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Recognizing Weak Embeddings

Hugo Alves Akitaya

Thesis Supervisors: Prof. Diane L. Souvaine, Prof. Csaba D. Tóth, and

Prof. Erik D. Demaine

An embedding of a graph G is a drawing ϕ : G → M of G on a surface

M such that every vertex in V (G) is mapped to a distinct point and edges in

E(G) to interior-disjoint Jordan arcs between the corresponding vertices. A weak

embedding is a map ϕ : G→M such that, for every ε > 0, there exists an embedding

ψε : G→ M so that ‖ϕ− ψε‖ < ε, where ‖.‖ is the uniform norm (i.e., sup norm).

We say that the embedding ψε approximates ϕ. The study of weak embeddings

lies at the interface of several independent lines of research in mathematics and

computer science. In particular, it generalizes various graph visualization models

and is a special case of the notoriously difficult cluster-planarity problem. It is also

related to the foldability problem in computational origami. This thesis presents

several results on the algorithmic complexity of recognizing weak embeddings.

Chapter 2 describes an O(n log n)-time algorithm that recognizes weak em-

beddings in R2 when G is regular degree-2. This generalizes the problem of re-

cognizing weakly simple polygons (whether a polygon is approximable by a simple

polygon) and improves the previous upper bound of O(n2 log n).

Chapter 3 is about the recognizing weak embeddings of general graphs. The

first algorithm that solves this problem (when G is an arbitrary graph) was given by

Fulek and Kynčl (2017) and runs in O(m2ω) ≤ O(m4.75), where ω ∈ [2, 2.373) is the

matrix multiplication exponent. Chapter 3 describes an O(n2 log n)-time algorithm

iv



for the problem based on local operations. The algorithm runs in O(n log n) time if

the input is a simplicial map.

A simplicial complex is a generalization of a graph. A graph can be seen

as an abstract simplicial 1-complex, i.e., a set of points (0-dimensional simplices)

connected by line segments (1-dimensional simplices). A simplicial 2-complex can

be defined by a simplicial 1-complex and a set of triangles (2-dimensional simplices)

each attached to a cycle of three edges. Chapter 4 shows that it is NP-complete

to decide whether a map ϕ : A → R3 is a weak embedding of a simplicial 2-

complex. We first reduce NAE-3SAT to a computational origami problem called

Flat-Foldability, also strengthening the previously known results for this pro-

blem. Then we reduce from Flat-Foldability to recognition of weak embeddings.
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Chapter 1

Introduction

This chapter provides an overview of this thesis and describes each subsequent chap-

ter. In order to do so, the chapter also provides some informal definitions. Each

technical chapter provides formal definitions as needed.

1.1 Intuitive Definition

Folding is present in our daily lives in many ways. Just to name a few examples,

packaging, the relative position of the keyboard and the screen of your laptop, and

even where your arm is relative to your body can be expressed in terms of folding.

Usually, two objects can’t occupy the same space at the same time, but in the

mathematics of folding it is convenient to model 3-dimensional objects with lower-

dimensional approximations which allow objects to overlap. For instance, although

thickness can play an important role in paper folding, we usually think of paper

as a 2-dimensional zero-thickness material. Imagine a square piece of paper folded

in half along its diagonal, see Figure 1.1. We describe this folded state as being

flat, i.e., the two triangles that make up the square paper lie on the same plane

and occupy the same space. Despite this overlap, we know that this representation

approximates a 3-dimensional state where the paper does not go through itself. We

call this approximation of a non-crossing state a weak embedding.

In order to more accurately model what really happens with the paper we

1



Figure 1.1: Folding a square paper along one of its diagonals. (Middle) A weak
embedding where triangles A and B overlap and (right) its perturbation in which
the paper does not intersect itself.

might also want the information that triangle A is on top of triangle B. With this

information, we can perturb our flat approximation of the folded state into the same

position as the real paper by moving each point of our mathematically ideal paper

by some small amount and making sure that the paper will not cross itself in this

new state.

This thesis talks about the problem of recognizing weak embeddings. Given

a weak embedding of an object (which might have parts of the object occupying the

same space), we want to obtain a non-crossing state where each point occupies a

unique position by moving each point by a small amount. We also want to report

the case when we are given a state that does not approximate any real folded state

of the object, i.e., every small perturbation of this input has the object crossing

itself.

1.2 Simplicial Complexes and (Weak) Embeddings

This thesis presents results on weak embeddings of simplicial complexes, more speci-

fically of 1 and 2 dimensions. In geometry, a simplex is a generalization of a triangle

to k dimensions. We call a simplex in k dimensions a k-simplex. We will focus only

on 0-simplices, 1-simplices, and 2-simplices, which are respectively points, line seg-

ments, and triangles. A simplicial complex is a set of simplices that intersect only at

simplices. A simplicial k-complex is a simplicial complex that contains simplices of

dimensions k and lower. We start by defining an abstract simplicial complex which

2



is purely combinatorial, and then define its geometric realization which is a drawing

of the simplicial complex without crossings and overlaps. An abstract simplicial

1-complex is equivalent to a simple undirected graph. A graph G is defined by a set

of vertices, denoted by V (G), and a set of edges, denoted by E(G), which are pairs

of distinct vertices in V (G). An abstract simplicial 2-complex (G,T ) is equivalent

to a graph G and a set T of unordered triples of vertices where each element of T

is defined by a cycle of length 3 in G.

A geometric realization of a simplicial 1-complex associates vertices in V (G)

with distinct points and edges in E(G) with interior disjoint line segments. The

endpoints of the line segment associated with edge uv must be the points associated

with vertices u and v. Figure 1.2(a) shows a geometric realization of the complete

graph K4 with four vertices, where the vertices in V (K4) are shown as four small

circles and the edges in E(K4) are shown as line segments between every pair of

vertices. A geometric realization of a simplicial 2-complex (G,T ) is a geometric

realization of G with interior-disjoint triangles for each element of T . Figure 1.2(e)

shows a 2D representation of a 3D drawing of a simplicial 2-complex (K4, T ), where

T contains two triangles shown in transparent gray.

The union of points in a geometric realization of a simplicial complex defines

a topological space, i.e., a set of points and neighborhoods for each point. Intui-

tively, this captures, in the most general way, how the complex is connected while

associating vertices to points, edges to 1D curves and triangles to 2D surfaces. Since

(b) (c) (d)(a) (e)

Figure 1.2: (a) An embedding of G = K4 in R2. (b) A drawing of G in R2 that is
neither an embedding nor a weak embedding. (c) A weak embedding ϕ : G → R2.
(d) An embedding ψε obtained by moving every point in ϕ(G) by at most ε. The ε-
neighborhood of ϕ(G) is shown in gray. (e) An embedding of a simplicial 2-complex
in R3.

3



all topological spaces obtained from a simplicial complex are equivalent (indepen-

dent of the geometric realization), we use simplicial complex to refer to the abstract

simplicial complex and its topological space interchangeably.

An embedding is a generalization of a geometric realization of a simplicial

complex. Figures 1.2(a) and (e) are also examples of embeddings. The difference is

that an embedding allows each edge to be realized as a chain of line segments. For

a simplicial complex A, an embedding is a continuous map ψ : A→M that is both

piecewise linear (i.e., every edge is mapped to a chain of line segments) and injective

(i.e., every point in A is mapped to a unique point in M). Here, M is a manifold

equipped with a metric (i.e., a space that resembles the Euclidean space near each

point) of higher or equal dimension than A. We call a 2-dimensional manifold a

surface. The genus of a surface is the number of “holes” it has. For example, a

sphere is a surface of genus 0 while a torus is a surface of genus 1. An embedding

of a graph in a fixed 2-dimensional manifold can be found in linear time [Moh99];

however, if the surface is not fixed, it is NP-hard to find the smallest genus of a

surface in which an input graph can be embedded [Tho89]. It was recently proved

that finding an embedding of a simplicial 2-complex in R3 is NP-hard [dMRST18].

A weak embedding ϕ : A → M can be seen as a folding of the simplicial

complex A in M , where A can “touch” but not “cross” itself. More formally, ϕ is a

weak embedding if it is a continuous piecewise-linear map, and, for every ε > 0, there

is an embedding ψε : A→M with ‖ϕ−ψε‖ < ε, where ‖.‖ is the uniform norm (i.e.,

sup norm). Informally, for every ε > 0, we can “perturb” a weak embedding ϕ and

obtain an embedding ψε by moving each point by at most ε (see Figure 1.2(c–d)).

In some cases, it is easy to tell whether ϕ is a weak embedding: Every embedding

is a weak embedding; and if the images of two different edges (or triangles) cross

transversely, then ϕ is not a weak embedding (see Figure 1.2(b)). The problem

becomes challenging when ϕ is not injective, i.e., when several edges (and triangles

in the 2-dimensional case) overlap.

4



1.3 Related Work

Origami. The recognition of weak embeddings relates to computational origami,

which is the study of origami-related problems in computer science. Origami is the

art of folding paper, a 2-dimensional surface, to create a (usually 3-dimensional)

model representing some artistic subject. Although cuts in the paper are used in

traditional models, modern origami artists are usually discouraged from cutting the

paper [Hat11]. Even with this stronger restriction, the use of new design techniques,

many of which use mathematics, brought the art to a new level, with intricate models

that allow an amazing degree of detail [Lan03]. The mathematical and computatio-

nal studies of origami have also found diverse uses beyond the arts. To name a few,

origami-related mathematical properties and algorithms can be used in reconfigu-

rable and self-folding robotics [HAB+10], deployable structures [EHB04, SKSG13],

biomedical devices [KTY+06, LPL+13, JKX+13], and airbag simulation [Cro07].

The connections between origami and mechanical linkages (an assembly of rigid

bodies connected to produce a specific movement) has also been studied [DO07].

Informally, in most mathematical models of origami, a folded isometry f is a map

from a paper P of d dimensions to Rd+1 that does not stretch or tear the paper.

A folded state is a folded isometry together with an ordering between every pair of

overlapping points of P that guarantees that the paper does not “self-cross”. The de-

finition of self-crossing is equivalent to the existence of an injective “ε-perturbation”,

i.e., whether we can obtain a continuous map arbitrarily close to f where each point

of the paper maps to a unique point in Rd+1 (separating the overlapping layer of

paper, which defines the ordering). The Foldability problem asks whether there

exists a folded state for a given folded isometry. The problem of recognizing weak

embeddings generalizes Foldability. Chapters 2 and 4 will review previous results

on the Foldability problem that are used in this thesis.

Topology and Graph Drawing. The study of weak embeddings also lies at the in-

terface of several independent lines of research in mathematics and computer science.

In topology, the study of weak embeddings were initiated by Sieklucki [Sie69] in
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the 1960s. Weak embeddings of graphs also generalize various graph visualiza-

tion models such as the recently introduced strip planarity [ADLDBF17] and level

planarity [JLM98]; and can be seen as a special case [AL16] of the notoriously dif-

ficult cluster-planarity (for short, c-planarity) problem [FCE95a, FCE95b], whose

tractability remains elusive despite many attempts by leading researchers. Graph

visualization models and drawing algorithms have numerous applications in many

areas such as data visualization, circuit design, virtual reality, biology, and chemi-

stry [HMM00]. Moreover, weak embeddings are relevant for applications in clus-

tering, cartography, and visualization, where nearby vertices and edges are often

bundled to a common node or arc, due to data compression or low resolution.

1.4 Problem Definition

This section defines the problem of recognizing whether a drawing ϕ of a graph G is

a weak embedding. Section 1.5 uses this definition to describe the results presented

in this thesis. More in-depth definitions will be given in each chapter.

Let ϕ : G → M be a continuous piecewise-linear map of a graph G in

a 2-dimensional manifold M . Recognizing whether ϕ is a weak embedding turns

out to be a purely combinatorial problem independent of the global topology of

the manifold M and the neighborhood of ϕ(G) (as noted in [CEX15]). The key

observation here is that we are looking for an embeddding in a small neighborhood

of the image ϕ(G), which can be considered as the embedding of some graph H

with vertex set V (H) = {ϕ(v) | v ∈ V (G)}, i.e., the set of points in M containing

the image of all vertices in V (G). We can consider H as the image graph of ϕ, an

embedded graph in M that contain all points in ϕ(G) and no other point in M . To

avoid confusion, we call vertices and edges of H clusters and pipes respectively.

As such, we can replace M with a neighborhood of H in the formulation of

the problem. The strip system H of H (or thickening of H) is a 2-manifold obtained

by placing pairwise disjoint disks Du on every cluster u ∈ V (H) and connecting the

disks Du and Dv with pairwise disjoint rectangles Ruv for every pipe uv ∈ E(H) (a
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DuDvuv

(a) (b) (c) (d)

Ruv

Figure 1.3: (a) An embedding of H = K5 in the torus. (b) Strip system H of the
embedding of H. (c) A weak embedding where G is disconnected, H = C4, and ϕ
is a simplicial map. (d) A negative instance where G = C9, H = C3, and ϕ is not a
simplicial map.

precise definition is given in Chapter 2). See Fig. 1.3(a)–(b).

We formulate an instance of the problem of recognizing weak embeddings

as a function ϕ : G → H, where G is an abstract graph, and H is an embedded

graph. The map ϕ is a weak embedding if we can embed G in H respecting the

way in which ϕ maps G to H. More formally, ϕ is a weak embedding if there is an

embedding ψϕ : G→ H that maps each vertex v ∈ V to a point in Dϕ(v), and each

edge uv ∈ E(G) to a non-crossing curve with endpoints in Dϕ(u) and Dϕ(v) that

passes through Dw (resp., Rwx) if and only if w (resp., wx) is contained in ϕ(uv).

We say that ϕ is a simplicial map if it maps edges of G to pipes or clusters

of H, i.e., no edge “passes through” a cluster. See Fig. 1.3(c)–(d). We denote by Cn

the cycle with n vertices. We can convert an instance ϕ : G→ H with |V (G)| = n

into a simplicial map ϕ′ : G′ → H with |V (G′)| = O(n2) as follows. Subdivide

every edge e ∈ E(G) whose image ϕ(e) contains a cluster w ∈ V (H) at w. Then

every edge in E(G) corresponds to a path of length O(n) in E(G′). The strategy of

the algorithms in this thesis is to apply local operations to an instance producing a

“simpler” instance until we obtain a base case that is easy to solve.

1.5 Scope

Chapter 2: Weakly simple polygons. In the case that G is a cycle, weak

embeddings are equivalent to weakly simple polygons. Algorithms for recognizing

weakly simple polygons were studied in [CEX15, CDBPP09]. The problem was first
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shown to be solvable in O(n3) time [CDBPP09] when the input is a simplicial map,

where n is the number of vertices. Using the subdivision technique in Section 1.4,

the general problem becomes solvable in O(n6) time. Cheng et al. [CEX15] showed

with a better analysis that the same algorithm terminates in O(n lg n) time for

simplicial maps, and in O(n2 lg n) time for the general case. They also give an

O(n)-time algorithm for other restricted classes of inputs. Chapter 2 describes an

algorithm that recognizes weakly simple polygons in O(n lg n) time in general. The

result is obtained by using techniques from Arkin et al. [ABD+04] (designed to solve

Foldability in 1D) and a set of new operations that carefully “untangle” sets of

overlapping edges.

Chapter 3: Weak embeddings of graphs. Finding efficient algorithms for the

recognition of weak embeddings ϕ : G→ H, where G is an arbitrary graph, was po-

sed as an open problem in [AAET17, CEX15, CDBPP09]. The first polynomial-time

solution for the general version follows from a recent variant [FK18] of the Hanani-

Tutte theorem [Han34, Tut70], which was conjectured by M. Skopenkov [Sko03] in

2003 and in a slightly weaker form already by D. Repovš and A. Skopenkov [RS98]

in 1998. However, this algorithm reduces the problem when ϕ is a simplicial map

to a system of linear equations over Z2. The running time is dominated by solving

this system in O(m2ω) ≤ O(m4.75) time, where m = |E(G)|, and ω < 2.373 is the

matrix multiplication exponent. This implies a running time of O(m4ω) ≤ O(m9.5)

for the general case (non-simplicial maps). Chapter 3 describes an algorithm that

recognizes whether a simplicial map is a weak embedding in O(m logm) time. This

implies an O(nm lg n)-time solution for the general case, where n = |V (G)|.

Chapter 4: NP-hardness for higher dimensions. In their seminal 1996 paper,

Bern and Hayes initiated investigation into the computational complexity of ori-

gami [BH96]. They claimed that Foldability is NP-hard for 2D paper even if all

faces of the paper are mapped to the same plane (Flat-Foldability). A variant

of the problem where the above-below relation between adjacent faces is given with

the folded isometry (Assigned Flat-Foldability) is also claimed to be NP-hard.

Since weak embeddings generalize Foldability, the results in [BH96] imply that it
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is NP-hard to decide whether a given continuous piecewise linear map ϕ : A→ R3,

where A is a simplicial 2-complex, is a weak embedding. Chapter 4 describes and

corrects an error in Bern and Hayes’ hardness proof, and provides an improvement

in these hardness results by restricting the input to have faces bounded by lines at

angles multiple of 45◦. Let k denote the maximum number of overlapping faces at

any given point of an instance. The new reduction also produces instances with

k = 9 (k = 25 for the Assigned Flat-Foldability variant). This implies that

the problem is not fixed-parameter tractable in k, i.e., there is no polynomial-time

algorithm even for instances where k = O(1) unless P = NP.

Chapter 5: Conclusion. This chapter gives an overview of future work and

outstanding open problems.
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Chapter 2

Weakly Simple Polygons

This chapter presents an O(n log n)-time algorithm that determines whether a given

n-gon in the plane is weakly simple. The result generalizes to recognizing weak

embeddings of disjoint cycles and paths in R2. This improves upon an O(n2 log n)-

time algorithm by Chang, Erickson, and Xu [CEX15]. Weakly simple polygons are

required as input for several geometric algorithms. As such, recognizing simple or

weakly simple polygons is a fundamental problem. The results in this chapter are

joint work with Greg Aloupis, Jeff Erickson and Csaba Tóth [AAET17].

2.1 Introduction

A polygon is simple if it has distinct vertices and interior-disjoint edges that do not

pass through vertices. Geometric algorithms are often designed for simple polygons,

but many also work for degenerate polygons that do not “self-cross.” A polygon

with at least three vertices is weakly simple if for every ε > 0, the vertices can be

perturbed within a ball of radius ε to obtain a simple polygon. Such polygons arise

naturally in numerous applications, e.g., for modeling planar networks or as the

geodesic hull of points within a simple polygon (Figure 2.1).

Several alternative definitions have been proposed for weakly simple poly-

gons, formalizing the intuition that such polygons do not self-cross. Some of these

definitions were unnecessarily restrictive or incorrect; see [CEX15] for a detailed
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(a) (b) (c)

Figure 2.1: (a) A simple polygon P with 16 vertices. (b) Eight points in the interior
of P (solid dots); their geodesic hull is a weakly simple polygon P ′ with 14 vertices.
(c) A perturbation of P ′ into a simple polygon.

discussion and five equivalent definitions for weak simplicity of a polygon. Among

others, a result by Ribó Mor [Mor06, Theorem 3.1] implies an equivalent definition

in terms of Fréchet distance, in which a polygon is perturbed into a simple closed

curve (see Section 2.2). This definition is particularly useful for recognizing weakly

simple polygons, since it allows transforming edges into polylines (by subdividing

the edges with Steiner points, which may be perturbed). With suitable Steiner

points, the perturbation of a vertex incurs only local changes. (In other words, we

do not need to worry about stretchability of the perturbed configuration.) Then,

the problem becomes equivalent to recognizing weak embeddings of a cycle in R2.

We can decide whether an n-gon in the plane is simple in O(n log n) time

by a sweepline algorithm [SH76]. Chazelle’s polygon triangulation algorithm also

recognizes simple polygons (in O(n) time), because it only produces a triangula-

tion if the input is simple [Cha91]. Recognizing weakly simple polygons, howe-

ver, is more subtle. Skopenkov [Sko03] gave a combinatorial characterization of

the topological obstructions to weak simplicity in terms of line graphs. Cortese et

al. [CDBPP09] gave an O(n6)-time algorithm to recognize weakly simple n-gons.

Chang et al. [CEX15] improved the running time to O(n2 log n) in general; and to

O(n log n) in several special cases. They identified two features that are difficult to

handle: A spur is a vertex whose incident edges overlap, and a fork is a vertex that

lies in the interior of an edge. (A vertex may be both a fork and a spur.) An instance

is equivalent to a simplicial map if and only if it has no forks. They gave an easy

algorithm for polygons that have neither forks nor spurs, and two more involved

ones for polygons with spurs but no forks and for polygons with forks but no spurs,
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all three running in O(n log n) time. In the presence of both forks and spurs, they

presented an O(n2 log n) time algorithm that eliminates forks by subdividing all ed-

ges that contain vertices in their interiors, potentially creating a quadratic number

of vertices.

We show how to manage both forks and spurs efficiently, while building on

ideas from [CEX15, CDBPP09] and from Arkin et al. [ABD+04], and obtain the

following main results. (Recall the definitions from Chapter 1.)

Theorem 2.1.1. Given a polygon P with n vertices:

1. Deciding whether P is weakly simple can be done in O(n log n) time.

2. If P is weakly simple, a simple polygon with 2n vertices within Fréchet distance

ε from P can be computed in O(n log n) time for every ε > 0.

Theorem 2.1.2. Given a continuous map ϕ : G → R2 where G is a max-degree 2

graph, and |V (G)| = n that maps every edge in E(G) to a line segment:

1. Deciding whether ϕ is a weak embedding can be done in O(n log n) time.

2. If ϕ is a weak embedding, an embedding ψε where ‖ϕ−ψε‖ < ε can be computed

in O(n log n) time for every ε > 0.

Recall that we can also phrase Theorem 2.1.2 in terms of a (non-simplicial)

map ϕ : G → H, where H is a plane graph. We first prove Theorem 2.1.1. Our

decision algorithm is detailed in Sections 2.3–2.5. It consists of three phases, sim-

plifying the input polygon by a sequence of reduction steps. First, the preprocessing

phase rules out edge crossings in O(n log n) time and applies known reductions

steps such as crimp reductions and cluster expansions (Section 2.3). Second, the bar

simplification phase successively eliminates all forks (Section 2.4). Third, the spur

elimination phase eliminates all spurs (Section 2.5). When neither forks nor spurs

are present, we can decide weak simplicity in O(n) time [CDBPP09]. By reversing

the sequence of operations, we can also perturb any weakly simple polygon into a

simple polygon in O(n log n) time (Section 2.6). Finally, Section 2.8 generalizes the

results for max-degree 2 graphs, proving Theorem 2.1.2.
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2.2 Preliminaries

In this section, we review previously established definitions and known methods

from [CEX15] and [CDBPP09].

Polygons and weak simplicity. An arc in R2 is a continuous function γ : [0, 1]→

R2. A closed curve is a continuous function (map) γ : S1 → R2. A closed curve

γ is simple (also known as a Jordan curve) if it is injective. A (simple) polygon

is the image of a piecewise linear (simple) closed curve. Thus a polygon P can be

represented by a cyclic sequence of points (p0, . . . , pn−1), called vertices, where the

image of γ consists of line segments p0p1, . . . , pn−2pn−1, and pn−1p0 in this cyclic

order. Note that a nonsimple polygon may have repeated vertices and overlapping

edges [Grü12]. Similarly, a polygonal chain (alternatively, path) is the image of a

piecewise linear arc, and can be represented by a sequence of points [p0, . . . , pn−1].

A polygon P = (p0, . . . , pn−1) is weakly simple if n = 2, or if n > 2 and

for every ε > 0 there is a simple polygon (p′0, . . . , p
′
n−1) such that |pi, p′i| < ε for all

i = 0, . . . , n−1. This definition is difficult to work with because a small perturbation

of a vertex modifies the two incident edges, which may be long, and the effect of a

perturbation is not localized. Combining earlier results from [CDR02], [CDBPP09],

and [Mor06, Theorem 3.1], an equivalent definition was formulated by Chang et

al. [CEX15] in terms of Fréchet distance: A polygon given by γ : S1 → R2 is

weakly simple if for every ε > 0 there is a simple closed curve γ′ : S1 → R2 such

that distF (γ, γ′) < ε, where distF denotes the Fréchet distance between two closed

curves. The curve γ′ can approximate an edge of the polygon by a polyline, and

any perturbation of a vertex can be restricted to a small neighborhood. With this

definition, recognizing weakly simple polygons becomes a combinatorial problem, as

explained below.

Note that in topology, the problem of recognizing weak embeddings of cycles

and arcs has been considered [Min97, Sko03]. This problem is equivalent to recogni-

zing weakly simple polygons and polygonal chains. We can then formulate the weak

simplicity recognition problem by replacing G with a cycle in a instance ϕ : G→ H
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of weak embedding recognition. A polygon P is then equivalent to the map ϕ.

Bar decomposition of H. Let H be a planar straight-line graph obtained from

a geometric drawing ϕ of a graph G in R2 (edges are mapped to line segments).

Recall that, to avoid confusion, we call vertices and edges of H clusters and pipes

respectively (see Section 1.4). This graph can be computed in O(n log n) time by a

sweep line algorithm [CEX15]. Two edges of a polygon P cross if their interiors in-

tersect at precisely one point; we call this an edge crossing. Weakly simple polygons

cannot have edge crossings. In the following, we assume that such crossings have

been ruled out. Two edges of P overlap if their intersection is a (nondegenerate)

line segment. The transitive closure of the overlap relation is an equivalence relation

on the edges of P ; see Figure 2.2(a) where equivalence classes are represented by

purple regions. The union of all edges in an equivalence class is called a bar.1 All

bars of a polygon can be computed in O(n log n) time [CEX15]. The bars are open

line segments that are pairwise disjoint. There are at most n bars, since the bars

are unions of disjoint subsets of pipes.

Every cluster in V (H) that is not in the interior of a bar is called sober1.

The set of clusters in H is {p0, . . . , pn−1} (note that P may have repeated vertices

that correspond to the same cluster); two clusters are connected by a pipe in E(H)

if they are consecutive clusters along a bar; see Figure 2.2(b). Note that up to O(n)

edges of P may pass through a cluster of H, and there may be O(n2) edge-cluster

pairs such that an edge of P passes through a cluster of H. An O(n log n)-time

algorithm cannot afford to compute these pairs explicitly.

Operations. We use certain elementary operations that successively modify a poly-

gon and ultimately eliminate forks and spurs. An operation that produces a weakly

simple polygon if and only if it is performed on a weakly simple polygon is called

ws-equivalent. Several such operations are already known (e.g., crimp reduction,

cluster expansion, bar expansion). We shall use these and introduce several new

operations in Sections 2.3.3–2.5.

1We adopt terminology from [CEX15].
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(a) (b) (c)

u
v

Figure 2.2: (a) The bar decomposition for a weakly simple polygon P with 16
vertices (P is perturbed into a simple polygon for clarity). (b) The image graph H
of P . (c) A perturbation in a strip system H of H.

Combinatorial characterization of weak embeddings. To show that an ope-

ration is ws-equivalent, it suffices to provide suitable simple ε-perturbations for all

ε > 0. We use a combinatorial representation of an ε-perturbation (independent of

ε or any specific embedding). When a weak embedding is perturbed into an embed-

ding, overlapping edges in G are perturbed into interior-disjoint near-parallel edges,

which define an ordering. It turns out that these orderings over all pipes of H are

sufficient to encode an ε-perturbation and to (re)construct an ε-perturbation.

We rely on the notion of “strip system” introduced in [CEX15, Appendix B].

Similar concepts have previously been used in [CDR02, CDBPP09, FT17, Min97,

Sko03]. Without loss of generality, we assume that no bar is vertical (so that the

above-below relationship is defined between disjoint pipes parallel to a bar). The

strip system H of H (a.k.a. thickening of H) is a 2-manifold with boundary con-

structed as follows: For every u ∈ V (H), create a topological disk Du, and for every

edge uv ∈ E(H), create a rectangle Ruv. For every Du and Ruv, fix an arbitrary

orientation of ∂Du and ∂Ruv, respectively. Partition the boundary of ∂Du into

deg(u) arcs, and label them by Au,v, for all uv ∈ E(H), in the cyclic order around

∂Du determined by the rotation of u in H. Finally, the manifold H is obtained

by identifying two opposite sides of every rectangle Ruv with Au,v and Av,u via an

orientation preserving homeomorphism (i.e., consistently with the chosen orientati-

ons of ∂Ruv, ∂Du and ∂Dv). See Fig. 2.1(b)–(c), where disks are shown in yellow

and rectangles in purple. An embedding of G in H is ϕ-respecting if it maps each
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vertex v ∈ V to a point in the interior of Dϕ(v), and each edge uv ∈ E(G) to a

Jordan arc (i.e., a non-crossing arc) with endpoints in Dϕ(u) and Dϕ(v) that passes

through Dw (resp., Rwx) if and only if w (resp., wx) is contained in ϕ(uv). We

denote by ψϕ a ϕ-respecting embedding of G and say that ψϕ approximates ϕ.

Given a ϕ-respecting embedding of G in H, we can transform it into an

embedding withing Fréchet distance ε from ϕ by deforming H (via homeomorphism)

so that for every disk Du it becomes a disk of radius ε centered at u and for every

rectangle Ruv it contains only points ε2 away from uv. There is a sufficiently small

ε0 = ε0(ϕ) > 0, depending on ϕ, such that the disks Du are pairwise disjoint, the

rectangles Ruv are pairwise disjoint, and every rectangle Ruv of a pipe intersects only

the disks at its endpoints Du and Dv. These properties hold for all ε, 0 < ε < ε0.

Combinatorial representation by signatures. Let P be a polygon equivalent

to a map ϕ : G → H. A polygon is in the strip-system of H if its edges alternate

between an edge that connects the boundary of two disks Du and Dv and whose

interior is contained in Ruv; and an edge between two points on the boundary of a

disk. In particular, the edges of P that lie in a disk Du or a rectangle Ruv form a

perfect matching. See Figure 2.2(c) for an example, where the edges within the disk

Du are drawn with circular arcs for clarity. Let Φ(P ) be the set of simple polygons

in the strip-system of H that are ϕ-respecting, i.e., cross the disks and rectangles

in the same order as P traverses the corresponding clusters and pipes of H. By

[CEX15, Theorem B.2], P is weakly simple if and only if Φ(P ) 6= ∅.

Let Q be a polygon in the strip system of H. For each pipe uv ∈ E(H), the

above-below relationship of the edges of Q in Ruv is a total order. We define the

signature of Q ∈ Φ(P ), denoted σ(Q), as the collection of these total orders for all

pipes of H.

Given the signature σ(Q) of a polygon Q in the strip system of H, we can

easily (re)construct a simple polygon Q′ with the same signature in the strip-system

of H. For every pipe uv ∈ E(H), let the volume vol(uv) be the number of edges

of P that lie on uv. Place vol(uv) disjoint Jordan curves between ∂Du and ∂Dv in
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Ruv of the H. Finally, for every disk Du, construct a non-crossing perfect matching

between the endpoints of these edges that lie in ∂Du: connect the endpoints of

two edges if they correspond to adjacent edges of P . By construction, Q ∈ Φ(P )

implies Q′ ∈ Φ(P ), since Q and Q′ determine the same perfect matching between

corresponding endpoints on ∂Du at every node u, i.e., either both are ϕ-respecting

or both are not.

Remark The construction above has two consequences: (1) To prove weak simpli-

city, it is enough to find a signature that defines a simple perturbation. In other

words, the signature can witness weak simplicity (independent of the value of ε).

(2) Weak simplicity of a polygon depends only on the combinatorial embedding of

the image graph H (i.e., the counterclockwise order of edges incident to each ver-

tex), as long as H is a plane graph. Consequently, when an operation modifies

the image graph, it is enough to maintain the combinatorial embedding of H (the

precise coordinates of the nodes do not matter).

In the presence of spurs, the size of a signature is O(n2), and this bound is

the best possible. We use this simple combinatorial representation in our proofs of

correctness, but our algorithm does not maintain it explicitly. In Section 2.6, we

introduce another combinatorial representation of O(n) size that uses the ordering

of the edges in each bar (rather than each pipe) of H.

Combinatorially different perturbations. In the absence of spurs, a poly-

gon ϕ determines a unique noncrossing perfect matching in each disk Du [CEX15,

Section 3.3]. The uniqueness no longer holds in the presence of spurs. In fact, it is not

difficult to construct weakly simple n-gons that admit 2Θ(n) perturbations into sim-

ple polygons that are combinatorially different (i.e., have different bar-signatures);

see Figure 2.3.

Figure 2.3: Two perturbations of a weakly simple polygon on 6 vertices (all of
them spurs) that alternate between two distinct points in the plane.
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2.3 Preprocessing

By a standard line sweep [SH76], we can detect and halt if any two edges pro-

perly cross. We then simplify the polygon, using some known steps from [ABD+04,

CEX15], and some new ones. All of this takes O(n log n) time.

2.3.1 Crimp reduction

Arkin et al. [ABD+04] gave an O(n)-time algorithm for recognizing weakly sim-

ple n-gons in the special case where all edges are collinear (in the context of flat

foldability of a polygonal linkage). They defined the ws-equivalent crimp-reduction

operation. A crimp is a chain of three consecutive collinear edges denoted [a, b, c, d]

such that both the first edge ab and the last edge cd contain the middle edge bc (the

containment need not be strict). The operation crimp-reduction(a, b, c, d) replaces

the crimp [a, b, c, d] with edge ad; see Figure 2.4.

⇒

⇒
a c b d a d

Figure 2.4: A crimp reduction replaces [a, b, c, d] with ad. Top: H. Bottom: P .

Lemma 2.3.1. The crimp-reduction operation is ws-equivalent.

Proof. Let P1 and P2 be two polygons such that P2 is obtained from P1 by the

operation crimp-reduction(a, b, c, d). Without loss of generality, assume that ad is

horizontal with a on the left and d on the right.

First assume that P1 is weakly simple. Then there exists a simple polygon

Q1 ∈ Φ(P1). We modify Q1 to obtain a simple polygon Q2 ∈ Φ(P2). Without loss of

generality, assume that edge [a, b] is above [b, c] (consequently, [c, d] is below [b, c]) in

Q1. The modification involves the perfect matchings at the disks Db and Dc, and all

disks and rectangles along the line segment bc. Denote by Wtop the set of maximal

paths that lie in the convex hull of Db ∪Dc, below [a, b] and above [b, c]; similarly,

let Wbot be the set of maximal paths that lie in the convex hull of Db ∪Dc, below
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[b, c] and above [c, d]. We proceed in two steps; refer to Figure 2.5. First, replace the

path [a, b, c, d] with the path [a, c, b, d] such that the new edge [a, c] replaces the old

[a, b] in the edge ordering of segment ac, the new [c, b] replaces [b, c] in the segments

contained in bc, and finally the new [b, d] replaces [c, d] in bd. Second, exchange Wtop

and Wbot such that the top-to-bottom order within each set of paths remains the

same. Since the top-to-bottom order within Wtop and Wbot is preserved, and the

paths in Wtop (resp., Wbot) lie below (resp., above) the new path [a, c, b, d], no edge

crossings have been introduced. We obtain a simple polygon Q2 ∈ Φ(P2), which

shows that P2 is weakly simple.

ca b d ca b d

⇒

Figure 2.5: The operation crimp-reduction replaces a crimp [a, b, c, d] with an edge
[ad].

ca b d ca b d

⇒

Figure 2.6: The reversal of crimp-reduction replaces edge [ad] with a crimp [a, b, c, d].

Next assume that P2 is weakly simple. Then, there exists a simple polygon

Q2 ∈ Φ(P2). We modify Q2 to obtain a simple polygon Q1 ∈ Φ(P1); refer to

Figure 2.6. Replace edge [a, d] by [a, b, c, d] also replacing [a, d] in the ordering of

the affected pipes by [c, d], [b, c], and [a, b], in this order. The new ordering produces

a polygon Q1 in the strip system of P . Because Q2 is simple, by construction

the new matchings do not interact with the preexisting edges in the disks. Hence,

Q1 ∈ Φ(P1), which shows that P1 is weakly simple.

Given a chain of two edges [a, b, c] such that [a, b] and [b, c] are collinear but

do not overlap, the merge operation replaces [a, b, c] with a single edge [a, c]. The

merge operation (as well as its inverse, subdivision) is ws-equivalent by the definition

of weak simplicity in terms of Fréchet distance [CEX15]. If we greedily apply crimp-

reduction and merge operations, in linear time we obtain a polygon with the following
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two properties:

(A1) Every two consecutive collinear edges overlap (i.e., form a spur).

(A2) No three consecutive collinear edges form a crimp.

Assuming properties (A1) and (A2), we can characterize a chain of collinear

edges with the sequence of their edge lengths.

Lemma 2.3.2. Let C = [ei, . . . , ek] be a chain of collinear edges in a polygon with

properties (A1) and (A2). Then the sequence of edge lengths (|ei|, . . . , |ek|) is uni-

modal (all local maxima are consecutive); and no two consecutive edges have the

same length, except possibly the maximal edge length that can occur at most twice.

Proof. For any j such that i < j < k, consider |ej |. If |ej−1| and |ej+1| are at least

as large, then the three edges form a crimp, by (A1). However, this contradicts

(A2). This proves unimodality, and that no three consecutive edges can have the

same length. In fact if |ej | is not maximal, one neighbor must be strictly smaller,

to avoid the same contradiction.

The operations introduced in Section 2.4 maintain properties (A1)–(A2) for

all maximal paths inside an elliptical disk ∆b.

2.3.2 Cluster expansion

Compute the bar decomposition of P and its image graph H (defined in Section 2.2,

see Figure 2.2). For every sober cluster of H, we perform the ws-equivalent cluster-

expansion operation, described in [CEX15, Section 3] (Cortese et al. [CDBPP09]

also call this a cluster expansion, while Chang et al. call this a node expansion).

Let u be a sober cluster of H. Let ∆u be the disk centered at u with radius δ > 0

sufficiently small so that ∆u intersects only the pipes incident to u. For each pipe

ux incident to u, create a new cluster ux at the intersection point ux ∩ ∂∆u. Then

modify P by replacing each subpath [x, u, y] passing through u by [x, ux, uy, y]; see

Figure 2.7. If a cluster expansion produces an edge crossing, report that P is not

weakly simple.
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∆u

Figure 2.7: Cluster expansion. (Left) Changes in H. (Right) Changes in P (the
vertices are perturbed for clarity). New clusters are shown as squares.

2.3.3 Bar expansion

Chang et al. [CEX15, Section 4] define a bar expansion operation. In this chapter,

we refer to it as old-bar-expansion. For a bar b of H, draw a long and narrow ellipse

∆b around the interior clusters of b, create subdivision vertices at the intersection

of ∂∆b with the edges, and replace each maximal path in ∆b by a straight-line

edge. If b contains no spurs, old-bar-expansion is known to be ws-equivalent [CEX15].

Otherwise, it can produce false positives, hence it is not ws-equivalent; see Figure 2.8

for an example.

∆b

⇒

Figure 2.8: The old-bar-expansion converts a non-weakly simple polygon to a weakly
simple one.

New bar expansion operation. Let b be a bar of H with at least one interior

cluster; see Figure 2.9. Without loss of generality, assume that b is horizontal. Let

∆b be an ellipse whose major axis is in b such that ∆b contains all interior clusters

of b (clusters in b except its endpoints), but does not contain any other cluster of H

and does not intersect any pipe that is not incident to some cluster inside ∆b.

Similar to old-bar-expansion, the operation new-bar-expansion introduces sub-

division vertices on ∂∆b, however we keep all interior vertices of a bar at their

original positions. In Section 2.4, we apply a sequence of new operations to eli-

minate all vertices on b sequentially while creating new clusters in the vicinity of

∆b. Our bar expansion operation can be considered as a preprocessing step for this
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subroutine.

For each pipe ux between a cluster u ∈ b ∩∆b and a cluster x 6∈ b, create a

new cluster ux at the intersection point ux ∩ ∂∆b and subdivide every edge [u, x]

to a path [u, ux, x]. For each endpoint v of b, create two new clusters, v′ and v′′,

as follows. Cluster v is adjacent to a unique pipe vw ⊂ b, where w ∈ b ∩ ∆b.

Create a new cluster v′ ∈ ∂∆b sufficiently close to the intersection point vw ∩ ∂∆b,

but strictly above b; and create a new cluster v′′ in the interior of pipe vw ∩ ∆b.

Subdivide every edge [v, y], where y ∈ b, into a path [v, v′, v′′, y]. Since the new-bar-

expansion operation consists of only subdivisions (and slight perturbations of the

edges passing through the end-pipes of the bars), it is ws-equivalent.

∆b ∆b

⇒

Figure 2.9: The changes in H caused by new-bar-expansion.

Crossing paths. Apart from cluster-expansion and old-bar-expansion, none of our

operations creates edge crossings. In some cases, our bar simplification algorithm

(Section 2.4) detects whether two subpaths cross. Crossings between overlapping

paths are not easy to identify (see [CEX15, Section 2] for a discussion). We rely on

the following simple condition to detect some (but not all) crossings.

Lemma 2.3.3. Let P be a weakly simple polygon parameterized by a curve γ1 : S1 →

R2; and let γ2 : S1 → R2 be a closed Jordan curve that does not pass through any

vertices of P and intersects every edge of P transversely. Suppose that q1, . . . , q4 are

distinct points in γ2(S1) in counterclockwise order. Then there are no two disjoint

arcs I1, I2 ⊂ S1 such that γ1(I1) and γ1(I2) connect q1 to q3 and q2 to q4, each

passing through the interior of γ2(S1).

Proof. Suppose, to the contrary, that there exist two disjoint arcs I1, I2 ⊂ S1 such

that γ1(I1) and γ1(I2) respectively connect q1 to q3 and q2 to q4, passing through

the interior of γ2(S1). (See Figure 2.10.) Since P is weakly simple, then γ1 can

be perturbed to a closed Jordan curve γ′1 with the same properties as γ1. Let U
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denote the interior of γ2(S1), and note that U is simply connected. Consequently,

U \ γ′1(I1) has two components, which are incident to q2 and q4, respectively. The

Jordan arc γ′1(I2) connects q2 to q4 via U , so it must intersect γ′1(I1), contradicting

the assumption that γ′1 is a Jordan curve.

γ′1 γ2(S1)

S1

I1 I2

q1

q2 q3

q4

Figure 2.10: Forbidden configuration described by Lemma 2.3.3.

We show that a weakly simple polygon cannot contain certain configurations,

outlined below.

(a) (b) (c)

v

u1 u2 u3

w

v w

u1 u2 u3 u4

u1 v1

v3 = u2

v5

v6

v4 u3v2

Figure 2.11: Three pairs of incompatible paths.

Corollary 2.3.4. A weakly simple polygon cannot contain a pair of paths of the

following types:

1. [u1, u2, u3] and [v, u2, w], where u2u1, u2v, u2u3, and u2w are distinct pipes in

this cyclic order around u2 ( cluster crossing; see Figure 2.11(a)).

2. [u1, u3, w] and [v, u2, u4], where u1, u2, u3, and u4 are on a line in this or-

der, and clusters v and w lie in an open halfplane bounded by this line (Fi-

gure 2.11(b)).

3. [u1, u2, u3] and [v1, v2, . . . , vk−1, vk] where v2 ∈ int(u2u3), v3, . . . , vk−1 ∈ {u2}∪

int(u2u3), clusters u1 and v1 lie in an open halfplane bounded by the supporting

line of u2u3, and cluster vk lies on the other open halfplane bounded by this

line (Figure 2.11(c)).

23



Proof. In all four cases, Lemma 2.3.3 with a suitable Jordan curve γ2 completes the

proof. In case 1, let γ2 be a small circle around u2. In case 2, let γ2 be a small

neighborhood of pipe u1u2. In case 3, let γ2 be a small neighborhood of the convex

hull of {v2, . . . , vk−1}.

Terminology. We classify the maximal paths in ∆b. All clusters u ∈ ∂∆b lie either

above or below b. We call them top and bottom clusters, respectively. Let P denote

the set of maximal paths p = [ux1 , u1, . . . , uk, u
y
k] in ∆b. The paths in P are classified

based on the position of their endpoints. A path p can be labeled as follows:

• cross-chain if ux1 and uyk are top and bottom clusters respectively,

• top chain (resp., bottom chain) if both ux1 and uyk are top clusters (resp.,

bottom clusters),

• pin if p = [ux1 , u1, u
x
1 ] (note that every pin is a top or a bottom chain),

• V-chain if p = [ux1 , u1, u
y
1], where x 6= y and p is a top or a bottom chain.

Finally, let Pin ⊂ P be the set of pins, and V ⊂ P the set of V-chains.

2.3.4 Clumps

As a preprocessing step for spur elimination (Section 2.5), we group all clusters that

do not lie inside a bar into clumps. After cluster-expansion and new-bar-expansion,

all such clusters lie on a boundary of a disk (circular or elliptical). For every sober

cluster u, we create deg(u) clumps as follows. Refer to Figure 2.12. The cluster

expansion has replaced u with new clusters on ∂∆u. Subdivide each pipe in ∆u

with two new clusters. For each cluster v ∈ ∂∆u, form a clump C(v) that consists

of v and all adjacent (subdivision) clusters inside ∆u. For each cluster u on the

boundary of an elliptical disk ∆b, subdivide the unique edge outside ∆b incident

to u with a cluster u∗. Form a clump C(u∗) containing u and u∗. Every clump

maintains the following invariants.

Clump Invariants. For every clump C(u):
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∆u

v C(v)

∂∆b
u u

u∗ C(u∗)

⇒ ⇒ ⇒ ⇒

Figure 2.12: Formation of new clumps around (left) a sober cluster and (right) a
cluster on the boundary of an elliptical disk. The roots of the induced trees are
colored blue.

(I1) C(u) induces a tree T [u] in H rooted at u.

(I2) Every maximal path of P in C(u) is of one of the following two types:

(a) both endpoints are at the root of T [u] and the path contains a single

spur;

(b) one endpoint is at the root, the other is at a leaf, and the path contains

no spurs.

(I3) Every leaf cluster ` satisfies one of the following conditions:

(a) ` has degree one in H (and every vertex at ` is a spur);

(b) ` has degree two in H and there is no spur at `.

(I4) No edge passes through ` (i.e., there is no edge [a, b] such that ` ∈ ab but

` 6∈ {a, b}).

Initially, every clump trivially satisfies (I1)–(I2) and every leaf cluster satisfies

(I3)–(I4) since it was created by a subdivision.

Dummy vertices. Although the operations described in Sections 2.4 and 2.5

introduce new clusters in the clumps, the image graph H will always have O(n)

clusters and pipes. A vertex at a clump cluster is called a benchmark if it is a spur

or if it is at a leaf cluster; otherwise it is called a dummy vertex. Paths traversing

clumps may jointly contain Θ(n2) dummy vertices in the worst case, however we do

not store them explicitly. By (I1), (I2), and (I3) a maximal path in a clump can be

uniquely encoded by one benchmark vertex: if it goes from a root to a spur at an

interior cluster s and back, we record only [s]; and if it traverses T [u] from the root

to a leaf `, we record only [`].
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2.4 Bar simplification

In this section we introduce three new ws-equivalent operations and show that they

can eliminate all vertices from each bar independently (thus eliminating all forks).

The bar decomposition is pre-computed, and the bars remain fixed during this phase

(even though all edges along each bar are eliminated).

We give an overview of the overall effect of the operations (Section 2.4.1),

define them and show that they are ws-equivalent (Sections 2.4.2–2.4.3), and then

show how to use these operations to eliminate all vertices from a bar (Section 2.4.4).

2.4.1 Overview

After preprocessing in Section 2.3, we may assume that P has no edge crossings

and satisfies (A1)–(A2). Further, we also assume that properties (A1)–(A2) are

restored, if necessary, after every operation defined in this section by suitable merge

and crimp-reduction operations. We can check in O(1) time whether an edge created

by an operation is collinear with adjacent edges or part of a crimp, and apply the

operation in O(1) time. Thus the cost of maintaining (A1)–(A2) is absorbed by the

creation of the edges involved.

We summarize the overall effect of the bar simplification subroutine for a

given expanded bar.

Changes in H. Refer to Figure 2.13. All clusters in the interior of the ellipse ∆b

are eliminated. Some spurs on b are moved to new clusters in the clumps along ∂∆b.

Pipes inside ∆b connect two leaves of trees induced by clumps.

∆b ∆b

⇒

Figure 2.13: The changes in H caused by a bar simplification.

Changes in the polygon P. Refer to Figure 2.14. Consider a maximal path p in

P that lies in ∆b. The bar simplification replaces p = [u, . . . , v] with a new path p′.

26



By (I3)-(I4), only clusters u and v in p lie on ∂∆b. If p is the concatenation of a path

p1 and p−1
1 (the path formed by the vertices of p1 in reverse order), then p′ is a spur

in the clump containing u (Figure 2.14 (a)). If p has no such decomposition, but

its two endpoints are at the same cluster, u = v, then p′ is a single edge connecting

two leaves in the clump containing u (Figure 2.14 (b)). If the endpoints of p are at

two different clusters, p′ is an edge between two leaves of the clumps containing u

and v respectively (Figure 2.14 (c) and (d)).

(a)

(b)

(c)

(d)

⇒

⇒

⇒

⇒

Figure 2.14: The changes in the polygon caused by a bar simplification.

2.4.2 Primitives

The operations in Section 2.4.3 rely on two basic steps, spur-reduction and cluster-

split (see Figure 2.15). Together with merge and subdivision, these operations are

called primitives.

spur-reduction(u, v). Assume that every vertex at cluster u has at least

one incident edge [u, v]. While there exists a path [u, v, u], replace it
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with a single-vertex path [u]. (See Figure 2.15, left.)

cluster-split(u, v, w). Assume that pipes uv and vw are consecutive in

radial order around v, cluster v is not in the interior of any edge that

contains uv or vw; and P has no spurs of the form [u, v, u] or [w, v, w].

Create cluster v∗ in the interior of the wedge ∠uvw sufficiently close to

v; replace every path [u, v, w] with [u, v∗, w]. (See Figure 2.15, right.)

u
v

u
v

w

v∗

u
v

v∗

u

w

v
⇒ ⇒

Figure 2.15: Left: Spur-reduction(u, v). Right: Cluster-split(u, v, w).

The following two lemmas are generalizations of the results in [CEX15,

Section 5].

Lemma 2.4.1. Operation spur-reduction is ws-equivalent.

Proof. Let P ′ be obtained from applying spur-reduction(u, v) to P . First suppose

that P is weakly simple. Then, there exists a simple polygon Q ∈ Φ(P ) represented

by its signature. Successively replace any path [u, v, u] by [u] and delete these two

edges from the ordering. The new signature defines a polygon Q′ in the strip system

of P ′. By the assumption in the operation, every edge of Q in Du is adjacent

to an edge in Ruv, which has another endpoint in ∂Dv. Since Q is simple, the

counterclockwise order of the endpoints of the deleted edges in ∂Dv is the same

as the clockwise order of the endpoints of the new edges in ∂Du. Thus, the new

matching in Du produces no crossings, Q′ ∈ Φ(P ′), and P ′ is weakly simple.

Now suppose P ′ is weakly simple. Then, there exists a simple polygon Q′ ∈

Φ(P ′) represented by its signature. Let H ′u be the set of all occurrences of vertex

[u] in P ′. Each vertex in H ′u corresponds to an edge in Q′ that lies in the disk Du;

these edges are noncrossing chords of the circle ∂Du. We define a partial ordering

on H ′u: For two vertices u1, u2 ∈ H ′u, let u1 ≺ u2 if the chord corresponding to u1

separates chord of u2 from Ruv within the disk Du. Intuitively, we have u1 ≺ u2 if
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u1 blocks u2 from the rectangles Ruv. Note that if u1 ≺ u2, then neither endpoint

of the chords corresponding to u1 is on the boundary of Ruv; consequently u1 was

obtained from a path [u, v, u] or [u, v, u, v, u, . . . , u] in P after removing one or more

spurs. We expand the paths ui ∈ H ′u incrementally, in an order determined by

any linear extension of the partial ordering ≺. Replace the first vertex u1 ∈ H ′u

by [p, u, v, u] (or [p, u, v, u, v, u, . . . , u, q] if needed), and modify the signature by

inserting consecutive new edges into the total order of the edges along uv at any

position that is not separated from the chord in Du that corresponds to u1. The

resulting polygon P ′′ and the new signature define a polygon Q′′ in the strip system

of P ′′. By construction, the new edges in Dv connect consecutive endpoints in

counterclockwise order around v, thus the new matching in Dv is noncrossing. In

the disk Du, the operation replaces the chord corresponding to u1 by noncrossing

new chords. Each new edge in Du has at least one endpoint in Ruv; consequently,

none of them blocks access to Ru,v. Then, the new matching in Du has no crossing

and Q′′ ∈ Φ(P ′′). By repeating this procedure we obtain P and a simple polygon

Q ∈ Φ(P ), hence P is weakly simple.

Lemma 2.4.2. Operation cluster-split is ws-equivalent.

Proof. Let P ′ be obtained from P via cluster-split(u, v, w). First assume that P is

weakly simple. Then there is a simple polygon Q ∈ Φ(P ). Consider the clockwise

order of edges around v. Since Q is simple, the order of the edges [u, v] of paths

[u, v, w] must be the reverse order of its adjacent edges [v, w] (the paths must be

nested as shown in Figure 2.15(right)). Because P has no spurs of the form [u, v, u]

or [w, v, w], and the edges of P that pass through v avoid both uv and vw, every

edge between a pair of adjacent edges [u, v] and [v, w] is also part of a path [u, v, w].

Replace the paths [u, v, w] by [u, v∗, w] and set the order of edges at pipes uv∗ and

v∗w to be the same order of the removed edges at uv and vw. This defines a polygon

Q′ ∈ Φ(P ′), which is simple because the circular order of endpoints around Du and

Dw remains unchanged and the matching in Dv∗ is a subset of the matching in Dv.

Now, assume that P ′ is weakly simple. Since the face in H bounded by
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u, v, w, v∗ is empty, we can change the embedding of the graph by bringing v∗

arbitrarily close to v, maintaining weak simplicity. Let δ be the distance between

v∗ and v. Let Q′ ∈ Φ(P ′) be a simple polygon defined on disks of radius ε. Then,

Q′ is within ε+ δ Fréchet distance from P and therefore P is weakly simple.

2.4.3 Operations

We describe three more complex operations: pin-extraction, V-shortcut, and L-shortcut.

In Section 2.4.4, we show how to use them to eliminate spurs along any given bar b.

The pin-extraction and V-shortcut operations eliminate pins and V-chains. Chains

in P with two or more vertices in the interior of ∆b are simplified incrementally,

removing one vertex at a time, by the L-shortcut operation.

Since H is determined by the polygon, it would suffice to describe how the

operations modify the polygon. However, it is sometimes more convenient to first

define new clusters and pipes in H, and use them to describe the changes in the

polygon. In the last step of these operations, we remove any cluster (pipe) that

contains no vertex (edge), to ensure that H is consistent with the polygon.

pin-extraction(u, v). Assume that P satisfies (I1)–(I4) and contains a

pin [v, u, v] ∈ Pin. By (I3), cluster v is adjacent to a unique cluster w

outside of ∆b. Perform the following three primitives: (1) subdivision

of every path [v, w] into [v, w∗, w]; (2) spur-reduction(v, u). (3) spur-

reduction(w∗, v). (4) Update H. See Figure 2.16 for an example.

V-shortcut(v1, u, v2). Assume that P satisfies (I1)–(I4) and [v1, u, v2] ∈

V. Furthermore, P contains no pin of the form [v1, u, v1] or [v2, u, v2],

and no edge [u, q] such that pipe uq is in the interior of the wedge ∠v1uv2.

By (I3), clusters v1 and v2 are each adjacent to unique clusters w1 and

w2 outside of ∆b, respectively.

The operation executes the following primitives sequentially: (1) cluster-

split(v1, u, v2), which creates a temporary cluster u∗; (2) cluster-split(u∗, v1, w1)

and cluster-split(u∗, v2, w2); which create v∗1, v
∗
2 ∈ ∂∆b, respectively; (3)
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merge every path [v∗1, u
∗, v∗2] to [v∗1, v

∗
2]. (4) Update the H. See Fi-

gure 2.17 for an example.

w

v

u

w

v

u

w
w∗

v

u

u

w∗

v

w

⇒

⇒

Figure 2.16: pin-extraction. Changes in H (top), changes in the polygon (bottom).

u

u u
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w1
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w2 w2

w2

v1

v1

v1

v1

v2

v2 v2

v2
v∗1

v∗1

v∗2

v∗2

⇒

⇒

Figure 2.17: V-shortcut. Changes in H (top), changes in the polygon (bottom).

Lemma 2.4.3. pin-extraction and V-shortcut are ws-equivalent and maintain (I1)–

(I4).

Proof. pin-extraction. By construction, the operation maintains (I1)–(I4). Also,

(I3)–(I4) ensure that spur-reduction(v, u) in step (2) satisfies its preconditions. Con-

sequently, all three primitives are ws-equivalent.

V-shortcut. By construction, the operation maintains (I1)–(I4). The first

two primitives are ws-equivalent by Lemma 2.4.2. The third step is ws-equivalent

because triangle ∆(u∗v∗1v
∗
2) is empty of clusters and pipes, by assumption.

L-shortcut operation. The purpose of this operation is to eliminate a vertex of

a path that has an edge along a given bar. Before describing the operation, we

introduce some notation; refer to Figure 2.18. For a cluster v ∈ ∂∆b, let Lv be the
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set of paths [v, u1, u2] in P such that u1, u2 ∈ int(∆b). Each path in P is either in

Pin, in V, or has two subpaths in some Lv. Let Mcr be the set of longest edges of

cross-chains in P. Denote by L̂v ⊂ Lv the set of paths [v, u1, u2], where [u1, u2] is

not in Mcr.

Figure 2.18: Paths in Pin, V, LTRv , LTLv , LBRv , and LBLv .

We partition Lv into four subsets (refer to Figure 2.18): a path [v, u1, u2] ∈ Lv

is in

1. LTRv (top-right) if v is a top vertex and x(u1) < x(u2);

2. LTLv (top-left) if v is a top vertex and x(u1) > x(u2);

3. LBRv (bottom-right) if v is a bottom vertex and x(u1) < x(u2);

4. LBLv (bottom-left) if v is a bottom vertex and x(u1) < x(u2).

We partition L̂v into four subsets analogously. We define the operation L-shortcut

for paths in LTRv ; the definition for the other subsets can be obtained by suitable

reflections.

L-shortcut(v, TR). Assume that P satisfies (I1)–(I4), v ∈ ∂∆b and LTRv 6=

∅. By (I3), v is adjacent to a unique cluster u1 ∈ b and to a unique cluster

w /∈ ∆b. Let U denote the set of all clusters u2 for which [v, u1, u2] ∈ LTRv .

Let umin ∈ U and umax ∈ U be the leftmost and rightmost cluster in U ,

respectively. Further assume that P satisfies:

(B1) no pins of the form [v, u1, v];

(B2) no edge [p, u1] such that pipe pu1 is in the interior of the wedge

∠vu1umin;

(B3) no edge [p, q] such that p ∈ ∂∆b is a top vertex and q ∈ b, x(u1) <

x(q) < x(umax).
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Figure 2.19: L-shortcut. Changes in H (top), changes in the polygon (bottom).

Do the following (see Figure 2.19 for an example).

(0) Create a new cluster v∗ ∈ ∂∆b to the right of v sufficiently close to

v.

(1) For every path [v, u1, u2] ∈ LTRv where u1u2 is the only longest

edge of a cross-chain, create a crimp by replacing [u1, u2] with

[u1, u2, u1, u2].

(2) Replace every path [w, v, u1, umin] by [w, v∗, umin].

(3) Replace every path [w, v, u1, u2], where u2 ∈ U and u2 6= umin, by

[w, v∗, umin, u2].

(4) Update H.

See Figure 2.20 for an explanation of why L-shortcut requires conditions (B2)–

(B3) and phase (1) of the operation. If we omit any of these conditions, L-shortcut

would not be ws-equivalent.

Lemma 2.4.4. L-shortcut is ws-equivalent and maintains (I1)–(I4) and (A1)–(A2).

Proof. Let P1 be the polygon obtained from P after phase (1) of L-shortcut(v, TR)

and P2 be the polygon obtained after phase (3). Note that phase (1) of the operation

only creates crimps, and it is ws-equivalent by Lemma 2.3.1. Let W be the set

of edges [u1, u2] of paths [v, u1, u2] ∈ LTRv . Phases (2)–(3) are equivalent to the

concatenation of the primitives: subdivision, cluster-split, and merge. Specifically,

they are equivalent to subdividing every edge in W into [u1, umin, u2] whenever

u2 6= umin, and applying cluster-split(v, u1, umin) (which creates u∗1) to P2 followed
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Figure 2.20: Cases in which L-shortcut is not ws-equivalent. Top left: P has a pin
[v, u1, v] not satisfying (B2). Top right: P does not satisfy (B3). Bottom: the
operation skips phase (1).

by cluster-split(w, v, u∗1) (which creates v∗), and merging every path [v∗, u∗1, umin]

to [v∗, umin]. The only primitive that may not satisfy its preconditions is cluster-

split(v, u1, umin): pipe u1umin may be collinear with several pipes of b, and P2 may

contain spurs that overlap with u1umin. In the next paragraph, we show that the

spurs that may overlap with u1umin do not pose a problem, and we can essentially

repeat the proof of Lemma 2.4.2.

Assume that P1 is weakly simple and consider a polygon Q1 ∈ Φ(P1). Due to

(A1), (A2) and phase (1), every path in LTRv is a sub-path of the form [v, u1, u2, u3]

where x(u3) ≤ x(u2). We show that P1 has a perturbation in Φ(P1) with the

following property:

(?) Every edge [u1, u2] ∈W lies above all overlapping edges e /∈W .

Let Q1 ∈ Φ(P1) be a perturbation of P1 into a simple polygon that has the minimum

number of edges [u1, u2] ∈ W that violate (?). We claim that Q1 satisfies (?).

Suppose the contrary, that Q1 does not satisfy (?). For a contradiction, we modify

Q1 ∈ Φ(P1) and obtain another perturbation Q′1 ∈ Φ(P1) that has strictly fewer

edges that violate (?) as shown in Figure 2.21. Recall that Q1 implies a total order

of edges in each pipe of b based on the above-below relationship. Let [u1, u
′
2] ∈ W

be the highest edge that violates (?), and assume that this edge is part of a path

[v, u1, u
′
2, u
′
3]. Let Z be the set of edges that are above [u1, u

′
2] within the rectangles

between u1 and u′2, and are not in W . By (B2)–(B3) and Lemma 2.3.2, every edge
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[z1, z2] ∈ Z must be part of a path [z1, z2, z3] where x(u1) ≤ x(z2) < x(u′2) ≤ x(z1)

and x(u′2) ≤ x(z3), otherwise Q1 would not be simple. We modify σ(Q1) by moving

the edges in Z, maintaining their relative order, immediately below edge [u′2, u
′
3] in

pipes between u1 and u′2. This results in a simple polygon Q′1 ∈ Φ(P1) such that

[u1, u
′
2] and all edges in W above [u1, u

′
2] satisfy (?), contradicting the choice of Q1.

u1

umax

u1

umax

u1

umax

(a) (b) (c)

Figure 2.21: (a) A perturbation Q1 that violates property (?); the highest edge
[u1, u

′
2] ∈W that violates (?) is red, and edges in Z are blue. (b) We can modify Q1

to reduce the number of edges in W that violate (?). (c) There exists a perturbation
Q1 that satisfies (?).

We can proceed as in the proof of Lemma 2.4.2, using a perturbation Q1 ∈

Φ(P1) that satisfies (?) to show that P2 is weakly simple if and only if P1 is weakly

simple, that is, phases (2)–(3) are ws-equivalent.

By construction, (I1)–(I4) are maintained. Note that the intermediate po-

lygon P1 may violate condition (A2), since phase (1) introduces crimps. However,

after phase (3), conditions (A1) and (A2) are restored, and operation L-shortcut

maintains (A1)–(A2) in the ellipse ∆b.

2.4.4 Bar simplification algorithm

In this section, we describe an algorithm called bar-simplification to incrementally

remove all spurs of the polygon P from a bar b, using a sequence of pin-extraction,

V-shortcut, and L-shortcut operations. Informally, our algorithm “unwinds” each

polygonal chain in the bar. It extracts pins and V-chains whenever possible. Any

other chain in ∆b contains edges along bar b, and the sequence of these edge lengths

is unimodal (cf. Lemma 2.3.2). Our algorithm “unwinds” these chains by a sequence

of L-shortcut operations. Each operation eliminates or reduces one of the shortest

edges along b (see Figure 2.22). The algorithm alternates between L-shortcut(v, TR)

and L-shortcut(v, TL) to unwind the chains from their top endpoints to the longest
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edge in b; and then uses L-shortcut(v,BR) and L-shortcut(v,BL) to resolve the

bottom part.

When we unwind the chains in ∆b starting from their top vertices using L-

shortcut(v, TR) and L-shortcut(v, TL), we cannot hope to remove the longest edge

of a cross-chain. We stop using the operations when every path in LTRv contains

a longest edge a cross-chain. This motivates the use of L̂TRv (instead of LTRv ) in

step (iii) below. We continue with the algorithm and its analysis.

Figure 2.22: Life cycle of a cross-chain in the while loop of bar-simplification. The
steps applied, from left to right, are: (iii), (iv), (iii), (iv), and (vi).

Algorithm bar-simplification(P, b).

While P has an edge along b, perform one operation as follows.

(i) If Pin 6= ∅, pick an arbitrary pin [v, u, v] and perform pin-extraction(u, v).

(ii) Else if V 6= ∅, then let [v1, u, v2] ∈ V be a path where |x(v1)−x(v2)| is minimal.

If there is no pipe uq in the wedge ∠v1uv2, perform V-shortcut(v1, u, v2), else

report that P is not weakly simple and halt.

(iii) Else if there exists v ∈ ∂∆b such that L̂TRv 6= ∅, do:

(a) Let v be the rightmost cluster where LTRv 6= ∅.

(b) If LTRv satisfies (B2)–(B3), do L-shortcut(v, TR).

(c) Else let v′ be the leftmost cluster such that x(v) < x(v′) and LTLv′ 6= ∅,

or record that no such vertex v′ exists.

(c.1) If v′ does not exist, or LTLv′ does not satisfy (B2)–(B3), or any path

in LTLv′ contains a longest edge of a cross-chain, then report that P

is not weakly simple and halt.

(c.2) Else do L-shortcut(v′, TL).
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(iv) Else if there exists v ∈ ∂∆b such that LTLv 6= ∅, perform steps (iii)a–(iii)c with

left–right and TR–TL interchanged. (Note the use of Lv instead of L̂v. The

same applies to (vi) below).

(v) Else if there exists v ∈ ∂∆b such that L̂BLv 6= ∅, perform steps (iii)a–(iii)c using

BL and BR in place of TR and TL, respectively, and left-right interchanged.

(vi) Else if there exists v ∈ ∂∆b such that LBRv 6= ∅, perform steps (iii)a–(iii)c

using BR and BL in place of TR and TL, respectively.

(vii) Else invoke old-bar-expansion.

Return P (end of algorithm).

Lemma 2.4.5. The operations performed by bar-simplification(P, b) are ws-equivalent,

and maintain properties (A1)–(A2) and (I1)–(I4) inside ∆b. The algorithm either

removes all clusters from the ellipse ∆b, or reports that P is not weakly simple. The

L-shortcut operations performed by the algorithm create at most two crimps in each

cross-chain in P.

Proof. We show that the algorithm only uses operations that satisfy their precon-

ditions, and reports that P is not weakly simple only when P contains a forbidden

configuration.

Steps (i)–(ii). Since every pin can be extracted from a polygon satisfying (I1)–

(I4), we may assume that Pin = ∅. Suppose that V 6= ∅. Let [v1, u, v2] ∈ V be a

V-chain such that |x(v1)−x(v2)| is minimal. Since Pin = ∅, the only obstacle for the

precondition of V-shortcut is an edge [u, q] such that pipe uq is in the interior of the

wedge ∠v1uv2 (or else H would have a crossing). If such an edge exists, it is part of a

path [p, u, q]. The cluster q is in ∂∆b between v1 and v2. Note that p 6= q, otherwise

[p, u, q] would be a pin. Further, p cannot be a cluster in the interior of the wedge

∠v1uv2, otherwise [p, u, q] would be a V-chain where |x(p)− x(q)| < |x(v1)− x(v2)|,

contrary to the choice of [v1, u, v2] ∈ V. Consequently, p must be in the exterior of

the wedge ∠v1uv2. In this case, the paths [v1, u, v2] and [p, u, q] form the forbidden
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configuration in Corollary 2.3.4(1), and the algorithm correctly reports that P is

not weakly simple. If no such edge [u, q] exists, then V-shortcut(v1, u, v2) satisfies all

preconditions and it is ws-equivalent by Lemma 2.4.3. Henceforth, we may assume

that Pin = ∅ and V = ∅.

Step (iii)–(iv). By symmetry, we consider only step (iii). Since Pin = ∅, condition

(B1) is met. In step (iii)b, if (B2)-(B3) are also satisfied, then L-shortcut(v, TR) is

ws-equivalent by Lemma 2.4.4. If condition (B2) or (B3) fails, we proceed with step

(iii)c.

Step (iii)(c.1). We show that in these cases the algorithm correctly reports that

P is not weakly simple. Assume first that v′ does not exist. Since LTRv does not

satisfy (B2) or (B3), there exists an edge [p, q] such that x(u1) ≤ x(q) < x(umax) and

p ∈ ∂∆b is a top cluster. Edge [p, q] is part of some path [p, q, r]. Note that r cannot

be a top vertex of ∂∆b, since Pin = ∅ and V = ∅. If r is on b and x(q) < x(r), then

[p, q, r] ∈ LTRp , which contradicts the choice of cluster v. If r is on b and x(r) < x(q),

then [p, q, r] ∈ LTLp and v′ exists. It follows that r is a bottom vertex, and then the

paths [v, u1, umax] and [p, q, r] form a forbidden configuration in Corollary 2.3.4(1)

or (3).

Assume now that v′ exists but LTLv′ does not satisfy (B2) or (B3). If x(u′max) <

x(u1), then [v, u1, umax] and [v′, u′1, u
′
max] form the forbidden configuration in Corol-

lary 2.3.4(2). Else, we have x(u1) ≤ x(u′max) < x(u′1) < x(umax). This implies that

any edge [p, q] that violates (B2) or (B3) for LTLv′ must also violate (B2) or (B3) for

LTRv . However, this contradicts the choice of v (rightmost where LTRv 6= ∅) and v′

(leftmost, x(v) < x(v′), where LTLv′ 6= ∅).

Next assume that there is a path [v′, u′1, u
′
2] ∈ LTLv′ such that [u′1, u

′
2] is the

longest edge of a cross-chain. Then this cross-chain is of the form [v′, u′1, u
′
2, . . . , p

′],

where all interior vertices lie on the line pipe u′1u
′
2, and p′ is a bottom vertex.

Now [v, u1, umax] and this cross-chain form the forbidden configuration in Corol-

lary 2.3.4(3). In all three cases in step (iii)(c.1), the algorithm correctly reports

that P is not weakly simple.
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Step (iii)(c.2). Let the path [v′, u′1, u
′
max] ∈ LTLv′ be selected in L-shortcut(v′, TL)

by the algorithm. Since conditions (B1)–(B3) are satisfied, L-shortcut(v′, TL) is

ws-equivalent by Lemma 2.4.4.

Steps (v)–(vii). If steps (i)–(iv) do not apply, then L̂TRv ∪ LTLv = ∅. That is, for

every path [v, u1, u2] ∈ LTR, we have [u1, u2] ∈Mcr. In particular, there are no top

chains. The operations in (v)–(vi) do not change these properties. Consequently,

once steps (v)–(vi) are executed for the first time, steps (iii)–(iv) are never executed

again. By a symmetric argument, steps (v)–(vi) eliminate all paths in L̂BLv ∪LBRv . If

the while loop terminates, every edge in b is necessarily in Mcr and LTLv ∪LBRv = ∅.

Consequently, by Lemma 2.3.2, b contains no spurs and old-bar-expansion is ws-

equivalent. This operation eliminates all clusters in the interior of ∆b.

Termination. Each pin-extraction and V-shortcut operation reduces the number

of vertices of P within ∆b. Operation L-shortcut(v,X), X ∈ {TR, TL,BR,BL},

either reduces the number of interior vertices, or produces a crimp if edge [u1, u2] is

a longest edge of a cross-chain. For termination, it is enough to show that, for each

cross-chain c ∈ P, the algorithm introduces a crimp at most once in steps (iii)–(iv),

and at most once in steps (v)–(vi). Without loss of generality, consider step (iii).

Note that step (iii) may apply an L-shortcut operation in two possible cases:

(iii)b and (iii)c. However, an L-shortcut operation in (iii)c does not create crimps:

L-shortcut is performed when all three conditions in (iii)(c.1) fail. In this case, LTR

does not contain any edge in Mcr, and L-shortcut does not create crimps. We may

assume that step (iii) created crimps in case (iii)b only.

Every cross-chain remains a cross-chain in algorithm bar-simplification: ope-

rations pin-extraction and V-shortcut do not modify cross-chains; and operations

L-shortcut and old-bar-expansion modify only the first or last few edges of a cross-

chain. A longest edge of a cross-chain c always connects the same two clusters in b

until step (vii) (old-bar-expansion), although the number of longest edges in c may

change. When L-shortcut(v,X) modifies a cross-chain, it moves its endpoint from

v ∈ ∂∆b to a nearby new cluster v∗ ∈ ∂D. Consequently, if LXv , X ∈ {TR, TL}
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contains the first two edges of two chains in P, then they have been modified by the

same sequence of previous L-shortcut operations.

v0 v1

v2

u1

u2
⇒ . . .⇒ ⇒ . . .⇒

Figure 2.23: Only a single crimp can be created in a cross-chain by step (iii)b.

Suppose, for the sake of contradiction, that two invocations of step (iii)b cre-

ate crimps in a cross-chain c, say, in operations L-shortcut(v0, TR) and L-shortcut(v2, TR)

(see Figure 2.23). The first invocation replaces [v0, u1, u2] with [v∗0, umin, u2, u1, u2]

(where the edge [umin, u2] may vanish if umin = u2). The resulting cross-chain has

two maximal longest edges, [u2, u1] and [u1, u2]. Since L-shortcut creates crimps

only if the longest edge is unique, there must be an intermediate operation L-

shortcut(v1, TL) that removes or shortens the edge [u2, u1], so that [u1, u2] beco-

mes the unique longest edge again. When L-shortcut(v1, TL) is performed in a step

(iv), we have L̂TRv = ∅ for all top clusters v, and LTLv′ = ∅ for all top clusters v′,

x(v′) < x(v1). The steps between L-shortcut(v1, TL) and L-shortcut(v2, TR) modify

only cross-chains whose top cluster is at or to the right of the top cluster of c (L-

shortcut operations move the top vertex of c to the left, from v1 to v2 in one or more

steps). Consequently, when L-shortcut(v2, TR) is performed in a step (iii), we still

have L̂TRv′ = LTLv′ = ∅ for all top clusters v′, x(v′) < x(v2).

When L-shortcut(v2, TR) is performed, we have [v2, u1, u2] ∈ LTRv2 but [v2, u1, u2] /∈

L̂TRv2 (since u1u2 is the longest edge of c). Step (iii) is performed only if L̂TRp 6= ∅ for

some top vertex p. Since the rightmost top vertex where LTRv 6= ∅ is v = v2, we have

x(p) ≤ x(v2). This implies p = v2. Consequently there exists a chain c′ ∈ P that

contains a subpath [v2, u1, u3] ∈ LTLv2 , such that [u1, u3] is not the longest edge of c′.

Since LTRv1 contains the first two edges of both c and c′, they have been modified by

the same sequence of L-shortcut operations. Consequently, c′ contained [v, u1, u2, u1]

initially. By Lemma 2.3.2, only the longest edge can repeat, hence [u1, u2] is the lon-

gest edge of c′. This implies that u3 = u2 and L̂TRv2 = ∅, contradicting the condition
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in Step (iii).

Lemma 2.4.6. Algorithm bar-simplification(P, b) takes O(m logm) time, where m

is the number of vertices in b.

Proof. Operations pin-extraction, V-shortcut, and L-shortcut each make O(1) changes

in H. Operations pin-extraction and V-shortcut decrease the number of vertices

inside ∆b. Each L-shortcut does as well, except for the steps that create crimps. By

Lemma 2.4.4, L-shortcut operations may create at most 2|P| = O(m) crimps. So

the total number of operations is O(m).

When [v, u1, u2] ∈ LTRv and u2 6= umin, L-shortcut replaces [v, u1, u2] by

[v∗, umin, u2]: vertex [u1] shifts to [u2], but no vertex is eliminated. In the worst

case, one L-shortcut modifies Θ(m) paths, so in Θ(m) operations the total number

of vertex shifts is Θ(m2).

Our implementation does not maintain the paths in P explicitly. Instead,

we use set operations. We maintain the sets Pin, V, and LXv , with v ∈ ∂∆b and

X ∈ {TR, TL,BR,BL}, in sorted lists. The pins [v, u, v] ∈ Pin are sorted by x(v);

the wedges [v1, u, v2] ∈ V are sorted by |x(v1)−x(v2)|. In every set LXv , the first two

clusters in the paths [v, u1, u2] ∈ LXv are the same by (I3)b, and so it is enough to

store vertex [u2]; these vertices are stored in a list sorted by x(u2). We also maintain

binary variables to indicate for each path [v, u1, u2] ∈ LXv whether it is part of a

cross-chain, and whether [u1, u2] is the only longest edge of that chain.

The condition in step (ii) can be tested in O(1) time by checking whether

uv1 and uv2 are consecutive pipes in the rotation of cluster u in V (H). Steps (i)-(ii)

remove pins and V-chains, taking linear time in the number of removed vertices,

without introducing any path in any set. Consider L-shortcut(v, TR), executed in

one of steps (iii)–(iv) which can be generalized to other occurrences of the L-shortcut

operation. Conditions (B2)–(B3) can be checked in constant time by checking the

circular order of edges incident to a cluster in ∂∆b. The elements [v, u1, umin] ∈ LTRv

are simplified to [v∗, umin]. For each of these paths, say that the next edge along P is

[umin, u3]. Then, the paths [v∗, umin, u3] are inserted into either Pin∪V if u3 ∈ ∂∆b
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is a top vertex, or LTLv∗ if u3 ∈ b. We can find each chain [v, u1, umin] ∈ LTRv in O(1)

time since LTRv is sorted by x(u2). Finally, all other paths [v, u1, u2] ∈ LTRv , where

u2 6= umin, become [v∗, umin, u2] and they form the new set LTRv∗ . Since we store only

the last vertex [u2], which is unchanged, we create LTRv∗ at no cost.

This representation allows the manipulation of O(m) vertices with one set

operation. The number of insert and delete operations in the sorted lists is propor-

tional to the number of vertices that are removed from the interior of ∆b, which

is O(m). Each insertion and deletion takes O(logm) time, and the overall time

complexity is O(m logm).

2.5 Spur elimination algorithm

After bar-simplification (Section 2.4), we obtain a polygon that has no forks and

every spur is at an interior cluster of some clump (formed on the boundary of some

ellipse ∆b). In the absence of forks, we can decide weak simplicity using [CEX15,

Theorem 5.1], but a näıve implementation runs in O(n2 log n) time: successive ap-

plications of spur-reduction would perform an operation at each dummy vertex. In

this section, we show how to eliminate spurs in O(n log n) time.

Formation of Groups. We create groups by gluing pairs of clumps with adjacent

roots together. Recall that by (I1) each clump induces a tree. We also modify H,

transforming each tree into a binary tree using ws-equivalent primitives. For each

cluster s with more than two children, let s1 and s2 be the first two children in

counterclockwise order. Create new clusters s′1 and s′2 by subdivision in ss1 and ss2,

respectively, and create a pipe s′1s2. Use the inverse of cluster-split to merge clusters

s′1 and s′2 into a cluster s′, reducing the number of children of s by one.

In the course of our algorithm, an analogue of the pin-extraction operation

extracts a spur from one group into an “adjacent” group. This requires a well-

defined adjacency relation between groups. By construction, if a pipe uv connects

clusters in different clumps, both u and v are leaves or both are root clusters. For

every pair of clumps, C(u) and C(v), with adjacent roots, u and v, create a group
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Guv = C(u) ∪ C(v); see Figure 2.24. By construction, the groups are pairwise

disjoint. Two groups are called adjacent if they have two adjacent leaves in H.

C(u)

C(v)

Guv
u

v

Figure 2.24: The formation of a group Guv, containing clumps C(u) and C(v). Leaf
clusters are shown as black dots.

Recall that a maximal path in each clump is represented by benchmark

vertices (leaves and spurs). We denote by [u1; . . . ;uk] (using semicolons) a maximal

path inside a group defined by the benchmark vertices u1, . . . , uk. For a given group

Guv, let P denote the set of maximal paths with vertices in Guv; and let B be the

set of subpaths in P between consecutive benchmark vertices.

Remark By invariants (I1)–(I3), a path in P of a group Guv has alternating ben-

chmark vertices between C(u) and C(v). Consequently, every path in B has one

endpoint in C(u) and one in C(v), and each spur in Guv is incident to two paths in

B.

Spur-elimination algorithm. Assume that G is a partition of the clusters of H

into groups satisfying (I1)–(I4). We consider one group at a time, and eliminate

all spurs from one clump of that group. When we process one group, we may split

it into two groups, create a new group, or create a new spur in an adjacent group

(similar to pin-extraction in Section 2.4). The latter operation implies that we may

need to process a group several times. Termination is established by showing that

each operation reduces a weighted sum of the number of benchmark vertices (i.e.,

spurs and boundary vertices). Initially, the number of benchmarks is O(n).

Algorithm spur-elimination(P,G).

While P contains a spur, do:

43



1. Choose a group Guv ∈ G that contains a spur, w.l.o.g. contained in

clump C(u), and create its supporting data structures (described

in Section 2.5.1 below).

2. While T [u] contains an interior cluster, do:

(a) If u contains no spurs and is incident to only two edges uv and

uw, eliminate u with a merge operation. Rename cluster w to

u which becomes the new root of the tree T [u].

(b) If u contains spurs, eliminate them as described in Section 2.5.2.

(c) If u contains no spurs, split Guv into two groups along a chain

of pipes that contains uv as described in Section 2.5.3. Rename

a largest resulting group to Guv.

The detailed description of steps 2b and 2c are in Sections 2.5.2 and 2.5.3,

respectively. We first present supporting data structures in Section 2.5.1, and then

analyze the algorithm in Section 2.5.4.

2.5.1 Data structures

In this section, we describe the data structures that we maintain for a group Guv.

We start with reviewing and introducing some notation. Consider a group Guv

composed of two trees T [u] and T [v] rooted at u and v, respectively. Recall that

B denotes the set of benchmark-to-benchmark paths, each with one benchmark in

T [u] and one in T [v]. In the algorithm spur-elimination, we dynamically maintain

the image trees T [u]∪T [v], and the set of paths B. In each group Guv, we maintain

only O(|B|) clusters that contain benchmark vertices or have degree higher than 2.

Dummy clusters of degree two that contain no benchmark vertices are redundant

for the combinatorial representation, and will be eliminated with merge operations.

However, a polyline formed by a chain of dummy clusters of degree two cannot

always be replaced by a straight-line segment (this might introduce unnecessary

crossings). By Remark 2.2, it suffices to maintain the combinatorial embeddings of

the trees T [u] and T [v] (i.e., the counterclockwise order of the incident pipes around
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each cluster).

The partition of a group into two groups is driven by the partition of the

paths in B. For a set B′ ⊂ B of benchmark-to-benchmark paths, we define a subtree

T (B′) induced by B′ as follows. Let N = N(B′) be the set of clusters that contain

endpoints of some path in B′. The tree T (B′) is obtained in two steps: take the

minimum subtree of T [u] ∪ T [v] that contains all clusters in N , and then merge all

clusters of degree two that are not in N . In particular, the clusters of T (B′) include

N and the lowest common ancestor of any two clusters in N ∩C(u) and in N ∩C(v),

respectively. Denote by lca(r, s) the lowest common ancestor of clusters r and s in

T [u] (resp., T [v]).

Description of data structures. For the image graph of Guv (subgraph of H),

we maintain the following data structures.

• We store trees T [u] and T [v] each using the dynamic data structure of [CH05],

which supports O(1)-time insertion and deletion of leaves, merging interior

clusters of degree 2, subdivision of edges, and lowest common ancestor queries.

• Imagine that Guv is inside an axis-aligned rectangle with the leaves of T [u] al-

ong the top edge and leaves of T [v] along the bottom edge (see Figure 2.25(a)).

For each tree, we maintain a left-to-right Euler tour in an order-maintenance

data structure [BCD+02, DS87], which supports insertions immediately be-

fore or after an existing item, deletions, and precedence queries, each in O(1)

amortized time. For any cluster w, let w[ and w] respectively denote the first

and last occurrences of w in the Euler tour. Note that we have w] = w[ for a

leaf w. We refer to the elements of the Euler tour as tokens. We write x < y

to denote that some token x occurs before (“to the left of”) another token y

in their common Euler tour.

• We also maintain the cyclic list of all leaves of the tree T [u]∪T [v] (in the order

determined by the Euler tour above).

We now describe data structures for P and B. For every benchmark-to-
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Figure 2.25: The geometry of crossing benchmark-to-benchmark paths. (a) Paths

[s1; t1] and [s2; t2] cross. (b) If t]min < t[ ≤ t] < t[max, then any benchmark-to-
benchmark paths [s; t] crosses path [tmin; tmax].

benchmark path [s; t] ∈ B, we assume that s is in T [u] and t is in T [v]. A path [s; t]

is associated with the intervals [s[, s]] and [t[, t]]. For two consecutive benchmark-

to-benchmark paths [s1; t; s2], where t is in T [v], we define the interval I[s1; t; s2] =

[s[1, s
[
2].

• The set of benchmark-to-benchmark paths [s; t] ∈ B is stored in four lists,

sorted by s[, s], t[, and t], respectively, with ties broken arbitrarily. The

sorted lists can be computed in O(|B|) time by an Eulerian traversal of the

tree.

• For each cluster s of T [u], let Bs denote the set of paths [s; t] ∈ B. We store

Bs in two lists, sorted by t[ and t], respectively.

• We use a central interval tree [dBvKOS00] for all O(n) intervals I[s1; t; s2] that

can report, for a query cluster q, all intervals containing q in output-sensitive

O(log n+k) time, where k is the number of intervals that contain q. Since the

interval endpoints s[ are already sorted, the interval tree can be constructed

in O(|B|) time. The interval tree can handle the deletion of an interval in O(1)

time (without re-balancing, hence maintaining the O(log n+ k) query time).
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All data structures described in this section can be constructed in O(|B|)

preprocessing time.

Crossing paths. The data structure described above can determine in O(1) time

whether two paths in B cross. Straightforward case analysis implies the following

characterization of path crossings (refer to Figure 2.25(a)).

Lemma 2.5.1. Let s1 and s2 be arbitrary clusters in tree T [u], and let t1 and t2

be arbitrary clusters in T [v]. Paths [s1; t1] and [s2; t2] cross if and only if either (1)

s]1 < s[2 and t[1 > t]2, or (2) s[1 > s]1 and t]1 > t[2.

2.5.2 Eliminating spurs from a root

We describe step 2b of Algorithm spur-elimination. Suppose that the root cluster

u contains a spur. The following operation eliminates all spurs from u, but the

resulting clump C(v) need not satisfy (I2) and (I3), and we need to perform other

operations to restore these properties. Refer to Figure 2.26(a)–(b) for an example.

spur-shortcut(u). Assume that Guv satisfies invariants (I1)–(I4), and u

contains a spur. Replace every path [t1;u; t2] by [t1; t2]. Let S be the

set of all such modified paths.

Lemma 2.5.2. spur-shortcut is ws-equivalent and maintains properties (I1) and

(I4).

Proof. The operation is equivalent to a sequence of spur-reduction operations: First

perform spur-reduction(u, v). In a BFS traversal of all clusters x of T [v], except

for the root, perform spur-reduction(x,parent(x)). All these operations satisfy spur-

reduction’s constraints. Initially, every path through the cluster x has an edge in the

pipe x parent(x), by (I2). The BFS traversal ensures that this property still holds

when the algorithm performs spur-reduction(x,parent(x)).

Note that for every path [t1;u; t2], both t1 and t2 are in T [v] (cf. Remark 2.5)

and path [t1; t2] is uniquely defined by (I1). However, a maximal path in C(v) that

contains [t1; t2] violates (I2), and if t1 = t2 is a leaf in C(v), then it forms a spur
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that may violate (I3). We proceed with a sequence of “repair” steps to restore them,

after which the total number of benchmark vertices decreases by at least |S|. The

following applies for when t1 and t2 are in ancestor-descendent relation, that is,

lca(t1, t2) ∈ {t1, t2}. Let min(t1, t2) denote the cluster in {t1, t2} farther from the

root.

For every path [t1; t2] ∈ S, do

1. If lca(t1, t2) ∈ {t1, t2} and t1 6= t2, then replace [t1; t2] with [min(t1, t2)].

2. If t1 = t2 and t1 is not a leaf of T [v] that has degree two in H, then

replace [t1; t2] with [t1].

3. If t1 = t2 and t1 is a leaf of T [v] that has degree two in H, then do:

by (I3), cluster t1 is adjacent to a unique cluster z /∈ Guv. Subdivide

pipe t1z with a new cluster z∗ (added to the clump containing z),

subdivide every edge [t1, z] into [t1, z
∗, z], and then replace every

path [z, z∗, t1, z
∗, z] with [z]. See Figure 2.26(b)–(c) for an example.

(a) (b) (c)z z
z
z∗

T [`]

Guv Guv Guv

u u u

v v = `
v = `

tmin

tmax `−`+

G`−`+

Figure 2.26: (a) Cluster u contains spurs. (b) After eliminating spurs, T [v] does
not satisfy (I2). (c) The analogues of pin-extraction and V-shortcut.

These steps restore (I3) at all leaves, and (I2) for the affected paths [t1; t2] ∈

S. Note that these steps are ws-equivalent: Steps 1–2 do not modify the polygon

(they change only the benchmarks); and step 3 is analogous to pin-extraction(v).
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We are left with paths [t1; t2] ∈ S where t1 and t2 are in different branches

of T [v]. In this case, we perform an elaborate version of the V-shortcut operation,

that creates a new group. For every cluster ` of T [v], let S` be the set of paths

[t1; t2] ∈ S such that lca(t1, t2) = `. Consider every cluster ` of T [v] where S` 6= ∅

in a bottom-up traversal of T [v]; and create a new group G`−`+ as follows (refer to

Figure 2.26).

Let N− (resp., N+) be the set of clusters t1 (resp., t2) such that there is a

path [t1; t2] ∈ S`, and t1 is in the left (resp., right) subtree of `. Let N = N− ∪N+.

Sort the clusters t1 ∈ N− by t]1, and let tmin be the minimum cluster; and similarly

sort the clusters t2 ∈ N+ by t[2, and let tmax be the maximum cluster. The following

lemma shows that interior clusters of the path from tmin to ` in T [v] have no right

branches, and the interior clusters of the path from tmax to ` have no left branches.

Lemma 2.5.3. If there is a path [s; t] ∈ B \S` such that t]min < t[ ≤ t] < t[max, then

it crosses some path in S`, hence P is not weakly simple.

Proof. Let C be the path between tmin and tmax in T [v]. Refer to Figure 2.25(b). By

the choice of ` (in a bottom-up traversal of T [v]), we have S`′ = ∅ for all descendants

of `. Path [s; t] reaches C at some interior cluster t∗ ∈ C, and then continues to `,

and farther to parent(`). If t∗ is in a left (resp., right) subtree of `, then [s; t] crosses

every path in S` that starts at tmin (resp., ends at tmax).

We can find the set N ′ of clusters t such that t]min < t[ ≤ t] < t[max, in

O(|N ′| + log n) time, by binary searching in the list of leaves to find the leaves

between tmin and tmax and using lowest common ancestor queries to find clusters in

N ′. The algorithm reports that the input polygon is not weakly simple and halts

if some cluster in N ′ has a path satisfying Lemma 2.5.3. We can now assume that

N ′ ⊂ N . The clusters in N induce a binary tree, denoted T [`], of size at most 2|N |:

its clusters are all clusters in N and the lowest common ancestors of consecutive

clusters in N− and N+ respectively. Note that a pipe of T [`] might not correspond

to a pipe of T [v] (see Figure 2.26(b)). Denote by C∗ the path between tmin and tmax

in T [`].

49



We now define the changes in H. Every cluster t ∈ N\C∗ is deleted from Guv,

and added to the new group. Create two clusters, `− and `+, in G`−`+ sufficiently

close to ` in the wedge between the two children of `, and connect them by a pipe

`−`+. Duplicate each cluster t ∈ C∗ \ {`}, by creating a cluster t′ (added to G`−`+)

sufficiently close to t, and add a pipe tt′. Subdivide every pipe tt′ with two new

boundary clusters, tleaf (added to T [v]) and t′leaf (added to G`−`+). The clusters t

or t′ might now have degree 4. Adjust H so that the group trees are binary. Finally

partition the clusters in G`−`+ into two trees, T [`−] and T [`+], rooted at `− and `+,

respectively.

We now define the changes in the polygon. Replace every path [t; t1] ∈ S`,

where t ∈ C∗, by [t′; t1] if it is adjacent to a path [t; t2] ∈ S`; and by [tleaf , t
′
leaf , t1]

otherwise. Now we can build B′ as the set of benchmark-to-benchmark paths [t′1; t′2]

where t′1, t
′
2 ∈ G`−`+ in O(|B′|) time.

To prove ws-equivalence, we consider the changes in the polygon. These

amount to a sequence of ws-equivalent primitives: a cluster-split at `, a sequence

of clustersplits along the chain C from ` to tmin and tmax, respectively, subdivision

operations that create the new leaf clusters, and merge operations at degree two

clusters that no longer contain spurs. The creation of new groups takes O(|S`| +

log n) time and O(|S`|) paths in B are removed or modified in Guv. Thus the

data structures for Guv are updated in O(|S`| log n) time. Overall, operation spur-

shortcut(u) and the repair steps that follow take O(|S| log n) time.

2.5.3 Splitting a group in two

In this section we describe step 2c of Algorithm spur-elimination(P,G). Assume that

Guv satisfies invariants (I1)–(I4) and u contains no spur.

Denote the left and right child of u by u− and u+, respectively. Let B−,B+ ⊂

B, resp., be the set of benchmark-to-benchmark paths that contain u− and u+. We

split Guv into two groups induced by B− and B+, respectively. Refer to Figure 2.27.

It would be easy to compute the groups induced by B− and B+ in O(|B|) time.

However, for an overall O(n log n)-time algorithm, we can afford O(min(|B−|, |B+|))
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time for the split operation, and an additional O(log n) time for each eliminated spur

and each cluster that we split into two nonempty clusters. Without loss of generality,

we may assume |B−| ≤ |B+|. The group induced by |B−| can be computed from

scratch in O(|B−|) time, and we construct the group for B+ by modifying Guv, and

updating the corresponding data structures.

(a) (b)

u−
u

C0

v

u+
u+u−

v− v+
Guv Gu+v+

Gu−v−

Figure 2.27: Splitting group Guv. (a) Changes in H. (b) Changes in the polygon.

First, we find B− and B+. Compute B− using the list of paths [s; t] ∈ B

sorted by s] or s[. Since both lists naturally split into corresponding lists for B−

and B+, we can split these lists in O(min(|B−|, |B+|)) = O(|B−|) time. To construct

the list of B+ sorted by t] and t[, we start with the corresponding lists for B, and

delete all elements of B− in O(|B−|) time. To compute the lists sorted by t] and t[

for B−, we shall first compute the subtree T [v−] induced by B−. However, we can

already find the maximum t] of a path [s; t] ∈ B− in O(|B−|) time.

Next, we test for crossings between the paths in B− and the paths in B+.

Let t]− be the maximum t] of a path [s; t] ∈ B−, and t[+ the minimum t[ of a path

[s; t] ∈ B+. By Lemma 2.5.1, there is such a crossing if and only if t[+ < t]−, which can

be determined in O(1) time using our order-maintenance structures. If a crossing is

detected, the algorithm reports that P is not weakly simple and halts.

Trees T [u−] and T [u+] are simple subtrees of T [u]; but splitting T [v] is

nontrivial. We use binary search in the Eulerian cycle of all leaves to find the

rightmost leaf `0 in T [v] such that B`0 ∩ B− 6= ∅, such a leaf exists, otherwise the

leftmost leaf `0 in T [v]. Let C0 = [`0;u]. We do not compute the path C0 explicitly,

as it may contain more than O(|B−|) clusters, but we can test whether a query

51



cluster t of T [v] is in C0 in O(1) time by checking whether lca(`0, t) = t. Since

the paths in B− and B+ do not cross, all clusters of T [v−] are in or to the left of

the chain C0, and all common clusters of T [v−] and T [v+] are in C0. The image

graph of T [v−] (subgraph of H) can be computed from scratch using B− in O(B−)

time. Replace each cluster t of T [v−] that is in C0 by a duplicate copy t− located

sufficiently close to t, to the right of t. The tree T [v+] is computed from T [v] by

cluster deletion and merge operations as follows. First delete all clusters that are in

T [v−] but not in C0. For every cluster t of T [v−] that lies in C0, if t has degree two

in T [v−] and B+
t = ∅, then it is a degree two cluster in T [v] with no spurs, and so

we can delete t by merging its two incident pipes. As a result, T [v] becomes a tree

induced by B+. It remains to resolve the connections between trees.

Let V0 denote the set of chains [s1; t; s2] such that [s1; t] ∈ B− and [t; s2] ∈ B+.

The spurs at t on all chains [s1; t; s2] ∈ V0 will be eliminated (they will become

adjacent leaves in the two resulting groups). V0 can be found with a query for u

in the interval tree. Let N0 be the set of all clusters t such that [s1; t; s2] ∈ V0.

Each cluster t ∈ N0 is in C0 and, therefore, has a copy t− in T [v−]. Create a pipe

between t and t−, and subdivide the pipe t−t with two new clusters t−leaf and tleaf

in T [v−] and T [v], respectively. The degree of clusters t or t− might increase to 4;

and so we adjust H so that both trees are binary. The image graph is now split into

groups Gu−v− and Guv.

We next define the changes in the polygon. Replace every chain [s1; t; s2] ∈ V0

with a new chain [s1; t−leaf ; tleaf ; s2], while also replacing the corresponding paths in

the lists B− and B+ in O(|V0|) time. In the sorted lists for B− and B+, this is

done by deletions and reinsertions. Note that all leaves t−leaf (resp., tleaf) are at the

end (resp., beginning) of the Euler tour of T [v−] (resp., T [v]), so deletions can be

performed in O(|V0|) time; and insertions take O(|V0| log n) time.

The changes in the polygon are equivalent to a sequence of ws-equivalent

primitives: a cluster-split operation at u, followed by a sequence of cluster-splits

along the chain C0 from `0 to u, and subdivision operations that create the new

leaf clusters between the two groups. The interval tree is updated by deleting the
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intervals that contain u, and the query time remains the same output-sensitive

O(log n+k). Then, we can split Guv in O(min(|B−|, |B+|) + |V0| log n+ log n) time.

2.5.4 Analysis of the spur-elimination algorithm

Lemma 2.5.4. Given m benchmark vertices, spur-elimination(P,G) takes O(m logm)

time.

Proof. Let σ be the number of spurs, β the number of benchmark vertices at the

leaves of clumps, and let ϕ = 2σ + β. Initially, ϕ = O(m) by (I1). All operations

in spur-elimination monotonically decrease both σ and ϕ. Step 2b decreases ϕ by

the number of spurs at u, and steps 2a and 2c both maintain ϕ. In particular,

Step 2c converts some spurs into pairs of adjacent benchmark vertices at leaves.

Consequently, the number of benchmark vertices remains O(m) throughout the

algorithm.

Step 1 creates data structures for new groups: For a group containing m

benchmarks, all supporting data structures can be computed in O(m) time, that is,

in O(1) time per benchmark. A new benchmark v appears in a group when (i) a

benchmark is extracted into an adjacent group, or (ii) a group of size m is split and

v is part of the smaller group of size at most m/2. Extraction strictly decreases ϕ,

so it occurs O(m) times. The total number of benchmarks that are either present

initially or created by extraction is O(m). Each of these benchmarks can move

into a group of half-size O(logm) times. Consequently, there are O(m logm) new

benchmarks overall, and the time spent on all instances of Steps 1 is O(m logm).

Step 2a removes an interior cluster of degree two; the update of supporting

data structures takes O(logm) time. Interior clusters are created only when they

contain a spur, so at most O(m) interior clusters are ever created, and all instances

of Step 2a take O(m logm) time. Step 2b eliminates |S| spurs in O(|S| logm) time.

Eventually, all spurs are eliminated, thus all instances of Step 2b take O(m logm)

time. Step 2c takes O(min(|B−|, |B+|) + |V0| logm + logm) time. By a stan-

dard heavy-path decomposition argument, the terms min(|B−|, |B+|) contribute
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O(m logm) time. Every chain in V0 corresponds to a spur that is destroyed in a

step 2c (and no new spurs are created in step 2c), therefore the terms O(|V0| logm)

sum to O(m logm) over the course of the algorithm. Since every execution of step 2c

increases the number of groups by one, and this step is repeated O(m) times, the

logm terms sum to O(m logm) in the entire algorithm.

Algorithm spur-elimination(P,G) returns a polygon P ′, a set G′ of groups, and

a set B′ of benchmark-to-benchmark paths, each of which connects two leaves in two

different clumps of a group. We can now decide whether P ′ is weakly simple in O(n)

time similarly to [CEX15, Section 3.3]. If P ′ is weakly simple, then the benchmark-

to-benchmark paths in each group Guv can be perturbed into disjoint paths, and

they traverse the rectangle Ruv from Du to Dv, in a specific order. The Euler

tours of the leaves in the clumps C(u) and C(v) determine this ordering uniquely,

up to permutations of the paths between the same pair of leaves. Such orderings

can be computed in O(n) time for all groups. By concatenating the benchmark-

to-benchmark paths at each cluster according to the these orderings, we obtain a

unique 2-regular graph Q′, in which the vertices are the benchmarks and the edges

represent benchmark-to-benchmark paths. Polygon P ′ is weakly simple if and only

if Q′ is connected and visits the benchmarks in the same cyclic order as P ′. These

properties can be verified by a simple traversal of P ′ and Q′ in O(n) time. This

completes the proof of part 1 of Theorem 2.1.1.

2.6 Perturbing weakly simple polygons into simple po-

lygons

In Sections 2.3–2.5, we have presented an algorithm that decides, in O(n log n) time,

whether a given n-gon P is weakly simple. If P is weakly simple, then for every

ε > 0 it can be perturbed into a simple polygon by moving each vertex at distance

at most ε. In this section we show how to find, for any ε > 0, a simple polygon

Q with 2n vertices such that distF (P,Q) < ε. Let P ′ and P ′′ be the polygons
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obtained after the bar-simplification and spur-elimination phases of the algorithm,

respectively. P ′′ has O(n) vertices, none of which is a fork or a spur. Using the

results in [CEX15, Section 3], we can construct a simple polygon Q′′ ∈ Φ(P ′′) in

O(n) time. In this section, we show that we can reverse the sequence of operations

in O(n log n) time and perturb P as well into a simple polygon Q ∈ Φ(P ).

Combinatorial representation by bar-signatures. A perturbation of a weakly

simple polygon has a combinatorial representation, called a signature, which consists

of total orders of the overlapping edges in all pipes of H (cf. Section 2.2). In the

absence of forks, every edge lies in a pipe, and the size of such a signature is O(n).

However, the signature may have size Θ(n2) in the presence of forks. When our

algorithm eliminates forks from a polygon, it may create Θ(n2) dummy vertices

and edges, which would again lead to a signature of size Θ(n2). For reversing the

operations of the algorithm in Sections 2.3–2.5, we introduce a new combinatorial

representation of size O(n) that maintains the total order of the edges in each bar

that are outside of clumps.

For n ≥ 3, let P = (p0, . . . , pn−1) be a weakly simple polygon with image

graph H. Assume that the sober clusters of H are partitioned into a set of disjoint

clumps satisfying invariants (I1)–(I4) such that every bar is either entirely in a

clump or outside of all clumps. Let Q = (p′0, . . . , p
′
n−1) be a simple polygon such

that |pi, p′i| < ε0 = ε0(P ) for all i = 0, . . . , n − 1. We may assume that H has no

vertical pipes. In each pipe uv of H outside of clumps, the above-below relationship

yields a total ordering over the edges of Q that contain uv. For each bar b outsize of

clumps, the total orders of the pipes along b are consistent (since the above-below

relationship between two edges is the same in every rectangle). Consequently, the

transitive closure of these total orders is a partial order over all edges in b. Consider

a linear extension of such a partial order. The collection of these total orders for all

bars in P is a bar-signature of Q. Since the linear extensions need not be unique, a

polygon Q ∈ Φ(P ) may have several bar-signatures.

Given a bar-signature of a perturbation of P , we can (re)construct an ap-
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proximate simple polygon Q′ as follows; refer to Figure 2.28. For every bar b = uv

of H outside of clumps, let the volume vol(uv) be the number of edges of P that lie

on b. Place vol(uv) parallel line segments, called lanes, between ∂Du and ∂Dv in the

region Uε, ordered from bottom to top (the lanes contain the edges of Q′). For the

i-th edge pq in the total order of b, let the corresponding edge in Q′ be the shortest

edge connecting ∂Dp and ∂Dq in the i-th lane. For each clump C(u), denote by

R(u) the union of all disks Dv, v ∈ C(u), and all rectangles between clusters in

C(u). If C(u) contains only the cluster u, then R(u) = Du, but R(u) is always

simply connected since C(u) induces a tree T [u]. For each clump C(u), construct a

noncrossing polyline matching, between the endpoints of the edges in ∂R(u), that

connects the endpoints corresponding to a maximal subpath in T [u]. The edges in

the lanes and the perfect matchings in the regions R(u) produce a polygon Q′. If

the Euclidean diameter of each region R(u) is at most δ, then the Fréchet distance

between P and Q′ is at most ε+ δ. Denote by Ψ(P ) the set of all simple polygons

that can be constructed in this manner from a bar-signature for some ε, 0 < ε < ε0.

u

v

u
C(u)

R(u)

Figure 2.28: Construction of a simple polygon Q′ ∈ Ψ(P ) from a bar-signature. Left:
Bar uv of a simple polygon obtained from an order compatible with the polygon shown in
Figure 2.2(c). Right: maximal paths of Q and Q′ inside clumps.

Spur elimination. If a given n-gon is weakly simple, our decision algorithm com-

putes a polygon P ′′, which is ws-equivalent to P and represented implicitly by a

cyclic sequence of benchmark clusters. Specifically, P ′′ is represented by an image

graph H ′′, a set G′′ of groups, a set B′′ of benchmark-to-benchmark paths, and for

every group Guv ∈ G′′, a linear order of the paths in B′′ that cross the rectangle Ruv

between Du and Dv. Consequently, the decision algorithm provides a bar-signature
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for the weakly simple polygon P ′′.

We show that, by reversing the steps of Algorithm spur-elimination(P ′,G′), we

can compute a bar-signature of P ′ in O(n log n) time. If a group Guv has been split

in some step 2c (cf. Section 2.5.3), we can construct an ordering of the benchmark-

to-benchmark paths of Guv by concatenating the orders of B− and B+ (the sets of

benchmark-to-benchmark paths of the resulting two groups).

If Guv had spurs eliminated from u in some step 2b (cf. Section 2.5.2), we

reverse each of the steps in the following manner. Recall that if a new group G`−`+

was created, then every path [t′1; t′2] ∈ B′ was created from two paths [t1;u] and

[t2;u]. Use the ordering of B′ to order the paths that originated B′ so that they

form nested spurs, i.e., if [t′1; t′2] is the topmost edge in B′, [t1;u] (resp. [t2;u])

should be the leftmost (resp., rightmost) path (without loss of generality, we use

the orientation of Figure 2.26). Identify the leftmost path in the pipe that connects

` and its right child and place all nested paths that created G`−`+ immediately to

its left.

If one or more spurs were created at a cluster z in an adjacent group, we can

find the position of the edges incident to each spur in the ordering of the adjacent

group. Using this order, we can identify the first path in Guv to the right of the

edges incident to [z]. Then, immediately to the left of such a path, we can place the

paths [t1;u; t1] that generated the spurs at z. The relative order of these paths is

the same as the one obtained by reversing a spur-reduction, described in the proof

of Lemma 2.4.1, and therefore produces a simple polygon. If a path [t1;u; t2] is

simplified to [t1] (Step 1 with min(t1, t2) = t1 without loss of generality; or Step 2),

we can proceed analogously to the reversal of a crimp-reduction (cf. Lemma 2.3.1)

from a path [t1;u; t2; s] to [t1; s]. Identify the path [t1; s] in the ordering of B and

replace it with the paths [t1;u], [u; t2], and [t2; s] in this order.

Bar simplification. The bar-signature determines all pipes between adjacent

clumps. Using these orders, we can reverse the operation pin-extraction(u, v) as-

signing the same order for the edges in uv as the order of its adjacent benchmark-
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to-benchmark paths. V-shortcut is also trivially reversible by concatenating the order

of pipes that get merged.

Updating the bar-signature when we reverse an L-shortcut operation is a bit

more challenging. Determining the edge order in pipes vw and vu1 can be trivially

done by just concatenating the order of merged pipes. But phase (1) introduces a

crimp in some cross-chains, and the reverse operation, crimp-reduction, may require

nontrivial reordering in the bar-signature. Suppose that P ′ is obtained from P after

a crimp-reduction. The proof of Lemma 2.3.1 shows a straightforward way to obtain

a bar-signature of a polygon in Ψ(P ) given a polygon in Ψ(P ′). However, obtaining

a bar-signature of Q′ ∈ Ψ(P ′) given Q ∈ Ψ(P ) requires identifying Wtop and Wbot,

which takes O(n) time.

In order to handle the reversal of phase (1) in O(1) time, we divide the

signature of each bar into pieces. Recall that the bar-simplification algorithm does

not eliminate any cross-chains from ∆b, and when bar-simplification terminates, only

the cross-chains remain in the interior of ∆b. Let K denote the set of cross-chains

of ∆b. The bar-signature yields a linear order (from left to right) of K; and the

cross-chains subdivide ∆b into |K| + 1 regions. We maintain a linear order for the

edges along the bar in each such region (including the boundary of the region), and

denote the set of these edges in b by E1, . . . , E|K|+1.

We reverse phase (2) and (3) of L-shortcut(v, TR) as follows (applying re-

flections for other L-shortcut operations if necessary). Assign the new edges [u1, u2]

the highest lanes in the ordering of the appropriate Ei, maintaining the relative

order of affected paths. To reverse phase (1), first notice that the three edges in the

crimp [u1, u2, u1, u2] are part of a cross-chain, consequently they appear in two con-

secutive subsets Ei and Ei+1. In the ordering of the left (resp., right) subset, assign

the new edge [u1, u2] to the highest (resp., lowest) position among the positions of

the three edges [u1, u2].

When all operations in the bar simplification algorithm have been reversed,

we have to combine the linear orders of E1, . . . , E|K|+1 into a total order, a common

linear extension of these orders. The above-below relationship between the edges
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of each cross-chain is uniquely determined by Lemma 2.3.2. Since the ordering of

each subset guarantees that its paths can be realized without crossing, any linear

extension of these ordering produces a bar-signature of a simple polygon.

Preprocessing. The clump formation and new-bar-expansion consist of subdivision

operations that do not influence the order of edges that define the bar-signature.

If an edge [a, c] in a bar b is subdivided into [a, b, c], where [b, c] is in ∆b, we can

assign [a, c] to the same position of [b, c] in the ordering of edges in b. The crimp-

reduction operations can be reversed by making the three edges that form a crimp

consecutive in the ordering, as in the proof of Lemma 2.3.1. This completes the

proof of Theorem 2.1.1.

2.7 Single vertex foldability

Recall (from Chapter 1) that a crease pattern is the plane graph formed by creases

in the paper. In a single-vertex crease pattern, the paper is an infinite orientable

manifold with zero Gaussian curvature at all points except possibly for the origin

where the curvature might be not defined. The uncreased regions of paper are

infinite wedges that must be realized flat in the folding. We call the paper flat if the

sum of angles of all wedges is 360◦. Creases are rays from the origin in the paper.

Each crease can be associated to a folding angle which corresponds to the difference

between the angles formed by the normals of two adjacent faces bounding the crease

in the desired state and in the unfolded state. In Flat-Foldability these angles

are either −180◦ or 180◦, but in general they can be any value in between.

In [DO07], the following is stated as Open Problem 12.1: Provide necessary

and sufficient conditions for a single vertex crease pattern with assigned folding

angles to be realizable as a 3D single-vertex fold, both for flat paper, and for arbitrary

incident paper angle. We show that this problem can be solved via a reduction to

recognizing weak embeddings.

Corollary 2.7.1. Given a single-vertex crease pattern with prescribed folding angles,

deciding whether it can be realized as a 3D single-vertex fold can be done in O(n log n)
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time.

Proof. We define a folding isometry of a 3D single-vertex fold similarly to Chapter 1.

Place the vertex at the origin and fix one of the faces in the xy-plane arbitrarily. The

positions of the remaining faces are then defined by continuity and the prescribed

folding angle. If the conditions in Theorem 12.2.14 in [DO07] are met (the combined

rotations defined by the folding angles result in the identity), then the defined folding

isometry is continuous. This can be checked in O(n) time. Take the intersection

between the paper and the unit sphere centered at the origin. This defines a polygon

on S2. Note that the intersection of a face and the sphere defines an arc of a great

circle. Project the polygon in the plane using gnomonic projection which maps great

circles to straight lines. The result is a polygon P that is weakly simple if and only

if the 3D single-vertex fold is realizable without crossings.

2.8 Proof of Theorem 2.1.2

This section generalizes Theorem 2.1.1 to drawings of max-degree-2 graphs in ar-

bitrary surfaces as is done by Chang et al. [CEX15, Section 8]. First we show a

reduction to regular degree-2 graphs.

Lemma 2.8.1. Let ϕ : G → H be an instance containing a polygonal path p. Let

the instance ϕ′ : G′ → H be obtained by replacing p by the polygon P constructed by

identifying the endpoint of p and p−1. Then, ϕ and ϕ′ are equivalent.

Proof. Assume that there exist an embedding that approximates ϕ. A sufficiently

small neighborhood of p must contain no points apart from point in p. Then, we can

trivially connect the endpoints of p by a simple path that stays in this neighborhood

of p, thus obtaining an embedding approximating ϕ′. Now assume that there exist

an embedding that approximates ϕ′. The simple polygon that approximates P can

be partitioned into two simple paths that approximate p. By simply deleting the

image of p−1, we obtain an embedding approximating ϕ.

As pointed out in [CEX15], cluster-expansion and old-bar-expansion only rely
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on the fact that G is regular degree-2, and, thus, also work for disjoint cycles. The

same is true for the new operations apart from the following case. Notice that if a

cycle is entirely contained in a bar, then the preprocessing step will replace it by a

copy of C2 whose vertices are mapped to the extremal vertices of the original cycles

(resp., leftmost and rightmost points considering a horizontal bar). Let C be the set

of all such cycles. Then, bar-simplification will not report negative cases when an

edge in Mcr (a longest edge of a cross-chain) is contained in the interior of an edge

of a cycle in C. We can check for this case after the preprocessing in O(n log n) time

by building an interval tree storing edges in Mcr and testing for overlaps with cycles

in C. If such situation does not happen, we can delete all cycles in C. This produces

an equivalent instance as follows. Clearly if the original instance is positive, deleting

C will not affect that. Notice that all cross chains can be sorted from left to right

and that, since no cycle in C contain an edge in Mcr, we can determine for every

cycle in C the cross chains that must be to the left and to the right of the cycle. If a

bar has k cross chains, such cross chains partition the other polygonal paths in the

same bar into k + 1 intervals depending on which side of the cross chains the path

is embedded. If the instance without C is positive, then there exists an embedding

in which, for all interval defined by cross chains, no edge of a top chain is below

an edge of a bottom chain. In particular, the embedding described in Section 2.6

has this property by construction. Then, one can always draw the cycles in C in an

appropriate interval below all top chains and above all bottom chains.

Further, the termination of the algorithm has to be changed to handle regular

degree-2 graphs. Instead of a single cycle, the algorithm may end up with disjoint

and/or nested simple cycles. It is possible to check if such components can be

approximated by an embedding in R2 using observations in [CEX15]. Each disjoint

set of cycles can be treated separately. Each set of nesting cycles contain identical

cycles. The existence of an approximating embedding depends only on the “winding

number”, i.e., how many times a cycle c in G wraps around the corresponding simple

cycle C in H. Since the strip system of C is homeomorphic to an annulus, report a

negative instance if the winding number of each cycle is different than 1. Otherwise,
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report that ϕ is a weak embedding. Apart from these changes, all other details of

our algorithms directly generalize. This concludes the proof of Theorem 2.1.2.
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Chapter 3

Weak Embeddings

This chapter presents an efficient algorithm for recognizing weak embeddings. A

polynomial-time algorithm for recognizing weak embeddings was recently found by

Fulek and Kynčl [FK18], which reduces to solving a system of linear equations

over Z2. It runs in O(m4ω) time, where ω ∈ [2, 2.373) is the matrix multiplica-

tion exponent and m is the number of edges of G. We improve the running time

to O(nm log n), where n is the number of vertices of G. Our algorithm is also

conceptually simpler than [FK18]: We perform a sequence of local operations that

gradually “untangles” the image ϕ(G) into an embedding ψ(G), or reports that ϕ

is not a weak embedding. It generalizes a recent technique developed for the case

that G is a cycle and the embedding is a simple polygon [AAET17], and combines

local constraints on the orientation of subgraphs directly, thereby eliminating the

need for solving large systems of linear equations. The results in this chapter are

joint work with Radoslav Fulek and Csaba D. Tóth published in [AFT18].

3.1 Introduction

We recall some definitions from Chapter 1. An embedding ψ : G→M is a continuous

piecewise linear injective map where the graph G is considered as a 1-dimensional

simplicial complex. Equivalently, an embedding maps the vertices into distinct

points and the edges into interior-disjoint Jordan arcs between the corresponding
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vertices. We would like to decide whether a given map ϕ : G→M can be “pertur-

bed” into an embedding ψ : G→M . Let M be a 2-dimensional manifold equipped

with a metric. A continuous piecewise linear map ϕ : G → M is a weak embedding

if, for every ε > 0, there is an embedding ψε : G→M with ‖ϕ−ψε‖ < ε, where ‖.‖

is the uniform norm (i.e., sup norm).

In some cases, it is easy to tell whether ϕ : G → M is a weak embedding:

Every embedding is a weak embedding; and if ϕ maps two edges into Jordan arcs

that cross transversely, then ϕ is not a weak embedding. The problem becomes

challenging when ϕ maps several vertices (edges) to the same point (Jordan arc),

although no two edges cross transversely. This scenario arises in applications in

clustering, cartography, and visualization, where nearby vertices and edges are often

bundled to the same point or overlapping arcs, due to data compression, graph

semantics, or low resolution. A cluster in this context is a subgraph of G mapped

by ϕ to the single point in M .

The recognition of weak embeddings turns out to be a purely combina-

torial problem independent of the global topology of the manifold M (as noted

in [CEX15]). The key observation here is that we are looking for an embeddding in

a small neighborhood of the image ϕ(G), which can be considered as the embedding

of some graph H. As such, we can replace M with a neighborhood of an embedded

graph in the formulation of the problem.

DuDv

Au,v

uv

(a) (b) (c) (d)

Figure 3.1: (a) An embedding of H = K5 in the torus. (b) Strip system H of the
embedding of H. (c) A weak embedding where G is disconnected and H = C4. (d)
A negative instance where G = C8 and H = C3.

Problem Statement and Results. In Sections 3.2–3.5, we make two simplifying

assumptions: We assume that M is an orientable 2-manifold, and ϕ : G → H
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is a simplicial map for some graph H embedded in M . A map ϕ : G → H is

simplicial if it maps the vertices of G to vertices of H and the edges of G to edges

or vertices of H such that incidence relations are preserved (in particular, the image

of an edge cannot pass through the image of a vertex). We explain below how to

drop the assumption that ϕ : G → H is simplicial at the expense of increasing the

running time of our algorithms. We extend our results to nonorientable surfaces in

Section 3.6.

An embedded graph H in an orientable 2-manifold M is an abstract graph

together with a rotation system that specifies, for each vertex of H, the ccw cyclic

order of incident edges. The strip system H of H (a.k.a. the thickening of H)

is a 2-manifold with boundary constructed as follows (Fig. 3.1(a)–(b)): For every

u ∈ V (H), create a topological disk Du, and for every edge uv ∈ E(H), create a

rectangle Ruv. For every Du and Ruv, fix an arbitrary orientation of ∂Du and ∂Ruv,

respectively. Partition the boundary of ∂Du into deg(u) arcs, and label them by

Au,v, for all uv ∈ E(H), in the cyclic order around ∂Du determined by the rotation

of u in the embedding of H. Finally, the manifold H is obtained by identifying two

opposite sides of every rectangle Ruv with Au,v and Av,u via an orientation preserving

homeomorphism (i.e., consistently with the chosen orientations of ∂Ruv, ∂Du and

∂Dv). See Fig. 3.1(a)–(b). If ϕ : G → M is continuous piecewise linear map, then

ϕ(G) is the embedding of a some graph H in M , and an ε-neighborhood of ϕ(G) in

M is homeomorphic to H for a sufficiently small ε > 0. Consequently, ϕ : G→M is

a weak embedding if and only if ϕ : G→ H is a weak embedding. We may further

assume that ϕε maps every edge uv to a Jordan arc that crosses the boundaries of

Du (resp., Dv) precisely once (cf. [CEX15, Lemma B2] and [FK18, Section 4]).

We can now formulate an instance of the weak embeddability problem as a

simplicial map ϕ : G → H (for short, ϕ), where G is an abstract graph and H is

an embedded graph. The simplicial map ϕ : G → H is a weak embedding if there

exists an embedding ψϕ : G→ H that maps each vertex v ∈ V to a point in Dϕ(v),

and each edge uv ∈ E(G) to a Jordan arc in Dϕ(u) ∪ Rϕ(u)ϕ(v) ∪ Dϕ(v) that has a

connected intersection with each of Dϕ(u), Rϕ(u)ϕ(v), and Dϕ(v), and Rϕ(u)ϕ(v) = ∅
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if u = v. We say that the embedding ψϕ approximates ϕ. Our main results is the

following.

Theorem 3.1.1.

(i) Given an abstract graph G with m edges, an embedded graph H, and a simpli-

cial map ϕ : G → H, we can decide in O(m logm) time whether ϕ is a weak

embedding.

(ii) If ϕ : G → H is a weak embedding, then for every ε > 0 we can also find an

embedding ψε : G→M with ‖ϕ− ψε‖ < ε in O(m logm) time.

Throughout this chapter we assume that G has n vertices and m edges. In the

plane (i.e., M = R2), only planar graphs admit weak embeddings hence m = O(n),

but our techniques work for 2-manifolds of arbitrary genus, and G may be a dense

graph. Our result improves the running time of the previous algorithm [FK18] from

O(m2ω) ≤ O(m4.75) to O(m logm), where ω ∈ [2, 2.373) is the matrix multiplication

exponent. It also improves the running times of several recent polynomial-time

algorithms in special cases, e.g., when the embedding of G is restricted to a given

isotopy class [Ful17], and H is a path [ADLDBF17] (see below).

Extension to Nonsimplicial Maps and Nonorientable Manifolds. If ϕ : G→

H is a continuous map (not necessarily simplicial) that is injective on the edges (each

edge is a Jordan arc), we may assume that ϕ(V (G)) ⊆ V (H) by subdividing the

edges in E(H) with at most n = |V (G)| new vertices in V (H) if necessary. Then ϕ

maps every edge e ∈ G to a path of length O(n) in H. By subdividing the edges

e ∈ E(G) at all vertices in V (H) along ϕ(e), we reduce the recognition problem to

the regime of simplicial maps (Theorem 3.1.1). The total number of vertices of G

may increase to O(mn) and the running time to O(mn log(mn)).

Corollary 3.1.2. Given an abstract graph G with m edges, an embedded graph H

with n vertices, and a piecewise linear continuous map ϕ : G → H that is injective

on the interior of every edge in E(G), we can decide in O(mn log(mn)) time whether

ϕ is a weak embedding.
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For example, this applies to straight-line drawings in R2 if the edges may

pass through vertices.

Corollary 3.1.3. Given an abstract graph G with n vertices and a map ϕ : G→ R2

where every edge is mapped to a straight-line segment, we can decide in O(n2 log n)

time whether ϕ is a weak embedding.

In Section 3.6, we extend Theorem 3.1.1 and Corollary 3.1.2 to nonorientable

surfaces with minor changes in the combinatorial representations, using a signature

λ : E(H) → {−1, 1} to indicate whether an edge uv (and Ruv) is orientation-

preserving or -reversing [BD09].

Related Previous Work. The study of weak embeddings lies at the interface

of several independent lines of research in mathematics and computer science. In

topology, the study of weak embeddings and its higher dimensional analogs were

initiated by Sieklucki [Sie69] in the 1960s. One of his main results [Sie69, Theorem

2.1] implies the following. Given a graph G and an embedded path H, every simpli-

cial map ϕ : G→ H is a weak embedding if and only if every connected component

of G is a subcubic graph with at most one vertex of degree three. It is easy to see

that an analogous statement is false when G has maximum degree 2 (i.e., G is a

union of vertex disjoint paths and cycles). Chapter 2 describes related work and

results for such case.

Finding efficient algorithms for the recognition of weak embeddings ϕ : G→

H, where G is an arbitrary graph, was posed as an open problem in [AAET17,

CEX15, CDBPP09]. The first polynomial-time solution for the general version fol-

lows from a recent variant [FK18] of the Hanani-Tutte theorem [Han34, Tut70],

which was conjectured by M. Skopenkov [Sko03] in 2003 and in a slightly weaker

form already by Repovš and A. Skopenkov [RS98] in 1998. However, this algo-

rithm reduces the problem to a system of O(m) linear equations over Z2, where

m = |E(G)|. The running time for simplicial maps is dominated by solving this sy-

stem in O(m2ω) ≤ O(m4.75) time, where ω ∈ [2, 2.373) is the matrix multiplication

exponent; cf. [Wil12].
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Weak embeddings of graphs also generalize various graph visualization mo-

dels such as the recently introduced strip planarity [ADLDBF17] and level plana-

rity [JLM98]; and can be seen as a special case [AL16] of the notoriously difficult

cluster-planarity (for short, c-planarity) [FCE95a, FCE95b], whose tractability re-

mains elusive despite many attempts by leading researchers.

Outline. Our results rely on ideas from [ADLDBF17, CEX15, CDBPP09] and [FK18].

Recall that, to distinguish the graphs G and H, we use the convention that G has

vertices and edges, and H has clusters and pipes. A cluster u ∈ V (H) corresponds

to a subgraph ϕ−1[u] of G, and a pipe uv ∈ E(H) corresponds to a set of edges

ϕ−1[uv] ⊆ E(G).

The main tool in our algorithm is a local operation, called “cluster expan-

sion,” which generalizes similar operations introduced previously for the case that

G is a cycle. Given an instance ϕ : G → H and a cluster u ∈ V (H), it modifies u

and its neighborhood (by replacing u with several new clusters and pipes) such that

weak embeddability is invariant under the operation in the sense that the resulting

new instance ϕ′ : G′ → H ′ is a weak embedding if and only if ϕ : G → H is a

weak embedding. Our operation increases the number of clusters and pipes, but it

decreases the number of “ambiguous” edges (i.e., multiple edges in the same pipe).

The proof of termination and the running time analysis use potential functions.

In a preprocessing phase, we perform a cluster expansion operation at each

cluster u ∈ V (H). The main loop of the algorithm applies another operation, “pipe

expansion,” for two adjacent clusters u, v ∈ V (H) under certain conditions. It

merges the clusters u and v, and the pipe uv ∈ E(H) between them, and then

invokes cluster expansion. If any of these operations finds a local configuration

incompatible with an embedding, then the algorithm halts and reports that ϕ is not

a weak embedding (this always corresponds to some nonplanar subconfiguration

since the neighborhood of a single cluster or pipe is homeomorphic to a disk). We

show that after O(m) successive operations, we obtain an irreducible instance for

which our problem is easily solvable in O(m) time. Ideally, we end up with G = H
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(one vertex per cluster and one edge per pipe), and ϕ = id is clearly an embedding.

Alternatively, G and H may each be a cycle (possibly G winds around H multiple

times), and we can decide whether ϕ is a weak embedding in O(m) time by a simple

traversal of G. If G is disconnected, then each component falls into one of the above

two cases (Fig. 3.1(c)–(d)), i.e., the case when ϕ = id or the case when ϕ 6= id.

The main challenge was to generalize previous local operations (that worked

well for cycles [CEX15, CDBPP09, Sko03]) to arbitrary graphs. Our expansion

operation for a cluster u ∈ V (H) simplifies each component of the subgraph ϕ−1[u]

of G independently. Each component is planar (otherwise it cannot be perturbed

into an embedding in a disk Du). However, a planar (sub)graph with k vertices may

have 2O(k) combinatorially different embeddings: some of these may or may not be

compatible with adjacent clusters. The embedding of a (simplified) component C

of ϕ−1[u] depends, among other things, on the edges that connect C to adjacent

clusters. The pipe-degree of C is the number of pipes that contain its incident edges.

If the pipe-degree of C is 3 or higher, then the rotation system of H constrains the

embedding of C. If the pipe-degree is 2, however, then the embedding of C can only

be determined up to a reflection, unless C is connected by two independent edges

to a component in ϕ−1[v] whose orientation is already fixed; see Fig. 3.2.

u v

a
b

c
d

u v

a
b

c
d

Figure 3.2: Two adjacent clusters, u and v, that each contain two components of
pipe-degree 2 (left). These components merge into a single component in Du∪Ruv∪
Dv. In every embedding, the order of the pipe-edges a, b determines the order of
the pipe-edges c, d. The operation pipeExpansion(uv) transforms the component on
the left to two wheels connected by three edges (a so-called thick edge) shown on
the right.

We need to maintain the feasible embeddings of the components in all clusters

efficiently. In [FK18], this problem was resolved by introducing 0-1 variables for the

components, and aggregating the constraints into a system of linear equations over

Z2, which was eventually resolved in O(m2ω) ≤ O(m4.75) time. We improve the

69



running time to O(m logm) by maintaining the feasible embeddings simultaneously

with our local operations.

Another challenge comes from the simplest components in a cluster ϕ−1[u].

Long chains of degree-2 vertices, with one vertex per cluster, are resilient to our local

operations. Their length may decrease by only one (and cycles are irreducible). We

need additional data structures to handle these “slowly-evolving” components effi-

ciently. We use a dynamic heavy-path decomposition data structure and a suitable

potential function to bound the time spent on such components.

Organization. In Section 3.2, we introduce additional terminology for an instance

ϕ : G→ H, and show how to modify the subgraphs ofG within each cluster to reduce

the problem to an instance in “normal form,” a “simplified form,” and introduce a

combinatorial representation a weak embedding that we use in our algorithm. The

simplification step relies on the concept of SPQR-trees, developed in [DT96] for

the efficient representation of combinatorial embeddings of a graph, which we also

review in this section.

In Section 3.3, we present the cluster expansion and pipe expansion opera-

tions and prove that weak embeddibility is invariant under both operations. We

use these operations repeatedly in Section 3.4 to decide whether a simplicial map

ϕ : G → H is a weak embedding. Section 3.5 discusses how to reverse a sequence

of operations to perturb a weak embedding into an embedding. The adaptation of

our results to nonorientable surfaces is discussed in Section 3.6.

3.2 Preliminaries

In this section, we describe modifications within the clusters of a simplicial map

ϕ : G → H to bring it to “normal form” (properties (P1)–(P2)) and “simplified

form” (properties (P3)–(P4)). These properties allow for a purely combinatorial

representation of weak embeddability (in terms of permutations), which we use in

the proof of correctness of the algorithms in Sections 3.3 and 3.4.
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Definitions. Two instances ϕ : G → H and ϕ′ : G′ → H ′ are called equivalent

if ϕ is a weak embedding if and only if ϕ′ is a weak embedding. We call an edge

e ∈ E(G) a pipe-edge if ϕ(e) ∈ E(H), or a cluster-edge if ϕ(e) ∈ V (H). For every

cluster u ∈ V (H), let Gu be the subgraph of G induced by ϕ−1[u]. For every pipe

uv ∈ E(H), ϕ−1[uv] stands for the set of pipe-edges mapped to uv by ϕ.

The pipe-degree of a connected component C of Gu, denoted pipe-deg(C), is

the number of pipes that contain some edge of G incident to C. A vertex v of Gu is

called a terminal if it is incident to a pipe-edge. For an integer k ≥ 3, the k-vertex

wheel graph Wk is a join of a center vertex c and a cycle of k − 1 external vertices.

Refer to [Die17] for standard graph theoretic terminology (e.g., cut vertex, 2-cuts,

biconnectivity).

3.2.1 Normal Form

An instance ϕ : G→ H is in normal form if every cluster u ∈ V (H) satisfies:

(P1) Every terminal in Gu is incident to exactly one cluster-edge and one pipe-edge.

(P2) There are no degree-2 vertices in Gu.

We now describe subroutine normalize(u) that, for a given instance ϕ : G→

H and a cluster u ∈ V (H), returns an equivalent instance ϕ′ : G′ → H such that u

satisfies (P1)–(P2); refer to Fig. 3.3(a)–(b).

normalize(u). Input: an instance ϕ : G→ H and a cluster u ∈ V (H).

Subdivide every pipe-edge pq where ϕ(p) = u into a path (p, p′, q) such that ϕ′(p) =

ϕ′(p′) = ϕ′(q) = u. Note that the new vertex p′ is a terminal in G and a leaf in Gu

(i.e., degGu
(p′) = 1). Successively suppress every vertex p of Gu with degGu

(p) = 2

by merging its incident edges. If this creates a loop, delete the loop.

Lemma 3.2.1. Given an instance ϕ : G→ H and a cluster u ∈ V (H), the instance

ϕ′ = normalize(u) and ϕ are equivalent and u satisfies (P1)–(P2) in ϕ′. The su-

broutine runs in O(
∑

p∈V (Gu) degG(p)) time. By successively applying normalize to
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C

C

Du

(a)

(b)

(d) (e)(c)

TC

Figure 3.3: Changes in a cluster caused by normalize and simplify. (a) Input, (b)
after normalize, (c) after first part of step 1, (d) after step 1, and (e) after step 2 of
subroutine simplify. Dashed lines, green dots, green lines, and blue lines represent
pipe-edges, pipe-vertices, edges in EC , and virtual edges, respectively.

all clusters in V (H), we obtain an equivalent instance in normal form in O(|E(G)|)

time.

Proof. The instances ϕ and ϕ′ are clearly equivalent since (i) we can always replace

the embedding of an edge by a path and vice-versa, and (ii) a loop can always be

deleted or added to a vertex in an embedding. There are O(
∑

p∈V (Gu) degG(p)) pipe-

edges incident to a vertex in u. Hence the subroutine performs O(
∑

p∈V (Gu) degG(p))

subdivisions. There are at most |E(Gu)| = O(
∑

p∈V (Gu) degG(p)) degree-2 vertices

in Gu. By construction, the resulting graph G′u satisfies (P1)–(P2). All changes

are local and applying normalize to u does not change properties (P1)–(P2) in other

clusters. Therefore, we can obtain the normal form of ϕ in O(|E(G)|) time.

For every cluster u ∈ V (H), the graph Gu may have several components.

For each component C, we define a multigraph C that represents the interactions

of C with vertices in adjacent clusters. Specifically, for each component C of Gu of

a cluster u ∈ V (H) satisfying (P1)–(P2), we define the multigraph C in two steps

as follows; refer to Fig. 3.3(b).

1. For every pipe uv ∈ E(H) incident to u, create a new vertex v′, called pipe-

vertex, and identify all terminal vertices of C incident to some edge in ϕ−1[uv]
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with v′ (this may create multiple edges incident to v′).

2. If pipe-deg(C) = 2, connect the two pipe-vertices with an edge e and let

EC = {e}. If pipe-deg(C) ≥ 3, connect all pipe-vertices by a cycle in the

order determined by the rotation of u and let EC be the set of edges of this

cycle.

Let C = (V (C), E(C)), where V (C) consists of nonterminal vertices in V (C)

and pipe-deg(C) pipe-vertices, and E(C) consists of the edges induced by nonter-

minal vertices in V (C), (multi) edges created in step 1 (each of which corresponds

to an edge in E(C)) and edges in EC . It is clear that every embedding of C can be

converted into an embedding of C such that the rotation of the pipe vertices in C

determines the cyclic order of terminals along the facial walk of the outer face of C.

3.2.2 SPQR-Trees

SPQR-trees were introduced by Di Battista and Tamassia [DT96] for an efficient

representation of all combinatorial plane embeddings of a graph. Let G be a bicon-

nected planar graph. The SPQR-tree TG of G represents a recursive decomposition

of G defined by its (vertex) 2-cuts. A deletion of a 2-cut {u, v} disconnects G into

two or more components C1, . . . , Ci, i ≥ 2. A split component of {u, v} is either

an edge uv or the subgraphs of G induced by V (Cj) ∪ {u, v} for j = 1, . . . , i. The

tree TG captures the recursive decomposition of G into split components defined by

2-cuts of G. A node µ of TG is associated with a multigraph called skeleton(µ) on a

subset of V (G), and has a type in {S,P,R}. If the type of µ is S then skeleton(µ) is

a cycle of 3 or more vertices. If the type of µ is P then skeleton(µ) consists of 3 or

more parallel edges between a pair of vertices. If the type of µ is R then skeleton(µ)

is a 3-connected graph on 4 or more vertices. An edge in skeleton(µ) is real if it is an

edge in G, or virtual otherwise. A virtual edge connects the two vertices of a 2-cut,

u and v, and represents a subgraph of G obtained in the recursive decomposition,

containing a uv-path in G that does not contain any edge in skeleton(µ). Two nodes

µ1 and µ2 of TG are adjacent if skeleton(µ1) and skeleton(µ2) share exactly two ver-
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tices, u and v, that form a 2-cut in G. Each virtual edge in skeleton(µ) corresponds

to a pair of adjacent nodes in TG. No two S nodes (resp., no two P nodes) are

adjacent. Every edge in E(G) appears in the skeleton of exactly one node. The tree

TG has O(|E(G)|) nodes and it can be computed in O(|E(G)|) time [DT96].

It is also known that TG represents all combinatorial embeddings of G in R2

in the following manner [DT96]. Choose a root node for TG and an embedding of

its skeleton. Then successively replace each virtual edge uv by the skeleton of the

corresponding node µ minus the virtual edge uv in skeleton(µ). In each step of the

recursion, if µ is of type R, skeleton(µ) can be flipped (reflected) around u and v,

and if µ is of type P, the parallel edges between u and v can be permuted arbitrarily.

3.2.3 Combinatorial Representation of Weak Embeddings

Given an embedding ψϕ : G → H, where ϕ is in normal form, we define a combi-

natorial representation πϕ as the set of total orders of edges in Ruv, for all pipes

uv ∈ E(H). Specifically, for every pipe uv ∈ E(H), fix an orientation of the boun-

dary of R(uv) (e.g., the one used in the construction of the strip system H). Record

the order in which the pipe-edges in the embedding ψϕ intersect a fixed side of ∂Ruv

(say, the side ∂Ruv ∩ ∂Du) when we traverse it in the given orientation. Let Π(ϕ)

be the set of combinatorial representations πϕ of all embeddings ψϕ : G→ H. Note

that ϕ : G→ H is a weak embedding if and only if Π(ϕ) 6= ∅.

Conversely, let πϕ be a set of total orders of edges in Ruv, for all pipes

uv ∈ E(H). We show (in Lemma 3.2.2 below) how to use the normal form and

SPQR-trees to decide whether πϕ 6∈ Π(ϕ) . We say that two components C1 and C2

of Gu cross with respect to πϕ if and only if their terminals interleave in the cyclic

order around ∂Du (i.e., there exists no cut in the cyclic order in which all terminals

of C1 appear before all terminals of C2). If πϕ ∈ Π(ϕ), then πϕ cannot induce two

crossing components in Gu, for any u ∈ V (H).

Lemma 3.2.2. Given a set of total orders πϕ, we can decide whether πϕ 6∈ Π(ϕ)

in O(m) time. If πϕ ∈ Π(ϕ), then we can also find an embedding ψϕ : G → H in
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O(m) time.

Proof. Let H be the strip system for ϕ : G → H. For each pipe uv ∈ E(H), draw

|ϕ−1[uv]| parallel Jordan arcs in Ruv connecting ∂Du and ∂Dv. For each cluster

u ∈ V (H), πϕ defines a ccw cyclic order of terminals around ∂Du.

Create a graph C̃ by the union of C and a wheel WtC+1 whose center is a

new vertex, and whose external vertices are the terminals of C in the order defined

by πϕ. An embedding of C in which the terminals appear in the outer face in the

same cyclic order as the one defined by πϕ exists if and only if C̃ is planar. If C̃

is not planar, report that πϕ /∈ Π(ϕ). Else, embed C inside Du given the position

of the already embedded terminals on ∂Du. This subdivides Du into faces. If a

component connects terminals in different faces, then two components in Gu cross,

hence πϕ /∈ Π(ϕ). If no two components cross, we can incrementally embed the

components C, as there is always a face of Du that contains all terminals of C.

3.2.4 Simplified Form

Given an instance ϕ : G → H in normal form, we simplify a graph G by removing

parts of the graph Gu, for all u ∈ V (H), that are locally “irrelevant” for the em-

bedding, such as 0-, 1-, and 2-connected components that are not adjacent to edges

in any pipe incident to u. Formally, for each component C of Gu, we call a split

component defined by a 2-cut {p, q} of C irrelevant if it contains no pipe-vertices.

An instance is in simplified form if it is in normal form an every u ∈ V (H) satisfies

properties (P3)–(P4) below.

(P3) For every component C of Gu, C is biconnected and every 2-cut of C contains

at least one pipe-vertex.

Assuming that a cluster u satisfies (P3), we define TC as the SPQR tree of

C where C is a component of Gu. Given a node µ of TC , let the core of µ, denoted

core(µ), be the subgraph obtained from skeleton(µ) by deleting all pipe-vertices.

Property (P4) below will allow us to bound the number of vertices of Gu in terms

of its number of terminals (cf. Lemma 3.2.4).
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(P4) For every component C of Gu, and every R node µ of TC , core(µ) is isomorphic

to a wheel Wk, for some k ≥ 4, whose external vertices have degree 4 in Gu.

We now describe subroutine simplify(u) that, for a given instance ϕ : G→ H

in normal form and a cluster u ∈ V (H), returns an instance ϕ′ : G′ → H such that

u satisfies (P1)–(P4). We break the subroutine into two steps.

simplify(u). Input: an instance ϕ : G→ H in normal form and a cluster u ∈ V (H).

For every component C of Gu, do the following.

(1) If C is not planar, report that ϕ is not a weak embedding and halt. If

pipe-deg(C) = 0, then delete C. Else compute C, and find the maximal bicon-

nected component Ĉ of C that contains all pipe-vertices. The component Ĉ trivially

exists if pipe-deg(C) ∈ {1, 2}, and if pipe-deg(C) ≥ 3, it exists since EC forms a

cycle containing all pipe-vertices. Modify C by deleting all vertices of C \ Ĉ, and

update C (by deleting the same vertices from C, as well); refer to Fig. 3.3(b)–(c).

Consequently, we may assume that C is biconnected and contains all pipe-vertices.

Compute the SPQR tree TC for C. Set a node µr in TC whose skeleton contain a

pipe-vertex as the root of TC . Traverse TC using DFS. If a node µ is found such that

skeleton(µ) contains no pipe-vertex, let {p, q} be the 2-cut of C shared by skeleton(µ)

and skeleton(parent(µ)). Replace all irrelevant split components defined by {p, q}

by a single edge pq in C. If p or q now have degree 2, suppress p or q, respecti-

vely. Update C accordingly, and update TC to reflect the changes in C by changing

pq from virtual to real and possibly suppressing p and/or q in skeleton(parent(µ)),

which also deletes node µ and its descendants since their skeletons contain edges in

the deleted irrelevant split components; refer to Fig. 3.3(c)–(d). Continue the DFS

ignoring deleted nodes.

(2) While there is an R node µ in TC , of a component C in Gu, that does not

satisfy (P4), do the following. Let Y be the set of edges in skeleton(µ) adjacent to

core(µ) (i.e., edges between a vertex in core(µ) and a pipe-vertex). Since µ is an R

node, it represents a 3-connected planar graph, which has a unique combinatorial
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embedding (up to reflection). If we contract core(µ) to a single vertex, the rotation

of such vertex defines a cyclic order on Y . Let ei = pq, for p ∈ V (Y ), be the i-th

edge in this order. Recall that ei is an edge in skeleton(µ) and therefore represents

a subgraph Cei of C. If ei is real, Cei is a single edge. Otherwise, Cei contains

all split components defined by the 2-cut {p, q} that do not contain core(µ) as a

subgraph. Do the following changes in C, which will incur changes in C, as well.

Replace core(µ) by the wheel graph W|Y |+1, and let ri be the i-th external vertex

in the cycle starting at an arbitrary vertex. For each Cei , replace p by a new vertex

pi and add the edge piri. If the resulting pi has degree 2 in C, suppress pi. Update

TC to reflect changes in C by updating skeleton(µ) and adding an S node between

µ and an adjacent node µi whose skeleton contained ei for each virtual ei ∈ Y if pi

was not suppressed; refer to Fig. 3.3(d)–(e).

Lemma 3.2.3. Given an instance ϕ : G → H in normal form and a cluster u ∈

V (H), the instance ϕ′ = simplify(u) and ϕ are equivalent and u satisfies (P1)–(P4)

in ϕ′. The operation runs in O(|E(Gu)|) time. By successively applying simplify to

all clusters in V (H), we obtain an equivalent instance in simplified form in O(m)

time.

Proof. First we prove that u satisfies (P1)–(P4) in ϕ′. Since ϕ is in normal form,

u satisfies (P1)–(P2) in ϕ. By construction, u still satisfies (P1)–(P2) in ϕ′. For

(P3), note that after step 1, C is biconnected and every node µ of TC contains a

pipe-vertex in its skeleton. Step 2 does not change this property. This implies that

core(µ) contains only real edges for every node µ. Suppose for contradiction that

there is a 2-cut {p, q} such that neither p nor q is a pipe-vertex. Then {p, q} must

be in core(µ) where µ is a S node, or else either p or q would have been deleted for

being in C \ Ĉ. Then one split component of {p, q} is a path of length two or more.

But G′u has no degree-2 vertex by (P2), a contradiction. Hence, u satisfies (P3) in

ϕ′. By definition, after step 2 u satisfies (P4) in ϕ′.

We now show that the operation takes O(|E(Gu)|) time. In step 1, planarity

testing is done in linear time for each component C of Gu. We obtain Ĉ by a DFS.
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We compute TC in O(|E(C)|) time [DT96]. Replacing irrelevant split components

by one edge can be done in O(|E(C)|) overall time. In step 2, we can obtain a list of

R nodes in O(|E(C)|) time. The changes in step 2 are local, both in C and TC , and

do not influence whether other R nodes satisfy (P4). Step 2 takes O(|E(Gu)|) time

overall by processing each R node sequentially. All the changes are local to u and,

by successively applying simplify, we obtain a simplified form in O(|E(G)|) time.

Finally, we show that ϕ and ϕ′ are equivalent. Notice that there is a bijection

between the terminals of ϕ and ϕ′. We show that Π(ϕ) = Π(ϕ′), i.e., given πϕ ∈

Π(ϕ), then πϕ ∈ Π(ϕ′) and vice versa. Notice that, given an order πϕ, for each

u ∈ V (H), πϕ induces two components C1 and C2 of Gu to cross if and only if the

corresponding components C ′1 and C ′2 of G′u also cross. Then, it suffices to show

that the SPQR trees of C and C ′ for corresponding components C of Gu and C ′

of G′u represent the same constraints in the cyclic order of terminals around Du.

Step 1 deletes components of pipe-degree 0, which do not pose any restriction on

the cyclic order of terminals. The subgraphs represented by irrelevant subtrees in

the SPRQ tree of C can be flipped independently and, since they do not contain

pipe-vertices, their embedding does not interfere with the order of edges adjacent

to pipe-vertices. Hence, step 1 does not alter any constraint on the cyclic order of

terminals. By construction, step 2 does not change the circular order of edges in

core(µ). Replacing core(µ) by a wheel W|Y |+1 does not change any of the constraints

on the cyclic order of terminals.

Lemma 3.2.4. After simplify(u), every component C of Gu contains O(tC) edges,

where tC is the number of terminals in C.

Proof. Let us contract every wheel that is a maximal biconnected components in C ′

by (P4) into a single vertex and remove any loops created by the contraction. Let

Ĉ denote the resulting component. We have |E(C)| ≤ 5|E(Ĉ)|, since the number of

contracted edges is at most 4|E(Ĉ)|. Indeed, a wheel Wk+1 has 2k edges, which are

contracted, and its k external vertices are incident to k edges that are not contracted

by (P4). We charge each of these k edges in E(Ĉ) for two edges of Wk. Then every
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edge in E(Ĉ) receives at most 2 units of charge from each of its endpoints, hence at

most 4 units of charge overall. The component Ĉ is a tree without degree-2 vertices

whose leaves are precisely the terminals of C by (P1)–(P3). Since the number of

edges in a tree is at most twice the number its leaves, by the above inequality we

have |E(C)| ≤ 5|E(Ĉ)| ≤ 5 · 2 · tC , as claimed.

3.3 Operations

In this section, we present our two main operations, clusterExpansion and pipeEx-

pansion, that we use successively in our recognition algorithm. Given an instance ϕ

and a cluster u in simplified form, operation clusterExpansion(u) either finds a con-

figuration that cannot be embedded locally in the neighborhood of u and reports

that ϕ is not a weak embedding, or replaces cluster u with a group of clusters and

pipes (in most cases reducing the number of edges in pipes). It first modifies the

embedded graph H, and then handles each component of Gu independently.

Operation pipeExpansion(uv) first merges two adjacent clusters, u and v (and

the pipe uv) into a single cluster 〈uv〉 and invokes clusterExpansion(〈uv〉). We con-

tinue with the specifics.

3.3.1 Cluster Expansion

For a cluster u ∈ V (H) in an instance ϕ : G → H, let the expansion disk ∆u be a

topological closed disk containing a single cluster u ∈ V (H) and intersecting only

pipes incident to u.

clusterExpansion(u). Input: an instance ϕ : G → H in simplified form and a

cluster u ∈ V (H). We either report that ϕ is not a weak embedding or return an

instance ϕ′ : G′ → H ′. The instance ϕ′ is computed incrementally: initially ϕ′ is a

copy of ϕ. Steps 0–3 will insert new clusters and pipes into H ′ that are within ∆u,

step 4 will determine the rotation system for the new clusters and check whether

the rotation system induces any crossing between new pipes within ∆u, and step 5
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brings ϕ′ to its simplified form.

Step 0. For each pipe uv ∈ E(H) incident to u, subdivide uv by inserting a cluster

uv in H ′ at the intersection of uv and ∂∆u. If deg(u) ≥ 3, then add a cycle Cu

of pipes through all clusters in ∂∆u (hence the clusters uv appear along Cu in the

order given by the rotation of u); and if deg(u) = 2, then add a pipe between the

two clusters in ∂∆u. Delete u (and all incident pipes). As a result, the interior of

∆u contains no clusters.

Step 1: Components of pipe-degree 1. For each component C of Gu such

that pipe-deg(C) = 1, let uv be the pipe to which the pipe-edges incident to C are

mapped to. Move C to the new cluster uv, i.e., set ϕ′(C) = uv. (For example, see

the component in ux in Fig. 3.4.)

Step 2: Components of pipe-degree 2. For each pair of clusters {v, w} adjacent

to u, denote by Bvw the set of components of Gu of degree 2 adjacent to pipe-edges

in ϕ−1[uv] and ϕ−1[uw]. For all nonempty sets Bvw do the following.

(a) Insert the pipe uvuw into H ′ if it is not already present.

(b) For every component C ∈ Bvw, do the following:

(b1) Compute C (by (P3), C is biconnected). Compute the SPQR tree TC of

C. Set a node µr as the root of TC so that skeleton(µr) contains both pipe-vertices,

which we denote by v′ and w′ (i.e., consistently with Section 3.2). Note that µr

cannot be of type P, otherwise C would not be connected.

∆u

uC
up1

up2

up3

up4

uv1
uv2

uv3

ux

uw

Figure 3.4: Changes in a cluster caused by clusterExpansion. Right: input. Middle:
the instance after step 4. Right: output. Red rectangles indicate triples of edges
defining a thick edge.
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(b2) If µr is of type S, then E(skeleton(µr)) \EC forms a path between the

pipe vertices v′ and w′, that we denote by P , where the first and last edges may

be virtual. Notice that path P contains at most 3 edges otherwise (P2) or (P3)

would not be satisfied. If P = (v′, w′) has length 1, then subdivide P into 3 edges

P = (v′, p1, p2, w
′). If P = (v′, p, w′) has length 2, then {v′, p} is a 2-cut in C that

defines two split components, Cv and Cw, containing v′ and w′, respectively. Split p

into two vertices, p1 and p2, connected by an edge so that p1 (resp., p2) is adjacent

to every vertex in Cv (resp., Cw) that was adjacent to p. The length of P increases

to 3, and skeleton(µr) changes, as well. Finally, assume that P = (v′, p1, p2, w
′) has

length 3. Then, in all three cases, the edge p1p2 defines an edge cut in C that splits

C into two components each incident to a single pipe, one to uv and the other to uw.

We define ϕ′ so that it maps each of the two components into uv or uw accordingly.

(See the components incident to pipe uv1uv3 in Fig. 3.4.)

(b3) If µr is of type R, by (P4), core(µr) is a wheel subgraph Wk. Let kv

and kw, where kv + kw = k − 1, be the number of edges between Wk and v′, and

between Wk and w′, respectively. Replace Wk by two wheel graphs Wkv+4 and

Wkw+4 connected by three edges so that the circular order of the edges around v′

and w′ is maintained (recall that an R node has a unique embedding). The triple

of edges between Wkv+4 and Wkw+4 is called a thick edge. The thick edge defines a

3-edge-cut that splits C into two components, each with a wheel graph. We define

ϕ′ so that each of the two components is mapped to its respective vertex uv or uw.

(See the components incident to pipe uv1uw in Fig. 3.4.)

Step 3: Components of pipe-degree 3 or higher. For all the remaining

components C (pipe-deg(C) ≥ 3) of Gu, do the following. Assume C is incident to

pipe-edges mapped to the pipes uv1, uv2, . . . , uvd.

(a) Compute C and its SPQR tree TC and let v′i be the pipe-vertex corre-

sponding to terminals adjacent to edges in uvi for i = 1, 2, . . . , d. Set the node µr

as the root of TC such that skeleton(µr) contains the cycle EC . The type of µr is

R, otherwise C would be disconnected.

(b) Changes in H ′. By (P4), we have that core(µr) is a wheel graph Wk,
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where k−1 ≥ d. For j = 1, 2, . . . , k−1, let pj be the j-th external vertex of Wk and

pC be its central vertex. Create a copy of Wk using clusters and pipes: Create a

cluster upj that represents each vertex pj , a cluster uC that represents vertex pC , see

Fig. 3.4(middle). Insert the copy of Wk in H ′. For every 1 ≤ i ≤ d and 1 ≤ j ≤ k−1,

insert a pipe upjuvi in H ′ if an edge pjv
′
i is present in E(skeleton(µr)).

(c) Changes in G′. Delete all edges and the central vertex of Wk from G′,

which splits C into k − 1 components. Set ϕ′(pj) = upj for j ∈ {1, . . . , k − 1}. By

(P4), every cluster upj is adjacent to a single cluster, say uvi , outside of Wk. We

modify ϕ′ so that it maps the vertices of the component of C containing pj to uvi

with the exception of pj , which is mapped to upj . (Note that the cluster uC and all

incident pipes are empty.)

Step 4: Local Planarity Test. Let Hu be the subgraph induced by the newly

created clusters and pipes. Let H̃u denote the graph obtained as the union of Hu

and a star whose center is a new vertex (not in V (Hu)), and whose leaves are the

clusters in ∂∆u. Use a planarity testing algorithm to test whether H̃u is planar. If

H̃u is not planar, report that ϕ is not a weak embedding and halt. Otherwise, find

an embedding of H̃u in which the center of the star is in the outer face. This defines

a rotation system for Hu. The rotation system of H ′ outside of ∆u is inherited from

H.

Step 5: Normalize. Finally, apply normalize to each new cluster in H ′. (This step

subdivides edges so that (P1) is satisfied as shown in Fig. 3.4(right).)

Lemma 3.3.1. Given an instance ϕ : G→ H in simplified form containing a cluster

u, clusterExpansion(u) either reports that ϕ is not a weak embedding or produces an

instance ϕ′ : G′ → H ′ in simplified form that is equivalent to ϕ in O(|E(Gu)| +

deg(u)) time.

Proof. Step 5 of the operation receives as input an instance ϕ∗ : G∗ → H∗ and

return an equivalent instance ϕ′ by Lemma 3.2.1. By construction, the new clusters

satisfy (P1)–(P4) in ϕ′. It remains to show that ϕ∗ and ϕ are equivalent, and to

analyze the running time.
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First assume that ϕ is a weak embedding, and so there is an embedding

ψϕ : G → H. We need to show that there exists an embedding ψϕ∗ : G∗ → H∗,

and hence ϕ∗ is a weak embedding. This can be done by performing steps 0–3

on the graphs G and H, and the embedding ψϕ, which will produce G∗ and H∗,

and an embedding ψϕ∗ : G∗ → H∗. By construction, every 2-cut in H∗u consists

of a pair of clusters in ∂∆u. Consequently, H∗u has a unique embedding with the

given outer cycle. In particular, H̃u
∗

is planar. The rotation of the new clusters of

H∗ is uniquely defined and therefore must be consistent with any embedding of G,

including ψϕ.

Next, assume that ϕ∗ is a weak embedding. Given an embedding ψϕ∗ : G∗ →

H∗, we construct an embedding ψϕ : G → H as follows. Let H∗u be the subgraph

of H∗ induced by the clusters created by clusterExpansion(u). Note that H∗ is a

connected plane graph: the clusters created in step 0 are connected by a path (if

deg(u) ≤ 2) or a cycle (if deg(u) ≥ 3); and any clusters created in step 3 (when

deg(u) ≥ 3) are attached to this cycle. Since H∗u is a connected plane graph, we

may assume that there is a topological disk containing only the pipes and clusters

of H∗u; let Du denote such a topological disk.

Let G∗u be the subgraph of G∗ mapped to H∗u. We show that steps 0–3 of the

operation can be reversed without introducing crossings. For each component C of

Gu with pipe-deg(C) ≥ 3, embed a wheel Wk in the disk DuC around the cluster uC ,

and connect its external vertices to the vertices pi, i = 1, . . . , k − 1, Since the pipes

incident to uC are empty, and each pi is a unique vertex its cluster, this can be done

without crossings. Now, every component C of Gu corresponds to a component C∗

of G∗u, and by (P1) every terminal vertex in C corresponds to terminal in C∗.

If we delete a component C∗ from G∗, there will be a face F of Du (a

component of Du\ψϕ∗(G∗)) that contains all terminals of C on its boundary. Denote

by πC the ccw cyclic order in which these terminals appear in the facial walk of F . If

C admits an embedding in which the terminals appear in the outer face in the same

order as πC , we can embed C in F on the given terminals. We show that C admits

such an embedding by proving that the SPQR trees of C and C
∗

impose the same
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constraints on the cyclic order of terminals. Subdividing edges do not change these

constraints. Step 1 does not change C. If step 2(b2) adds an edge in the skeleton

of an S node, the possible combinatorial embeddings remain the same. Step 2(b3)

maintains the rotation of v′ and w′. If pipe-deg(C) ≥ 3, C and C∗ are identical

apart from subdivided edges. Because all steps maintain the same constraints on

the rotation system of the terminals, we can construct ψϕ : G→ H by incrementally

replacing the embedding of C∗ by an embedding of C in Du for every component C

of Gu. By Lemma 3.2.2, this is possible without introducing crossings since no two

components of Gu cross and every component is planar since ϕ is in simplified form.

Finally, we show that clusterExpansion(u) runs in O(|E(Gu)|+ deg(u)) time.

Step 0 takes O(deg(u)) time. Steps 1–3 are local operations that take O(|E(C)|)

time for each component C of Gu. Step 4 takes O(|E(Gu)| + deg(u)) since each

component C inserts at most O(|E(C)|) pipes in H ′, where |E(Gu)| =
∑

C |E(C)|;

the graph H̃u has deg(u) more edges than Hu, and planarity testing takes linear

time in the number of edges [HT74]. Step 5 takes O(|E(Gu)|) time by Lemma 3.2.1

and (P1).

3.3.2 Pipe Expansion

A cluster u ∈ V (H) is called a base of an incident pipe uv ∈ E(H) if every com-

ponent of Gu is incident to: (i) at least one pipe-edge in uv; and (ii) at most one

pipe-edge or exactly three pipe-edges that form a thick edge in any other pipe uw,

w 6= v. We call a pipe uv safe if both of its endpoints are bases of uv; otherwise it is

unsafe. For a simplified instance ϕ : G→ H and a safe pipe uv ∈ E(H), operation

pipeExpansion(uv) consists of the following steps:

pipeExpansion(uv). Input: an instance ϕ : G → H in simplified form and a safe

pipe uv ∈ E(H). The operation either reports that ϕ is not a weak embedding or

returns an instance ϕ′ : G′ → H ′. First, produce an instance ϕ∗ : G → H∗ by con-

tracting the pipe uv into the new cluster 〈uv〉 ∈ V (H∗) while mapping the vertices

of Gu and Gv to 〈uv〉, see Fig. 3.5(top); and then apply simplify and clusterExpansion
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to 〈uv〉.

u v
〈uv〉

v∞u∞

Figure 3.5: Pipe Expansion. A safe pipe uv (top left). The cluster 〈uv〉 obtained
after contraction of uv (top right). The result of contracting the components in
Gu and Gv (bottom left). The subsequent contraction of all components incident
to ∂uD〈uv〉 and ∂vD〈uv〉, resp., and a Jordan curve that crosses every edge of the
resulting bipartite plane multigraph (bottom right).

We use the following folklore result in the proof of correctness of operation

pipeExpansion(uv). This result is obtained by an Euler tour algorithm on the dual

graph of a plane bipartite multigraph.

Theorem 3.3.2 (Belyi [Bel83]). For every embedded connected bipartite multigraph

G∗, there exists a Jordan curve that crosses every edge of G∗ precisely once. Such

a curve can be computed in O(|E(G∗)|) time.

Lemma 3.3.3. Given an instance ϕ : G → H and a safe pipe uv ∈ E(H),

pipeExpansion(uv) either reports that ϕ is not a weak embedding or produces an

equivalent instance ϕ′ : G′ → H ′.

Proof. Let ϕ : G → H be an instance in simplified form, and let uv be a safe

pipe. Recall that pipeExpansion(uv) starts by producing an instance ϕ∗ : G → H∗

by contracting the pipe uv into the new cluster 〈uv〉 ∈ V (H∗) while mapping the

vertices of Gu and Gv to 〈uv〉. It is enough to prove that ϕ and ϕ∗ are equivalent,

the rest of the proof follows from Lemmas 3.2.1 and 3.3.1.

One direction of the equivalence proof is trivial: Given an embedding ψϕ :

G→ H, we can obtain an embedding ψϕ∗ : G→ H∗ by defining D〈uv〉 as a topolo-
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gical disk containing only Du, Dv, and Ruv.

For the other direction, assume that we are given an embedding ψϕ∗ : G →

H∗. We need to show that there exists an embedding ψϕ : G → H. We shall

apply Theorem 3.3.2 after contracting certain subgraphs of Gu and Gv (as described

below). If a component contains cycles, then the contraction of its embedding creates

a bouquet of loops. We study the cycles formed by Gu, Gv, and thick edges incident

to Gu or Gv to ensure that no other component is embedded in the interior of such

cycles.

Components of G〈uv〉 of pipe-degree 0. Note that the terminals corresponding

to the pipes incident to u and v lie in two disjoint arcs of ∂D〈uv〉, which we denote

by ∂uD〈uv〉 and ∂vD〈uv〉, respectively. The components of graph G〈uv〉 with positive

pipe-degree are incident to terminals in ∂uD〈uv〉 or ∂vD〈uv〉 (possibly both). The

components of pipe-degree 0 can be relocated to any face of the embedding of all

other components. Without loss of generality, we may assume that all components

of pipe-degree 0 lie in a common face incident to both Gu and Gv in ψϕ∗ .

Cycles induced by Gu and Gv, and by thick edges. Notice that (P3) and (P4)

imply that every maximal biconnected component in Gu and Gv is a wheel. Since

each wheel is 3-connected, the circular order of their external vertices is determined

by the embedding ψϕ∗ . We may assume that no cycle in an embedding of a wheel

subgraph encloses any vertex other than the center of the wheel. Indeed, suppose

a 3-cycle (p1, p2, pc) of a wheel encloses some vertex, where pc is the center of the

wheel, and p1 and p2 are two consecutive external vertices. We can modify the

embedding of the edge p1p2 in ψϕ∗ so that it follows closely the path (p1, pc, p2) and

the 3-cycle does not contain any vertex; see Fig. 3.6(a).

Consider a thick edge θ in G between a wheel in Gu (or Gv) and a wheel in

Gw for some adjacent cluster w /∈ {u, v}. Recall that a thick edge consists of three

paths, say P1 = (p1, t1, t2, p2), P2 = (p3, t3, t4, p4), and P3 = (p5, t5, t5, p6), where

(p1, p3, p5) and (p2, p4, p6) are consecutive external vertices of the two wheels, resp.,

and pi is the unique vertex in a cluster adjacent to terminal ti for i ∈ {1, . . . , 6};
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cf. (P1). If we suppress the terminals, then the two wheels incident to the thick

edge would be in the same maximal 3-connected component of G and, therefore,

their relative embedding is fixed. We can assume that no vertex is enclosed by the

cycles induced by the vertices of the thick edge (i.e., by any pair of paths from P1,

P2, and P3). Indeed, we can modify the embedding of the path P1 and P3 in ψϕ∗ so

that they closely follow the path p1p3 ∪P2 ∪ p4p2 and p5p3 ∪P2 ∪ p4p6, respectively.

By (P4), such modification of the embedding is always possible without introducing

crossings; see Fig. 3.6(b). We conclude that a cycle induced by the thick edge θ

does not enclose any vertices of G.

Separating Gu and Gv. We next show that there exits a closed Jordan curve that

separates the embeddings of Gu and Gv, and crosses every edge between Gu and Gv

precisely once. In order to use Theorem 3.3.2, we reduce G〈uv〉 and its embedding

to a bipartite multigraph in two steps.

(1) Contract each component C of Gu (resp., Gv) to a single vertex wC . This results

in a bouquet of loops at wC . As argued above, a cycle through the external vertices

of a wheel in Gu or Gv encloses only its center. Hence, none of the loops at wC

encloses any other vertex of G, and they can be discarded.

(2) As uv is safe, every component C of Gu and Gv is incident to either at most

one terminal in ∂D〈uv〉 or precisely three terminals corresponding to a thick edge.

Contract the arc ∂uD〈uv〉 (resp., ∂vD〈uv〉) and for every component C of Gu (resp.,

(a)

(b)

Figure 3.6: Changing the embedding so that: (a) no cycle encloses vertices that are
not the center of a wheel; and (b) no induced cycle of a thick edge encloses a vertex.
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Gv) all edges between wC and terminals into a new vertex u∞ ∈ ∂D〈uv〉 (resp.,

v∞ ∈ ∂D〈uv〉), see Fig. 3.5(bottom-left); and insert an edge u∞v∞ in the exterior

of D〈uv〉. This results in a bouquet of loops at u∞ (resp., v∞), corresponding to

thick edges. As argued above, these loops do not enclose any vertices, and can be

eliminated. The subgraph of all components of pipe-degree 1 or higher has been

transformed into a connected bipartite plane multigraph, and each component of

pipe-degree 0 is also transformed into a connected bipartite plane multigraph.

We apply Theorem 3.3.2 for each of these plane multigraphs independently.

By our assumption, the components C, pipe-deg(C) = 0, lie in a common face.

Consequently, we can combine their Jordan curves with the Jordan curve of all

remaining components into a single Jordan curve that crosses every edge between Gu

and Gv precisely once, see Fig. 3.5(bottom-right). After reversing the contractions

and loop deletions described above, we obtain a Jordan curve γ that separates Gu

and Gv, and crosses every edge between Gu and Gv precisely once.

Since γ crosses the edge u∞v∞ precisely once, and u∞v∞ is homotopic to

both arcs of ∂D〈uv〉 between u∞ and v∞, we can assume that γ crosses each of these

arcs precisely once. Consequently, the Jordan arc γ′ = γ ∩D〈uv〉 partitions the disk

D〈uv〉 into two disks, Du and Dv, adjacent to ∂uD〈uv〉 and ∂vD〈uv〉, respectively,

such that every edge between Gu and Gv crosses γ′ precisely once and all other

edges of G〈uv〉 lie entirely in either Du or Dv. This yields the required embedding

ψϕ : G→ H.

3.4 Algorithm and Runtime Analyis

In this section, we present our algorithm for recognizing weak embeddings. We des-

cribe the algorithm and prove that it recognizes weak embeddings in Section 3.4.1.

A näıve implementation would take O(m2) time as explained below; we describe how

to implement it in O(m logm) time using additional data structures in Section 3.4.3.
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3.4.1 Main Algorithm

We are given a piecewise linear simplicial map ϕ : G→ H, where G is a graph and

H is an embedded graph in an orientable surface. We introduce some terminology

for an instance ϕ : H → G.

• A component C of Gu, in a cluster u ∈ V (H), is stable if pipe-deg(C) = 2

and, in each of the two pipes, C is incident to exactly one edge or exactly one

thick edge. Otherwise C is unstable.

• Recall that a pipe uv ∈ E(H) is safe if both u and v are bases of uv; otherwise

it is unsafe.

• A cluster u ∈ V (H) (resp., a pipe uv ∈ E(H)) is empty if ϕ−1[u] = ∅ (resp.,

ϕ−1[uv] = ∅). Otherwise u is nonempty.

• A safe pipe uv ∈ E(H) is useless if uv is empty or if u and v are each incident to

exactly two nonempty pipes and every component of Gu and Gv is stable. The

safe pipe uv is useful otherwise (i.e., if uv is nonempty; and u or v is incident

to at least 3 nonempty pipes, or Gu or Gv has an unstable component).

Notice that the pipe expansion of a useless pipe may not change the instance

combinatorially. As we show below (Lemma 3.4.6), our algorithm reduces G to a

collection of thick cycles, defined as a cycle in which each node is a component of

Gu for some cluster u, and each edge is either an edge or a thick edge between

wheels. (In particular, if we contract every wheel to a single vertex, then a thick

cycle reduces to a cycle, possibly with multiple edges coming from thick edges.)

Data Structures. The graph G is stored using adjacency lists. We store the

combinatorial embedding of H using the rotation system of H (ccw order of pipes

incident to each u ∈ V (H)). The mapping ϕ is encoded by its restriction to V (G):

that is, by the images ϕ(p) for all p ∈ V (G). For each cluster u ∈ V (H), we store

the set of components of Gu, each stored as the ID of a representative edge and the

pipe-degree of the component. Every pipe uv ∈ E(H) has two Boolean variables
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to indicate whether the respective endpoints are its bases; and an additional Bool-

ean variable indicates whether uv is useful. These data structures are maintained

dynamically as the algorithm modifies H and G.

Algorithm(ϕ). Input: an instance ϕ : G→ H in simplified form.

Phase 1. Apply clusterExpansion to each u ∈ V (H). Denote the resulting instance

by ϕ′ : G′ → H ′. Build the data structures described above for ϕ′ : G′ → H ′.

Phase 2. While there is a useful pipe in H ′, let uv ∈ E(H ′) be an arbitrary useful

pipe and apply pipeExpansion(uv).

Phase 3. If any component of G′ that contains a wheel is nonplanar, then report

that ϕ is not a weak embedding and halt. Otherwise, in each cluster contract every

wheel component to a single vertex, and turn every thick edge into a single edge

by removing multiple edges. Denote the resulting instance by ϕ′′ : G′′ → H ′′. If

any component C of G′′ is a cycle with k vertices but ϕ′′(C) is not a cycle with k

clusters in H ′′, then report that ϕ is not a weak embedding, else report that ϕ is a

weak embedding. This completes the algorithm.

3.4.2 Analysis of Algorithm

We show that the Algorithm recognizes whether the input ϕ : G → H is a weak

embedding. The running time analysis follows in Section 3.4.3.

Termination. Since both Phase 1 and Phase 3 consist of for-loops only, it is

enough to show that the while loop in Phase 2 terminates. We define a nonnegative

potential function Φ1(ϕ) for an instance ϕ : G → H. For a pipe uv ∈ E(H), let

σ(uv) be the number of pipe-edges in ϕ−1[uv] minus twice the number of thick

edges (so that each thick edge is counted as one). Let s(u) be the number of

stable components of Gu. We now define the following quantities for an instance
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ϕ : G→ H:

Nσ(ϕ) =
∑

uv∈E(H)

σ(uv),

Ns(ϕ) =
∑

u∈V (H)

s(u).

(3.1)

Let Q(ϕ) be the number of nonempty pipes of an instance ϕ. We can now

define the potential function

Φ1(ϕ) = 4Nσ(ϕ) +Ns(ϕ)− 4Q(ϕ). (3.2)

Note that Φ1(ϕ) is a nonnegative integer since Nσ(ϕ) ≥ Q(ϕ).

The following lemma describes the effect of one iteration of the while loop in

Phase 2 on Φ1 and Nσ −Q.

Lemma 3.4.1. Assume we invoke pipeExpansion(uv) for a useful pipe uv in an

instance ϕ, obtaining instance ϕ′. Then,

• Φ1(ϕ) > Φ1(ϕ′), and

• Nσ(ϕ)−Q(ϕ) ≥ Nσ(ϕ′)−Q(ϕ′).

Proof. Let C be a component of G〈uv〉. Let σC(uv) be the number of pipe-edges

of C in ϕ−1[uv] minus twice the number of thick edges of C in ϕ−1[uv] before

pipeExpansion(uv). Let sC be the number of stable components of Gu and Gv

contained in C before pipeExpansion(uv). Then

σ(uv) =
∑
C

σC(uv) and s(u) + s(v) =
∑
C

sC ,

where the summation is over all components C of G〈uv〉. We distinguish cases based

on the pipe-degree of C.

Assume pipe-deg(C) = 1. Then σC(uv) ≥ 1 by the definition of safe pipes.

Step 1 of pipeExpansion creates component C ′ of pipe-degree 1 in some cluster on

the boundary of ∆〈uv〉 and no new pipe-edge in ∆〈uv〉. Consequently, pipeExpansion
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decreases the contribution of C to Nσ and Ns to 0. The contribution of C to Nσ−Q

does not decrease (i.e., remains constant 0) only if σC(uv) = 1 and C is the only

component in G〈uv〉. In this case, however, C contains precisely one component in

each of Gu and Gv, of pipe-degree 1 and 2. The component of pipe-degree 2 is stable

since uv is safe and σC(uv) = 1, and so the number of stable components decreases

by one, hence pipeExpansion decreases the contribution of C to Φ1.

Assume pipe-deg(C) = 2 (see Fig. 3.2). Then Step 2 of pipeExpansion creates

two stable components, connected by either a single edge or a thick edge in a pipe in

∆〈uv〉. Consequently, pipeExpansion(uv)) changes the contribution of C to Nσ from

at least 1 to precisely 1. The number of stable components increases if sC ∈ {0, 1}.

Then, at least one component of Gu and Gv in C is unstable. Since uv is useful, this

component is incident to at least two single or thick edges in uv, and so σC(uv) ≥ 2.

In this case, the contribution of C to Nσ decreases by at least one, while the number

of stable components increases by at most two, hence Φ1 strictly decreases. The

contribution of C to Φ1 is unchanged only if C contains precisely one component

in each of Gu and Gv, where σC(uv) = 1 and sC = 2 (that is, both are stable

components).

Assume pipe-deg(C) ≥ 3. Let Wk, k ≥ 4, be the wheel created by cluste-

rExpansion(uv). Since uv is a safe pipe, every component of Gu or Gv contained in

C is incident to at most one (possibly thick) pipe-edge outside of ϕ−1[uv]. Hence,

C contains at least k − 2 edges between these components of Gu and Gv (which

are pipe-edges in uv), and its contribution to Nσ is at least k − 2. Step 3 of pi-

peExpansion(uv) creates k − 1 components in distinct clusters of ∆〈uv〉. Hence, the

contribution of C to Ns increases by at most k − 1. Step 3 also creates k − 1

pipe-edges, each of which is the only pipe-edges in its pipe, hence they contribute

zero to Nσ − Q. The difference between the new and the old value of Nσ − Q

due to C is at most −(k − 2 − 1) = −k + 3 (where the term −1 accounts for the

case that C is the only component of G〈uv〉). Hence, we obtain the following upper

bound on the difference between the new and the old value of Φ1 accounted to C:

−4(k − 3) + (k − 1) = 11 − 3k ≤ 11 − 3 · 4 = −1 < 0, where the (k − 1)-term
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corresponds to the increase in Ns. Consequently the contribution of C to both, Φ1

and Nσ −Q, decreases.

Summing over the contributions of all components of G〈uv〉, we have shown

that neither Φ1 nor Nσ−Q increases. By the previous case analysis, the contribution

of every component C to Φ1 and Nσ − Q does not increase. The contribution of

C to Φ1 is unchanged when C contains exactly one component in each Gu and

Gv, and both are stable, and hence the contribution of C to Ns is remains 2. For

contradiction, assume that Φ1 and Nσ−Q are both unchanged. Then all components

of G〈uv〉 are stable, and each contains precisely one (stable) component in Gu and

Gv, respectively. Then Ns and Nσ remain unchanged. Therefore, Q must also

remain unchanged, which implies that all components of G〈uv〉 are adjacent to the

same pair of pipes. Then, uv is useless, a contradiction.

Corollary 3.4.2. The algorithm executes at most 15m iterations of Phase 2 and,

therefore, terminates; and it creates at most 12m stable components.

Proof. At the end of Phase 1, there are at most 3m pipe-edges: We charge the

creation of pipe-deg(C) pipe-edges in new pipes in Step 3 of cluster expansion to

pipe-deg(C) original pipe-edges incident to C. Similarly we charge the creation of

a (thick) pipe-edge created in Step 2 to 1 or 3 (in the case we created a thick edge)

original pipe-edges incident to C. Clearly, each original edge receives the charge of

at most 2, one from each of its incident components. Hence, in total we introduced

at most 2m new pipe-edges.

By definition Nσ − Q is a nonnegative integer, and its initial value does

not exceed the number of pipe-edges. Therefore, at the end of Phase 1, we have

0 ≤ Nσ − Q ≤ 3m. Since each pipe-edge can be incident to at most two stable

components and each stable component must be incident to two pipe-edges, 0 ≤

Ns ≤ 3m. Hence, 0 ≤ Φ1 ≤ 15m.

By Lemma 3.4.1, Φ1 strictly decreases in each iteration of the while loop in

Phase 2. Therefore Phase 2 has at most 15m iterations. Since both Phase 1 and

93



Phase 3 consist of for-loops only, the algorithm terminates.

By Lemma 3.4.1, Φ1 strictly decreases and Nσ −Q does not increase in each

iteration of the while loop in Phase 2. Consequently, we can charge the creation of a

stable component to the decrease of one fourth of a unit of Nσ −Q. Hence, Phase 2

creates at most 12m stable components.

Correctness. We show next that Phase 2 reduces G′ to a collection of thick cycles

(see Lemma 3.4.6 below). First, we need a few observations.

Lemma 3.4.3. Every cluster u′ created by an operation clusterExpansion(u) satisfies

the following:

(B1) u′ is either empty or the base for some nonempty pipe.

(B2) If u′ lies in the interior of the disk ∆u, then u′ is either empty or the base of

a unique nonempty pipe u′v′, where v′ in on the boundary of ∆u.

(B3) If u′ lies on the boundary of the disk ∆u, then u′ is either empty, or the base

of at least one and at most two pipes, exactly one of which is outside of ∆u.

(B4) If u′ is nonempty, then u′ is incident to at most three empty pipes.

Proof. Operation clusterExpansion(u) creates a cluster uv on the boundary of the

disk ∆u for every pipe uv incident to u. By construction, uv is either empty (if the

pipe uv was empty), or a base for the pipe vuv, which lies outside of ∆u. When uv is

nonempty, the only incident pipes that could be empty are created in Step 0 (either

two pipes of the cycle Cu or a single pipe if deg(u) = 2). For each component C

of Gu with pipe-deg(C) ≥ 3, clusterExpansion(u) creates a wheel where the center

cluster is empty and every external cluster is incident to exactly one nonempty pipe

(to a cluster on the boundary of ∆u), consequently, it is a base for that pipe. The

external clusters are incident to exactly three empty pipes by (P4). By construction,

clusters in ∂∆u are incident to at most two empty pipes.

Corollary 3.4.4. In every step of Phase 2, every cluster u ∈ V (H ′) is either empty

or the base for at least one nonempty pipe.
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Proof. Phase 1 of the algorithm performs clusterExpansion(u) for every cluster of

the input independently. At the end of Phase 1 (i.e., beginning of Phase 2), each

cluster in H ′ has been created by a clusterExpansion operation, and (B1) follows

from Lemma 3.4.3.

Subsequent steps of Phase 2 successively apply pipeExpansion operations the-

reby creating new clusters. By Lemma 3.4.3, property (B1) is established for all new

clusters, and it continues to hold for existing clusters.

Lemma 3.4.5. In every step of Phase 2, if H ′ contains a nonempty unsafe pipe,

then it also contains a useful pipe.

Proof. Let u0u1 be a nonempty unsafe pipe in H ′. Without loss of generality, assume

that u1 is not a base for u0u1. We iteratively define a simple path (u0, u1, . . . , u`)

for some ` ∈ N as follows. Assume that i ≥ 1, vertices u0, . . . , ui have been defined,

and ui−1ui is a nonempty unsafe pipe in H ′ for which ui is not a base. By (B1), ui is

a base for some nonempty pipe uiw, where w 6= ui−1. Put ui+1 = w. This iterative

process terminates when either uiui+1 is a nonempty safe pipe, or ui+1 = uk for

some 0 ≤ k < i− 1.

Case 1: The iterative process finds a nonempty safe pipe uiui+1. We claim

that uiui+1 is useful. Suppose, to the contrary, that uiui+1 is useless. Then ui is

incident to two nonempty pipes (which are necessarily ui−1ui and uiui+1), and every

component in Gui has pipe-degree 2. Consequently, ui is a base for both ui−1ui and

uiui+1. This contradicts our assumption that ui is not a base for ui−1ui; and proves

the claim.

Case 2: The iterative process finds a cycle U = (uk, uk+1, . . . , u`) where

u`+1 = uk and for every i = k, . . . , `, ui is a base for uiui+1 but not a base

for uiui−1. We show that this case does not occur. All clusters in the cycle have

been created by clusterExpansion operations (in Phase 1 or 2). We claim that not

all clusters in U are created by the same clusterExpansion operation. For otherwise,

by (B2) ui and ui+1, for some i, are on the boundary of an expansion disk ∆u then

ui+1 is not the base of uiui+1 by the construction of U . Furthermore, uiui+1 is
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nonempty by the definition of a base. By (B3), ui+1 is the base of a single pipe,

which is outside of ∆u, as the other base would have to be uiui+1. Due to the

previous claim and since U is a cycle, there are two consecutive clusters, ui and

ui+1, in U such that ui was created by an earlier invocation of clusterExpansion than

ui+1. By (B3), ui+1 is a base for uiui+1. This contradicts our assumption, and

proves that Case 2 does not occur.

Lemma 3.4.6. The following hold for the instance ϕ′ : G′ → H ′ at the end of

Phase 2:

1. every pipe in E(H ′) is empty or useless,

2. every component of G′ is a thick cycle, and

3. any two components of G′ are mapped to the same or two vertex-disjoint cycles

in H ′.

Proof. 1. When the while loop of Phase 2 terminates, there are no useful pipes in

H ′. Consequently, every safe pipe is useless. By Lemma 3.4.5, every unsafe pipe is

empty at that time. Overall, every pipe is empty or useless, as claimed.

2. Since every pipe uv ∈ E(H ′) is empty or useless, every component in

every cluster is stable. It follows that every component of G′ must be a thick cycle.

3. Since every pipe uv ∈ E(H ′) is empty or useless, every cluster is incident

to at most two nonempty pipes. Consequently, any two thick cycles of G′ are mapped

to either the same cycle or two disjoint cycles in H ′.

Lemma 3.4.7. The algorithm reports whether ϕ is a weak embedding.

Proof. By Lemmas 3.3.1 and 3.3.3, every operation either reports that the instance

is not a weak embedding and halts, or produces an instance equivalent to the input

ϕ. Consequently, if any operation finds a negative instance, then ϕ is not a weak

embedding. Otherwise the while loop in Phase 2 terminates, and yields an instance

ϕ′ : G′ → H ′ equivalent to ϕ. By Lemma 3.4.6, every component of G′ is a thick

cycle, any two of which are mapped to the same or vertex-disjoint cycles in H ′.
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Figure 3.7: A nonplanar thick cycle that does not embed in an annulus. It embeds
in the Möbius band or the projective plane.

The strip system of the subgraph ϕ′(C) of H ′, where C is a thick cycle, is

homeomorphic to the annulus, since M is orientable. If C is nonplanar, then ϕ′

is clearly not a weak embedding (see Fig. 3.7). Furthermore, a thick cycle C that

winds around ϕ′(C) several times cannot be embedded in that annulus (Fig. 3.1(d)).

However, one or more thick cycles that each wind around ϕ′(C) once can be embed-

ded in nested annuli in the strip system H′ (Fig. 3.1(c)). This completes the proof

of correctness of Algorithm(ϕ).

3.4.3 Efficient Implementation

Recall that pipeExpansion(uv) first contracts the pipe uv into the new cluster 〈uv〉 ∈

V (H∗). Each stable component C of G〈uv〉 is composed of two stable components,

in Gu and Gv respectively. Then clusterExpansion(uv) performed at the end of

pipeExpansion(uv) splits C into two stable components in two new clusters. That is,

two adjacent stable components in Gu and Gv are replaced by two adjacent stable

components in two new clusters. Consequently, we cannot afford to spend O(|E〈uv〉|)

time for pipeExpansion(uv). We introduce auxiliary data structures to handle stable

components efficiently: we use set operations to maintain a largest set of stable

components in O(1) time. A dynamic variant of the heavy path decomposition

yields an O(m logm) bound on the total time spent on stable components in the

main loop of the algorithm.

Data structures for stable components. For each pair (u, uv) of a cluster

u ∈ V (H) and an incident pipe uv ∈ E(H), we store a set L(u, uv) of all stable

components of Gu adjacent to a (thick) edge in ϕ−1[uv]. For every cluster u ∈ V (H),
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let w∗(u) be a neighbor of u maximizing the size of L(u, uw∗(u)); we maintain a

pointer from u to a set L(u, uw∗(u)). The total number of sets L(u, uv) and the

sum of their sizes are O(m). We can initialize them in O(m) time. For each cluster

u ∈ V (H), we store the components of Gu in two sets: a set of stable and unstable

components, respectively, each stored as the ID of a representative edge of the

component. Hence, for each pipe we can determine in O(1) time whether uv is

useful or useless. Every stable component in Gu has a pointer to the two sets L(u, .)

in which it appears.

u

v

〈uv〉w∗
〈uv〉x∗

uw∗

vx∗

Figure 3.8: Implementation of pipeExpansion(uv) for stable components.

In each iteration of Phase 2, we implement pipeExpansion(uv) for a useful

pipe uv as follows. Let G�〈uv〉 be the graph formed by the unstable components of

G〈uv〉 and stable components that are not in simplified form, i.e., stable components

C where σC(uv) > 1. Compute G�〈uv〉 using DFS starting from each unstable com-

ponent of Gu and Gv. If a stable component of Gu and Gv is absorbed by a new

unstable component of G〈uv〉, delete it from the set L(u, .) or L(v, .) in which it

appears.

(a) We perform clusterExpansion only on G�〈uv〉.

(b) We handle the remaining stable components ofG〈uv〉 as follows (refer to Fig. 3.8).

Since uv is safe, every stable component of Gu and Gv appears in L(u, uv) and

L(v, vu), respectively. For all w, w /∈ {v, w∗}, where w∗ = w∗(u), move all compo-

nents from L(u, uw) to the cluster 〈uv〉w. Similarly, for all x, x /∈ {u, x∗}, where

x∗ = w∗(v), move all components from L(v, vx) to the cluster 〈uv〉x. Let L′(u, uv)

and L′(v, uv) be the sets obtained from L(u, uv) and L(v, uv) after this step. Notice

that the remaining stable components of Gu and Gv in L′(u, uv) and L′(v, uv) ap-
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pear in L(u, uw∗) and L(v, vx∗), respectively. Move them to the clusters 〈uv〉w∗ and

〈uv〉x∗ by renaming all data structures of u and v, respectively, which can be done

in O(1) time. Update H so that it reflects the changes in G, by creating appropriate

pipes between the clusters in ∂∆〈uv〉, checking for crossings by local planarity testing

inside ∆〈uv〉 (similar to Step 4 of clusterExpansion).

(c) We add the new stable components (created by clusterExpansion from unstable

components) that fit the definition of L(〈u, v〉w∗ , 〈u, v〉w∗〈u, v〉x∗) to the current set

L′(u, uv) to obtain the set L(〈u, v〉w∗ , 〈u, v〉w∗〈u, v〉x∗). Analogously, add new stable

components to the current sets L′(v, vu), L(u, uw) where w 6= v, and L(v, vx) where

x 6= u to obtain the new sets L(〈u, v〉x∗ , 〈u, v〉x∗〈u, v〉w∗), L(〈u, v〉w, 〈u, v〉ww), and

L(〈u, v〉x, 〈u, v〉xx), respectively. Compute any other sets of stable components from

scratch.

We are now ready to show that the running time of the algorithm improves

to O(m logm).

Lemma 3.4.8. Our implementation of the algorithm runs in O(m logm) time.

Proof. Phases 1 and 3 take O(m) time by Lemmas 3.4.1, 3.3.1, and 3.4.6. The while

loop in Phase 2 terminates after O(m) iterations by Corollary 3.4.2. Using just

Lemmas 3.2.1 and 3.3.1, each iteration of Phase 2 would take O(m) time leading to

an overall running time of O(m2). We define a new potential function for an instance

ϕ : G→ H to show that each iteration of Phase 2 takes O(logm) amortized time.

For every u ∈ V (H), let L(u) be the number of stable components in Gu.

Let s be the number of stable components created from the beginning of Phase 2

up to the current iteration. We define a new potential function as1

Φ2(ϕ) = Φ1(ϕ) + (12m− s) log(28m) +
∑

u∈V (H)

L(u) logL(u).

By Corollary 3.4.2 the second term is nonnegative. Note that Φ2(ϕ) = O(m logm)

since Φ1(ϕ) = O(m) and
∑

u∈V (H) L(u) = O(m). We show that Φ2 strictly decreases

1All logarithms are of base 2.
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in Phase 2. As argued above (cf. Lemma 3.4.1), Φ1 strictly decreases. The second

term of Φ2 can only decrease since s increments when stable components are created

(but never decrements). The term
∑

u∈V (H) L(u) logL(u) increases when new stable

components are created. However, this increase is offset by the decrease in the second

term of Φ2. It suffices to consider the case that L(u) increments from k to k + 1.

Then

k log k + log(28m) ≥
(
k log(k + 1)− k log

k + 1

k

)
+ (2 + log(k + 1))

≥ (k + 1) log(k + 1) + 2− log

(
1 +

1

k

)k
≥ (k + 1) log(k + 1) + 2− log e

> (k + 1) log(k + 1),

that is, the decrease of log(28m) in the second term offsets the increase of (k +

1) log(k + 1)− k log k in the third term.

We next show that the time spent on each iteration of the while loop in

Phase 2 is bounded above by a constant times the decrease of the potential Φ2.

This will complete the proof since the potential Φ2 is nonincreasing throughout the

execution of the algorithm as we have just shown.

For a useful pipe uv ∈ E(H), let λ(uv) = Λ be the collection of sets L(u, uw)

where w /∈ {v, w∗(u)} and L(v, vx) where x 6∈ {u,w∗(v)}. Our implementation of

pipeExpansion(uv) spends O(|E(G�〈uv〉)|+deg(〈uv〉)) time to process the components

of G�〈uv〉, by Lemma 3.3.1, and O(1 +
∑

L∈Λ |L|) to process the remaining stable

components. However, by (B4), deg(〈uv〉) = O(|E(G�〈uv〉)|+ 1 +
∑

L∈Λ |L|). Hence

the running time of pipeExpansion(uv) is

O

(
|E(G�〈uv〉)|+ 1 +

∑
L∈Λ

|L|

)
. (3.3)

First, let C be a component ofG�〈uv〉. We have seen (in the proof of Lemma 3.4.1)

that pipeExpansion(uv) decreases Nσ by at least σC(uv)−1 due to edges in C. By the
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definition of safe pipes, C contains a nonempty set A of components of Gu and a no-

nempty set B of components of Gv. By Lemma 3.2.4, each component C ′ ∈ A ∪B

contains O(tC′) edges, where tC′ is the number of terminals of C ′. Notice that

σC(uv) ≥
∑

C′∈A(tC′ − 3), because at most three out of tC′ terminals are not adja-

cent to a pipe-edge in ϕ−1[uv] by the definition of safe pipes (equality occurs when a

thick edge is incident to C ′ in a pipe other than uv). As such, for a component C in

G�〈uv〉, the contribution of C to Nσ −Q decreases by Ω(|E(C)|). Therefore, the first

term of (3.3) is charged to the decrease in Nσ−Q. By Lemma 3.4.1, summation over

pipe expansions in Phase 2 yields O(m). This takes care of steps (a) and (c) of the

efficient implementation (Section 3.4.3). It remains to bound the time complexity

of step (b), which deals exclusively with stable components.

Second, we show that the time that pipeExpansion(uv) spends on stable com-

ponents is absorbed by the decrease in the last term of Φ2. When we move the

components of L(u, uw), w /∈ {v, w∗}, to the cluster 〈uv〉w, we spend linear time on

all but a maximal set, which can be moved in O(1) time using a set operation. In

what follows we show that a constant times the corresponding decrease in the term∑
u∈V (H) L(u) logL(u) subsumes this work.

We adapt the analysis from the classic heavy path decomposition. Suppose

we partition a set of size k = L(u) = L(v) into ` subsets of sizes k1 ≥ . . . ≥ k`. Note

that kj ≤ k/2 for j ≥ 2. Then

k log k =
∑̀
i=1

ki log k ≥ k1 log k1 +
∑̀
j=2

kj log(2kj) =
∑̀
i=1

ki log ki +
∑̀
j=2

kj .

Hence, the decrease in
∑

u∈V (H) L(u) logL(u), which is equal to k log k−
∑`

i=1 ki log ki,

is bounded from below by k − k1. Therefore if we spend O(1) time on a maximal

subset of size k1, we can afford to spend linear time on all other subsets. Thus, the

decrease in
∑

u∈V (H) L(u) logL(u) subsumes the actual work and this concludes the

proof.
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This completes the proof of Theorem 3.1.1(i). Part (ii) of Theorem 3.1.1 is

shown in Section 3.5.

3.5 Constructing an embedding

Our recognition algorithm in Section 3.4 decides in O(m logm) time whether a given

instance ϕ is a weak embedding. However, if ϕ turns out to be a weak embedding,

it does not provide an embedding ψϕ, since at the end of the algorithm we have an

equivalent “reduced” instance ϕ′ at hand. In this section, we show how to compute

the combinatorial representation of an embedding ψϕ for the input ϕ.

Assume that ϕ : G → H is a weak embedding. By Lemmas 3.4.7 and

3.4.8, we can obtain a combinatorial representation of an embedding πϕ′ ∈ Π(ϕ′) in

O(n log n) time of the instance ϕ′ : G′ → H ′ produced by the algorithm at the end

of Phase 2.

We sequentially reverse the steps of the algorithm, and maintain a combi-

natorial embeddings for all intermediate instances until we obtain a combinatorial

representation πϕ ∈ Π(ϕ). By Lemma 3.2.2, we can then obtain an embedding

ψϕ : G→ H in O(m) time. Reversing a clusterExpansion(u) operation is trivial: the

total orders of pipes in ∆u can be ignored and the total order for the pipes uv are

the same as orders for uvv. This can be done in O(deg(u)) time.

Let ϕ(1) : G(1) → H(1) be the input instance of pipeExpansion(uv), ϕ(2) :

G(1) → H(2) be the instance obtained by contracting uv and ϕ(3) : G(3) → H(3) be

the instance after clusterExpansion(〈uv〉). By the previous argument, the total orders

of pipe-edges πϕ(2)(〈uv〉w) of all pipes 〈uv〉w can be obtained from a combinatorial

representation πϕ(3) in O(deg(〈uv〉)) time. These orders also correspond to πϕ(1)(uw)

and πϕ(1)(vx) for pipes uw and vx in ϕ(1) where w 6= v and x 6= u.

To obtain an order πϕ(1)(uv), we embed G
(1)
〈uv〉 into D〈uv〉 using Lemma 3.2.2 in

O(|E(G
(1)
〈uv〉)|) time and find the Jordan curve defined in the proof of Lemma 3.3.3.

The order πϕ(1)(uv) of the pipe-edges in ϕ−1[uv] is given by the order in which

the Jordan curve intersects these edges. This takes O(|E(G
(1)
〈uv〉)|) time by Theo-

102



rem 3.3.2, though we first need to obtain an embedding of G(1), where triangles of

wheels in G
(1)
〈uv〉 and 4-cycles induced by thick edges in and incident to G

(1)
〈uv〉 are

empty. This can be done by changing the rotation at the vertices of the wheels and

4-cycles corresponding to thick edges one by one in O(|E(G
(1)
〈uv〉)|) time, since uv is

safe in the resulting instance.

However, this would lead to a O(m2) worst case time complexity because of

stable components. We show how to reduce the running time to O(m logm). Let

us call a pipe-edge (thick edge) stable if it connects two stable components in two

adjacent clusters. In each total order πϕ∗(uv) for a pipe uv in an instance ϕ∗, we

arrange maximal blocks of consecutive stable edges into a bundle that takes a single

position in the order, and store the order among the stable edges in the bundle

in a separate linked list. We can substitute each bundle with one representative

stable component. Then, using πϕ(2)(〈uv〉w) for all pipes 〈uv〉w incident to 〈uv〉

we can obtain a list of at most deg(〈uv〉) + c representative stable components,

where c is the number of components of G�〈uv〉. We can proceed by embedding all

components in G�〈uv〉 and the representatives of the remaining stable components in

D〈uv〉. Obtaining a Jordan curve that encloses all vertices in (ϕ(1))−1[u] now takes

O(E(G�〈uv〉)+deg(〈uv〉)) time. The order in which the Jordan curve crosses the edges

in G〈uv〉 defines πϕ(1)(uv), where the size of πϕ(1)(uv) is O(E(G�〈uv〉)+deg(〈uv〉)) and

each pipe-edge obtained from a representative stable component represents a bundle

of stable edges. We can merge consecutive bundles of stable edges in πϕ(1)(uv), as

needed, in O(E(G�〈uv〉) + deg(〈uv〉)) time. By (B4), this running time is bounded

above by the running time of our implementation of pipeExpansion(uv), as argued

in the proof of Lemma 3.4.8. Therefore, we can reverse every operation and obtain

an embedding ψϕ : G→ H in O(m logm) time. This completes the proof of Theo-

rem 3.1.1(ii).
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3.6 Algorithm for nonorientable surfaces

We show that our algorithm can be adapted to recognize weak embeddings ϕ : G→

H when H is embedded in a nonorientable manifold M . We discuss the adapta-

tion to nonorientable surfaces in a separate section to reduce notational clutter in

Sections 3.2–3.4.

First, we adapt the definition of the strips system. The embedding of a

graph H into a (orientable or nonorientable) surface M is given by a rotation system

that specifies, for each vertex of H, the ccw cyclic order of incident edges, and a

signature λ : E(H)→ {−1, 1}. To define the strip system H, we proceed exactly as

in the case that M is orientable (Section 3.2), except that for every edge e = uv, if

λ(e) = −1, we identify Au,v with ∂Ruv via an orientation reversing homeomorphism

and Av,u with ∂Ruv via an orientation preserving homeomorphism, or vice-versa. If

we represent M as a sphere with a finite number holes, that are turned into cross-

caps, the signature of an edge is interpreted as the parity of the number of times an

edge passes through a cross-cap.

Second, we adapt the operation of cluster expansion as follows. We put

λ(uvv) := λ(uv) for all neighbors v of u, and λ(e) := 1 for all newly created edges e.

Third, we adapt the operation pipeExpansion(uv) as follows. If λ(uv) = −1,

before creating the cluster 〈uv〉, we flip the value of λ from −1 to 1, and vice-versa,

for every edge of H adjacent to u. This corresponds to pushing the edge uv off all

the cross-caps that it passes through. Then the values of λ on the edges incident to

〈uv〉 in H∗ are naturally inherited from the values of λ on the edges adjacent to u

and v in H. The value of λ for all other edges in H∗ remain the same as in H.

The first two phases of the algorithm remain the same except that they use

the adapted operations of cluster and pipe expansion. Phase 3 is modified as follows.

If a thick cycle C in G′ satisfies Πe∈E(ϕ′(C))λ(e) = 1 (that is, the strip system of

ϕ′(C) is homeomorphic to an annulus), we proceed as in the orientable case. The

modifications affect only the thick cycles C such that Πe∈E(ϕ′(C))λ(e) = −1, or in

other words thick cycles C, for which the strip system of ϕ′(C) is homeomorphic to
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the Möbius band. For such a thick cycle C, we report that the instance is negative if

C winds more than two times around ϕ′(C); or if all pipe edges of C are thick edges,

the underlying graph of C is planar (resp., not planar), and C winds exactly once

(resp., twice) around ϕ′(C). Furthermore, we report that the instance is negative

if there exist two distinct thick cycles C1 and C2 in G′ winding once around ϕ′(C)

such that ϕ′(C) = ϕ′(C1) = ϕ′(C2) in H ′. Else we can report that ϕ is a weak

embedding at the end.

The correctness of the algorithm in the Möbius band case is implied by a

stronger statement in [FK18, Section 8], but we can easily verify it by the following

arguments. Suppose two or more cycles wind exactly once around ϕ′(C). In any

embedding ϕ, the total orders in πϕ (defined in Section 3.2.3) reveres in each tra-

versal of the cycle, which is a contradiction. Similarly, if C winds k > 2 many times

around ϕ′(C) we divide it into k paths P1, . . . , Pk sharing end vertices each of which

is mapped injectively into ϕ′(C). We assume that in πϕ the paths P1, . . . , Pk appear

in the given order up to the choice of orientation. The order of Pi’s in πϕ reverses

with respect to a fixed orientation if we traverse ϕ′(C). Hence, P1 must precede and

follow Pk along C and therefore k ≤ 2, a contradiction.
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Chapter 4

NP-hardness for Higher

Dimensions

This chapter discusses weak embeddings of simplicial 2-complexes. In particular, we

show that recognizing weak embeddings of simplicial k-complexes in R3 for k = 2 is

NP-hard. Notice that de Mesmay et al. [dMRST18] recently proved that deciding

whether a simplicial 2-complex embeds in R3 is NP-hard. That already implies our

claim: given an arbitrary simplicial 2-complex A, let ϕ : A→ R3 be a function that

maps every point in A to (0, 0, 0). Then ϕ is a weak embedding if and only if A can

be embedded in R3. Our proof is much simpler than [dMRST18], giving a simpler

intuition on why recognizing weak embeddings is hard, and also implies stronger

results in the weak embedding setting, proving hardness for special cases where the

complex is homeomorphic to a disk and at most 9 triangles overlap at any point.

We reduce the problem from Flat-Foldability of origami crease patterns.

Flat-Foldability of general crease patterns was first claimed to be hard over

twenty years ago [BH96]. We point out a mistake in the hardness reduction in [BH96]

and prove that the problem remains NP-complete even for a strict subset of inputs

called box pleating, defined below. In addition, we provide new terminology to

implicitly represent the global layer order of a flat folding, and present a new pla-

nar reduction framework from NAE-3SAT for grid-aligned gadgets. The results in
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this chapter are joint work with Kenneth C. Cheung, Erik D. Demaine, Takashi

Horiyama, Thomas C. Hull, Jason S. Ku, Tomohiro Tachi, and Ryuhei Uehara

published in [ACD+16].

4.1 Introduction

In their seminal 1996 paper, Bern and Hayes initiated investigation into the compu-

tational complexity of origami [BH96]. They claimed that it is NP-hard to determine

whether a given general crease pattern can be folded flat (Flat-Foldability), both

when the creases have and have not been assigned crease directions (mountain fold

or valley fold). Since that time, there has been considerable work in analyzing the

computational complexity of other origami related problems. For example, Arkin

et al. [ABD+04] proved that Flat-Foldability is weakly NP-hard even for simple

folds, Akitaya et al. [ADK17] strengthened this result to strong NP-hardness, and

Demaine et al. [DFL10] proved that optimal circle packing for origami design is also

NP-hard.

While the gadgets in the hardness proof presented in [BH96] for unassigned

crease patterns are relatively straightforward, their gadgets for assigned crease pat-

terns are considerably more convoluted, and quite difficult to check. In fact, we have

found an error in their unassigned crossover gadget where signals are not guaranteed

to transmit correctly for wires that do not cross orthogonally, which is required in

their construction. Part of the reason no one found this error until now is that there

was no formal framework in which to prove statements about flat-folded states. We

attempt to provide such a framework.

At the end of their paper, Bern and Hayes pose some interesting open que-

stions to further their work. While most of them have been investigated since, two

in particular (problems 2 and 3) have remained untouched until now. First, is there

a simpler way to achieve a proof for assigned crease patterns (i.e. “without tabs”)?

Second, is deciding Flat-Foldability easy under more restrictive inputs? The

reductions in [BH96] construct creases at a variety of unconstrained angles. Box
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pleating is an example of a more restrictive set of inputs. It involves folding creases

only along on a subset of a square grid and the diagonals of the squares, a special case

of particular interest in transformational robotics and self-assembly [HAB+10], with

a universality result constructing arbitrary polycubes using box pleating [BDDO10].

In this chapter we address both of these questions. We prove that Flat-

Foldability on box-pleated crease patterns inputs is NP-complete in both the

unassigned and assigned cases, using relatively simple gadgets containing no more

than 25 layers at any point. We then show that this result implies NP-completeness

of deciding whether a map from a simplicial 2-complex to R3 is a weak embedding.

The problems remain hard even for inputs ϕ : A→ R3 such that A is homeomorphic

to a disk, ϕ(A) is contained on a single plane, and |ϕ−1[p]| ≤ 9 for every p ∈ R3,

i.e., ϕ maps at most 9 distinct points of A to an image point in R3.

4.2 Definitions

In general, we are guided by the terminology laid out in [DO07] and [Rob77]. In

this chapter, a paper P is a simple polygon in R2. An isometric flat folding of a

paper P is a function f : P → R2 such that if γ is a piecewise-geodesic curve on

P parameterized with respect to arc-length, then f(γ) is also a piecewise-geodesic

curve parameterized with respect to arc-length. It is not hard to show that under

these conditions f must be continuous and non-expansive. Let Xf be the boundary

of a paper P together with the set of points not differentiable under f . Then one

can prove that Xf is a straight-line graph embedded in P [Rob77], with vertex set

Vf and edge set Cf , the creases of our folding f . A vertex (resp., crease) in Vf

(resp., Cf ) is external if it contains a boundary point of P , and internal otherwise.

Subtracting Xf from P results in a disconnected set of open polygons Ff we call

faces. For any face F ∈ Ff , f(F ) is either an isotopic transformation in R2, or the

transformation involves a reflection and is anisotopic. Define uf : P \Xf → {−1, 1}

such that uf (p) = −1 if the face containing p is reflected under f and uf (p) = 1

otherwise. We call uf (p) the orientation of the face containing p. Every point in
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P is in exactly one of Vf , Cf , or Ff . We call this partition of P the isometrically

flat foldable crease pattern Σf = (Vf , Cf , Ff ) induced by f . We call a folding box

pleating if every vertex lies on the two-dimensional integer lattice, and the creases

are aligned at multiples of 45◦ to each other.

We say two disjoint simply connected subsets of P are adjacent to each

other if their closures intersect; we call such an intersection the adjacency of the

adjacent subsets. We say a simply connected subset of P is uncreased under f if

f is injective when restricted to the subset. We say two simply connected subsets

of P overlap under f if the interiors of their images under f intersect. We say two

simply connected subsets of P strictly overlap under f if their images under f exactly

coincide. It is known that the set of creases adjacent to an internal vertex of a crease

pattern obey the so-called Kawasaki-Justin Theorem: the alternating sum of angles

between consecutive creases when cyclically ordered around the vertex equals zero

[DO07]. This condition turns out to be necessary and sufficient: given a paper P

exhaustively partitioned into a set of isolated points V , open line segments C, and

open topological disks F such that every point in V is adjacent to more than two

segments in C, then (V,C, F ) is an isometrically flat foldable crease pattern induced

by a unique isometric flat folding if and only if (V,C, F ) obeys the Kawasaki-Justin

Theorem.

Let a function λf : P×P → {−1, 1} be a global layer ordering of an isometric

flat folding f if it obeys the following six properties.

Existence: λf satisfies existence if λf (p, q) is defined for every distinct pair

of points p and q that strictly overlap under f and at least one of p or q is not in Xf ;

otherwise λf (p, q) is undefined. Informally, order is only defined between a point on

a face and another point overlapping it in the folding.

Antisymmetry: λf is antisymmetric if λf (p, q) = −λf (q, p), where λf is

defined. Informally, if p is above q, then q is below p.

Transitivity: λf is transitive if λf (p, q) = λf (q, r) implies λf (p, r) = λf (p, q),

where λf is defined. Informally, if q is above p and r is above q, then r is above p.

Consistency (Tortilla-Tortilla Property): For any two uncreased simply
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connected subsets O1 and O2 of P that strictly overlap under f , λf is consistent if

λf (p1, p2) has the same value for all (p1, p2) ∈ O1 × O2, where λf is defined. See

Figure 4.1. Informally, if two regions completely overlap in the folding, one must be

entirely above the other.

Face-Crease Non-Crossing (Taco-Tortilla Property): For any three

uncreased simply connected subsets O1, O2, and O3 of P such that O1 and O3 are

adjacent and strictly overlap, and O2 overlaps the adjacency between O1 and O3

under f , λf is face-crease non-crossing if λf (p1, p2) = −λf (p2, p3) for any points

(p1, p2, p3) ∈ O1 × O2 × O3, where λf is defined. See Figure 4.1. Informally, if

a region overlaps a nonadjacent internal crease, the region cannot be between the

regions adjacent to the crease.

Crease-Crease Non-crossing (Taco-Taco Property): For any two ad-

jacent pairs of uncreased simply connected subsets (O1, O2) and (O3, O4) of P such

that every pair of subsets strictly overlap and the adjacency of O1 and O2 strictly

overlaps the adjacency of O3 and O4 under f , λf is crease-crease non-crossing if

either {λf (p1, p3), λf (p1, p4), λf (p2, p3), λf (p2, p4)} are all the same or half are +1

and half are −1, for any point (p1, p2, p3, p4) ∈ O1 × O2 × O3 × O4, where λf is

defined. See Figure 4.2. Informally, if two creases overlap in the folding, either the

regions incident to one crease lie entirely above the regions incident to the other (all

same), or the regions incident to one crease nest inside the regions incident to the

other (half-half).

f

f(

O

Consistency Face-Crease Noncrossing Crease-Crease Noncrossing

f(p1)

f(O2)

f(O1)

f(p2)

(O2)

O1)

f( 3) f(O1) f(O3)

f(O2)

f(O4)

Figure 4.1: Topologically different local interactions within an isometric flat fol-
ding. Forbidden configurations are shown for Face-Crease and Crease-Crease Non-
Crossing. Crossings are shown with a red segment.

If there exists a global layer ordering for a given isometrically flat foldable
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All same

Adjacent

Half-half

Nested

Odd one out

Intersecting

Figure 4.2: Local interaction between overlapping regions around two distinct cre-
ases.

crease pattern, we say the crease pattern is globally flat foldable. Consider an iso-

metrically flat foldable crease pattern Σf containing two adjacent uncreased simply

connected subsets O1 and O2 of P that strictly overlap under f , and let p and q

be points in O1 and O2 respectively that overlap under f . Then, O1 and O2 are

subsets of disjoint adjacent faces of the crease pattern mutually bounding a crease.

If λf is a global flat folding of Σf , then it induces a mountain/valley assignment

αλf (c) = u(p)λf (p, q) for each crease point c in the adjacency of O1 and O2. This

assignment is unique by consistency. We call a crease point c a valley fold (V) if

αλf (c) = 1 and a mountain fold (M) if αλf (c) = −1. In the figures, mountain folds

are drawn in red while valley folds are drawn in blue. By convention, if λf (p, q) = −1

we say that p is above q, and if λf (p, q) = 1 we say that p is below q.

Given an isometrically flat foldable crease pattern Σf , the Unassigned-

flat-foldability problem asks whether there exists a global layer ordering for f .

Alternatively, given an isometrically flat foldable crease pattern Σf and an assign-

ment α : Cf → {M,V } labeling creases as either mountain or valley, the Assigned-

flat-foldability problem asks whether there exists a global layer ordering for f

whose induced mountain valley assignment is consistent with α.

We now prove the following implied properties of globally flat foldable crease

patterns relating the layer order between points contained in multiple overlapping

faces. Informally, Pleat-Consistency says if a face is adjacent and overlapping two

larger faces, then the creases between them must have different M/V assignment,

forming a pleat. Path-Consistency says that a face overlapping creases connecting

an adjacent sequence of faces is either above or below all of them.
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Lemma 4.2.1. (Pleat-Consistency) If Σf is a globally flat foldable crease pattern

containing disjoint uncreased simply connected subsets O1, O2, and O3 of P with

O2 adjacent to both O1 and O3 such that O2 strictly overlaps subsets O′1 ⊂ O1 and

O′3 ⊂ O3, and the interiors of O1 and O3 overlap the adjacencies of O2, O3 and

O1, O2 respectively, then λf (p1, p2) = λf (p2, p3) for any pairwise overlapping points

(p1, p2, p3) ∈ O1 ×O2 ×O3.

Proof. Taco-Tortilla applied to O3 which overlaps the adjacency of strictly over-

lapping sets O2 and O′1 implies λf (p2, p3) = −λf (p3, p1). Similarly, Taco-Tortilla

applied to O1 which overlaps the adjacency of strictly overlapping sets O′3 and O2

implies λf (p3, p1) = −λf (p1, p2), so λf (p1, p2) = λf (p2, p3).

Lemma 4.2.2. (Path-Consistency) If Σf is a globally flat foldable crease pattern

containing uncreased simply connected subset T of P and a disjoint sequence of

adjacent uncreased simply connected subsets O1, . . . , On of P such that Oi strictly

overlaps some subset Ti of T and the interior of O overlaps the adjacency of each

pair Oi and Oi+1 for i = {1, . . . , n−1}, then λf (tj , pj) = λf (tk, pk) for any two pairs

of overlapping points (tj , pj) ∈ Tj ×Oj and (tk, pk) ∈ Tk ×Ok for j, k ∈ {1, . . . , n}.

Proof. If some Oi and Oi+1 overlap, Taco-Tortilla and Consistency ensure that both

are at the same side of T , i.e., λf (ti, pi) = λf (ti+1, pi+1) for (ti, pi) ∈ Ti × Oi and

(ti+1, pi+1) ∈ Ti+1 × Oi+1. Alternatively, Oi and Oi+1 do not overlap and the

closure of Oi ∪ Oi+1 is an uncreased region for which λf (ti, pi) = λf (ti+1, pi+1) by

consistency. Applying sequentially to each pair of faces proves the claim.

The proofs in Section 4.5 and 4.6 contain many examples of the application

of these properties. When proving the existence of a global layer ordering λf , it

is often impractical to define λf between every pair of points. Frequently λf is

uniquely induced by a M/V assignment, consistency, and transitivity. When it is

not, we will provide λf between additional point pairs so that it will be. We present

crease patterns with this implicit layer ordering information and encourage readers

to fold them to reconstruct the unique layer orderings they induce.
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4.3 Bern and Hayes and k-Layer-Flat-Foldability

Two crossover gadgets are presented in the reduction to Unassigned-Flat-Foldability

provided in [BH96]. One is identical to the one used in this chapter (Figure 4.5(b))

and the other is shown in Figure 4.3. They consist of two intersecting pleats. For

each, they claim that the M/V assignment of the crease pair intersecting one edge

of the gadget deterministically implies the M/V assignment of the crease pair on

the opposite side. This claim is true for their perpendicular crossover gadget, but

is unfortunately not true for the other for wires meeting at 45◦, see Figure 4.3. The

gadget as described in [BH96] requires an exterior 45◦ angle between incoming wires

that is the smallest angle at a four-crease vertex, forbidding the wires to be inde-

pendently assigned by Pleat-Consistency. For completeness, we have also checked

the family of possible gadgets of this form, with a rotated internal parallelogram,

and no choice of rotation allows the gadget to function correctly as a crossover for

the range of widths of wires that appear in the construction. Our proof to follow

only uses the perpendicular crossover, avoiding this complication.

Figure 4.3: Error in the crossover gadget in [BH96].

Also in [BH96], Bern and Hayes define k-Layer-Flat-Foldability to be

the same as Unassigned-Flat-Foldability or Assigned-Flat-Foldability

but with the additional constraint that f maps at most k distinct points to the

same point. They claim that their reduction implies hardness of Unassigned-k-

Layer-Flat-Foldability for k = 7. But in fact their perpendicular crossover

gadget requires nine points to be mapped to the same point. Our reduction uses

the same gadget as a crossover, so we reconfirm that Unassigned-k-Layer-Flat-
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Figure 4.4: SCN Gadgets. [Left] A Complex Clause Gadget constructed from the
Not-All-Equal clause on variables v, w, and y of a NAE3-SAT instance on six vari-
ables. [Right] The five elemental SCN Gadgets.

Foldability is NP-complete for k = 9, even for box pleated crease patterns. Also,

because of the complexity of their assigned crease pattern reduction, they were

unable to bound the number of layers in their reduction. We explicitly provide

gadgets for the assigned case to prove Assigned-k-Layer-Flat-Foldability is

NP-complete for k = 25, even for box pleated crease patterns.

4.4 SCN-Satisfiability

Our reductions will be from the following NP-complete problem [Sch78].

Definition (Not-All-Equal 3-SAT) Given a collection of clauses each containing

three variables, Not-All-Equal 3-SAT (NAE3-SAT)1 asks if variables can be

assigned True or False so that no clause contains variables of only one assignment.

We can construct a planar directed graph G embedded in R2 from an instance

N of NAE3-SAT. For each clause, construct a Complex Clause Gadget as the one

shown in Figure 4.4. The motivation behind the Complex Clause Gadget is to encode

the bipartite graph implicit in N in a planar grid embedding that can be modularly

connected. Each directed edge of the Complex Clause Gadget is associated with a

unique variable, and we associate a unique color with each variable. Some variables

1 This problem is sometimes called ‘positive’ as variables cannot appear negated within clauses,
however we follow the naming convention from [Sch78].
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do not participate in the clause and simply form a straight chain of directed segments

from left to right. However, the three variables participating in the clause are

rerouted to intersect at the black dot. We construct a Complex Clause Gadget for

each clause in the instance of NAE3-SAT and chain them together side by side, so

the arrows exiting the right side of one enter the left side of another. Graph G

has vertices that are adjacent to edges associated with exactly one, two, or three

variables. We call these vertices split, cross, and clause vertices respectively. In

the figures, they are labeled with white circles, crossed circles, and black circles

respectively. We call such a directed graph G a Split-Cross-Not-All-Equal (SCN)

graph.

Definition (SCN-Satisfiability) Given a SCN graph G, SCN-Satisfiability

asks if variables can be assigned True or False so that no clause vertex is adjacent

to edges associated with variables of only one assignment.

We introduce SCN-Satisfiability as a useful intermediate problem because

it is equivalent to NAE3-SAT but its embedding is planar, lies on a grid, and is

constructed only by a small number of local elements. SCN-Satisfiability is

equivalent to NAE3-SAT because the bipartite graph connecting SCN variables

to clause vertices is exactly the bipartite graph representing N by construction.

However, G has useful structure for many problems. It is planar, the embedding

contains edges with only four slopes, and the edges are directed meaning that a

variable can be represented locally with respect to that direction. Further G is

constructed from only a small number of local elements: a variable gadget, two split

gadgets, a cross gadget, and a (simple) clause gadget as shown in Figure 4.4. We call

these the five elemental SCN Gadgets. If we can simulate each of these gadgets in

another context, proving that edges of the same color in each gadget must all have

the same value, and edges adjacent to a clause vertex do not all have equal value,

we can prove other problems NP-hard. This will be our strategy in the following

sections.
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Theorem 4.4.1. If a problem X can simulate the elemental SCN gadgets such that

edges of the same color in each gadget have the same value and edges adjacent to a

clause vertex do not all have equal value and if the correspondent gadgets in X can

be connected consistently, then X is NP-hard.

4.5 Unassigned Crease Patterns

In this section we present gadgets simulating the elemental SCN gadgets with unas-

signed crease patterns. They are shown in Figure 4.5.

We define a variable gadget to be a pair of parallel creases (or pleat) placed

close together having an direction as shown in Figure 4.5(a). By pleat-consistency

and transitivity, λf (a, b) = λf (b, c) = λf (a, c), so, local to the gadget, it has exactly

two globally flat foldable states. We say the variable is True if the face to the right

of the variable direction is above the face to left (λf (a, c) = 1), and False otherwise.

The cross gadget consists of two pleats crossing perpendicularly, see Figure 4.5(b).

The split and clause gadgets represent the degree 3 vertices of the SCN graph as

shown in Figure 4.5(c) and (d).

Lemma 4.5.1. The unassigned cross gadget is a globally flat foldable crease pattern

if and only if opposite variables are equal.

Proof. Refer to Figure 4.5(b). Assume global flat foldability. Let A,B,C,D,E, F

be the maximal subsets of the faces respectively containing points a, b, c, d, e, f such

that every pair strictly overlap. First assume that λf (a, b) = λf (c, d). By Taco-Taco

with respect to adjacencies A,C and B,D, λf (a, d) = λf (c, b). By Taco-Taco with

respect to adjacencies A,B and C,D, λf (a, c) = −λf (b, d). By Pleat-Consistency on

A, C, E, λf (a, c) = λf (c, e). By Pleat-Consistency on B, D, F , λf (b, d) = λf (d, f).

So λf (c, e) = −λf (d, f). By Taco-Taco with respect to adjacencies C,D and E,F ,

λf (c, f) = −λf (d, e). By Taco-Taco with respect to adjacencies C,E and D,F ,

λf (c, d) = λf (e, f). Thus because λf (a, b) = λf (e, f), the variable on the left has

the same value as the one on the right. Alternatively if λf (a, b) = −λf (c, d), the same

series of arguments yields that λf (c, d) = −λf (e, f), so λf (a, b) = λf (e, f). Thus if
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Figure 4.5: Elemental SCN Gadgets simulated with unassigned crease patterns.

global flat foldability holds, opposite variables are equal. Now assume that opposite

variables are equal. The M/V assignment in Figure 4.5(b) completely induces λf ,

along with consistency and transitivity. The path shown in Figure 4.5(b) in white

is a linear order on the faces satisfying global layer ordering. Further, every other

assignment of variables can be represented by a reflection of this crease pattern.

Lemma 4.5.2. The unassigned split gadget is a globally flat foldable crease pattern

if and only if its three variables are equal.

Proof. Refer to Figure 4.5(c). Assume global flat foldability. Let A and B be the

faces containing points a and b respectively. The region highlighted in the figure and

A must satisfy Path-Consistency, so λf (a, b) = λf (a, c). Since the crease pattern

is symmetric, λf (b, a) = λf (b, c). Then, by antisymmetry, λf (a, b) = λf (c, b), and

therefore all variables are equal. Now assume all variables are equal. The path

shown in Figure 4.5(c) is a linear order on the faces satisfying global layer ordering.

Further, every other assignment of variables can be represented by a reflection of
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this crease pattern.

Lemma 4.5.3. The clause gadget is a globally flat foldable crease pattern if and

only if its three variables are not all equal.

Proof. Refer to Figure 4.5(d). Assume for contradiction the clause gadget is globally

flat foldable and all variables are equal. By consistency λf (a, b) = λf (b, c) = λf (c, a).

By transitivity, λf (a, b) = λf (a, c). By antisymmetry, λf (a, b) = −λf (c, a), a con-

tradiction. Thus the variables are not all equal. Now assume all variables are not all

equal. The paths shown in Figure 4.5(d) are linear orders on the faces satisfying glo-

bal layer ordering. Further, every other assignment of variables can be represented

by the negation of one of these (M/V) assignments.

Figure 4.6: A folded example of our unassigned reduction with two clauses on four
variables.

Theorem 4.5.4. Unassigned-Flat-Foldability is NP-complete, even for box

pleated crease patterns.

Proof. Given λf as our certificate, we can check in polynomial time whether it satis-

fies all conditions for global flat foldability, therefore Unassigned-Flat-Foldability

is in NP. By Lemma 4.5.1, Lemma 4.5.2, and Lemma 4.5.3, Unassigned-Flat-

Foldability can simulate the SCN-Satisfiability gadgets. It remains to check
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if the gadgets can be consistently connected. Let the width of a variable be the

distance between its parallel creases. The cross gadget connects variables of the

same width while the clause and split gadgets both connect variables whose ratios

differ by a factor of
√

2. Setting the width of one variable in any gadget induces

the width of the other variables in the gadget. Fixing the width of one variable in

the Complex Clause Gadget (Figure 4.4), a consistent unique width for all other

variables is induced, resulting in the same width for each variable intersecting a left

or right edge. Therefore, by Theorem 4.4.1, Unassigned-Flat-Foldability is

NP-hard.

4.6 Assigned Crease Patterns

In this section we present gadgets simulating the elemental SCN gadgets with as-

signed crease patterns. They are shown in Figure 4.7.

We define a variable gadget as a set of parallel creases placed close together

having a direction and a crease assignment as shown in Figure 4.7(a). By Taco-

Tortilla, λf (a, c) = λf (b, c) = λf (a, d) = λf (b, d), so, local to the gadget, it has

exactly two globally flat foldable states. We say the variable is True if the faces

to the right of the variable direction are above the faces to left (λf (a, c) = 1), and

False otherwise. The cross, split, and clause gadgets are shown in Figure 4.7(b),

(c), and (d) respectively.

Lemma 4.6.1. The assigned cross gadget is a globally flat foldable crease pattern

if and only if opposite variables are equal.

Proof. Refer to Figure 4.7(b). Assume global flat foldability. Let A,B,C,D be the

maximal subsets of the faces containing points a, b, c, d, respectively, such that every

pair strictly overlap. By transitivity on subset of λf induced by the M/V assignment

shown, λf (a, d) = λf (b, c) = −1. By Taco-Taco with respect to adjacencies A,C

and B,D, λf (a, b) = −λf (c, d). Repeating this argument for adjacent rows of faces

all the way down implies λf (a, b) = −λf (c, d) = λf (e, f) = −λf (g, h) = λf (i, j).

Thus, the variable on the top edge of the gadget has the same value as the one
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Figure 4.7: Elemental SCN Gadgets simulated with assigned crease patterns.

on the bottom. First assume λf (g, a) = λf (a, b). Then previous implications im-

ply λf (g, a) = −λf (g, h). By transitivity and antisymmetry, λf (g, a) = λf (h, b).

Thus, the variable on the left side of the gadget has the same value as the one on

the right. Alternatively, assume −λf (g, a) = λf (a, b) so λf (c, i) = λf (d, c). Then

previous implications imply λf (c, i) = λf (i, j). By transitivity and antisymmetry,

λf (c, i) = λf (d, j). Thus, the variable on the left side of the gadget has the same

value as the one on the right. So, if globally flat foldable, opposite variables are

equal. Now assume that opposite variables are equal. One can fix a unique λf by

choosing a subset of λf in addition to the subset induced by the M/V assignment

and consistency. The path shown in the right of Figure 4.7(b) is a linear order on

the faces satisfying global layer ordering. White edges represent a relations implied

by the M/V assignment, while black edges depend on the choice of λf encoding the

truth assignment of variables. Further, every other assignment of variables can be

represented by a reflection of this crease pattern.
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Lemma 4.6.2. The assigned split gadget is a globally flat foldable crease pattern if

and only if its three variables are equal.

Proof. Refer to Figure 4.7(c). Assume global flat foldability. Let A and B be the

faces containing points a and b respectively. The region highlighted in the figure and

A must satisfy Path-Consistency, so λf (a, b) = λf (a, c). Since the crease pattern

is symmetric, λf (b, a) = λf (b, c). Then, by antisymmetry, λf (a, b) = λf (c, b), and

therefore all variables are equal. Now assume all variables are equal. The path

shown in Figure 4.7(c) is a linear order on the faces satisfying global layer ordering.

Further, any other assignment of variables can be attained by a reflection.

Lemma 4.6.3. The assigned clause gadget is a globally flat foldable crease pattern

if and only if its three variables are not all equal.

Proof. Refer to Figure 4.7(d). Assume for contradiction the clause gadget is global

flat foldable and all variables are equal. By consistency λf (a, b) = λf (b, c) = λf (c, a).

By transitivity, λf (a, b) = λf (a, c). By antisymmetry, λf (a, b) = −λf (c, a), a con-

tradiction. Thus the variables are not all equal. Now assume all variables are not

all equal. The paths shown in Figure 4.7(d) are linear orders on the faces satisfying

global layer ordering. Further, any other assignment of variables can be attained by

reversing the arrows in the figure.

Theorem 4.6.4. Assigned-Flat-Foldability is NP-complete, even for box ple-

ated crease patterns.

Proof. Given λf as our certificate, we can check in polynomial time whether it

satisfies all conditions for global flat foldability and if it is consistent with the crease

assignment, therefore Assigned-Flat-Foldability is in NP. By Lemma 4.6.1,

Lemma 4.6.2, and Lemma 4.6.3, Assigned-Flat-Foldability can simulate the

SCN-Satisfiability gadgets. It remains to check if the gadgets can be consistently

connected. Let the width of a variable be the distance between its two parallel

mountain creases. By the same argument as in the proof of Theorem 4.5.4, widths

121



Figure 4.8: A folded example of our assigned reduction with two clauses on four
variables. The truth assignment is shown by dots that indicate the layers that fold
below.

of variables can be assigned consistently. Therefore, by Theorem 4.4.1, Assigned-

Flat-Foldability is NP-hard.

4.7 Hardness for Weak Embeddings

Given an instance of Flat-Foldability, we can construct a map ϕ : A → R3

where A is a simplicial 2-complex as follows. Subdivide each face in Ff at f−1(Xf ).

Triangulate the obtained faces obtaining the set of triangles T . Every face originates

O(n) triangles in T , where n is the number of edges in Xf . Glue every pair of

triangles at their common edge. This results in the simplicial 2-complex A. Note

that because the paper P of our instance is homeomorphic to a disk, so is A. Let the

point p′ ∈ A be the point that corresponds to p ∈ P . Now let ϕ be such that if f(p) =

(p.x, p.y), then ϕ(p′) = (p.x, p.y, 0). Given an embedding ψε that approximates ϕ

for some sufficiently small ε, one can obtain λf such that the Flat-Foldability

constraints are satisfied by the z-order of faces in ψε. Similarly, given an ordering

λf , the existence of an embedding ψε is implied by Lemma 11.4.1 in [DO07]. We
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denote by ϕ−1[p] the set of points in A that are mapped to p ∈ R3. In the reduction

in the proof of Theorem 4.5.4, the cross gadget has nine faces overlapping at a point.

In all other gadgets |ϕ−1[p]| < 9 for a point p in the image of the gadget. Then, the

following is a consequence of Theorem 4.5.4:

Corollary 4.7.1. It is NP-hard to decide whether a map ϕ : A → R3 is a weak

embedding, where A is a simplicial 2-complex, even if A is homeomorphic to a disk,

ϕ(A) is contained on a single plane, and |ϕ−1[p]| ≤ 9 for every p ∈ R3.
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Chapter 5

Conclusion

This thesis presented algorithmic results for recognizing weak embeddings of simpli-

cial complexes. We have shown that, in general, the problem is NP-hard (Chapter 4).

For simplicial 1-complexes (graphs) in a surface, we showed that the problem can

be solved in O(mn logmn) via an algorithm for graphs with m edges and n vertices;

In the special case when the input is a simplicial map, the problem can be solved in

O(m logm) time (Chapter 3). When the input is a (not necessarily simplicial) map

from a max-degree-2 graph to the plane, the problem can be solved in O(n log n)

time via an algorithm (Chapter 2). Both algorithms improve on previously known

bounds.

A simple lower bound shows that, for max-degree-2 graphs, the upper bound

is the best possible (Figure 5.1). It is a reduction from sorting to weak embedding.

Given a set of real numbers {a1, . . . , an}, let G be the graph containing n copies of

Figure 5.1: Reduction from sorting to weak embedding.
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C5. Set ϕ so that each cycle of G is mapped to ((0, 0), (0, 1), (0,−1), (0, 0), (ai, 0))

for each number ai of the input. Given an embedding ψϕ that approximates ϕ, one

can recover the sorted order of the elements of the input set in O(n) time since it

must correspond to the nesting order of the cycles in ψϕ. Note that if the cycles

are not nested they would intersect near (0, 0). Then, the embedding ψϕ must take

Ω(n log n) time to be computed.

However this construction does not work for the case when the input graph

is connected (equivalent to recognizing a weakly simple polygon). The best known

lower bound in this case is Ω(n), due to reading the whole input (by changing the

drawing of any of the edges in an embedding of a graph with more than two edges,

one could cause a proper crossing, for example). It is an open problem whether the

upper bound can be improved for weakly simple polygons. The Ω(n log n) bound

is also the best known for general graphs. It is an open problem whether the

O(mn logmn) bound can be improved for recognizing weak embeddings of general

graphs.

There are several open problems related to the recognition of weak embed-

dings. Perhaps the most prominent one is the notoriously difficult cluster-planarity

problem (briefly introduced in Section 3.1 of Chapter 3). I hope that the methods

explored in this thesis can contribute to a better understanding of this and other

related problems.

For instance, our methods could be applied to special cases of this problem

as follows. A clustered graph C = (G,T ) is given by a graph G and a rooted tree

T whose leaves are the vertices of G. A node ν of T that is neither a leaf or the

root is called a cluster and corresponds to a subset V (ν) of vertices of G such that

V (ν2) ⊂ V (ν1) if ν2 is a descendant of ν1. A clustered graph C = (G,T ) is flat if the

height of T is 2, i.e., a vertex can only be in a single cluster. A drawing of C maps

each cluster ν to a simply connected region R(ν) that is contained in R(ν ′) if ν is a

descendant of ν ′. The vertices in V (ν) are drawn in R(ν) and each edge of G can

cross the boundary of a cluster R(ν) at most once. A clustered graph is c-planar if

it admits a planar drawing. As stated in Chapter 3, weak embeddings are a special
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case of cluster-planar graphs. They correspond to the problem c-planarity with

pipes [AL16] which restricts C to be flat and the edges between the same pair of

clusters to be “bundled” together in the embedding. If the adjacency graph of a flat

clustered graph (considering two clusters to be adjacent if there is an edge between

their vertices) is 3-connected, our algorithm can be used to determine c-planarity.
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Proceedings of the 34th International Symposium on Computational

Geometry (SoCG), volume 99 of Leibniz International Proceedings in

Informatics (LIPIcs), pages 39:1–39:15, Dagstuhl, Germany, 2018.

[FT17] Andrea Francke and Csaba D. Tóth. A census of plane graphs with
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[HMM00] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph visua-

lization and navigation in information visualization: A survey. IEEE

Transactions on Visualization and Computer Graphics, 6(1):24–43,

2000.

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal

of the Association for Computing Machineryf, 21:549–568, 1974.

[JKX+13] Mustapha Jamal, Sachin S. Kadam, Rui Xiao, Faraz Jivan, Tzia-

Ming Onn, Rohan Fernandes, Thao D. Nguyen, and David H Gracias.

Tissue engineering: Bio-origami hydrogel scaffolds composed of pho-

tocrosslinked peg bilayers (adv. healthcare mater. 8/2013). Advanced

Healthcare Materials, 2(8):1066–1066, 2013.

131
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