 =

min(
∑︀

𝑆:𝑒∈𝑆 𝑥𝑆, 1).

Proof: Consider the algorithm Prune in Algorithm 8. As we pick a valid amount 𝑟 ≤ 𝑥𝑆 to

move from 𝑥𝑆 to 𝑥̆𝑆 at each step, x̆ must be an ℓ-cover (in the extended set system) when

Prune finishes. Observe that if
∑︀

𝑆:𝑒∈𝑆 𝑥𝑆 < 1 then 𝑒 will never be removed from any 𝑆,

so 𝑧𝑒 is increased by 𝑥𝑆 for every 𝑆, and thus 𝑧𝑒 =
∑︀

𝑆:𝑒∈𝑆 𝑥𝑆. Otherwise, the condition

𝑟 ≤ 1− 𝑧𝑒 ensures that 𝑧𝑒 stops increasing precisely when it reaches 1. Each 𝑆 takes up to

𝑛 + 1 rounds in the while loop as one element 𝑒 ∈ 𝑆 is removed at the end of each round.

There are at most 𝑚 sets, so the algorithm must terminate (in polynomial time).

We note that in Section 3.3.4, we need to adjust Prune to instead achieves the condition

𝑧𝑒 = min(A𝑒x, 1) where entries of A are arbitrary non-negative values. We simply make the

following modifications: choose 𝑟 ← min(𝑥𝑆,min𝑒∈𝑆
1−𝑧𝑒
𝐴𝑒,𝑆

) and update 𝑧𝑒 ← 𝑧𝑒 + 𝑟 ·𝐴𝑒,𝑆, and

the same proof follows. �

Remark that to update the weights in the MWU framework, it is sufficient to have the

coverage
∑︀

𝑆∈ℱ̆ :𝑒∈𝑆 𝑥̆𝑆, which are the 𝑧𝑒’s returned by Prune; the actual solution x̆ is not

necessary. Observe further that our MWU algorithm can still use x instead of x̆ as its

solution because x has no worse coverage than x̆ in every iteration, and so does the final,
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average solution. Lastly, notice that the coverage z returned by Prune has the simple

formula 𝑧𝑒 = min(
∑︀

𝑆:𝑒∈𝑆 𝑥𝑆, 1). That is, we introduce Prune to show an existence of x̆,

but will never run Prune in our algorithm.

3.3.2. Sampling-Based Oracle for Fractional Max Coverage

In the previous section, we simply needed to compute the values 𝑝𝑆’s in order to construct a

solution for the Oracle. Here as we aim to bound the width of Oracle, our new task is to

find a fractional ℓ-cover x whose weighted coverage is at least 1−𝛽/3. The element sampling

technique, which is also known from prior work in streaming Set Cover and Max 𝑘-Cover,

is to sample a few elements and solve the problem over the sampled elements only. Then,

by applying the union bound over all possible candidate solutions, it is shown that w.h.p.

a nearly optimal cover of the sampled elements also covers a large fraction of the whole

ground set. This argument applies to the aforementioned problems precisely because there

are standard ways of bounding the number of all integral candidate solutions (e.g. ℓ-covers).

However, in the fractional setting, there are infinitely many solutions. Consequently, we

employ the notion of 𝛿-integral solutions where the number of such solutions is bounded.

In Lemma 3.3.6, we showed that there always exists a 𝛿-integral solution to MaxCover-LP

whose coverage is at least a (1−𝜀MC)-fraction of an optimal solution. Moreover, the number

of all possible solutions is bounded by the number of ways to divide the budget ℓ into ℓ/𝛿

equal parts of value 𝛿 and distribute them (possibly with repetition) among 𝑚 entries:

Observation 3.3.7. The number of feasible 𝛿-integral solutions to MaxCover-LP(𝒰 ,ℱ , ℓ,p)
is 𝑂(𝑚ℓ/𝛿) for any multiple ℓ of 𝛿.

Next, we design our algorithm using the element sampling technique: we show that a

(1 − 𝛽/3)-approximate solution of MaxCover-LP can be computed using the projection of

all sets in ℱ over a set of elements of size Θ( ℓ log𝑛 log𝑚𝑛
𝛽4 ) picked according to p. For every

fractional solution (x, z) and subset of elements 𝒱 ⊆ 𝒰 , let 𝒞𝒱(x) ,
∑︀

𝑒∈𝒱 𝑝𝑒𝑧𝑒 denote the

coverage of elements in 𝒱 where 𝑧𝑒 = min(1,
∑︀

𝑆:𝑒∈𝑆 𝑥𝑆). We may omit the subscript 𝒱 in

𝒞𝒱 if 𝒱 = 𝒰 .
The following lemma, which is essentially an extension of the Element Sampling lemma

of [61] for our application, MaxCover-LP, shows that a (1− 𝜀MC)-approximate ℓ-cover over
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a set of sampled elements of size Θ(ℓ log 𝑛 log𝑚𝑛/𝛾4) w.h.p. has a weighted coverage of

at least (1 − 2𝛾)(1 − 𝜀MC) if there exists a fractional ℓ-cover whose coverage is 1. Thus,

choosing 𝜀MC = 𝛾 = 𝛽/9 yields the desired guarantee for MaxCoverOracle, leading to

the performance given in Theorem 3.3.9.

Lemma 3.3.8. Let 𝜀MC and 𝛾 be parameters. Consider the MaxCover-LP(𝒰 ,ℱ , ℓ,p) with
optimal solution of value OPT, and let ℒ be a multi-set of 𝑠 = Θ(ℓ log 𝑛 log(𝑚𝑛)/𝛾4) ele-

ments sampled independently at random according to the probability vector p. Let xsol be a

(1 − 𝜀MC)-approximate Θ( 𝛾2

log𝑛
)-integral ℓ-cover over the sampled elements. Then with high

probability, 𝒞(xsol) ≥ (1− 2𝛾)(1− 𝜀MC)OPT.

Proof: Consider the MaxCover-LP(𝒰 ,ℱ , ℓ,p) with optimal solution (xOPT, zOPT) of value

OPT, and let xsol be a (1 − 𝜀MC)-approximate Θ( 𝛾2

log𝑛
)-integral ℓ-cover over the sampled

elements and zsol be its corresponding coverage vector. Denote the sampled elements with

ℒ = {𝑒1, · · · , 𝑒𝑠}. Observe that by defining each X𝑖 as a random variable that takes the value

𝑧OPT𝑒𝑖
with probability 𝑝𝑒𝑖 and 0 otherwise, the expected value of X =

∑︀𝑠
𝑖=1 X𝑖 is

E[X] =
𝑠∑︁

𝑖=1

E[X𝑖] = 𝑠
∑︁
𝑒∈𝒰

𝑝𝑒 · 𝑧OPT𝑒 = 𝑠 · 𝒞(xOPT) = 𝑠 ·OPT.

Let 𝜏 = 𝑠(1− 𝛾)OPT. Since X𝑖 ∈ [0, 1], by applying Chernoff bound on X, we obtain

Pr 𝒞ℒ(xOPT) ≤ 𝜏 = PrX ≤ (1− 𝛾)E[X]

≤ 𝑒−
𝛾2E[X]

3 ≤ 𝑒−
Ω(ℓ log(𝑚𝑛) log𝑛/𝛾2)

3 = (𝑚𝑛)−Ω(ℓ log𝑛/𝛾2).

Therefore, since xsol is a (1− 𝜀MC)-approximate solution of MaxCover-LP(ℒ,ℱ , ℓ,p), with
probability 1− (𝑚𝑛)−Ω(ℓ log𝑛/𝛾2), we have 𝒞ℒ(xsol) ≥ (1− 𝜀MC)𝜏 .

Next, by a similar approach, we show that for any fractional solution x, if 𝒞ℒ(x) ≥
𝒞ℒ(xOPT), then with probability 1 − (𝑚𝑛)−Ω(ℓ log𝑛/𝛾2), 𝒞(x) ≥

(︀
1−𝛾
1+𝛾

)︀
(1 − 𝜀MC)OPT. Con-

sider a fractional ℓ-cover (x, z) whose coverage is less than
(︀
1−𝛾
1+𝛾

)︀
(1 − 𝜀MC)OPT. Let Y𝑖

denote a random variable that takes value 𝑧𝑒𝑖 with probability 𝑝𝑒𝑖 , and define Y =
∑︀𝑠

𝑖=1 Y𝑖.

Then, E[Y𝑖] = 𝒞(x) <
(︀
1−𝛾
1+𝛾

)︀
(1 − 𝜀MC)OPT. For ease of analysis, let each Y𝑖 ∈ [0, 1] be

an auxiliary random variable that stochastically dominates Y𝑖 with expectation E[Y𝑖] =
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(︀
1−𝛾
1+𝛾

)︀
(1 − 𝜀MC)OPT, and Y =

∑︀𝑠
𝑖=1 Y𝑖 which stochastically dominates Y with expectation

E[Y] = 𝑠 ·
(︀
1−𝛾
1+𝛾

)︀
(1− 𝜀MC)OPT = (1−𝜀MC)𝜏

1+𝛾
. We then have

Pr 𝒞ℒ(x) > (1− 𝜀MC)𝜏 = PrY > (1− 𝜀MC)𝜏 = PrY > (1 + 𝛾)E[Y]

≤ PrY > (1 + 𝛾)E[Y] ≤ 𝑒−
𝛾2E[Y]

3 ≤ (𝑚𝑛)−Ω(ℓ log𝑛/𝛾2),

using the fact that
(︀
1−𝛾
1+𝛾

)︀
(1− 𝜀MC) = Θ(1) for our interested range of parameters. Thus,

Pr 𝒞(x) ≤
(︀1− 𝛾

1 + 𝛾

)︀
(1− 𝜀MC)OPT and 𝒞ℒ(x) > (1− 𝜀MC)𝜏 ≤ (𝑚𝑛)−Ω(ℓ log𝑛/𝛾2).

In other words, except with probability (𝑚𝑛)−Ω(ℓ log𝑛/𝛾2), a chosen solution x that offers at

least as good empirical coverage over ℒ as xOPT (namely xsol) does have actual coverage of

at least
(︀
1−𝛾
1+𝛾

)︀
(1− 𝜀MC)OPT.

Since the total number of Θ( 𝛾2

log𝑛
)-integral ℓ-covers is 𝑂(𝑚ℓ log𝑛/𝛾2

) (Observation 3.3.7),

applying union bound, with probability at least 1 − 𝑂(𝑚ℓ log𝑛/𝛾2
) · (𝑚𝑛)−Ω(ℓ log𝑛/𝛾2) = 1 −

1
poly(𝑚𝑛)

, a (1− 𝜀MC)-approximate Θ( 𝛾2

log𝑛
)-integral solution of MaxCover-LP(ℒ,ℱ , ℓ,p) has

weighted coverage of at least
(︀
1−𝛾
1+𝛾

)︀
(1− 𝜀MC)OPT > (1− 2𝛾)(1− 𝜀MC)OPT over 𝒰 . �

Theorem 3.3.9. There exists a streaming algorithm that w.h.p. returns a (1+𝜀)-approximate

fractional solution of SetCover-LP(𝒰 ,ℱ) in 𝑂(log 𝑛/𝜀2) passes and uses ̃︀𝑂(𝑚/𝜀6+𝑛) mem-

ory for any positive 𝜀 ≤ 1/2. The algorithm works in both set arrival and edge arrival

streams.

Proof: The algorithm clearly requires Θ(𝑇 ) passes to simulate the MWU algorithm. The

required amount of memory, besides ̃︀𝑂(𝑛) for counting elements, is dominated by the pro-

jected set system. In each pass over the stream, we sample Θ(ℓ log𝑚𝑛 log 𝑛/𝜀4) elements,

and since they are rarely occurring, each is contained in at most Θ(𝑚
𝜀ℓ
) sets. Finally, we

run log1+Θ(𝜀) 𝑛 = 𝑂(log 𝑛/𝜀) instances of the MWU algorithm in parallel to compute a

(1 + 𝜀)-approximate solution. In total, our space complexity is Θ(ℓ log𝑚𝑛 log 𝑛/𝜀4) ·Θ(𝑚
𝜀ℓ
) ·

𝑂(log 𝑛/𝜀) = ̃︀𝑂(𝑚/𝜀6). �
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3.3.3. Final Step: Running Several MWU Rounds Together

We complete our result by further reducing the number of passes at the expense of increas-

ing the required amount of memory, yielding our full algorithm FastFeasibilityTest

in Algorithm 9. More precisely, aiming for a 𝑝-pass algorithm, we show how to execute

𝑅 , 𝑇
Θ(𝑝)

= Θ( log𝑛
𝑝𝛽2 ) rounds of the MWU algorithm in a single pass. We show that this task

may be accomplished with a multiplicative factor of 𝑓 ·Θ(log𝑚𝑛) increase in memory usage,

where 𝑓 , 𝑛Θ(1/(𝑝𝛽)).

Advance sampling. Consider a sequence of 𝑅 consecutive rounds 𝑖 = 1, . . . , 𝑅. In order to

implement the MWU algorithm for these rounds, we need (multi-)sets of sampled elements

ℒ1, . . . ,ℒ𝑅 according to probabilities p1, . . . ,p𝑅, respectively (where p𝑖 is the probability

corresponding to round 𝑖). Since the probabilities of subsequent rounds are not known in

advance, we circumvent this problem by choosing these sets ℒ𝑖’s with probabilities according

to p1, but the number of samples in each set will be |ℒ𝑖| = 𝑠 · 𝑓 · Θ(log𝑚𝑛) instead of 𝑠.

Then, once p𝑖 is revealed, we sub-sample elements from ℒ𝑖 to obtain ℒ′
𝑖 as follow: for a (copy

of) sampled element 𝑒 ∈ ℒ𝑖, add 𝑒 to ℒ′
𝑖 with probability 𝑝𝑖𝑒

𝑝1𝑒𝑓
; otherwise, simply discard it.

Note that it is still left to be shown that the probability above is indeed at most 1.

Since each 𝑒 was originally sampled with probability 𝑝1𝑒, then in ℒ′
𝑖, the probability that a

sampled element 𝑒 = 𝑒 is exactly 𝑝𝑖𝑒/𝑓 . By having 𝑓 ·Θ(log𝑚𝑛) times the originally required

number of samples 𝑠 in the first place, in expectation we still have E[|ℒ′
𝑖|] = |ℒ𝑖|

∑︀
𝑒∈𝒰

𝑝𝑖𝑒
𝑓
=

(𝑠 ·𝑓 ·Θ(log𝑚𝑛)) 1
𝑓
= 𝑠 ·Θ(log𝑚𝑛). Due to the Θ(log𝑚𝑛) factor, by the Chernoff bound, we

conclude that with w.h.p. |ℒ′
𝑖| ≥ 𝑠. Thus, we have a sufficient number of elements sampled

with probability according to p𝑖 to apply Lemma 3.3.8, as needed.

Change in probabilities. As noted above, we must show that the probability that we

sub-sample each element is at most 1; that is, 𝑝𝑖𝑒/𝑝
1
𝑒 ≤ 𝑓 = 𝑛Θ(1/(𝑝𝛽)) for every element 𝑒 and

every round 𝑖 = 1, . . . , 𝑅. We bound the multiplicative difference between the probabilities

of two consecutive rounds as follows.

Lemma 3.3.10. Let p and p′ be the probability of elements before and after an update.

Then for every element 𝑒, 𝑝′𝑒 ≤ (1 +𝑂(𝛽))𝑝𝑒.
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Proof: Recall the weight update formula 𝑤𝑡+1
𝑒 = 𝑤𝑡

𝑒(1− 𝛽(Ă𝑒x̆−𝑏𝑒)
6𝜑

) for the MWU framework,

where Ă𝑛×|ℱ̆| represents the membership matrix corresponding to the extended set system

(𝒰 , ℱ̆). In our case, the desired coverage amount is 𝑏𝑒 = 1. By construction, we have

Ă𝑒x̆ = 𝑧𝑒 ≤ 1; therefore, our width is 𝜑 = 1, and −1 ≤ Ă𝑒x̆− 𝑏𝑒 ≤ 0. That is, the weight of

each element cannot decrease, but may increase by at most a multiplicative factor of 1+𝛽/6,

before normalization. Thus even after normalization no weight may increase by more than

a factor of 1 + 𝛽/6 = 1 +𝑂(𝛽). �

Therefore, after 𝑅 = Θ( log𝑛
𝑝𝛽2 ) rounds, the probability of any element may increase by at

most a factor of (1 +𝑂(𝛽))
Θ( log𝑛

𝑝𝛽2
) ≤ 𝑒Θ( log𝑛

𝑝𝛽
) = 𝑛Θ(1/(𝑝𝛽)) = 𝑓 , as desired. This concludes the

proof of Theorem 7.8.9.

Implementation details. We make a few remarks about the implementation given in

Algorithm 9. First, even though we perform all sampling in advance, the decisions of Max-

CoverOracle do not depend on any ℒ𝑖 of later rounds, and UpdateProb is entirely

deterministic: there is no dependency issue between rounds. Next, we only need to perform

UpdateProb on the sampled elements ℒ = ℒ1 ∪ · · · ∪ ℒ𝑅 during the current 𝑅 rounds.

We therefore denote the probabilities with a different vector q𝑖 over the sampled elements

ℒ only. Probabilities of elements outside ℒ are not required by MaxCoverOracle dur-

ing these rounds, but we simply need to spend one more pass after executing 𝑅 rounds of

MWU to aggregate the new probability vector p over all (rare) elements. Similarly, since

MaxCoverOracle does not have the ability to verify, during the MWU algorithm, that

each solution x𝑖 returned by the oracle indeed provides a sufficient coverage, we check all

of them during this additional pass. Lastly, we again remark that this algorithm operates

on the extended set system: the solution x returned by MaxCoverOracle has at least

the same coverage as x̆. While x̆ is not explicitly computed, its coverage vector z can be

computed exactly.

3.3.4. Extension to general covering LPs

We remark that our MWU-based algorithm can be extended to solve a more general class

of covering LPs. Consider the problem of finding a vector x that minimizes c⊤x subject to
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Algorithm 9 An efficient implementation of FeasibilityTest which performs in 𝑝 passes
and consumes ̃︀𝑂(𝑚𝑛𝑂( 1

𝑝𝜀
) + 𝑛) space.

1: procedure FastFeasibilityTest(ℓ, 𝜀)
2: 𝛼, 𝛽 ← 𝜀

3
, pcurr ← 1𝑚×1 ◁ the initial prob. vector for the MWU algorithm on 𝒰

3: ◁ see Algorithm 5 for implementation of the below line
4: compute a cover of common elements in one pass
5: xtotal ← 0𝑚×1

6: ◁ MWU algorithm for covering rare elements
7: for 𝑖 = 1 to 𝑝 do
8: 𝑅← Θ( log𝑛

𝑝𝛽2 ) ◁ number of MWU iterations performed together
9: ◁ in one pass, projects all sets in ℱ over the collections of samples ℒ1, · · · ℒ𝑅

10: sample ℒ1, . . . ,ℒ𝑅 according to pcurr each of size ℓ𝑛Θ(1/(𝑝𝛽)) poly(log𝑚𝑛)
11: ℒ ← ℒ1 ∪ · · · ∪ ℒ𝑅, ℱℒ ← ∅ ◁ ℒ is a set whereas ℒ1, . . . ,ℒ𝑅 are multi-sets
12: for all set 𝑆 in the stream do
13: ℱℒ ← ℱℒ ∪ {𝑆 ∩ ℒ}
14: ◁ each pass simulates 𝑅 rounds of MWU
15: for all 𝑒 ∈ ℒ do
16: 𝑞1𝑒 ← 𝑝curr𝑒 ◁ project pcurr

𝑛×1 to q1
|ℒ|×1 over sampled elements

17: q1 ← q1

‖q1‖
18: for all round 𝑖 = 1, . . . , 𝑅 do

19: ℒ′
𝑖 ← sample each elt 𝑒 ∈ ℒ𝑖 with probab. 𝑞𝑖𝑒

𝑞1𝑒𝑛
Θ(1/(𝑝𝛽)) ◁ rejection sampling

20: x𝑖 ←MaxCoverOracle(ℒ′
𝑖,ℱℒ, ℓ) ◁ w.h.p. 𝒞(x𝑖) ≥ 1− 𝛽/3 when ℓ ≥ 𝑘

21: ◁ in no additional pass, updates probab. q over sampled elts accord. to x𝑖

22: z← 0|ℒ|×1 ◁ compute coverage over sampled elements
23: for all element-set pair 𝑒 ∈ 𝑆 where 𝑆 ∈ ℱℒ do
24: 𝑧𝑒 ← min(𝑧𝑒 + 𝑥𝑖

𝑆, 1)

25: q𝑖+1 ← UpdateProb(q𝑖, z) ◁ only update weights of elements in ℒ
26: ◁ in one pass, updates probab. pcurr over all (rare) elts according to x1, . . . ,x𝑅

27: z1, . . . , z𝑅 ← 0𝑛×1 ◁ compute coverage over all (rare) elements
28: for all element-set pair 𝑒 ∈ 𝑆 in the stream do
29: for all round 𝑖 = 1, . . . , 𝑅 do
30: 𝑧𝑖𝑒 ← min(𝑧𝑖𝑒 + 𝑥𝑖

𝑆, 1)

31: for all round 𝑖 = 1, . . . , 𝑅 do
32: if (pcurr)⊤z𝑖 < 1− 𝛽/3 then ◁ detect infeasible solutions
33: report INFEASIBLE

34: xtotal ← xtotal + x𝑖, pcurr ← UpdateProb(pcurr, z𝑖) ◁ perform actual updates

35: xrare ← xtotal

(1−𝛽)𝑇
◁ scaled up the solution to cover rare elements

36: return xcmn + xrare

constraints Ax ≥ b and x ≥ 0. In terms of the Set Cover problem, 𝐴𝑒,𝑆 ≥ 0 indicates the

multiplicity of an element 𝑒 in the set 𝑆, 𝑏𝑒 > 0 denotes the number of times we wish 𝑒 to
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be covered, and 𝑐𝑆 > 0 denotes the cost per unit for the set 𝑆. Now define

𝐿 , min
(𝑒,𝑆):𝐴𝑒,𝑆 ̸=0

𝐴𝑒,𝑆

𝑏𝑒𝑐𝑆
and 𝑈 , max

(𝑒,𝑆)

𝐴𝑒,𝑆

𝑏𝑒𝑐𝑆
.

Then, we may modify our algorithm to obtain the following result.

Theorem 3.3.11. There exists a streaming algorithm that w.h.p. returns a (1+𝜀)-approximate

fractional solution to general covering LPs in 𝑝 passes and using ̃︀𝑂(𝑚𝑈
𝜀6𝐿
·𝑛𝑂( 1

𝑝𝜀
)+𝑛) memory

for any 3 ≤ 𝑝 ≤ polylog(𝑛), where parameters 𝐿 and 𝑈 are defined above. The algorithm

works in both set arrival and edge arrival streams.

Proof: We modify our algorithm and provide an argument of its correctness as follows. First,

observe that we can convert the input LP into an equivalent LP with all entries 𝑏𝑒 = 𝑐𝑆 = 1

by simply replacing each 𝐴𝑒,𝑆 with
𝐴𝑒,𝑆

𝑏𝑒𝑐𝑆
. Namely, let the new parameters beA′,b′ and c′, and

we consider the variable x′ where 𝑥′
𝑆 = 𝑐𝑆𝑥𝑆. It is straightforward to verify that c′⊤x′ = c⊤x

and A′
𝑒x

′ = A𝑒x
𝑏𝑒

, reducing the LP into the desired case. Thus, we may afford to record b

and c, so that each value 𝐴𝑒,𝑆

𝑏𝑒𝑐𝑆
may be computed on-the-fly. Henceforth we assume that all

entries 𝑏𝑒 = 𝑐𝑆 = 1 and 𝐴𝑒,𝑆 ∈ {0}∪ [𝐿,𝑈 ]. Observe as well that the optimal objective value

𝑘 may be in the expanded range [1/𝑈, 𝑛/𝐿], so the number of guesses must be increased

from log𝑛
𝜀

to log(𝑛𝑈/𝐿)
𝜀

.

Next consider the process for covering the rare elements. We instead use a uniform

solution xcmn = 𝛼ℓ𝐿
𝑚
·1. Observe that if an element occurs in at least 𝑚

𝛼ℓ𝐿
sets, then A𝑒x

cmn =∑︀
𝑆:𝑒∈𝑆 𝐴𝑒,𝑆 · 𝛼ℓ𝑚 ≥ 𝑚

𝛼ℓ𝐿
·𝐿 · 𝛼ℓ

𝑚
= 1. That is, we must adjust our definition so that an element

is considered common if it appears in at least 𝑚
𝛼ℓ𝐿

sets. Consequently, whenever we perform

element sampling, the required amount of memory to store information of each element

increases by a factor of 1/𝐿.

Next consider Lemma 3.3.5, where we show an existence of integral solutions via the

MWU algorithm with a greedy oracle. As the greedy implementation chooses a set 𝑆 and

places the entire budget ℓ on 𝑥𝑆, the amount of coverage 𝐴𝑒,𝑆𝑥𝑆 may be as large as ℓ𝑈 as 𝐴𝑒,𝑆

is no longer bounded by 1. Thus this application of the MWU algorithm has width 𝜑 = Θ(ℓ𝑈)

and requires 𝑇 = Θ( ℓ𝑈 log𝑛
𝜀2
MC

) rounds. Consequently, its solution becomes Θ( ℓ
𝑇
) = Θ(

𝜀2
MC

𝑈 log𝑛
)-

integral. As noted in Observation 3.3.7, the number of potential solutions from the greedy
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oracle increases by a power of 𝑈 . Then, in Lemma 3.3.8, we must reduce the error probability

of each solution by the same power. We increase the number of samples 𝑠 by a factor of 𝑈

to account for this change, increasing the required amount of memory by the same factor.

As in the previous case, any solution x may always be pruned so that the width is

reduced to 1: our algorithm Prune still works as long as the entries of A are non-negative.

Therefore, the fact that entries of A may take on values other than 0 or 1 does not affect the

number of rounds (or passes) of our overall application of the MWU framework. Thus, we

may handle general covering LPs using a factor of ̃︀𝑂(𝑈/𝐿) larger memory within the same

number of passes. In particular, if the non-zero entries of the input are bounded in the range

[1,𝑀 ], this introduces a factor of ̃︀𝑂(𝑈/𝐿) ≤ ̃︀𝑂(𝑀3) overhead in memory usage. �
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Chapter 4

Sublinear Set Cover

4.1. Introduction

It is well-known that although the problem of finding an optimal solution is NP-complete, a

natural greedy algorithm which iteratively picks the “best” remaining set is provably optimal.

The algorithm finds a solution of size at most 𝑘 ln𝑛 where 𝑘 is the optimum cover size, and

can be implemented to run in time linear in the input size. However, the input size itself

could be as large as Θ(𝑚𝑛), so for large data sets even reading the input might be infeasible.

This raises a natural question: is it possible to solve minimum set cover in sub-linear

time? This question was previously addressed in [145, 172], who showed that one can design

constant running-time algorithms by simulating the greedy algorithm, under the assumption

that the sets are of constant size and each element occurs in a constant number of sets.

However, those constant-time algorithms have a few drawbacks: they only provide a mixed

multiplicative/additive guarantee (the output cover size is guaranteed to be at most 𝑘 ·
ln𝑛 + 𝜖𝑛), the dependence of their running times on the maximum set size is exponential,

and they only output the (approximate) minimum set cover size, not the cover itself. From

a different perspective, [119] (building on [84]) showed that an 𝑂(1)-approximate solution

to the fractional version of the problem can be found in ̃︀𝑂(𝑚𝑘2 + 𝑛𝑘2) time1. Combining

this algorithm with the randomized rounding yields an 𝑂(log 𝑛)-approximate solution to

Set Cover with the same complexity.

1The method can be further improved to ̃︀𝑂(𝑚+ 𝑛𝑘) (N. Young, personal communication).
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In this chapter we study the complexity of sub-linear time algorithms for set cover with

multiplicative approximation guarantees. Our upper bounds complement the aforementioned

result of [119] by presenting algorithms which are fast when 𝑘 is large, as well as algorithms

that provide more accurate solutions that use a sub-linear number of queries.2 Equally im-

portantly, we establish nearly matching lower bounds, some of which even hold for estimating

the optimal cover size. Our upper and lower bounds are presented in Table 4.1.1.

Data access model. As in the prior work [145, 172] on Set Cover, our algorithms and

lower bounds assume that the input can be accessed via the adjacency-list oracle.3 More

precisely, the algorithm has access to the following two oracles:

1. EltOf: Given a set 𝑆𝑖 and an index 𝑗, the oracle returns the 𝑗th element of 𝑆𝑖. If

𝑗 > |𝑆𝑖|, ⊥ is returned.

2. SetOf: Given an element 𝑒𝑖 and an index 𝑗, the oracle returns the 𝑗th set containing

𝑒𝑖. If 𝑒𝑖 appears in less than 𝑗 sets, ⊥ is returned.

This is a natural model, providing a “two-way” connection between the sets and the

elements. Furthermore, for some graph problems modeled by Set Cover (such as Dominating

Set or Vertex Cover), such oracles are essentially equivalent to the aforementioned incident-

list model studied in sub-linear graph algorithms. We also note that the other popular

access model employing the membership oracle, where we can query whether an element 𝑒 is

contained in a set 𝑆, is not suitable for Set Cover, as it can be easily seen that even checking

whether a feasible cover exists requires Ω(𝑚𝑛) time.

4.1.1. Our Results

In this chapter, we present algorithms and lower bounds for the Set Cover problem. The

results are summarized in Table 4.1.1. The NP-hardness of this problem (or even its 𝑜(log 𝑛)-

approximate version [72, 152, 14, 138, 63]) precludes the existence of highly accurate algo-

rithms with fast running times, while (as we show) it is still possible to design algorithms

2Note that polynomial time algorithm with sub-logarithmic approximation algorithms are unlikely to
exist.

3In the context of graph problems, this model is also known as the incidence-list model, and has been
studied extensively, see e.g., [45, 80, 31].

92



Problem Approximation Constraints Query Complexity Section

Set Cover

𝛼𝜌+ 𝜀 𝛼 ≥ 2 ̃︀𝑂(1
𝜀
(𝑚(𝑛

𝑘
)

1
𝛼−1 + 𝑛𝑘)) 4.4.1

𝜌+ 𝜀 - ̃︀𝑂(𝑚𝑛
𝑘𝜀2

) 4.4.2

𝛼 𝑘 < ( 𝑛
log𝑚

)
1

4𝛼+1 ̃︀Ω(𝑚(𝑛
𝑘
)1/(2𝛼)) 4.6

𝛼
𝛼 ≤ 1.01 and

𝑘 = 𝑂( 𝑛
log𝑚

)

̃︀Ω(𝑚𝑛
𝑘
) 4.3.2

Cover

Verification
- 𝑘 ≤ 𝑛/2 Ω(𝑛𝑘) 4.5

Table 4.1.1: A summary of our algorithms and lower bounds. We use the following notation:
𝑘 ≥ 1 denotes the size of the optimum cover; 𝛼 ≥ 1 denotes a parameter that determines
the trade-off between the approximation quality and query/time complexities; 𝜌 ≥ 1 denotes
the approximation factor of a “black box” algorithm for set cover used as a subroutine.

with sub-linear query complexities and low approximation factors. The lower bound proofs

hold for the running time of any algorithm approximation set cover assuming the defined

data access model.

We present two algorithms with sub-linear number of queries. First, we show that the

streaming algorithm presented in [97] can be adapted so that it returns an 𝑂(𝛼)-approximate

cover using ̃︀𝑂(𝑚(𝑛/𝑘)1/(𝛼−1) + 𝑛𝑘) queries, which could be quadratically smaller than 𝑚𝑛.

Second, we present a simple algorithm which is tailored to the case when the value of 𝑘 is

large. This algorithm computes an 𝑂(log 𝑛)-approximate cover in ̃︀𝑂(𝑚𝑛/𝑘) time (not just

query complexity). Hence, by combining it with the algorithm of [119], we get an 𝑂(log 𝑛)-

approximation algorithm that runs in time ̃︀𝑂(𝑚+ 𝑛
√
𝑚).

We complement the first result by proving that for low values of 𝑘, the required number

of queries is ̃︀Ω(𝑚(𝑛/𝑘)1/(2𝛼)) even for estimating the size of the optimal cover. This shows

that the first algorithm is essentially optimal for the values of 𝑘 where the first term in the

runtime bound dominates. Moreover, we prove that even the Cover Verification problem,

which is checking whether a given collection of 𝑘 sets covers all the elements, would require

Ω(𝑛𝑘) queries. This provides strong evidence that the term 𝑛𝑘 in the first algorithm is

unavoidable. Lastly, we complement the second algorithm, by showing a lower bound of̃︀Ω(𝑚𝑛/𝑘) if the approximation ratio is a small constant.
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4.1.2. Related work

Sub-linear algorithms for Set Cover under the oracle model have been previously studied as

an estimation problem; the goal is only to approximate the size of the minimum set cover

rather than constructing one. Nguyen and Onak [145] consider Set Cover under the oracle

model we employ in this chapter, in a specific setting where both the maximum cardinal-

ity of sets in ℱ , and the maximum number of occurrences of an element over all sets, are

bounded by some constants 𝑠 and 𝑡; this allows algorithms whose time and query complex-

ities are constant, (2(𝑠𝑡)
4
/𝜀)𝑂(2𝑠), containing no dependency on 𝑛 or 𝑚. They provide an

algorithm for estimating the size of the minimum set cover when, unlike our work, allowing

both ln 𝑠 multiplicative and 𝜀𝑛 additive errors. Their result has been subsequently improved

to (𝑠𝑡)𝑂(𝑠)/𝜀2 by Yoshida et al. [172]. Additionally, the results of Kuhn et al. [121] on general

packing/covering LPs in the distributed ℒ𝒪𝒞𝒜ℒ model, together with the reduction method

of Parnas and Ron [149], implies estimating set cover size to within a 𝑂(ln 𝑠)-multiplicative

factor (with 𝜀𝑛 additive error), can be performed in (𝑠𝑡)𝑂(log 𝑠 log 𝑡)/𝜀4 time/query complexi-

ties.

Set Cover can also be considered as a generalization of the Vertex Cover problem. The

estimation variant of Vertex Cover under the adjacency-list oracle model has been studied

in [149, 130, 148, 172]. Set Cover has been also studied in the sub-linear space context, most

notably for the streaming model of computation [155, 67, 42, 20, 17, 29, 105, 61, 97]. In this

model, there are algorithms that compute approximate set covers with only multiplicative

errors. Our algorithms use some of the ideas introduced in the last two papers [61, 97].

4.1.3. Our Techniques

Overview of the algorithms. The algorithmic results presented in Section 4.4, use the

techniques introduced for the streaming Set Cover problem by [61, 97] to get new results

in the context of sub-linear time algorithms for this problem. Two components previously

used for the set cover problem in the context of streaming are Set Sampling and Element

Sampling. Assuming the size of the minimum set cover is 𝑘, Set Sampling randomly samples̃︀𝑂(𝑘) sets and adds them to the maintained solution. This ensures that all the elements that

are well represented in the input (i.e., appearing in at least 𝑚/𝑘 sets) are covered by the
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sampled sets. On the other hand, the Element Sampling technique samples roughly ̃︀𝑂(𝑘/𝛿)

elements, and finds a set cover for the sampled elements. It can be shown that the cover for

the sampled elements covers a (1− 𝛿) fraction of the original elements.

Specifically, the first algorithm performs a constant number of iterations. Each iteration

uses element sampling to compute a “partial” cover, removes the elements covered by the

sets selected so far and recurses on the remaining elements. However, making this process

work in sub-linear time (as opposed to sub-linear space) requires new technical development.

For example, the algorithm of [97] relies on the ability to test membership for a set-element

pair, which generally cannot be efficiently performed in our model.

The second algorithm performs only one round of set sampling, and then identifies the

elements that are not covered by the sampled sets, without performing a full scan of those

sets. This is possible because with high probability only those elements that belong to few

input sets are not covered by the sample sets. Therefore, we can efficiently enumerate all

pairs (𝑒𝑖, 𝑆𝑗), 𝑒𝑖 ∈ 𝑆𝑗, for those elements 𝑒𝑖 that were not covered by the sampled sets. We

then run a black box algorithm only on the set system induced by those pairs. This approach

lets us avoid the 𝑛𝑘 term present in the query and runtime bounds for the first algorithm,

which makes the second algorithm highly efficient for large values of 𝑘.

The Set Cover lower bound for smaller optimal value 𝑘. We establish our lower

bound for the problem of estimating the size of the minimum set cover, by constructing two

distributions of set systems. All systems in the same distribution share the same optimal

set cover size, but these sizes differ by a factor 𝛼 between the two distributions; thus, the

algorithm is required to determine from which distribution its input set system is drawn,

in order to correctly estimate the optimal cover size. Our distributions are constructed by

a novel use of the probabilistic method. Specifically, we first probabilistically construct a

set system called median instance (see Lemma 4.3.6): this set system has the property that

(a) its minimum set cover size is 𝛼𝑘 and (b) a small number of changes to the instance

reduces the minimum set cover size to 𝑘. We set the first distribution to be always this

median instance. Then, we construct the second distribution by a random process that

performs the changes (depicted in Algorithm 10) resulting in a modified instance. This
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process distributes the changes almost uniformly throughout the instance, which implies

that the changes are unlikely to be detected unless the algorithm performs a large number of

queries. We believe that this construction might find applications to lower bounds for other

combinatorial optimization problems.

The Set Cover lower bound for larger optimal value 𝑘. Our lower bound for the

problem of computing an approximate set cover leverages the construction above. We create

a combined set system consisting of multiple modified instances all chosen independently at

random, allowing instances with much larger 𝑘. By the properties of the random process

generating modified instances, we observe that most of these modified instances have different

optimal set cover solution, and that distinguishing these instances from one another requires

many queries. Thus, it is unlikely for the algorithm to be able to compute an optimal solution

to a large fraction of these modified instances, and therefore it fails to achieve the desired

approximation factor for the overall combined instance.

The Cover Verification lower bound for a cover of size 𝑘. For Cover Verification,

however, we instead give an explicit construction of the distributions. We first create an

underlying set structure such that initially, the candidate sets contain all but 𝑘 elements.

Then we may swap in each uncovered element from a non-candidate set. Our set structure is

systematically designed so that each swap only modifies a small fraction of the answers from

all possible queries; hence, each swap is hard to detect without Ω(𝑛) queries. The distribution

of valid set covers is composed of instances obtained by swapping in every uncovered element,

and that of non-covers is similarly obtained but leaving one element uncovered.

4.2. Preliminaries

First, we formally specify the representation of the set structures of input instances, which

applies to both Set Cover and Cover Verification.

Our lower bound proofs rely mainly on the construction of instances that are hard to

distinguish by the algorithm. To this end, we define the swap operation that exchanges a

pair of elements between two sets, and how this is implemented in the actual representation.
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Definition 4.2.1 (swap operation). Consider two sets 𝑆 and 𝑆 ′. A swap on 𝑆 and 𝑆 ′ is

defined over two elements 𝑒, 𝑒′ such that 𝑒 ∈ 𝑆 ∖𝑆 ′ and 𝑒′ ∈ 𝑆 ′∖𝑆, where 𝑆 and 𝑆 ′ exchange 𝑒

and 𝑒′. Formally, after performing swap(𝑒, 𝑒′), 𝑆 = (𝑆∪{𝑒′})∖{𝑒} and 𝑆 ′ = (𝑆 ′∪{𝑒})∖{𝑒′}. As
for the representation via EltOf and SetOf, each application of swap only modifies 2 entries

for each oracle. That is, if previously 𝑒 = EltOf(𝑆, 𝑖), 𝑆 = SetOf(𝑒, 𝑗), 𝑒′ = EltOf(𝑆 ′, 𝑖′),

and 𝑆 ′ = SetOf(𝑒′, 𝑗′), then their new values change as follows: 𝑒′ = EltOf(𝑆, 𝑖), 𝑆 ′ =

SetOf(𝑒, 𝑗), 𝑒 = EltOf(𝑆 ′, 𝑖′), and 𝑆 = SetOf(𝑒′, 𝑗′).

In particular, we extensively use the property that the amount of changes to the oracle’s

answers incurred by each swap is minimal. We remark that when we perform multiple

swaps on multiple disjoint set-element pairs, every swap modifies distinct entries and do not

interfere with one another.

Lastly, we define the notion of query-answer history, which is a common tool for estab-

lishing lower bounds for sub-linear algorithms under query models.

Definition 4.2.2. By query-answer history, we denote the sequence of query-answer pairs

⟨(𝑞1, 𝑎1), (𝑞2, 𝑎2), . . . , (𝑞𝑟, 𝑎𝑟)⟩ recording the communication between the algorithm and the

oracles, where each new query 𝑞𝑖+1 may only depend on the query-answer pairs (𝑞1, 𝑎1), . . . ,

(𝑞𝑖, 𝑎𝑖). In our case, each 𝑞𝑖 represents either a SetOf query or an EltOf query made by

the algorithm, and each 𝑎𝑖 is the oracle’s answer to that respective query according to the

set structure instance.

4.3. Lower Bounds for the Set Cover Problem

In this section, we present lower bounds for Set Cover both for small values of the optimal

cover size 𝑘 (in Section 4.3.1), and for large values of 𝑘 (in Section 4.3.2). For low values of

𝑘, we prove the following theorem whose proof is postponed to Section 4.6.

Theorem 4.3.1. For 2 ≤ 𝑘 ≤ ( 𝑛
16𝛼 log𝑚

)
1

4𝛼+1 and 1 < 𝛼 ≤ log 𝑛, any randomized algorithm

that solves the Set Cover problem with approximation factor 𝛼 and success probability at least

2/3 requires ̃︀Ω(𝑚(𝑛/𝑘)
1
2𝛼 ) queries.

Instead, in Section 4.3.1 we focus on the simple setting of this theorem which applies to

approximation protocols for distinguishing between instances with minimum set cover sizes
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2 and 3, and show a lower bound of ̃︀Ω(𝑚𝑛) (which is tight up to a polylogarithmic factor)

for approximation factor 3/2. This simplification is for the purpose of both clarity and also

for the fact that the result for this case is used in Section 4.3.2 to establish our lower bound

for large values of 𝑘.

High level idea. Our approach for establishing the lower bound is as follows. First,

we construct a median instance 𝐼* for Set Cover, whose minimum set cover size is 3. We

then apply a randomized procedure GenModifiedInst, which slightly modifies the median

instance into a new instance containing a set cover of size 2. Applying Yao’s principle, the

distribution of the input to the deterministic algorithm is either 𝐼* with probability 1/2,

or a modified instance generated thru GenModifiedInst(𝐼*), which is denoted by 𝒟(𝐼*),
again with probability 1/2. Next, we consider the execution of the deterministic algorithm.

We show that unless the algorithm asks at least ̃︀Ω(𝑚𝑛) queries, the resulting query-answer

history generated over 𝐼* would be the same as those generated over instances constituting a

constant fraction of 𝒟(𝐼*), reducing the algorithm’s success probability to below 2/3. More

specifically, we will establish the following theorem.

Theorem 4.3.2. Any algorithm that can distinguish whether the input instance is 𝐼* or

belongs to 𝒟(𝐼*) with probability of success greater than 2/3, requires Ω(𝑚𝑛/ log𝑚) queries.

Corollary 4.3.3. For 1 < 𝛼 < 3/2, and 𝑘 ≤ 3, any randomized algorithm that approxi-

mates by a factor of 𝛼, the size of the optimal cover for the Set Cover problem with success

probability at least 2/3 requires ̃︀Ω(𝑚𝑛) queries.

For simplicity, we assume that the algorithm has the knowledge of our construction

(which may only strengthens our lower bounds); this includes 𝐼* and 𝒟(𝐼*), along with

their representation via EltOf and SetOf. The objective of the algorithm is simply to

distinguish them. Since we are distinguishing a distribution of instances 𝒟(𝐼*) against a

single instance 𝐼*, we may individually upper bound the probability that each query-answer

pair reveals the modified part of the instance, then apply the union bound directly. However,

establishing such a bound requires a certain set of properties that we obtain through a careful

design of 𝐼* and GenModifiedInst. We remark that our approach shows the hardness of
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distinguishing instances with with different cover sizes. That is, our lower bound on the

query complexity also holds for the problem of approximating the size of the minimum set

cover (without explicitly finding one).

Lastly, in Section 4.3.2 we provide a construction utilizing Theorem 4.3.2 to extend

Corollary 4.3.3, establish the following theorem on lower bounds for larger minimum set

cover sizes.

Theorem 4.3.4. For any sufficiently small approximation factor 𝛼 ≤ 1.01 and 𝑘 = 𝑂( 𝑚
log𝑛

),

any randomized algorithm that computes an 𝛼-approximation to the Set Cover problem with

success probability at least 0.99 requires ̃︀Ω(𝑚𝑛/𝑘) queries.

4.3.1. The Set Cover Lower Bound for Small Optimal Value 𝑘

Construction of the Median Instance 𝐼*. Let ℱ be a collection of 𝑚 sets such that

(independently for each set-element pair (𝑆, 𝑒)) 𝑆 contains 𝑒 with probability 1− 𝑝0, where

𝑝0 =
√︁

9 log𝑚
𝑛

(note that since we assume log𝑚 ≤ 𝑛/𝑐 for large enough 𝑐, we can assume

that 𝑝0 ≤ 1/2). Equivalently, we may consider the incidence matrix of this instance: each

entry is either 0 (indicating 𝑒 /∈ 𝑆) with probability 𝑝0, or 1 (indicating 𝑒 ∈ 𝑆) otherwise.

We write ℱ ∼ ℐ(𝒰 , 𝑝0) denoting the collection of sets obtained from this construction.

Definition 4.3.5 (Median instance). An instance of Set Cover, 𝐼, is a median instance

if it satisfies all the following properties.

(a) No two sets cover all the elements. (The size of its minimum set cover is at least 3.)

(b) For any two sets the number of elements not covered by the union of these sets is at

most 18 log𝑚.

(c) The intersection of any two sets has size at least 𝑛/8.

(d) For any pair of elements 𝑒, 𝑒′, the number of sets 𝑆 s.t. 𝑒 ∈ 𝑆 but 𝑒′ /∈ 𝑆 is at least
𝑚
√
9 log𝑚
4
√
𝑛

.

(e) For any triple of sets 𝑆, 𝑆1 and 𝑆2, |(𝑆1 ∩ 𝑆2) ∖ 𝑆| ≤ 6
√
𝑛 log𝑚.

(f) For each element, the number of sets that do not contain that element is at most

6𝑚
√︁

log𝑚
𝑛

.

Lemma 4.3.6. There exists a median instance 𝐼* satisfying all properties from Defini-

tion 4.3.5. In fact, with high probability, an instance drawn from the distribution in which
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Pr 𝑒 ∈ 𝑆 = 1− 𝑝0 independently at random, satisfies the median properties.

The proof of the lemma follows from standard applications of concentration bounds. Specif-

ically, it follows from the union bound and Lemmas 4.7.1–4.7.6, appearing in Section 4.7.

Distribution 𝒟(𝐼*) of Modified Instances 𝐼 ′ Derived from 𝐼*. Fix a median instance

𝐼*. We now show that we may perform 𝑂(log𝑚) swap operations on 𝐼* so that the size of

the minimum set cover in the modified instance becomes 2. Moreover, its incidence matrix

differs from that of 𝐼* in 𝑂(log𝑚) entries. Consequently, the number of queries to EltOf

and SetOf that induce different answers from those of 𝐼* is also at most 𝑂(log𝑚).

We define 𝒟(𝐼*) as the distribution of instances 𝐼 ′ generated from a median instance 𝐼* by

GenModifiedInst(𝐼*) given below in Algorithm 10 as follows. Assume that 𝐼* = (𝒰 ,ℱ).
We select two different sets 𝑆1, 𝑆2 from ℱ uniformly at random; we aim to turn these two

sets into a set cover. To do so, we swap out some of the elements in 𝑆2 and bring in the

uncovered elements. For each uncovered element 𝑒, we pick an element 𝑒′ ∈ 𝑆2 that is also

covered by 𝑆1. Next, consider the candidate set that we may exchange its 𝑒 with 𝑒′ ∈ 𝑆2:

Definition 4.3.7 (Candidate set). For any pair of elements 𝑒, 𝑒′, the candidate set of

(𝑒, 𝑒′) are all sets that contain 𝑒 but not 𝑒′. The collection of candidate sets of (𝑒, 𝑒′) is

denoted by Candidate(𝑒, 𝑒′). Note that Candidate(𝑒, 𝑒′) ̸= Candidate(𝑒′, 𝑒) (in fact, these two

collections are disjoint).

Algorithm 10 The procedure of constructing a modified instance of 𝐼*.

1: procedure GenModifiedInst(𝐼* = (𝒰 ,ℱ))
2: ℳ← ∅
3: pick two different sets 𝑆1, 𝑆2 from ℱ uniformly at random
4: for all 𝑒 ∈ 𝒰 ∖ (𝑆1 ∪ 𝑆2) do
5: pick 𝑒′ ∈ (𝑆1 ∩ 𝑆2) ∖ℳ uniformly at random
6: ℳ←ℳ∪ {𝑒′}
7: pick a random set 𝑆 in Candidate(𝑒, 𝑒′)
8: swap(𝑒, 𝑒′) between 𝑆, 𝑆2

We choose a random set 𝑆 from Candidate(𝑒, 𝑒′), and swap 𝑒 ∈ 𝑆 with 𝑒′ ∈ 𝑆2 so that 𝑆2

now contains 𝑒. We repeatedly apply this process for all initially uncovered 𝑒 so that eventu-

ally 𝑆1 and 𝑆2 form a set cover. We show that the proposed algorithm, GenModifiedInst,

can indeed be executed without getting stuck.
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Lemma 4.3.8. The procedure GenModifiedInst is well-defined under the precondition

that the input instance 𝐼* is a median instance.

Proof: To carry out the algorithm, we must ensure that the number of the initially uncovered

elements is at most that of the elements covered by both 𝑆1 and 𝑆2. This follows from the

properties of median instances (see Definition 4.3.5): |𝒰 ∖ (𝑆1 ∪ 𝑆2)| ≤ 18 log𝑚 by property

(b), and that the size of the intersection of 𝑆1 and 𝑆2 is greater than 𝑛/8 by property (c).

That is, in our construction there are sufficiently many possible choices for 𝑒′ to be matched

and swapped with each uncovered element 𝑒. Moreover, by property (d) there are plenty of

candidate sets 𝑆 for performing swap(𝑒, 𝑒′) with 𝑆2. �

Bounding the Probability of Modification. Let 𝒟(𝐼*) denote the distribution of in-

stances generated by GenModifiedInst(𝐼*). If an algorithm were to distinguish between

𝐼* or 𝐼 ′ ∼ 𝒟(𝐼*), it must find some cell in the EltOf or SetOf tables that would have been

modified by GenModifiedInst, to confirm that GenModifiedInst is indeed executed;

otherwise it would make wrong decisions half of the time. We will show an additional prop-

erty of this distribution: none of the entries of EltOf and SetOf are significantly more

likely to be modified during the execution of GenModifiedInst. Consequently, no algo-

rithm may strategically detect the difference between 𝐼* or 𝐼 ′ with the desired probability,

unless the number of queries is asymptotically the reciprocal of the maximum probability of

modification among any cells.

Define 𝑃Elt−Set : 𝒰 × ℱ → [0, 1] as the probability that an element is swapped by a set.

More precisely, for an element 𝑒 ∈ 𝒰 and a set 𝑆 ∈ ℱ , if 𝑒 /∈ 𝑆 in the median instance 𝐼*,

then 𝑃Elt−Set(𝑒, 𝑆) = 0; otherwise, it is equal to the probability that 𝑆 swaps 𝑒. We note that

these probabilities are taken over 𝐼 ′ ∼ 𝒟(𝐼*) where 𝐼* is a fixed median instance. That is,

as per Algorithm 10, they correspond to the random choices of 𝑆1, 𝑆2, the random matching

ℳ between 𝒰 ∖ (𝑆1 ∪ 𝑆2) and 𝑆1 ∩ 𝑆2, and their random choices of choosing each candidate

set 𝑆. We bound the values of 𝑃Elt−Set via the following lemma.

Lemma 4.3.9. For any 𝑒 ∈ 𝒰 and 𝑆 ∈ ℱ , 𝑃Elt−Set(𝑒, 𝑆) ≤ 4800 log𝑚
𝑚𝑛

where the probability is

taken over 𝐼 ′ ∼ 𝒟(𝐼*).
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Proof: Let 𝑆1, 𝑆2 denote the first two sets picked (uniformly at random) from ℱ to construct

a modified instance of 𝐼*. For each element 𝑒 and a set 𝑆 such that 𝑒 ∈ 𝑆 in the basic

instance 𝐼*,

𝑃Elt−Set(𝑒, 𝑆) = Pr𝑆 = 𝑆2 · Pr 𝑒 ∈ 𝑆1 ∩ 𝑆2

· Pr 𝑒 matches to 𝒰 ∖ (𝑆1 ∪ 𝑆2) | 𝑒 ∈ 𝑆1 ∩ 𝑆2

+ Pr𝑆 /∈ {𝑆1, 𝑆2}

· Pr 𝑒 ∈ 𝑆 ∖ (𝑆1 ∪ 𝑆2) | 𝑒 ∈ 𝑆

· Pr𝑆 swaps 𝑒 with 𝑆2 | 𝑒 ∈ 𝑆 ∖ (𝑆1 ∪ 𝑆2).

where all probabilities are taken over 𝐼 ′ ∼ 𝒟(𝐼*). Next we bound each of the above six terms.

Since we choose the sets 𝑆1, 𝑆2 randomly, Pr𝑆 = 𝑆2 = 1/𝑚. We bound the second term by

1. For the third term, since we pick a matching uniformly at random among all possible

(maximum) matchings between 𝒰 ∖ (𝑆1∪𝑆2) and 𝑆1∩𝑆2, by symmetry, the probability that

a certain element 𝑒 ∈ 𝑆1 ∩ 𝑆2 is in the matching is (by properties (b) and (c) of median

instances),

|𝒰 ∖ (𝑆1 ∪ 𝑆2)|
|𝑆1 ∩ 𝑆2|

≤ 18 log𝑚

𝑛/8
=

144 log𝑚

𝑛
.

We bound the fourth term by 1. To compute the fifth term, let 𝑑𝑒 denote the number of sets

in ℱ that do not contain 𝑒. By property (f) of median instances, the probability that 𝑒 ∈ 𝑆

is in 𝑆 ∖ (𝑆1 ∪ 𝑆2) given that 𝑆 /∈ {𝑆1, 𝑆2} is at most,

𝑑𝑒(𝑑𝑒 − 1)

(𝑚− 1)(𝑚− 2)
≤ 36𝑚2 · log𝑚

𝑛

𝑚2/2
=

72 log𝑚

𝑛
.

Finally for the last term, note that by symmetry, each pair of matched elements 𝑒𝑒′ is picked

by GenModifiedInst equiprobably. Thus, for any 𝑒 ∈ 𝑆 ∖ (𝑆1 ∪ 𝑆2), the probability that

each element 𝑒′ ∈ 𝑆1∩𝑆2 is matched to 𝑒 is 1
|𝑆1∩𝑆2| . By properties (c)–(e) of median instances,
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the last term is at most

∑︁
𝑒′∈(𝑆1∩𝑆2)∖𝑆

Pr 𝑒𝑒′ ∈ℳ · 1

|Candidate(𝑒, 𝑒′)|

= |(𝑆1 ∩ 𝑆2) ∖ 𝑆| ·
1

|𝑆1 ∩ 𝑆2|
· 1

Candidate(𝑒, 𝑒′)

≤ 6
√︀
𝑛 log𝑚 · 1

𝑛/8
· 1

𝑚
√
9 log𝑚
4
√
𝑛

=
64

𝑚
.

Therefore,

𝑃Elt−Set(𝑒, 𝑆) ≤
1

𝑚
· 1 · 144 log𝑚

𝑛
+ 1 · 72 log𝑚

𝑛
· 64
𝑚
≤ 4800 log𝑚

𝑚𝑛
. �

Proof of Theorem 4.3.2. Now we consider a median instance 𝐼*, and its corresponding

family of modified sets 𝒟(𝐼*). To prove the promised lower bound for randomized protocols

distinguishing 𝐼* and 𝐼 ′ ∼ 𝒟(𝐼*), we apply Yao’s principle and instead show that no de-

terministic algorithm 𝒜 may determine whether the input is 𝐼* or 𝐼 ′ ∼ 𝒟(𝐼*) with success

probability at least 2/3 using 𝑟 = 𝑜( 𝑚𝑛
log𝑚

) queries. Recall that if 𝒜’s query-answer history
⟨(𝑞1, 𝑎1), . . . , (𝑞𝑟, 𝑎𝑟)⟩ when executed on 𝐼 ′ is the same as that of 𝐼*, then 𝒜 must unavoid-

ably return a wrong decision for the probability mass corresponding to 𝐼 ′. We bound the

probability of this event as follows.

Lemma 4.3.10. Let 𝑄 be the set of queries made by 𝒜 on 𝐼*. Let 𝐼 ′ ∼ 𝒟(𝐼*) where 𝐼* is

a given median instance. Then the probability that 𝒜 returns different outputs on 𝐼* and 𝐼 ′

is at most 4800 log𝑚
𝑚𝑛

|𝑄|.

Proof: Let 𝒜(𝐼) denote the algorithm’s output for input instance 𝐼 (whether the given

instance is 𝐼* or drawn from 𝒟(𝐼*)). For each query 𝑞, let ans𝐼(𝑞) denote the answer of

𝐼 to query 𝑞. Observe that since 𝒜 is deterministic, if all of the oracle’s answers to its

previous queries are all the same, then it must make the same next query. Combining this

fact with the union bound, we may lower bound the probability that 𝒜 returns the same
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outputs on 𝐼* and 𝐼 ′ ∼ 𝒟(𝐼*) as follows:

Pr𝒜(𝐼*) ̸= 𝒜(𝐼 ′) ≤
|𝑄|∑︁
𝑡=1

Pr ans𝐼*(𝑞𝑡) ̸= ans𝐼′(𝑞𝑡).

For each 𝑞 ∈ 𝑄, let 𝑆(𝑞) and 𝑒(𝑞) denote respectively the set and element queried by 𝑞.

Applying Lemma 4.3.9, we obtain

Pr𝒜(𝐼*) ̸= 𝒜(𝐼 ′) ≤
|𝑄|∑︁
𝑡=1

Pr ans𝐼*(𝑞𝑡) ̸= ans𝐼′(𝑞𝑡) ≤
|𝑄|∑︁
𝑡=1

𝑃Elt−Set(𝑒(𝑞𝑡), 𝑆(𝑞𝑡)) ≤
4800 log𝑚

𝑚𝑛
|𝑄|.�

Proof of Theorem 4.3.2. If 𝒜 does not output correctly on 𝐼*, the probability of success

of 𝒜 is less than 1/2; thus, we can assume that 𝒜 returns the correct answer on 𝐼*. This

implies that 𝒜 returns an incorrect solution on the fraction of 𝐼 ′ ∼ 𝐼 ′(𝐼*) for which 𝒜(𝐼*) =
𝒜(𝐼 ′). Now recall that the distribution in which we apply Yao’s principle consists of 𝐼* with

probability 1/2, and drawn uniformly at random from 𝒟(𝐼*) also with probability 1/2. Then

over this distribution, by Lemma 4.3.10,

Pr𝒜 succeeds ≤ 1− 1

2
Pr𝐼′∼𝒟(𝐼*)[𝒜(𝐼*) = 𝒜(𝐼 ′)] ≤ 1− 1

2

(︂
1− 4800 log𝑚

𝑚𝑛
|𝑄|
)︂

=
1

2
+

2400 log𝑚

𝑚𝑛
|𝑄|.

Thus, if the number of queries made by 𝒜 is less than 𝑚𝑛
14400 log𝑚

, then the probability that

𝒜 returns the correct answer over the input distribution is less than 2/3 and the proof is

complete. �

4.3.2. The Set Cover Lower Bound for Large Optimal Value 𝑘.

Our construction of the median instance 𝐼* and its associated distribution 𝒟(𝐼*) of modified

instances also leads to the lower bound of ̃︀Ω(𝑚𝑛
𝑘
) for the problem of computing an approx-

imate solution to Set Cover. This lower bound matches the performance of our algorithm

for large optimal value 𝑘 and shows that it is tight for some range of value 𝑘, albeit it only

applies to sufficiently small approximation factor 𝛼 ≤ 1.01.
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Proof overview. We construct a distribution over compounds : a compound is a Set Cover

instance that consists of 𝑡 = Θ(𝑘) smaller instances 𝐼1, . . . , 𝐼𝑡, where each of these 𝑡 instances

is either the median instance 𝐼* or a random modified instance drawn from 𝒟(𝐼*). By our

construction, a large majority of our distribution is composed of compounds that contains at

least 0.2𝑡 modified instances 𝐼𝑖 such that, any deterministic algorithm 𝒜 must fail to distin-

guish 𝐼𝑖 from 𝐼* when it is only allowed to make a small number of queries. A deterministic

𝒜 can safely cover these modified instances with three sets, incurring a cost (sub-optimality)

of 0.2𝑡. Still, 𝒜 may choose to cover such an 𝐼𝑖 with two sets to reduce its cost, but it then

must err on a different compound where 𝐼𝑖 is replaced with 𝐼*. We track down the trade-off

between the amount of cost that 𝒜 saves on these compounds by covering these 𝐼𝑖’s with

two sets, and the amount of error on other compounds its scheme incurs. 𝒜 is allowed a

small probability 𝛿 to make errors, which we then use to upper-bound the expected cost that

𝒜 may save, and conclude that 𝒜 still incurs an expected cost of 0.1𝑡 overall. We apply

Yao’s principle (for algorithms with errors) to obtain that randomized algorithms also incur

an expected cost of 0.05𝑡, on compounds with optimal solution size 𝑘 ∈ [2𝑡, 3𝑡], yielding the

impossibility result for computing solutions with approximation factor 𝛼 = 𝑘+0.1𝑡
𝑘

> 1.01

when given insufficient queries. Next, we provide an high-level overview of the lower bound

argument.

Compounds. Consider the median instance 𝐼* and its associated distribution 𝒟(𝐼*) of

modified instances for Set Cover with 𝑛 elements and 𝑚 sets, and let 𝑡 = Θ(𝑘) be a positive

integer parameter. We define a compound I = I(𝐼1, 𝐼2, . . . , 𝐼𝑡) as a set structure instance

consisting of 𝑡 median or modified instances 𝐼1, 𝐼2, . . . , 𝐼𝑡, forming a set structure (𝒰 𝑡,ℱ 𝑡) of

𝑛′ , 𝑛𝑡 elements and 𝑚′ , 𝑚𝑡 sets, in such a way that each instance 𝐼𝑖 occupies separate

elements and sets. Since the optimal solution to each instance 𝐼𝑖 is 3 if 𝐼𝑖 = 𝐼*, and 2 if 𝐼𝑖

is any modified instance, the optimal solution for the compound is 2𝑡 plus the number of

occurrences of the median instance; this optimal objective value is always Θ(𝑘).

Random distribution over compounds. Employing Yao’s principle, we construct a

distribution D of compounds I(𝐼1, 𝐼2, . . . , 𝐼𝑡): it will be applied against any deterministic
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algorithm 𝒜 for computing an approximate minimum set cover, which is allowed to err on at

most a 𝛿-fraction of the compounds from the distribution (for some small constant 𝛿 > 0).

For each 𝑖 ∈ [𝑡], we pick 𝐼𝑖 = 𝐼* with probability 𝑐/
(︀
𝑚
2

)︀
where 𝑐 > 2 is a sufficiently large

constant. Otherwise, simply draw a random modified instance 𝐼𝑖 ∼ 𝒟(𝐼*). We aim to show

that, in expectation overD, 𝒜must output a solution that of size Θ(𝑡)more than the optimal

set cover size of the given instance I ∼ D.

𝒜 frequently leaves many modified instances undetected. Consider an instance I

containing at least 0.95𝑡 modified instances. These instances constitute at least a 0.99-

fraction of D: the expected number of occurrences of the median instance in each compound

is only 𝑐/
(︀
𝑚
2

)︀
· 𝑡 = 𝑂(𝑡/𝑚2), so by Markov’s inequality, the probablity that there are more

than 0.05𝑡 median instances is at most 𝑂(1/𝑚2) < 0.01 for large 𝑚. We make use of the

following useful lemma, whose proof is deferred to Section 4.3.2. In what follow, we say

that the algorithm “distinguishes” or “detects the difference” between 𝐼𝑖 and 𝐼* if it makes a

query that induces different answers, and thus may deduce that one of 𝐼𝑖 or 𝐼* cannot be the

input instance. In particular, if 𝐼𝑖 = 𝐼* then detecting the difference between them would

be impossible.

Lemma 4.3.11. Fix 𝑀 ⊆ [𝑡] and consider the distribution over compounds I(𝐼1, . . . , 𝐼𝑡)

with 𝐼𝑖 ∼ 𝒟(𝐼*) for 𝑖 ∈ 𝑀 and 𝐼𝑖 = 𝐼* for 𝑖 /∈ 𝑀 . If 𝒜 makes at most 𝑜( 𝑚𝑛𝑡
log𝑚

) queries to

I, then it may detect the differences between 𝐼* and at least 0.75𝑡 of the modified instances

{𝐼𝑖}𝑖∈𝑀 , with probability at most 0.01.

We apply this lemma for any |𝑀 | ≥ 0.95𝑡 (although the statement holds for any 𝑀 , even

vacuously for |𝑀 | < 0.75𝑡). Thus, for 0.99 · 0.99 > 0.98-fraction of D, 𝒜 fails to identify,

for at least 0.95𝑡 − 0.75𝑡 = 0.2𝑡 modified instances 𝐼𝑖 in I, whether it is a median instance

or a modified instance. Observe that the query-answer history of 𝒜 on such I would not

change if we were to replace any combination of these 0.2𝑡 modified instances by copies of

𝐼*. Consequently, if the algorithm were to correctly cover I by using two sets for some of

these 𝐼𝑖, it must unavoidably err (return a non-cover) on the compound where these 𝐼𝑖’s are

replaced by copies of the median instance.
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Charging argument. We call a compound I tough if 𝒜 does not err on I, and 𝒜 fails

to detect at least 0.2𝑡 modified instances; denote by Dtough the conditional distribution of

D restricted to tough instances. For tough I, let cost(I) denote the number of modified

instances 𝐼𝑖 that the algorithm decides to cover with three sets. That is, for each tough

compound I, cost(I) measures how far the solution returned by 𝒜 is, from the optimal set

cover size. Then, there are at least 0.2𝑡 − cost(I) modified instances 𝐼𝑖 that 𝒜 chooses to

cover with only two sets despite not being able to verify whether 𝐼𝑖 = 𝐼* or not. Let 𝑅I

denote the set of the indices of these modified instances, so |𝑅I| = 0.2𝑡− cost(I). By doing

so, 𝒜 then errs on the replaced compound 𝑟(I, 𝑅I), denoting the compound similar to I,

except that each modified instance 𝐼𝑖 for 𝑖 ∈ 𝑅I is replaced by 𝐼*. In this event, we say

that the tough compound I charges the replaced compound 𝑟(I, 𝑅I) via 𝑅I. Recall that

the total error of 𝒜 is 𝛿: this quantity upper-bounds the total probability masses of charged

instances, which we will then manipulate to obtain a lower bound on EI∼D[cost(I)].

Instances must share optimal solutions for 𝑅 to charge the same replaced in-

stance. Observe that many tough instances may charge to the same replaced instance: we

must handle these duplicities. First, consider two tough instances I1 ̸= I2 charing the same

Ir = 𝑟(I1, 𝑅) = 𝑟(I2, 𝑅) via the same 𝑅 = 𝑅I1 = 𝑅I2 . As I1 ̸= I2 but 𝑟(I1, 𝑅) = 𝑟(I2, 𝑅),

these tough instances differ on some modified instances with indices in 𝑅. Nonetheless, the

query-answer histories of 𝒜 operating on I1 and I2 must be the same as their instances in

𝑅 are both indistinguishable from 𝐼* by the deterministic 𝒜. Since 𝒜 does not err on tough

instances (by definition), both tough I1 and I2 must share the same optimal set cover on

every instance in 𝑅. Consequently, for each fixed 𝑅, only tough instances that have the same

optimal solution for modified instances in 𝑅 may charge the same replaced instance via 𝑅.

Charged instance is much heavier than charging instances combined. By our con-

struction of I(𝐼1, . . . , 𝐼𝑡) drawn from D, Pr[𝐼𝑖 = 𝐼*] = 𝑐/
(︀
𝑚
2

)︀
for the median instance. On the

other hand,
∑︀ℓ

𝑗=1 Pr[𝐼𝑖 = 𝐼𝑗] ≤ (1−𝑐/
(︀
𝑚
2

)︀
)·(1/

(︀
𝑚
2

)︀
) < 1/

(︀
𝑚
2

)︀
for modified instances 𝐼1, . . . , 𝐼ℓ

sharing the same optimal set cover, because they are all modified instances constructed to

have the two sets chosen by GenModifiedInst as their optimal set cover: each pair of sets

107



is chosen uniformly with probability 1/
(︀
𝑚
2

)︀
. Thus, the probability that 𝐼* is chosen is more

than 𝑐 times the total probability that any 𝐼𝑗 is chosen. Generalizing this observation, we

consider tough instances I1, I2, . . . ,Iℓ charging the same Ir via 𝑅, and bound the difference

in probabilities that Ir and any I𝑗 are drawn. For each index in 𝑅, it is more than 𝑐 times

more likely for D to draw the median instance, rather than any modified instances of a fixed

optimal solution. Then, for the replaced compound Ir that 𝒜 errs, 𝑝(Ir) ≥ 𝑐|𝑅| ·∑︀ℓ
𝑗=1 𝑝(I

𝑗)

(where 𝑝 denotes the probability mass in D, not in Dtough). In other words, the probability

mass of the replaced instance charged via 𝑅 is always at least 𝑐|𝑅| times the total probability

mass of the charging tough instances.

Bounding the expected cost using 𝛿. In our charging argument by tough instances

above, we only bound the amount of charges on the replaced instances via a fixed 𝑅. As

there are up to 2𝑡 choices for 𝑅, we scale down the total amount charged to a replaced

instance by a factor of 2𝑡, so that
∑︀

tough I 𝑐
|𝑅I|𝑝(I)/2𝑡 lower bounds the total probability

mass of the replaced instances that 𝒜 errs.

Let us first focus on the conditional distribution Dtough restricted to tough instances.

Recall that at least a (0.98− 𝛿)-fraction of the compounds in D are tough: 𝒜 fails to detect

differences between 0.2𝑡 modified instances from the median instance with probability 0.98,

and among these compounds, 𝒜 may err on at most a 𝛿-fraction. So in the conditional

distribution Dtough over tough instances, the individual probability mass is scaled-up to

𝑝tough(I) ≤ 𝑝(I)
0.98−𝛿

. Thus,

∑︀
tough I 𝑐

|𝑅I|𝑝(I)

2𝑡
≥
∑︀

tough I 𝑐
|𝑅I|(0.98− 𝛿)𝑝tough(I)

2𝑡
=

(0.98− 𝛿)EI∼Dtough

[︀
𝑐|𝑅I|

]︀
2𝑡

.

As the probability mass above cannot exceed the total allowed error 𝛿, we have

𝛿

0.98− 𝛿
· 2𝑡 ≥ EI∼Dtough

[︀
𝑐|𝑅I|

]︀
≥ EI∼Dtough

[︀
𝑐0.2𝑡−cost(I)

]︀
≥ 𝑐0.2𝑡−E

I∼Dtough [cost(I)],
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where Jensen’s inequality is applied in the last step above. So,

EI∼Dtough [cost(I)] ≥ 0.2𝑡−
𝑡+ log 𝛿

0.98−𝛿

log 𝑐
=

(︂
0.2− 1

log 𝑐

)︂
𝑡−

log 𝛿
0.98−𝛿

log 𝑐
≥ 0.11𝑡,

for sufficiently large 𝑐 (and 𝑚) when choosing 𝛿 = 0.02.

We now return to the expected cost over the entire distribution I. For simplicity, define

cost(I) = 0 for any non-tough I. This yields EI∼D[cost(I)] ≥ (0.98− 𝛿)EI∼Dtough [cost(I)] ≥
(0.98−𝛿)·0.11𝑡 ≥ 0.1𝑡, establishing the expected cost of any deterministic 𝒜 with probability

of error at most 0.02 over D.

Establishing the lower bound for randomized algorithms. Lastly, we apply Yao’s

principle4 to obtain that, for any randomized algorithm with error probability 𝛿/2 = 0.01,

its expected cost under the worst input is at least 1
2
· 0.1𝑡 = 0.05𝑡. Recall now that our cost

here lower-bounds the sub-optimality of the computed set cover (that is, the algorithm uses

at least cost more sets to cover the elements than the optimal solution does). Since our input

instances have optimal solution 𝑘 ∈ [2𝑡, 3𝑡] and the randomized algorithm returns a solution

with cost at least 0.05𝑡 in expectation, it achieves an approximation factor of no better than

𝛼 = 𝑘+0.05𝑡
𝑘

> 1.01 with 𝑜( 𝑚𝑛𝑡
log𝑚

) queries. Theorem 4.3.4 then follows, noting the substitution

of our problem size: 𝑚𝑛𝑡
log𝑚

= (𝑚′/𝑡)(𝑛′/𝑡)𝑡
log(𝑚′/𝑡)

= Θ( 𝑚′𝑛′

𝑘′ log𝑚′ ).

Proof of Lemma 4.3.11. First, we recall the following result from Lemma 4.3.10 for

distinguishing between 𝐼* and a random 𝐼 ′ ∼ 𝒟(𝐼*).

Corollary 4.3.12. Let 𝑞 be the number of queries made by 𝒜 on 𝐼𝑖 ∼ 𝒟(𝐼*) over 𝑛 elements

and 𝑚 sets, where 𝐼* is a median instance. Then the probability that 𝒜 detects a difference

between 𝐼𝑖 and 𝐼* in one of its queries is at most 4800𝑞 log𝑚
𝑚𝑛

.

Marbles and urns. Fix a compound I(𝐼1, . . . , 𝐼𝑡). Let 𝑠 , 𝑚𝑛
4800 log𝑚

, and then consider the

following, entirely different, scenario. Suppose that we have 𝑡 urns, where each urn contains

𝑠 marbles. In the 𝑖th urn, in case 𝐼𝑖 is a modified instance, we put in this urn one red marble

4Here we use the Monte Carlo version where the algorithm may err, and use cost instead of the time
complexity as our measure of performance. See, e.g., Proposition 2.6 in [139] and the description therein.
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and 𝑠 − 1 white marbles; otherwise if 𝐼𝑖 = 𝐼*, we put in 𝑠 white marbles. Observe that

the probability of obtaining a red marble by drawing 𝑞 marbles from a single urn without

replacement is exactly 𝑞/𝑠 (for 𝑞 ≤ 𝑠). Now, we will relate the probability of drawing red

marbles to the probability of successfully distinguishing instances. We emphasize that we

are only comparing the probabilities of events for the sake of analysis, and we do not imply

or suggest any direct analogy between the events themselves.

Corollary 4.3.12 above bounds the probability that the algorithm successfully distin-

guishes a modified instance 𝐼𝑖 from 𝐼* with 4800𝑞 log𝑚
𝑚𝑛

= 𝑞/𝑠. Then, the probability of

distinguishing between 𝐼𝑖 and 𝐼* using 𝑞 queries, is bounded from above by the proba-

bility of obtaining a red marble after drawing 𝑞 marbles from an urn. Consequently, the

probability that the algorithm distinguishes 3𝑡/4 instances is bounded from above by the

probability of drawing the red marbles from at least 3𝑡/4 urns. Hence, to prove that the

event of Lemma 4.3.11 occurs with probability at most 0.01, it is sufficient to upper-bound

the probability that an algorithm obtains 3𝑡/4 red marbles by 0.01.

Consider an instance of 𝑡 urns; for each urn 𝑖 ∈ [𝑡] corresponding to a modified instance

𝐼𝑖, exactly one of its 𝑠 marbles is red. An algorithm may draw marbles from each urn, one by

one without replacement, for potentially up to 𝑠 times. By the principle of deferred decisions,

the red marble is equally likely to appear in any of these 𝑠 draws, independent of the events

for other urns. Thus, we can create a tuple of 𝑡 random variables 𝒯 = (𝑇1, . . . , 𝑇𝑡) such that

for each 𝑖 ∈ [𝑡], 𝑇𝑖 is chosen uniformly at random from {1, . . . , 𝑠}. The variable 𝑇𝑖 represents

the number of draws required to obtain the red marble in the 𝑖th urn; that is, only the 𝑇 th
𝑖

draw from the 𝑖th urn finds the red marble from that urn. In case 𝐼𝑖 is a median instance,

we simply set 𝑇𝑖 = 𝑠+1 indicating that the algorithm never detects any difference as 𝐼𝑖 and

𝐼* are the same instance.

We now show the following two lemmas in order to bound the number of red marbles the

algorithm may encounter throughout its execution.

Lemma 4.3.13. Let 𝑏 > 3 be a fixed constant and define 𝒯high = {𝑖 | 𝑇𝑖 ≥ 𝑠
𝑏
}. If 𝑡 ≥ 14𝑏,

then |𝒯high| ≥ (1− 2
𝑏
)𝑡 with probability at least 0.99.

Proof: Let 𝒯low = {1, . . . , 𝑡}∖𝒯high. Notice that for the 𝑖th urn, Pr 𝑖 ∈ 𝒯low < 1
𝑏
independently
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of other urns, and thus |𝒯low| is stochastically dominated by B(𝑡, 1
𝑏
), the binomial distribution

with 𝑡 trials and success probability 1
𝑏
. Applying Chernoff bound, we obtain

Pr |𝒯low| ≥
2𝑡

𝑏
≤ 𝑒−

𝑡
3𝑏 < 0.01.

Hence, |𝒯high| ≥ 𝑡− 2𝑡
𝑏
= (1− 2

𝑏
)𝑡 with probability at least 0.99, as desired. �

Lemma 4.3.14. If the total number of draws made by the algorithm is less than (1− 3
𝑏
) 𝑠𝑡
𝑏
,

then with probability at least 0.99, the algorithm will not obtain red marbles from at least 𝑡
𝑏

urns.

Proof: If the total number of such draws is less than (1 − 3
𝑏
) 𝑠𝑡
𝑏
, then the number of draws

from at least 3𝑡
𝑏
urns is less than 𝑠

𝑏
each. Assume the condition of Lemma 4.3.13: for at least

(1 − 2
𝑏
)𝑡 urns, 𝑇𝑖 ≥ 𝑠

𝑏
. That is, the algorithm will not encounter a red marble if it makes

less than 𝑠
𝑏
draws from such an urn. Then, there are at least 𝑡

𝑏
urns with 𝑇𝑖 ≥ 𝑠

𝑏
from which

the algorithm makes less than 𝑠
𝑏
draws, and thus does not obtain a red marble. Overall this

event holds with probability at least 0.99 due to Lemma 4.3.13. �

We substitute 𝑏 = 4 and assume sufficiently large 𝑡. Suppose that the deterministic

algorithm makes less than (1 − 3
4
) 𝑠𝑡
4
= 𝑠𝑡

16
queries, then for a fraction of 0.99 of all possible

tuples 𝒯 , there are 𝑡/4 instances 𝐼𝑖 that the algorithm fails to detect their differences from

𝐼*: the probability of this event is lower-bounded by that of the event where the red marbles

from those corresponding urns 𝑖 are not drawn. Therefore, the probability that the algorithm

makes queries that detect differences between 𝐼* and more than 3𝑡/4 instances 𝐼𝑖’s is bounded

by 0.01, concluding our proof of Lemma 4.3.11.

4.4. Sub-Linear Algorithms for the Set Cover Problem

In this chapter, we present two different approximation algorithms for Set Cover with sub-

linear query in the oracle model: SmallSetCover and LargeSetCover. Both of our

algorithms rely on the techniques from the recent developments on Set Cover in the streaming

model. However, adopting those techniques in the oracle model requires novel insights and

technical development.

Throughout the description of our algorithms, we assume that we have access to a black
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box subroutine that given the full Set Cover instance (where all members of all sets are

revealed), returns a 𝜌-approximate solution.5

The first algorithm (SmallSetCover) returns a (𝛼𝜌 + 𝜀) approximate solution of

the Set Cover instance using ̃︀𝑂(1
𝜀
(𝑚(𝑛

𝑘
)

1
𝛼−1 + 𝑛𝑘)) queries, while the second algorithm

(LargeSetCover) achieves an approximation factor of (𝜌+ 𝜀) using ̃︀𝑂(𝑚𝑛
𝑘𝜀2

) queries, where

𝑘 is the size of the minimum set cover. These algorithms can be combined so that the number

of queries of the algorithm becomes asymptotically the minimum of the two:

Theorem 4.4.1. There exists a randomized algorithm for Set Cover in the oracle model

that w.h.p.6 computes an 𝑂(𝜌 log 𝑛)-approximate solution and uses ̃︀𝑂(min{𝑚
(︀
𝑛
𝑘

)︀1/ log𝑛
+

𝑛𝑘 , 𝑚𝑛
𝑘
}) = ̃︀𝑂(𝑚+ 𝑛

√
𝑚) number of queries.

Our algorithms use the following two sampling techniques developed for Set Cover in the

streaming model [61]: Element Sampling and Set Sampling. The first technique, Element

Sampling, states that in order to find a (1−𝛿)-cover of 𝒰 w.h.p., it suffices to solve Set Cover

on a subset of elements of size ̃︀𝑂(𝜌𝑘 log𝑚
𝛿

) picked uniformly at random. It shows that we may

restrict our attention to a subproblem with a much smaller number of elements, and our

solution to the reduced instance will still cover a good fraction of the elements in the original

instance. The next technique, Set Sampling, shows that if we pick ℓ sets uniformly at random

from ℱ in the solution, then each element that is not covered by any of picked sets w.h.p.

only occurs in ̃︀𝑂(𝑚
ℓ
) sets in ℱ ; that is, we are left with a much sparser subproblem to solve.

The formal statements of these sampling techniques are as follows. See [61] for the proofs.

Lemma 4.4.2 (Element Sampling). Consider an instance of Set Cover on (𝒰 , ℱ) whose
optimal cover has size at most 𝑘. Let 𝒰smp be a subset of 𝒰 of size Θ

(︀
𝜌𝑘 log𝑚

𝛿

)︀
chosen

uniformly at random, and let 𝒞smp ⊆ ℱ be a 𝜌-approximate cover for 𝒰smp. Then, w.h.p. 𝒞smp

covers at least (1− 𝛿)|𝒰| elements.

Lemma 4.4.3 (Set Sampling). Consider an instance (𝒰 ,ℱ) of Set Cover. Let ℱrnd be a

collection of ℓ sets picked uniformly at random. Then, w.h.p. ℱrnd covers all elements that

5The approximation factor 𝜌 may take on any value between 1 and Θ(log 𝑛) depending on the computa-
tional model one assumes.

6An algorithm succeeds with high probability (w.h.p.) if its failure probability can be decreased to 𝑛−𝑐 for
any constant 𝑐 > 0 without affecting its asymptotic performance, where 𝑛 denotes the input size.
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appear in Ω(𝑚 log𝑛
ℓ

) sets of ℱ .

4.4.1. First Algorithm: small values of 𝑘

The algorithm of this section is a modified variant of the streaming algorithm of Set Cover

in [97] that works in the sub-linear query model. Similarly to the algorithm of [97], our

algorithm SmallSetCover considers different guesses of the value of an optimal solution

(𝜀−1 log 𝑛 guesses) and performs the core iterative algorithm IterSetCover for all of them

in parallel. For each guess ℓ of the size of an optimal solution, the IterSetCover goes

through 1/𝛼 iterations and by applying Element Sampling, guarantees that w.h.p. at the

end of each iteration, the number of uncovered elements reduces by a factor of 𝑛−1/𝛼. Hence,

after 1/𝛼 iterations all elements will be covered. Furthermore, since the number of sets

picked in each iteration is at most ℓ, the final solution has at most 𝜌ℓ sets where 𝜌 is the

performance of the offline block OfflineSC that IterSetCover uses to solve the reduced

instances constructed by Element Sampling.

Although our general approach in IterSetCover is similar to the iterative core of the

streaming algorithm of Set Cover, there are challenges that we need to overcome so that it

works efficiently in the query model. Firstly, the approach of [97] relies on the ability to

test membership for a set-element pair when executing its set filtering subroutine: given a

subset S, the algorithm of [97] requires to compute |𝑆 ∩ S| which cannot be implemented

efficiently in the query model (in the worst case, requires 𝑚|S| queries). Instead, here we

employ the set sampling which w.h.p. guarantees that the number of sets that contain an

(yet uncovered) element is small.

Next challenge is achieving𝑚(𝑛/𝑘)1/(𝛼−1)+𝑛𝑘 query bound for computing an 𝛼-approximate

solution. As mentioned earlier, both our approach and the algorithm of [97] need to run the

algorithm in parallel for different guesses ℓ of the size of an optimal solution. However,

since IterSetCover performs 𝑚(𝑛/ℓ)1/(𝛼−1) + 𝑛ℓ queries, if SmallSetCover invokes

IterSetCover with guesses in an increasing order then the query complexity becomes

𝑚𝑛1/(𝛼−1) + 𝑛𝑘; on the other hand, if it invokes IterSetCover with guesses in a de-

creasing order then the query complexity becomes 𝑚(𝑛/𝑘)1/(𝛼−1) +𝑚𝑛. To solve this issue,

SmallSetCover performs in two stages: in the first stage, it finds a (log 𝑛)-estimate of
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𝑘 by invoking IterSetCover using 𝑚+ 𝑛𝑘 queries (assuming guesses are evaluated in an

increasing order) and then in the second rounds it only invokes IterSetCover with ap-

proximation factor 𝛼 in the smaller 𝑂(log 𝑛)-approximate region around the (log 𝑛)-estimate

of 𝑘 computed in the first stage. Thus, in our implementation, besides the desired approx-

imation factor, IterSetCover receives an upper bound and a lower bound on the size of

an optimal solution.

Now, we provide a detailed description of IterSetCover. It receives 𝛼, 𝜖, 𝑙 and 𝑢 as

its arguments, and it is guaranteed that the size of an optimal cover of the input instance,

𝑘, is in [𝑙, 𝑢]. Note that the algorithm does not know the value of 𝑘 and the sampling

techniques described in Section 4.2 rely on 𝑘. Therefore, the algorithm needs to find a

(1+ 𝜀) estimate7 of 𝑘 denoted as ℓ. This can be done by trying all powers of (1+ 𝜀) in [𝑙, 𝑢].

The parameter 𝛼 denotes the trade-off between the query complexity and the approximation

guarantee that the algorithm achieves. Moreover, we assume that the algorithm has access

to a 𝜌-approximate black box solver of Set Cover.

IterSetCover first performs Set Sampling to cover all elements that occur in ̃︀Ω(𝑚/ℓ)

sets. Then it goes through 𝛼 − 2 iterations and in each iteration, it performs Element

Sampling with parameter 𝛿 = ̃︀𝑂((ℓ/𝑛)1/(𝛼−1)). By Lemma 4.4.2, after (𝛼 − 2) iterations,

w.h.p. only ℓ
(︀
𝑛
ℓ

)︀1/(𝛼−1)
elements remain uncovered, for which the algorithm finds a cover by

invoking the offline set cover solver. The parameters are set so that all (𝛼−1) instances that

are required to be solved by the offline set cover solver (the (𝛼− 2) instances constructed by

Element Sampling and the final instance) are of size ̃︀𝑂(𝑚
(︀
𝑛
ℓ

)︀1/(𝛼−1)
).

In the rest of this section, we show that SmallSetCover w.h.p. returns an almost (𝜌𝛼)-

approximate solution of Set Cover(𝒰 ,ℱ) with query complexity ̃︀𝑂(𝑚
(︀
𝑛
𝑘

)︀ 1
𝛼−1 + 𝑛𝑘) where 𝑘

is the size of a minimum set cover.

Theorem 4.4.4. SmallSetCover outputs a (𝛼𝜌+𝜀)-approximate solution of Set Cover(𝒰 ,ℱ)
using ̃︀𝑂(1

𝜀
(𝑚(𝑛/𝑘)

1
𝛼−1 + 𝑛𝑘)) number of queries w.h.p., where 𝑘 is the size of an optimal so-

lution of (𝒰 ,ℱ).

To analyze the performance of SmallSetCover, first we need to analyze the proce-

7The exact estimate that the algorithm works with is a (1 + 𝜀
2𝜌𝛼 ) estimate.
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Algorithm 11 IterSetCover is the main procedure of the SmallSetCover algorithm
for the Set Cover problem.

1: procedure IterSetCover(𝛼, 𝜀, 𝑙, 𝑢)
2: ◁ Try all (1 + 𝜀

2𝛼𝜌
)-approximate guesses of 𝑘

3: for ℓ ∈ {(1 + 𝜀
2𝛼𝜌

)𝑖 | log1+ 𝜀
2𝛼𝜌

𝑙 ≤ 𝑖 ≤ log1+ 𝜀
2𝛼𝜌

𝑢} do
4: solℓ ← collection of ℓ sets picked uniformly at random ◁ Set Sampling
5: 𝒰rem ← 𝒰 ∖

⋃︀
𝑆∈solℓ 𝑆 ◁ 𝑛ℓ EltOf

6: for 𝑖 = 1 to 𝛼− 2 do

7: S← sample of 𝒰rem of size ̃︀𝑂(𝜌ℓ
(︀
𝑛
ℓ

)︀ 1
𝛼−1 )

8: 𝒟 ← OfflineSC(S, ℓ)
9: if 𝒟 = null then
10: break ◁ Try the next value of ℓ

11: solℓ ← solℓ
⋃︀𝒟

12: 𝒰rem ← 𝒰rem ∖
⋃︀

𝑆∈𝒟 𝑆◁ 𝜌𝑛ℓEltOf

13: if |𝒰rem| ≤ ℓ
(︀
𝑛
ℓ

)︀1/(𝛼−1)
then ◁ Feasibility Test

14: 𝒟 ← OfflineSC(𝒰rem, ℓ)
15: if 𝒟 ≠ null then
16: solℓ ← solℓ

⋃︀𝒟
17: return solℓ

dures invoked by SmallSetCover: IterSetCover and OfflineSC. The OfflineSC

procedure receives as an input a subset of elements S and an estimate on the size of an opti-

mal cover of S using sets in ℱ . The OfflineSC algorithm first determines all occurrences

of S in ℱ . Then it invokes a black box subroutine that returns a cover of size at most 𝜌ℓ (if

there exists a cover of size ℓ for S) for the reduced Set Cover instance over S.

Moreover, we assume that all subroutines have access to the EltOf and SetOf oracles,

|𝒰| and |ℱ|.

Lemma 4.4.5. Suppose that each 𝑒 ∈ S appears in ̃︀𝑂(𝑚
ℓ
) sets of ℱ and lets assume that

there exists a set of ℓ sets in ℱ that covers S. Then OfflineSC(S, ℓ) returns a cover of size

at most 𝜌ℓ of S using ̃︀𝑂(𝑚|S|
ℓ
) queries.

Proof: Since each element of S is contained by ̃︀𝑂(𝑚
ℓ
) sets in ℱ , the information required to

solve the reduced instance on S can be obtained by ̃︀𝑂(𝑚|S|
ℓ
) queries (i.e. ̃︀𝑂(𝑚

ℓ
) SetOf query

per element in S). �

Lemma 4.4.6. The cover constructed by the outer loop of IterSetCover(𝛼, 𝜀, 𝑙, 𝑢) with

the parameter ℓ > 𝑘, solℓ, w.h.p. covers 𝒰 .
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Algorithm 12 OfflineSC(S, ℓ) invokes a black box that returns a cover of size at most 𝜌ℓ
(if there exists a cover of size ℓ for S) for the Set Cover instance that is the projection of ℱ
over S.
1: procedure OfflineSC(S, ℓ)
2: ℱS ← ∅
3: for all element 𝑒 ∈ S do
4: ℱ𝑒 ← the collection of sets containing 𝑒
5: ℱS ← ℱS ∪ ℱ𝑒

6: 𝒟 ← solution of size at most 𝜌ℓ for Set Cover on (S,ℱS) constructed by a solver
7: ◁ If there exists no such cover, then 𝒟 = null
8: return 𝒟
Proof: After picking ℓ sets uniformly at random, by Set Sampling (Lemma 5.2.3), w.h.p. each

element that is not covered by the sampled sets appears in ̃︀𝑂(𝑚
ℓ
) sets of ℱ . Next, by Element

Sampling (Lemma 4.4.2 with 𝛿 =
(︀
ℓ
𝑛

)︀1/(𝛼−1)
), at the end of each inner iteration, w.h.p. the

number of uncovered elements decreases by a factor of
(︀
ℓ
𝑛

)︀1/(𝛼−1)
. Thus after at most (𝛼−2)

iterations, w.h.p. less than ℓ
(︀
𝑛
ℓ

)︀1/(𝛼−1)
elements remain uncovered. Finally, OfflineSC is

invoked on the remaining elements; hence, solℓ w.h.p. covers 𝒰 . �

Next we analyze the query complexity and the approximation guarantee of IterSet-

Cover. As we only apply Element Sampling and Set Sampling polynomially many times,

all invocations of the corresponding lemmas during an execution of the algorithm must suc-

ceed w.h.p., so we assume their high probability guarantees for the proofs in rest of this

section.

Lemma 4.4.7. Given that 𝑙 ≤ 𝑘 ≤ 𝑢
1+𝜀/(2𝛼𝜌)

, w.h.p. IterSetCover(𝛼, 𝜀, 𝑙, 𝑢) finds a (𝜌𝛼+

𝜀)-approximate solution of the input instance using ̃︀𝑂 (︀1
𝜀
(𝑚(𝑛

𝑙
)1/(𝛼−1) + 𝑛𝑘)

)︀
queries.

Proof: Let ℓ𝑘 = (1+ 𝜀
2𝛼𝜌

)
⌈log1+ 𝜀

2𝛼𝜌
𝑘⌉
be the smallest power of 1+ 𝜀

2𝛼𝜌
greater than or equal to

𝑘. Note that it is guaranteed that ℓ𝑘 ∈ [𝑙, 𝑢]. By Lemma 4.4.6, IterSetCover terminates

with a guess value ℓ ≤ ℓ𝑘. In the following we compute the query complexity of the run of

IterSetCover with a parameter ℓ ≤ ℓ𝑘.

Set Sampling component picks ℓ sets and then update the set of elements that are not

covered by those sets, 𝒰rem, using 𝑂(𝑛ℓ) EltOf queries. Next, in each iteration of the inner

loop, the algorithm samples a subset S of size ̃︀𝑂 (︀ℓ(𝑛/ℓ)1/(𝛼−1)
)︀
from 𝒰rem. Recall that, by

Set Sampling (Lemma 5.2.3), each 𝑒 ∈ S ⊂ 𝒰rem appears in at most ̃︀𝑂(𝑚/ℓ) sets. Since
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each element in 𝒰rem appears in ̃︀𝑂(𝑚/ℓ), OfflineSC returns a cover 𝒟 of size at most

𝜌ℓ using ̃︀𝑂 (︁𝑚 (𝑛/ℓ)1/(𝛼−1)
)︁
SetOf queries (Lemma 4.4.5). By the guarantee of Element

Sampling (Lemma 4.4.2), the number of elements in 𝒰rem that are not covered by 𝒟 is at

most (ℓ/𝑛)1/(𝛼−1)|𝒰rem|. Finally, at the end of each inner loop, the algorithm updates the

set of uncovered elements 𝒰rem by using ̃︀𝑂(𝑛ℓ) EltOf queries. The Feasibility Test which is

passed w.h.p. for ℓ ≤ ℓ𝑘 ensures that the final run of OfflineSC performs ̃︀𝑂(𝑚(𝑛/ℓ)1/(𝛼−1))

SetOf queries. Hence, the total number of queries performed in each iteration of the outer

loop of IterSetCover with parameter ℓ ≤ ℓ𝑘 is ̃︀𝑂 (︁𝑚 (𝑛/ℓ)1/(𝛼−1) + 𝑛ℓ
)︁
.

By Lemma 4.4.6, if ℓ𝑘 ≤ 𝑢, then the outer loop of IterSetCover is executed for

𝑙 ≤ ℓ ≤ ℓ𝑘 before it terminates. Thus, the total number of queries made by IterSetCover

is:

log1+ 𝜀
2𝛼𝜌

ℓ𝑘∑︁
𝑖=⌈log1+ 𝜀

2𝛼𝜌
𝑙⌉

̃︀𝑂
⎛⎝𝑚

(︃
𝑛

(1 + 𝜀
2𝛼𝜌

)𝑖

)︃ 1
𝛼−1

+ 𝑛(1 +
𝜀

2𝛼𝜌
)𝑖

⎞⎠ = ̃︀𝑂(︂𝑚(︁𝑛
𝑙

)︁ 1
𝛼−1

(︂
log1+ 𝜀

2𝛼𝜌

ℓ𝑘
𝑙

)︂
+

𝑛ℓ𝑘
𝜀/(𝜌𝛼)

)︂

= ̃︀𝑂(︂1

𝜀

(︂
𝑚
(︁𝑛
𝑙

)︁1/(𝛼−1)

+ 𝑛𝑘

)︂)︂
.

Now, we show that the number of sets returned by IterSetCover is not more than

(𝛼𝜌+ 𝜀)ℓ𝑘. Set Sampling picks ℓ sets and each run of OfflineSC returns at most 𝜌ℓ sets.

Thus the size of the solution returned by IterSetCover is at most (1 + (𝛼 − 1)𝜌)ℓ𝑘 <

(𝛼𝜌+ 𝜀)𝑘. �

Next, we prove the main theorem of the section.

Algorithm 13 The description of the SmallSetCover algorithm.

1: procedure SmallSetCover(𝛼, 𝜀)
2: sol← IterSetCover(log 𝑛, 1, 1, 𝑛)
3: 𝑘′ ← |sol| ◁ Find a 𝜌 log 𝑛 estimate of 𝑘.
4: return IterSetCover(𝛼, 𝜖, ⌊ 𝑘′

𝜌 log𝑛
⌋, ⌈𝑘′(1 + 𝜀

2𝛼𝜌
)⌉)

Proof of Theorem 4.4.4. The algorithm SmallSetCover first finds a (𝜌 log 𝑛)-approximate

solution of Set Cover(𝒰 ,ℱ), sol, with ̃︀𝑂(𝑚+𝑛𝑘) queries by calling IterSetCover(log 𝑛, 1, 1, 𝑛).

Having that 𝑘 ≤ 𝑘′ = |sol| ≤ (𝜌 log 𝑛)𝑘, the algorithm calls IterSetCover with 𝛼 as

the approximation factor and [⌊𝑘′/(𝜌 log 𝑛)⌋, ⌈𝑘′(1 + 𝜀
2𝛼𝜌

)⌉] as the range containing 𝑘. By
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Lemma 4.4.7, the second call to IterSetCover in SmallSetCover returns a (𝛼𝜌 + 𝜀)-

approximate solution of Set Cover(𝒰 ,ℱ) using the following number of queries:

̃︀𝑂(︃1

𝜀

(︃
𝑚

(︂
𝑛

𝑘/(𝜌 log 𝑛)

)︂ 1
𝛼−1

+ 𝑛𝑘

)︃)︃
= ̃︀𝑂(︂1

𝜀

(︂
𝑚
(︁𝑛
𝑘

)︁ 1
𝛼−1

+ 𝑛𝑘

)︂)︂
. �

4.4.2. Second Algorithm: large values of 𝑘

The second algorithm, LargeSetCover, works strictly better than SmallSetCover for

large values of 𝑘 (𝑘 ≥ √𝑚). The advantage of LargeSetCover is that it does not need to

update the set of uncovered elements at any point and simply avoids the additive 𝑛𝑘 term

in the query complexity bound; the result of Section 4.5 suggests that the 𝑛𝑘 term may be

unavoidable if one wishes to maintain the uncovered elements. Note that the guarantees of

LargeSetCover is that at the end of the algorithm, w.h.p. the ground set 𝒰 is covered.

The algorithm LargeSetCover, given in Algorithm 14, first randomly picks 𝜀ℓ/3 sets.

By Set Sampling (Lemma 5.2.3), w.h.p. every element that occurs in ̃︀Ω(𝑚/(𝜀ℓ)) sets of ℱ
will be covered by the picked sets. It then solves the Set Cover instance over the elements

that occur in ̃︀𝑂(𝑚/(𝜀ℓ)) sets of ℱ by an offline solver of Set Cover using ̃︀𝑂(𝑚/(𝜀ℓ)) queries;

note that this set of elements may include some already covered elements. In order to get

the promised query complexity, LargeSetCover enumerates the guesses ℓ of the size of

an optimal set cover in the decreasing order. The algorithm returns feasible solutions for

ℓ ≥ 𝑘 and once it cannot find a feasible solution for ℓ, it returns the solution constructed for

the previous guess of 𝑘, i.e., ℓ(1 + 𝜀/(3𝜌)).

Since LargeSetCover performs Set Sampling for ̃︀𝑂(𝜀−1) iterations, w.h.p. the total

query complexity of LargeSetCover is ̃︀𝑂(𝑚𝑛/(𝑘𝜀2)).

Note that testing whether the number of occurrences of an element is ̃︀𝑂(𝑚/(𝜀ℓ)) only

requires a single query, namely SetOf(𝑒, 𝑐𝑚 log𝑛
𝜀ℓ

). We now prove the desired performance of

LargeSetCover.

Lemma 4.4.8. LargeSetCover returns a (𝜌+𝜀)-approximate solution of Set Cover(𝒰 ,ℱ)
w.h.p.

Proof: The algorithm LargeSetCover tries to construct set covers of decreasing sizes until
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Algorithm 14 A (𝜌 + 𝜀)-approximation algorithm for the Set Cover problem. We assume
that the algorithm has access to EltOf and SetOf oracles for Set Cover(𝒰 ,ℱ), as well as
|𝒰| and |ℱ|.
1: procedure LargeSetCover(𝜀)
2: ◁ try all (1 + 𝜀

3𝜌
)-approximate guesses of 𝑘

3: for ℓ ∈ {(1 + 𝜀
3𝜌
)𝑖 | 0 ≤ 𝑖 ≤ log1+ 𝜀

3𝜌
𝑛} in the decreasing order do

4: rndℓ ← collection of 𝜀ℓ
3
sets picked uniformly at random ◁ set sampling

5: ℱrare ← ∅ ◁ intersection with rare elements
6: for all 𝑒 ∈ 𝒰 do
7: if 𝑒 appears in <𝑐𝑚 log𝑛

𝜀ℓ
sets then ◁ size test: SetOf(𝑒, 𝑐𝑚 log𝑛

𝜀ℓ
)

8: ℱ𝑒 ← collection of sets containing 𝑒 ◁ ̃︀𝑂(𝑚
𝜀ℓ
) SetOf queries

9: ℱrare ← ℱrare ∪ ℱ𝑒

10: S← S
⋃︀{𝑒}

11: 𝒟 ← solution of Set Cover(S,ℱrare) returned by a 𝜌-approximation algorithm
12: if |𝒟| ≤ 𝜌ℓ then
13: sol← rndℓ ∪ 𝒟
14: else
15: return sol ◁ solution for the previous value of ℓ

it fails. Clearly, if 𝑘 ≤ ℓ then the black box algorithm finds a cover of size at most 𝜌ℓ for

any subset of 𝒰 , because 𝑘 sets are sufficient to cover 𝒰 . In other words, the algorithm

does not terminate with ℓ ≥ 𝑘. Moreover, since the algorithm terminates when ℓ is smaller

than 𝑘, the size of the set cover found by LargeSetCover is at most ( 𝜀
3
+ 𝜌)(1 + 𝜀

3𝜌
)ℓ <

( 𝜀
3
+ 𝜌)(1 + 𝜀

3𝜌
)𝑘 < (𝜌+ 𝜀)𝑘. �

Lemma 4.4.9. The number of queries made by LargeSetCover is ̃︀𝑂(𝑚𝑛
𝑘𝜀2

).

Proof: The value of ℓ in any successful iteration of the algorithm is greater than 𝑘/(𝜌+ 𝜀);

otherwise, the size of the solution constructed by the algorithm is at most (𝜌+𝜀)ℓ < 𝑘 which

is a contradiction.

Set Sampling guarantees that w.h.p. each uncovered element appears in ̃︀Θ(𝑚/𝜀ℓ) sets

and thus the algorithm needs to perform ̃︀𝑂(𝑚𝑛
𝜀ℓ
) SetOf queries to construct ℱrare. Moreover,

the number of required queries in the size test step is 𝑂(𝑛) because we only need one SetOf

query per each element in 𝒰 . Thus, the query complexity of LargeSetCover(𝜀) is bounded
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by

log1+ 𝜀
3𝜌

𝑛∑︁
𝑖=log1+ 𝜀

3𝜌

𝑘
𝜌+𝜀

̃︀𝑂(︃𝑛+
𝑚𝑛

𝜀(1 + 𝜀
3𝜌
)𝑖

)︃
= ̃︀𝑂 (︁(𝑛+

𝑚𝑛

𝜀𝑘
) log1+ 𝜀

3𝜌

𝑛

𝑘

)︁
= ̃︀𝑂 (︁𝑚𝑛

𝑘𝜀2

)︁
. �

4.5. Lower Bound for the Cover Verification Problem

In this section, we give a tight lower bound on a feasibility variant of the Set Cover problem

which we refer to as Cover Verification. In Cover Verification(𝒰 ,ℱ ,ℱ𝑘), besides a collection

of 𝑚 sets ℱ and 𝑛 elements 𝒰 , we are given indices of 𝑘 sets ℱ𝑘 ⊆ ℱ , and the goal is to

determine whether they are covering the whole universe 𝒰 or not. We note that, throughout

this section, the parameter 𝑘 is a candidate for, but not necessarily the value of, the size of

the minimum set cover.

A naive approach for this decision problem is to query all elements in the given 𝑘 sets

and then check whether they cover 𝒰 or not; this approach requires 𝑂(𝑛𝑘) queries. However,

in what follows we show that this approach is tight and no randomized protocol can decide

whether the given 𝑘 sets cover the whole universe with probability of success at least 0.9

using 𝑜(𝑛𝑘) queries.

Theorem 4.5.1. Any (randomized) algorithm for deciding whether a given 𝑘 = Ω(log 𝑛)

sets covers all elements with probability of success at least 0.9, requires Ω(𝑛𝑘) queries.

Proof: Observe that according to our instance construction, the algorithm may verify, with

a single query, whether a certain swap occurs in a certain slab. Namely, it is sufficient to

query an entry of EltOf or SetOf that would have been modified by that swap, and check

whether it is actually modified or not. For simplicity, we assume that the algorithm has the

knowledge of our construction. Further, without loss of generality, the algorithm does not

make multiple queries about the same swap, or make a query that is not corresponding to

any swap.

We employ Yao’s principle as follows: to prove a lower bound for randomized algorithms,

we show a lower bound for any deterministic algorithm on a fixed distribution of input

instances. Let 𝑠 = 𝑛−𝑘 be the number of possible swaps in each slab; assume 𝑠 = Θ(𝑛). We
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define our distribution of instances as follows: each of the 𝑠𝑘 possible Yes instances occurs

with probability 1/(2𝑠𝑘), and each of the 𝑘𝑠𝑘−1 possible No instances occurs with probability

1/(2𝑘𝑠𝑘−1). Equivalently speaking, we create a random Yes instance by making one swap on

each basic slab. Then we make a coin flip: with probability 1/2 we pick a random slab and

undo the swap on that slab to obtain a No instance; otherwise we leave it as a Yes instance.

To prove by contradiction, assume there exists a deterministic algorithm that solves the

Cover Verification problem over this distribution of instances with 𝑟 = 𝑜(𝑠𝑘) queries.

Consider the Yes instances portion of the distribution, and observe that we may alterna-

tively interpret the random process generating them as as follows. For each slab, one of its 𝑠

possible swaps is chosen uniformly at random. This condition again follows the scenario con-

sidered in Section 4.3.2: we are given 𝑘 urns (slabs) of each consisting of 𝑠 marbles (possible

swap locations), and aim to draw the red marble (swapped entry) from a large fraction of

these urns. Following the proof of Lemmas 4.3.13-4.3.14, we obtain that if the total number

of queries made by the algorithm is less than (1− 3
𝑏
) 𝑠𝑘

𝑏
, then with probability at least 0.99,

the algorithm will not see any swaps from at least 𝑘
𝑏
slabs.

Then, consider the corresponding No instances obtained by undoing the swap in one of

the slabs of the Yes instance. Suppose that the deterministic algorithm makes less than

(1 − 3
𝑏
) 𝑠𝑘

𝑏
queries, then for a fraction of 0.99 of all possible tuples 𝒯 , the output of the

Yes instance is the same as the output of 1
𝑏
fraction of No instances, namely when the

slab containing no swap is one of the 𝑘
𝑏
slabs that the algorithm has not detected a swap

in the corresponding Yes instance; the algorithm must answer incorrectly on half of the

corresponding weight in our distribution of input instances. Thus the probability of success

for any algorithm with less than (1− 3
𝑏
) 𝑠𝑘

𝑏
queries is at most

1− Pr |𝒯high| ≥ (1− 2

𝑏
)𝑘(

1

𝑏
)(
1

2
) ≤ 1− 0.495

𝑏
< 0.9,

for a sufficiently small constant 𝑏 > 3 (e.g. 𝑏 = 4). As 𝑠 = Θ(𝑛) and by Yao’s principle, this

implies the lower bound of Ω(𝑛𝑘) for the Cover Verification problem. �

While this lower bound does not directly lead to a lower bound on Set Cover, it sug-

gests that verifying the feasibility of a solution may even be more costly than finding the
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approximate solution itself; any algorithm bypassing this Ω(𝑛𝑘) lower bound may not solve

Cover Verification as a subroutine.

We prove our lower bound by designing the Yes and No instances that are hard to

distinguish, such that for a Yes instance, the union of the given 𝑘 sets is 𝒰 , while for a No

instance, their union only covers 𝑛−1 elements. Each Yes instance is indistinguishable from

a good fraction of No instances. Thus any algorithm must unavoidably answer incorrectly

on half of these fractions, and fail to reach the desired probability of success.

4.5.1. Underlying Set Structure

Our instance contains 𝑛 sets and 𝑛 elements (so 𝑚 = 𝑛), where the first 𝑘 sets forms

ℱ𝑘, the candidate for the set cover we wish to verify. We first consider the incidence matrix

representation, such that the rows represent the sets and the columns represent the elements.

We focus on the first 𝑛/𝑘 elements, and consider a slab, composing of 𝑛/𝑘 columns of the

incidence matrix. We define a basic slab as the structure illustrated in Figure 4.5.1 (for

𝑛 = 12 and 𝑘 = 3), where the cell (𝑖, 𝑗) is white if 𝑒𝑗 ∈ 𝑆𝑖, and is gray otherwise. The rows

are divided into blocks of size 𝑘, where first block, the query block, contains the rows whose

sets we wish to check for coverage; notice that only the last element is not covered. More

specifically, in a basic slab, the query block contains sets 𝑆1, . . . , 𝑆𝑛/𝑘, each of which is equal

to {𝑒1, . . . , 𝑒𝑛/𝑘−1}. The subsequent rows form the swapper blocks each consisting of 𝑛/𝑘

sets. The 𝑟th swapper block consists of sets 𝑆(𝑟+1)𝑛/𝑘+1, . . . , 𝑆(𝑟+2)𝑛/𝑘, each of which is equal

to {𝑒1, . . . , 𝑒𝑛/𝑘} ∖ {𝑒𝑟}. We perform one swap in this slab. Consider a parameter (𝑥, 𝑦)

representing the index of a white cell within the query block. We exchange the color of this

white cell with the gray cell on the same row, and similarly exchange the same pair of cells on

swapper block 𝑦. An example is given in Figure 4.5.1; the dashed blue rectangle corresponds

to the indices parameterizing possible swaps, and the red squares mark the modified cells.

This modification corresponds to a single swap operation; in this example, choosing the index

(3, 2) swaps (𝑒2, 𝑒4) between 𝑆3 and 𝑆9. Observe that there are 𝑘×(𝑛/𝑘−1) = 𝑛−𝑘 possible

swaps on a single slab, and any single swap allows the query sets to cover all 𝑛/𝑘 elements.

Lastly, we may create the full instance by placing all 𝑘 slabs together, as shown in

Figure 4.5.2, shifting the elements’ indices as necessary. The structure of our sets may be
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query block

swapper block 1

swapper block 2

swapper block 3

𝑒1 𝑒2 𝑒3 𝑒4

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7

𝑆8

𝑆9

𝑆10

𝑆11

𝑆12

(a) a basic slab

𝑒1 𝑒2 𝑒3 𝑒4

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7

𝑆8

𝑆9

𝑆10

𝑆11

𝑆12

(b) after performing a (3, 2)-swap

Figure 4.5.1: A basic slab and an example of a swapping operation.

slab 1 slab 2 slab 3

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8 𝑒9 𝑒10 𝑒11 𝑒12

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7

𝑆8

𝑆9

𝑆10

𝑆11

𝑆12

Figure 4.5.2: A example structure of a Yes instance; all elements are covered by the first
3 sets.
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specified solely by the swaps made on these slabs. We define the structure of our instances

as follows.

1. For a Yes instance, we make one random swap on each slab. This allows the first 𝑘

sets to cover all elements.

2. For a No instance, we make one random swap on each slab except for exactly one of

them. In that slab, the last element is not covered by any of the first 𝑘 sets.

Now, to properly define an instance, we must describe our structure via EltOf and

SetOf. We first create a temporary instance consisting of 𝑘 basic slabs, where none of the

cells are swapped. Create EltOf and SetOf lists by sorting each list in an increasing order

of indices. Each instance from the above construction can then be obtained by applying

up to 𝑘 swaps on this temporary instance. Figure 4.6.1 provides a sample realization of a

basic slab with EltOf and SetOf, as well as a sample result of applying a swap on this

basic slab; these correspond to the incidence matrices in Figure 4.5.1a and Figure 4.5.1b,

respectively. Such a construction can be extended to include all 𝑘 slabs. Observe here that

no two distinct swaps modify the same entry; that is, the swaps do not interfere with one

another on these two functions. We also note that many entries do not participate in any

swap.

4.6. Generalized Lower Bounds for the Set Cover Problem

In this section we generalize the approach of Section 4.3 and prove our main lower bound

result (Theorem 4.3.1) for the number of queries required for approximating with factor 𝛼

the size of an optimal solution to the Set Cover problem, where the input instance contains

𝑚 sets, 𝑛 elements, and a minimum set cover of size 𝑘. The structure of our proof is largely

the same as the simplified case, but the definitions and the details of our analysis will be

more complicated. The size of the minimum set cover of the median instance will instead be

at least 𝛼𝑘 + 1, and GenModifiedInst reduces this down to 𝑘. We now aim to prove the

following statement which implies the lower bound in Theorem 4.3.1.

Theorem 4.6.1. Let 𝑘 be the size of an optimal solution of 𝐼* such that 1 < 𝛼 ≤ log 𝑛 and

2 ≤ 𝑘 ≤
(︁

𝑛
16𝛼 log𝑚

)︁ 1
4𝛼+1

. Any algorithm that distinguishes whether the input instance is 𝐼*
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Before: EltOf table for a basic slab After: EltOf table after applying a swap

EltOf 1 2 3 EltOf 1 2 3

𝑆1 𝑒1 𝑒2 𝑒3 𝑆1 𝑒1 𝑒2 𝑒3

𝑆2 𝑒1 𝑒2 𝑒3 𝑆2 𝑒1 𝑒2 𝑒3

𝑆3 𝑒1 𝑒2 𝑒3 𝑆3 𝑒1 𝑒4 𝑒3

𝑆4 𝑒2 𝑒3 𝑒4 𝑆4 𝑒2 𝑒3 𝑒4

𝑆5 𝑒2 𝑒3 𝑒4 𝑆5 𝑒2 𝑒3 𝑒4

𝑆6 𝑒2 𝑒3 𝑒4 𝑆6 𝑒2 𝑒3 𝑒4

𝑆7 𝑒1 𝑒3 𝑒4 𝑆7 𝑒1 𝑒3 𝑒4

𝑆8 𝑒1 𝑒3 𝑒4 𝑆8 𝑒1 𝑒3 𝑒4

𝑆9 𝑒1 𝑒3 𝑒4 𝑆9 𝑒1 𝑒3 𝑒2

𝑆10 𝑒1 𝑒2 𝑒4 𝑆10 𝑒1 𝑒2 𝑒4

𝑆11 𝑒1 𝑒2 𝑒4 𝑆11 𝑒1 𝑒2 𝑒4

𝑆12 𝑒1 𝑒2 𝑒4 𝑆12 𝑒1 𝑒2 𝑒4

Before: SetOf table for a basic slab

SetOf 1 2 3 4 5 6 7 8 9

𝑒1 𝑆1 𝑆2 𝑆3 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

𝑒2 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆10 𝑆11 𝑆12

𝑒3 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9

𝑒4 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

After: SetOf table after applying a swap

SetOf 1 2 3 4 5 6 7 8 9

𝑒1 𝑆1 𝑆2 𝑆3 𝑆7 𝑆8 𝑆9 𝑆10 𝑆11 𝑆12

𝑒2 𝑆1 𝑆2 𝑆9 𝑆4 𝑆5 𝑆6 𝑆10 𝑆11 𝑆12

𝑒3 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆9

𝑒4 𝑆4 𝑆5 𝑆6 𝑆7 𝑆8 𝑆3 𝑆10 𝑆11 𝑆12

Figure 4.6.1: Tables illustrating the representation of a slab under EltOf and SetOf
before and after a swap; cells modified by swap(𝑒2, 𝑒4) between 𝑆3 and 𝑆9 are highlighted in
red.
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or belongs to 𝒟(𝐼*) with probability of success at least 2/3 requires ̃︀Ω(𝑚(𝑛
𝑘
)1/(2𝛼)) queries.

Proof: Applying the same argument as that of Lemma 4.3.10, we derive that the probability

that 𝒜 returns different outputs on 𝐼* and 𝐼 ′ is at most

Pr𝒜(𝐼*) ̸= 𝒜(𝐼 ′) ≤
|𝑄|∑︁
𝑡=1

Pr ans𝐼*(𝑞𝑡) ̸= ans𝐼′(𝑞𝑡) ≤
|𝑄|∑︁
𝑡=1

𝑃Elt−Set(𝑒(𝑞𝑡), 𝑆(𝑞𝑡)) ≤
64𝑝𝑘0

𝑚(1− 𝑝0)2
|𝑄|,

via the result of Lemma 4.6.12. Then, over the distribution in which we applied Yao’s lemma,

we have

Pr𝒜 succeeds ≤ 1− 1

2
Pr𝐼′∼𝒟(𝐼*)[𝒜(𝐼*) = 𝒜(𝐼 ′)] ≤ 1− 1

2

(︂
1− 64𝑝𝑘0

𝑚(1− 𝑝0)2
|𝑄|
)︂

=
1

2
+

32𝑝𝑘0
𝑚(1− 𝑝0)2

|𝑄|

≤ 1

2
+

32

𝑚

(︂
8(𝑘𝛼+ 2) log𝑚

𝑛

)︂ 1
2𝛼

|𝑄|

where the last inequality follows from Lemma 4.6.2. Thus, if the number of queries made by

𝒜 is less than 𝑚
192

( 𝑛
8(𝑘𝛼+2) log𝑚

)1/(2𝛼), then the probability that 𝒜 returns the correct answer

over the input distribution is less than 2/3 and the proof is complete. �

4.6.1. Construction of the Median Instance 𝐼*.

Let ℱ be a collection of𝑚 sets such that independently for each set-element pair (𝑆, 𝑒), 𝑆 con-

tains 𝑒 with probability 1− 𝑝0, where we modify the probability to 𝑝0 =
(︁

8(𝛼𝑘+2) log𝑚
𝑛

)︁1/(𝛼𝑘)
.

We start by proving some inequalities involving 𝑝0 that will be useful later on, which hold

for any 𝑘 in the assumed range.

Lemma 4.6.2. For 2 ≤ 𝑘 ≤
(︁

𝑛
16𝛼 log𝑚

)︁ 1
4𝛼+1

, we have that

(a) 1− 𝑝0 ≥ 𝑝
𝑘/4
0 ,

(b) 𝑝
𝑘/4
0 ≤ 1/2,

(c)
𝑝𝑘0

(1−𝑝0)2
≤
(︁

8(𝛼𝑘+2) log𝑚
𝑛

)︁ 1
2𝛼
.

Proof: Recall as well that 𝛼 > 1. In the given range of 𝑘, we have 𝑘4𝛼 ≤ 𝑛
16𝛼𝑘 log𝑚

≤
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𝑛
8(𝛼𝑘+2) log𝑚

because 𝑘𝛼 ≥ 2. Thus

𝑝0 =

(︂
8(𝛼𝑘 + 2) log𝑚

𝑛

)︂ 1
𝛼𝑘

≤
(︂

1

𝑘4𝛼

)︂ 1
𝛼𝑘

= 𝑘−4/𝑘.

Next, rewrite 𝑘−4/𝑘 = 𝑒−
4 ln 𝑘

𝑘 and observe that 4 ln 𝑘
𝑘
≤ 4

𝑒
< 1.5. Since 𝑒−𝑥 ≤ 1 − 𝑥

2
for

any 𝑥 < 1.5, we have 𝑝0 ≤ 𝑒−
4 ln 𝑘

𝑘 < 1 − 2 ln 𝑘
𝑘
. Further, 𝑝

𝑘/4
0 ≤ 𝑒− ln 𝑘 = 1/𝑘. Hence

𝑝0 + 𝑝
𝑘/4
0 ≤ 1− 2 ln 𝑘

𝑘
+ 1

𝑘
≤ 1, implying the first statement.

The second statement easily follows as 𝑝
𝑘/4
0 ≤ 1/𝑘 ≤ 1/2 since 𝑘 ≥ 2. For the last

statement, we make use of the first statement:

𝑝𝑘0
(1− 𝑝0)2

≤ 𝑝𝑘0

(𝑝
𝑘/4
0 )2

= 𝑝
𝑘/2
0 =

(︂
8(𝛼𝑘 + 2) log𝑚

𝑛

)︂ 1
2𝛼

which completes the proof of the lemma. �

Next, we give the new, generalized definition of median instances.

Definition 4.6.3 (Median instance). An instance of Set Cover, 𝐼 = (𝒰 ,ℱ), is a median

instance if it satisfies all the following properties.

(a) No 𝛼𝑘 sets cover all the elements. (The size of its minimum set cover is greater than

𝛼𝑘.)

(b) The number of uncovered elements of the union of any 𝑘 sets is at most 2𝑛𝑝𝑘0.

(c) For any pair of elements 𝑒, 𝑒′, the number of sets 𝑆 ∈ ℱ s.t. 𝑒 ∈ 𝑆 but 𝑒′ /∈ 𝑆 is at least

(1− 𝑝0)𝑝0𝑚/2.

(d) For any collection of 𝑘 sets 𝑆1, · · · , 𝑆𝑘, |𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1)| ≥ (1− 𝑝0)(1− 𝑝𝑘−1
0 )𝑛/2.

(e) For any collection of 𝑘 + 1 sets 𝑆, 𝑆1, · · · , 𝑆𝑘, |(𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1)) ∖ 𝑆| ≤ 2𝑝0(1 −
𝑝0)(1− 𝑝𝑘−1

0 )𝑛.

(f) For each element, the number of sets that do not contain the element is at most (1 +

1
𝑘
)𝑝0𝑚.

Lemma 4.6.4. For 𝑘 ≤ min{√︀ 𝑚
27 ln𝑚

, ( 𝑛
16𝛼 log𝑚

)
1

4𝛼+1}, there exists a median instance 𝐼*

satisfying all the median properties from Definition 4.6.3. In fact, most of the instances

constructed by the described randomized procedure satisfy the median properties.
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Proof: The lemma follows from applying the union bound on the results of Lemmas 4.6.5–

4.6.10. �

The proofs of the Lemmas 4.6.5–4.6.10 follow from standard applications of concentration

bounds. We include them here for the sake of completeness.

Lemma 4.6.5. With probability at least 1−𝑚−2 over ℱ ∼ ℐ(𝒰 , 𝑝0), the size of the minimum
set cover of the instance (ℱ ,𝒰) is at least 𝛼𝑘 + 1.

Proof: The probability that an element 𝑒 ∈ 𝒰 is covered by a specific collection of 𝛼𝑘 sets

in ℱ is at most 1 − 𝑝𝛼𝑘0 = 1 − 8(𝛼𝑘+2) log𝑚
𝑛

. Thus, the probability that the union of the 𝛼𝑘

sets covers all elements in 𝒰 is at most (1− 8(𝛼𝑘+2) log𝑚
𝑛

)𝑛 < 𝑚−8(𝛼𝑘+2). Applying the union

bound, with probability at least 1−𝑚−2 the size of an optimal set cover is at least 𝛼𝑘+1.�

Lemma 4.6.6. With probability at least 1−𝑚−2 over ℱ ∼ ℐ(𝒰 , 𝑝0), any collection of 𝑘 sets

has at most 2𝑛𝑝𝑘0 uncovered elements.

Proof: Let 𝑆1, · · · , 𝑆𝑘 be a collection of 𝑘 sets from ℱ . For each element 𝑒 ∈ 𝒰 , the proba-
bility that 𝑒 is not covered by the union of the 𝑘 sets is 𝑝𝑘0. Thus,

E[|𝒰 ∖ (𝑆1 ∪ · · · ∪ 𝑆𝑘)|] = 𝑝𝑘0𝑛 ≥ 𝑝𝛼𝑘0 𝑛 = 8(𝛼𝑘 + 2) log𝑚.

By Chernoff bound,

Pr |𝒰 ∖ (𝑆1 ∪ · · · ∪ 𝑆𝑘)| ≥ 2𝑝𝑘0𝑛 ≤ 𝑒−
𝑝𝑘0𝑛

3 ≤ 𝑒−(𝛼𝑘+2) log𝑚 ≤ 𝑚−𝑘−2.

Thus with probability at least 1 − 𝑚−2, for any collection of 𝑘 sets in ℱ , the number of

uncovered elements by the union of the sets is at most 2𝑝𝑘0𝑛. �

Lemma 4.6.7. Suppose that ℱ ∼ ℐ(𝒰 , 𝑝0) and let 𝑒, 𝑒′ be two elements in 𝒰 . Given 𝑘 ≤(︁
𝑛

16𝛼 log𝑚

)︁ 1
4𝛼+1

, with probability at least 1−𝑚−2, the number of sets 𝑆 ∈ ℱ such that 𝑒 ∈ 𝑆

but 𝑒′ /∈ 𝑆 is at least 𝑚𝑝0(1− 𝑝0)/2.

Proof: For each set 𝑆, Pr 𝑒 ∈ 𝑆 and 𝑒′ /∈ 𝑆 = (1 − 𝑝0)𝑝0. This implies that the expected
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number of such sets 𝑆 satisfying the condition for 𝑒 and 𝑒′ is

𝑝0(1− 𝑝0)𝑚 ≥ 𝑝0 · 𝑝𝑘/40 ·𝑚 ≥ 𝑝𝛼𝑘0 𝑛 = 8(𝛼𝑘 + 2) log𝑚

by Lemma 4.6.2 and 𝑚 ≥ 𝑛. By Chernoff bound, the probability that the number of sets

containing 𝑒 but not 𝑒′ is less than 𝑚𝑝0(1− 𝑝0)/2 is at most

𝑒−
𝑝0(1−𝑝0)𝑚

8 ≤ 𝑒−(𝛼𝑘+2) log𝑚 ≤ 𝑚−𝛼𝑘−2.

Thus with probability at least 1−𝑚−2 property (c) holds for any pair of elements in 𝒰 . �

Lemma 4.6.8. Suppose that ℱ ∼ ℐ(𝒰 , 𝑝0) and let 𝑆1, · · · , 𝑆𝑘 be 𝑘 different sets in ℱ .
Given 𝑘 ≤

(︁
𝑛

16𝛼 log𝑚

)︁ 1
4𝛼+1

, with probability at least 1 − 𝑚−2, |𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1)| ≥
(1− 𝑝0)(1− 𝑝𝑘−1

0 )𝑛/2.

Proof: For each element 𝑒, Pr 𝑒 ∈ 𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1) = (1 − 𝑝0)(1 − 𝑝𝑘−1
0 ). This implies

that the expected size of 𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1) is

(1− 𝑝0)(1− 𝑝𝑘−1
0 )𝑛 ≥ 𝑝

𝑘/4
0 · 𝑝𝑘/40 · 𝑛 ≥ 𝑝𝛼𝑘0 𝑛 = 8(𝛼𝑘 + 2) log𝑚.

by Lemma 4.6.2. By Chernoff bound, the probability that |𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1)| ≤ (1 −
𝑝0)(1− 𝑝𝑘−1

0 )𝑛/2 is at most

𝑒−
(1−𝑝0)(1−𝑝𝑘−1

0 )𝑛

8 ≤ 𝑒−(𝛼𝑘+2) log𝑚 ≤ 𝑚−𝛼𝑘−2.

Thus with probability at least 1−𝑚−2 property (d) holds for any sets 𝑆1, · · · , 𝑆𝑘 in ℱ . �

Lemma 4.6.9. Suppose that ℱ ∼ ℐ(𝒰 , 𝑝0) and let 𝑆1, · · · , 𝑆𝑘 and 𝑆 be 𝑘+1 different sets in

ℱ . Given 𝑘 ≤
(︁

𝑛
16𝛼 log𝑚

)︁ 1
4𝛼+1

, with probability at least 1−𝑚−2, |(𝑆𝑘∩(𝑆1∪· · ·∪𝑆𝑘−1))∖𝑆| ≤
2𝑝0(1− 𝑝0)(1− 𝑝𝑘−1

0 )𝑛.
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Proof: For each element 𝑒, Pr 𝑒 ∈ (𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1)) ∖ 𝑆 = 𝑝0(1− 𝑝0)(1− 𝑝𝑘−1
0 ). Then,

E(|(𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1)) ∖ 𝑆|) = 𝑝0(1− 𝑝0)(1− 𝑝𝑘−1
0 )𝑛 ≥ 𝑝0 · 𝑝𝑘/40 · 𝑝𝑘/40 ≥ 𝑝𝛼𝑘0 𝑛

= 8(𝛼𝑘 + 2) log𝑚

by Lemma 4.6.2. By Chernoff bound, the probability that |(𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1)) ∖ 𝑆| ≥
2𝑝0(1− 𝑝0)(1− 𝑝𝑘−1

0 )𝑛 is

𝑒−
𝑝0(1−𝑝0)(1−𝑝𝑘−1

0 )𝑛

3 ≤ 𝑒−2(𝛼𝑘+2) log𝑚 ≤ 𝑚−2𝛼𝑘−4.

Thus with probability at least 1 −𝑚−2 property (e) holds for any sets 𝑆1, · · · , 𝑆𝑘 and 𝑆 in

ℱ . �

Lemma 4.6.10. Given that 𝑘 ≤
(︁

𝑛
16𝛼 log𝑚

)︁ 1
4𝛼+1

, for each element, the number of sets that

do not contain the element is at most (1 + 1
𝑘
)𝑝0𝑚.

Proof: First, note that 𝑘 ≤
(︁

𝑛
16𝛼 log𝑚

)︁ 1
4𝛼+1 ≤√︀ 𝑚

27 ln𝑚
as 𝑚 ≥ 𝑛 and 𝛼 ≥ 1.

Next, for each element 𝑒, Pr𝑆∼ℱ [𝑒 /∈ 𝑆] = 𝑝0. This implies that E𝑆(|{𝑆 | 𝑒 /∈ 𝑆}|) = 𝑝0𝑚.

By Chernoff bound, the probability that |{𝑆 | 𝑒 /∈ 𝑆}| ≥ (1 + 1
𝑘
)𝑝0𝑚 is at most 𝑒

−𝑚𝑝0
3𝑘2 . Now

if 𝑘 ≥ log 𝑛, then 𝑝0 ≥ 1/𝑒 and thus this probability would be at most exp( −𝑚
3𝑒𝑘2

) ≤ 𝑚−3 for

any 𝑘 ≤√︀ 𝑚
27 ln𝑚

. Otherwise, we have that the above probability is at most exp(−𝑚𝑛−1/𝛼𝑘

3 log2 𝑛
) ≤

exp(−𝑚1−1/𝛼𝑘

3 log2 𝑚
) ≤ 𝑚−3 given 𝑚 ≥ 𝑛 and sufficiently large 𝑛. Thus with probability at least

1−𝑚−2 property (f) holds for any element 𝑒 ∈ 𝒰 . �

4.6.2. Distribution 𝒟(𝐼*) of the Modified Instances Derived from 𝐼*.

Fix a median instance 𝐼*. We now show that we may perform 𝑂̃(𝑛1−1/𝛼𝑘1/𝛼) swap operations

on 𝐼* so that the size of the minimum set cover in the modified instance becomes 𝑘. So, the

number of queries to EltOf and SetOf that induce different answers from those of 𝐼* is

at most ̃︀𝑂(𝑛1−1/𝛼𝑘1/𝛼). We define 𝒟(𝐼*) as the distribution of instances 𝐼 ′ that is generated

from a median instance 𝐼* by GenModifiedInst(𝐼*) given below in Algorithm 15. The

main difference from the simplified version are that we now select 𝑘 different sets to turn

them into a set cover, and the swaps may only occur between 𝑆𝑘 and the candidates.

130



Algorithm 15 The procedure of constructing a modified instance of 𝐼*.

1: procedure GenModifiedInst(𝐼* = (𝒰 ,ℱ))
2: ℳ← ∅
3: pick 𝑘 different sets 𝑆1, · · ·𝑆𝑘 from ℱ uniformly at random
4: for all 𝑒 ∈ 𝒰 ∖ (𝑆1 ∪ · · · ∪ 𝑆𝑘) do
5: pick 𝑒′ ∈ (𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1)) ∖ℳ uniformly at random
6: ℳ←ℳ∪ {𝑒𝑒′}
7: pick a random set 𝑆 in Candidate(𝑒, 𝑒′)
8: swap(𝑒, 𝑒′) between 𝑆, 𝑆𝑘

Lemma 4.6.11. The procedure GenModifiedInst is well-defined under the precondition

that the input instance 𝐼* is a median instance.

Proof: To carry out the algorithm, we must ensure that the number of the initially uncov-

ered elements is at most that of the elements covered by both 𝑆𝑘 and some other set from

𝑆1, . . . , 𝑆𝑘−1. Since 𝐼* is a median instance, by properties (b) and (d) from Definition 4.6.3,

these values satisfy |𝒰∖(𝑆1∪· · ·∪𝑆𝑘)| ≤ 2𝑝𝑘0𝑛 and |𝑆𝑘∩(𝑆1∪· · ·∪𝑆𝑘−1)| ≥ (1−𝑝0)(1−𝑝𝑘−1
0 )𝑛/2,

respectively. By Lemma 4.6.2, 𝑝𝑘/40 ≤ 1/2. Using this and Lemma 4.6.2 again,

(1− 𝑝0)(1− 𝑝𝑘−1
0 )𝑛/2 ≥ 𝑝

𝑘/4
0 · 𝑝𝑘/40 · 𝑛/2 ≥ 𝑝

𝑘/2
0 𝑛/2 ≥ 2𝑝𝑘0𝑛.

That is, in our construction there are sufficiently many possible choices for 𝑒′ to be matched

and swapped with each uncovered element 𝑒. Moreover, since 𝐼* is a median instance,

|Candidate(𝑒, 𝑒′)| ≥ (1− 𝑝0)𝑝0𝑚/2 (by property (c)), and there are plenty of candidates for

each swap. �

Bounding the Probability of Modification. Similarly to the simplified case, define

𝑃Elt−Set : 𝒰 × ℱ → [0, 1] as the probability that an element is swapped by a set, and upper

bound it via the following lemma.

Lemma 4.6.12. For any 𝑒 ∈ 𝒰 and 𝑆 ∈ ℱ , 𝑃Elt−Set(𝑒, 𝑆) ≤ 64𝑝𝑘0
(1−𝑝0)2𝑚

where the probability

is taken over the random choices of 𝐼 ′ ∼ 𝒟(𝐼*).

Proof: Let 𝑆1, . . . , 𝑆𝑘 denote the first 𝑘 sets picked (uniformly at random) from ℱ to construct

a modified instance of 𝐼*. For each element 𝑒 and a set 𝑆 such that 𝑒 ∈ 𝑆 in the basic instance
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𝐼*,

𝑃Elt−Set(𝑒, 𝑆) = Pr𝑆 = 𝑆𝑘 · Pr 𝑒 ∈ ∪𝑖∈[𝑘−1]𝑆𝑖 | 𝑒 ∈ 𝑆𝑘

· Pr 𝑒 matches to 𝒰 ∖ (∪𝑖∈[𝑘]𝑆𝑖) | 𝑒 ∈ 𝑆𝑘 ∩ (∪𝑖∈[𝑘−1]𝑆𝑖)

+ Pr𝑆 /∈ {𝑆1, . . . , 𝑆𝑘} · Pr 𝑒 ∈ 𝑆 ∖ (∪𝑖∈[𝑘]𝑆𝑖) | 𝑒 ∈ 𝑆

· Pr𝑆 swaps 𝑒 with 𝑆𝑘 | 𝑒 ∈ 𝑆 ∖ (𝑆1 ∪ · · · ∪ 𝑆𝑘),

where all probabilities are taken over 𝐼 ′ ∼ 𝒟(𝐼*). Next we bound each of the above six

terms. Clearly, since we choose the sets 𝑆1, · · · , 𝑆𝑘 randomly, Pr[𝑆 = 𝑆𝑘] = 1/𝑚. We bound

the second term by 1. Next, by properties (b) and (d) of median instances, the third term

is at most

|𝒰 ∖ (∪𝑖∈[𝑘]𝑆𝑖)|
|𝑆𝑘 ∩ (∪𝑖∈[𝑘−1]𝑆𝑖)|

≤ 2𝑝𝑘0𝑛

(1− 𝑝0)(1− 𝑝𝑘−1
0 )𝑛

2

≤ 4𝑝𝑘0
(1− 𝑝0)2

.

We bound the fourth term by 1. Let 𝑑𝑒 denote the number of sets in ℱ that do not contain

𝑒. Using property (f) of median instances, the fifth term is at most

𝑑𝑒(𝑑𝑒 − 1) · · · (𝑑𝑒 − 𝑘 + 1)

(𝑚− 1)(𝑚− 2) · · · (𝑚− 𝑘)
≤
(︂

𝑑𝑒
𝑚− 1

)︂𝑘

≤ (
(1 + 1/𝑘)𝑝0𝑚

𝑚(1− 1
𝑘+1

)
)𝑘 ≤ 𝑒2𝑝𝑘0,

Finally for the last term, note that by symmetry, each pair of matched elements 𝑒𝑒′ is

picked by GenModifiedInst equiprobably. Thus, for any 𝑒 ∈ 𝑆 ∖ (𝑆1 ∪ · · · ∪ 𝑆𝑘), the

probability that each element 𝑒′ ∈ 𝑆𝑘 ∩ (𝑆1 ∪ · · · ∪ 𝑆𝑘−1) is matched to 𝑒 is 1
|𝑆𝑘∩(𝑆1∪···∪𝑆𝑘−1)|

.

By properties (c)-(e) of median instances, the last term is at most

∑︁
𝑒′∈(𝑆𝑘∩(∪𝑖∈[𝑘−1]𝑆𝑖))∖𝑆

Pr 𝑒𝑒′ ∈ℳ · Pr (𝑆, 𝑆𝑘) swap (𝑒, 𝑒′)

≤ |(𝑆𝑘 ∩ (∪𝑖∈[𝑘−1]𝑆𝑖)) ∖ 𝑆| ·
1

|𝑆𝑘 ∩ (∪𝑖∈[𝑘−1]𝑆𝑖)|
· 1

|Candidate(𝑒, 𝑒′)|

≤ 2𝑝0(1− 𝑝0)(1− 𝑝𝑘−1
0 )𝑛 · 1

(1− 𝑝0)(1− 𝑝𝑘−1
0 )𝑛/2

· 1

𝑝0(1− 𝑝0)𝑚/2

≤ 8

(1− 𝑝0)𝑚
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Therefore,

𝑃Elt−Set(𝑒, 𝑆) ≤
1

𝑚
· 1 · 4𝑝𝑘0

(1− 𝑝0)2
+ 1 · 𝑒2𝑝𝑘0 ·

8

(1− 𝑝0)𝑚

≤ 4𝑝𝑘0
(1− 𝑝0)2

+
60𝑝𝑘0

(1− 𝑝0)𝑚
≤ 64𝑝𝑘0

(1− 𝑝0)2𝑚
. �

4.7. Omitted Proofs from Section 4.3

Lemma 4.7.1. With probability at least 1−𝑚−1 over ℱ ∼ ℐ(𝒰 , 𝑝0), the size of the minimum
set cover of the instance (ℱ ,𝒰) is greater than 2.

Proof: The probability that an element 𝑒 ∈ 𝒰 is covered by two sets selected from ℱ is at

most:

Pr[𝑒 ∈ 𝑆1 ∪ 𝑆2] = 1− 𝑝20 = 1− 9 log𝑚

𝑛
.

Thus, the probability that 𝑆1 ∪ 𝑆2 covers all elements in 𝒰 is at most (1 − 9 log𝑚
𝑛

)𝑛 < 𝑚−9.

Applying the union bound, with probability at least 1−𝑚−1 the size of optimal set cover is

greater than 2. �

Lemma 4.7.2. Let 𝑆1 and 𝑆2 be two sets in ℱ where ℱ ∼ ℐ(𝒰 , 𝑝0). Then with probability

at least 1−𝑚−1, |𝒰 ∖ (𝑆1 ∪ 𝑆2)| ≤ 18 log𝑚.

Proof: For an element 𝑒, Pr[𝑒 /∈ 𝑆1 ∪ 𝑆2] = 𝑝20 = 9 log𝑚
𝑛

. So, E[|𝒰 ∖ (𝑆1 ∪ 𝑆2)|] = 9 log𝑚.

By Chernoff bound, Pr[|𝒰 ∖ (𝑆1 ∪ 𝑆2)| ≥ 18 log𝑚] is at most 𝑒−9 log𝑚/3 ≤ 𝑚−3. Thus with

probability at least 1 −𝑚−1, for any pair of sets in ℱ , the number of element not covered

by their union is at most 18 log𝑚. �

Lemma 4.7.3. Let 𝑆1 and 𝑆2 be two sets in ℱ where ℱ ∼ ℐ(𝒰 , 𝑝0). Then |𝑆1 ∩ 𝑆2| ≥ 𝑛/8

with probability at least 1−𝑚−1.

Proof: For each element 𝑒, it is either covered by both 𝑆1, 𝑆2, one of 𝑆1, 𝑆2 or none of them.

Since 𝑝0 ≤ 1/2, the probability that an element is covered by both sets is greater than other

cases, i.e., Pr [𝑒 ∈ 𝑆1 ∩ 𝑆2] > 1/4. Thus, E[|𝒰 ∖ (𝑆1 ∩ 𝑆2)|] > 𝑛/4. By Chernoff bound,

Pr[|𝒰 ∖ (𝑆1 ∩𝑆2)| ≤ 𝑛/8] is exponentially small. Thus with probability at least 1−𝑚−1, the
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intersection of any pairs of sets in ℱ is greater than 𝑛/8. �

Lemma 4.7.4. Suppose that ℱ ∼ ℐ(𝒰 , 𝑝0) and let 𝑒, 𝑒′ be two elements in 𝒰 . With prob-

ability at least 1 − 𝑚−1, the number of sets 𝑆 ∈ ℱ such that 𝑒 ∈ 𝑆 but 𝑒′ /∈ 𝑆 is at least

𝑚
√
9 log𝑚
4
√
𝑛

.

Proof: For each set 𝑆, Pr[𝑒 ∈ 𝑆 and 𝑒′ /∈ 𝑆] = (1 − 𝑝0)𝑝0 ≥ 𝑝0/2. This implies that the

expected number of 𝑆 satisfying the condition for 𝑒 and 𝑒′ is at least 𝑚
2
·
√︁

9 log𝑚
𝑛

and by

Chernoff bound, the probability that the number of sets containing 𝑒 but not 𝑒′ is less than
𝑚
√
9 log𝑚
4
√
𝑛

is exponentially small. Thus with probability at least 1 −𝑚−1 property (d) holds

for any pair of elements in 𝒰 . �

Lemma 4.7.5. Suppose that ℱ ∼ ℐ(𝒰 , 𝑝0) and let 𝑆1, 𝑆2 and 𝑆 be sets in ℱ . With proba-

bility at least 1− 𝑛−1, |(𝑆1 ∩ 𝑆2) ∖ 𝑆| ≤ 6
√
𝑛 log𝑚.

Proof: For each element 𝑒, Pr[𝑒 ∈ (𝑆1 ∩ 𝑆2) ∖ 𝑆] = (1 − 𝑝0)
2𝑝0 ≤ 𝑝0. This implies that the

expected size of (𝑆1 ∩ 𝑆2) ∖ 𝑆 is less than
√
9𝑛 log𝑚 and by Chernoff bound, the probability

that |(𝑆1∩𝑆2)∖𝑆| ≥ 6
√
𝑛 log𝑚 is exponentially small. Thus with probability at least 1−𝑚−1

property (𝑒) holds for any sets 𝑆1, 𝑆2 and 𝑆 in ℱ . �

Lemma 4.7.6. For each element, the number of sets that do not contain the element is at

most 6𝑚
√︁

log𝑚
𝑛

.

Proof: For each element 𝑒, Pr𝑆[𝑒 /∈ 𝑆] = 𝑝0. This implies that E𝑆(|{𝑆 | 𝑒 /∈ 𝑆}|) is less
than 𝑚

√︁
9 log𝑚

𝑛
and by Chernoff bound, the probability that |{𝑆 | 𝑒 /∈ 𝑆}| ≥ 2𝑚

√︁
9 log𝑚

𝑛

is exponentially small. Thus with probability at least 1 − 𝑚−1 property (f) holds for any

element 𝑒 ∈ 𝒰 . �
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Chapter 5

Streaming Maximum Coverage

5.1. Introduction

In maximum 𝑘-coverage (Max 𝑘-Cover), given a ground set 𝒰 of 𝑛 elements, a family of 𝑚

sets ℱ (each subset of 𝒰), and a parameter 𝑘, the goal is to select 𝑘 sets in ℱ whose union

has the largest cardinality. The initial streaming algorithms for this problem were developed

in the set arrival model, where the input sets are listed contiguously. This restriction is

natural from the perspective of submodular optimization, but limits the applicability of the

algorithms.1 Avoiding this limitation can be difficult, as streaming algorithms can no longer

operate on sets as “unit objects”. As a result, the first maximum coverage algorithm for the

general edge arrival model, where pairs of (set, element) can arrive in arbitrary order, have

been developed recently. In particular [29] presented a one-pass algorithm with space linear

in 𝑚 and constant approximation factor.2

A particularly interesting line of research in set arrival streaming set cover and max

𝑘-cover is to design efficient algorithms that only use ̃︀𝑂(𝑛) space [155, 22, 67, 42, 131]. Pre-

vious work have shown that we can adopt the existing greedy algorithm of Max 𝑘-Cover

to achieve constant factor approximation in ̃︀𝑂(𝑛) space [155, 22] (which later improved to

1For example, consider a situation where the sets correspond to neighborhoods of vertices in a directed
graph. Depending on the input representation, for each vertex, either the ingoing edges or the outgoing
edges might be placed non-contiguously.

2We remark that many of the prior bounds (both upper and lower bounds) on set cover and max 𝑘-cover
problems in set-arrival streams also work in edge arrival streams (e.g. [61, 97, 20, 131, 17, 105]). However, the
design of efficient streaming algorithms for the coverage problems on edge arrival streams was first studied
explicitly in [29].
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̃︀𝑂(𝑘) by [131]). However, the complexity of the problem in the “low space” regime is very

different in edge-arrival streams: [29] showed that as long as the approximation factor is

a constant, any algorithm must use Ω(𝑚) space. Still, our understanding of approxima-

tion/space tradeoffs in the general case is far from complete. Table 5.1.1 summarizes the

known results.

5.1.1. Our Results

In this chapter, we complement the work of [29] by designing space-efficient (1/𝛼)-approximation

algorithms for super-constant values of 𝛼. In fact, we show a tight (up to polylogarithmic

factors) tradeoff between the two: the optimal space bound is ̃︀𝑂(𝑚/𝛼2) for estimating the

maximum coverage value, and ̃︀𝑂(𝑚/𝛼2+𝑘) for reporting an approximately optimal solution.3

The approximation factor 𝛼 can take any value in [1/̃︀Θ(
√
𝑚), 1− 1/𝑒).

5.1.2. Our Techniques

In the edge arrival model, elements of each set can arrive irregularly and out of order. This

necessitates the use of methods that aggregate the information about the input sets, or their

coverage. In particular, distinct element sketches were used both in [29] (implicitly) and [131]

(explicitly). In this chapter we expand the use of sketching toolkit. Specifically, in addition

to distinct element estimation [13, 28, 112, 113, 32], we also need algorithms for heavy hitters

with respect to the 𝐿2 norm [44, 165, 38, 37], as well as a frequency-based partitioning of

elements, and detecting sets that “substantially contribute” to the solution [108]. Application

of vector-sketching techniques (e.g. 𝐿𝑝-sampling/estimation and heavy hitters) in graph

streaming settings have been studied extensively (e.g. [8, 9, 89, 21, 49, 114]). We believe

that our algorithms can lead to further connections between vector sketching methods and

streaming algorithms for the coverage problems.

3We note that similar tradeoffs were previously obtained for the set cover problem, as [20] showed a
Θ(𝑚𝑛/𝛼2) bound for estimation, and a Θ(𝑚𝑛/𝛼) bound for reporting. Interestingly, the 1/𝛼2 vs. 1/𝛼 gap
does not occur for our problem.

4Their result works for the general submodular maximization assuming access to a value oracle that given
a collection of sets computes their coverage. A careful adoption of their result to Max 𝑘-Cover (without the
value oracle) uses ̃︀𝑂(𝑛) space.
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Problem Stream Model Approximation Upper Bound Lower Bound

Estimation Edge Arrival
1− 𝜀

–
̃︀Ω(𝑚

𝜀2
)[17]

1− 1
𝑒
− 𝜀 Ω(𝑚

𝑘2
)[131]

Reporting

Edge Arrival 1− 1
𝑒
− 𝜀

̃︀𝑂(𝑚
𝜀3
)[29]̃︀𝑂(𝑚

𝜀2
)[131]

–

Set Arrival
1
4
[155], 1

2
[22]4 ̃︀𝑂(𝑛)

1
2
− 𝜀 ̃︀𝑂( 𝑘

𝜀3
)[131]

Estimation Edge Arrival 1/𝛼 ̃︀𝑂(𝑚
𝛼2 ) [here] Ω(𝑚

𝛼2 ) [here],[29]

Reporting Edge Arrival 1/𝛼 ̃︀𝑂(𝑘 + 𝑚
𝛼2 ) [here] –

Table 5.1.1: The summary of known results on the space complexity of single-pass stream-
ing algorithms of Max 𝑘-Cover.

Lower bound. Our algorithm was inspired by the lower bound. Specifically, it was pre-

viously shown by [29] that approximating Max 𝑘-Cover by a factor better than 2 requires

Ω(𝑚) space. Similar approach works for larger values of 𝛼, by showing a reduction from

the 𝛼-player set disjointess problem (DSJ[m]) with unique intersection guarantee (i.e., either

players’ sets are disjoint or there is a unique item that appears in all sets) to the task of

𝛼-approximating Max 𝑘-Cover.

The specific hard instances in the aforementioned lower bound can be distinguished in

the streaming model using space 𝑂(𝑚/𝛼2). To this end, we compute an 𝛼-approximation to

the 𝐿∞-norm of a vector 𝑣 that, for each element 𝑒, counts the number of sets 𝑒 belongs to.

This problem can be solved in 𝑂(𝑚/𝛼2) space, by using 𝐿2-norm sketches [13]. This suggests

that it might be possible to solve the general Max 𝑘-Cover using sketching techniques as

well.

Upper bound. We start our algorithm with a “coverage boosting” universe reduction

technique which constructs a reduced size instance (i.e., with reduced ground set) whose

optimal 𝑘-cover has constant fraction coverage (see Section 5.3.1). This step is particularly

important as the space complexity of the existing methods for Max 𝑘-Cover is proportional

to the reciprocal of the fraction of covered elements in an optimal solution.
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Once we have a constant fraction coverage guarantee, our algorithm exploits three differ-

ent approaches so that on any instance, at least one of them reports a “good” approximate

solution.

Multi-layered set sampling. By extending the set sampling approach (see Section 5.2.1)

and trying a larger range of sampling rate, [ 𝑘
𝑚
, 𝛼𝑘
𝑚
], we design a smooth variant of set sampling:

a collection of sets sampled uniformly and independently5 at rate ̃︀𝑂(𝛽𝑘/𝑚) w.h.p., covers

all elements that appear in at least 𝑚/(𝛽𝑘) sets. Besides expanding the application of set

sampling in finding (1/𝛼)-approximate 𝑘-cover, this smooth variant implies more structure

on the number of elements in a wider range of frequency levels which is specifically crucial

in our approach for detecting sets with “low contribution”.

Unlike the set sampling based technique whose success in finding an 𝛼-approximate 𝑘-

cover only depends on the structure of the set system, the performance of the next two

approaches rely on the structure of optimal solutions as well: whether the majority of the

coverage (in a specific optimal 𝑘-cover) is due to (few) “large” sets or, (many) “small” sets.

Heavy hitters and contributing frequencies. The high level idea in this approach is

that if in an optimal solution, a sufficiently6 small number of sets cover the majority of

the elements (covered by the optimal solution), it is enough to find a single large set, which

naturally hints the use of ideas related to heavy hitters. For the sake of efficiency (in space

complexity), we randomly partition sets into supersets of size at most 𝑘. However, once we

merge sets into a single superset, we can no longer distinguish between their coverage and

their total size. Since we combine sets at random, if all elements have “low” frequency in the

set system, then the gap between the total size of all sets in a superset and their coverage is

just ̃︀𝑂(1). This observation implies that if there is no “common” element in the set system,

then we can use the total size of the sets in a superset as an estimate of its coverage size. To

get around the case with (many) “common” elements, we show that performing the heavy

hitter based algorithm on a sampled set of elements will find a sufficiently large superset as

desired (see Section 5.8).

5In fact, 𝑂(log𝑚𝑛)-wise independent is sufficient for all applications in this chapter.
6Depending on how large the value of 𝛼 is.
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Detecting 𝑘-covers with many small sets. Finally, we address the case in which an

optimal 𝑘-cover consists of many “small” sets. In this case, we can show that after subsam-

pling sets uniformly with probability 1/𝛼, a ( 𝑘
𝛼
)-cover with coverage at least Θ(1/𝛼) times

the coverage of an optimal 𝑘-cover survives. This sampling method will save us a factor

of 𝛼 in the memory usage of the algorithm. Further, by exploiting the structural prop-

erty guaranteed due to the multi-layered set sampling7, we can show that element sampling

can save another factor of 𝛼 in the space complexity once applied to find a constant factor

approximate Max ( 𝑘
𝛼
)-Cover of the subsampled sets.

5.1.3. Other Related Work

Another important related question in this area is to design a “low-approximation” (i.e.,

better than the 2-approximation guarantee of the greedy approach) streaming algorithm

for the max 𝑘-cover problem in the set arrival setting. Recently, Norouzi-Fard et al. [147]

presented the first streaming algorithm that improves upon 2-approximation guarantee of

greedy approach on random arrival streams. Very recently, Agrawal et al. [5] achieved an

almost (1− 1/𝑒)-approximation in ̃︀𝑂(𝑛) space which is essentially the optimal bound [131].8

Still it is an important question to design such algorithms on adversarial order streams. We

also remark that the algorithms of [147, 5] do not work on edge arrival streams.

In many scenarios, space is the most critical factor, and thus the question becomes: what

approximation guarantees are possible within the given space bounds? This question has

been studied before in the context of set cover in set arrival streams (e.g. [67, 42]), leading

to poly(𝑛,𝑚)-factor approximation algorithms.

5.2. Preliminaries and Notations

5.2.1. Sampling Methods for Max 𝑘-Cover and Set Cover

Here we describe two sampling methods that have been used widely in the design of streaming

algorithms for Max 𝑘-Cover and Set Cover [123, 61, 97, 20, 131, 17, 29, 105]. For a collection
7If the multi-layered set sampling fails to return a (1/𝛼)-approximate estimate, we can infer strong

conditions on the maximum number of elements that belong to each frequency level in [𝑚𝑘 ,
𝑚
𝛼𝑘 ].

8Both [147, 5] study the more general problem of submodular maximization and their results are stated
with different notation and assuming oracle access. Here, we state their guarantees for max cover on set
arrival streams
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of sets 𝒬, we define 𝒞(𝒬) to denote the set of elements that are covered by 𝒬; 𝒞(𝒬) :=⋃︀
𝑆∈𝒬 𝑆. Moreover, we denote an optimal 𝑘-cover of (𝒰 ,ℱ) by OPT.

Set Sampling. Roughly speaking, it says that by selecting sets uniformly at random, with

high probability, all elements that appear in large number of sets will be covered.

Definition 5.2.1. An element 𝑒 ∈ 𝒰 is called 𝜆-common if it appears in at least 𝑐𝑚 polylog(𝑚,𝑛)/𝜆

sets in ℱ . Furthermore, We denote the set of 𝜆-common elements by 𝒰 cmn
𝜆 .

Observation 5.2.2. For any 0 ≤ 𝜆1 ≤ 𝜆2, 𝒰 cmn
𝜆1
⊆ 𝒰 cmn

𝜆2
.

Lemma 5.2.3 (Set Sampling [61]). Consider a set system (𝒰 ,ℱ) and let ℱ rnd ⊆ ℱ be

a collection of sets such that each set 𝑆 is picked in ℱ rnd with probability 𝜆
𝑚
. With high

probability, ℱ rnd covers all elements that appear in ̃︀Ω(𝑚/𝜆) sets (i.e. 𝜆-common elements).

Element Sampling for Max 𝑘-Cover . This sampling method shows that if we sample

elements of 𝒰 uniformly with a large enough rate (i.e. proportional to (𝑘|𝒰|)/|𝒞(OPT)|),
then a constant factor approximate 𝑘-cover over the sampled elements w.h.p., is a constant

factor approximate solution of the original instance.

Lemma 5.2.4 (Element Sampling Lemma [123, 61]). Consider an instance of Max

𝑘-Cover(𝒰 ,ℱ). Let’s assume that an optimal 𝑘-cover of (𝒰 ,ℱ) covers (1/𝜂)-fraction of 𝒰 .
Let ℒ ⊂ 𝒰 be a set of elements of size ̃︀Θ(𝜂𝑘) picked uniformly at random. Then, with high

probability, a Θ(1)-approximate 𝑘-cover of (ℒ,ℱ) is a Θ(1)-approximate 𝑘-cover of (𝒰 ,ℱ).

Observation 5.2.5. Let 𝒬 be a collection of (𝛽𝑘)-cover in ℱ . Then, in any partitioning of

𝒬 into 𝛽 groups, there exists one group with coverage at least |𝒞(𝒬)|/𝛽. In particular, an

optimal 𝑘-cover in 𝒬 covers at least |𝒞(𝒬)|/𝛽.

This simple observation is in particular interesting because it relates the task of 𝛼-approximating

Max 𝑘-Cover to solving instances of Max (𝛽𝑘)-Cover where 𝛽 ≤ 𝛼.

5.2.2. HeavyHitters and Contributing Classes

Suppose that a sequence of items 𝑝1, · · · , 𝑝𝑇 arrive in a data stream where for each 𝑗 ≤ 𝑇 ,

𝑝𝑗 ∈ [𝑚]. We can think of the stream as a sequence of (insertion only) updates on an initially

zero vector 𝑎⃗ such that upon arrival of 𝑝𝑗 in the stream, 𝑎⃗[𝑗] ← 𝑎⃗[𝑗] + 1. Here, we review
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the notion of 𝐹2-heavy hitter and contributing coordinates that are used in our algorithm for

approximating Max 𝑘-Cover.

Definition 5.2.6. Given an 𝑚-dimensional vector 𝑎⃗, an item 𝑗 (corresponding to 𝑎⃗[𝑗]) is a

𝜑-HeavyHitter of 𝐹2(⃗𝑎), if 𝑎⃗[𝑗]2 ≥ 𝜑 · 𝐹2(⃗𝑎) = 𝜑 ·∑︀𝑗∈[𝑚] 𝑎⃗[𝑗]
2. Intuitively, the set of items

that appear frequently in the stream are the heavy hitters.

We conceptually partition coordinates of 𝑎⃗ into classes 𝑅𝑖 = {𝑗 | 2𝑖−1 < 𝑎⃗[𝑗] ≤ 2𝑖}.

Definition 5.2.7. A class of coordinates 𝑅𝑡 is 𝛾-contributing if |𝑅𝑡| · 22𝑡 ≥ 𝛾𝐹2(⃗𝑎) =

𝛾
∑︀

𝑗∈[𝑚] 𝑎⃗[𝑗]
2.

Let 𝑅𝑡* be a 𝛾-contributing class and let 𝑛𝑡* denote the size of 𝑅𝑡* ; 𝑛𝑡* = |𝑅𝑡*|. Further,
let’s assume that 𝑖* = ⌈log 𝑛𝑡*⌉; 2𝑖*−1 < 𝑛𝑡* ≤ 2𝑖

*
. Let ℎ : [𝑚] → [(12𝑚 log𝑚)/2𝑖

*
] be a

function chosen uniformly at random from a family of Θ(log(𝑚𝑛))-wise independent hash

functions. We define 𝒮𝑖* as a sampled substream of the input stream with rate 1/2𝑖
*
. More

precisely, 𝒮𝑖* only contains the updates corresponding to the coordinates ℱ𝑖* = {𝑗 | ℎ(𝑗) = 1}
that are mapped to one under ℎ. Next, we show that the survived coordinates of 𝑅𝑡*

(𝑗 ∈ 𝑅𝑡*) in 𝑎⃗𝑖* , which is the vector 𝑎⃗ restricted to the items in ℱ𝑖* , are ̃︀Ω(𝛾)-HeavyHitters

of 𝐹2(⃗𝑎𝑖*); 𝑎⃗[𝑗]2 ≥ ̃︀Ω(𝛾) · 𝐹2(⃗𝑎𝑖*). Roughly speaking, if we subsample the stream so that

only polylog(𝑚) coordinates of 𝑅𝑡* survive, then with high probability these coordinates arẽ︀Ω(𝛾)-HeavyHitters of the sampled substream.

Claim 5.2.8. With probability at least 1 −𝑚−1, the number of survived coordinates in the

sampled substream 𝒮𝑖* is at least (6𝑚 log𝑚)/2𝑖
*
.

Proof: Let 𝑋𝑗 be a random variable which is one if item 𝑖𝑗 ∈ ℱ𝑖* and zero otherwise. We

define 𝑋 := 𝑋1 + · · · + 𝑋𝑚. Note that 𝑋𝑗 are Θ(log(𝑚𝑛))-wise independent and E[𝑋] =

(12𝑚 log𝑚)/2𝑖
*
. Then, by an application of Chernoff bound with limited independence

(Lemma 5.7.3),

Pr(𝑋 < (6𝑚 log𝑚)/2𝑖
*
) ≤ 𝑚−1.

Hence, with high probability, ℱ𝑖* has size at least (6𝑚 log𝑚)/2𝑖
*
. �

Lemma 5.2.9. With probability at least 1 − 2/(9 log2 𝑛 log𝑐𝑚), a coordinate 𝑗 ∈ 𝑅𝑡* is a
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( 𝛾
162 log2 𝑛 log𝑐+1 𝑚

)-HeavyHitter in the sampled substream 𝒮𝑡*.

Proof: Let 𝑋𝑖 be a random variable corresponding to the 𝑖-th coordinate in 𝑅𝑡* such that

𝑋𝑖 = 1 if 𝑖 ∈ ℱ𝑖* and zero otherwise. Moreover, we define𝑋 := 𝑋1+· · ·+𝑋𝑛𝑡* . Then, E[𝑋] =

(12𝑛𝑡* log𝑚)/2𝑖
*
and by an application of Chernoff bound with limited independence,

Pr(𝑋 < 1) < Pr(𝑋 < (1−
√︀

1/6)E[𝑋]) ≤ 𝑚−1.

Next, we show that with probability at least 1 − 1/ log𝑐𝑚, 𝐹2(⃗𝑎𝑖*) ≤ ̃︀𝑂(𝐹2(⃗𝑎)/2
𝑖*). It is

straightforward to check that E[𝐹2(⃗𝑎𝑖*)] = (12𝐹2(⃗𝑎) log𝑚)/2𝑖
*
. Hence, by Markov’s inequal-

ity,

Pr(𝐹2(⃗𝑎𝑖*) ≥ (108𝐹2(⃗𝑎) log
2 𝑛 log𝑐+1𝑚)/2𝑖

*
) ≤ 1/(9 log2 𝑛 log𝑐𝑚).

Hence, with probability at least 1 − 2/(9 log2 𝑛 log𝑐 𝑚), a coordinate 𝑗 ∈ 𝑅𝑡* survives

in ℱ𝑖* and 𝐹2(⃗𝑎𝑖*) ≤ (108𝐹2(⃗𝑎) log
2 𝑛 log𝑐+1𝑚)/2𝑖

*
. Thus, with probability at least 1 −

2/(9 log2 𝑛 log𝑐 𝑚),

(⃗𝑎[𝑖])2 ≥ (2𝑡
*−1)2 ≥ 𝛾

4𝑛𝑡*
𝐹2(𝑣⃗) ≥

𝛾

4 · 2𝑖* (
2𝑖

*

108 log2 𝑛 log𝑐+1𝑚
)𝐹2(𝑣⃗) = (

𝛾

432 log2 𝑛 log𝑐+1𝑚
)𝐹2(𝑣⃗)

In other words, with probability at least 1 − 2/(9 log2 𝑛 log𝑐𝑚), a coordinate 𝑖 ∈ 𝑆𝑡* is a

( 𝛾
432 log2 𝑛 log𝑐+1 𝑚

)-HeavyHitter of 𝐹2(⃗𝑎𝑖*). �

Next, we can use the exiting algorithms for 𝐹2-HeavyHitters to complete this section.

Theorem 5.2.10 (𝐹2-heavy hitters [44, 165, 38, 37]). Let’s assume that 𝑎⃗ is an 𝑚-

dimensional vector initialized to zero. Let 𝒮 be a stream of items 𝑝1, · · · , 𝑝𝑇 where for

each 𝑗 ∈ [𝑇 ], 𝑝𝑗 ∈ [𝑚]. Then, there is a single pass algorithm 𝐹2-HeavyHitter that uses̃︀𝑂(1/𝛾) space and with high probability returns all coordinates 𝑖 such that 𝑎⃗[𝑖]2 ≥ 𝛾𝐹2(⃗𝑎). In

addition, it returns (1± 1
2
)-approximate values of these coordinates.

Finally, there exists an algorithm that with probability at least 1 − 2/(9 log 𝑛 log𝑐 𝑚),

finds at least one coordinate in each 𝛾-contributing class of 𝑎⃗ using ̃︀𝑂(1/𝛾) space.

Theorem 5.2.11 (𝛾-contributing [108]). Let’s assume that 𝑎⃗ is an 𝑚-dimensional vector
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Algorithm 16 A single pass streaming algorithm that given a vector 𝑎 in a stream, for each
contributing class 𝑅, returns an index 𝑗 along with a (1± (1/2))-estimate of its frequency.

1: procedure 𝐹2-Contributing(𝛾, 𝑆)
2: ◁ Input: stream of updates 𝑖 ∈ [𝑚] on vector 𝑎⃗
3: ◁ 𝑆 is an upper bound on the size of a 𝛾-contributing class
4: for all 𝑛𝑡 ∈ {2𝑖 | 𝑖 ∈ [log𝑆]} in parallel do
5: ◁ 𝑛𝑡 : #coordinates in a 𝛾-contributing class
6: 𝜑← ( 𝛾

432 log𝑛 log𝑐+1 𝑚
) ◁ parameter of HeavyHitter

7: let HH𝜑 be a instance of 𝐹2-HeavyHitter(𝜑)
8: 𝜌← (12 log𝑚)/2𝑖 ◁ sample rate of the substream
9: pick ℎ : [𝑚]→ [𝑚

𝜌
] from a family of Θ(log(𝑚𝑛))-wise independent hash functions

10: for all item 𝑝𝑖 in the input stream do
11: if ℎ(𝑝𝑖) = 1 then
12: feed 𝑝𝑖 to HH𝜑

13: return output of HH𝜑

14: ◁ returns heavy coordinates together with their approximate frequencies

initialized to zero. Let 𝒮 be a stream of items 𝑝1, · · · , 𝑝𝑇 where for each 𝑗 ∈ [𝑇 ], 𝑝𝑗 ∈ [𝑚].

Moreover, let’s assume no item in 𝒮 has frequency more than 𝑛. There exists a single

pass algorithm 𝐹2-Contributing that uses ̃︀𝑂(1/𝛾) space and with probability at least 1 −
2/(9 log 𝑛 log𝑐𝑚) returns a coordinate 𝑖 from each 𝛾-contributing class. In addition, it returns

(1± 1
2
)-approximate frequency of these coordinates.

Proof: There are at most log 𝑛 (the total number of classes) 𝛾-contributing classes for

𝑎⃗ and for each 𝛾-contributing class 𝑅𝑡, by Lemma 5.2.9, with probability at least 1 −
2/(9 log2 𝑛 log𝑐 𝑚), a coordinate in 𝑅𝑡 will be a ̃︀Ω(𝛾)-HeavyHitter of 𝐹2(⃗𝑎𝑖*) (where 𝑖* =

⌈log(𝑛𝑡)⌉). By trying all values of 𝑖* ∈ [log 𝑛], with probability at least 1−log 𝑛( 2
9 log2 𝑛 log𝑐 𝑚

) ≥
1− 2

9 log𝑛 log𝑐 𝑚
, 𝐹2-Contributing algorithm outputs a coordinate from each 𝛾-contributing

class. �

5.2.3. 𝐿0-Estimation

Norm estimation is one of the fundamental problems in the area of streaming algorithms

where we are given an 𝑚-dimensional vector 𝑎⃗ which is initialized to zero and a sequence

of items 𝑝1, · · · , 𝑝𝑇 (updates for the vector 𝑎⃗) where for each 𝑗 ∈ [𝑇 ], 𝑝𝑗 ∈ [𝑚] arrive

in a data stream. In the well-studied task 𝐿0-estimation (also known as Count-distinct

problem), the goal is to output a (1 ± 𝜀)-estimate of the number of distinct elements (i.e.,
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𝐿0(⃗𝑎) := |{𝑖 | 𝑎⃗[𝑖] ̸= 0}|) after reading the whole stream.

Theorem 5.2.12 (𝐿0-estimation [13, 28, 112, 113, 32]). Let’s assume that 𝑎⃗ is an 𝑚-

dimensional vector initialized to zero. Let 𝒮 be a stream of items 𝑝1, · · · , 𝑝𝑇 where for each

𝑗 ∈ [𝑇 ], 𝑖𝑗 ∈ [𝑚]. There exists a single pass algorithm that returns a (1±1/2)-approximation

of 𝐿0(⃗𝑎) and uses ̃︀𝑂(1) space.

5.3. Estimating Optimal Coverage of Max 𝑘-Cover

In this section, we describe the outline of our single-pass algorithm that approximates the

coverage size of an optimal 𝑘-cover of (𝒰 ,ℱ) within a factor of 𝛼 using ̃︀𝑂(𝑚/𝛼2) space in

arbitrary order edge arrival streams. The input to our algorithm is 𝑘, 𝛼, 𝑛 = |𝒰| and𝑚 = |ℱ|.
In high level, we perform three different subroutines in parallel and show that for any given

Max 𝑘-Cover instance, at least one of the subroutines estimates the optimal coverage size

within the desired factor in the promised space.

Theorem 5.3.1. For any 𝛼 ∈ [1/̃︀Θ(
√
𝑚), 1/̃︀Θ(1)), there exists one pass streaming algorithm

that uses ̃︀𝑂(𝑚/𝛼2) space and with probability at least 3/4 computes the size an optimal

coverage of Max 𝑘-Cover(𝒰 ,ℱ) within a factor of 1/𝛼 in edge-arrival streams.

Note that Theorem 5.3.1 together with the 𝑂(1)-approximation algorithms of [131, 29] that

use ̃︀𝑂(𝑚) space, implies that for any 𝛼 ∈ [1/̃︀Θ(
√
𝑚), 1 − 1/𝑒), there exists a single-pass

streaming algorithm that computes an 𝛼-approximation of the optimal coverage size of

Max 𝑘-Cover(𝒰 ,ℱ) in ̃︀𝑂(𝑚/𝛼2) space. Later in Section 5.5, we extend our approach fur-

ther to achieve a single pass algorithm that computes an (1/𝛼)-approximate 𝑘-cover iñ︀𝑂(𝑚/𝛼2 + 𝑘) space.

Theorem 5.3.2. For any 𝛼 ∈ [1/̃︀Θ(
√
𝑚), 1/̃︀Θ(1)), there exists a single-pass algorithm that

uses ̃︀𝑂(𝑚/𝛼2 + 𝑘) space and with probability at least 3/4 returns an (1/𝛼)-approximate

solution of Max 𝑘-Cover (𝒰 ,ℱ) in edge-arrival streams.

Finally, we complement our upper bounds with a matching lower bound in Section 5.6.

Theorem 5.3.3. Any single pass (possibly randomized) algorithm on edge-arrival streams

that (1/𝛼)-approximates the optimal coverage size of Max 𝑘-Cover requires Ω(𝑚/𝛼2) space.
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As a first step, we provide a mapping from the ground set 𝒰 to a small size set of pseudo-

elements such that the optimal 𝑘-cover on the pseudo-elements covers a constant fraction

of the pseudo-elements. This reduction is in particular useful for bounding the number of

required samples in methods such as element sampling.

5.3.1. Universe Reduction

In this section we show that in order to solve Max 𝑘-Cover on edge-arrival streams, it suffices

to solve the instances whose optimal coverage size are at least a constant fraction of |𝒰|.
To this end, suppose that we have an algorithm 𝒜 for Max 𝑘-Cover in edge-arrival streams

with the following properties:

Definition 5.3.4 ((𝛼, 𝛿, 𝜂)-oracle for Max𝑘-Cover). An algorithm𝒜 is an (𝛼, 𝛿, 𝜂)-oracle

for Max 𝑘-Cover if it satisfies the following properties (𝛼 denotes the approximation guaran-

tee, 𝛿 denotes the failure probability and 𝜂 is the promised coverage of an optimal 𝑘-cover):

∙ If the optimal coverage size of Max 𝑘-Cover(𝒰 ,ℱ) is at least |𝒰|/𝜂, then with proba-

bility at least 1− 𝛿, 𝒜 returns a (1/𝛼)-approximation of the optimal coverage size.

∙ If 𝒜 returns 𝑧, then an optimal solution of Max 𝑘-Cover (𝒰 ,ℱ) with high probability,

has coverage at least 𝑧.

Using an (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-Cover, we design an (1/ ̃︀𝑂(𝛼))-approximation algorithm

EstimateMaxCover for general Max 𝑘-Cover with success probability at least 1 − ̃︀𝑂(𝛿)

as in Algorithm 17.

As in EstimateMaxCover, let ℎ : 𝒰 → [𝑧] be a hash function picked uniformly at

random from a family of 4-wise independent hash functions mapping the ground set 𝒰
onto pseudo-elements 𝒱 = {1, · · · , 𝑧}. Furthermore, for a subset of elements 𝑆, we define

ℎ(𝑆) :=
⋃︀

𝑒∈𝑆 ℎ(𝑒).

Lemma 5.3.5. Let ℎ : 𝒰 → [𝑧] be a hash function picked uniformly at random from a family

of 4-wise independent hash functions where 𝑧 ≥ 32. Further, let 𝑆 be a subset of 𝒰 of size

at least 𝑧. Then, with probability at least 3/4, |ℎ(𝑆)| ≥ 𝑧/4.

Proof: For any pair of elements 𝑒𝑖, 𝑒𝑗 ∈ 𝑆, let 𝑋𝑖,𝑗 be a random variable which is one if

ℎ(𝑒𝑖) = ℎ(𝑒𝑗) (i.e. they collide) and zero otherwise. Let 𝑋 :=
∑︀

𝑒𝑖,𝑒𝑗∈𝑆 𝑋𝑖,𝑗 denote the the
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Algorithm 17 A single-pass streaming algorithm that uses an (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-
Cover to compute an (1/ ̃︀𝑂(𝛼))-approximation of the optimal coverage size of Max 𝑘-Cover.

1: procedure EstimateMaxCover(𝑘, 𝛼)
2: ◁ Input: 𝒜 is an (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-Cover
3: ◁ 𝑆 is an upper bound on the size of a 𝛾-contributing class
4: if 𝑘𝛼 ≥ 𝑚 then
5: return 𝑛/𝛼 ◁ trivial bound

◁ run for different guesses on the optimal coverage size in parallel
6: for all 𝑧 ∈ {2𝑖 | 𝑖 ∈ [log 𝑛]} do
7: est𝑧 ← 0
8: for 𝑖 = 1 to log(1/𝛿) do ◁ boost the success probability
9: pick ℎ𝑖 : 𝒰 → [𝑧] from a family of 4-wise independent hash functions.
10: for all (𝑆, 𝑒) in the data stream do
11: feed (𝑆, ℎ𝑖(𝑒)) to (𝛼, 𝛿, 𝜂)-oracle 𝒜
12: est𝑧 ← max(output of 𝒜 on the stream constructed by ℎ𝑖, est𝑧)

13: return max{est𝑧 | est𝑧 ≥ 𝑧/(4𝛼)}

total number of collision among the elements of 𝑆 under ℎ.

First, we show that if 𝑋 ≤ |𝑆|2/𝛾, then |ℎ(𝑆)| ≥ 𝛾/4. Let’s assume ℎ(𝑆) = {𝑣1, · · · , 𝑣𝑞}
and let 𝑛𝑖 denote the number of elements in 𝑆 that are mapped to 𝑣𝑖 by ℎ. Then, the total

number of collision, 𝑋, is

𝑋 =

𝑞∑︁
𝑖=1

(︂
𝑛𝑖

2

)︂
≥

𝑞∑︁
𝑖=1

(
𝑛𝑖

2
)2 ≥ 1

4
· 𝑞 · ( |𝑆|

𝑞
)2 =

|𝑆|2
4𝑞

.

This implies that 𝑞 = |ℎ(𝑆)| ≥ 𝛾/4. Using this observation, it only remains to show that

with probability at least 3/4, |𝑋| ≤ |𝑆|2/𝑧. Since ℎ is selected from a family of 4-wise

independent hash functions, {𝑋𝑖,𝑗}𝑒𝑖,𝑒𝑗∈𝑆 are pairwise independent. Hence,

E[𝑋] =
∑︁

𝑒𝑖,𝑒𝑗∈𝑆

E[𝑋𝑖,𝑗] =

(︂|𝑆|
2

)︂
· (1
𝑧
) ≤ |𝑆|

2

2𝑧
,

Var[𝑋] =
∑︁

𝑒𝑖,𝑒𝑗∈𝑆

Var[𝑋𝑖,𝑗] =

(︂|𝑆|
2

)︂
· (1
𝑧
− 1

𝑧2
) ≥ 𝑧

8
.

Applying Chebyshev’s inequality,

Pr(𝑋 > |𝑆|2/𝑧) ≤ Pr(𝑋 > E[𝑋] +Var[𝑋]) ≤ 1/Var[𝑋] ≤ 8/𝑧 ≤ 1/4.
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Hence, with probability at least 3/4, 𝑋 ≤ |𝑆|2/𝑧 which implies that with probability at least

3/4, |ℎ(𝑆)| ≥ 𝑧/4. �

Theorem 5.3.6. If there exists a single pass (𝛼, 𝛿, 𝜂)-oracle for Max 𝑘-Cover(𝒰 ,ℱ) on

edge-arrival streams that uses 𝑓(𝑚,𝛼) space with 𝜂 ≥ 4, then EstimateMaxCover is a

(1/𝑂(𝛼))-approximation algorithm for Max 𝑘-Cover with failure probability at most 4𝛿 log 𝑛

that uses ̃︀𝑂(𝑓(𝑚,𝛼)) space on edge-arrival streams.

Proof: LetOPT be an optimal solution of Max 𝑘-Cover(𝒰 ,ℱ). First, we show that with high

probability, EstimateMaxCover returns Ω(|𝒞(OPT)|/𝛼). Note that for each guess on the
optimal coverage size 𝑧 ≤ |𝒞(OPT)|, by Lemma 5.3.5, the probability that in none of log(1/𝛿)

iterations |ℎ(𝒞(OPT))| > 𝒞(OPT)/4 is at most 𝛿 (i.e., none of the iterations preserve the

optimal coverage size up to a factor of 4). Moreover, by the guarantee of (𝛼, 𝛿, 𝜂)-oracles for

Max 𝑘-Cover, each run of𝒜 fails with probability at most 𝛿. Thus, by an application of union

bound, with probability at least 1 − 2𝛿 log 𝑛, est𝑧 is at least 𝑧/(4𝛼) for all 𝑧 ≤ |𝒞(OPT)|.
This in particular implies that the solution returned by EstimateMaxCover is at least

|𝒞(OPT)|/(8𝛼). Moreover, since the coverage of a 𝑘-cover never increases after applying the

“universe reduction” step (i.e. for each 𝑆 ⊆ 𝒰 , |ℎ(𝒞(𝑆))| ≤ |𝑆|) and the estimate returned

by the (𝛼, 𝛿, 𝜂)-oracle 𝒜 is with high probability less than the optimal coverage size, the

output of EstimateMaxCover is in [|𝒞(OPT)|/(8𝛼), |𝒞(OPT)|] with probability at least

1− 4𝛿 log 𝑛.

Finally, since EstimateMaxCover runs (log 𝑛)(log 1/𝛿) instances of 𝒜 with parameter

(𝛼, 𝛿, 𝜂) in parallel and each instance has 𝑚 sets, the total space of EstimateMaxCover

is ̃︀𝑂(𝑓(𝑚,𝛼)). �

The universe reduction step basically enables us to only focus on the instances of Max 𝑘-

Cover in which the optimal solution covers a constant fraction of the ground set, namely

at least |𝒰|/4 elements. Next, in Section 5.4, we design an ̃︀𝑂(𝑚/𝛼)-space (𝛼, 𝛿, 𝜂)-oracle

for Max 𝑘-Cover with 𝛼 = 1/̃︀Ω(1), 𝜂 ≥ 4 and 𝛿 ≤ 𝜀/ log 𝑛 (𝜀 < 1), which together with

Theorem 5.3.6 completes the proof of Theorem 5.3.1. Our (𝛼, 𝛿, 𝜂)-oracle for Max 𝑘-Cover

performs three different subroutines in parallel that together guarantee the required proper-

ties of (𝛼, 𝛿, 𝜂)-oracles and only use ̃︀𝑂(𝑚/𝛼2) space:
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∙ Set sampling based approach. This subroutine which provides the guarantee of

(𝛼, 𝛿, 𝜂)-oracles when the number of common elements is large (see Definition 5.2.1) is

an application of a “multi-layered” variant of set sampling. This subroutine is presented

in Section 5.4.1.

∙ HeavyHitter based approach. We relate the problem of 𝛼-estimating/approximating

of Max 𝑘-Cover to the problem of finding contributing classes and heavy hitters on

properly sampled substreams (see Section 5.2.2) when the main contribution of an

optimal solution of Max 𝑘-Cover is due to “large” sets. In particular, this subroutine

finds an (1/𝛼)-estimation of the optimal coverage size when 𝛼 = Ω(𝑘). This approach

is presented in Section 5.4.2.

∙ Element sampling based approach. Finally, we employ element sampling together

with a new sampling technique that samples a collection of sets to find a desired

estimate of Max 𝑘-Cover on instances for which the main contribution to an optimal

solution comes from “small” sets. Here, we also take advantage of the structure guaran-

teed by the multi-layered set sampling on the number of elements in different frequency

levels. This subroutine is presented in Section 5.4.3.

5.4. (𝛼, 𝛿, 𝜂)-Oracle of Max 𝑘-Cover

In this section, we design the promised (𝛼, 𝛿, 𝜂)-oracle for Max 𝑘-Cover. Let OPT denote

an optimal solution of Max 𝑘-Cover (𝒰 ,ℱ). As described in Definition 5.3.4, the solu-

tion returned by a (𝛼, 𝛿, 𝜂)-oracle with high probability, is smaller than |𝒞(OPT)| and if

|𝒞(OPT)| ≥ |𝒰|/𝜂, with probability at least (1 − 𝛿), it outputs a value not smaller than

|𝒞(OPT)|/𝛼. The following theorem together with Theorem 5.3.6 proves Theorem 5.3.1.

Theorem 5.4.1. Oracle(𝛼, 𝑘) performs a single pass on edge arrival streams of the set

system (𝒰 ,ℱ) and implements a ( ̃︀𝑂(𝛼), 1/(log 𝑛 log𝑐𝑚), 𝜂)-oracle of Max 𝑘-Cover(𝒰 ,ℱ) us-
ing ̃︀𝑂(𝑚/𝛼2) space.

Proof: The proof follows from the guarantees of LargeCommon (Theorem 5.4.4), Large-

Set (Theorem 5.4.8) and SmallSet (Theorem 5.4.22). The total space of the algorithm
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is clearly ̃︀𝑂(𝑚/𝛼2) which is the space complexity of the each of subroutines invoked by

Oracle. �

To design the promised (𝛼, 𝛿, 𝜂)-oracle, we design different subroutines such that each

guarantees the properties required by the oracle if certain conditions based on the the

size/value of following notions hold.

Common elements. An important property in design of our oracle is whether there exists

𝛽 ≤ 𝛼 such that the number of (𝛽𝑘)-common elements is relatively large (see Definition 5.2.1).

We also take advantage of another useful notion which is a property of a 𝑘-cover (though,

here we only describe it for optimal 𝑘-covers).

Contribution to the optimal coverage. Given the input argument 𝛼 and a parameter

s as defined in Table 5.4.1, we define the following notion of contribution for the sets in an

(optimal) 𝑘-cover.

Definition 5.4.2. For a 𝑘-cover OPT = {𝑂1, · · · , 𝑂𝑘}, we consider an arbitrary ordering

of the sets in OPT and define the contribution of 𝑂𝑖 to 𝒞(OPT) as |𝑂′
𝑖| where 𝑂′

𝑖 :=

𝑂𝑖 ∖
⋃︀

1≤𝑗<𝑖𝑂𝑖. Note that 𝑂′
𝑖 are disjoint and |

⋃︀
𝑖∈[𝑘] 𝑂

′
𝑖| = |𝒞(OPT)| = 𝑧. We (conceptually)

define OPTlarge to be the collection of all sets in OPT that contribute more than 𝑧/(s𝛼)

to 𝒞(OPT) according to 𝑂′
𝑖s; OPTlarge = {𝑂𝑖 ∈ OPT | |𝑂′

𝑖| ≥ 𝑧/(s𝛼)} for s < 1 (as in

Table 5.4.1). Note that since 𝑂′
𝑖s are disjoint, |OPTlarge| ≤ s𝛼.

w = min{𝑘, 𝛼}, s = 9

2500
√

2𝜂 log(s𝛼) log2(𝑚𝑛)
· w
𝛼
, t = 2500 log2(𝑚𝑛)

s
, f = 7 log(𝑚𝑛), 𝜎 = 1

2500 log2(𝑚𝑛)
, 𝜂 = 4

Table 5.4.1: The values of parameters used in our algorithms.

Design of (𝛿, 𝛼, 𝜂)-oracle of max 𝑘-cover. Here we sketch a high-level outline of our

(𝛿, 𝛼, 𝜂)-oracle for Max 𝑘-Cover (refer to Algorithm 18 for a formal description). In the

following cases, 𝜎 = Ω( 1
log2(𝑚𝑛)

) (as in Table 5.4.1).

∙ If there exists a 𝛽 ≤ 𝛼 such that |𝒰 cmn
𝛽𝑘 | ≥ 𝜎𝛽|𝒰|

𝛼
. In this case, by Observation 5.2.5,

to approximate Max 𝑘-Cover(𝒰 ,ℱ) within a factor of ̃︀𝑂(𝛼), it suffices to find 𝛽𝑘 sets

that cover 𝒰 cmn
𝛽𝑘 which can be done via set sampling (see Section 5.4.1).

∙ |𝒞(OPTlarge)| ≥ |𝒞(OPT)|/2 and ∀𝛽 ≤ 𝛼, |𝒰 cmn
𝛽𝑘 | < 𝜎𝛽|𝒰|

𝛼
. The subroutine for this case

which is presented in Section 5.4.2, handles the instances of the problem in which s𝛼 ≥
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Algorithm 18 An (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-Cover.

1: procedure Oracle(𝑘, 𝛼)
2: ◁ for instances in which ∃𝛽 ≤ 𝛼 s.t. |𝒰 cmn

𝛽𝑘 | ≥ 𝜎𝛽|𝒰|
𝛼

3: solcmn ← LargeCommon(𝑘, 𝛼)
4: if s𝛼 ≥ 2𝑘 then
5: ◁ if s𝛼 ≥ 2𝑘, then |OPTlarge| ≥ |OPT|/2
6: solHH ← LargeSet(𝑘, 𝛼, 𝑘)
7: else
8: ◁ for instances with s𝛼 < 2𝑘 and |OPTlarge| ≥ |OPT|/2
9: solHH ← LargeSet(𝑘, 𝛼, 𝛼)
10: ◁ for instances with |OPTlarge| < |OPT|/2
11: solsmall ← SmallSet(𝑘, 𝛼)

12: return max(solcmn, solHH, solsmall)

2𝑘 or, s𝛼 < 2𝑘 and there exists an optimal solution OPT such that |𝒞(OPTlarge)| ≥
|𝒞(OPT)|/2.

Claim 5.4.3. If s𝛼 ≥ 2𝑘, then |𝒞(OPTlarge)| ≥ |𝒞(OPT)|/2.

Proof: Consider the optimal solution OPT and ignore the sets in OPT whose contri-

bution to the coverage is less than |𝒞(OPT)|/(2𝑘). Note that the survived sets belong

to OPTlarge and their total coverage is at least |𝒞(OPT)|−𝑘 · |𝒞(OPT)|
2𝑘

≥ |𝒞(OPT)|/2.�

∙ |𝒞(OPTlarge)| < |𝒞(OPT)|/2 and ∀𝛽 ≤ 𝛼, |𝒰 cmn
𝛽𝑘 | < 𝜎𝛽|𝒰|

𝛼
. In this case, the main

contribution to the coverage of OPT comes from “small” sets. This enables us to

show that if we sample sets with probability 1/𝛼, then ̃︀Ω(1/𝛼)-fraction of sets in OPT

survive and with high probability, their coverage is ̃︀Ω(|𝒞(OPT)|/𝛼). In Section 5.4.3,

we show that element sampling method with some new ideas can take care of this case

which can only happen when s𝛼 < 2𝑘.

5.4.1. Multi-layered Set Sampling: ∃𝛽 ≤ 𝛼 s.t. |𝒰 cmn
𝛽𝑘 | ≥ 𝜎𝛽|𝒰|

𝛼

Here, we first guess the value of 𝛽 (more precisely, a 2-approximate estimate of 𝛽) and then

pick 𝛽𝑘 sets ℱ rnd
𝛽 at random and compute their coverage in one pass using ̃︀𝑂(1) space. To get

the desired space complexity, we use the implementation of set sampling with 𝑂(log(𝑚𝑛))

random bits as described in Section 5.7.1.

Theorem 5.4.4. Consider an instance (𝒰 ,ℱ) of Max 𝑘-Cover. The LargeCommon al-

gorithm uses ̃︀𝑂(1) space and if there exists 𝛽 ≤ 𝛼 such that |𝒰 cmn
𝛽𝑘 | ≥ 𝜎𝛽|𝒰|

𝛼
, then with
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Algorithm 19 A (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-Cover that handles the case in which the number
of common elements is large.

1: procedure LargeCommon((𝑘, 𝛼))
2: for all 𝛽g ∈ {2𝑖 | 1 ≤ 𝑖 ≤ log𝛼} in parallel do
3: ◁ perform set sampling in one pass using ̃︀𝑂(1) space.
4: pick ℎg : ℱ → [ 𝑐𝑚 log𝑚

𝛽g𝑘
] from Θ(log(𝑚𝑛))-wise independent hash functions

5: let DEg be a (1± 1/2)-approximation streaming algorithm of 𝐿0-estimation
6: for all (𝑆, 𝑒) in the data stream do
7: if ℎg(𝑆) = 1 then
8: feed 𝑒 to DEg ◁ computing the coverage of ℱ rnd

𝛽g

9: if VAL(DEg) ≥ 𝜎𝛽g|𝒰|/(4𝛼) then
10: return 2VAL(DEg)/(3𝛽g)

11: return infeasible ◁ @𝛽 ∈ [𝛼] s.t. |𝒰 cmn
𝛽𝑘 | ≥ 𝜎𝛽|𝒰|

𝛼𝑘

high probability, the algorithm returns at least 𝜎|𝒰|/(6𝛼). Moreover, with high probability

the output of LargeCommon is smaller than the coverage size of an optimal solution of

Max 𝑘-Cover(𝒰 ,ℱ).

Claim 5.4.5. For each 𝛽g ∈ {2𝑖 | 1 ≤ 𝑖 ≤ log𝛼}, with high probability, |ℱ rnd
𝛽g
| ≤ 𝛽g𝑘.

Lemma 5.4.6. If there exists 𝛽 ≤ 𝛼 such that |𝒰 cmn
𝛽𝑘 | ≥ 𝜎𝛽|𝒰|/𝛼, then with high probability

the output of LargeCommon is at least 𝜎|𝒰|/(6𝛼).

Proof: Let 2𝑖 be the smallest power of two which is larger than or equal to 𝛽; 𝑖 := ⌈log 𝛽⌉.
Consider the iteration of LargeCommon in which 𝛽g = 2𝑖. Since 2𝛽 > 𝛽g ≥ 𝛽 and by

Observation 5.2.2,

|𝒰 cmn
𝛽g𝑘 | ≥ |𝒰 cmn

𝛽𝑘 | ≥
𝜎𝛽|𝒰|
𝛼
≥ 𝜎𝛽g|𝒰|

2𝛼
.

Hence, by the guarantee of existing streaming algorithms for 𝐿0-estimation (Theorem 5.2.12)

and set sampling (Lemma 5.2.3 and 5.7.7), w.h.p., VAL(DEg) ≥ 1
2
· 𝜎𝛽g|𝒰|

2𝛼
= 𝜎𝛽g|𝒰|

4𝛼
. Hence,

the estimate returned by the algorithm which is a lower bound on the coverage of the best

𝑘 sets in ℱ rnd
𝛽g

(see Observation 5.2.5), w.h.p., is at least 2
3
· 1
𝛽g
· 𝜎𝛽g|𝒰|

4𝛼
= 𝜎|𝒰|

6𝛼
.

Moreover, it is straightforward to check that by the guarantee of the streaming algorithm

for 𝐿0-estimation (Theorem 5.2.12), the value returned by LargeCommon with high prob-

ability is not more than the actual coverage of the best 𝑘-cover in the collection of sampled

sets using ℎg. �

151



Lemma 5.4.7. If LargeCommon returns infeasible, then with high probability, for all

𝛽 ≤ 𝛼, |𝒰 cmn
𝛽𝑘 | ≤ 𝜎𝛽|𝒰|/𝛼.

Proof: Since the algorithm returns infeasible, by the guarantee of the (1±1/2)-approximation

algorithm for 𝐿0-estimation (Theorem 5.2.12) and set sampling (Lemma 5.2.3), for all values

of 𝛽g ∈ {2𝑖 | 𝑖 ≤ log𝛼}, with high probability,

|𝒰 cmn
𝛽g𝑘 | ≤ |𝒞(ℱ rnd

𝛽g
)| ≤ 2VAL(DEg) < 𝜎𝛽g|𝒰|/(2𝛼). (5.4.1)

Now, for any given value 𝛽 ≤ 𝛼, consider 𝛽g := 2⌈log 𝛽⌉ (i.e. set 𝛽g to be the smallest power

of two which is larger than or equal to 𝛽). By Observation 5.2.2, |𝒰 cmn
𝛽𝑘 | ≤ |𝒰 cmn

𝛽g𝑘
| which

together with Eq. 5.4.1 implies that |𝒰 cmn
𝛽𝑘 | ≤ 𝜎𝛽g|𝒰|/(2𝛼) ≤ 𝜎𝛽|𝒰|/𝛼. �

Proof of Theorem 5.4.4: The guarantee on the output of LargeCommon follows from

Lemma 5.4.6. Moreover, by Theorem 5.2.12, the total amount of space to compute the cover-

age of each collection ℱ rnd
𝛽g

(via existing 𝐿0-estimation algorithms in streams) is ̃︀𝑂(1). Hence,

the total space to compute the coverage of all log𝛼 collections considered in LargeCommon

is ̃︀𝑂(1). �

5.4.2. Heavy Hitters and Contributing Classes:

|𝒞(OPTlarge)| ≥ |𝒞(OPTsmall)|
In this section, we show that if there exists an optimal solution OPT of Max 𝑘-Cover(𝒰 ,ℱ)
such that the main contribution in the coverage of OPT is due to large sets, which are

formally defined to be the sets whose contribution to 𝒞(OPT) is at least |𝒞(OPT)|/(s𝛼),
then we can approximate the optimal coverage size within a factor of 1/ ̃︀𝑂(𝛼) by detecting̃︀Ω(𝛼2/𝑚)-HeavyHitters in properly sampled substreams. Following is the main result of this

section.

Theorem 5.4.8. Consider an instance (𝒰 ,ℱ) of Max 𝑘-Cover. In a single pass, LargeSet

uses ̃︀𝑂(𝑚/𝛼2) space and if the optimal coverage size of the instance is Ω(|𝒰|), then with

probability at least 1 − 1/(log 𝑛 log𝑐𝑚), it returns at least ̃︀Ω(|𝒰|/𝛼). Moreover, with high

probability, the estimate returned by LargeSet is smaller than the optimal coverage size.

We defer the proof of Theorem 5.4.8 to Section 5.8. In this section, we prove the same
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guarantees on the performance of a simplified variant of LargeSet, LargeSetSimple,

when 𝒰 contains no “common” elements (wee will define them formally later in this section)

which essentially presents the main technical ideas.

Partitioning sets into supersets. We partition sets of ℱ randomly into (𝑐𝑚 log𝑚)/w

supersets 𝒬 := {𝒟1, · · · ,𝒟(𝑐𝑚 log𝑚)/w} via a hash function ℎ : ℱ → [(𝑐𝑚 log𝑚)/w] chosen

from a family of Θ(log(𝑚𝑛))-wise independent hash functions. More precisely, each set

𝑆 ∈ ℱ belongs to the superset 𝒟ℎ(𝑆).

The parameter w denotes the desired upper bound on the maximum number of sets in

a superset in 𝒬 defined by ℎ and is set to min(𝛼, 𝑘). In fact, given w, we define ℎ to be

a function picked uniformly at random from a family of Θ(log(𝑚𝑛))-wise independent hash

functions {ℱ → [(𝑐𝑚 log𝑚)/w]}.

Claim 5.4.9. With high probability, no superset in 𝒬 has more than w sets.

Claim 5.4.10. With high probability, for each 𝑒 ∈ 𝒰 ∖ 𝒰 cmn
w and 𝒟 ∈ 𝒬, the number of sets

in 𝒟 that contain 𝑒 is at most f where f = Θ(log(𝑚𝑛)).

This implies that assuming 𝒰 cmn
w = ∅, to get a (1/ ̃︀𝑂(𝛼))-approximation of Max 𝑘-Cover(𝒰 ,ℱ),

it suffices to find a superset whose total size of its sets is ̃︀Ω(1/𝛼) times the optimal cover-

age size. Now, we are ready to exploit the results on 𝐹2-heavy hitters and 𝐹2-contributing

classes mentioned in Section 5.2.2 to describe our (𝛼, 𝛿, 𝜂)-oracle for Max 𝑘-Cover assuming

𝒰 cmn
w = ∅. Later in Section 5.8, we show how to remove this assumption by performing our

algorithm on a set of sampled elements in 𝒰 instead.

Partitioning supersets by their total size. First, setting 𝑧 = |𝒞(OPT)|, we partition
the supersets in 𝒬 (conceptually) according to the total size of their sets into 𝑂(log𝛼) classes
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as follows:

𝒬0 = {𝒟 |
∑︁
𝑆∈𝒟

|𝑆| ≥ 𝑧/2},

𝒬𝑖 = {𝒟 | 𝑧/2𝑖+1 ≤
∑︁
𝑆∈𝒟

|𝑆| < 𝑧/2𝑖}, ∀𝑖 ∈ [1, log(𝛼))

𝒬small = {𝒟 |
∑︁
𝑆∈𝒟

|𝑆| < 𝑧/𝛼}.

Further, let 𝑛𝑖 denote the number of supersets in 𝒬𝑖; 𝑛𝑖 = |𝒬𝑖|. Next, we define the

vector 𝑣⃗ of size (𝑐𝑚 log𝑚)/w such that 𝑣⃗[𝑖] =
∑︀

𝑆∈𝒟𝑖
|𝑆| denotes the total size of the sets

in 𝒟𝑖. In the following, we show that a subset of supersets with large total size form añ︀Ω(𝑚/𝛼2)-contributing class of 𝐹2(𝑣⃗) and any superset in this ̃︀Ω(𝑚/𝛼2)-contributing class is

a (1/𝛼)-approximate 𝑘-cover of (𝒰 ,ℱ).
We consider the following two cases depending on whether the coordinates corresponding

to small supersets, 𝒬small, contribute to 𝐹2(𝑣⃗); 𝐹2(𝑣⃗small) ≥ 𝐹2(𝑣⃗)/2 where 𝑣⃗small denotes the

vector 𝑣⃗ restricted to the coordinates corresponding to supersets in 𝒬small.

Case 1: Supersets with total size less than 𝑧/𝛼 contribute to 𝐹2(𝑣⃗). This implies

that 𝐹2(𝑣⃗) ≤ 2𝐹2(𝑣⃗small) ≤ 2 · ( 𝑐𝑚 log𝑚
w

) · ( 𝑧
𝛼
)2 = 2𝑐𝑚 log𝑚

w
· 𝑧2
𝛼2 .

Claim 5.4.11. If 𝐹2(𝑣⃗small) ≥ 𝐹2(𝑣⃗)/2, then there exists an ̃︀Ω(𝛼2/𝑚)-contributing class 𝒬𝑖*

of 𝐹2(𝑣⃗) for an index 𝑖* < log(s𝛼).

Proof: Since each set in OPTlarge has contribution at least 𝑧/(s𝛼) to the optimal coverage,

each set ofOPTlarge lands in one of𝒬0, · · · ,𝒬log(s𝛼)−1. Moreover, sinceOPTlarge has coverage

at least 𝑧/2,

log(s𝛼)−1∑︁
𝑖=0

𝑛𝑖 ·
𝑧

2𝑖
≥

∑︁
𝑂𝑖∈OPTlarge

|𝑂𝑖| ≥ |𝒞(OPTlarge)| ≥ 𝑧/2,

which implies that there exists an index 𝑖* < log(s𝛼) such that 𝑛𝑖* ≥ 2𝑖
*
/(2 log(s𝛼)). Hence,
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𝒬𝑖* is an ̃︀Ω(𝛼2

𝑚
)-contributing class of 𝐹2(𝑣⃗):

|𝒬𝑖* | · (
𝑧

2𝑖*+1
)2 ≥ 2𝑖

*

2 log(s𝛼)
· 𝑧2

4(2𝑖*)2
=

w

2𝑐𝑚 log𝑚
· 𝛼2 · 1

2𝑖*+3 log(s𝛼)
· 𝐹2(𝑣⃗) B (2𝑖

*+1 ≤ s𝛼)

≥ (
w

s𝛼
· 1

8𝑐 log(s𝛼) log𝑚
) · 𝛼

2

𝑚
· 𝐹2(𝑣⃗)

More formally, since w
s𝛼

= ̃︀Ω(1) (see Table 5.4.1), 𝒬𝑖* is a 𝜑1-contributing class of 𝐹2(𝑣⃗)

where

𝜑1 = (
w

s𝛼
· 1

8𝑐 log(s𝛼) log𝑚
) · 𝛼

2

𝑚
= ̃︀Ω(𝛼2

𝑚
). (5.4.2)

�

Hence, by Theorem 5.2.11, a superset of total size at least 2
3
· 1
2
· 𝑧
s𝛼

will be identified by

the subroutine 𝐹2-Contributing(𝜑1, s𝛼) using ̃︀𝑂(𝑚/𝛼2) space.

Remark 5.4.12. Recall that in order to find a coordinate in a 𝜑-contributing class 𝑅𝑡* ,

𝐹2-Contributing subsamples the stream proportional to 1/|𝑅𝑡*| (so that only 𝑂(1) co-

ordinates of 𝑅𝑡* survive) and then with high probability any survived coordinate of 𝑅𝑡*

becomes a ̃︀Ω(𝜑)-HeavyHitter in the sampled substream. However, here we show that there

exists a 𝜑-contributing class 𝑅𝑡* whose intersection with OPTlarge is a 𝜑-contributing class

of coordinates too. Hence, it suffices to only search for a coordinate in a 𝜑-contributing class

of size at most |OPTlarge| ≤ s𝛼.

Case 2. Supersets with coverage less than 𝑧/𝛼 do not contribute to 𝐹2(𝑣⃗).

Claim 5.4.13. If 𝐹2(𝑣⃗small) < 𝐹2(𝑣⃗)/2, then there exists an ̃︀Ω(1)-contributing class 𝒬𝑖* of

𝐹2(𝑣⃗) for an index 𝑖* < log𝛼.

Proof: In this case, since supersets in 𝒬small are not contributing, there exists an index

𝑖* < log(𝛼) (note that we consider all classes 𝒬0, · · · ,𝒬log𝛼−1 in this case) such that

𝑛𝑖* · (𝑧/2𝑖
*
)2 ≥ 𝐹2(𝑣⃗)/(2 log𝛼);
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Algorithm 20 An (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-Cover that handles the case in which the ma-
jority of the coverage in an optimal solution is by the sets whose coverage contributions are
at least 1/(s𝛼) fraction of the optimal coverage size.

1: procedure LargeSetSimple((𝒱 ,w, thr1, thr2))
2: ◁ Input: w is an upper bound on the desired number of sets in a superset
3: ◁ Parameters: 𝜑1 = ̃︀Ω(𝛼2/𝑚) and 𝜑2 = ̃︀Ω(1)
4: let Cntrsmall be an instance of 𝐹2-Contributing(𝜑1, s𝛼) ◁ for Case 1
5: let Cntrlarge be an instance of 𝐹2-Contributing(𝜑2,

𝑐𝑚 log𝑚
w

) ◁ for Case 2
6: pick ℎ : ℱ → [(𝑐𝑚 log𝑚)/w] from Θ(log(𝑚𝑛))-wise independent hash functions
7: for all (𝑆, 𝑒) in the data stream do
8: if 𝑒 ∈ 𝒱 then
9: feed ℎ(𝑆) to both Cntrsmall and Cntrlarge

◁ output(Cntr) contains coordinates along with (1± 1/2)-estimate of frequencies
10: if there exists 𝑖 ∈ output(Cntrsmall) such that 𝑣𝑖 ≥ 1

2
· thr1 then

11: return 2𝑣𝑖/(3f)

12: if there exists 𝑖 ∈ output(Cntrlarge) such that 𝑣𝑖 ≥ 1
2
· thr2 then

13: return 2𝑣𝑖/(3f)

14: return infeasible

in other words, 𝒬𝑖* is a 𝜑2-contributing class of 𝐹2(𝑣⃗) where 𝜑2 = ( 1
2 log𝛼

). �

Note that, by Theorem 5.2.11, a superset of total size at least 2
3
· 1
2
· 𝑧
𝛼
will be identified by

the subroutine 𝐹2-Contributing(𝜑2,
𝑐𝑚 log𝑚

w
) using ̃︀𝑂(1) space.

Lemma 5.4.14. If |𝒞(OPT)| ≥ |𝒰|
𝜂
, then with probability at least 1− 1/(3 log 𝑛 log𝑐 𝑚), the

estimate returned by LargeSetSimple with parameters (𝒱 = 𝒰 ,w, thr1 = |𝒰|
𝜂s𝛼

, thr2 = |𝒰|
𝜂𝛼
)

has coverage at least |𝒰|/(3f𝜂𝛼) = ̃︀Ω(|𝒰|/𝛼).
Proof: With probability at least 1−2/(9 log 𝑛 log𝑐𝑚), the algorithm returns a superset whose

total size is at least 2
3
· |𝒰|
2𝜂𝛼
≥ |𝒰|

3𝜂𝛼
(in fact, if it is in Case 1, then the estimate is at least |𝒰|

3s𝛼𝜂
).

Then, by Claim 5.4.10 and assumption 𝒰 cmn
w = ∅, the coverage of the reported superset is at

least 1
f
· |𝒰|
3𝜂𝛼

. �

Lemma 5.4.15. The amount of space used by LargeSetSimple is ̃︀𝑂(𝑚/𝛼2).

Proof: By Theorem 5.2.11, the amount of space to perform Cntrsmall and Cntrlarge as defined

in Algorithm 25 is respectively ̃︀𝑂(1/𝜑1) = ̃︀𝑂(𝑚/𝛼2) and ̃︀𝑂(1/𝜑2) = ̃︀𝑂(1). �
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5.4.3. Element Sampling: |𝒞(OPTlarge)| < |𝒞(OPTsmall)|
Here we design an (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-Cover with the desired parameters for the case

in which |𝒞(OPTsmall)| > |𝒞(OPTlarge)|. Intuitively speaking, in this case, after sampling

each set in ℱ with probability ̃︀Θ(1/𝛼) still we can find 𝑂(𝑘/𝛼) sets whose coverage is at

least ̃︀Ω(|𝒞(OPT)|/𝛼). As proved in Claim 5.4.3, if 𝛼 = ̃︀Ω(𝑘), then the main contribution to

the coverage of OPT is due to OPTlarge and we can (1/𝛼)-approximate the optimal coverage

size by LargeSet. Hence, in this section we assume that 𝛼 = ̃︀𝑂(𝑘). Moreover, throughout

this section we assume that for all 𝛽 ≤ 𝛼, |𝒰 cmn
𝛽𝑘 | < 𝜎𝛽|𝒰|

𝛼
(otherwise, our multi-layered set

sampling approach described in Section 5.4.1 returns a (1/𝛼)-approximation of the optimal

coverage size).

Lemma 5.4.16. Consider an instance of Max 𝑘-Cover (𝒰 ,ℱ). Suppose that 𝒟 is a collec-

tion of 𝑘 disjoint sets with coverage 𝑧 such that no 𝑆 ∈ 𝒟 has size more than 𝑧/(s𝛼) where

s < 1 and s = ̃︀Ω(1). Let’s assume that 𝒟smp := 𝒟∩ℳ where each 𝑆 ∈ ℱ survives inℳ with

probability 𝑐/(s𝛼) where 𝑐 > 1 is a fixed constant. Then, with probability at least (1 − 6/𝑐),

𝒟smp has size at most (2𝑐𝑘)/(s𝛼) and covers at least (𝑐𝑧)/(2s𝛼) elements.

Proof: Let 𝒟 = {𝑆 ′
1, · · · , 𝑆 ′

𝑘} and for each 𝑖, let 𝑋𝑖 to be the random variable corresponding

to 𝑆 ′
𝑖 such that 𝑋𝑖 = |𝑆 ′

𝑖| if 𝑆 ′
𝑖 ∈ 𝒟smp and zero otherwise.

Claim 5.4.17. E[𝑋𝑖] =
𝑐
s𝛼
· |𝑆 ′

𝑖| and Var[𝑋𝑖] ≤ 𝑐
s𝛼
· |𝑆 ′

𝑖|2.

Next, we define 𝑋 := 𝑋1 + · · · + 𝑋𝑘. Note that E[𝑋] = (𝑐𝑧)/(s𝛼) and, by the pairwise

independence of 𝑋𝑖s and the assumption that |𝑆 ′
𝑖| ≤ 𝑧/(s𝛼),

Var[𝑋] ≤ 𝑐

s𝛼
·

𝑘∑︁
𝑖=1

|𝑆 ′
𝑖|2

≤ 𝑐

s𝛼
· s𝛼 · ( 𝑧

s𝛼
)2 = 𝑐 · ( 𝑧

s𝛼
)2,

Finally, applying Chebyshev inequality,

Pr[𝑋 <
𝑐𝑧

2s𝛼
] = Pr[𝑋 < (

𝑐𝑧

s𝛼
−
√
𝑐

2
· (
√
𝑐

s𝛼
· 𝑧)] < 4/𝑐.

Hence, with probability at least 1− 4/𝑐, 𝒟smp covers at least (𝑐𝑧)/(2s𝛼) elements.
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Next, we show that with probability at least 1− 2/𝑐, 0 < |𝒟smp| < (2𝑐𝑘)/(s𝛼). For each

𝑖, let 𝑌𝑖 denote the random variable corresponding to 𝑆𝑖 which is equal to one if 𝑆𝑖 ∈ 𝒟smp

and zero otherwise.

Claim 5.4.18. E[𝑌𝑖] = (𝑐/s𝛼) and Var[𝑌𝑖] ≤ (𝑐/s𝛼).

We define 𝑌 = 𝑌1 + · · ·+ 𝑌ℓ which denotes the size of 𝒟smp. Then by pairwise independence

of 𝑌𝑖s, E[𝑌 ] = (𝑐𝑘)/(s𝛼) and Var[𝑌 ] ≤ (𝑐𝑘)/(s𝛼). Applying Chebyshev inequality (Pr[|𝑌 −
E[𝑌 ]| ≥ 𝑡Var[𝑌 ]] ≤ 1/(𝑡2Var[𝑌 ])), with probability at least 1− (s𝛼)/(𝑐𝑘) ≥ 1− 2/𝑐 (since

in this case, 𝛼 ≤ 2𝑘/s), 0 < |𝒟smp| < (2𝑐𝑘)/(s𝛼).

Hence, with probability at least (1 − 6/𝑐), 𝒟smp is a subset of size at most (2𝑐𝑘)/(s𝛼)

that covers at least (𝑐𝑧)/(2s𝛼) elements. �

Corollary 5.4.19. Consider an instance (𝒰 ,ℱ) of Max 𝑘-Cover and let OPT be an opti-

mal solution of this instance such that |𝒞(OPTsmall)| ≥ 1
2
· |𝒞(OPT)| ≥ |𝒰|/(2𝜂). Moreover,

letℳ⊂ ℱ be a collection of ̃︀𝑂(|ℱ|/𝛼) pairwise independent sets picked uniformly at random
such that each 𝑆 ∈ ℱ belongs to ℳ with probability 18/(s𝛼). With probability at least 2/3,

Max (36𝑘
s𝛼

)-Cover(𝒰 ,ℳ) has an optimal solution with coverage at least 9|𝒰|/(s𝛼𝜂).

Proof: By definition of OPTsmall, for each 𝑂 ∈ OPTsmall, the contribution of 𝑂 to OPT (i.e.

𝑂′) is at most 𝑧/(s𝛼) (see Definition 5.4.2). Then, the result follows from an application

of Lemma 5.4.16 on collection 𝒟 := {𝑂′ | 𝑂 ∈ OPTsmall} by setting 𝑐 = 18 and 𝑧 =

|OPTsmall| ≥ |𝒰|/(2𝜂). �

Next, we show that we can perform “element sampling” and find an ̃︀𝑂(1)-approximation

of Max (36𝑘
s𝛼

)-Cover of the specified instance in Corollary 5.4.19, (𝒰 ,ℳ), in one pass and

using ̃︀𝑂(𝑚/𝛼2) space. To this end, first we compute the space complexity of (ℒ,ℱ) where
ℒ ⊆ 𝒰 is a subset of size ̃︀𝑂(𝑘) which is picked by element sampling.

Lemma 5.4.20. Suppose that an optimal solution of Max ( 𝑘
𝛼
)-Cover(𝒰 ,ℱ) has coverage

|𝒰|/𝛾 = ̃︀Ω(|𝒰|/𝛼). Let ℒ ⊂ 𝒰 be a collection of elements of size ̃︀𝑂(𝑘𝛾
𝛼
) picked uniformly at

random. With high probability, the total amount of space to store the set system (ℒ,ℱ) is̃︀𝑂(𝑚/𝛼).

Proof: Recall that (𝒰 ,ℱ) has the property that for all 𝛽 ≤ 𝛼, |𝒰 cmn
𝛽𝑘 | < 𝜎𝛽|𝒰|/𝛼 (otherwise,
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the result of Section 5.4.1 can be applied). Next, we (conceptually) partition the elements

in 𝒰 into log𝛼 + 1 groups as follows:

𝒲0 = 𝒰 ∖ 𝒰 cmn
𝛼𝑘

𝒲𝑖 = 𝒰 cmn
(𝛼/2𝑖−1)𝑘 ∖ 𝒰 cmn

(𝛼/2𝑖)𝑘 ∀𝑖 ∈ [log𝛼].

Note that |𝒲0| ≤ |𝒰| and for each 𝑖 ∈ [log𝛼], |𝒲𝑖| ≤ 𝜎|𝒰|/2𝑖−1. Since each element 𝑒 ∈ 𝒰
survives in ℒ with probability ̃︀𝑂( 𝑘𝛾

𝛼|𝒰|), w.h.p., for each 𝑖 ∈ [log𝛼], |𝒲𝑖 ∩ ℒ| = ̃︀𝑂(1 + 𝜎𝛾𝑘
𝛼2𝑖−1 ).

Furthermore, since each element in𝒲𝑖 appears in at most ̃︀𝑂(2
𝑖𝑚
𝛼𝑘

) sets in ℱ , the total amount

of space required to store (ℒ,ℱ) is at most

log𝛼∑︁
𝑖=0

|𝒲𝑖 ∩ ℒ| ·max
𝑒∈𝒲𝑖

freq(𝑒) = ̃︀𝑂(
𝑘𝛾

𝛼
) · ̃︀𝑂(

𝑚

𝛼𝑘
) +

log𝛼∑︁
𝑖=1

̃︀𝑂(1 +
𝜎𝛾𝑘

𝛼2𝑖−1
) · ̃︀𝑂(

2𝑖𝑚

𝛼𝑘
)

= ̃︀𝑂(
𝛾𝑚

𝛼2
) +

log𝛼∑︁
𝑖=1

̃︀𝑂(
2𝑖𝑚

𝛼𝑘
+

𝜎𝛾𝑚

𝛼2
)

= ̃︀𝑂(𝑚/𝛼). �

Next, we show that after subsampling the sets by a factor of ̃︀Θ(1/𝛼), we can save another

factor of ̃︀Ω(𝛼) in the space complexity; in other words, (ℒ,ℳ) uses ̃︀𝑂(𝑚/𝛼2) space. Note

that since 𝑘𝛼 may be as large as ̃︀Ω(𝑚) we cannot hope to show directly that each element

in 𝒲𝑖 appears in at most ̃︀𝑂(𝑚/(2𝑖𝛼𝑘)). However, we can show that the total size of the

intersection of all sets in ℳ with ℒ is ̃︀𝑂(𝑚/𝛼2) using the properties of the max cover

instance.

Lemma 5.4.21. Suppose that an optimal solution of Max ( 𝑘
𝛼
)-Cover(𝒰 ,ℱ) has coverage

|𝒰|/𝛾 = ̃︀Ω(|𝒰|/𝛼). Let ℒ ⊂ 𝒰 be a collection of elements of size ̃︀𝑂(𝑘𝛾
𝛼
) picked uniformly at

random and letℳ⊂ ℱ be a collection of sets of size ̃︀𝑂(𝑚/𝛼) picked uniformly at random.

With high probability, the total amount of space required to store the set system (ℒ,ℳ) is̃︀𝑂(𝑚/𝛼2).

Proof: First note that since an optimal ( 𝑘
𝛼
)-cover of (𝒰 ,ℱ) has coverage |𝒰|/𝛾, with high

probability, for each set 𝑆 ∈ ℳ, |𝑆 ∩ ℒ| = ̃︀𝑂(𝑘/𝛼). Moreover, by Lemma 5.4.20, the size
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Algorithm 21 A single pass streaming algorithm that estimates the optimal coverage size
of Max 𝑘-Cover(𝒰 ,ℱ) within a factor of 1/ ̃︀𝑂(𝛼) in ̃︀𝑂(𝑚/𝛼2) space. To return a ̃︀𝑂( 𝑘

𝛼
)-cover

that achieves the computed estimate it suffices to change the line marked by (⋆⋆) to return
the corresponding ̃︀𝑂( 𝑘

𝛼
)-cover as well (see Section 5.5).

1: procedure SmallSet((𝑘, 𝛼))
2: for all 𝛾g ∈ {2−𝑖 | 𝑖 ∈ [log𝛼]} in parallel do
3: ◁ 𝛾g is an estimate of the optimal coverage of ̃︀𝑂( 𝑘

𝛼
)-cover

4: for log 𝑛 times in parallel do
5: ℳ← uniformly selected samples of size ̃︀Θ(𝑚/𝛼) from ℱ
6: ℒ ← uniformly selected samples of size ̃︀Θ(𝛾g · ( 𝑘𝛼)) from 𝒰
7: initialize S(ℒ,ℳ) to be an empty set ◁ S(ℒ,ℳ) stores (ℒ,ℳ)
8: for all (𝑆, 𝑒) in the data stream do
9: if 𝑆 ∈ℳ and 𝑒 ∈ ℒ𝑖 then
10: add (𝑆, 𝑒) to S(ℒ,ℳ)

11: if S(ℒ,ℳ) > ̃︀𝑂(𝑚/𝛼2) then
12: terminate
13: sol𝛾g ← maxℒ,ℳ{𝑂(1)-approx solution of Max (36𝑘

s𝛼
)-Cover(S(ℒ,ℳ))} (⋆⋆)

14: return max𝛾g{( |𝒰|
𝛾g(𝑘/𝛼)

· sol𝛾g) | sol𝛾g = ̃︀Ω(𝑘/𝛼)}
of the intersection of all sets in ℱ with ℒ is ̃︀𝑂(𝑚/𝛼). Next, we (conceptually) partition the

sets of ℱ into 𝑂(log 𝑘) groups based on their intersection size with ℒ as follows (𝑐 = ̃︀𝑂(1)):

𝒬𝑖 = {𝑆 ∈ ℱ |
1

2𝑖
· 𝑐𝑘
𝛼
≤ |𝑆 ∩ ℒ| < 1

2𝑖−1
· 𝑐𝑘
𝛼
}, ∀1 ≤ 𝑖 ≤ log 𝑘

Since the total size of the intersection of all sets with the sampled set ℒ is w.h.p. ̃︀𝑂(𝑚/𝛼),

for each 𝑖 ≤ log 𝑘, |𝒬𝑖| ≤
̃︀𝑂(𝑚/𝛼)

(𝑐𝑘)/(2𝑖𝛼)
= ̃︀𝑂(2

𝑖·𝑚
𝑘

). Since we have the assumption that 𝑚
𝑘𝛼
≥ 1 (we

took care of the case 𝑚 < 𝑘𝛼 in the first line of EstimateMaxCover separately), w.h.p.,

for each 𝒬𝑖, |𝒬𝑖 ∩ℳ| = ̃︀𝑂(2
𝑖𝑚
𝑘𝛼

). Hence, the total amount of space to store (ℒ,ℳ) is at

most

log 𝑘∑︁
𝑖=1

1

2𝑖−1
· 𝑐𝑘
𝛼
· ̃︀𝑂(

2𝑖𝑚

𝑘𝛼
) = ̃︀𝑂(

𝑚

𝛼2
). �

Theorem 5.4.22. If |𝒞(OPTsmall)| ≥ |𝒰|/(2𝜂) and for all 𝛽 ≤ 𝛼, |𝒰 cmn
𝛽𝑘 | < 𝜎𝛽|𝒰|

𝛼
, then with

high probability, SmallSet outputs a (1/ ̃︀𝑂(𝛼))-approximate of the optimal coverage size of

Max 𝑘-Cover(𝒰 ,ℱ) in ̃︀𝑂(𝑚/𝛼2) space.

Proof: By Corollary 5.4.19, for any sampled collection of sets ℳ of size ̃︀Θ(𝑚/𝛼) (as in
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SmallSet), with probability at least 2/3, there exists a subset of size at most (36𝑘
s𝛼

) inℳ
whose coverage is 9|𝒰|/(s𝛼𝜂) = |𝒰|/𝛾. Moreover, by the guarantee of element sampling,

Lemma 5.2.4, when 𝛾/2 < 𝛾𝑔 ≤ 𝛾, an 𝑂(1)-approximate solution of Max 𝑘-Cover(ℒ,ℳ)

with high probability is an 𝑂(1)-approximate solution of Max 𝑘-Cover(𝒰 ,ℳ). Hence, with

probability 1 − 𝑛−1, in at least one of the (log 𝑛) instances with the desired 𝛾g, sol𝛾g has

coverage ̃︀Ω( |𝒰|
𝛾
· 𝛾g(𝑘/𝛼)|𝒰| ) = ̃︀Ω(𝑘/𝛼) over the sampled elements ℒ. Note that we need to scale

sol𝛾g by a factor of ̃︀Θ(|𝒰|/(𝛾g · 𝑘𝛼)) to reflects its coverage on 𝒰 .
Further, by Lemma 5.4.21, the amount of space required to store each (ℒ,ℳ) with high

probability is ̃︀𝑂(𝑚/𝛼2) and since SmallSet stores ̃︀𝑂(1) different instances (ℒ,ℱ), the total
space of the algorithm is ̃︀𝑂(𝑚/𝛼2). �

To complete the SmallSet is indeed an (𝛼, 𝛿, 𝜂)-oracle with the desired parameters, we

need to show that it never overestimates the optimal coverage size.

Lemma 5.4.23. The output of SmallSet with high probability is not larger than the op-

timal coverage size of Max 𝑘-Cover(𝒰 ,ℱ).

Proof: Note that if the optimal coverage size Max ̃︀𝑂( 𝑘
𝛼
)-Cover(ℒ,ℳ) is less than ̃︀Ω(|𝒰|/(𝛼𝛾g)),

then with high probability in none of the log 𝑛 iterations sol𝛾g = ̃︀Ω(𝑘/𝛼). Hence, SmallSet
with high probability does not overestimate the size of an optimal ̃︀𝑂(𝑘/𝛼)-cover in (𝒰 ,ℱ).�

5.5. Approximating Max 𝑘-Cover Problem in Edge Arrival

Streams

In this section, we show that we can modify Oracle(𝑘, 𝛼) and the subroutines within it

slightly to report a (1/𝛼)-approximate solution as well. Currently, in the algorithms for

estimating maximum coverage size, we only maintain the coverage of a collection of sets. To

provide the actual (1/𝛼)-approximate solution, we also need to report the indices of the sets

that belong to the collection.

Reporting a 𝑘-cover in LargeCommon. In this subroutine, the coverage of different

covers with possibly size more than 𝑘 are computed. For the task of estimating the maximum

coverage size, this does not hurt as long as we scale the coverage by a factor that bounds

how much larger the size of cover is compared to 𝑘. However, in the task of reporting an
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Algorithm 22 A single pass streaming algorithm that reports a (1/𝛼)-approximate solution
of Max 𝑘-Cover(𝒰 ,ℱ) in ̃︀𝑂(𝛽 + 𝑘) space when the set of common elements is large.

1: procedure ReportLargeCommon((𝑘, 𝛼, 𝛽))
2: for all 𝛽g ∈ {2𝑖 | 0 ≤ 𝑖 ≤ log 𝛽} in parallel do
3: ◁ perform set sampling in one pass using ̃︀𝑂(1) space.
4: pick ℎ : ℱ → [ 𝑐𝑚 log𝑚

(𝛽g𝑘)
] from Θ(log(𝑚𝑛))-wise independent hash functions

5: pick ℎ2 : ℱ → [𝛽g log𝑚] from Θ(log(𝑚𝑛))-wise independent hash functions
6: let {DEg,𝑖 | 𝑖 ∈ [𝛽g]} be 𝛽g instances of (1/2)-approximation of 𝐿0-estimation
7: for all (𝑆, 𝑒) in the data stream do
8: if ℎ(𝑆) = 1 then
9: feed 𝑒 to DEg,ℎ2(𝑆) ◁ computing 𝒞(ℱ rnd

𝛽g,𝑖
)

10: if ∃𝑖* ∈ [log 𝛽] s.t. VAL(DEg,𝑖*) ≥ 𝜎|𝒰|/(4𝛼) then
11: return 2VAL(DEg)/3 and {𝑆 | ℎ(𝑆) = 1 and ℎ2(𝑆) = 𝑖*}
12: return infeasible ◁ ∃ no 𝛽 ∈ [𝛼] s.t. |𝒰 cmn

𝛽𝑘 | = ̃︀Ω(3𝜎𝛽|𝒰|
𝛼𝑘

)

actual 𝑘-cover, it becomes crucial to have at most 𝑘 sets. To this end, instead of computing

the coverage of a randomly selected (𝛽g𝑘)-cover, we partition the collection into ̃︀𝑂(𝛽g) sub-

collections each of size at most 𝑘 and by Observation 5.2.5, at least one of them achieves

the reported coverage size up to polylogarithmic factors. Moreover, we need to maintain the

coverage of ̃︀𝑂(𝛽g) = ̃︀Θ(𝛽) covers which add an extra 𝛽g term in the space complexity (see

Figure 22).

Lemma 5.5.1. The space complexity of ReportLargeCommon(𝑘, 𝛼, 𝛽) is ̃︀𝑂(𝛽 + 𝑘).

Proof: Similarly to the space analysis of LargeCommon (Theorem 5.4.4) and by employ-

ing an existing (1 ± 1/2)-approximation algorithm of 𝐿0-estimation that uses ̃︀𝑂(1) space

(Theorem 5.2.12), the total amount of space used in the algorithm to maintain DEg,𝑖 for

all 𝛽 log 𝛽 possible choices of (𝛽g, 𝑖) is ̃︀𝑂(𝛽). Moreover, the algorithm uses ̃︀𝑂(𝑘) space to

compute the indices of the best 𝑘-cover. In total, the space complexity is ̃︀𝑂(𝛽 + 𝑘). �

Note that the approximation analysis of ReportLargeCommon is essentially the same

as the analysis of LargeCommon in Theorem 5.4.4.

Reporting a 𝑘-cover in LargeSet. This subroutine invokes LargeSetComplete

(Algorithm 24) on different sets of sampled elements and in order to report an actual 𝑘-

cover along with a (1/ ̃︀𝑂(𝛼))-approximation of the optimal coverage size, we modify the

LargeSetComplete subroutine slightly.
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In LargeSetComplete, it is always guaranteed that a superset with sufficiently large

coverage is detected and its coverage is computed and reported. To get the actual collection

of sets that achieve the coverage, we need to try ℎ on all sets (which belong to [𝑚]) and report

the indices of those that are mapped to the superset with large coverage. More precisely,

anywhere in Figure 24 that the algorithm returns a (non infeasible) value (the lines that

are marked by (⋆⋆)), it also returns the set {𝑆 | ℎ(𝑆) = 𝑖*} which is guaranteed to have size

at most w = min(𝛼, 𝑘).

Lemma 5.5.2. The space complexity of the modified LargeSetComplete with the sug-

gested modification at lines (⋆⋆) is ̃︀𝑂(𝑚
𝛼2 + 𝑘).

Proof: Similarly to the space analysis of LargeSetComplete without the modification

(Lemma 5.8.7), the modified algorithm consumes ̃︀𝑂(𝑚/𝛼2) space to compute a (1/ ̃︀𝑂(𝛼))-

approximation of the optimal coverage size. Moreover, the new modified algorithm uses

additional ̃︀𝑂(w) = ̃︀𝑂(𝑘) space to find the 𝑘-cover corresponding to the returned estimate of

the optimal coverage size. Hence, the total space complexity of LargeSetComplete with

the suggested modification at lines (⋆⋆) is ̃︀𝑂(𝑚
𝛼2 + 𝑘). �

Corollary 5.5.3. The space complexity of the LargeSet that invokes LargeSetCom-

plete with the suggested modification at lines (⋆⋆) is ̃︀𝑂(𝑚
𝛼2 + 𝑘).

Reporting a 𝑘-cover in SmallSet. This is the most straightforward case. The only

required change is to modify the line marked by (⋆⋆) in SmallSet to return both an

𝑂(1)-approximation of the Max ̃︀𝑂( 𝑘
𝛼
)-Cover instance at line (⋆⋆) and its corresponding̃︀𝑂( 𝑘

𝛼
)-cover. Clearly, the extra amount of space to implement this modification is ̃︀𝑂( 𝑘

𝛼
).

Lemma 5.5.4. The space complexity of the modified SmallSet with the suggested modifi-

cation at line (⋆⋆) is ̃︀𝑂(𝑚
𝛼2 +

𝑘
𝛼
).

We also need to slightly modify the described Oracle in Algorithm 18 so that, besides

a (1/ ̃︀𝑂(𝛼))-estimate of the optimal coverage size, it reports a (1/ ̃︀𝑂(𝛼))-approximate 𝑘-

cover. Note that it is crucial to run ReportLargeCommon with different parameters

depending on whether s𝛼 ≥ 2𝑘 and s𝛼 < 2𝑘. The main reason is that the space complexity

of ReportLargeCommon as described above in Algorithm 22 has an additive Θ(𝛽) term
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Algorithm 23 An (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-Cover that reports a (1/ ̃︀𝑂(𝛼))-approximate
𝑘-cover.
1: procedure ReportOracle((𝑘, 𝛼))
2: if s𝛼 ≥ 2𝑘 then
3: ◁ if |𝒰 cmn

𝑘 | ≥ 𝜎|𝒰|
𝛼

4: solcmn ← ReportLargeCommon(𝑘, 𝛼, 1)
5: ◁ if s𝛼 ≥ 2𝑘, then |OPTlarge| ≥ |OPT|/2
6: solHH ← LargeSet(𝑘, 𝛼, 𝑘) ◁ the described modified LargeSetComplete
7: else
8: ◁ for instances in which ∃𝛽 ≤ 𝛼 s.t. |𝒰 cmn

𝛽𝑘 | ≥ 𝜎𝛽|𝒰|
𝛼

9: solcmn ← ReportLargeCommon(𝑘, 𝛼, 𝛼)
10: ◁ for instances with s𝛼 < 2𝑘 and |OPTlarge| ≥ |OPT|/2
11: solHH ← LargeSet(𝑘, 𝛼, 𝛼) ◁ the described modified LargeSetComplete
12: ◁ for instances with |OPTlarge| < |OPT|/2
13: solsmall ← SmallSet(𝑘, 𝛼) ◁ with the described modification in line (⋆⋆)

14: ◁ each sol computed above is of from (estimate of the optimal coverage size, 𝑘-cover)
15: return max(solcmn, solHH, solsmall) ◁ max is over the estimate size of sols

which can be as large as 𝛼 in our implementation of LargeCommon in Algorithm 19.

By all minor modifications in subroutines LargeCommon, LargeSet and SmallSet,

we design a modified variant of Oracle called ReportOracle as in Algorithm 23.

Theorem 5.5.5. ReportOracle(𝑘, 𝛼) performs a single pass on the edge arrival stream of

the set system (𝒰 ,ℱ) and implements an ( ̃︀𝑂(𝛼), 1/(log 𝑛 log𝑐 𝑚), 𝜂)-oracle of Max 𝑘-Cover(𝒰 ,ℱ)
using ̃︀𝑂(𝑚/𝛼2 + 𝑘) space. Moreover, the modified oracle also reports a 𝑘-cover with the

promised coverage size.

Proof: The approximation analysis of the algorithm is basically the same as the analysis of

Oracle and we do not repeat it here. We only need show that structural property on the

number of elements in different frequency levels provided by LargeCommon with input

parameters (𝑘, 𝛼, 1) is sufficient for the (modified variant of) LargeSet in the case s𝛼 ≥ 𝑘.

In LargeSet with input 𝛼 = ̃︀Ω(𝑘), the only bound on the number of common elements

that is used in the analysis is |𝒰 cmn
w | = |𝒰 cmn

𝑘 | ≤ 𝜎|𝒰|
𝛼

(in Theorem 5.8.6). In other words, in

this case, unlike the case 𝛼 = ̃︀𝑂(𝑘), we do not need the guarantee on the size of 𝒰 cmn
𝛽𝑘 for

all values of 𝛽 ≤ 𝛼. Hence, for the case 𝛼 = ̃︀Ω(𝑘), it is sufficient to invoke LargeCommon

with 𝛽 = 1. Note that the values of the rest of parameters are the same as in Oracle.

To bound the space complexity, we consider two cases: 1) s𝛼 ≥ 2𝑘 and 2) s𝛼 < 2𝑘.
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1. s𝛼 ≥ 2𝑘. By Lemma 5.5.1 and Corollary 5.5.3, ReportLargeCommon(𝑘, 𝛼, 1) and

LargeSet that invokes the modified variant of LargeSetComplete respectively

use ̃︀𝑂(𝑘) and ̃︀𝑂(𝑚
𝛼2 + 𝑘) space. Hence, the total amount of space used in the case is̃︀𝑂(𝑚

𝛼2 + 𝑘).

2. s𝛼 < 2𝑘. In this case, by Lemma 5.5.1, ReportLargeCommon(𝑘, 𝛼, 𝛼) uses ̃︀𝑂(𝑘+

𝛼) = ̃︀𝑂(𝑘) space. Moreover, by Corollary 5.5.3 and Lemma 5.5.4, the space complexity

of the other two subroutines with the described modification is ̃︀𝑂(𝑚
𝛼2 + 𝑘). Hence, the

total amount of space that the algorithm uses in this case is ̃︀𝑂(𝑚
𝛼2 + 𝑘).

Finally, by the modifications we described above, ReportOracle correctly reports an

actual 𝑘-cover whose coverage is within a ̃︀𝑂(𝛼) factor of the optimal coverage as well. �

The theorem above together with Theorem 5.3.6 completes the proof of Theorem 5.3.2.

5.6. Lower Bound for Estimating Max 𝑘-Cover in Edge Ar-

rival Streams

By the result of [29], it is known that estimating the size of an optimal coverage of Max 𝑘-

Cover within a factor of two requires Ω(𝑚) space. Their argument relies on a reduction

from Set Disjointness problem and implies the mentioned bound for 1-cover instances. In

the following, we generalize their approach and provide lower bounds for the all range of

approximation guarantees 𝛼 smaller than
√
𝑚. We remark that both our lower bound result

and the lower bound result of [29] are basically similar to the lower bound of 𝐿∞ and 𝐿𝑘

estimation first proved in [13, 27].

The lower bound result we explain in this section is based on the well-known 𝑟-player Set

Disjointness problem with unique set intersection promise which has been studied extensively

in communication complexity (e.g. [28, 41, 85]). The setting of the problem is as follows:

There are 𝑟 players and each has a set 𝑇𝑖 ⊆ [𝑚]. The promise is that the input is in one of

the following forms:

∙ No Case: There is a unique element 𝑗 ∈ [𝑚] such that for all 𝑖 ≤ 𝑟, 𝑗 ∈ 𝑇𝑖.

∙ Yes Case: All sets are pair-wise disjoint.
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Moreover, a round of communication consists of each player 𝑖 sending a message to player

𝑖 + 1 in order from 𝑖 = 1 to 𝑟 − 1. The goal is that at end of a single round, player 𝑟

be able to correctly output whether the input belongs to the family of Yes instances or

No instances. Chakrabarti et al. [41] showed the following tight lower bound on the one-

way communication complexity of the 𝑟-player Set Disjointness problem with unique set

intersection promise.

Theorem 5.6.1 (From [41]). Any randomized one-way protocol that solves 𝑟-player Set

Disjointness(𝑚) with success probability at least 2/3 requires Ω(𝑚/𝑟) bits of communication.

We remark that the same Ω(𝑚/𝑟) communication lower bound was later proved for the

general model (i.e. with multiple rounds) by Gronemeier [85]. However, for our application,

the lower bound on the one-way communication model suffices.

Corollary 5.6.2. Any single-pass streaming algorithm that solves 𝑟-player Set Disjointness(𝑚)

with success probability at least 2/3 consumes Ω(𝑚/𝑟2) space.

Next, we sketch a reduction from 𝑟-player Set Disjointness(𝑚) to Max 𝑘-Cover with

𝑚 sets such that an 𝛼-approximation protocol of Max 𝑘-Cover solves the corresponding

instance of 𝑟-player Set Disjointness(𝑚).

To this end, consider an arbitrary instance ℐ of 𝛼-player Set Disjointness(𝑚) problem

in which each player 𝑖 has a set 𝑇𝑖 ⊂ [𝑚]. Define 𝒰ℐ = {𝑒1, · · · , 𝑒𝛼} to be the set of

elements in the Max 1-Cover instance and for each player 𝑖 if 𝑗 ∈ 𝑇𝑖 then add (𝑒𝑖, 𝑆𝑗,)

to the stream. In other words, in the constructed Max 1-Cover(𝒰ℐ ,ℱℐ := {𝑆1, · · · , 𝑆𝑚})
instance, we have an element 𝑒𝑖 corresponding to each player 𝑖 and there exists a set 𝑆𝑗

corresponding to each item 𝑗 ∈ [𝑚]. Moreover, each set 𝑆𝑗 in the Max 1-Cover instance

(𝒰ℐ ,ℱℐ) denotes the set of players in the Set Disjointness(𝑚) instance ℐ whose input sets

contain 𝑗; 𝑆𝑗 := {𝑖 ∈ [𝛼] | 𝑗 ∈ 𝑇𝑖}.

Claim 5.6.3. If ℐ is a No instance, then the optimal coverage of the Max 1-Cover instance

(𝒰ℐ ,ℱℐ) is 𝛼.

Proof: In this case, by the unique intersection promise, there exists an item 𝑗 that belongs

to all 𝑇𝑖 (for 𝑖 ∈ [𝛼]). Hence, by the construction of the Max 1-Cover instance, 𝑆𝑗 covers

the whole 𝒰ℐ . Thus, the optimal 1-cover has size 𝛼. �
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Claim 5.6.4. If ℐ is a Yes instance, then the optimal coverage of the Max 1-Cover instance

(𝒰ℐ ,ℱℐ) is 1.

Proof: Since 𝑇𝑖s are disjoint, for each 𝑗 ∈ [𝑚], the set 𝑆𝑗 has cardinality one. �

Corollary 5.6.2 together with Claims 5.6.3 and 5.6.4 implies the stated lower bound on

𝛼-approximating the optimal coverage size of Max 𝑘-Cover in edge-arrival streams in The-

orem 5.3.3: Any single pass (possibly randomized) algorithm on edge-arrival streams that

(1/𝛼)-approximates the optimal coverage size of Max 𝑘-Cover requires Ω(𝑚/𝛼2) space.

5.7. Chernoff Bound for Applications with Limited Inde-

pendence

In this section, we mention some of the results in [159] on applications of Chernoff bound

with limited independence that are used in our analysis.

Definition 5.7.1 (Family of 𝑑-wise Independent Hash Functions). A family of func-

tions ℋ = {ℎ : [𝑚]→ [𝑛]} is 𝑑-wise independent, if for any set of 𝑑 distinct values 𝑥1, · · · , 𝑥𝑑,

the random variables ℎ(𝑥1), · · · , ℎ(𝑥𝑑) are independent and uniformly distributed in [𝑛] when

ℎ is picked uniformly at random from ℋ.

Next, we exploit the results that show for small values of 𝑑, we can store a family of 𝑑-wise

hash function in small space and in the same time it suffices for our application of Chernoff

bound.

Lemma 5.7.2 (Corollary 3.34 in [166]). For every values of 𝑚,𝑛, and 𝑑, there is a fam-

ily of 𝑑-wise independent hash functions ℋ = {ℎ : [𝑚]→ [𝑛]} such that a selecting a random

function from ℋ only requires 𝑑 · log(𝑚𝑛).

Lemma 5.7.3 (Theorem 5 in [159]). Let 𝑋1, · · ·𝑋𝑛 be binary 𝑑-wise independent ran-

dom variables and let 𝑋 := 𝑋1 + · · ·+𝑋𝑛. Then,

Pr(|𝑋 − E[𝑋]| ≥ 𝛿E[𝑋]) ≤

⎧⎨⎩𝑒−E[𝑋]𝛿2/3 : if 𝛿 < 1 and 𝑑 = Ω(𝛿2E[𝑋]);

𝑒−E[𝑋]𝛿/3 : if 𝛿 ≥ 1 and 𝑑 = Ω(𝛿E[𝑋]).

Lemma 5.7.4 (Theorem 6 in [159]). Let 𝑋1, · · · , 𝑋𝑛 and 𝑌1, · · · , 𝑌𝑛 be Bernoulli trials
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such that for each 𝑖, E[𝑋𝑖] = E[𝑌𝑖] = 𝑝𝑖. Let assume that 𝑌𝑖s are independent, but 𝑋𝑖s are

only 𝑑-wise independent. Further, let 𝑝(𝑟) and 𝑝𝑑(𝑟) respectively denote Pr(
∑︀𝑛

𝑖=1 𝑌𝑖 = 𝑟) and

Pr(
∑︀𝑛

𝑖=1𝑋𝑖 = 𝑟) and let 𝜇 =
∑︀𝑛

𝑖=1 𝑝𝑖 be the expected number of success in the trials.

If 𝑑 ≥ 𝑒𝜇+ ln(1/𝑝(0)) + 𝑟 +𝐷, then |𝑝𝑑(𝑟)− 𝑝(𝑟)| ≤ 𝑒−𝐷𝑝(𝑟).

5.7.1. An Application: Set Sampling with Θ(log(𝑚𝑛))-wise Indepen-

dence

Consider a set system (𝒰 ,ℱ) and let ℎ : ℱ → [(𝑐𝑚 log𝑚)/𝛾] be a function selected uni-

formly at random from a family of Θ(log(𝑚𝑛))-wise independent hash functions where 𝑐 is

a sufficiently large constant. Then, we think of our randomly selected sets ℱ rnd to be the

collection of sets in ℱ that are mapped to one by ℎ; ℱ rnd := {𝑆 ∈ ℱ | ℎ(𝑆) = 1}.

Lemma 5.7.5. Assuming 𝛾 ≥ 6𝑐 log2𝑚, with probability at least 1−𝑚−1, |ℱ rnd| ≤ 𝛾.

Proof: Let 𝑋𝑖 be a random variable which is one if 𝑆𝑖 ∈ ℱ rnd and zero otherwise. We define

𝑋 := 𝑋1+· · ·+𝑋𝑚. Note that 𝑋𝑖 are Θ(log(𝑚𝑛))-wise independent and E[𝑋] = 𝛾/(𝑐 log𝑚).

Then, by an application of Chernoff bound with limited independence (Lemma 5.7.3),

Pr(𝑋 > 𝛾) ≤ Pr(𝑋 > (1 +

√︂
6𝑐

𝛾
log𝑚)E[𝑋]⏟  ⏞  

≤2𝛾/𝑐

) < 𝑚−1.

Hence, with high probability, ℱ rnd has size at most 𝛾. �

Next, we show that ℱ rnd covers the set of elements 𝒰 cmn
𝛾 (see Definition 5.2.1).

Lemma 5.7.6. With probability at least 1− 𝑛−1, ℱ rnd covers 𝒰 cmn
𝛾 .

Proof: Let 𝑒 ∈ 𝒰 cmn
𝛾 and let 𝑆1, · · · , 𝑆𝑞 be the sets in ℱ that cover 𝑒: for each 𝑖 ≤ 𝑞, 𝑒 ∈ 𝑆𝑖.

We define 𝑋𝑖 to be a random variable which is one if 𝑆𝑖 ∈ ℱ rnd and is zero otherwise. We

also define 𝑋 := 𝑋1 + · · ·+𝑋𝑞 to denote the number of sets in ℱ rnd that cover 𝑒. Note that

𝑋𝑖 are Θ(log(𝑚𝑛))-wise independent and E[𝑋] = (𝛾/(𝑐𝑚 log𝑚)) · 𝑞 ≥ log 𝑛 log(𝑚𝑛). Then,

applying Chernoff bound on random variables with limited independence (Lemma 5.7.3),

Pr(𝑋 < 1) < Pr(𝑋 < (1−
√︀

(6 log 𝑛)/E[𝑋]⏟  ⏞  
≤1/2

)E[𝑋]) < 𝑛−2.
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Hence, by union bound over all elements in 𝒰 cmn
𝛾 , with high probability, ℱ rnd covers 𝒰 cmn

𝛾 .�

Lemma 5.7.7. Θ(log(𝑚𝑛)) random bits suffice to implement set sampling method.

5.8. Generalization of Section 5.4.2

In this section we generalize the approach of Section 5.4.2 which relates the results on heavy

hitters and contributing classes to approximating the optimal coverage size. In Section 5.4.2,

to simplify the presentation, we had the assumption that 𝒰 cmn
w is empty. This is in particular

important since we can then assume that the total size of 𝑘-covers are roughly the same as

their coverage size (up to polylogarithmic factors).

Here, we take care of the case in which 𝒰 cmn
w is non-empty and complete the description

of our (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-Cover for the case |𝒞(OPTlarge)| ≥ |𝒞(OPT)|/2. The high

level idea is to sample enough number of elements so that the algorithm using heavy hitters

and contributing classes still work but in the same time no w-common element is among the

sampled elements with at least a constant probability.

Step 1. Sampling Elements. We sample a subset ℒ ⊂ 𝒰 in which each element 𝑒 is in ℒ
with probability 𝜌 = (t · s𝛼 · 𝜂)/|𝒰| where t = ̃︀𝑂(1) (see Table 5.4.1 for the exact values). We

implement the process of sampling ℒ via a hash function from a family of Θ(log(𝑚𝑛))-wise

independent functions ℋ = {ℎ : 𝒰 → [ 𝑛
t·s𝛼·𝜂 ]} such that ℒ = {𝑒 ∈ 𝒰 | ℎ(𝑒) = 1}.

Claim 5.8.1. With high probability, (𝜌|𝒰|)/2 ≤ |ℒ| ≤ (3𝜌|𝒰|)/2.

For each collection of set𝒟, we define𝒟′ to be the intersection of𝒟 with ℒ; 𝒟′ := {𝑆∩ℒ | 𝑆 ∈
𝒟}.

Claim 5.8.2. If |𝒞(𝒟)| ≥ |𝒰|/(54f𝜂𝛼), then with probability at least 1 − 𝑚−2, |𝒞(𝒟′)| ≥
𝜌|𝒞(𝒟)|/2. Moreover, if |𝒞(𝒟)| < |𝒰|/(54f𝜂𝛼), then with probability at least 1 − 𝑚−2,

|𝒞(𝒟′)| < ts/(36f).

Proof: Since ts ≥ 27·24f log𝑚 (as in Table 5.4.1), it follows from two applications of Chernoff

bound on random variables with limited independence (Lemma 5.7.3). �

Similarly to Lemma 5.4.14, we have the following guarantee for LargeSetSimple using

the sampled set of elements ℒ.
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Lemma 5.8.3. If |𝒞(OPT)| ≥ |𝒰|/𝜂 and ℒ ∩ 𝒰 cmn = ∅, then with probability at least 1 −
1/(2 log 𝑛 log𝑐𝑚), the output of LargeSetSimple with parameters (ℒ,w, 𝑆1 = sℒ𝛼, 𝑆2 =

𝑐𝑚 log𝑚
w

, thr1 =
|ℒ|

18𝜂s𝛼
, thr2 =

|ℒ|
6𝜂𝛼

) is a superset whose coverage is at least |𝒰|/(54f𝜂𝛼).

Proof: By Claim 5.8.1, (𝜌|𝒰|)/2 ≤ |ℒ| ≤ (3𝜌|𝒰|)/2. Moreover, by Claim 5.8.2 and since

|𝒞(OPT)| ≥ |𝒰|/𝜂, with probability at least 1 −𝑚−2, |𝒞(OPTlarge) ∩ ℒ| ≥ 𝜌|𝒞(OPT)|/4 ≥
|ℒ|/(6𝜂). We define 𝜂ℒ := 6𝜂 to denote the coverage of OPTlarge over the sampled elements

ℒ.
Now, consider the collection OPTlarge := {𝑂1, · · · , 𝑂𝑞}. Since for each 𝑖 ≤ 𝑞, the con-

tribution of 𝑂𝑖 to the coverage of OPT is at least 1/(s𝛼) fraction (i.e. |𝑂𝑖 ∖
⋃︀

𝑗<𝑖𝑂𝑗| ≥
|𝒞(OPT)|/(s𝛼) ≥ |𝒰|/(𝜂s𝛼)), by Claim 5.8.2, with probability at least 1−𝑚−1, for all 𝑖 ≤ 𝑞,

|(𝑂𝑖 ∖
⋃︁
𝑗<𝑖

𝑂𝑗) ∩ ℒ| ≥ 𝜌|𝒞(OPT)|/(2s𝛼).

This implies that {𝑂𝑖 ∩ ℒ | 𝑂𝑖 ∈ OPTlarge} is a collection of sets whose contribution to

𝒞(OPT) ∩ ℒ w.h.p. is at least (𝜌|𝒞(OPT)|
2s𝛼

)/(3𝜌|𝒞(OPT)|
2

) = 1/(3s𝛼). We define sℒ := 3s which

denotes the contribution of sets in OPTlarge compared to the coverage of OPT over the

sampled elements ℒ.
By an application of Lemma 5.4.14 with parameters (𝒱 := ℒ, thr1 := |ℒ|

𝜂ℒsℒ𝛼
, thr2 :=

|ℒ|
𝜂ℒ𝛼

),

with probability at least 1 − 1/(3 log 𝑛 log𝑐𝑚), the algorithm returns a superset 𝒟′
𝑖 whose

coverage on the sampled set ℒ is at least

|ℒ|
3f𝜂ℒ𝛼

≥ 𝜌|𝒰|
36f𝛼𝜂

=
ts

36f
.

Then, by Claim 5.8.2, with probability at least 1−𝑚−2, 𝒟𝑖 has coverage at least |𝒰|/(54f𝜂𝛼).�

Step 2. Handling Common Elements. Next, we turn our attention to the case ℒ ∩
𝒰 cmn
w ̸= ∅. Although common elements may be covered ̃︀Ω(1) times within a single superset,

it is important to note that the contribution of common elements to all supersets are roughly

the same.

Claim 5.8.4. Let ℒcmn
w := ℒ∩𝒰 cmn

w be the set of w-common elements that are sampled in ℒ.
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Then, with high probability, for each superset 𝒟, the total number of times that elements of

ℒcmn
w appear in 𝒟 (counting duplicates) belongs to [𝑃, 2𝑃 ] where 𝑃 is a fixed number larger

than log 𝑛.

Proof: Let 𝑒 ∈ 𝒰 cmn
w be a w-common element and let 𝑆1, · · · , 𝑆𝑞 be the collection of sets

that contain 𝑒. For a superset 𝒟𝑗, define 𝑋𝑖,𝑗 to be a binary random variable that denotes

whether 𝑆𝑖 ∈ 𝒟𝑗. Moreover, let 𝑌𝑗,𝑒 := 𝑋1,𝑗 + · · · + 𝑋𝑞,𝑗. Then, E[𝑌𝑗,𝑒] = w𝑞/(𝑐𝑚 log𝑚).

By an application of Chernoff bound with limited independence (Lemma 5.7.3) and since

w𝑞 ≥ 𝑐𝑚 log𝑚 log 𝑛 log(𝑚𝑛) (see Definition 5.2.1),

Pr(|𝑌𝑗,𝑒 − E[𝑌𝑗,𝑒]| ≥
√︃

6𝑐 log(𝑚𝑛)𝑚 log𝑚

w𝑞⏟  ⏞  
≤1/3

E[𝑌𝑗,𝑒]) ≤ (𝑚𝑛)−2. (5.8.1)

Note that for any w-common element 𝑒 and any pair of supersets 𝒟𝑗,𝒟𝑖, E[𝑌𝑗,𝑒] = E[𝑌𝑖,𝑒].

In particular, we define 𝑌𝑒 := E[𝑌𝑗,𝑒] whose value is independet of the supersets. Next, we

define 𝑌cmn :=
∑︀

𝑒∈𝒰cmn 𝑌𝑒 to denote the expected contribution of w-common elements to any

superset. Hence, for each superset 𝒟𝑗, with probability at least 1−1/(𝑛𝑚2), the total number

of times that w-common elements are covered by 𝒟𝑗 belongs to the range [2𝑌cmn/3, 4𝑌cmn/3].

Hence, with probability at least 1−(𝑚𝑛)−1, the contribution of sampled w-common elements

to each superset belongs to [2𝑌cmn/3, 4𝑌cmn/3] where 𝑌cmn ≥ log 𝑛 log(𝑚𝑛)|ℒcmn
w | ≥ log 𝑛. �

Next, we show that if a w-common element is picked in ℒ the algorithm still does not

return a superset with small coverage (though it may missed all large supersets). To this

end, we modify LargeSetSimple and design a new subroutine LargeSetComplete as

in Figure 24. The high level idea is to guarantee that if the main contribution of a superset

is just from the duplicate counts of w-common elements (∝ 𝑃 ), it will not be returned.

To achieve this, unlike LargeSetSimple we do not allow 𝐹2-Contributing to check for

all contributing class of any size (up to |𝒬|). Instead, we set parameters 𝑆1 and 𝑆2 which

denotes how large the size of a contributing class that we are looking for is. To handle the

case in which the size of a contributing class is large (i.e. larger than 𝑆2), we sample supersets

proportional to 1/𝑆2 and compute their coverage by existing 𝐿0-estimation algorithms.
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Algorithm 24 A (𝛼, 𝛿, 𝜂)-oracle of Max 𝑘-Cover that handles the case in which the majority
of the coverage in an optimal solution is by the sets whose coverage contributions are at
least 1/(s𝛼) fraction of the optimal coverage size. By modifying the lines marked by (⋆⋆)
slightly, the algorithm returns the 𝑘-cover that achieves the returned coverage estimate (see
Section 5.5 for more explanation).

1: procedure LargeSetComplete((𝒱 ,w, 𝑆1, 𝑆2, thr1, thr2))
2: ◁ Input: w is an upper bound on the desired number of sets in a superset
3: ◁ Parameters: 𝜑1 = ̃︀Ω(𝛼2/𝑚) and 𝜑2 = ̃︀Ω(1)
4: let Cntrsmall be an instance of 𝐹2-Contributing(𝜑1, 𝑆1) ◁ for Case 1
5: let Cntrlarge be an instance of 𝐹2-Contributing(𝜑2, 𝑆2) ◁ for Case 2
6: pick ℎ : ℱ → [(𝑐𝑚 log𝑚)/w] from Θ(log(𝑚𝑛))-wise independent hash functions
7: for all (𝑆, 𝑒) in the data stream do
8: if 𝑒 ∈ 𝒱 then
9: feed ℎ(𝑆) to both Cntrsmall and Cntrlarge

10: ◁ output(Cntr) contains coordinates along with (1± 1/2)-estimate of frequencies
11: if there exists 𝑖* ∈ output(Cntrsmall) s.t. 𝑣𝑖* ≥ 1

2
· thr1 then

12: return 2𝑣𝑖*/(3f) (⋆⋆) ◁ add return {𝑆 | ℎ(𝑆) = 𝑖*} to get the 𝑘-cover

13: if there exists 𝑖* ∈ output(Cntrlarge) s.t. 𝑣𝑖* ≥ 1
2
· thr2 then

14: return 2𝑣𝑖*/(3f) (⋆⋆) ◁ add return {𝑆 | ℎ(𝑆) = 𝑖*} to get the 𝑘-cover

15: ◁ case 2: if size of the contributing class is large; ̃︀Ω(|𝒬|)
16: letℳ⊂ 𝒬 be a collection of size 12|𝒬| log𝑚/𝑆2 picked uniformly at random
17: for all 𝑖 ∈ℳ do ◁ DE to estimate the coverage of the supersets in ℒ
18: let DE𝑖 be a (1/2)-approximation algorithm of 𝐿0-estimation initialized to zero

19: pick ℎ : ℱ → [(𝑐𝑚 log𝑚)/w] from Θ(log(𝑚𝑛))-wise independent hash functions
20: for all (𝑆, 𝑒) in the data stream do
21: if 𝑒 ∈ 𝒱 and ℎ(𝑆) ∈ℳ then feed ℎ(𝑆) to DEℎ(𝑆)

22: if there exists 𝑖* ∈ℳ such that VAL(DE𝑖*) ≥ 1
2
· thr2 then

23: return 2VAL(DE𝑖*)/3 (⋆⋆) ◁ add return {𝑆 | ℎ(𝑆) = 𝑖*} to get the 𝑘-cover

24: return infeasible

Lemma 5.8.5. Even if ℒ∩𝒰 cmn
w ̸= ∅, with probability at least 1−𝑚−1, none of the solutions

returned by LargeSetComplete with parameters (ℒ,w, 𝑆1 = sℒ𝛼, 𝑆2 = ̃︀Θ( 𝑐𝑚 log𝑚
w

), thr1 =

|ℒ|
18𝜂s𝛼

, thr2 =
|ℒ|
6𝜂𝛼

) is a superset whose coverage is at less than |𝒰|/(54f𝜂𝛼).

Proof: Here, we need to revisit Case 1 and Case 2 of Section 5.4.2 and redo the calculations

with respect to the sampled set of elements ℒ.

Case 1. Suppose that 𝐹2-Contributing(̃︀Ω(𝛼2/𝑚), sℒ𝛼) returns a solution whose cover-

age is less than |𝒰|(54f𝜂𝛼).
Let 𝑟⃗ be a vector of size (𝑐𝑚 log𝑚)/w whose 𝑖th entry denotes the total size of the
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intersection of sets in 𝒟𝑖 and ℒrare
w := ℒ ∖ 𝒰 cmn

w ; 𝑟⃗[𝑖] :=
∑︀

𝑆∈𝒟𝑖
|𝑆 ∩ ℒrare

w |. By Claim 5.8.2,

if |𝒞(𝒟𝑗)| < |𝒰|/(54f𝜂𝛼), with probability at least 1 −𝑚−2, |𝒞(𝒟𝑖) ∩ ℒrare
w | < |𝒞(𝒟𝑖) ∩ ℒ| <

ts/(36f). Hence, together with Claim 5.4.10, with probability at least 1−2𝑚−2, 𝑟⃗[𝑖] < ts/36.

Similarly, let 𝑣⃗ be a vector of size (𝑐𝑚 log𝑚)/w whose 𝑖th entry denotes the total size of

the intersection of sets in 𝒟𝑖 with the sampled elements ℒ; 𝑣⃗[𝑖] :=∑︀𝑆∈𝒟𝑖
|𝑆 ∩ℒ|. Note that

Since 𝑃 ≥ 1, for each superset 𝒟𝑖 with coverage less than |𝒰|/(54f𝜂𝛼), 𝑣⃗[𝑖] ≤ 2𝑃 + 𝑟⃗[𝑖] ≤
(ts/36)𝑃 . On the other hand, by Claim 5.8.4, with probability at least 1 −𝑚−1, the value

of 𝑣⃗[𝑗] for all 𝑗 in the sampled substream is at least 𝑃 .

Moreover, since the size of contributing classes in this case is at most sℒ𝛼 = 3s𝛼 (more pre-

cisely, we can always find at most 3s𝛼 sets that are ̃︀Ω(𝛼2

𝑚
)-contributing), by Claim 5.2.8, with

probability at least 1− log𝑚
𝑚

, all sampled substreams considered by 𝐹2-Contributing(𝜑1, sℒ𝛼)

have size at least 𝑐𝑚 log𝑚/(ws𝛼). Hence, by Claim 5.8.4, with probability at least 1− 2 log𝑚
𝑚

,

𝐹2(𝑣⃗smp) ≥ ( 𝑐𝑚 log𝑚
ws𝛼

)𝑃 2 where 𝑣⃗smp is a vector corresponding to a sampled substream consid-

ered in 𝐹2-Contributing(𝜑1, sℒ𝛼). Since s4t2 ≤ 81/(2𝜂 log(s𝛼)) (see Table 5.4.1) and by

the value of 𝜑1 (in Eq. 5.4.2), the following holds:

(
ts

36
)2𝑃 2 < 𝜑1 ·

𝑐𝑚 log𝑚

ws𝛼
𝑃 2,

which implies that with probability at least 1 − 3 log𝑚/𝑚, an entry corresponding to a

superset with coverage less than |𝒰|/(54f𝜂𝛼) cannot be a 𝜑1-HeavyHitter in any of the

sampled substreams considered in 𝐹2-Contributing(𝜑1, sℒ𝛼).

Case 2. The high level idea in this case is similar to the previous case. In Case 1, we heavily

use the fact that there exists a class containing at most sℒ𝛼 coordinates that is ̃︀Ω(𝛼2/𝑚)-

contributing. This observation is crucial because then we could argue that all sampled

substreams considered in 𝐹2-Contributing(𝜑1, sℒ𝛼) have size at least ̃︀Ω(𝑚/(wsℒ𝛼)) which

rules out the possibility that a coordinate corresponding to a small superset is a ̃︀Ω(𝛼2/𝑚)-

HeavyHitter for sufficiently small values of s (recall that sℒ = 3s).

However, in this case, a contributing class may have size ̃︀Ω(𝑚/w) which results in a

sampled substream with only ̃︀𝑂(1) coordinates in the run of 𝐹2-Contributing! To address
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the issue, we handle the case in which a contributing class has more than 𝑆2 coordinates

separately (𝑆2 is a parameter to be determined shortly):

∙ ̃︀Ω(1)-contributing class has size less than 𝑆2 := 𝑐𝑚 log𝑚
w
· 𝛾. Since 𝑃 ≥ 1 and by

Claim 5.8.2 and 5.4.10, for each superset 𝒟𝑗 with coverage less than |𝒰|/(54f𝜂𝛼), with
probability at least 1−2𝑚−2, 𝑣⃗[𝑗] ≤ (ts/36)𝑃 . On the other hand, by Claim 5.8.4, with

probability at least 1−𝑚−1, the value of 𝑣⃗[𝑗] for all 𝑗 in the sampled substream is at least

𝑃 . Moreover, by Claim 5.2.8, with probability at least 1− log𝑚
𝑚

, all sampled substreams

considered in 𝐹2-Contributing(𝜑2 = 1
2 log(𝛼)

, 𝑆2) invoked by LargeSetComplete

(which is to handle Case 2) have at least (3𝑐𝑚 log𝑚
w·𝑆2

) = 3
𝛾
coordinates. Hence, 𝐹2(𝑣⃗smp) ≥

3
𝛾
· 𝑃 2. By setting

𝛾 <
3𝜑2

(ts/36)2
=

1944

log(𝛼)t2s2
, (5.8.2)

𝑣⃗[𝑗]2 ≤ (ts/36)2𝑃 2 < ( 1
2 log𝛼

𝐹2(𝑣⃗smp)), which implies that an entry corresponding to a

superset with coverage less than |𝒰|/(27f𝜂𝛼) cannot be a 𝜑2-HeavyHitter in any of

the sampled substream considered in 𝐹2-Contributing(𝜑2, 𝑆2).

∙ ̃︀Ω(1)-contributing class has size at least 𝑆2 := 𝑐𝑚 log𝑚
w
· 𝛾. Here, we also need to

consider an extra case compared to Lemma 5.4.14 and 5.8.3 because we do not allow 𝑆2

to try all values up to ( 𝑐𝑚 log𝑚
w

). To address the case in which the number of coordinates

in a contributing class is larger than 𝑆2, we sample ℓ = (12 log𝑚)|𝒬|/𝑆2 supersetsℳ
uniformly at random from 𝒬; with high probability, ℳ contains a superset from the

contributing class. Then, we compute the coverage of sampled supersets via an existing

algorithm for 𝐿0-estimation. By Claim 5.4.13, the coverage of supersets corresponding

to the 𝜑2-contributing class whose size is larger than 𝑆2 on the sampled set ℒ is at

least |ℒ|/(𝜂ℒ𝛼) ≥ ts/(12f). Hence, the algorithm finds a superset with coverage at least

ts/(36f) on ℒ which by Claim 5.8.2, it implies that the returned superset has coverage

at least |𝒰|/(54f𝜂s𝛼). �

Theorem 5.8.6. If |𝒞(OPT)| ≥ |𝒰|/𝜂, then with probability at least 1 − 1/(log 𝑛 log𝑐 𝑚),

LargeSet(𝑘, 𝛼) returns at least |𝒰|/(54f𝜂𝛼). Moreover, if LargeSet(𝑘, 𝛼) returns a value

174



other than infeasible, then with probability at least 1− 4𝑚−1, |𝒞(OPT)| ≥ |𝒰|/(54f𝜂𝛼).

Proof: By Lemma 5.8.5, with probability at least 1 − 3𝑚−1, LargeSet will never return

a superset with coverage less than |𝒰|/(27f𝜂𝛼); either it returns a large enough estimate or

returns infeasible. Here, we show that if |𝒞(OPT)| > |𝒰|/𝜂, then the algorithm will return

an estimate at least |𝒰|/(54f𝜂𝛼) with probability at least 1−1/(2 log 𝑛 log𝑐𝑚)−𝑛−1. To this

end, we show that with high probability, in one of the 𝑂(log 𝑛) parallel runs of LargeSet,

the sampled sets of elements ℒ does not contain any common element. Then, by Lemma 5.8.3,

the algorithm with probability at least 1 − 1/(2 log 𝑛 log𝑐 𝑚) returns |𝒰|/(54f𝜂𝛼) in the

iteration in which the sampled set of elements that does not contain any common element.

Now, we show that with probability at least 1− 𝑛−1, the sampled set of one of 𝑂(log 𝑛)

parallel runs of LargeSet does not contain any common element. Let 𝑞 = |𝒰 cmn
w | and define

𝑌1, · · · , 𝑌𝑞 to be independent Bernoulli trials with probability of success equal to 𝜌. Recall

that, we have the assumption that |𝒰 cmn
𝑘 | ≤ 𝜎|𝒰|

𝛼
and since w ≤ 𝑘, |𝒰 cmn

w | ≤ |𝒰 cmn
𝑘 | ≤ 𝜎|𝒰|

𝛼
,

𝜇 = E[

𝑞∑︁
𝑖=1

𝑌𝑖] ≤
𝜎|𝒰|
𝛼
· 𝜌 = ts𝜂𝜎

Pr(

𝑞∑︁
𝑖=1

𝑌𝑖 = 0) = (1− 𝜌)𝑞 ≥ 𝑒−2𝜌𝑞 ≥ 𝑒−2ts𝜂𝜎

Next, let’s assume that 𝒰 cmn
w = {𝑒1, · · · , 𝑒𝑞}. Further, define 𝑋1, · · · , 𝑋𝑞 to be random

variables such that 𝑋𝑖 = 1 if 𝑒𝑖 ∈ ℒ. Hence, 𝑋1, · · · , 𝑋𝑞 are Θ(log(𝑚𝑛))-wise independent

Bernoulli trials with success probability E[𝑋𝑖] = 𝜌. Next, we apply Lemma 5.7.4 with the

following parameters:

𝑟 = 0, ln(1/𝑝(0)) ≤ 2ts𝜂𝜎, 𝜇 = ts𝜂𝜎,𝐷 = Θ(log(𝑚𝑛)) = 12 log(𝑚𝑛),

and show that

Pr(ℒ ∩ 𝒰 cmn
w = ∅) = Pr(

𝑞∑︁
𝑖=1

𝑋𝑖 = 0) ≥ Pr(

𝑞∑︁
𝑖=1

𝑌𝑖)(1− 𝑒−𝐷) ≥ 𝑒−2ts𝜂𝜎/2.
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Algorithm 25 A single pass streaming algorithm.

1: procedure LargeSet((𝑘, 𝛼,w))
2: ◁ run LargeSetComplete on sampled elements in parallel for 𝑂(log 𝑛) instances
3: for 𝑂(log 𝑛) times in parallel do
4: let ℒ ⊆ 𝒰 s.t. each 𝑒 ∈ ℒ (Θ(log(𝑚𝑛))-wise independent) w.p. 𝜌 = t·s𝛼·𝜂

|𝒰|

5: 𝑆1 ← sℒ𝛼, 𝑆2 ← 𝑐𝑚 log𝑚
w
· 𝛾, thr1 ← |ℒ|/(18𝜂s𝛼), thr2 ← |ℒ|/(6𝜂𝛼) ◁ 𝛾 := 1944

t2s2 log𝛼

6: sol← LargeSetComplete(ℒ,w, 𝑆1, 𝑆2, thr1, thr2)
7: if sol ̸= infeasible then
8: return |𝒰|/(54f𝜂𝛼)
9: return infeasible

Hence, since ts𝜂𝜎 = 𝜂 = 𝑂(1) (see Table 5.4.1),

Pr(In all runs, ℒ ∩ 𝒰 cmn ̸= ∅) ≤ (1− 𝑒−2ts𝜂𝜎)𝑂(log𝑛) ≤ 𝑛−1.

The second property follows from Lemma 5.8.5: if the algorithm returns a value other

than infeasible, then with probability at least 1− 4𝑚−1, |𝒞(OPT)| ≥ |𝒰|/(54f𝜂𝛼). �

Lemma 5.8.7. The amount of space used by LargeSet is ̃︀𝑂(𝑚/𝛼2).

Proof: Note that LargeSet performs 𝑂(log 𝑛) instances of LargeSetComplete in par-

allel. Hence, the total amount of space use by LargeSet is 𝑂(log 𝑛) times the space

complexity of LargeSetComplete.

Similarly to the space analysis of LargeSetSimple, the amount of space to perform

Cntrsmall and Cntrlarge as defined in LargeSetComplete is respectively ̃︀𝑂(1/𝜑1) = ̃︀𝑂(𝑚/𝛼2)

and ̃︀𝑂(1/𝜑2) = ̃︀𝑂(1). Moreover, for the last case in which the contributing class has size

larger than 𝑆2, by Theorem 5.2.12, in total ̃︀𝑂( 𝑚
w·𝑆2

) = ̃︀𝑂(1) space is required to compute the

coverage of sampled supersets inℳ. Note that, in all cases, by Lemma 5.7.2, the algorithm

can store ℎ in ̃︀𝑂(1) space.

Hence, the total amount of space required to implement LargeSet is ̃︀𝑂(𝑚/𝛼2). �

Proof of Theorem 5.4.8: The guarantee on the quality of the returned estimate follows

from Theorem 5.8.6 with w = min{𝛼, 𝑘} and s = ̃︀𝑂(w/𝛼) (as in Table 5.4.1). Moreover,

Lemma 5.8.7 shows that the space complexity of LargeSet is ̃︀𝑂(𝑚/𝛼2).

Moreover, since with high probability the estimate returned by the algorithm is a lower

bound on the coverage size of a 𝑘-cover of ℱ , the output of LargeSet with high probability,
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is smaller than the optimal coverage size of Max 𝑘-Cover(𝒰 ,ℱ). �
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Part II

Learning-Based Streaming Algorithms
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Chapter 6

The Frequency Estimation Problem

6.1. Introduction

The frequency estimation problem is formalized as follows: given a sequence 𝑆 of elements

from some universe 𝑈 , for any element 𝑖 ∈ 𝑈 , estimate 𝑓𝑖, the number of times 𝑖 occurs in 𝑆.

If one could store all arrivals from the stream 𝑆, one could sort the elements and compute

their frequencies. However, in big data applications, the stream is too large (and may be

infinite) and cannot be stored. This challenge has motivated the development of streaming

algorithms, which read the elements of 𝑆 in a single pass and compute a good estimate of the

frequencies using a limited amount of space. Specifically, the goal of the problem is as follows.

Given a sequence 𝑆 of elements from 𝑈 , the desired algorithm reads 𝑆 in a single pass while

writing into memory 𝐶 (whose size can be much smaller than the length of 𝑆). Then, given

any element 𝑖 ∈ 𝑈 , the algorithm reports an estimation of 𝑓𝑖 based only on the content of 𝐶.

Over the last two decades, many such streaming algorithms have been developed, including

Count-Sketch [43], Count-Min [57] and multi-stage filters [70]. The performance guarantees

of these algorithms are well-understood, with upper and lower bounds matching up to 𝑂(·)
factors [110].

However, such streaming algorithms typically assume generic data and do not leverage

useful patterns or properties of their input. For example, in text data, the word frequency

is known to be inversely correlated with the length of the word. Analogously, in network

data, certain applications tend to generate more traffic than others. If such properties
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can be harnessed, one could design frequency estimation algorithms that are much more

efficient than the existing ones. Yet, it is important to do so in a general framework that

can harness various useful properties, instead of using handcrafted methods specific to a

particular pattern or structure (e.g., word length, application type).

In this chapter, we introduce learning-based frequency estimation streaming algorithms.

Our algorithms are equipped with a learning model that enables them to exploit data prop-

erties without being specific to a particular pattern or knowing the useful property a priori.

We further provide theoretical analysis of the guarantees associated with such learning-based

algorithms.

We focus on the important class of “hashing-based” algorithms, which includes some of

the most used algorithms such as Count-Min, Count-Median and Count-Sketch. Informally,

these algorithms hash data items into 𝐵 buckets, count the number of items hashed into

each bucket, and use the bucket value as an estimate of item frequency. The process can

be repeated using multiple hash functions to improve accuracy. Hashing-based algorithms

have several useful properties. In particular, they can handle item deletions, which are

implemented by decrementing the respective counters. Furthermore, some of them (notably

Count-Min) never underestimate the true frequencies, i.e., 𝑓𝑖 ≥ 𝑓𝑖 holds always. However,

hashing algorithms lead to estimation errors due to collisions: when two elements are mapped

to the same bucket, they affect each others’ estimates. Although collisions are unavoidable

given the space constraints, the overall error significantly depends on the pattern of collisions.

For example, collisions between high-frequency elements (“heavy hitters”) result in a large

estimation error, and ideally should be minimized. The existing algorithms, however, use

random hash functions, which means that collisions are controlled only probabilistically.

Our idea is to use a small subset of 𝑆, call it 𝑆 ′, to learn the heavy hitters. We can then

assign heavy hitters their own buckets to avoid the more costly collisions. It is important to

emphasize that we are learning the properties that identify heavy hitters as opposed to the

identities of the heavy hitters themselves. For example, in the word frequency case, shorter

words tend to be more popular. The subset 𝑆 ′ itself may miss many of the popular words,

but whichever words popular in 𝑆 ′ are likely to be short. Our objective is not to learn the

identity of high frequency words using 𝑆 ′. Rather, we hope that a learning model trained
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on 𝑆 ′ learns that short words are more frequent, so that it can identify popular words even

if they did not appear in 𝑆 ′.

Our main contributions are as follows:

∙ We introduce learning-based frequency estimation streaming algorithms, which learn

the properties of heavy hitters in their input and exploit this information to reduce

errors.

∙ We provide performance guarantees showing that our learned algorithms can deliver

a logarithmic factor improvement in the error bound over their non-learning coun-

terparts. Furthermore, we show that our learning-based instantiation of Count-Min,

a widely used algorithm, is asymptotically optimal among all instantiations of that

algorithm. See Table 6.4.1 in Section 6.4 for the details.

∙ We evaluate our learning-based algorithms using two real-world datasets: network

traffic and search query popularity. In comparison to their non-learning counterparts,

our algorithms yield performance gains that range from 18% to 71%.

6.1.1. Related Work

Frequency estimation in data streams. Frequency estimation, and the closely related

problem of finding frequent elements in a data stream, are some of the most fundamental

and well-studied problems in streaming algorithms, see [55] for an overview. Hashing-based

algorithms such as Count-Sketch [43], Count-Min [57] and multi-stage filters [70] are widely

used solutions for these problems. These algorithms also have close connections to sparse

recovery and compressed sensing [40, 64], where the hashing output can be considered as a

compressed representation of the input data [79].

Several “non-hashing” algorithms for frequency estimation have been also proposed [136,

62, 116, 133]. These algorithms do not possess many of the properties of hashing-based

methods listed in the introduction (such as the ability to handle deletions), but they often

have better accuracy/space tradeoffs. For a fair comparison, our evaluation focuses only on

hashing algorithms. However, our approach for learning heavy hitters should be useful for

non-hashing algorithms as well.
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Some papers have proposed or analyzed frequency estimation algorithms customized to

data that follows Zipf Law [43, 58, 133, 135, 154]; the last algorithm is somewhat similar to

the “lookup table” implementation of the heavy hitter oracle that we use as a baseline in our

experiments. Those algorithms need to know the data distribution a priori, and apply only

to one distribution. In contrast, our learning-based approach applies to any data property

or distribution, and does not need to know that property or distribution a priori.

Learning-based algorithms. Recently, researchers have begun exploring the idea of in-

tegrating machine learning models into algorithm design. In particular, researchers have

proposed improving compressed sensing algorithms, either by using neural networks to im-

prove sparse recovery algorithms [140, 33], or by designing linear measurements that are

optimized for a particular class of vectors [25, 141], or both. The latter methods can be

viewed as solving a problem similar to ours, as our goal is to design “measurements” of

the frequency vector (𝑓1, 𝑓2 . . . , 𝑓|𝑈 |) tailored to a particular class of vectors. However, the

aforementioned methods need to explicitly represent a matrix of size 𝐵×|𝑈 |, where 𝐵 is the

number of buckets. Hence, they are unsuitable for streaming algorithms which, by definition,

have space limitations much smaller than the input size.

Another class of problems that benefited from machine learning is distance estimation,

i.e., compression of high-dimensional vectors into compact representations from which one

can estimate distances between the original vectors. Early solutions to this problem, such as

Locality-Sensitive Hashing, have been designed for worst case vectors. Over the last decade,

numerous methods for learning such representations have been developed [156, 169, 109, 168].

Although the objective of those papers is similar to ours, their techniques are not usable in

our applications, as they involve a different set of tools and solve different problems.

More broadly, there have been several recent papers that leverage machine learning to

design more efficient algorithms. The authors of [59] show how to use reinforcement learn-

ing and graph embedding to design algorithms for graph optimization (e.g., TSP). Other

learning-augmented combinatorial optimization problems are studied in [101, 24, 128]. More

recently, [120, 137] have used machine learning to improve indexing data structures, includ-

ing Bloom filters that (probabilistically) answer queries of the form “is a given element in the
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data set?” As in those papers, our algorithms use neural networks to learn certain properties

of the input. However, we differ from those papers both in our design and theoretical analy-

sis. Our algorithms are designed to reduce collisions between heavy items, as such collisions

greatly increase errors. In contrast, in existence indices, all collisions count equally. This

also leads to our theoretical analysis being very different from that in [137].

6.2. Preliminaries

Estimation Error. To measure and compare the overall accuracy of different frequency

estimation algorithms, we will use the expected estimation error which is defined as follows:

let ℱ = {𝑓1, · · · , 𝑓𝑛} and ℱ̃𝒜 = {𝑓1, · · · , 𝑓𝑛} respectively denote the actual frequencies and

the estimated frequencies obtained from algorithm 𝒜 of items in the input stream. We

remark that when 𝒜 is clear from the context we denote ℱ̃𝒜 as ℱ̃ . Then we define

Err(ℱ , ℱ̃𝒜) := E𝑖∼𝒟|𝑓𝑖 − 𝑓𝑖|, (6.2.1)

where 𝒟 denotes the query distribution of the items. Here, we assume that the query dis-

tribution 𝒟 is the same as the frequency distribution of items in the stream, i.e., for any

𝑖* ∈ [𝑛], Pr𝑖∼𝒟[𝑖 = 𝑖*] ∝ 𝑓𝑖* (more precisely, for any 𝑖* ∈ [𝑛], Pr𝑖∼𝒟[𝑖 = 𝑖*] = 𝑓𝑖*/𝑁 where

𝑁 =
∑︀

𝑖∈[𝑛] 𝑓𝑖 denotes the total sum of all frequencies in the stream).

We note that the theoretical guarantees of frequency estimation algorithms are typically

phrased in the “(𝜀, 𝛿)-form”, e.g., Pr[|𝑓𝑖 − 𝑓𝑖| > 𝜀𝑁 ] < 𝛿 for every 𝑖 (see e.g., [57]). However,

this formulation involves two objectives (𝜀 and 𝛿). We believe that the (single objective)

expected error in Equation (6.2.1) is more natural from the machine learning perspective.

Remark 6.2.1. As all upper/lower bounds in this paper are proved by bounding the ex-

pected error of estimating the frequency a single item, E[|𝑓𝑖 − 𝑓𝑖|], then using linearity of

expectation, in fact we obtain analogous bounds for any query distribution (𝑝𝑖)𝑖∈[𝑛]. In

particularly this means that the bounds of Table 6.4.1 for CM and CS hold for any query

distribution. For L-CM and L-CS the factor of log(𝑛/𝐵)/ log 𝑛 gets replaced by
∑︀𝑛

𝑖=𝐵ℎ+1 𝑝𝑖

where 𝐵ℎ = Θ(𝐵) is the number of buckets reserved for heavy hitters.
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6.2.1. Algorithms for Frequency Estimation

In this section, we recap three variants of hashing-based algorithms for frequency estimation.

Count-Min. We have 𝑘 distinct hash functions ℎ𝑖 : 𝑈 → [𝐵] and an array 𝐶 of size 𝑘×𝐵.

The algorithm maintains 𝐶, such that at the end of the stream we have 𝐶[ℓ, 𝑏] =
∑︀

𝑗:ℎℓ(𝑗)=𝑏 𝑓𝑗.

For each 𝑖 ∈ 𝑈 , the frequency estimate 𝑓𝑖 is equal to minℓ≤𝑘 𝐶[ℓ, ℎℓ(𝑖)], and always satisfies

𝑓𝑖 ≥ 𝑓𝑖.

Count-Sketch. Similarly to Count-Min, we have 𝑘 distinct hash functions ℎ𝑖 : 𝑈 → [𝐵]

and an array 𝐶 of size 𝑘 × 𝐵. Additionally, in Count-Sketch, we have 𝑘 sign functions

𝑔𝑖 : 𝑈 → {−1, 1}, and the algorithm maintains 𝐶 such that 𝐶[ℓ, 𝑏] =
∑︀

𝑗:ℎℓ(𝑗)=𝑏 𝑓𝑗 · 𝑔ℓ(𝑗). For
each 𝑖 ∈ 𝑈 , the frequency estimate 𝑓𝑖 is equal to the median of {𝑔ℓ(𝑖) · 𝐶[ℓ, ℎℓ(𝑖)]}ℓ≤𝑘. Note

that unlike the previous two methods, here we may have 𝑓𝑖 < 𝑓𝑖.

6.2.2. Zipfian Distribution

In our analysis we assume that the frequency distribution of items follows Zipf’s law. That

is, if we sort the items according to their frequencies with no loss of generality assuming

that 𝑓1 ≥ 𝑓2 ≥ · · · ≥ 𝑓𝑛, then for any 𝑗 ∈ [𝑛], 𝑓𝑗 ∝ 1/𝑗. Given that the frequencies of items

follow Zipf’s law and assuming that the query distribution is the same as the distribution of

the frequency of items in the input stream (i.e., Pr𝑖∼𝒟[𝑖
*] = 𝑓𝑖*/𝑁 = 1/(𝑖* · 𝐻𝑛) where 𝐻𝑛

denotes the 𝑛-th harmonic number), we can write the expected error defined in (6.2.1) as

follows:

Err(ℱ , ℱ̃𝒜) = E𝑖∼𝒟[|𝑓𝑖 − 𝑓𝑖|] =
1

𝑁
·
∑︁
𝑖∈[𝑛]

|𝑓𝑖 − 𝑓𝑖| · 𝑓𝑖 =
1

𝐻𝑛

·
∑︁
𝑖∈[𝑛]

|𝑓𝑖 − 𝑓𝑖| ·
1

𝑖
(6.2.2)

Throughout this paper, we present our results with respect to the objective function in

the right hand side of (6.2.2), i.e., 1
𝐻𝑛
·∑︀𝑛

𝑖=1 |𝑓𝑖 − 𝑓𝑖| · 𝑓𝑖. We further assume that in fact

𝑓𝑖 = 1/𝑖. At first sight this assumption may seem strange since it says that item 𝑖 appears

a non-integral number of times in the stream. This is however just a matter of scaling and

the assumption is convenient as it removes the dependence on the length of the stream in
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Algorithm 26 Learning-Based Frequency Estimation

1: procedure LearnedSketch(𝐵, 𝐵𝑟, HH, SketchAlg)
2: for each stream element 𝑖 do
3: if HH(𝑖) = 1 then ◁ if 𝑖 is a heavy item
4: if 𝑖 is already stored in a unique bucket then
5: count𝑖 ← count𝑖 + 1
6: else
7: initialize count𝑖 = 1

8: else
9: feed 𝑖 to SketchAlg

Learned 
Oracle

SketchAlg
(e.g., Count-Min)

Unique 
Buckets

Element i

Heavy Not heavy

Figure 6.3.1: Pseudo-code and block-diagram representation of our algorithms

our bounds.

6.3. Learning-Based Frequency Estimation Algorithms

We aim to develop frequency estimation algorithms that exploit data properties for better

performance. To do so, we learn an oracle that identifies heavy hitters, and use the oracle to

assign each heavy hitter its unique bucket to avoid collisions. Other items are simply hashed

using any classic frequency estimation algorithm (e.g., Count-Min, or Count-Sketch), as

shown in the block-diagram in Figure 6.3.1. This design has two useful properties: first,

it allows us to augment a classic frequency estimation algorithm with learning capabilities,

producing a learning-based counterpart that inherits the original guarantees of the classic

algorithm. For example, if the classic algorithm is Count-Min, the resulting learning-based

algorithm never underestimates the frequencies. Second, it provably reduces the estimation

errors, and for the case of Count-Min it is (asymptotically) optimal.

Algorithm 26 provides pseudo code for our design. The design assumes an oracle HH(𝑖)

that attempts to determine whether an item 𝑖 is a “heavy hitter” or not. All items classified as

heavy hitters are assigned to one of the 𝐵𝑟 unique buckets reserved for heavy items. All other

items are fed to the remaining 𝐵 − 𝐵𝑟 buckets using a conventional frequency estimation

algorithm SketchAlg (e.g., Count-Min or Count-Sketch).

The estimation procedure is analogous. To compute 𝑓𝑖, the algorithm first checks whether

𝑖 is stored in a unique bucket, and if so, reports its count. Otherwise, it queries the SketchAlg

procedure. Note that if the element is stored in a unique bucket, its reported count is exact,

i.e., 𝑓𝑖 = 𝑓𝑖.
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Algorithm
Expected Error

𝑘 = 1 𝑘 > 1

Count-Min Θ( log𝑛
𝐵

) Θ(
𝑘 log( 𝑘𝑛

𝐵
)

𝐵
)

Learned Count-Min Θ(
log2( 𝑛

𝐵
)

𝐵 log𝑛
) Ω(

log2( 𝑛
𝐵
)

𝐵 log𝑛
)

Count-Sketch Θ( log𝐵
𝐵

) Ω( 𝑘1/2

𝐵 log 𝑘
) and 𝑂(𝑘

1/2

𝐵
)

Learned Count-Sketch Θ( log𝑛(𝑛/𝐵)
𝐵 log𝑛

) Ω(
log( 𝑛

𝐵
)

𝐵 log𝑛
)

Table 6.4.1: The performance of different algorithms on streams with frequencies obeying
Zipf Law. 𝑘 is the number of hash functions, 𝐵 is the number of buckets, and 𝑛 is the
number of distinct elements. The space complexity of all algorithms is Θ(𝐵).

The oracle is constructed using machine learning and trained with a small subset of 𝑆,

call it 𝑆 ′. Note that the oracle learns the properties that identify heavy hitters as opposed

to the identities of the heavy hitters themselves. For example, in the case of word frequency,

the oracle would learn that shorter words are more frequent, so that it can identify popular

words even if they did not appear in the training set 𝑆 ′.

6.4. Analysis

Our algorithms combine simplicity with strong error bounds. Below, we summarize our

theoretical results, and leave all theorems, lemmas, and proofs to the appendix. In partic-

ular, Table 6.4.1 lists the results proven in this chapter, where each row refers to a specific

streaming algorithm and its corresponding error bound.

First, we show that if the heavy hitter oracle is accurate, then the error of the learned

variant of Count-Min and Count-Sketch are up to logarithmic factors smaller than that of

their standard counterparts.

Second, we show that, asymptotically, our learned Count-Min algorithm cannot be im-

proved any further by designing a better hashing scheme. Specifically, for the case of Learned

Count-Min with a perfect oracle, our design achieves the same asymptotic error as the “Ideal

Count-Min”, which optimizes its hash function for the given input.

We remark that for both Count-Min and Count-Sketch we aim at analyzing the expected

value of the variable
∑︀

𝑖∈[𝑛] 𝑓𝑖 · |𝑓𝑖− 𝑓𝑖| where 𝑓𝑖 = 1/𝑖 and 𝑓𝑖 is the estimate of 𝑓𝑖 output by
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the relevant sketching algorithm. Throughout this paper we use the following notation: for

an event 𝐸 we denote by [𝐸] the random variable in {0, 1} which is 1 if and only if 𝐸 occurs.

6.4.1. Tight Bounds for Count-Min with Zipfians

We begin by presenting our tight analysis of Count-Min with Zipfians. The main theorem

is the following.

Theorem 6.4.1. Let 𝑛,𝐵, 𝑘 ∈ N with 𝑘 ≥ 2 and 𝐵 ≤ 𝑛/𝑘. Let further ℎ1, . . . , ℎ𝑘 : [𝑛]→ [𝐵]

be independent and truly random hash functions. For 𝑖 ∈ [𝑛], define the random variable

𝑓𝑖 = minℓ∈[𝑘]

(︁∑︀
𝑗∈[𝑛][ℎℓ(𝑗) = ℎℓ(𝑖)]𝑓𝑗

)︁
. For any 𝑖 ∈ [𝑛] it holds that

E[|𝑓𝑖 − 𝑓𝑖|] = Θ

(︃
log
(︀
𝑛
𝐵

)︀
𝐵

)︃

Replacing 𝐵 by 𝐵/𝑘 in Theorem 6.4.1 and using linearity of expectation we obtain the desired

bound for Count-Min in the upper right hand side of Table 6.4.1. The natural assumption

that 𝐵 ≤ 𝑛/𝑘 simply says that the total number of buckets is upper bounded by the number

of items.

To prove Theorem 6.4.1 we start with the following special case of the theorem.

Lemma 6.4.2. Suppose that we are in the setting of Theorem 6.4.1 and further that1 𝑛 = 𝐵.

Then

E[|𝑓𝑖 − 𝑓𝑖|] = 𝑂

(︂
1

𝑛

)︂
.

Proof: It suffices to show the result when 𝑘 = 2 since adding more hash functions and

corresponding tables only decreases the value of |𝑓𝑖 − 𝑓𝑖|. Define 𝑍ℓ =
∑︀

𝑗∈[𝑛]∖{𝑖}[ℎℓ(𝑗) =

ℎℓ(𝑖)]𝑓𝑗 for ℓ ∈ [2] and note that these variables are independent. For a given 𝑡 ≥ 3/𝑛 we

wish to upper bound Pr[𝑍ℓ ≥ 𝑡]. Let 𝑠 < 𝑡 and note that if 𝑍ℓ ≥ 𝑡 then either of the following

two events must hold:

𝐸1: There exists a 𝑗 ∈ [𝑛] ∖ {𝑖} with 𝑓𝑗 > 𝑠 and ℎℓ(𝑗) = ℎℓ(𝑖).

1In particular we dispose with the assumption that 𝐵 ≤ 𝑛/𝑘.
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𝐸2: The set {𝑗 ∈ [𝑛] ∖ {𝑖} : ℎℓ(𝑗) = ℎℓ(𝑖)} contains at least 𝑡/𝑠 elements.

Union bounding we find that

Pr[𝑍ℓ ≥ 𝑡] ≤ Pr[𝐸1] + Pr[𝐸2] ≤
1

𝑛𝑠
+

(︂
𝑛

𝑡/𝑠

)︂
𝑛−𝑡/𝑠 ≤ 1

𝑛𝑠
+
(︁𝑒𝑠
𝑡

)︁𝑡/𝑠
.

Choosing 𝑠 = 𝑡
log(𝑡𝑛)

, a simple calculation yields that Pr[𝑍ℓ ≥ 𝑡] = 𝑂
(︁

log(𝑡𝑛)
𝑡𝑛

)︁
. As 𝑍1 and 𝑍2

are independent, Pr[𝑍 ≥ 𝑡] = 𝑂

(︂(︁
log(𝑡𝑛)

𝑡𝑛

)︁2)︂
, so

E[𝑍] =

∫︁ ∞

0

Pr[𝑍 ≥ 𝑡] 𝑑𝑡 ≤ 3

𝑛
+𝑂

(︃∫︁ ∞

3/𝑛

(︂
log(𝑡𝑛)

𝑡𝑛

)︂2

𝑑𝑡

)︃
= 𝑂

(︂
1

𝑛

)︂
. �

Before proving the full statement of Theorem 6.4.1 we recall Bennett’s inequality.

Theorem 6.4.3 (Bennett’s inequality [30]). Let 𝑋1, . . . , 𝑋𝑛 be independent, mean zero

random variables. Let 𝑆 =
∑︀𝑛

𝑖=1𝑋𝑖, and 𝜎2,𝑀 > 0 be such that Var[𝑆] ≤ 𝜎2 and |𝑋𝑖| ≤𝑀

for all 𝑖 ∈ [𝑛]. For any 𝑡 ≥ 0,

Pr[𝑆 ≥ 𝑡] ≤ exp

(︂
− 𝜎2

𝑀2
ℎ

(︂
𝑡𝑀

𝜎2

)︂)︂
,

where ℎ : R≥0 → R≥0 is defined by ℎ(𝑥) = (𝑥+ 1) log(𝑥+ 1)− 𝑥. The same tail bound holds

on the probability Pr[𝑆 ≤ −𝑡].

Remark 6.4.4. It is well known and easy to check that for 𝑥 ≥ 0,

1

2
𝑥 log(𝑥+ 1) ≤ ℎ(𝑥) ≤ 𝑥 log(𝑥+ 1).

We will use these asymptotic bounds repeatedly in this paper.

Proof of Theorem 6.4.1. We start out by proving the upper bound. Let 𝑁1 = [𝐵] ∖ {𝑖} and
𝑁2 = [𝑛] ∖ ([𝐵] ∪ {𝑖}). Let 𝑏 ∈ [𝑘] be such that

∑︀
𝑗∈𝑁1

𝑓𝑗 · [ℎ𝑏(𝑗) = ℎ𝑏(𝑖)] is minimized. Note
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that 𝑏 is itself a random variable. We also define

𝑌1 =
∑︁
𝑗∈𝑁1

𝑓𝑗 · [ℎ𝑏(𝑗) = ℎ𝑏(𝑖)],

𝑌2 =
∑︁
𝑗∈𝑁2

𝑓𝑗 · [ℎ𝑏(𝑗) = ℎ𝑏(𝑖)]

Clearly |𝑓𝑖 − 𝑓𝑖| ≤ 𝑌1 + 𝑌2. Using Lemma 6.4.2, we obtain that E[𝑌1] = 𝑂( 1
𝐵
). For 𝑌2 we

observe that

E[𝑌2 | 𝑏] =
∑︁
𝑗∈𝑁2

𝑓𝑗
𝐵

= 𝑂

(︃
log
(︀
𝑛
𝐵

)︀
𝐵

)︃
.

We conclude that

E[|𝑓𝑖 − 𝑓𝑖|] ≤ E[𝑌1] + E[𝑌2] = E[𝑌1] + E[E[𝑌2 | 𝑏]] = 𝑂

(︃
log
(︀
𝑛
𝐵

)︀
𝐵

)︃
,

as desired.

Next we show the lower bound. For 𝑗 ∈ [𝑛] and ℓ ∈ [𝑘] we define𝑋(𝑗)
ℓ = 𝑓𝑗·

(︀
[ℎℓ(𝑗) = ℎℓ(𝑖)]− 1

𝐵

)︀
.

Note that the variables (𝑋
(𝑗)
ℓ )𝑗∈[𝑛] are independent. We also define 𝑆ℓ =

∑︀
𝑗∈𝑁2

𝑋
(𝑗)
ℓ for

ℓ ∈ [𝑘]. Observe that |𝑋(𝑗)
ℓ | ≤ 𝑓𝑗 ≤ 1

𝐵
for 𝑗 ≥ 𝐵, E[𝑋(𝑗)

ℓ ] = 0, and that

Var[𝑆ℓ] =
∑︁
𝑗∈𝑁2

𝑓 2
𝑗

(︂
1

𝐵
− 1

𝐵2

)︂
≤ 2

𝐵2
.

Applying Bennett’s inequality with 𝜎2 = 2
𝐵2 and 𝑀 = 1/𝐵 thus gives that

Pr[𝑆ℓ ≤ −𝑡] ≤ exp

(︂
−2ℎ

(︂
𝑡𝐵

2

)︂)︂
.

Defining 𝑊ℓ =
∑︀

𝑗∈𝑁2
𝑓𝑗 · [ℎℓ(𝑗) = ℎℓ(𝑖)] it holds that E[𝑊ℓ] = Θ

(︂
log( 𝑛

𝐵 )
𝐵

)︂
and 𝑆ℓ =

𝑊ℓ − E[𝑊ℓ], so putting 𝑡 = E[𝑊ℓ]/2 in the inequality above we obtain that

Pr[𝑊ℓ ≤ E[𝑊ℓ]/2] = Pr[𝑆ℓ ≤ −E[𝑊ℓ]/2] ≤ exp
(︁
−2ℎ

(︁
Ω
(︁
log

𝑛

𝐵

)︁)︁)︁
.
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Appealing to Remark 6.4.4 and using that 𝐵 ≤ 𝑛/𝑘 the above bound becomes

Pr[𝑊ℓ ≤ E[𝑊ℓ]/2] ≤ exp
(︁
−Ω

(︁
log

𝑛

𝐵
· log

(︁
log

𝑛

𝐵
+ 1
)︁)︁)︁

= exp(−Ω(log 𝑘 · log(log 𝑘 + 1))) = 𝑘−Ω(log(log 𝑘+1)). (6.4.1)

By the independence of the events (𝑊ℓ > 𝐸[𝑊ℓ]/2)ℓ∈[𝑘] we have that

Pr

[︂
|𝑓𝑖 − 𝑓𝑖| ≥

E[𝑊ℓ]

2

]︂
≥ (1− 𝑘−Ω(log(log 𝑘+1)))𝑘 = Ω(1),

and so E[|𝑓𝑖 − 𝑓𝑖|] = Ω(E[𝑊ℓ]) = Ω

(︂
log( 𝑛

𝐵 )
𝐵

)︂
, as desired. �

6.4.2. Learned Count-Min with Zipfians

One hash function. By the tight analysis of Count-Min, we have the following theorem

on the expected error of the learned Count-Min with 𝑘 = 1. By taking 𝐵1 = 𝐵ℎ = Θ(𝐵)

and 𝐵2 = 𝐵 − 𝐵ℎ = Θ(𝐵) in the theorem below the result on learned Count-Min for 𝑘 = 1

claimed in Table 6.4.1 follows immediately.

Theorem 6.4.5. Let 𝑛,𝐵1, 𝐵2 ∈ N and let ℎ : [𝑛] ∖ [𝐵1]→ [𝐵2] be an independent and truly

random hash function. For 𝑖 ∈ [𝑛] ∖ [𝐵1], define the random variable 𝑓𝑖 =
∑︀

𝑗∈[𝑛][ℎ(𝑗) =

ℎ(𝑖)]𝑓𝑗. For any 𝑖 ∈ [𝑛] ∖ [𝐵1] it holds that

E[|𝑓𝑖 − 𝑓𝑖|] = Θ

⎛⎝ log
(︁

𝑛
𝐵1

)︁
𝐵2

⎞⎠
Multiple hash functions. Next we compute an asymptotic lower bound on the expected

error of the Count-Min no matter how the hash functions are picked. In particular, this

implies a lower bound on the expected error of the learned Count-Min.

Claim 6.4.6. For a set of items 𝐼, let 𝑓(𝐼) denote the total frequency of all items in 𝐼;

𝑓(𝐼) :=
∑︀

𝑖∈𝐼 𝑓𝑖. In any hash function of form {ℎ : 𝐼 → [𝐵𝐼 ]} with minimum expected error,

any item with frequency at least 𝑓(𝐼)
𝐵𝐼

does not collide with any other items in 𝐼.

Proof: For each bucket 𝑏 ∈ [𝐵𝐼 ], lets 𝑓ℎ(𝑏) denotes the frequency of items mapped to 𝑏 under
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ℎ; 𝑓(𝑏) :=
∑︀

𝑖∈𝐼:ℎ(𝑖)=𝑏 𝑓𝑖. Then we can rewrite Err(ℱ(𝐼), ℱ̃ℎ(𝐼)) as

Err(ℱ(𝐼), ℱ̃ℎ(𝐼)) =
∑︁
𝑖∈𝐼

𝑓𝑖 · (𝑓(ℎ(𝑖))− 𝑓𝑖) =
∑︁
𝑖∈𝐼

𝑓𝑖 · 𝑓(ℎ(𝑖))−
∑︁
𝑖∈𝐼

𝑓 2
𝑖

=
∑︁
𝑏∈[𝐵𝐼 ]

𝑓(𝑏)2 −
∑︁
𝑖∈𝐼

𝑓 2
𝑖 . (6.4.2)

Note that in (6.4.2) the second term is independent of ℎ and is a constant. Hence, an optimal

hash function minimizes the first term,
∑︀

𝑏∈𝐵𝐼
𝑓(𝑏)2.

Suppose that an item 𝑖* with frequency at least 𝑓(𝐼)
𝐵𝐼

collides with a (non-empty) set of

items 𝐼* ⊆ 𝐼 ∖ {𝑖*} under an optimal hash function ℎ*. Since the total frequency of the

items mapped to the bucket 𝑏* containing 𝑖* is greater than 𝑓(𝐼)
𝐵𝐼

(i.e., 𝑓(ℎ(𝑖*)) > 𝑓(𝐼)
𝐵𝐼

), there

exists a bucket 𝑏 such that 𝑓(𝑏) < 𝑓(𝐼)
𝐵𝐼

. Next, we define a new hash function ℎ with smaller

estimation error compared to ℎ* which contradicts the optimality of ℎ*:

ℎ(𝑖) =

⎧⎨⎩ ℎ*(𝑖) if 𝑖 ∈ 𝐼 ∖ 𝐼*

𝑏 otherwise.

Formally,

Err(ℱ(𝐼), ℱ̃ℎ*(𝐼))− Err(ℱ(𝐼), ℱ̃ℎ(𝐼)) = 𝑓ℎ*(𝑏*)2 + 𝑓ℎ*(𝑏)2 − 𝑓ℎ(𝑏
*)2 − 𝑓ℎ(𝑏)

2

= (𝑓𝑖* + 𝑓(𝐼*))2 + 𝑓ℎ*(𝑏)2 − 𝑓 2
𝑖* − (𝑓ℎ*(𝑏) + 𝑓(𝐼*))2

= 2𝑓𝑖* · 𝑓(𝐼*)− 2𝑓ℎ*(𝑏) · 𝑓(𝐼*)

= 2𝑓(𝐼*) · (𝑓𝑖* − 𝑓ℎ*(𝑏))

> 0 B Since 𝑓𝑖* >
𝑓(𝐼)

𝐵
> 𝑓ℎ*(𝑏). �

Next, we show that in any optimal hash function ℎ* : [𝑛] → [𝐵] and assuming Zipfian

distribution, Θ(𝐵) most frequent items do not collide with any other items under ℎ*.

Lemma 6.4.7. Suppose that 𝐵 = 𝑛/𝛾 where 𝛾 is a large enough constant and lets assume

that items follow Zipfian distribution. In any hash function ℎ* : [𝑛] → [𝐵] with minimum

expected error, none of the 𝐵
2 ln 𝛾

most frequent items collide with any other items (i.e., they
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are mapped to a singleton bucket).

Proof: Let 𝑖𝑗* be the most frequent item that is not mapped to a singleton bucket under ℎ*.

If 𝑗* > 𝐵
2 ln 𝛾

then the statement holds. Suppose it is not the case and 𝑗* ≤ 𝐵
2 ln 𝛾

. Let 𝐼 denote

the set of items with frequency at most 𝑓𝑗* = 1/𝑗* (i.e., 𝐼 = {𝑖𝑗 | 𝑗 ≥ 𝑗*}) and let 𝐵𝐼 denote

the number of buckets that the items with index at least 𝑗* mapped to; 𝐵𝐼 = 𝐵 − (𝑗* − 1).

It is straightforward to show that 𝑓(𝐼) < ln( 𝑛
𝑗*
) + 1. Next, by Claim 6.4.6, we show that

ℎ* does not hash the items {𝑗*, · · · , 𝑛} to 𝐵𝐼 optimally. In particular, we show that the

frequency of item 𝑗* is more than 𝑓(𝐼)
𝐵𝐼

. To prove this, first we observe that the function

𝑔(𝑗) := 𝑗 · (ln(𝑛/𝑗) + 1) is strictly increasing in [1, 𝑛]. Hence, for any 𝑗* ≤ 𝐵
2 ln 𝛾

,

𝑗* · (ln( 𝑛
𝑗*
) + 1) ≤ 𝐵

2 ln 𝛾
· (ln(2𝛾 ln 𝛾) + 1)

≤ 𝐵 · (1− 1

2 ln 𝛾
) B Since ln(2 ln 𝛾) + 2 < ln 𝛾 for sufficiently large 𝛾

< 𝐵𝐼

Thus, 𝑓𝑗* = 1
𝑗*

> ln(𝑛/𝑗*)+1
𝐵𝐼

> 𝑓(𝐼)
𝐵𝐼

which implies that an optimal hash function must map 𝑗*

to a singleton bucket. �

Theorem 6.4.8. If 𝑛/𝐵 is sufficiently large, then the expected error of any hash function

that maps a set of 𝑛 items following Zipfian distribution to 𝐵 buckets is Ω( ln
2(𝑛/𝐵)
𝐵

).

Proof: Let 𝛾 = 𝑛/𝐵. By Lemma 6.4.7, in any hash function with minimum expected error,

the ( 𝐵
2 ln 𝛾

) most frequent items do not collide with any other items (i.e., they are mapped

into a singleton bucket) where 𝛾 is a sufficiently large constant.

Hence, the goal is to minimize (6.4.2) for the set of items 𝐼 which consist of all items

other than the ( 𝐵
2 ln 𝛾

) most frequent items. Since the sum of squares of 𝑚 items that summed

to 𝑆 is at least 𝑆2

𝑚
, the expected error of any optimal hash function is at least:

192



Err(ℱ(𝐼), ℱ̃ℎ*(𝐼)) =
∑︁
𝑏∈[𝐵]

𝑓(𝑏)2 −
∑︁
𝑖∈[𝑛]

𝑓 2
𝑖 B by (6.4.2)

≥ (
∑︀

𝑖∈𝐼 𝑓𝑖)
2

𝐵(1− 1
2 ln 𝛾

)
−
∑︁
𝑖∈𝐼

𝑓 2
𝑖

≥ (ln(2𝛾 ln 𝛾)− 1)2

𝐵
− 2 ln 𝛾

𝐵
+

1

𝑛

= Ω(
ln2 𝛾

𝐵
) B for sufficiently large 𝛾

= Ω(
ln2(𝑛/𝐵)

𝐵
). �

Next, we show a more general statement which basically shows that the estimation error of

any Count-Min with 𝐵 buckets is Ω( ln
2(𝑛/𝐵)
𝐵

) no matter how many rows it has.

Theorem 6.4.9. If 𝑛/𝐵 is sufficiently large, then the estimation error of any Count-Min

that maps a set of 𝑛 items following Zipfian distribution to 𝐵 buckets is Ω( ln
2(𝑛/𝐵)
𝐵

).

Proof: We prove the statement by showing a reduction that given a Count-Min 𝐶𝑀(𝑘) with

hash functions ℎ1, · · · , ℎ𝑘 ∈ {ℎ : [𝑛]→ [𝐵/𝑘]} constructs a single hash function ℎ* : [𝑛]→ [𝐵]

whose estimation error is less than or equal to the estimation error of 𝐶𝑀(𝑘).

For each item 𝑖, we define 𝐶 ′[𝑖] to be the bucket whose value is returned by 𝐶𝑀(𝑘) as the

estimate of 𝑓𝑖; 𝐶 ′[𝑖] := argmin𝑗∈[𝑘]𝐶[𝑗, ℎ𝑗(𝑖)]. Since the total number of buckets in 𝐶𝑀(𝑘)

is 𝐵, |{𝐶 ′[𝑖] | 𝑖 ∈ [𝑛]}| ≤ 𝐵; in other words, we only consider the subset of buckets that

𝐶𝑀(𝑘) uses to report the estimates of {𝑓𝑖 | 𝑖 ∈ [𝑛]} which trivially has size at most 𝐵. We

define ℎ* as follows:

ℎ*(𝑖) = (𝑗*, ℎ𝑗*(𝑖)) B for each 𝑖 ∈ [𝑛], where 𝑗* = argmin𝑗∈[𝑘]𝐶[𝑗, ℎ𝑗(𝑖)]

Unlike 𝐶𝑀(𝑘), ℎ* maps each item to exactly one bucket in {𝐶[ℓ, 𝑗] | ℓ ∈ [𝑘], 𝑗 ∈ [𝐵/𝑘]};
hence, for each item 𝑖, 𝐶 ′[ℎ*(𝑖)] ≤ 𝐶[ℎ*(𝑖)] = 𝑓𝑖 where 𝑓𝑖 is the estimate of 𝑓𝑖 returned by

𝐶𝑀(𝑘). Moreover, since for each 𝑖, 𝐶 ′[ℎ*(𝑖)] ≥ 𝑓𝑖, Err(ℱ , ℱ̃ℎ*) ≤ Err(ℱ , ℱ̃𝐶𝑀(𝑘)). Finally,

by Theorem 6.4.8, the estimation error of ℎ* is Ω( ln
2(𝑛/𝐵)
𝐵

) which implies that the estimation

error of 𝐶𝑀(𝑘) is Ω( ln
2(𝑛/𝐵)
𝐵

) as well. �
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6.4.3. (Nearly) tight Bounds for Count-Sketch with Zipfians

In this section we proceed to analyze Count-Sketch for Zipfians either using a single or more

hash functions. We start with two simple lemmas which for certain frequencies (𝑓𝑖)𝑖∈[𝑛] of

the items in the stream can be used to obtain respectively good upper and lower bounds on

E[|𝑓𝑖− 𝑓𝑖|] in Count-Sketch with a single hash function. We will use these two lemmas both

in our analysis of standard and learned Count-Sketch for Zipfians.

Lemma 6.4.10. Let 𝑤 = (𝑤1, . . . , 𝑤𝑛) ∈ R𝑛, 𝜂1, . . . , 𝜂𝑛 independent Bernoulli variables

taking value 1 with probability 𝑝, and 𝜎1, . . . , 𝜎𝑛 ∈ {−1, 1} independent Rademachers, i.e.,
Pr[𝜂𝑖 = 1] = Pr[𝜂𝑖 = −1] = 1/2. Let 𝑆 =

∑︀𝑛
𝑖=1 𝑤𝑖𝜂𝑖𝜎𝑖. Then

E[|𝑆|] = 𝑂 (
√
𝑝‖𝑤‖2) .

Proof: Using that E[𝜎𝑖𝜎𝑗] = 0 for 𝑖 ̸= 𝑗 and Jensen’s inequality

E[|𝑆|]2 ≤ E[𝑆2] = E

[︃
𝑛∑︁

𝑖=1

𝑤2
𝑖 𝜂𝑖

]︃
= 𝑝‖𝑤‖22,

from which the result follows. �

Lemma 6.4.11. Suppose that we are in the setting of Lemma 6.4.10. Let 𝐼 ⊂ [𝑛] and let

𝑤𝐼 ∈ R𝑛 be defined by (𝑤𝐼)𝑖 = [𝑖 ∈ 𝐼] · 𝑤𝑖. Then

E[|𝑆|] ≥ 1

2
𝑝 (1− 𝑝)|𝐼|−1 ‖𝑤𝐼‖1.

Proof: Let 𝐽 = [𝑛] ∖ 𝐼, 𝑆1 =
∑︀

𝑖∈𝐼 𝑤𝑖𝜂𝑖𝜎𝑖, and 𝑆2 =
∑︀

𝑖∈𝐽 𝑤𝑖𝜂𝑖𝜎𝑖. Let 𝐸 denote the event

that 𝑆1 and 𝑆2 have the same sign or 𝑆2 = 0. Then Pr[𝐸] ≥ 1/2 by symmetry. For 𝑖 ∈ 𝐼

we denote by 𝐴𝑖 the event that {𝑗 ∈ 𝐼 : 𝜂𝑗 ̸= 0} = {𝑖}. Then Pr[𝐴𝑖] = 𝑝(1 − 𝑝)|𝐼|−1 and

furthermore 𝐴𝑖 and 𝐸 are independent. If 𝐴𝑖 ∩ 𝐸 occurs, then |𝑆| ≥ |𝑤𝑖| and as the events

(𝐴𝑖 ∩ 𝐸)𝑖∈𝐼 are disjoint it thus follows that

E[|𝑆|] ≥
∑︁
𝑖∈𝐼

Pr[𝐴𝑖 ∩ 𝐸] · |𝑤𝑖| =
1

2
𝑝 (1− 𝑝)|𝐼|−1 ‖𝑤𝐼‖1. �
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One hash-function. We are now ready to commence our analysis of Count-Sketch for

Zipfians. As in the discussion succeeding Theorem 6.4.1 the following theorem yields the

desired result for a single hash function as presented in Table 6.4.1.

Theorem 6.4.12. Suppose that 𝐵 ≤ 𝑛 and let ℎ : [𝑛] → [𝐵] and 𝑠 : [𝑛] → {−1, 1} be

truly random hash functions. Define the random variable 𝑓𝑖 =
∑︀

𝑗∈[𝑛][ℎ(𝑗) = ℎ(𝑖)]𝑠(𝑗)𝑓𝑗 for

𝑖 ∈ [𝑛]. Then

E[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖|] = 𝑂

(︂
log𝐵

𝐵

)︂
.

Proof: Let 𝑖 ∈ [𝑛] be fixed. We start by defining 𝑁1 = [𝐵] ∖ {𝑖} and 𝑁2 = [𝑛] ∖ ([𝐵] ∪ {𝑖})
and note that

|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖| ≤
⃒⃒⃒⃒
⃒∑︁
𝑗∈𝑁1

[ℎ(𝑗) = ℎ(𝑖)]𝑠(𝑗)𝑓𝑗

⃒⃒⃒⃒
⃒+
⃒⃒⃒⃒
⃒∑︁
𝑗∈𝑁2

[ℎ(𝑗) = ℎ(𝑖)]𝑠(𝑗)𝑓𝑗

⃒⃒⃒⃒
⃒ := 𝑋1 +𝑋2.

Using the triangle inequality

E[𝑋1] ≤
1

𝐵

∑︁
𝑗∈𝑁1

𝑓𝑗 = 𝑂

(︂
log𝐵

𝐵

)︂
.

Also, by Lemma 6.4.10, E[𝑋2] = 𝑂
(︀
1
𝐵

)︀
and combining the two bounds we obtain the desired

upper bound.

For the lower bound we apply Lemma 6.4.11 with 𝐼 = 𝑁1 concluding that

E[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖|] ≥
1

2𝐵

(︂
1− 1

𝐵

)︂|𝑁1|−1 ∑︁
𝑖∈𝑁1

𝑓𝑖 = Ω

(︂
log𝐵

𝐵

)︂
. �

Multiple hash functions. Let 𝑘 ∈ N be odd. For a tuple 𝑥 = (𝑥1, . . . , 𝑥𝑘) ∈ R𝑘 we

denote by median𝑥 the median of the entries of 𝑥. The following theorem immediately leads

to the result on CS with 𝑘 ≥ 3 hash functions claimed in Table 6.4.1.

Theorem 6.4.13. Let 𝑘 ≥ 3 be odd, 𝑛 ≥ 𝑘𝐵 and all ℎ1, . . . , ℎ𝑘 : [𝑛] → [𝐵] and 𝑠1, . . . , 𝑠𝑘 :

[𝑛]→ {−1, 1} be truly random hash functions. For each 𝑖 ∈ [𝑛], define the random variable
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𝑓𝑖 = medianℓ∈[𝑘]

(︁∑︀
𝑗∈[𝑛][ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗

)︁
. Assume that2 𝑘 ≤ 𝐵. Then

E[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖|] = Ω

(︂
1

𝐵
√
𝑘 log 𝑘

)︂
, and E[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖|] = 𝑂

(︂
1

𝐵
√
𝑘

)︂

The assumption 𝑛 ≥ 𝑘𝐵 simply says that the total number of buckets is upper bounded by

the number of items. Again using linearity of expectation for the summation over 𝑖 ∈ [𝑛]

and replacing 𝐵 by 𝐵/𝑘 we obtain the claimed upper and lower bounds of
√
𝑘

𝐵 log 𝑘
and

√
𝑘

𝐵

respectively. We note that even if the bounds above are only tight up to a factor of log 𝑘

they still imply that it is asymptotically optimal to choose 𝑘 = 𝑂(1). To settle the correct

asymptotic growth is thus of merely theoretical interest. We need the following claim to the

prove the theorem.

Claim 6.4.14. Let 𝐼 ⊂ R be the closed interval centered at the origin of length 2𝑡, i.e.,

𝐼 = [−𝑡, 𝑡]. Suppose that 1√
𝑘𝐵
≤ 𝑡 ≤ 1

2𝐵
. For ℓ ∈ [𝑘], Pr[𝑋(ℓ) ∈ 𝐼] = Ω(𝑡𝐵).

Proof: We first show that with probability Ω(1), 𝑋(ℓ)
2 lies in the interval [1/𝐵, 𝛾/𝐵] for some

constant 𝛾. To see this we note that by Lemma 6.4.10, E[|𝑋(ℓ)
2 |] = 𝑂

(︀
1
𝐵

)︀
, so it follows by

Markov’s inequality that if 𝛾 = 𝑂(1) is large enough, the probability that |𝑋(ℓ)
2 | ≥ 𝛾/𝐵 is at

most 1
200

. For a constant probability lower bound on |𝑋(ℓ)
2 | we write

𝑋
(ℓ)
2 =

∑︁
𝑗∈𝑁2∩{𝐵+1,...,2𝐵}

[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗 +
∑︁

𝑗∈𝑁2∩{2𝐵+1,...,𝑛}

[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗 := 𝑆1 + 𝑆2.

Condition on 𝑆2. If 𝐵 ≥ 4 the probability that there exist exactly two 𝑗 ∈ 𝑁2 ∩ {𝐵 +

1, . . . , 2𝐵} with ℎℓ(𝑗) = ℎℓ(𝑖) is at least

(︂|𝑁2 ∩ {𝐵 + 1, . . . , 2𝐵}|
2

)︂
1

𝐵2

(︂
1− 1

𝐵

)︂𝐵−2

≥
(︂
𝐵 − 1

2

)︂
1

𝑒𝐵2
≥ 1

8𝑒
.

With probability 1/4 the corresponding signs 𝑠ℓ(𝑗) are both the same as that of 𝑆2. By

independence of 𝑠ℓ and ℎℓ the probability that this occurs is at least 1
32𝑒

and if it does,

|𝑋(ℓ)
2 | ≥ 1/𝐵. Combining these two bounds it follows that |𝑋(ℓ)

2 | ∈ [ 1
𝐵
, 𝛾
𝐵
] with probability

2This very mild assumption can probably be removed at the cost of a more technical proof. In our proof
it can even be replaced by 𝑘 ≤ 𝐵2−𝜀 for any 𝜀 = Ω(1).
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at least 1
32𝑒
− 1

200
≥ 1

200
. By symmetry, Pr[𝑋(ℓ)

2 ∈ [ 1
𝐵
, 𝛾
𝐵
]] ≥ 1

400
= Ω(1). Denote this event by

𝐸. Also let 𝐹 be the event that |{𝑗 ∈ 𝑁1 : ℎℓ(𝑗) = ℎℓ(𝑖)}| = 1. Then Pr[𝐹 ] = Ω(1) and as 𝐸

and 𝐹 are independent Pr[𝐸 ∩ 𝐹 ] = Ω(1). Conditioned on 𝐸 ∩ 𝐹 we now lower bound the

probability that 𝑋(ℓ) ∈ 𝐼. For this it suffices to fix 𝑋
(ℓ)
2 = 𝜂

𝐵
for some 1 ≤ 𝜂 ≤ 𝛾 and lower

bound the probability that 𝜂
𝐵
+𝜎𝑓 ∈ [−𝑡, 𝑡] where 𝜎 is a Rademacher and 𝑓 ∈ {1/𝑗 : 𝑗 ∈ 𝑁1}

is chosen uniformly at random. Let 𝑚1,𝑚2 ∈ R>0 be such that

𝜂

𝐵
− 1

𝑚1

= −𝑡 and
𝜂

𝐵
− 1

𝑚2

= 𝑡.

Then 𝑚2 − 𝑚1 = 𝐵 2𝑡𝐵
𝜂2−𝑡2𝐵2 = Ω(𝑡𝐵2). Using that 𝐵 is larger than a big enough constant

and the mild assumption 𝑘 ≤ 𝐵, we have that 𝑚2 − 𝑚1 = Ω(𝐵/
√
𝑘) = Ω(

√
𝐵) ≥ 1, and

so ⌊𝑚2 −𝑚1⌋ = Ω(𝑚2 −𝑚1) = Ω(𝑡𝐵2) as well. As we have |𝑁2| ≥ 𝐵 − 1 options for 𝑓 it

follows that

Pr
[︁ 𝜂
𝐵

+ 𝜎𝑓 ∈ [−𝑡, 𝑡]
]︁
≥ ⌊𝑚2 −𝑚1⌋

𝐵 − 1
= Ω(𝑡𝐵),

as desired. �

Proof of Theorem 6.4.13. If 𝐵 (and hence 𝑘) is a constant the result follows easily from

Lemma 6.4.10, so in what follows we assume that 𝐵 is larger than a sufficiently large constant.

We first prove the upper bound. Define 𝑁1 = [𝐵] ∖ {𝑖} and 𝑁2 = [𝑛] ∖ ([𝐵]∪{𝑖}). Let for
ℓ ∈ [𝑘], 𝑋(ℓ)

1 =
∑︀

𝑗∈𝑁1
[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗 and 𝑋

(ℓ)
2 =

∑︀
𝑗∈𝑁2

[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗. Finally

write 𝑋(ℓ) = 𝑋
(ℓ)
1 +𝑋

(ℓ)
2 .

As the absolute error in Count-Sketch with one pair of hash functions (ℎ, 𝑠) is always

upper bounded by the corresponding error in Count-Min with the single hash function ℎ, we

can use the bound in the proof of Lemma 6.4.2 to conclude that

Pr[|𝑋(ℓ)
1 | ≥ 𝑡] = 𝑂

(︂
log(𝑡𝐵)

𝑡𝐵

)︂
,

when 𝑡 ≥ 3/𝐵. Also

Var[𝑋ℓ
2] =

(︂
1

𝐵
− 1

𝐵2

)︂∑︁
𝑗∈𝑁2

𝑓 2
𝑗 ≤

2

𝐵2
,
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so by Bennett’s inequality (with 𝑀 = 1/𝐵 and 𝜎2 = 2/𝐵2) and Remark 6.4.4,

Pr[|𝑋(ℓ)
2 | ≥ 𝑡] ≤ 2 exp (−2ℎ(𝑡𝐵/2)) ≤ 2 exp

(︂
−1

2
𝑡𝐵 log

(︂
𝑡𝐵

2
+ 1

)︂)︂
= 𝑂

(︂
log(𝑡𝐵)

𝑡𝐵

)︂
,

for 𝑡 ≥ 3
𝐵
. It follows that for 𝑡 ≥ 3/𝐵,

Pr[|𝑋(ℓ)| ≥ 2𝑡] ≤ Pr[(|𝑋(ℓ)
1 | ≥ 𝑡)] + Pr(|𝑋(ℓ)

2 | ≥ 𝑡)] = 𝑂

(︂
log(𝑡𝐵)

𝑡𝐵

)︂
.

Let 𝐶 be the implicit constant in the 𝑂-notation above. If |𝑓𝑖 − 𝑠(𝑖)𝑓𝑖| ≥ 2𝑡, at least half of

the values (|𝑋(ℓ)|)ℓ∈[𝑘] are at least 2𝑡. For 𝑡 ≥ 3/𝐵 it thus follows by a union bound that

Pr[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖| ≥ 2𝑡] ≤ 2

(︂
𝑘

⌈𝑘/2⌉

)︂(︂
𝐶
log(𝑡𝐵)

𝑡𝐵

)︂⌈𝑘/2⌉

≤ 2

(︂
4𝐶

log(𝑡𝐵)

𝑡𝐵

)︂⌈𝑘/2⌉

. (6.4.3)

If 𝛼 = 𝑂(1) is chosen sufficiently large it thus holds that

∫︁ ∞

𝛼/𝐵

Pr[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖| ≥ 𝑡] 𝑑𝑡 = 2

∫︁ ∞

𝛼/(2𝐵)

Pr[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖| ≥ 2𝑡] 𝑑𝑡

≤ 4

𝐵

∫︁ ∞

𝛼/2

(︂
4𝐶

log(𝑡)

𝑡

)︂⌈𝑘/2⌉

𝑑𝑡

≤ 1

𝐵2𝑘
≤ 1

𝐵
√
𝑘
.

Here the first inequality uses (6.4.3) and a change of variable. The second inequality uses

that
(︀
4𝐶 log 𝑡

𝑡

)︀⌈𝑘/2⌉ ≤ (𝐶 ′/𝑡)2𝑘/5 for some constant 𝐶 ′ followed by a calculation of the integral.

For our upper bound it therefore suffices to show that
∫︀ 𝛼/𝐵

0
Pr[|𝑓𝑖−𝑠(𝑖)𝑓𝑖| ≥ 𝑡] 𝑑𝑡 = 𝑂

(︁
1

𝐵
√
𝑘

)︁
.

For this let 1√
𝑘𝐵
≤ 𝑡 ≤ 1

𝐵
be fixed. If |𝑓𝑖−𝑠(𝑖)𝑓𝑖| ≥ 𝑡, at least half of the values (𝑋(ℓ))ℓ∈[𝑘]

are at least 𝑡 or at most −𝑡. Let us focus on bounding the probability that at least half are

at least 𝑡, the other bound being symmetric giving an extra factor of 2 in the probability

bound. By symmetry and Claim 6.4.14, Pr[𝑋(ℓ) ≥ 𝑡] = 1
2
− Ω(𝑡𝐵). For ℓ ∈ [𝑘] we define

𝑌ℓ = [𝑋(ℓ) ≥ 𝑡], and we put 𝑆 =
∑︀

ℓ∈[𝑘] 𝑌ℓ. Then E[𝑆] = 𝑘
(︀
1
2
− Ω(𝑡𝐵)

)︀
. If at least half of

the values (𝑋(ℓ))ℓ∈[𝑘] are at least 𝑡 then 𝑆 ≥ 𝑘/2. By Hoeffding’s inequality we can bound
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the probability of this event by

Pr[𝑆 ≥ 𝑘/2] = Pr[𝑆 − E[𝑆] = Ω(𝑘𝑡𝐵)] = exp(−Ω(𝑘𝑡2𝐵2)).

It follows that Pr[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖| ≥ 𝑡] ≤ 2 exp(−Ω(𝑘𝑡2𝐵2)). Thus

∫︁ 𝛼/𝐵

0

Pr[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖| ≥ 𝑡] 𝑑𝑡 ≤ 1

𝐵
√
𝑘
+

∫︁ 1
2𝐵

1

𝐵
√
𝑘

2 exp(−Ω(𝑘𝑡2𝐵2)) 𝑑𝑡+

∫︁ 𝛼/𝐵

1
2𝐵

2 exp(−Ω(𝑘)) 𝑑𝑡

= 𝑂

(︂
1

𝐵
√
𝑘

)︂
+

1

𝐵
√
𝑘

∫︁ ∞

1

exp(−𝑡2) 𝑑𝑡 = 𝑂

(︂
1

𝐵
√
𝑘

)︂
.

This completes the proof of the upper bound and we proceed with the lower bound. Fix

ℓ ∈ [𝑘] and let 𝑀1 = [𝐵 log 𝑘] ∖ {𝑖} and 𝑀2 = [𝑛] ∖ ([𝐵 log 𝑘] ∪ {𝑖}). Write

𝑆 :=
∑︁
𝑗∈𝑀1

[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗 +
∑︁
𝑗∈𝑀2

[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗 := 𝑆1 + 𝑆2.

We also define 𝐽 := {𝑗 ∈ 𝑀1 : ℎℓ(𝑗) = ℎℓ(𝑖)}. Let 𝐼 ⊆ R be the closed interval around

𝑠ℓ(𝑖)𝑓𝑖 of length 1
𝐵
√
𝑘 log 𝑘

. We now upper bound the probability that 𝑆 ∈ 𝐼 conditioned on

the value of 𝑆2. To ease the notation the conditioning on 𝑆2 has been left out in the notation

to follow. Note first that

Pr[𝑆 ∈ 𝐼] =

|𝑀1|∑︁
𝑟=0

Pr[𝑆 ∈ 𝐼 | |𝐽 | = 𝑟] · Pr[|𝐽 | = 𝑟].

For a given 𝑟 ≥ 1 we now proceed to bound Pr[𝑆 ∈ 𝐼 | |𝐽 | = 𝑟]. This probability is the same

as the probability that 𝑆2 +
∑︀

𝑗∈𝑅 𝜎𝑗𝑓𝑗 ∈ 𝐼, where 𝑅 ⊆ 𝑀1 is a uniformly random 𝑟-subset

and the 𝜎𝑗’s are independent Rademachers. Suppose that we sample the elements from 𝑅 as

well as the corresponding signs (𝜎𝑖)𝑖∈𝑅 sequentially, and let us condition on the values and

signs of the first 𝑟−1 sampled elements. At this point at most 𝐵 log 𝑘√
𝑘

+1 possible samples for

the last element in 𝑅 brings 𝑆 into 𝐼. Indeed, the minimum distance between consecutive

points in {𝑓𝑗 : 𝑗 ∈𝑀1} is at most 1/(𝐵 log 𝑘)2 so at most

1

𝐵
√
𝑘 log 𝑘

· (𝐵 log 𝑘)2 + 1 =
𝐵 log 𝑘√

𝑘
+ 1
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samples brings 𝑆 into 𝐼. For 1 ≤ 𝑟 ≤ (𝐵 log 𝑘)/2 we can thus can upper bound

Pr[𝑆 ∈ 𝐼 | |𝐽 | = 𝑟] ≤
𝐵 log 𝑘√

𝑘
+ 1

|𝑀1| − 𝑟 + 1
≤ 2√

𝑘
+

2

𝐵 log 𝑘
≤ 3√

𝑘
.

By a standard Chernoff bound

Pr[|𝐽 | ≥ 𝐵 log 𝑘/2] = exp (−Ω(𝐵 log 𝑘)) = 𝑘−Ω(𝐵).

If we assume that 𝐵 is larger than a constant, then Pr[|𝐽 | ≥ 𝐵 log 𝑘/2] ≤ 𝑘−1. Finally,

Pr[|𝐽 | = 0] = (1− 1/𝐵)𝐵 log 𝑘 ≤ 𝑘−1. Combining these three bounds,

Pr[𝑆 ∈ 𝐼] ≤ Pr[|𝐽 | = 0] +

(𝐵 log 𝑘)/2∑︁
𝑟=1

Pr[𝑆 ∈ 𝐼 | |𝐽 | = 𝑟] · Pr[|𝐽 | = 𝑟]

+

|𝑀1|∑︁
𝑟=(𝐵 log 𝑘)/2

Pr[|𝐽 | = 𝑟] = 𝑂

(︂
1√
𝑘

)︂
,

which holds even after removing the conditioning on 𝑆2. We now show that with probability

Ω(1) at least half the values (𝑋(ℓ))ℓ∈[𝑘] are at least 1
2𝐵

√
𝑘 log 𝑘

. Let 𝑝0 be the probability that

𝑋(ℓ) ≥ 1
2𝐵

√
𝑘 log 𝑘

. This probability does not depend on ℓ ∈ [𝑘] and by symmetry and what

we showed above, 𝑝0 = 1/2−𝑂(1/
√
𝑘). Define the function 𝑓 : {0, . . . , 𝑘} → R by

𝑓(𝑡) =

(︂
𝑘

𝑡

)︂
𝑝𝑡0(1− 𝑝0)

𝑘−𝑡.

Then 𝑝(𝑡) is the probability that exactly 𝑡 of the values (𝑋(ℓ))ℓ∈[𝑘] are at least 1
𝐵
√
𝑘 log 𝑘

. Using

that 𝑝0 = 1/2−𝑂(1/
√
𝑘), a simple application of Stirling’s formula gives that 𝑓(𝑡) = Θ

(︁
1√
𝑘

)︁
for 𝑡 = ⌈𝑘/2⌉, . . . , ⌈𝑘/2 +

√
𝑘⌉ when 𝑘 is larger than some constant 𝐶. It follows that with

probability Ω(1) at least half the (𝑋(ℓ))ℓ∈[𝑘] are at least 1
𝐵
√
𝑘 log 𝑘

and in particular

E[|𝑓𝑖 − 𝑓𝑖|] = Ω

(︂
1

𝐵
√
𝑘 log 𝑘

)︂
.

Finally we handle the case where 𝑘 ≤ 𝐶. It is easy to check (e.g. with Lemma 6.4.11) that

𝑋(ℓ) = Ω(1/𝐵) with probability Ω(1). Thus this happens for all ℓ ∈ [𝑘] with probability
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Ω(1) and in particular E[|𝑓𝑖 − 𝑓𝑖|] = Ω(1/𝐵), which is the desired for constant 𝑘. �

6.4.4. Learned Count-Sketch for Zipfians

We now proceed to analyze the learned Count-Sketch algorithm. First, we estimate the

expected error when using a single hash function and next we show that the expected error

only increases when using more hash functions. Recall that we assume on the number of

buckets 𝐵ℎ used to store the heavy hitters that 𝐵ℎ = Θ(𝐵 −𝐵ℎ) = Θ(𝐵).

One hash function. By taking 𝐵1 = 𝐵ℎ = Θ(𝐵) and 𝐵2 = 𝐵 − 𝐵ℎ = Θ(𝐵) in the

theorem below the result on L-CS for 𝑘 = 1 claimed in Table 6.4.1 follows immediately.

Theorem 6.4.15. Let ℎ : [𝑛] ∖ [𝐵1] → [𝐵2] and 𝑠 : [𝑛] → {−1, 1} be truly random hash

functions where 𝑛,𝐵1, 𝐵2 ∈ N and3 𝑛 − 𝐵1 ≥ 𝐵2 ≥ 𝐵1. Define the random variable 𝑓𝑖 =∑︀𝑛
𝑗=𝐵1+1[ℎ(𝑗) = ℎ(𝑖)]𝑠(𝑗)𝑓𝑗 for 𝑖 ∈ [𝑛] ∖ [𝐵1]. Then

E[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖|] = Θ

(︃
log 𝐵2+𝐵1

𝐵1

𝐵2

)︃

Proof: Let 𝑁1 = [𝐵1 + 𝐵2] ∖ ([𝐵1] ∪ {𝑖}) and 𝑁2 = [𝑛] ∖ ([𝐵1 + 𝐵2] ∪ {𝑖}). Let 𝑋1 =∑︀
𝑗∈𝑁1

[ℎ(𝑗) = ℎ(𝑖)]𝑠(𝑗)𝑓𝑗 and 𝑋2 =
∑︀

𝑗∈𝑁2
[ℎ(𝑗) = ℎ(𝑖)]𝑠(𝑗)𝑓𝑗. By the triangle inequality

and linearity of expectation,

E[|𝑋1|] = 𝑂

(︃
log 𝐵2+𝐵1

𝐵1

𝐵2

)︃
.

Moreover, it follows directly from Lemma 6.4.10 that E [|𝑋2|] = 𝑂
(︁

1
𝐵2

)︁
. Thus

E[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖|] ≤ E[|𝑋1|] + E[|𝑋2|] = 𝑂

(︃
log 𝐵2+𝐵1

𝐵1

𝐵2

)︃
,

as desired.

3The first inequality is the standard assumption that we have at least as many items as buckets. The
second inequality says that we use at least as many buckets for non-heavy items as for heavy items (which
doesn’t change the asymptotic space usage).
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For the lower bound on E
[︁⃒⃒⃒
𝑓𝑖 − 𝑠(𝑖)𝑓𝑖

⃒⃒⃒]︁
we apply Lemma 6.4.11 to obtain that,

E
[︁⃒⃒⃒
𝑓𝑖 − 𝑠(𝑖)𝑓𝑖

⃒⃒⃒]︁
≥ 1

2𝐵2

(︂
1− 1

𝐵2

)︂|𝑁1|−1 ∑︁
𝑖∈𝑁1

𝑓𝑖 = Ω

(︃
log 𝐵2+𝐵1

𝐵1

𝐵2

)︃
. �

Corollary 6.4.16. Let ℎ : [𝑛] ∖ [𝐵ℎ] → [𝐵 − 𝐵ℎ] and 𝑠 : [𝑛] → {−1, 1} be truly random

hash functions where 𝑛,𝐵1, 𝐵2 ∈ N and 𝐵ℎ = Θ(𝐵) ≤ 𝐵/2. Define the random variable

𝑓𝑖 =
∑︀𝑛

𝑗=𝐵ℎ+1[ℎ(𝑗) = ℎ(𝑖)]𝑠(𝑗)𝑓𝑗 for 𝑖 ∈ [𝑛] ∖ [𝐵ℎ]. Then

E[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖|] = Θ

(︂
1

𝐵

)︂

More hash functions. We now show that, like for Count-Min, using more hash func-

tions does not decrease the expected error. We first state the Littlewood-Offord lemma as

strengthened by Erdős.

Theorem 6.4.17 (Littlewood-Offord [126], Erdős [69]). Let 𝑎1, . . . , 𝑎𝑛 ∈ R with |𝑎𝑖| ≥
1 for 𝑖 ∈ [𝑛]. Let further 𝜎1, . . . , 𝜎𝑛 ∈ {−1, 1} be random variables with Pr[𝜎𝑖 = 1] = Pr[𝜎𝑖 =

−1] = 1/2 and define 𝑆 =
∑︀𝑛

𝑖=1 𝜎𝑖𝑎𝑖. For any 𝑣 ∈ R it holds that

Pr[|𝑆 − 𝑣| ≤ 1] ≤
(︂

𝑛

⌊𝑛/2⌋

)︂
· 1
2𝑛

= 𝑂

(︂
1√
𝑛

)︂
.

Setting 𝐵1 = 𝐵ℎ = Θ(𝐵) and 𝐵2 = 𝐵 −𝐵ℎ = Θ(𝐵) in the theorem below gives the final

bound from Table 6.4.1 on L-CS with 𝑘 ≥ 3.

Theorem 6.4.18. Let 𝑛 ≥ 𝐵1 + 𝐵2 ≥ 2𝐵1, 𝑘 ≥ 3 odd, and ℎ1, . . . , ℎ𝑘 : [𝑛] ∖ [𝐵1]→ [𝐵2/𝑘]

and 𝑠1, . . . , 𝑠𝑘 : [𝑛] ∖ [𝐵1] → [𝐵2/𝑘] be independent and truly random. Define the random

variable 𝑓𝑖 = medianℓ∈[𝑘]

(︁∑︀
𝑗∈[𝑛]∖[𝐵1]

[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗

)︁
for 𝑖 ∈ [𝑛] ∖ [𝐵1]. Then

E[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖|] = Ω

(︂
1

𝐵2

)︂
.

Proof: Like in the proof of the lower bound of Theorem 6.4.13 it suffices to show that for

each 𝑖 the probability that the sum 𝑆ℓ :=
∑︀

𝑗∈[𝑛]∖([𝐵1]∪{𝑖})[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗 lies in the

interval 𝐼 = [−1/(2𝐵2), 1/(2𝐵2)] is 𝑂(1/
√
𝑘). Then at least half the (𝑆ℓ)ℓ∈[𝑘] are at least
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1/(2𝐵2) with probability Ω(1) by an application of Stirling’s formula, and it follows that

E[|𝑓𝑖 − 𝑠(𝑖)𝑓𝑖|] = Ω(1/𝐵2).

Let ℓ ∈ [𝑘] be fixed, 𝑁1 = [2𝐵2] ∖ ([𝐵2] ∪ {𝑖}), and 𝑁2 = [𝑛] ∖ (𝑁1 ∪ {𝑖}), and write

𝑆ℓ =
∑︁
𝑗∈𝑁1

[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗 +
∑︁
𝑗∈𝑁2

[ℎℓ(𝑗) = ℎℓ(𝑖)]𝑠ℓ(𝑗)𝑓𝑗 := 𝑋1 +𝑋2.

Now condition on the value of 𝑋2 = 𝑥2 of 𝑋2. Letting 𝐽 = {𝑗 ∈ 𝑁1 : ℎℓ(𝑗) = ℎℓ(𝑖)} it follows
by Theorem 6.4.17 that

Pr[𝑆ℓ ∈ 𝐼 | 𝑋2 = 𝑥2] = 𝑂

(︃ ∑︁
𝐽 ′⊆𝑁1

Pr[𝐽 = 𝐽 ′]√︀
|𝐽 ′|+ 1

)︃
= 𝑂

(︁
Pr[|𝐽 | < 𝑘/2] + 1/

√
𝑘
)︁
.

An application of Chebyshev’s inequality gives that Pr[|𝐽 | < 𝑘/2] = 𝑂(1/𝑘), so Pr[𝑆ℓ ∈
𝐼] = 𝑂(1/

√
𝑘). Since this bound holds for any possible value of 𝑥2 we may remove the

conditioning and the desired result follows. �

Remark 6.4.19. The bound above is probably only tight for 𝐵1 = Θ(𝐵2). Indeed, we know

that it cannot be tight for all 𝐵1 ≤ 𝐵2 since when 𝐵1 becomes very small, the bound from the

standard Count-Sketch with 𝑘 ≥ 3 takes over—and this is certainly worse than the bound

in the theorem. It is an interesting open problem (that requires a better anti-concentration

inequality than the Littlewood-Offord lemma) to settle the correct bound when 𝐵1 ≪ 𝐵2.

6.5. Experiments

Baselines. We compare our learning-based algorithms with their non-learning counter-

parts. Specifically, we augment Count-Min with a learned oracle as in Algorithm 26, and

call the learning-augmented algorithm “Learned Count-Min”. We then compare Learned

Count-Min with traditional Count-Min. We also compare it with “Learned Count-Min with

Ideal Oracle” where the neural-network oracle is replaced with an ideal oracle that knows

the identities of the heavy hitters in the test data, and “Count-Min with Lookup Table”

where the heavy hitter oracle is replaced with a lookup table that memorizes heavy hitters

in the training set. The comparison with the latter baseline allows us to show the ability

of Learned Count-Min to generalize and detect heavy items unseen in the training set. We
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Figure 6.5.1: Frequency of Internet flows

repeat the evaluation where we replace Count-Min (CM) with Count-Sketch (CS) and the

corresponding variants.

Training a Heavy Hitter Oracle. We construct the heavy hitter oracle by training a

neural network to predict the heaviness of an item. Note that the prediction of the network

is not the final estimation. It is used in Algorithm 26 to decide whether to assign an item to

a unique bucket. We train the network to predict the item counts (or the log of the counts)

and minimize the squared loss of the prediction. Empirically, we found that when the counts

of heavy items are few orders of magnitude larger than the average counts (as is the case for

the Internet traffic data set), predicting the log of the counts leads to more stable training

and better results. Once the model is trained, we can select the optimal cutoff threshold

using validation data, and use the model as the oracle described in Algorithm 26.

6.5.1. Internet Traffic Estimation

For our first experiment, the goal is to estimate the number of packets for each network flow.

A flow is a sequence of packets between two machines on the Internet. It is identified by the

IP addresses of its source and destination and the application ports. Estimating the size of

each flow 𝑖—i.e., the number of its packets 𝑓𝑖—is a basic task in network management [161].

Dataset. The traffic data is collected at a backbone link of a Tier1 ISP between Chicago

and Seattle in 2016 [39]. Each recording session is around one hour. Within each minute,

there are around 30 million packets and 1 million unique flows. For a recording session, we

use the first 7 minutes for training, the following minute for validation, and estimate the

packet counts in subsequent minutes. The distribution of packet counts over Internet flows
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is heavy tailed, as shown in Figure 6.5.1.

Model. The patterns of the Internet traffic are very dynamic, i.e., the flows with heavy

traffic change frequently from one minute to the next. However, we hypothesize that the

space of IP addresses should be smooth in terms of traffic load. For example, data centers at

large companies and university campuses with many students tend to generate heavy traffic.

Thus, though the individual flows from these sites change frequently, we could still discover

regions of IP addresses with heavy traffic through a learning approach.

We trained a neural network to predict the log of the packet counts for each flow. The

model takes as input the IP addresses and ports in each packet. We use two RNNs to encode

the source and destination IP addresses separately. The RNN takes one bit of the IP address

at each step, starting from the most significant bit. We use the final states of the RNN as the

feature vector for an IP address. The reason to use RNN is that the patterns in the bits are

hierarchical, i.e., the more significant bits govern larger regions in the IP space. Additionally,

we use two-layer fully-connected networks to encode the source and destination ports. We

then concatenate the encoded IP vectors, encoded port vectors, and the protocol type as the

final features to predict the packet counts.4 The inference time takes 2.8 microseconds per

item on a single GPU without any optimizations.5

Results. We plot the results of two representative test minutes (the 20th and 50th) in

Figure 6.5.2. All plots in the figure refer to the estimation error (6.2.2) as a function of the

used space. The space includes space for storing the buckets and the model. Since we use

the same model for all test minutes, the model space is amortized over the 50-minute testing

period.

Figure 6.5.2 reveals multiple findings. First, the figure shows that our learning-based

algorithms exhibit a better performance than their non-learning counterparts. Specifically,

Learned Count-Min, compared to Count-Min, reduces the the error by 32% with space of
4We use RNNs with 64 hidden units. The two-layer fully-connected networks for the ports have 16 and

8 hidden units. The final layer before the prediction has 32 hidden units.
5Note that new specialized hardware such as Google TPU, hardware accelerators and network compres-

sion [93, 163, 47, 94, 95] can drastically improve the inference time. Further, Nvidia has predicted that GPU
will get 1000x faster by 2025. Because of these trends, the overhead of neural network inference is expected
to be less significant in the future [120].
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(a) Learned Count-Min - 20th test minute
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(b) Learned Count-Min - 50th test minute
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(c) Learned Count-Sketch - 20th test

minute
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(d) Learned Count-Sketch - 50th test

minute

Figure 6.5.2: Comparison of our algorithms with Count-Min and Count-Sketch on Internet
traffic data.

0.5 MB and 42% with space of 1.0 MB (Figure 6.5.2a). Learned Count-Sketch, compared

to Count-Sketch, reduces the error by 52% at 0.5 MB and 57% at 1.0 MB (Figure 6.5.2c).

In our experiments, each regular bucket takes 4 bytes. For the learned versions, we account

for the extra space needed for the unique buckets to store the item IDs and the counts. One

unique bucket takes 8 bytes, twice the space of a normal bucket.6

Second, the figure also shows that our neural-network oracle performs better than mem-

orizing the heavy hitters in a lookup table. This is likely due to the dynamic nature of

Internet traffic –i.e., the heavy flows in the training set are significantly different from those

in the test data. Hence, memorization does not work well. On the other hand, our model is

able to extract structures in the input that generalize to unseen test data.

6By using hashing with open addressing, it suffices to store IDs hashed into log𝐵𝑟 + 𝑡 bits (instead of
whole IDs) to ensure there is no collision with probability 1− 2−𝑡. log𝐵𝑟 + 𝑡 is comparable to the number
of bits per counter, so the space for a unique bucket is twice the space of a normal bucket.
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Figure 6.5.3: Frequency of search queries

Third, the figure shows that our model’s performance stays roughly the same from the

20th to the 50th minute (Figure 6.5.2b and Figure 6.5.2d), showing that it learns properties

of the heavy items that generalize over time.

Lastly, although we achieve significant improvement over Count-Min and Count-Sketch,

our scheme can potentially achieve even better results with an ideal oracle, as shown by the

dashed green line in Figure 6.5.2. This indicates potential gains from further optimizing the

neural network model.

6.5.2. Search Query Estimation

For our second experiment, the goal is to estimate the number of times a search query

appears.

Dataset. We use the AOL query log dataset, which consists of 21 million search queries

collected from 650 thousand users over 90 days. The users are anonymized in the dataset.

There are 3.8 million unique queries. Each query is a search phrase with multiple words

(e.g., “periodic table element poster”). We use the first 5 days for training, the following

day for validation, and estimate the number of times different search queries appear in

subsequent days. The distribution of search query frequency follows the Zipfian law, as

shown in Figure 6.5.3.

Model. Unlike traffic data, popular search queries tend to appear more consistently across

multiple days. For example, “google” is the most popular search phrase in most of the days

in the dataset. Simply storing the most popular words can easily construct a reasonable

heavy hitter predictor. However, beyond remembering the popular words, other factors also
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(a) Learned Count-Min 50th test day
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(b) Learned Count-Min 80th test day
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(c) Learned Count-Sketch 50th test day
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(d) Learned Count-Sketch 80th test day

Figure 6.5.4: Comparison of our algorithms with Count-Min and Count-Sketch on search
query data.

contribute to the popularity of a search phrase that we can learn. For example, popular

search phrases appearing in slightly different forms may be related to similar topics. Though

not included in the AOL dataset, in general, metadata of a search query (e.g., the location

of the search) can provide useful context of its popularity.

To construct the heavy hitter oracle, we trained a neural network to predict the number

of times a search phrase appears. To process the search phrase, we train an RNN with LSTM

cells that takes characters of a search phrase as input. The final states encoded by the RNN

are fed to a fully-connected layer to predict the query frequency. Our character vocabulary

includes lower-case English alphabets, numbers, punctuation marks, and a token for unknown

characters. We map the character IDs to embedding vectors before feeding them to the

RNN.7 We choose RNN due to its effectiveness in processing sequence data [162, 83, 120].

7We use an embedding size of 64 dimensions, an RNN with 256 hidden units, and a fully-connected layer
with 32 hidden units.
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Figure 6.5.5: ROC curves of the learned models.

Results. We plot the estimation error vs. space for two representative test days (the 50th

and 80th day) in Figure 6.5.4. As before, the space includes both the bucket space and the

space used by the model. The model space is amortized over the test days since the same

model is used for all days.

Similarly, our learned sketches outperforms their conventional counterparts. For Learned

Count-Min, compared to Count-Min, it reduces the loss by 18% at 0.5 MB and 52% at 1.0

MB (Figure 6.5.4a). For Learned Count-Sketch, compared to Count-Sketch, it reduces the

loss by 24% at 0.5 MB and 71% at 1.0 MB (Figure 6.5.4c). Further, our algorithm performs

similarly for the 50th and the 80th day (Figure 6.5.4b and Figure 6.5.4d), showing that the

properties it learns generalize over a long period.

The figures also show an interesting difference from the Internet traffic data: memorizing

the heavy hitters in a lookup table is quite effective in the low space region. This is likely

because the search queries are less dynamic compared to Internet traffic (i.e., top queries in

the training set are also popular on later days). However, as the algorithm is allowed more

space, memorization becomes ineffective.

6.5.3. Analyzing Heavy Hitter Models

We analyze the accuracy of the neural network heavy hitter models to better understand

the results on the two datasets. Specifically, we use the models to predict whether an item

is a heavy hitter (top 1% in counts) or not, and plot the ROC curves in Figure 6.5.5. The

figures show that the model for the Internet traffic data has learned to predict heavy items

more effectively, with an AUC score of 0.9. As for the model for search query data, the AUC
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score is 0.8. This also explains why we see larger improvements over non-learning algorithms

in Figure 6.5.2.
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Chapter 7

The Low-Rank Approximation Problem

7.1. Introduction

In the low-rank decomposition problem, given an 𝑛×𝑑 matrix 𝐴 and a parameter 𝑘, the goal

is to compute a rank-𝑘 matrix [𝐴]𝑘 defined as below

[𝐴]𝑘 = argmin
𝐴′: rank(𝐴′)≤𝑘

‖𝐴− 𝐴′‖𝐹 .

Low-rank approximation is one of the most widely used tools in massive data analysis,

machine learning and statistics, and has been a subject of many algorithmic studies. In par-

ticular, multiple algorithms developed over the last decade use the “sketching” approach, see

e.g., [157, 171, 92, 52, 53, 144, 132, 34, 54]. Its idea is to use efficiently computable random

projections (a.k.a., “sketches”) to reduce the problem size before performing low-rank decom-

position, which makes the computation more space and time efficient. For example, [157, 52]

show that if 𝑆 is a random matrix of size 𝑚 × 𝑛 chosen from an appropriate distribution1,

for 𝑚 depending on 𝜀, then one can recover a rank-𝑘 matrix 𝐴′ such that

‖𝐴− 𝐴′‖𝐹 ≤ (1 + 𝜖)‖𝐴− [𝐴]𝑘‖𝐹

1Initial algorithms used matrices with independent sub-gaussian entries or randomized Fourier/Hadamard
matrices [157, 171, 92]. Starting from the seminal work of [53], researchers began to explore sparse binary
matrices, see e.g., [144, 132]. In this chapter we mostly focus on the latter distribution.
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by performing an SVD on 𝑆𝐴 ∈ R𝑚×𝑑 followed by some post-processing. Typically the

sketch length 𝑚 is small, so the matrix 𝑆𝐴 can be stored using little space (in the context of

streaming algorithms) or efficiently communicated (in the context of distributed algorithms).

Furthermore, the SVD of 𝑆𝐴 can be computed efficiently, especially after another round of

sketching, reducing the overall computation time. See the survey [170] for an overview of

these developments.

In light of recent developments on learning-based algorithms [168, 59, 120, 24, 128, 151,

137, 141, 25, 33, 134, 96, 103, 1, 118], it is natural to ask whether similar improvements

in performance could be obtained for other sketch-based algorithms, notably for low-rank

decompositions. In particular, reducing the sketch length 𝑚 while preserving its accuracy

would make sketch-based algorithms more efficient. Alternatively, one could make sketches

more accurate for the same values of 𝑚. This is the problem we address in this chapter.

7.1.1. Our Results

Our main finding is that learned sketch matrices can indeed yield (much) more accurate

low-rank decompositions than purely random matrices. We focus our study on a streaming

algorithm for low-rank decomposition due to [157, 52], described in more detail in Section 7.2.

Specifically, suppose we have a training set of matrices Tr = {𝐴1, . . . , 𝐴𝑁} sampled from some

distribution 𝒟. Based on this training set, we compute a matrix 𝑆* that (locally) minimizes

the empirical loss ∑︁
𝑖

‖𝐴𝑖 − SCW(𝑆*, 𝐴𝑖)‖𝐹 (7.1.1)

where SCW(𝑆*, 𝐴𝑖) denotes the output of the aforementioned Sarlos-Clarkson-Woodruff

streaming low-rank decomposition algorithm on matrix 𝐴𝑖 using the sketch matrix 𝑆*. Once

the sketch matrix 𝑆* is computed, it can be used instead of a random sketch matrix in all

future executions of the SCW algorithm.

We demonstrate empirically that, for multiple types of data sets, an optimized sketch

matrix 𝑆* can substantially reduce the approximation loss compared to a random matrix 𝑆,

sometimes by one order of magnitude (see Figure 7.5.1 or 7.5.2). Equivalently, the optimized

sketch matrix can achieve the same approximation loss for lower values of 𝑚.

A possible disadvantage of learned sketch matrices is that an algorithm that uses them no
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longer offers worst-case guarantees. As a result, if such an algorithm is applied to an input

matrix that does not conform to the training distribution, the results might be worse than

if random matrices were used. To alleviate this issue, we also study mixed sketch matrices,

where (say) half of the rows are trained and the other half are random. We observe that

if such matrices are used in conjunction with the SCW algorithm, its results are no worse

than if only the random part of the matrix was used (Theorem 7.4.1 in Section 7.4)2. Thus,

the resulting algorithm inherits the worst-case performance guarantees of the random part

of the sketching matrix. At the same time, we show that mixed matrices still substantially

reduce the approximation loss compared to random ones, in some cases nearly matching the

performance of “pure” learned matrices with the same number of rows. Thus, mixed random

matrices offer “the best of both worlds”: improved performance for matrices from the training

distribution, and worst-case guarantees otherwise.

Finally, in order to understand the theoretical aspects of our approach further, we study

the special case of 𝑚 = 1. This corresponds to the case where the sketch matrix 𝑆 is just a

single vector. Our results are two-fold:

∙ We give an approximation algorithm for minimizing the empirical loss as in Equa-

tion 7.1.1, with an approximation factor depending on the stable rank of matrices in

the training set. See Appendix 7.7.

∙ Under certain assumptions about the robustness of the loss minimizer, we show gen-

eralization bounds for the solution computed over the training set. See Appendix 7.8.

7.1.2. Related work

As outlined in the introduction, over the last few years there has been multiple papers

exploring the use of machine learning methods to improve the performance of “standard”

algorithms. Among those, the closest to the topic of this chapter are the works on learning-

based compressive sensing, such as [141, 25, 33, 134], and on learning-based streaming algo-

rithms [103]. Since neither of these two lines of research addresses computing matrix spectra,

the technical development therein was quite different from ours.

2We note that this property is non-trivial, in the sense that it does not automatically hold for all sketching
algorithms. See Section 7.4 for further discussion.
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Algorithm 27 Rank-𝑘 approximation of a matrix 𝐴 using a sketch matrix 𝑆 (refer to
Section 4.1.1 of [52])

1: Input: 𝐴 ∈ R𝑛×𝑑, 𝑆 ∈ R𝑚×𝑛

2: 𝑈,Σ, 𝑉 ⊤ ← CompactSVD(𝑆𝐴) ◁ 𝑟 = rank(𝑆𝐴), 𝑈 ∈ R𝑚×𝑟, 𝑉 ∈ R𝑑×𝑟

3: return [𝐴𝑉 ]𝑘𝑉
⊤

In this chapter we focus on learning-based optimization of low-rank approximation algo-

rithms that use linear sketches, i.e., map the input matrix 𝐴 into 𝑆𝐴 and perform compu-

tation on the latter. There are other sketching algorithms for low-rank approximation that

involve non-linear sketches [125, 78, 77]. The benefit of linear sketches is that they are easy

to update under linear changes to the matrix 𝐴, and (in the context of our work) that they

are easy to differentiate, making it possible to compute the gradient of the loss function as

in Equation 7.1.1. We do not know whether it is possible to use our learning-based approach

for non-linear sketches, but we believe this is an interesting direction for future research.

7.2. Preliminaries

Notation. Consider a distribution 𝒟 on matrices 𝐴 ∈ R𝑛×𝑑. We define the training set

as {𝐴1, · · · , 𝐴𝑁} sampled from 𝒟. For matrix 𝐴, its singular value decomposition (SVD)

can be written as 𝐴 = 𝑈Σ𝑉 ⊤ such that both 𝑈 ∈ R𝑛×𝑛 and 𝑉 ∈ R𝑑×𝑛 have orthonormal

columns and Σ = diag{𝜆1, · · · , 𝜆𝑑} is a diagonal matrix with nonnegative entries. Moreover,

if rank(𝐴) = 𝑟, then the first 𝑟 columns of 𝑈 are an orthonormal basis for the column space

of 𝐴 (we denote it as colsp(𝐴)), the first 𝑟 columns of 𝑉 are an orthonormal basis for the

row space of 𝐴 (we denote it as rowsp(𝐴))3 and 𝜆𝑖 = 0 for 𝑖 > 𝑟. In many applications it

is quicker and more economical to compute the compact SVD which only contains the rows

and columns corresponding to the non-zero singular values of Σ: 𝐴 = 𝑈 𝑐Σ𝑐(𝑉 𝑐)⊤ where

𝑈 𝑐 ∈ R𝑛×𝑟,Σ𝑐 ∈ R𝑟×𝑟 and 𝑉 𝑐 ∈ R𝑑×𝑟.

How sketching works. We start by describing the SCW algorithm for low-rank matrix

approximation, see Algorithm 27. The algorithm computes the singular value decomposition

of 𝑆𝐴 = 𝑈Σ𝑉 ⊤, and compute the best rank-𝑘 approximation of 𝐴𝑉 . Finally it outputs

[𝐴𝑉 ]𝑘𝑉
⊤ as a rank-𝑘 approximation of 𝐴.

3The remaining columns of 𝑈 and 𝑉 respectively are orthonormal bases for the nullspace of 𝐴 and 𝐴⊤.
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Note that if 𝑚 is much smaller than 𝑑 and 𝑛, the space bound of this algorithm is

significantly better than when computing a rank-𝑘 approximation for 𝐴 in the naïve way.

Thus, minimizing 𝑚 automatically reduces the space usage of the algorithm.

Sketching matrix. We use matrix 𝑆 that is sparse4 Specifically, each column of 𝑆 has

exactly one non-zero entry, which is either +1 or −1. This means that the fraction of non-

zero entries in 𝑆 is 1/𝑚. Therefore, one can use a vector to represent 𝑆, which is very

memory efficient. It is worth noting, however, after multiplying the sketching matrix 𝑆 with

other matrices, the resulting matrix (e.g., 𝑆𝐴) is in general not sparse.

7.3. Training Algorithm

In this section, we describe our learning-based algorithm for computing a data dependent

sketch 𝑆. The main idea is to use back-propagation algorithm to compute the stochastic

gradient of 𝑆 with respect to the rank-𝑘 approximation loss in Equation (7.1.1), where the

initial value of 𝑆 is the same random sparse matrix used in SCW. Once we have the stochastic

gradient, we can run stochastic gradient descent (SGD) algorithm to optimize 𝑆, in order to

improve the loss. Our algorithm maintains the sparse structure of 𝑆, and only optimizes the

values of the 𝑛 non-zero entries (initially +1 or −1).
However, the standard SVD implementation (step 2 in Algorithm 27 ) is not differen-

tiable, which means we cannot get the gradient in the straightforward way. To make SVD

implementation differentiable, we use the fact that the SVD procedure can be represented

as 𝑚 individual top singular value decompositions (see e.g. [10]), and that every top singular

value decomposition can be computed using the power method. See Figure 7.3.1 and Algo-

rithm 28. We store the results of the 𝑖-th iteration into the 𝑖-th entry of the list 𝑈,Σ, 𝑉 ,

and finally concatenate all entries together to get the matrix (or matrix diagonal) format of

𝑈,Σ, 𝑉 . This allows gradients to flow easily.

Due to the extremely long computational chain, it is infeasible to write down the explicit

form of loss function or the gradients. However, just like how modern deep neural networks

4The original papers [157, 52] used dense matrices, but the work of [53] showed that sparse matrices work
as well. We use sparse matrices since they are more efficient to train and to operate on.
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Algorithm 28 Differentiable implementation of
SVD
1: Input: 𝐴1 ∈ R𝑚×𝑑(𝑚 < 𝑑)
2: 𝑈,Σ, 𝑉 ← {}, {}, {}
3: for 𝑖← 1 . . .𝑚 do
4: 𝑣1 ← random initialization in R𝑑

5: for 𝑡← 1 . . . 𝑇 do
6: 𝑣𝑡+1 ← 𝐴⊤

𝑖 𝐴𝑖𝑣𝑡
‖𝐴⊤

𝑖 𝐴𝑖𝑣𝑡‖2
◁ power method

7: 𝑉 [𝑖]← 𝑣𝑇+1

8: Σ[𝑖]← ‖𝐴𝑖𝑉 [𝑖]‖2
9: 𝑈 [𝑖]← 𝐴𝑖𝑉 [𝑖]

Σ[𝑖]

10: 𝐴𝑖+1 ← 𝐴𝑖 − Σ[𝑖]𝑈 [𝑖]𝑉 [𝑖]⊤

11: return 𝑈,Σ, 𝑉

𝑣1

𝐴⊤𝑖 𝐴𝑖𝑣𝑡

‖𝐴⊤𝑖 𝐴𝑖𝑣𝑡‖2

×𝑇 times

𝑈
Σ
𝑉

𝑈 [𝑖]

Σ[𝑖]

𝑉 [𝑖]

Figure 7.3.1: The 𝑖-th iteration of
power method.

compute their gradients, we used the autograd feature in PyTorch to numerically compute

the gradient with respect to the sketching matrix 𝑆.

We emphasize again that our method is only optimizing 𝑆 for the training phase. After

𝑆 is fully trained, we still call Algorithm 27 for low rank approximation, which has exactly

the same running time as the SCW algorithm, but with better performance.

7.4. Worst Case Bound

In this section, we show that concatenating two sketching matrices 𝑆1 and 𝑆2 (of size respec-

tively 𝑚1 × 𝑛 and 𝑚2 × 𝑛) into a single matrix 𝑆* (of size (𝑚1 +𝑚2)× 𝑛) will not increase

the approximation loss of the final rank-𝑘 solution computed by Algorithm 27 compared to

the case in which only one of 𝑆1 or 𝑆2 are used as the sketching matrix. In the rest of this

section, the sketching matrix 𝑆* denotes the concatenation of 𝑆1 and 𝑆2 as follows:

𝑆*((𝑚1+𝑚2)×𝑛) =

⎡⎢⎢⎢⎣
𝑆1(𝑚1×𝑛)

𝑆2(𝑚2×𝑛)

⎤⎥⎥⎥⎦
Formally, we prove the following theorem in this section.

Theorem 7.4.1. Let 𝑈*Σ*𝑉* and 𝑈1Σ1𝑉1 respectively denote the SVD of 𝑆*𝐴 and 𝑆1𝐴.
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Then,

||[𝐴𝑉*]𝑘𝑉
⊤
* − 𝐴||𝐹 ≤ ||[𝐴𝑉1]𝑘𝑉

⊤
1 − 𝐴||𝐹 .

In particular, the above theorem implies that the output of Algorithm 27 with the sketch-

ing matrix 𝑆* is a better rank-𝑘 approximation to 𝐴 compared to the output of the algorithm

with 𝑆1. In the rest of this section we prove Theorem 7.4.1.

Fact 7.4.2 (Pythagorean Theorem). If 𝐴 and 𝐵 are matrices with the same number of

rows and columns, then 𝐴𝐵⊤ = 0 implies ||𝐴+𝐵||2𝐹 = ||𝐴||2𝐹 + ||𝐵||2𝐹 .

Claim 7.4.3. Let 𝑉1 and 𝑉2 be two matrices such that colsp(𝑉1) ⊆ colsp(𝑉2). Then,

min
rowsp(𝑋)⊆colsp(𝑉1);

rank(𝑋)≤𝑘

||𝑋 − 𝐴||2𝐹 ≥ min
rowsp(𝑋)⊆colsp(𝑉2);

rank(𝑋)≤𝑘

||𝑋 − 𝐴||2𝐹

Before proving the main theorem, we state the following helpful lemma from [52].

Lemma 7.4.4 (Lemma 4.3 in [52]). Suppose that 𝑉 is a matrix with orthonormal columns.

Then, a best rank-k approximation to 𝐴 in the colsp(𝑉 ) is given by [𝐴𝑉 ]𝑘𝑉
⊤.

Proof: Note that 𝐴𝑉 𝑉 ⊤ is a row projection of 𝐴 on the colsp(𝑉 ). Then, for any conforming

𝑌 ,

(𝐴− 𝐴𝑉 𝑉 ⊤)(𝐴𝑉 𝑉 ⊤ − 𝑌 𝑉 ⊤)⊤ = 𝐴(𝐼 − 𝑉 𝑉 ⊤)𝑉 (𝐴𝑉 − 𝑌 )⊤

= 𝐴(𝑉 − 𝑉 𝑉 ⊤𝑉 )(𝐴𝑉 − 𝑌 )⊤ = 0.

where the last equality follows from the fact if 𝑉 has orthonormal columns then 𝑉 𝑉 ⊤𝑉 = 𝑉

(e.g., see Lemma 3.5 in [52]). Then, by the Pythagorean Theorem (Fact 7.4.2), we have

||𝐴− 𝑌 𝑉 ⊤||2𝐹 = ||𝐴− 𝐴𝑉 𝑉 ⊤||2𝐹 + ||𝐴𝑉 𝑉 ⊤ − 𝑌 𝑉 ⊤||2𝐹 (7.4.1)

Since 𝑉 has orthonormal columns, for any conforming 𝑥, ||𝑥⊤𝑉 ⊤|| = ||𝑥||. Thus, for any 𝑍
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of rank at most 𝑘,

||𝐴𝑉 𝑉 ⊤ − [𝐴𝑉 ]𝑘𝑉
⊤||𝐹 = ||(𝐴𝑉 − [𝐴𝑉 ]𝑘)𝑉

⊤||𝐹 = ||𝐴𝑉 − [𝐴𝑉 ]𝑘||𝐹
≤ ||𝐴𝑉 − 𝑍||𝐹 = ||𝐴𝑉 𝑉 ⊤ − 𝑍𝑉 ⊤||𝐹

(7.4.2)

Hence,

||𝐴− [𝐴𝑉 ]𝑘𝑉
⊤||2𝐹 = ||𝐴− 𝐴𝑉 𝑉 ⊤||2𝐹 + ||𝐴𝑉 𝑉 ⊤ − [𝐴𝑉 ]𝑘𝑉

⊤||2𝐹 B By (7.4.1)

≤ ||𝐴− 𝐴𝑉 𝑉 ⊤||2𝐹 + ||𝐴𝑉 𝑉 ⊤ − 𝑍𝑉 ⊤||2𝐹 B By (7.4.2)

This implies that [𝐴𝑉 ]𝑘𝑉
⊤ is a best rank-𝑘 approximation of 𝐴 in the colsp(𝑉 ). �

Since the above statement is a transposed version of the lemma from [52], we include the

proof in the appendix for completeness.

Proof: (Proof of Theorem 7.4.1) First, we show that colsp(𝑉1) ⊆ colsp(𝑉*). By the proper-

ties of the (compact) SVD, colsp(𝑉1) = rowsp(𝑆1𝐴) and colsp(𝑉*) = rowsp(𝑆*𝐴). Since, 𝑆*

has all rows of 𝑆1, then

colsp(𝑉1) ⊆ colsp(𝑉*). (7.4.3)

By Lemma 7.4.4,

||𝐴− [𝐴𝑉*]𝑘𝑉
⊤
* ||𝐹 = min

rowsp(𝑋)⊆colsp(𝑉*);
rank(𝑋)≤𝑘

||𝑋 − 𝐴||𝐹

||𝐴− [𝐴𝑉1]𝑘𝑉
⊤
1 ||𝐹 = min

colsp(𝑋)⊆colsp(𝑉1);
rank(𝑋)≤𝑘

||𝑋 − 𝐴||𝐹
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Finally, together with (7.4.3) and Claim 7.4.3

||𝐴− [𝐴𝑉*]𝑘𝑉
⊤
* ||𝐹 = min

rowsp(𝑋)⊆colsp(𝑉*);
rank(𝑋)≤𝑘

||𝑋 − 𝐴||𝐹

≤ min
rowsp(𝑋)⊆colsp(𝑉1);

rank(𝑋)≤𝑘

||𝑋 − 𝐴||𝐹 = ||𝐴− [𝐴𝑉1]𝑘𝑉
⊤
1 ||𝐹 .

which completes the proof. �

Finally, we note that the property of Theorem 7.4.1 is not universal, i.e., it does not

hold for all sketching algorithms for low-rank decomposition. For example, an alternative

algorithm proposed in [54] proceeds by letting 𝑍 to be the top 𝑘 singular vectors of 𝑆𝐴 and

then reports 𝐴𝑍𝑍⊤. It is not difficult to see that, by adding extra rows to the sketching

matrix 𝑆, one can skew the output of the algorithm so that it is far from the optimal.

7.5. Experimental Results

The main question considered here is whether, for natural matrix datasets, optimizing the

sketch matrix 𝑆 can improve the performance of the sketching algorithm for the low-rank de-

composition problem. To answer this question, we implemented and compared the following

methods for computing 𝑆 ∈ R𝑚×𝑛.

∙ Sparse Random. Sketching matrices are generated at random as in [53]. Specifically,

we select a random hash function ℎ : [𝑛]→ [𝑚], and for all 𝑖 = 1 . . . 𝑛, 𝑆ℎ[𝑖],𝑖 is selected

to be either +1 or −1 with equal probability. All other entries in 𝑆 are set to 0.

Therefore, 𝑆 has exactly 𝑛 non-zero entries.

∙ Dense Random. All the 𝑛𝑚 entries in the sketching matrices are sampled from

Gaussian distribution (we include this method for comparison).

∙ Learned. Using the sparse random matrix as the initialization, we run Algorithm 28 to

optimize the sketching matrix using the training set, and return the optimized matrix.

∙ Mixed (J). We first generate two sparse random matrices 𝑆1, 𝑆2 ∈ R𝑚
2
×𝑛 (assuming 𝑚

is even), and define 𝑆 to be their combination. We then run Algorithm 28 to optimize

𝑆 using the training set, but only 𝑆1 will be updated, while 𝑆2 is fixed. Therefore, 𝑆 is
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a mixture of learned matrix and random matrix, and the first matrix is trained jointly

with the second one.

∙ Mixed (S). We first compute a learned matrix 𝑆1 ∈ R𝑚
2
×𝑛 using the training set,

and then append another sparse random matrix 𝑆2 to get 𝑆 ∈ R𝑚×𝑛. Therefore, 𝑆

is a mixture of learned matrix and random matrix, but the learned matrix is trained

separately.
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Figure 7.5.1: Test error by datasets and sketching matrices For 𝑘 = 10,𝑚 = 20
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Figure 7.5.2: Test error for Logo (left), Hyper (middle) and Tech (right) when 𝑘 = 10.

Datasets. We used a variety of datasets to test the performance of our methods:

∙ Videos5: Logo, Friends, Eagle. We downloaded three high resolution videos from

Youtube, including logo video, Friends TV show, and eagle nest cam. From each video,

we collect 500 frames of size 1920× 1080× 3 pixels, and use 400 (100) matrices as the

training (test) set. For each frame, we resize it as a 5760× 1080 matrix.

∙ Hyper. We use matrices from HS-SOD, a dataset for hyperspectral images from

natural scenes [104]. Each matrix has 1024×768 pixels, and we use 400 (100) matrices

5They can be downloaded from http://youtu.be/L5HQoFIaT4I, http://youtu.be/xmLZsEfXEgE and
http://youtu.be/ufnf_q_3Ofg
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as the training (test) set.

∙ Tech. We use matrices from TechTC-300, a dataset for text categorization [60]. Each

matrix has 835, 422 rows, but on average only 25, 389 of the rows contain non-zero

entries. On average each matrix has 195 columns. We use 200 (95) matrices as the

training (test) set.

Evaluation metric. To evaluate the quality of a sketching matrix 𝑆, it suffices to evaluate

the output of Algorithm 27 using the sketching matrix 𝑆 on different input matrices 𝐴. We

first define the optimal approximation loss for test set Te as follows: App*Te , E𝐴∼Te‖𝐴 −
[𝐴]𝑘‖𝐹 .

Note that App*Te does not depend on 𝑆, and in general it is not achievable by any

sketch 𝑆 with 𝑚 < 𝑑, because of information loss. Based on the definition of the optimal

approximation loss, we define the error of the sketch 𝑆 for Te as Err(Te, 𝑆) , E𝐴∼Te‖𝐴 −
SCW(𝑆,𝐴)‖𝐹 − App*Te.

In our datasets, some of the matrices have much larger singular values than the others.

To avoid imbalance in the dataset, we normalize the matrices so that their top singular

values are all equal.

Figure 7.5.3: Low rank approximation results for Logo video frame: the best rank-10
approximation (left), and rank-10 approximations reported by Algorithm 27 using a sparse
learned sketching matrix (middle) and a sparse random sketching matrix (right).

7.5.1. Average test error

We first test all methods on different datasets, with various combination of 𝑘,𝑚. See Fig-

ure 7.5.1 for the results when 𝑘 = 10,𝑚 = 20. As we can see, for video datasets, learned

sketching matrices can get 20× better test error than the sparse random or dense random

sketching matrices. For other datasets, learned sketching matrices are still more than 2×
better. Similar improvement of the learned sketching matrices over the random sketching
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Table 7.5.1: Test error in various settings.

𝑘,𝑚, Sketch Logo Eagle Friends Hyper Tech

10, 10,Learned 0.39 0.31 1.03 1.25 6.70
10, 10,Random 5.22 6.33 11.56 7.90 17.08
10, 20,Learned 0.10 0.18 0.22 0.52 2.95
10, 20,Random 2.09 4.31 4.11 2.92 7.99
20, 20,Learned 0.61 0.66 1.41 1.68 7.79
20, 20,Random 4.18 5.79 9.10 5.71 14.55
20, 40,Learned 0.18 0.41 0.42 0.72 3.09
20, 40,Random 1.19 3.50 2.44 2.23 6.20
30, 30,Learned 0.72 1.06 1.78 1.90 7.14
30, 30,Random 3.11 6.03 6.27 5.23 12.82
30, 60,Learned 0.21 0.61 0.42 0.84 2.78
30, 60,Random 0.82 3.28 1.79 1.88 4.84

Table 7.5.2: Performance of mixed sketches

𝑘,𝑚, Sketch Logo Hyper Tech

10, 10,Learned 0.39 1.25 6.70
10, 10,Random 5.22 7.90 17.08

10, 20,Learned 0.10 0.52 2.95
10, 20,Mixed (J) 0.20 0.78 3.73
10, 20,Mixed (S) 0.24 0.87 3.69
10, 20,Random 2.09 2.92 7.99
10, 40,Learned 0.04 0.28 1.16
10, 40,Mixed (J) 0.05 0.34 1.31
10, 40,Mixed (S) 0.05 0.34 1.20
10, 40,Random 0.45 1.12 3.28
10, 80,Learned 0.02 0.16 0.31
10, 80,Random 0.09 0.32 0.80

matrices can be observed when 𝑘 = 10,𝑚 = 10, 20, 30, 40, · · · , 80, see Figure 7.5.2. We also

include the test error results in Table 7.5.1 for the case when 𝑘 = 20, 30. Finally, in Figure

7.5.3, we visualize an example output of the algorithm for the case 𝑘 = 10,𝑚 = 20 for the

Logo dataset.

7.5.2. Comparing Random, Learned and Mixed

In Table 7.5.2, we investigate the performance of the mixed sketching matrices by comparing

them with random and learned sketching matrices. In all scenarios, mixed sketching matrices

yield much better results than random sketching matrices, and sometimes the results are

comparable to those of learned sketching matrices. This means, in most cases it suffices to

train one half of the sketching matrix to obtain good empirical results, and at the same time,

by our Theorem 7.4.1, we can use the remaining random half of the sketch matrix to obtain

worst-case guarantee.

7.6. The case of 𝑚 = 1

In this section, we denote the SVD of 𝐴 as 𝑈𝐴Σ𝐴(𝑉 𝐴)⊤ such that both 𝑈𝐴 and 𝑉 𝐴 have

orthonormal columns and Σ𝐴 = diag{𝜆𝐴
1 , · · · , 𝜆𝐴

𝑑 } is a diagonal matrix with nonnegative

entries. For simplicity, we assume that for all 𝐴 ∼ 𝒟, 1 = 𝜆1 ≥ · · · ≥ 𝜆𝑑. We use 𝑈𝐴
𝑖 to

denote the 𝑖-th column of 𝑈𝐴, and similarly for 𝑉 𝐴
𝑖 . Denote Σ𝐴 = diag{𝜆𝐴

1 , · · · , 𝜆𝐴
𝑑 }.

We want to find [𝐴]𝑘, the rank-𝑘 approximation of 𝐴. In general, it is hard to obtain a

closed form expression of the output of Algorithm 27. However, for 𝑚 = 1, such expressions

can be calculated. Indeed, if 𝑚 = 1, the sketching matrix becomes a vector 𝑠 ∈ R1×𝑛.
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Therefore 𝐴𝑉 in Algorithm 27 has rank at most one, so it suffices to set 𝑘 = 1. Consider

a matrix 𝐴 ∼ 𝒟 as the input to Algorithm 27. By calculation, 𝐴𝑆 =
∑︀

𝑖 𝜆
𝐴
𝑖 ⟨𝑠, 𝑈𝐴

𝑖 ⟩(𝑉 𝐴
𝑖 )⊤,

which is a vector. For example, if 𝑆 = 𝑈𝐴
1 , we obtain 𝜆𝐴

1 (𝑉
𝐴
1 )⊤.

Since 𝑆𝐴 is a vector, applying SVD on it is equivalent to performing normalization.

Therefore,

𝑉 =

∑︀𝑑
𝑖=1 𝜆

𝐴
𝑖 ⟨𝑠, 𝑈𝐴

𝑖 ⟩(𝑉 𝐴
𝑖 )⊤√︁∑︀𝑑

𝑖=1(𝜆
𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩2

Ideally, we hope that 𝑉 is as close to 𝑉 𝐴
1 as possible, because that means [𝐴𝑉 ]1𝑉

⊤ is close

to 𝜆𝐴
1 𝑈

𝐴
1 (𝑉

𝐴
1 )⊤, which captures the top singular component of 𝐴, i.e., the optimal solution.

More formally,

𝐴𝑉 =

∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩𝑈𝐴

𝑖√︁∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩2

We want to maximize its norm, which is:

∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

4⟨𝑠, 𝑈𝐴
𝑖 ⟩2∑︀𝑑

𝑖=1(𝜆
𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩2

(7.6.1)

We note that one can simplify (7.6.1) by considering only the contribution from the top

left singular vector 𝑈𝐴
1 , which corresponds to the maximization of the following expression:

⟨𝑠, 𝑈𝐴
1 ⟩2∑︀𝑑

𝑖=1(𝜆
𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩2

(7.6.2)

7.7. Optimization Bounds

Motivated by the empirical success of sketch optimization, we investigate the complexity of

optimizing the loss function. We focus on the simple case where 𝑚 = 1 and therefore 𝑆 is

just a (dense) vector. Our main observation is that a vector 𝑠 picked uniformly at random

from the 𝑑-dimensional unit sphere achieves an approximately optimal solution, with the

approximation factor depending on the maximum stable rank of matrices 𝐴1, · · · , 𝐴𝑁 . This
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algorithm is not particularly useful for our purpose, as our goal is to improve over the random

choice of the sketching matrix 𝑆. Nevertheless, it demonstrates that an algorithm with a

non-trivial approximation factor exists.

Definition 7.7.1 (stable rank (𝑟′)). For a matrix 𝐴, the stable rank of 𝐴 is defined as

the squared ratio of Frobenius and operator norm of 𝐴. I.e.,

𝑟′(𝐴) =
||𝐴||2𝐹
||𝐴||2

=

∑︀
𝑖(𝜆

𝐴
𝑖 )

2

max𝑖(𝜆𝐴
𝑖 )

2
.

Note that since we assume for all matrices 𝐴 ∼ 𝒟, 1 = 𝜆𝐴
1 ≥ · · · ≥ 𝜆𝐴

𝑑 > 0, for all these

matrices 𝑟′(𝐴) =
∑︀

𝑖(𝜆
𝐴
𝑖 )

2.

First, we consider the simplified objective function as in (7.6.2).

Lemma 7.7.2. A random vector 𝑠 which is picked uniformly at random from the 𝑑-dimensional

unit sphere, is an 𝑂(𝑟′)-approximation to the optimum value of the simplified objective func-

tion in Equation (7.6.2), where 𝑟′ is the maximum stable rank of matrices 𝐴1, · · · , 𝐴𝑁 .

Proof: We will show that

𝐸

[︃
⟨𝑠, 𝑈𝐴

1 ⟩2∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩2

]︃
= Ω(1/𝑟′(𝐴))

for all 𝐴 ∼ 𝒟 where 𝑠 is a vector picked uniformly at random from S𝑑−1. Since for all

𝐴 ∼ 𝒟 we have ⟨𝑠,𝑈𝐴
1 ⟩2∑︀𝑑

𝑖=1(𝜆
𝐴
𝑖 )2⟨𝑠,𝑈𝐴

𝑖 ⟩2 ≤ 1, by the linearity of expectation we have that the vector

𝑠 achieves an 𝑂(𝑟′)-approximation to the maximum value of the objective function

𝑁∑︁
𝑗=1

⟨𝑠, 𝑈𝐴𝑗

1 ⟩2∑︀𝑑
𝑖=1(𝜆

𝐴𝑗

𝑖 )2⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2

.

First, recall that to sample 𝑠 uniformly at random from S𝑑−1 we can generate 𝑠 as∑︀𝑑
𝑖=1 𝛼𝑖𝑈

𝐴
𝑖 /
√︁∑︀𝑑

𝑖=1 𝛼
2
𝑖 where for all 𝑖 ≤ 𝑑, 𝛼𝑖 ∼ 𝒩 (0, 1). This helps us evaluateE

[︁
⟨𝑠,𝑈𝐴

1 ⟩2∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )2⟨𝑠,𝑈𝐴

𝑖 ⟩2

]︁
for an arbitrary matrix 𝐴 ∼ 𝒟:
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𝐸 = E

[︃
⟨𝑠, 𝑈𝐴

1 ⟩2∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩2

]︃
= E

[︃
(𝛼1)

2∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

2 · (𝛼𝑖)2

]︃

≥ E

[︃
(𝛼1)

2∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

2 · (𝛼𝑖)2
|Ψ1 ∩Ψ2

]︃
· Pr(Ψ1 ∩Ψ2)

where the events Ψ1,Ψ2 are defined as:

Ψ1 , 1

[︂
|𝛼1| ≥

1

2

]︂
and Ψ2 , 1

[︃
𝑑∑︁

𝑖=2

(𝜆𝐴
𝑖 )

2(𝛼𝑖)
2 ≤ 2 · 𝑟′(𝐴)

]︃

Since 𝛼𝑖s are independent, we have

𝐸 ≥ E

[︂
(𝛼1)

2

(𝛼1)2 + 2 · 𝑟′(𝐴) |Ψ1 ∩Ψ2

]︂
· Pr(Ψ1) · Pr(Ψ2) ≥

1

8 · 𝑟′(𝐴) + 1
· Pr(Ψ1) · Pr(Ψ2)

where we used that (𝛼1)2

(𝛼1)2+2·𝑟′(𝐴)
is increasing for (𝛼1)

2 ≥ 1
4
. It remains to prove that

Pr(Ψ1),Pr(Ψ2) = Θ(1). We observe that, since 𝛼𝑖 ∼ 𝒩 (0, 1), we have

Pr(Ψ1) = Pr

(︂
|𝛼1| ≥

1

2

)︂
= Θ(1)

Similarly, by Markov inequality, we have

Pr(Ψ2) = Pr

(︃
𝑑∑︁

𝑖=1

(𝜆𝐴
𝑖 )

2(𝛼𝑖)
2 ≤ 2𝑟′(𝐴)

)︃
≥ 1− Pr

(︃
𝑑∑︁

𝑖=1

(𝜆𝐴
𝑖 )

2(𝛼𝑖)
2 > 2𝑟′(𝐴)

)︃
≥ 1

2
�

Next, we prove that a random vector 𝑠 ∈ S𝑑−1 achieves an 𝑂(𝑟′(𝐴))-approximation to

the optimum of the main objective function as in Equation (7.6.1).

Lemma 7.7.3. A random vector 𝑠 which is picked uniformly at random from the 𝑑-dimensional

unit sphere, is an 𝑂(𝑟′)-approximation to the optimum value of the objective function in

Equation (7.6.1), where 𝑟′ is the maximum stable rank of matrices 𝐴1, · · · , 𝐴𝑁 .

Proof: We assume that the vector 𝑠 is generated via the same process as in the proof of
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Lemma 7.7.2. It follows that

E

[︃∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

4⟨𝑠, 𝑈𝐴
𝑖 ⟩2∑︀𝑑

𝑖=1(𝜆
𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩2

]︃
≥ E

[︃
(𝛼1)

2∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

2 · (𝛼𝑖)2

]︃
= Ω(1/𝑟′(𝐴)) �

7.8. Generalization Bounds

Define the loss function as L(𝑠) , −E𝐴∼𝒟[
∑︀𝑑

𝑖=1(𝜆𝐴
𝑖 )

4
⟨𝑠,𝑈𝐴

𝑖 ⟩2∑︀𝑑
𝑖=1(𝜆𝐴

𝑖 )
2
⟨𝑠,𝑈𝐴

𝑖 ⟩2
] We want to find a vector 𝑠 ∈ S𝑑−1

to minimize L(𝑠), where S𝑑−1 is the 𝑑-dimensional unit sphere. Since 𝒟 is unknown, we are

optimizing LTr(𝑠) , − 1
𝑁

∑︀𝑁
𝑗=1[

∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗
𝑖

)︁4
⟨𝑠,𝑈

𝐴𝑗
𝑖 ⟩2∑︀𝑑

𝑖=1

(︁
𝜆
𝐴𝑗
𝑖

)︁2
⟨𝑠,𝑈

𝐴𝑗
𝑖 ⟩2

].

The importance of robust solutions. We start by observing that if 𝑠 minimizes the

training loss L, it is not necessarily true that 𝑠 is the optimal solution for the population

loss L. For example, it could be the case that {𝐴𝑗}𝑗=1,··· ,𝑁 are diagonal matrices with only

1 non-zeros on the top row, while 𝑠 = (𝜖,
√
1− 𝜖2, 0, · · · , 0) for 𝜀 close to 0. In this case, we

know that LTr(𝑠) = −1, which is at its minimum value.

However, such a solution is not robust. In the population distribution, if there exists a

matrix 𝐴 such that 𝐴 = diag(
√
1− 100𝜀2, 10𝜀, 0, 0, · · · , 0), insert 𝑠 into (7.6.1),

∑︀𝑑
𝑖=1

(︀
𝜆𝐴
𝑖

)︀4 ⟨𝑠, 𝑈𝐴
𝑖 ⟩2∑︀𝑑

𝑖=1 (𝜆
𝐴
𝑖 )

2 ⟨𝑠, 𝑈𝐴
𝑖 ⟩2

=
(1− 100𝜀2)2𝜀2 + 104𝜀4(1− 𝜀2)

(1− 100𝜀2)𝜀2 + 100𝜀2(1− 𝜀2)
<

𝜀2 + 104𝜀4

101𝜀2 − 100𝜀4
=

1 + 104𝜀2

101− 100𝜀2

The upper bound is very close to 0 if 𝜀 is small enough. This is because when the

denominator is extremely small, the whole expression is susceptible to minor perturbations

on 𝐴. This is a typical example showing the importance of finding a robust solution. Because

of this issue, we will show a generalization guarantee for a robust solution 𝑠.

Definition of robust solution. First, define event 𝜁𝐴,𝛿,𝑠 , 1
[︁∑︀𝑑

𝑖=1

(︀
𝜆𝐴
𝑖

)︀2 ⟨𝑠, 𝑈𝐴
𝑖 ⟩2 < 𝛿

]︁
,

which is the denominator in the loss function. Ideally, we want this event to happen with a

small probability, which indicates that for most matrices, the denominator is large, therefore

𝑠 is robust in general. We have the following definition of robustness.
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Definition 7.8.1 ((𝜌, 𝛿)-robustness). 𝑠 is (𝜌, 𝛿)-robust with respect to 𝒟 if E𝐴∼𝒟[𝜁𝐴,𝛿,𝑠] ≤
𝜌. 𝑠 is (𝜌, 𝛿)-robust with respect to Tr if E𝐴∼Tr[𝜁𝐴,𝛿,𝑠] ≤ 𝜌.

For a given 𝒟, we can define robust solution set that includes all robust vectors.

Definition 7.8.2 ((𝜌, 𝛿)-robust set). M𝒟,𝜌,𝛿 is defined to be the set of all vectors 𝑠 ∈ S𝑑−1

s.t. 𝑠 is (𝜌, 𝛿)-robust with respect to 𝒟.

Estimating M𝒟,𝜌,𝛿. The drawback of the above definition is that M𝒟,𝜌,𝛿 is defined by the

unknown distribution 𝒟, so for fixed 𝛿 and 𝜌, we cannot tell whether 𝑠 is in M𝒟,𝜌,𝛿 or not.

However, we can estimate the robustness of 𝑠 using the training set. Specifically, we have

the following lemma:

Lemma 7.8.3 (Estimating robustness). For a training set Tr of size 𝑁 sampled uni-

formly at random from 𝒟, and a given 𝑠 ∈ R𝑑, a constant 1 > 𝜂 > 0, if 𝑠 is (𝜌, 𝛿)-robust

with respect to Tr, then with probability at least 1− 𝑒−
𝜂2𝑝𝑁

2 , 𝑠 is
(︁

𝜌
1−𝜂

, 𝛿
)︁
-robust with respect

to 𝒟.

Proof: Suppose that Pr𝐴∼𝒟[𝜁𝐴,𝛿,𝑠] = 𝜌1, which means E
[︀∑︀

𝐴𝑖∈Tr 𝜁𝐴𝑖,𝛿,𝑠

]︀
= 𝜌1𝑁 . Since events

𝜁𝐴𝑖,𝛿,𝑠’s are 0-1 random variables, by Chernoff bound,

Pr

(︃∑︁
𝐴𝑖∈Tr

𝜁𝐴𝑖,𝛿,𝑠 ≤ (1− 𝜂)𝜌1𝑁

)︃
≤ 𝑒−

𝜂2𝜌1𝑁
2

If 𝜌1 < 𝜌 < 𝜌/(1 − 𝜂), our claim is immediately true. Otherwise, we know 𝑒−
𝜂2𝜌1𝑁

2 ≤
𝑒−

𝜂2𝜌𝑁
2 . Hence, with probability at least 1− 𝑒−

𝜂2𝜌𝑁
2 , 𝑁𝜌 =

∑︀
𝐴𝑖∼Tr 𝜁𝐴𝑖,𝛿,𝑠 > (1− 𝜂)𝜌1𝑁 . This

implies that with probability at least 1− 𝑒−
𝜂2𝜌𝑁

2 , 𝜌1 ≤ 𝜌
1−𝜂

. �

Lemma 7.8.3 implies that for a fixed solution 𝑠, if it is (𝜌, 𝛿)-robust in Tr, it is also

(𝑂(𝜌), 𝛿)-robust in 𝒟 with high probability. However, Lemma 7.8.3 only works for a single

solution 𝑠, but there are infinitely many potential 𝑠 on the 𝑑-dimensional unit sphere.

To remedy this problem, we discretize the unit sphere to bound the number of potential

solutions. Classical results tell us that discretizing the unit sphere into a grid of edge length

𝜀√
𝑑
gives 𝐶

𝜀𝑑
points on the grid for some constant 𝐶 (e.g., see Section 3.3 in [98] for more

details). We will only consider these points as potential solutions, denoted as B̂
𝑑
. Thus, we
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can find a “robust” solution 𝑠 ∈ B̂
𝑑
with decent probability, using Lemma 7.8.3 and union

bound.

Lemma 7.8.4 (Picking robust 𝑠). For a fixed constant 𝜌 > 0, 1 > 𝜂 > 0, with probability

at least 1 − 𝐶
𝜀𝑑
𝑒−

𝜂2𝜌𝑁
2 , any (𝜌, 𝛿)-robust 𝑠 ∈ B̂

𝑑
with respect to Tr is

(︁
𝜌

1−𝜂
, 𝛿
)︁
-robust with

respect to 𝒟.

Since we are working on the discretized solution, we need a new definition of robust set.

Definition 7.8.5 (Discretized (𝜌, 𝛿)-robust set). M̂𝒟,𝜌,𝛿 is defined to be the set of all

vector 𝑠 ∈ B̂
𝑑
s.t. 𝑠 is (𝜌, 𝛿)-robust with respect to 𝒟.

Using similar arguments as Lemma 7.8.4, we know all solutions from M̂𝒟,𝜌,𝛿 are robust with

respect to Tr as well.

Lemma 7.8.6. With probability at least 1− 𝐶
𝜀𝑑
𝑒−

𝜂2𝜌𝑁
3 , for a constant 𝜂 > 0, all solutions in

M̂𝒟,𝜌,𝛿, are ((1 + 𝜂)𝜌, 𝛿)-robust with respect to Tr.

Proof: Consider a fixed solution 𝑠 ∈ M̂𝒟,𝜌,𝛿. Note that E
[︀∑︀

𝐴𝑖∈Tr 𝜁𝐴𝑖,𝛿,𝑠

]︀
= 𝜌𝑁 and 𝜁𝐴𝑖,𝛿,𝑠

are 0-1 random variables. Therefore by Chernoff bound,

Pr

(︃∑︁
𝐴𝑖∈Tr

𝜁𝐴𝑖,𝛿,𝑠 ≥ (1 + 𝜂)𝜌𝑁

)︃
≤ 𝑒−

𝜂2𝜌𝑁
3 .

Hence, with probability at least 1− 𝑒−
𝜂2𝜌𝑁

3 , 𝑠 is ((1 + 𝜂)𝜌, 𝛿)-robust with respect to Tr. By

union bound on all points in M̂𝒟,𝜌,𝛿 ⊆ B̂
𝑑
, the proof is complete. �

7.8.1. Generalization Bound for Robust Solutions

Finally, we show the generalization bounds for robust solutions. To this can we use Rademacher

complexity to prove generalization bound. Define Rademacher complexity 𝑅(M̂𝒟,𝜌,𝛿 ∘Tr) as

𝑅(M̂𝒟,𝜌,𝛿 ∘ Tr) ,
1

𝑁
E

𝜎∼{±1}𝑁
sup

𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

⎡⎢⎣𝜎𝑗

∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁2
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2

⎤⎥⎦ .

𝑅(M̂𝒟,𝜌,𝛿 ∘Tr) is handy, because we have the following theorem (notice that the loss function

takes value in [−1, 0]):
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Theorem 7.8.7 (Theorem 26.5 in [160]). Given constant 𝛿 > 0, with probability of at

least 1− 𝛿, for all 𝑠 ∈ M̂𝒟,𝜌,𝛿,

L(𝑠)− LTr(𝑠) ≤ 2𝑅(M̂𝒟,𝜌,𝛿 ∘ Tr) + 4

√︂
2 log(4/𝛿)

𝑁

That means, it suffices to bound 𝑅(M̂𝒟,𝜌,𝛿 ∘ Tr) to get the generalization bound.

Lemma 7.8.8 (Bound on 𝑅(M̂𝒟,𝜌,𝛿 ∘ Tr)). For a constant 𝜂 > 0, with probability at

least 1− 𝐶
𝜀𝑑
𝑒−

𝜂2𝑝𝑁
3 , 𝑅(M̂𝒟,𝜌,𝛿 ∘ Tr) ≤ (1 + 𝜂)𝜌+ 1−𝛿

2𝛿
+ 𝑑√

𝑁
.

Proof: Define 𝜌′ = (1 + 𝜂)𝜌. By Lemma 7.8.6, we know that with probability 1− 𝐶
𝜀𝑑
𝑒−

𝜂2𝑝𝑁
3 ,

any 𝑠 ∈ M̂𝒟,𝜌,𝛿 is (𝜌′, 𝛿)-robust with respect to Tr, hence
∑︀

𝐴∈Tr 𝜁𝐴,𝛿,𝑠 ≤ 𝜌′𝑁 . The analysis

below is conditioned on this event.

Define ℎ𝐴,𝛿,𝑠 , max{𝛿,∑︀𝑑
𝑖=1(𝜆

𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩2}. We know that with probability 1− 𝐶

𝜀𝑑
𝑒−

𝜂2𝑝𝑁
3 ,

𝑁 ·𝑅(M̂𝒟,𝜌,𝛿 ∘ Tr) = E𝜎∼{±1}𝑁 sup
𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

𝜎𝑗

∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁2
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2

≤ 𝜌′𝑁 + E𝜎 sup
𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

𝜎𝑗

∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2

ℎ𝐴,𝛿,𝑠

(7.8.1)

where (7.8.1) holds because by definition, ℎ𝐴,𝛿,𝑠 ≥
∑︀𝑑

𝑖=1(𝜆
𝐴
𝑖 )

2⟨𝑠, 𝑈𝐴
𝑖 ⟩2 if and only if 𝜁𝐴,𝛿,𝑠 = 1,

which happens for at most 𝜌′𝑁 matrices. Note that for any matrix 𝐴𝑗,

𝜎𝑗

∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁2
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2
≤ 1.
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Now,

E𝜎 sup
𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

𝜎𝑗

∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2

ℎ𝐴,𝛿,𝑠

≤ E𝜎 sup
𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

(1𝜎𝑗=1

∑︀𝑑
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2

𝛿
− 1𝜎𝑗=−1

𝑑∑︁
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2) (7.8.2)

= E𝜎 sup
𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

(︃
𝜎𝑗

𝑑∑︁
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2 + 1𝜎𝑗=1

𝑑∑︁
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2(
1

𝛿
− 1)

)︃

≤ 𝑁

2𝛿
− 𝑁

2
+ E𝜎 sup

𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

𝜎𝑗

𝑑∑︁
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2 (7.8.3)

The first inequality (7.8.2) holds as
∑︀𝑑

𝑖=1

(︁
𝜆
𝐴𝑗
𝑖

)︁4
⟨𝑠,𝑈

𝐴𝑗
𝑖 ⟩2

ℎ𝐴,𝛿,𝑠
∈ [𝛿, 1]. It remains to bound the last

term (7.8.3).

E𝜎 sup
𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

𝜎𝑗

𝑑∑︁
𝑖=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4
⟨𝑠, 𝑈𝐴𝑗

𝑖 ⟩2 ≤
𝑑∑︁

𝑖=1

E𝜎 sup
𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

𝜎𝑗

⟨
𝑠,
(︁
𝜆
𝐴𝑗

𝑖

)︁2
𝑈

𝐴𝑗

𝑖

⟩2

(7.8.4)

By contraction lemma of Rademacher complexity, we have

E𝜎 sup
𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

𝜎𝑗

⟨
𝑠,
(︁
𝜆
𝐴𝑗

𝑖

)︁2
𝑈

𝐴𝑗

𝑖

⟩2

≤ E𝜎 sup
𝑠∈M̂𝒟,𝜌,𝛿

𝑁∑︁
𝑗=1

𝜎𝑗

⟨
𝑠,
(︁
𝜆
𝐴𝑗

𝑖

)︁2
𝑈

𝐴𝑗

𝑖

⟩

= E𝜎 sup
𝑠∈M̂𝒟,𝜌,𝛿

⟨
𝑠,

𝑁∑︁
𝑗=1

𝜎𝑗

(︁
𝜆
𝐴𝑗

𝑖

)︁2
𝑈

𝐴𝑗

𝑖

⟩

≤ E𝜎

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑗=1

𝜎𝑗

(︁
𝜆
𝐴𝑗

𝑖

)︁2
𝑈

𝐴𝑗

𝑖

⃦⃦⃦⃦
⃦
2

Where the last inequality is by Cauchy-Schwartz inequality. Now, by Jensen’s inequality,

E𝜎

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑗=1

𝜎𝑗

(︁
𝜆
𝐴𝑗

𝑖

)︁2
𝑈

𝐴𝑗

𝑖

⃦⃦⃦⃦
⃦
2

≤

⎛⎝E𝜎

⃦⃦⃦⃦
⃦

𝑁∑︁
𝑗=1

𝜎𝑗

(︁
𝜆
𝐴𝑗

𝑖

)︁2
𝑈

𝐴𝑗

𝑖

⃦⃦⃦⃦
⃦
2

2

⎞⎠1/2

=

(︃
𝑁∑︁
𝑗=1

(︁
𝜆
𝐴𝑗

𝑖

)︁4)︃1/2

≤
√
𝑁

(7.8.5)
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Combining (7.8.1), (7.8.3), (7.8.4) and (7.8.5), we have 𝑅(M̂𝒟,𝜌,𝛿 ∘ Tr) ≤ 𝜌′ + 1−𝛿
2𝛿

+ 𝑑√
𝑁
. �

Combining with Theorem 7.8.7, we get our main theorem:

Theorem 7.8.9 (Main Theorem). Given a training set Tr = {𝐴𝑗}𝑁𝑗=1 sampled uniformly

from 𝒟, and fixed constants 1 > 𝜌 ≥ 0, 𝛿 > 0, 1 > 𝜂 > 0, if there exists a (𝜌, 𝛿)-robust

solution 𝑠 ∈ B̂
𝑑
with respect to Tr, then with probability at least 1 − 𝐶

𝜀𝑑
𝑒−

𝜂2𝑝𝑁
2 − 𝐶

𝜀𝑑
𝑒−

𝜂2𝑝𝑁
3(1−𝜂) ,

for 𝑠 ∈ B̂
𝑑
that is a (𝜌, 𝛿)-robust solution with respect to Tr,

L(𝑠) ≤ LTr(𝑠) +
2(1 + 𝜂)𝜌

1− 𝜂
+

1− 𝛿

𝛿
+

2𝑑√
𝑁

+ 4

√︂
2 log(4/𝛿)

𝑁

Proof: Since we can find 𝑠 ∈ B̂
𝑑
s.t. 𝑠 is (𝜌, 𝛿)-robust with respect to Tr, by Lemma 7.8.4,

with probability 1− 𝐶
𝜀𝑑
𝑒−

𝜂2𝑝𝑁
2 , 𝑠 is ( 𝜌

1−𝜂
, 𝛿)-robust with respect to 𝒟. Therefore, 𝑠 ∈ M̂𝒟, 𝜌

1−𝜂
,𝛿.

By Lemma 7.8.8, with probability at least 1− 𝐶
𝜀𝑑
𝑒−

𝜂2𝜌𝑁
3(1−𝜂) , 𝑅(M̂𝒟,𝜌,𝛿 ∘Tr) ≤ 𝜌(1+𝜂)

1−𝜂
+ 1−𝛿

2𝛿
+ 𝑑√

𝑁
.

Combined with Theorem 7.8.7, the proof is complete. �

In summary, Theorem 7.8.9 states that if we can find a robust solution 𝑠 which “fits” the

training set then it generalizes to the test set.
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