
Unsimulability, Universality, and Undecidability in
the Gizmo Framework

by

Joshua Ani
S.B., Computer Science and Engineering

Masssachusetts Institute of Technology, 2021

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

January 20, 2023

Certified by. .
Erik D. Demaine

Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Unsimulability, Universality, and Undecidability in the
Gizmo Framework

by
Joshua Ani

Submitted to the Department of Electrical Engineering and Computer Science
on January 20, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
The gizmo framework is a recent development of the gadget framework used for
proving computational complexity results of videogames and other motion planning
problems. This thesis explores three aspects of the gizmo framework: unsimulability
(the inability of one gizmo to simulate another gizmo), universality (the ability of a
gizmo to simulate all gizmos in its simulability class), and undecidability (the inability
to decide whether a maze made of a gizmo is solvable). We give a proof that the 1-
toggle cannot simulate the 2-toggle, as it contains important techniques. We explore
a class of gizmos called dicrumbler variants, and give partial results for which ones
simulate which others. We give universal gizmos for simulability classes Reg and
DAG, and explore the concept of finding all the gizmos that simulate a particular
gizmo, with partial results given for the dicrumbler. We show that reachability for a
gizmo representing a counter in a counter machine is undecidable, and show several
gizmo simulations. We give a proof that generalized New Super Mario Bros. is
undecidable using one of the undecidable gizmos.

Thesis Supervisor: Erik D. Demaine
Title: Professor

3

4

Acknowledgments
I would like to thank Erik Demaine for the Fun with Hardness Proofs class he taught in
Spring 2019, which inspired me to work on the gadget framework. Much of the work
on the framework was done with Dylan Hendrickson, Jayson Lynch, and Yevhenii
Diomidov, with Dylan in particular introducing the gizmo framework.

5

6

Contents

1 Introduction 13
1.1 Gadgets . 13
1.2 Gizmos . 15
1.3 Outline . 17

2 Gizmos 19
2.1 Simulation . 22
2.2 Reachability . 23

3 Unsimulability 25
3.1 1-Toggles . 25
3.2 Simulability Classes . 29

3.2.1 Implication Properties . 30
3.2.2 Other Simulability Classes . 33

3.3 Dicrumbler Variants . 35

4 Universality 43
4.1 Reg . 43
4.2 DAG . 47
4.3 Bottom Universality . 49

5 Undecidability 53

7

8

List of Figures

1-1 Tripwire lock gadget . 13
1-2 Toggle lock gadget . 14
1-3 Simulation of a toggle lock with tripwire locks 14
1-4 Gadget with equivalent states . 15
1-5 Gadget with an implied traversal . 16
1-6 Gadget with nondeterminism . 16

2-1 Diode gizmo . 20
2-2 Dicrumbler gizmo . 21
2-3 Door gizmos . 21
2-4 Symmetric self-closing door gizmo . 21
2-5 1-toggle gizmo . 21
2-6 Simulation of a 1-toggle with a symmetric self-closing door 22
2-7 Transitively allowed traversal in a gizmo 23
2-8 Simulation process . 24

3-1 2-toggle gizmo . 25
3-2 Illustration of the proof of Lemma 5 29
3-3 2-use matched dicrumbler gizmo . 31
3-4 Crumbler gizmo . 31
3-5 Tunnel chooser gizmo . 32
3-6 ZXY enforcer with cutting gizmo . 32
3-7 Open-only door gizmo . 32
3-8 Simulation of a 6-dicrumbler with 2-use dicrumblers 36
3-9 Simulation of a (1, 3)-dicrumbler with (1, 2)-dicrumblers 37
3-10 Simulation of a (1, 2)-dicrumbler with (3, 4)-dicrumblers 39
3-11 Interacting gizmos from Theorem 11 41

4-1 Door Reg-universality example . 46
4-2 2-use mismatched dicrumblers gizmo 46
4-3 Simulation of the matched dicrumblers with the 2-use mismatched di-

crumblers . 47
4-4 2-use mismatched dicrumblers DAG-universality example 50
4-5 Simulation of a dicrumbler with traversals that break various implica-

tion properties . 52

9

5-1 Inc-dec-jz gizmos . 54
5-2 Simulation of a value-0 inc2-dec1-jz1 gizmo with value-0 inc-dec-jz gizmos 55
5-3 Simulation of a value-0 inc2-dec2-jz2 gizmo with value-0 inc2-dec2-jz1

gizmos . 55
5-4 Value-0 inc-dec-jz undecidability example 57
5-5 Inc-jzdec gizmos . 58
5-6 Simulation of a value-0 inc-dec-jz gizmo with value-0 inc-jzdec gizmos 59
5-7 Inc-decnz-pz gizmo . 60
5-8 Value-n inc-dec-pz gizmo in New Super Mario Bros. 61
5-9 Crossover in New Super Mario Bros. 61

10

List of Tables

3.1 Simulability classes by implication property 31
3.2 Positive dicrumbler variant simulation results 35
3.3 Negative dicrumbler variant simulation results 35

11

12

Chapter 1

Introduction

1.1 Gadgets
The gadget framework for motion planning was first introduced in [3] as a way to
simplify hardness proofs for videogames. In this framework, a gadget is a set of loca-
tions and states along with traversals between locations that are allowed on specific
states. These gadgets can be copied and have their locations connected together to
form a maze, where the goal is to get from some start location to some end location,
and for certain gadgets, this problem is PSPACE-hard.

More formally, a gadget is a tuple (L, S, T) where L is a set of locations, S is
a set of states, and T is a set of tuples (s0, `0, s1, `1) ∈ S × L × S × L, notated as
(s0, `0) → (s1, `1) with the intention that if the gadget is in state s0, an agent can
traverse from `0 to `1 and set the state to s1. An example of a gadget is shown in
Figure 1-1, and another example is shown in Figure 1-2.

These two particular examples were shown in [3], and reachability in a maze
with them was shown to be PSPACE-hard. Reducing from TQBF for each gadget
is tedious, so instead Demaine et al. used gadget simulations. If a gadget G can

a b

c d

1 2

2 2 1 1

1 1

Figure 1-1: The tripwire lock gadget from [3]. The notation for state 1 is shown
on the left, and the state diagram on the right. The tripwire (tunnel connecting a
and b) switches whether the lock (tunnel connecting c and d) is open whenever it is
crossed. The lock does not change the gadget’s state. L = {a, b, c, d}, S = {1, 2},
and T = {(1, a, 2, b), (1, b, 2, a), (2, a, 1, b), (2, b, 1, a), (1, c, 1, d), (1, d, 1, c)}

13

a b

c d

1 2

2 1

1 1

Figure 1-2: The toggle lock gadget from [3]. Similar to the tripwire lock, but
the tunnel connecting a and b is a toggle and is only traversable in one direc-
tion, switching direction whenever it is traversed. L = {a, b, c, d}, S = {1, 2}, and
T = {(1, a, 2, b), (2, b, 1, a), (1, c, 1, d), (1, d, 1, c)}

a

c d

b

Figure 1-3: A simulation of the toggle lock with the tripwire lock. Orange lines
connect locations between gadgets, and purple locations are locations of the simulated
toggle lock. An agent can traverse a → b, closing the locks of both gadgets. Afterward,
an agent can traverse b → a, opening the locks of both gadgets. The lock of the gadget
on the right prevents b → a initially and prevents a → b after a → b.

simulate a gadget H, then reachability with H can be reduced to reachability with
G by replacing each copy of H with its simulation with G. For example, the tripwire
lock can simulate the toggle lock, as shown in Figure 1-3.

Since the introductory paper, many other results have been shown in the gadget
framework. Demaine et al. showed that all 2-state 2-tunnel reversible deterministic
gadgets simulate each other and reachability with each of them is PSPACE-complete,
even if the gadgets are restricted to a plane and lines connecting gadget locations
cannot cross. In [4], Demaine et al. introduced new gadgets such as the locking 2-
toggle, and showed that all reversible deterministic gadgets with interacting tunnels
can simulate the locking 2-toggle, and that reachability with the locking 2-toggle is
PSPACE-complete, even in the planar model. In fact, reachability with any reversible
deterministic gadget without interacting tunnels is in NL.

In [1], we explored nonreversible gadgets. In particular, we explored doors, which
have three tunnels: one that opens the third tunnel, one the closes the third tunnel,
and the third tunnel itself, which does not change the state of the gadget. Each
tunnel can be directed or undirected, and the open tunnel can be a single location.
We showed in [1] that reachability with any variant is PSPACE-complete and that
all variants can simulate each other, except one special case in the planar model. We

14

1

1

1

2

2

1

1

2

2

2

Figure 1-4: Three gadgets that are all one-way paths. In the middle and bottom
gadgets, state 2 is equivalent to state 1 since it allows the same set of sequences of
traversals.

also explored a related gadget family called the self-closing doors, and showed that
all those variants simulate each other and are PSPACE-complete, even in the planar
model.

In [2], we explored input/output gadgets, where each location is either an entrance
or an exit, with applications in games with automation. The main focus was 0-
player, where exits cannot be connected to multiple entrances and no choice is allowed
inside gadgets either. For gadgets that contain certain components, we showed that
reachability is PSPACE-complete, while for the toggle switch, which alternates which
exit it leads to each time it is taken, we showed that reachability is NP-hard.

1.2 Gizmos
Gadgets, as defined above, have some problems that make them suboptimal for study-
ing simulation. For example, there are some gadgets that have different definitions
but are effectively the same in behavior. This can be caused by the presence of equiv-
alent states (Figure 1-4), by sequences of traversals implying the existence of other
traversals (Figure 1-5), or by nondeterminism (Figure 1-6). These equivalences mean
that a specific intended behavior has many different representations, and computing
whether gadgets are equivalent (especially regarding equivalent states) can be trickier
than necessary.

These problems also make defining certain simulability classes (sets of gadgets
where no gadget inside can simulate a gadget outside) tricky. For example, LDAG
was defined in [6] as the set of gadgets whose state graphs (vertices are states, and
an edge exists between state s0 and s1 if there is a traversal in s0 that sets the
gadget’s state to s1) are directed acyclic graphs with self-loops allowed. But because
of equivalent states, they can simulate gadgets whose state diagrams have loops more

15

1

2

2

1

1

2

2

1
1

a

b

c

Figure 1-5: In the top gadget, in state 1, the traversal a → b followed by b → c is
allowed, setting the gadget back to state 1. The bottom gadget has this sequence of
traversals explicitly marked as a single traversal, which does not change the behavior.

1

1,2

1

2

1,2

2

1

3

1

2

3

2

3

3

2
1

Figure 1-6: In the top gadget, the same location traversal gives you the option to
choose between state 1 and state 2. The bottom gadget merely delays this choice
until it is actually used, keeping the behavior the same.

16

than 1 edge long. 1st can be defined as the set of gadgets with 1 state. But because of
equivalent states and traversals implying other traversals, they can simulate gadgets
with more than 1 state.

Due to these problems, a new model was developed: the gizmo, first introduced
in [5]. This thesis will focus on gizmos instead of gadgets.

As a side note these equivalences are only equivalences in the 1-player reachability
model, where a single agent traverses a maze of gadgets and tries to reach a particular
location. If the goal is to set some gizmos to particular states (reconfiguration), then
‘equivalent’ states and nondeterminism do not necessarily make gadgets equivalent.
Multiplayer would require a very different model due to timing.

1.3 Outline
Section 2 introduces gizmos and talks about properties they have. It also introduces
and defines simulation between gizmos.

Section 3 proves results relating to gizmos not simulating other gizmos. First,
we show that a gizmo called the 1-toggle cannot simulate the 2-toggle, introducing
important terms and techniques along the way. Then Section 3.2 talks about simu-
lability classes, which group gizmos based on which set of gizmos they can simulate.
Section 3.2.1 describes a specific set of simulability classes, ones generated by invari-
ant properties of gizmos about how traversals affect other traversals. Section 3.2.2
introduces other simulability classes, including ones based on a limit of how many
times an agent can traverse a gizmo, and ones based on automata. Section 3.3 ex-
plores a specific family of gizmos that are variants of the single-use one-way gizmo
(dicrumbler) and provides partial results of which ones can simulate which ones.

Section 4 proves results relating to a gizmo simulating all gizmos in its simulability
class. First, we show universal gizmos for simulability classes Reg and DAG. Then
Section 4.3 flips the problem around and proves results concerning the set of gizmos
that can simulate a particular gizmo. This problem proves to be much harder, so only
partial results are given. We show that gizmos with certain properties can simulate
a dicrumbler.

Section 5 shows results concerning which gizmos reachability in a maze is unde-
cidable for. We show a reduction from the counter machine halting problem to a
particular gizmo, then several gizmo simulations, culminating in a proof that gener-
alied New Super Mario Bros. is undecidable.

17

18

Chapter 2

Gizmos

This chapter is joint work with Dylan Hendrickson, Yevhenii Diomidov, and Jayson
Lynch.

A gizmo [5] is similar to a gadget, but instead of encoding its traversal info into
multiple states, it encodes it as a set of allowed traversal sequences in a single state.

Let L be a set of locations. A traversal on L is a tuple (a, b) ∈ L × L and is
notated as [a → b]. The set of all possible traversals on L (all pairs of locations) is
T (L). A traversal sequence on L is a finite sequence of elements of T (L), notated,
for example, as [a → b][c → d][e → f]. The set of all possible traversal sequences on
L is T (L)∗. In this thesis, every set of locations is assumed to be finite.

A gizmo on L is a set of traversal sequences on L which says which traversal
sequences in T (L)∗ are allowed in the gizmo. It must satisfy the following properties,
where a, b, c are arbitrary locations in L and X, Y are arbitrary traversal sequences
on L:

• Reflexivity. If XY ∈ G, then X[a → a]Y ∈ G. Same-location traversals are
always allowed.

• Transitivity. If X[a → b][b → c]Y ∈ G, then X[a → c]Y ∈ G.

• Prefix closure. If XY ∈ G, then X ∈ G.

Unlike in [5], gizmos in this thesis require prefix closure. A simple example of a gizmo
is the diode, shown in Figure 2-1. The diode has a tunnel that can be traversed in
one direction but not the other.

Some useful notation is defined below:

• locs(G) is the set of locations of gizmo, traversal, or traversal sequence G.

• If S is a sequence, Si is term i in the sequence, 0-indexed. Si:j is the substring
starting at index i and ending at, but not including index j. Si: := Si:|S|, and
S:i := S0:i.

19

a b

Figure 2-1: The diode gizmo G. L = {a, b}, and G is the set generated by the regular
expression ([a → a] | [a → b] | [b → b])∗.

• start(T) is the first location in traversal or nonempty traversal sequence T . If
T0 = [a → b], where U is a traversal sequence, then start(T) = a.

• end(T) is the last location in traversal or nonempty traversal sequence T . If
T|T |−1 = [a → b], where U is a traversal sequence, then end(T) = b.

• E = {start, end} is the set of endpoint functions on a traversal, and for ordering
purposes, start < end.

• rtp(R) is the set of traversal sequences generated by R after applying reflexivity,
transitivity, and prefix closure, where R is a regular expression.

It’s useful to talk about what happens after a sequence of traversals in a gizmo.
The notation G[X], where G is a gizmo and X is a traversal sequence in that gizmo,
indicates the gizmo that results from traversing X in G. Importantly, XY ∈ G ⇔
Y ∈ G[X]. Another example, the directed crumbler or dicrumbler, shown in Figure 2-
2, illustrates this. The dicrumbler is like a diode, but can only be crossed once. If G
is a dicrumbler with locations a and b, then G allows [a → b], but G[[a → b]] does
not allow [a → b].

A gizmo can become another gizmo after some traversals are taken. A reachable
state of a gizmo G is a gizmo H such that there exists a traversal sequence T where
G[T] = H. Each gizmo G that has a finite number of reachable states can be recog-
nized by a DFA whose alphabet is T (locs(G)), whose states are the reachable states
of G (which are all accepting) and one non-accepting state X, with G as the starting
state, and where there’s a transition from state A to state B labelled T if A[T] = B,
and a transition from A to X labelled T if T /∈ A. We will use states(G) to represent
the set of reachable states of G

The DFA for the dicrumbler is shown below, with missing transitions leading to
X:

G H X

[a → a], [b → b]
[a → b]

[a → a], [b → b]

Other examples of gizmos are shown in Figure 2-3, Figure 2-4, and Figure 2-5.

20

a b

a b

Figure 2-2: The directed crumbler gizmo G. locs(G) = {a, b}, and G = rtp([a → b]?).
The top picture is the notation that we will use, and the bottom picture is G[[a → b]].

o p

t u
c d

o p

t u
c d

Figure 2-3: The open door (O) and closed door (C) gizmos. The green traversal,
[o → p], opens the blue traversal, [t → u]. The red traversal, [c → d], closes [t → u].
O = rtp((([o → p] | [t → u])∗[c → d]∗[o → p])∗). C = rtp(([c → d]∗[o → p]([o → p] |
[t → u])∗)∗). The green tunnel is called the opening tunnel and crossing it is opening
the door, the blue tunnel is called the traverse tunnel and crossing it is traversing
the door, and the red tunnel is called the closing tunnel and crossing it is closing the
door.

a b

c d

Figure 2-4: The symmetric self-closing door or mismatched dicrumblers gizmo G.
The top traversal closes itself and opens the bottom traversal, which when traversed,
closes itself and reopens the top traversal. G = rtp(([a → b][c → d])∗).

a b

Figure 2-5: The 1-toggle gizmo G. It’s like a diode, except that it reverses direction
every time it’s crossed. G = rtp(([a → b][b → a])∗).

21

a b

Figure 2-6: A symmetric self-closing door simulating a 1-toggle. An agent can move
from a to b, and then move from b back to a. But they cannot move from b to a
initially, or move from a to b twice in a row.

2.1 Simulation
Gizmos can simulate other gizmos, allowing the simulated gizmo to be replaced by
the simulation in a network of gizmos while preserving the computational complexity
of reachability in the network. Informally, to simulate a gizmo G with some gizmos
H, you connect some locations between gizmos in H so the result behaves like G. An
example is shown in Figure 2-6. A set of gizmos H can simulate G if there is a way
to simulate G with a finite number of copies of elements of H. To formally define
simulation, some definitions will first be introduced.

If L and L′ are sets of locations and f : L → L′ is a function between them, then
fT : T (L) → T (L′) is a function on traversals that takes [a → b] to [f(a) → f(b)],
and f ∗

T : T (L)∗ → T (L′)∗ is a function on traversal sequences that replaces each
traversal t with fT (t).

Let G and H be gizmos. G and H are isomorphic if there exists a bijection
f : locs(G) → locs(H) where H = {f ∗

T (t) | t ∈ G}.

Let T be a set of traversal sequences. An interleaving of T is a traversal sequence
U where the multiset of traversals in U is equal to the multiset combining the multiset
of traversals in t for all t ∈ T . The set of all possible interleavings of T is I(T).

The first step of simulation is making copies of gizmos from the source set. Let
G be a length-n sequence of gizmos, with Gi being the ith gizmo in the sequence.
Let fi(a) = (a, i), notated as ai for convenience. Then

⊗
G is a gizmo on {fi(a) |

a ∈ locs(Gi)}, and
⊗

G :=
⊗

0≤i<n Gi := I({fi∗T (t) | t ∈ Gi}).
⊗

G is called the
product of G, and intuitively, it is the gizmo that consists of elements of G with no
interaction between them. Gi are called the factors. Note that unlike in [5], G is a
finite sequence.

The second step of simulation is connecting locations together. Let G be a gizmo
on L and ∼ be an equivalence relation on L. Then G/∼ is a gizmo on L/∼, and
G/∼ := {(π∼)

∗
T (t) | t ∈ Gi} after taking a transitive closure, where π∼(a) is the

equivalence class of a under ∼. G/∼ is the quotient of G by ∼. From now on, given
∼, we will use π∼ to represent the function to equivalence classes under ∼. Figure 2-7
shows an example of why the transitive closure is necessary.

The final step of simulation is choosing which locations represent locations in the

22

a
b

c
d

[a]

[c]

[b,d]

Figure 2-7: The traversal [a → c] is normally not allowed. However, if b ∼ d, then
[a → b][d → c] becomes [[a] → [b, d]][[b, d] → [c]], transitively allowing [[a] → [c]].

simulated gizmo. Let G be a gizmo on L, and L′ be a partial injection L → locs(H),
where H is some gizmo. Let ` ∈ L′ mean that L′ is defined on `. Then G|L′ is a
gizmo on L′, and G|L′ := {L′

T
∗(t) | t ∈ G and t contains only locations in L′}. This

is called the subgizmo of G on L′. There will be several cases where just the domain
of L′ is important, in which case we will describe just the domain.

Putting it all together, a set G of gizmos simulates a gizmo H if there exists a
sequence G ∈ G∗, an equivalence relation ∼, and a partial injection L : locs(G) →
locs(H) where H =

⊗
G/∼ |L. A simulation of H with G is the tuple (G,∼, L).

Consider, for example, the open door O and closed door C shown in Figure 2-3.
We show that they simulate the symmetric self-closing door S shown in Figure 2-
4. Refer to Figure 2-8 for the simulation. A single copy of O and a single copy
of C are needed, so set G = (O,C). Then

⊗
G is generated by interleavings of

rtp((([o0 → p0] | [t0 → u0])
∗[c0 → d0]

∗[o0 → p0])
∗) and rtp(([c1 → d1]

∗[o1 → p1]([o1 →
p1] | [t1 → u1])

∗)∗), after applying reflexivity and prefix closure. Then have ∼ pro-
duce the following equivalence classes: [t0], [u0, c0], [d0, o1], [p1], [t1], [u1, c1], [d1, o0], [p0].
Call them x0, x1, x2, x3, y0, y1, y2, y3 respectively. Then

⊗
G/∼ contains rtp(([x0 →

x3][y0 → y3])
∗), along with some traversal sequences that start or end at x1, x2, y1,

or y2. Lastly, set L to {x1, x2, y1, y2}. Then
⊗

G/∼ |L = rtp(([x0 → x3][y0 → y3])
∗).

The result is isomorphic to the referenced symmetric self-closing door by mapping
x1, x2, y1, y2 to a, b, c, d, respectively.

2.2 Reachability
We will show a few results in this thesis about the computational complexity of
reachability in a maze of gizmos. It is thus useful to say what a maze is:

Definition 1. A maze of gizmos is a tuple (H,∼, s, t) where H is a gizmo (typically
a product of gizmos), ∼ is an equivalence relation on locs(H), and s, t ∈ locs(H/∼)
are start and target locations. Reachability is the problem of deciding whether [s →
t] ∈ H/∼.

As mentioned before, simulation is useful for preserving computational complexity
of reachability in a maze. If a gizmo G simulates a gizmo H, then reachability with
H can be reduced to reachability with G by replacing every instance of H with its
simulation with G, and the behavior will be the same.

23

u₀ t₀
c₀ d₀
p₀ o₀

o₁ p₁

d₁ c₁
t₁ u₁

x₀
x₁

x₂ x₃

y₀
y₁

y₂y₃

x₀→a x₃→b

y₀→cy₃→d

Product

Quotient by ~

Subgizmo on L

Figure 2-8: Constructing a simulation of the symmetric self-closing door with the
open and closed doors.
Top:

⊗
G

Middle:
⊗

G/∼. Connected locations are equivalent, and all locations can still be
entered and exited. ∼ is the minimal equivalence relation where u0 ∼ c0, d0 ∼ o1,
u1 ∼ c1, and d1 ∼ o0, and the equivalence classes are given new names.
Bottom:

⊗
G/∼ |L. Locations that can be entered/exited (the ones in L) are purple,

along with what they map to. L = {x0 7→ a, x3 7→ b, y0 7→ c, y3 7→ d}

24

Chapter 3

Unsimulability

3.1 1-Toggles
Not all gizmos can simulate each other. Reachability in a maze with 1-toggles is in
NL, but reachability in a maze with 2-toggles (Figure 3-1) is PSPACE-hard [3]. Since
NL 6= PSPACE, the 1-toggle cannot simulate the 2-toggle. We will soon prove this
without using computational complexity, but some terms and techniques are needed.
This proof will be more formal than other proofs in this thesis, as it introduces
important techniques used to prove unsimulability results.

Definition 2. A gizmo on tunnels is a gizmo G where locs(G) can be partitioned
into pairs of locations where no traversal in G uses locations from different pairs. A
k-tunnel gizmo is a gizmo on tunnels where the number of pairs is k.

For example, the 1-toggle is a 1-tunnel gizmo, the symmetric self-closing door is
a 2-tunnel gizmo, and the open door is a 3-tunnel gizmo.

Lemma 1. Let H =
⊗

G be a product of 1-tunnel gizmos. Let a, b ∈ locs(H), Let
X,Y ∈ H. If X[a → b]Y ∈ H and Y does not contain a or b in its locations used,
then XY ∈ H.

Proof. Assume a 6= b. X[a → b]Y is an interleaving of traversals in G after labelling
locations. Since H consists of 1-tunnel gizmos and since Y does not contain a or b,

a b

c d

Figure 3-1: The 2-toggle gizmo G. It consists of 2 entangled 1-toggles, so that crossing
one toggles both. G = rtp((([a → b] | [c → d])([b → a] | [d → c]))∗).

25

every traversal in Y must be in a different factor of H than the one containing a and
b. Thus, [a → b] can be reordered after Y . H is prefix closed because it is a gizmo,
so XY ∈ H.

Now assume a = b. Then every traversal in Y that is in the factor of H containing
a must be [b → b]. Since gizmos in G have reflexivity, [a → a] is not necessary for
[b → b] to be allowed, so [a → a] can be removed, and XY ∈ H.

It is useful to talk about paths in simulations before taking a transitive closure
after connecting gizmo locations with an equivalence relation.

Definition 3. Let G be a gizmo and ∼ be an equivalence relation in locs(G).

A ∼-path in G is a traversal sequence T in G consisting of traversals Ti where
end(Ti) ∼ start(Ti+1) for all i where 0 ≤ i < |T | − 1.

Let a, b ∈ locs(G). A ∼-path from a to b is a ∼-path P where start(P) ∼ a and
end(P) ∼ b, or if a ∼ b, the empty traversal sequence.

A path in G is an =-path.

A simple ∼-path in G is a ∼-path P where for valid indices i, j into P and endpoint
functions e, f ∈ E where (i, e) < (j, f), if e(Pi) ∼ f(Pj), then e = end, f = start, and
j = i+ 1.

In other words, when a simple ∼-path exits an equivalence class of locations, it
cannot reenter it.

Note that the empty traversal sequence is always a ∼-path, and substrings of
∼-paths are also ∼-paths.

It is also useful to talk about connectedness of traversal sequences in a way that
doesn’t special case the empty traversal sequence.

Definition 4. Let X, Y be traversal sequences. X is ∼-connected to Y if end(X) ∼
start(Y) or X = [] or Y = []. This is notated as X

∼
↪−→ Y . In the case where ∼ is =,

X is connected to Y , notated as X ↪→ Y .

The following lemmas make the connection abstraction useful.

Lemma 2. Let X and Y be traversal sequences in the same gizmo G and let ∼ be
an equivalence relation on locs(G). XY is a ∼-path in G if and only if X and Y are
both ∼-paths and X

∼
↪−→ Y .

Proof. ⇒: If X or Y is empty, then X and Y are both ∼-paths (the nonempty
one is equal to XY), and X

∼
↪−→ Y by Definition 4. Otherwise, by Definition 3,

end(X) ∼ start(Y), so X
∼
↪−→ Y . Since X and Y are substrings of XY , they are both

∼-paths.

26

⇐: If X or Y is empty, then XY is a ∼-path. Otherwise, by Definition 4,
end(X) = start(Y). So the condition for being a path applies for all traversal indices
into XY , so XY is a ∼-path.

The following lemma proves that the last loop can be taken out of paths through
mazes with only 1-tunnel gizmos.

Lemma 3. Let H =
⊗

G be a product of 1-tunnel gizmos. Let ∼ be an equivalence
relation in H. If XY Z is a ∼-path in H, and Y

∼
↪−→ Y , and Z does not contain

locations in X or Y , then XZ is a ∼-path in H.

Proof. Since Z does not contain locations in Y , repeatedly apply Lemma 1 to the
last traversal of Y until it becomes the empty traversal sequence. Thus, XZ ∈ H.
Since XY Z is a ∼-path, X

∼
↪−→ Y and Y

∼
↪−→ Z. Note that Y

∼
↪−→ Y . If X or Z is

empty, then X
∼
↪−→ Z. Otherwise if Y is empty, then XZ is a ∼-path. Otherwise,

end(X) ∼ start(Y) and end(Y) ∼ start(Y) and end(Y) ∼ start(Z), so X
∼
↪−→ Z. By

Lemma 2, XZ is a ∼-path.

The following lemma proves that all loops can be taken out of paths through
mazes with only 1-tunnel gizmos.

Lemma 4. Let H =
⊗

G be a product of 1-tunnel gizmos. Let ∼ be an equivalence
relation in H. Let a, b ∈ locs(H). If there is a ∼-path P ′ in H from a to b, then there
exists a simple ∼-path in H from a to b.

Proof. Let P be a shortest ∼-path in H from a to b. If P is a simple ∼-path, then the
statement is proven. Otherwise let i, j ∈ [0..|G|) and e, f ∈ E be counterexamples of
the condition of the definition of a simple ∼-path, with (j, f) as late as possible in P .
Then (i, e) < (j, f) and e(Pi) ∼ f(Pj) but e 6= end, f 6= start, or j 6= i+ 1. Consider
i′, j′ ∈ [0..|G|) and e′, f ′ ∈ E where

(i′, e′) =

{
(i, start) e = start
(i+ 1, start) e = end

and (j′, f ′) =

{
(j, end) f = end
(j − 1, end) f = start

. Note

that i′ ≤ j′. No matter what, i < j. Either e = start, in which case i′ = i ≤ j′, or
f = end, in which case i′ ≤ j′ = j, or j > i + 1, in which case i′ ≤ j′ since the gap
can shrink by only 2. Note that P:j′+1 has no locations equivalent by ∼ to ones in
Pj′+1: except end(Pj′) (if Pj′+1: is nonempty) since (j, f) is as late as possible while
still being a counterexample. In addition, Pj′+1: is a simple ∼-path. Also note that
start(Pi′) ∼ end(Pj′), so setting Pi′:j′+1

∼
↪−→ Pi′:j′+1. Let X = P:i′ , Y = Pi′:j′+1, and

Z = Pj′+1:. Lemma 3 can almost be used, but it is necessary for Z to not share
locations with Y , including end(Pj′). If Z is empty, this is true. Otherwise, it is suffi-
cient to show that Pj′ and Pj′+1 occur in different factors of H. Assume they happen
in the same factor G. Let c = end(Pj′) and label the other location in the factor
d. If start(Pj′+1) = c, then Pj′Pj′+1 transitively reduces to [start(Pj′) → end(Pj′+1)]
shortening the ∼-path, a contradiction. Otherwise, c ∼ d, so all traversals in G are
unnecessary since all its locations are equivalent, and in particular, Pj′ and Pj′+1 can

27

be removed, shortening the ∼-path, a contradiction. So Lemma 3 can be applied,
shortening the ∼-path, a contradiction. So P must be a simple ∼-path.

The following lemma proves that with 1-tunnel gizmos, if two paths intersect,
then you can switch paths at the intersection.

Lemma 5. Let H =
⊗

G be a product of 1-tunnel gizmos. Let ∼ be an equivalence
relation in H. Let a, b, c, d, e ∈ locs(H). Let P be a simple ∼-path in H from a to b,
and Q be defined similarly but from c to d. If P and Q both contain locations that
∼ e, then there is a ∼-path in H from a to d.

Proof. Let (i, f) ∈ (N, E) be the biggest such tuple where f(Qi) is equivalent by ∼
to some location in P . This must exist because P and Q contain locations that ∼ e.
Let (j, g) ∈ (N, E) be the smallest such tuple where g(Pj) ∼ f(Qi). If f = end,
then since Q is a path and (i, f) is the biggest such tuple that meets its condition,
f(Qi) = end(Q) ∼ d. Then P contains as a prefix a ∼-path from a to d, proving the
statement. Otherwise, if g = start, then g(Pj) = start(P), and Q crosses a location
that ∼ a en route to d. Since H is a product of 1-tunnel gizmos and Q is a simple
∼-path, Q traverses a different factor of H on each traversal, and so every suffix of Q
is in H, including the suffix that is a ∼-path from a to d. Otherwise, f = start and
g = end. An example of the situation is shown in Figure 3-2. Consider P:j+1 and Qi:.
Note that P:j+1 ∈ H due to prefix closure. By similar logic as used above, Qi: ∈ H
since it is a suffix of Q. If these two subpaths traversed the same factor of H, then
they would both contain locations equivalent by ∼ at a point in Q later than (i, f)
since the traversals would have to, without loss of generality, both be [x → y] or one
be [x → y] and one be [y → x], a contradiction. So P:j+1 and Qi: traverse different
factors of H and can be taken in any order. Thus, P:j+1Qi:, which is a ∼-path from
a to d, is in H.

To finish the proof, it is necessary to first connect the above lemmas to gizmo
simulations.

Lemma 6. Let H =
⊗

G be a product of gizmos. Let ∼ be an equivalence relation
in H. Let L be a partial injection from locs(H/∼) and let a, b ∈ L. If [L(a) → L(b)] ∈
H/∼ |L, then there is a ∼-path from some location a′ ∈ H to some location b′ ∈ H
where π∼(a

′) = a and π∼(b
′) = b.

Proof. [a → b] in H/∼ must have been constructed somehow. Either there is a
traversal [a′ → b′] in H where π∼(a

′) = a and π∼(b
′) = b (which would already be a

∼-path), or it was constructed by transitive closure during the construction of H/∼,
in which case, there must be a ∼-path from some location a′ ∈ H to some location
b′ ∈ H where π∼(a

′) = a and π∼(b
′) = b to construct [a → b] with the transitive

closure of after taking the quotient of H by ∼.

Now it can be proven that 1-tunnel gizmos cannot simulate the 2-toggle.

28

a

b

c

d

e

P

Q

f(Qi)

g(Pj)

Figure 3-2: An illustration of the proof of Lemma 5. Orange lines connect locations
equivalent by ∼. In this case, i = 3 and j = 2. P:j+1 and Qi: combine to form a
∼-path from a to d.

Theorem 1. Let G be a set of 1-tunnel gizmos. G cannot simulate the 2-toggle W
shown in Figure 3-1.

Proof. Let (G,∼, L) be a simulation of W with G. Note that [a → b] ∈ W and
[c → d] ∈ W , but [a → b][c → d] /∈ W and [a → d] /∈ W . Consider H =

⊗
G.

By Lemma 6 and Lemma 4, there exists a′, b′, c′, d′ ∈ H where L(π∼(a
′)) = a and

similarly for the rest, and a simple ∼-path P in H from a′ to b′, and a simple ∼-path Q
in H from c′ to d′. If P and Q do not intersect, then by definition of

⊗
G as consisting

of all interleavings of traversal sequences in G, PQ ∈ H. Then [a → b][c → d] ∈ W
by transitive closure, a contradiction. So P and Q have to intersect at some location
e. By Lemma 5, there is a simple ∼-path from a′ to d′ in H. By transitive closure,
[a → d] ∈ W , a contradiction. So (G,∼, L) is not a simulation of W after all.

3.2 Simulability Classes
This section is joint work with Dylan Hendrickson, Yevhenii Diomidov, and Jayson
Lynch.

Sets of gizmos can be grouped into simulability classes based on which gizmos they
can simulate and which ones they cannot. A simulability class is a set A of gizmos
where no gizmo in A can simulate any gizmo outside A. For example, consider the
simulability class 1st, containing only gizmos that satisfy ∀X . X ∈ G =⇒ G[X] =
G. (1st stands for 1-state). The diode, for example, is in 1st. (We will reference a

29

proof that 1st is indeed a simulability class later.)

3.2.1 Implication Properties
One way to define simulability classes is with implication properties, first defined in
[5]. First, some preliminary definitions are needed.

Definition 5. Let T = [a → b] be a traversal. Then the inverse of T , notated as
T−1, is [b → a].

Let T be a traversal sequence. Then the inverse of T , notated as T−1, is the
sequence of inverses of Ti in reverse order.

A traversal formula is a function f : (T (L)∗)n → T (L)∗, for some n and no matter
what location set L is, that takes a sequence X of traversal sequences and outputs
a traversal sequence choosing elements of X and/or their inverses and concatenating
them.

For example, if X,Y are traversal sequences, f could take (X,Y) and return
Y XXX−1.

Definition 6. Given n, a set of traversal formulas F ∈ P((T (L)∗)n → T (L)∗), no
matter what L is, is simple if given a sequence X : . (T (L)∗)n, for some L, of traversal
sequences, Xi appears exactly once in the outputs of elements of F on X for all valid
indices i, and X−1

i doesn’t appear for any i.

For example, the set {f, g} where f(X,Y, Z) = X and g(X,Y, Z) = ZY is simple.
If f(X) = X and g(X) = X, then {f, g} is not simple because X appears multiple
times in the outputs. If f(X) = X−1, then {f} is not simple because an inverse
appears in the output.

Implication properties can now be defined:

Definition 7. An implication property is a tuple consisting of a simple set F of
traversal formulas and a traversal formula g. The notation X,Y Z =⇒ XZX−1

corresponds to F = {f0, f1} where f0(X,Y, Z) = X and f1(X,Y, Z) = Y Z, and
g(X,Y, Z) = XZX−1. Notation for other implication properties is defined similarly.

An important theorem is that every implication property forms a simulability
class.

Theorem 2. Let (F, g) be an implication property. Let A be the set of all gizmos G
that each have the property: “Let X be a sequence of traversal sequences in G. Then
(∀f ∈ F . f(X) ∈ G) =⇒ g(X) ∈ G” Then A is a simulability class.

This theorem is proven in [5], and will not be repeated here.

It is now provable that 1st is a simulability class. Note that the property ∀X . X ∈
G =⇒ G[X] = G is equivalent to ∀X,Y . X ∈ G =⇒ ((Y ∈ G[X] =⇒
Y ∈ G) ∧ (Y ∈ G =⇒ Y ∈ G[X])). This can be written as the implication
properties XY =⇒ Y and X,Y =⇒ XY . (Note that the first property doesn’t

30

Name Description Implication property Example
OI Order-independent XY =⇒ Y X 2-use matched dicrumblers (Figure 3-3)

DirBlind Direction-blind X =⇒ X−1 Crumbler (Figure 3-4)
Reuse Reusable X =⇒ XX Tunnel chooser (Figure 3-5)
Undo Undoable X =⇒ XX−1 1-toggle (Figure 2-5)
Close Closing XY =⇒ Y ZXY enforcer with cutting (Figure 3-6)
Open Opening X,Y =⇒ XY Open-only door (Figure 3-7)
Close∗ Closing forever ZXY =⇒ ZY Tunnel chooser (Figure 3-5)

Table 3.1: Simulability classes by implication property

a b

c d
2

Figure 3-3: The 2-use matched dicrumblers G. [a → b] and [c → d] can be traversed
a total of 2 times before the gizmo closes. G = rtp(([a → b] | [c → d]){2})

say X,XY =⇒ Y because that would not be an implication property, and by prefix
closure, XY ∈ G implies X ∈ G anyway.)

Other simulability classes defined by implication properties are shown in Table 3.1.

An interesting fact is that Close and Close∗ are different simulability classes.
The ZXY enforcer with cutting G is in Close, but it is not in Close∗ because [z0 →
z1][x0 → x1][y0 → y1] ∈ G but [z0 → z1][y0 → y1] /∈ G. So sometimes requiring an
implication property to be satisfied even after taking an arbitrary traversal sequence
in a gizmo makes a new simulability class. This is not always true, however. For
gizmos in Undo, X =⇒ XX−1. Then ZX =⇒ ZXX−1Z−1, and by prefix
closure, ZX =⇒ ZXX−1, showing that Undo∗ is not a new simulability class. In
addition, attempting to construct Open∗ gives ZX,ZY =⇒ ZXY , which is not an
implication property due to the repeated Z.

From now on, we will prove results less formally than the unsimulability between
the 1-toggle and 2-toggle because the formal proofs get complicated.

a b

Figure 3-4: The crumbler G. Like the dicrumbler, but both directions can be taken.
G = rtp([a → b] | [b → a])

31

a b

c d

G[[a→b]] G[[c→d]]

Figure 3-5: The tunnel chooser G. Either tunnel can be traversed, but then it becomes
the only traversable tunnel. G = rtp([a → b]∗ | [c → d]∗)

z₀ z₁

x₀ x₁

G[[z₀→z₁]] G[[x₀→x₁]]

y₀ y₁

G[[z₀→z₁][x₀→x₁]]

Figure 3-6: The ZXY enforcer with cutting G. Traversals must be made in the order
[z0 → z1], [x0 → x1], [y0 → y1], but the sequence can be started anywhere in the
order. G = rtp([z0 → z1][x0 → x1][y0 → y1] | [x0 → x1]?[y0 → y1])

o p

t u

Figure 3-7: The open-only door G. Similar to the closed door, but there is no tunnel
to close it back. G = rtp([o0 → o1]([t0 → t1] | [o0 → o1])

∗)

32

3.2.2 Other Simulability Classes
Not all simulability classes are generated from implication properties. For example,
as mentioned and proven before, the 1-toggle cannot simulate the 2-toggle. However,
as we will now show, the 2-toggle satisfies every implication property that the 1-toggle
satisfies. Therefore, there exists a simulability class that the 1-toggle is in but the
2-toggle is not in, and that class is not generated from an implication property.

Theorem 3. The 2-toggle satisfies every implication property that the 1-toggle satis-
fies.

Proof. Let the 1-toggle’s locations be labelled as in Figure 2-5 and the 2-toggle’s
locations be labelled as in Figure 3-1. Let (F, g) be an implication property that
the 1-toggle satisfies. Let S be a sequence of traversal sequences in the 2-toggle that
g and elements of F can take as input. Replace every instance of c in S with a
and every instance of d with b to get S ′. Since (F, g) is satisfied by the 1-toggle,
(∀f ∈ F . f(S ′) ∈ 1-toggle) =⇒ g(S ′) ∈ 1-toggle. But note that in the 2-toggle,
[c → c], [c → d], [d → c], and [d → d] are allowed whenever [a → a], [a → b], [b → a],
and [b → b] are allowed, respectively, and traversals from one of {{a, b}, {c, d}} to the
other are never allowed. So (∀f ∈ F . f(S) ∈ 2-toggle) =⇒ g(S) ∈ 2-toggle. So the
2-toggle satisfies (F, g).

It is an open question whether there is a simple way to check membership in the
set of gizmos that the 1-toggle can simulate.

A concrete example of a simulability class not generated by an implication prop-
erty is DAG [4]. DAG, which stands for “directed acyclic graph”, is the class of
gizmos G that satisfy: “There exists an integer n where every traversal sequence in
G has at most n different-location traversals.” and have a finite number of reachable
states, which in effect says that you can cross the gizmo only a bounded number of
times before it closes. These are so called because the DFA state transition diagram,
excluding self-loops made by same-location traversals, is a directed acyclic graph.
The 2-use matched dicrumblers, for example, is in DAG with n = 2, and the ZXY
enforcer with cutting (Figure 3-6) is in DAG with n = 3.

Theorem 4. DAG is a simulability class.

Proof. Let G be a sequence of gizmos in DAG, and let n(G) be the lowest bound for
the number of different-location traversals for arbitrary DAG gizmo G. Since

⊗
G

contains only interleavings of allowed traversal sequences in G,
⊗

G ∈ DAG with n =∑
G∈G n(G). Quotienting by an arbitrary equivalence relation ∼ can turn traversals

into same-location traversals, and can collapse ∼-paths into single traversals, but
cannot add a new different-location traversal to an allowed traversal sequence without
removing a different-location traversal. Subgizmoing by a location set L can only
remove traversal sequences. So

⊗
G/∼ |L ∈ DAG with n ≤

∑
G∈G n(G). So every

gizmo that a gizmo in DAG can simulate is also in DAG.

33

We will now prove that gizmos in DAG has the DAG like property mentioned
above.

Theorem 5. Let G ∈ DAG. Then the DFA state transition diagram, excluding
self-loops made by same-location traversals, is a directed acyclic graph.

Proof. It suffices to show that the reachable states of G have a partial order when
ordered by reachability.

A different-location traversal decreases the lowest bound on the number of different-
location traversals allowed by 1, and a same-location traversal that changes the state
changes it to one with strictly more traversability, since G[[a → a]] ⊇ G by reflexive
closure, without increasing the lowest bound. So the states are partially ordered by
decreasing lowest bound, then by increasing traversability in the case of ties, when
ordered by reachability.

A similar simulability class is LDAG (“loops directed acyclic graph”) [6], which
contains only gizmos G that have a finite number of reachable states and satisfy:
“There exists an integer n and an NFA N that recognizes G where every traversal
sequence in G has at most n state transitions in N .” This is similar to DAG, but
with an NFA instead of a DFA and with self-loops in the NFA made by different-
location traversals can happen an unbounded number of times. The tunnel chooser,
for example, is in LDAG with n = 1.

Theorem 6. LDAG is a simulability class.

Proof. Let G be a sequence of gizmos in LDAG, let Ni be an NFA that meets the
condition for Gi to be in LDAG, and let n(G) be the lowest bound for the number
of state-transitioning traversals under N for arbitrary LDAG gizmo G. Since

⊗
G

contains only interleavings of allowed traversal sequences in G, and not changing the
state in any Gi means not changing the state of

⊗
G, then

⊗
G ∈ LDAG with

N ′, the product of all Ni, being the NFA, and n =
∑

G∈G n(G) being the bound.
Quotienting by an arbitrary equivalence relation ∼ can add traversals implied by
∼-paths, which turns N ′ into an NFA where all paths still have at most n state
transitions. Subgizmoing by a location set L can only remove traversals from the
NFA and does not affect the bound. So

⊗
G/∼ |L ∈ LDAG.

Another simulability class is Reg (“regular”), which contains only gizmos that
have a finite number of reachable states. Every gizmo mentioned so far is in Reg,
but in the undecidability section, we will discuss some exotic gizmos that have an
infinite number of reachable states.

Theorem 7. Reg is a simulability class.

Proof. Let G be a sequence of gizmos in Reg, and let n(G) be the number of reachable
states in G. The number of reachable states in

⊗
G is N :=

∏
G∈G n(G) because a

reachable state in
⊗

G is a combination of reachable states in its factors. Given

34

(m,n) Simulates
(m,n) (m,n′) where n′ ≤ n
(m,n) (m′, n) where m divides m′

(m,n) where n > m (m′, n′)

Table 3.2: Positive dicrumbler variant simulation results

(m,n) Does not simulate
(m, 1) (m′, 1) where m does not divide m′

(m,n) where n ≤ m (m,n) where n > m
(2, 2) (3, 2)

Table 3.3: Negative dicrumbler variant simulation results

an equivalence relation ∼, and a set of locations L ⊆ locs(
⊗

G/∼),
⊗

G/∼ |L is
recognized by an NFA with N states: the NFA that is the result of taking the DFA
for
⊗

G, replacing every location with its equivalence class, adding new transitions
for transitive closure, and removing transitions that contain locations not in L. It
is then recognized by a (not necessarily minimal) DFA with 2N states, which means
that it has a finite number of reachable states.

3.3 Dicrumbler Variants
A later section of this thesis discusses the notion of bottom universality, which is a
universality result in reverse: every gizmo with some property can simulate a specific
gizmo. A simple gizmo to try this with is the dicrumbler. Even with the dicrumbler,
though, coming up with the right property is tricky. This motivates a dicussion on
why gizmos can or can’t simulate the dicrumbler. This section in particular goes into
some unsimulability results regarding variants of the dicrumbler, varying the number
of uses and the number of tunnels.

The (m,n)-dicrumbler or m-use n-tunnel dicrumbler is a gizmo G consisting of
2n locations (which will be labelled s0 through sn−1 and t0 through tn−1), where

G = rtp

((
n−1∪
i=0

[si → ti]

)m)
.

. In other words, the traversals [si → ti] can be taken a total of up to m times before
the gizmo closes. For example, a 2-use dicrumbler would be a (2, 1)-dicrumbler, and
the dicrumbler is a (1, 1)-dicrumbler. Positive results are summarized in Table 3.2,
and negative results are summarized in Table 3.3.

First, we give a complete characterization of which dicrumbler variants can sim-
ulate which ones when n = 1:

Theorem 8. Given m and p, the m-use dicrumbler can simulate the p-use dicrumbler

35

[a₀, a₁, a₂] [b₀, b₁, b₂]

2

2

2

Figure 3-8: A 2-use dicrumbler simulating a 6-use dicrumbler. This is possible because
2 divides 6.

if and only if m divides p.

Proof. ⇒: Assume that m does not divide p. Let (G,∼, L) be a simulation of
the p-use dicrumbler with the m-use dicrumbler. Let a be the entrance of the p-
use dicrumbler and b be its exit. The simulation can be modelled as a flow net-
work whose vertices are locations in locs(

⊗
G/∼), whose edges are the multiset

{(π∼(u), π∼(v)) with capacity m | u, v ∈ locs(
⊗

G), [u′ → v′] ∈
⊗

G} after combin-
ing equal edges and their capacities, whose source is L−1(a), and whose target is
L−1(b). Since all edges have capacities that are multiples of m, the flow must be a
multiple of m, which p is not. So the simulation allows too many traversals.

⇐: The simulation takes p
m

m-use dicrumblers, combines all their start locations
and all their end locations, and results in a dicrumbler that can be used p

m
×m = p

times. Let G be a sequence of p
m
m-use dicrumblers with the m-use dicrumbler having

its locations labelled a and b. Then
⊗

G has locations labelled ai and bi for all i where
0 ≤ i < p

m
. Let ∼ be the minimal equivalence relation where ai ∼ aj and bi ∼ bj for

all i, j where 0 ≤ i, j < p
m

. Then
⊗

G/∼ is a p-use dicrumbler. An example is shown
in Figure 3-8.

Then, a universality result concerning the (1, 2)-dicrumbler:

Theorem 9. Given m and n, the (1, 2)-dicrumbler can simulate the (m,n)-dicrumbler.

Proof. Label the locations of the (1, 2)-dicrumbler as in Figure 3-3, except that it is
1-use.

First, we show that the (1, 2)-dicrumbler simulates the (1, n)-dicrumbler. Basi-
cally, the simulation takes n tunnels and puts a (1, 2)-dicrumbler between each pair
of tunnels, so that if any tunnel is crossed, no tunnels can then be crossed.

If n = 1, then restrict the (1, 2)-dicrumbler to the locations {a, b}, simulating
a (1, 1)-dicrumbler. Otherwise, for all integers i, j where 0 ≤ i < j < n, let there
be a (1, 2)-dicrumbler labelled i, j. For simplicity, for all integers j where 0 ≤
j < n, let there be a (1, 1)-dicrumbler (which can be simulated, as mentioned)

36

a₀,₁

b₀,₁

b₁,₀

a₁,₀
b₀,₀

a₀,₀

b₁,₁

a₁,₁ a₁,₂

b₁,₂

b₂,₁

a₂,₁

b₂,₂

a₂,₂

a₀,₂

b₀,₂

b₂,₀

a₂,₀

Figure 3-9: A (1, 2)-dicrumbler simulating a (1, 3)-dicrumbler. Orange lines con-
nect equivalent locations, and purple locations are in L. The (1, 1)-dicrumblers are
technically not necessary, but they simplify the proof.

labelled j, j with its locations labelled a (entrance) and b (exit). Combine these
into a sequence G. Then H =

⊗
G has locations ai,j, bi,j, ci,j and di,j for all i, j

satisfying 0 ≤ i < j < n, as well as aj,j and bj,j satisfying 0 ≤ j < n. Do the
relabellings aj,i := ci,j and bj,i := di,j. Let ∼ be the minimal equivalence relation
where bi,j ∼ ai+1,j for all i, j where 0 ≤ i < n − 1 and 0 ≤ j < n. Let L map
the locations bigcup{{π∼(a0,j), π∼(bn−1,j)} | 0 ≤ j < n}. The only minimal (no
unnecessary same-location traverals) ∼-paths in H between locations that map using
π∼ to different locations in L are Xj := [a0,j → b0,j] · · · [an−1,j → bn−1,j]. There are n
of them, and they do not share locations equivalent by ∼. If Xj is taken for some j,
then Xj cannot be taken again. In addition, for each i where 0 ≤ i < n and i 6= j,
Xj contains [ai,j → bi,j], so [aj,i → bj,i] (which is part of the same factor of H) closes,
so Xi cannot be taken. Thus, H/∼ |L is a (1, n)-dicrumbler. An example is shown in
Figure 3-9.

To show that the (1, n)-dicrumbler can simulate the (m,n)-dicrumbler, use a con-
struction similar to the proof of Theorem 8, taking m (1, n)-dicrumblers and combin-
ing their start locations for each tunnel, and combining their end locations for each
tunnel. Each (1, n)-dicrumbler can be crossed only once, giving an m-use n-tunnel
dicrumbler.

It is useful to prove a version of Lemma 5 for gizmos in Close∗. Since dicrumbler
variants are in Close∗, this allows for more unsimulability results.

Lemma 7. Let H =
⊗

G be a product of gizmos in Close∗ that also satisfy “for
each G ∈ G, ∀X,Y ∈ G . XY does not repeat locations at all =⇒ XY ∈ G”. Let
∼ be an equivalence relation in H. Let a, b, c, d, e ∈ locs(H). Let P ′ be a ∼-path in
H from a to b, and Q be defined similarly but from c to d. If P and Q both contain
locations that ∼ e, then there is a ∼-path in H from a to d.

Proof. This proof is similar to the one for Lemma 5, but adapted for gizmos in Close∗.

Let P be a simple ∼-path in H from a to b. It must exist because H ∈ Close∗

and loops can be removed. Let (i, f) ∈ (N, E) be the biggest such tuple where

37

f(Qi) ∼ e. Let (j, g) ∈ (N, E) be the smallest such tuple where g(Pj) ∼ e. If f = end,
then since Q is a path and (i, f) is the biggest such tuple that meets its condition,
f(Qi) = end(Q) ∼ d. Then P contains as a prefix a ∼-path from a to d, proving the
statement. Otherwise, if g = start, then g(Pj) = start(P), and Q crosses a location
that ∼ a en route to d. Since H is a product of gizmos in simulability class Close∗,
H ∈ Close∗ so every suffix of Q is in H, including the suffix that is a ∼-path from a
to d. Otherwise, f = start and g = end. Consider P:j+1 and Qi:. Since H ∈ Close∗,
P:j+1, Qi:, and all subsequences of both are in H. P:j+1Qi: is a ∼-path in T (locs(H))∗

from a to d. If it is not a simple ∼-path in T (locs(H))∗, then it contains loops,
which can be removed because H ∈ Close∗. Then there exists P ′, Q′ where P ′ is
a subsequence of P:j+1, Q′ is a subsequence of Qi:, and P ′Q′ is a simple ∼-path in
T (locs(H))∗ from a to d. Let R be a shortest simple ∼-path in T (locs(H))∗ from a
to d. It is sufficient to show that R is a ∼-path in H from a to d. Consider a factor J
that R crosses, and consider the subsequence R′ of R that R traverses J with. Each
traversal in R is in J since J ∈ Close∗. Since R is a simple ∼-path, the only location
repeats allowed in R′ look like [x → y][y → z]. This must be consecutive in R since
loops were taken out, so it can be reduced to [x → z], shortening R, a contradiction.
So R′ does not repeat locations. Thus, by the gizmo requirement in the statement,
R′ ∈ J . So R ∈ H.

Then, we give a complete characterization of which (m,n)-dicrumblers can simu-
late all (m,n)-dicrumblers:

Theorem 10. Given m and n, the (m,n)-dicrumbler can simulate all (p, q)-dicrumblers
for integers p, q greater than 0 if and only if n > m.

Proof. ⇐: Let G be a (m,n)-dicrumbler, with the entrance of tunnel i labelled ai and
the exit of tunnel i labelled bi for all integers i where 0 ≤ i < n. Let G be a sequence
of 2 copies of G and let H =

⊗
G. Let ∼ be the minimal equivalence relation where

(bi)j ∼ (ai+1)j for all valid i, j where 0 ≤ i < n − 1, and (bm−1)j ∼ (am)1−j for all
valid j. Finally, let L = {(a0)0, (bm)1, (a0)1, (bm)0}. Note that m is a valid index
into the tunnels since n > m. The only minimal ∼-paths in H between locations
that map using π∼ to different locations in L are Xj := [(a0)j → (b0)j] · · · [(am−1)j →
(bm−1)j][(am)1−j → (bm)1−j] for j ∈ {0, 1}, and they do not share locations equivalent
by ∼. If Xj is taken, then factor j of H is crossed m times, closing it, and making Xi−j

untraversable due to the last traversal. Then H/∼ |L is a 1-use 2-tunnel dicrumbler.
An example is shown in Figure 3-10.

⇒: Assume n ≤ m. Label the locations of the (1, 2)-dicrumbler as in Figure 3-3,
except that it is 1-use.

Let (G,∼, L) be a simulation of the (1, 2)-dicrumbler with the (m,n)-dicrumbler.
Let H =

⊗
G and let a′, b′, c′, d′ be locations in H where L(π∼(a

′)) = a and similarly
for the others. There must be a simple ∼-path P in H from a′ to b′ and a simple
∼-path Q in H from c′ to d′, simple because dicrumbler variants are in Close∗. If
they intersect, then by Lemma 7 there is a ∼-path in H from a′ to d′, which would

38

3

(a₀)₀

3

(b₀)₀
(b₁)₀ (a₁)₀

(a₂)₀ (b₂)₀

(b₃)₀ (a₃)₀

(a₀)₁(b₀)₁
(b₁)₁(a₁)₁

(a₂)₁(b₂)₁

(b₃)₁(a₃)₁

Figure 3-10: A (3, 4)-dicrumbler simulating a (1, 2)-dicrumbler. Orange lines connect
equivalent locations, and purple locations are in L.

induce [a → d], a contradiction, so they cannot intersect. The lemma can be applied
because there are at least as many uses as tunnels, meaning that each combination of
traversals in the (m,n)-dicrumbler is in the (m,n)-dicrumbler. So P and Q must not
intersect. Each gizmo in the simulation can be crossed at most n times combined by
P and Q since they are simple and do not intersect. But m ≥ n, so PQ ∈ H, which
induces [a → b][c → d], a contradiction. So no such simulation exists.

In the case where m ≥ n, simulability gets more complicated. A variant of the
proof for Theorem 8 can be used to show that the (m,n)-dicrumbler can simulate the
(p, n)-dicrumbler if (but not necessarily only if) m divides p (Combine start locations
per tunnel index, and do the same for end locations). The (m,n)-dicrumbler can also
simulate the (m,n′) dicrumbler for n′ < n by simply ignoring tunnels. Adding uses
in general, however, is tricky and at least sometimes impossible. In particular, the
(2, 2)-dicrumbler cannot simulate the (3, 2)-dicrumbler.

Theorem 11. The (2, 2)-dicrumbler cannot simulate the (3, 2)-dicrumbler.

Proof. Let (G,∼, L) be a simulation of the (3, 2)-dicrumbler with the (2, 2)-dicrumbler.
Let H =

⊗
G. Label the locations of H/∼ |L according to Figure 3-3 except that it

has 3 uses instead of 2. Let a0, a1, b0, b1 ∈ H such that L(π∼(a0)) = a, L(π∼(a1)) = b,
L(π∼(b0)) = c, and L(π∼(b1)) = d. Since H/∼L has 3 uses and dicrumbler variants
are in Close∗, there must be 3 simple ∼-paths A1, A2, A3 in H from a0 to a1 such
that A1A2A3 ∈ H and A1A2A3 is as short as possible.

Define an interacting gizmo to be a factor of H where some ∼-path from a0 to a1
and some ∼-path from b0 to b1 both cross it. By Lemma 7, every ∼-path from a0 to a1
that crosses some interacting gizmo must cross the same tunnel of that gizmo. If they
crossed different ones, then a ∼-path from a0 to a1 would intersect a ∼-path from
b0 to b1, leading to a supposedly disallowed path being allowed. Using interacting
gizmos, we will show that there are 2 simple ∼-paths in H from a0 to a1 that do not
cross the same interacting gizmo. Then doing something similar for b0 and b1 will
allow traversing the supposed 3-use gizmo H/∼ |L 4 times.

39

Note that the (2, 2)-dicrumbler is in a simulability class called OI∗ (order-independent
forever), which is generated by ZXY =⇒ ZY X. So traversal sequences in H can be
arbitrarily reordered. In particular, if A1 = X0G0X1G1X2 and A2 = X3G1X4G2X5,
then they can be reordered into A′

1 = X0G0X1G1X4G2X5 and A′
2 = X3G1X2, and

A′
1A

′
2 would still be in H. This is the kind of traversal reordering that we will do

later.

Define a 2-interacting gizmo to be an interacting gizmo that at least two of A1, A2,
and A3 cross. The situation is illustrated in Figure 3-11. Assume the 2-interacting
gizmo traversals are transitive, i.e. if J is traversed before K in any of A1, A2, A3, then
J is traversed before K in all of those traversal sequences where they both appear.
Each pair of 2-interacting gizmos appears in at least one of the traversal sequences
(since each relevant gizmo is traversed in at least 2 of the traversal sequences), so there
is a total ordering on the relevant gizmos. Let G0, G1, ..., Gk−1 be traversals through
2-interacting gizmos in order. A relevant traversal sequence must contain G0 and
G1 and some traversal sequence must contain G1 and G2. Do a traversal reordering
to place G0, G1, and G2 in the same traversal sequence. Continue this until some
traversal sequence contains every interacting gizmo. Since each interacting gizmo
appears twice, the other 2 traversal sequences (now called A4 and A5) combined
contain each 2-interacting gizmo once and thus do not share 2-interacting gizmos.
They in fact do not share any interacting gizmos, because interacting gizmos that are
not 2-interacting gizmos are crossed only once by A1A2A3. They are also ∼-paths in
H from a0 to a1, since the traversal reorderings done preserved that property for the
3 individual traversal sequences.

If the 2-interacting gizmo traversals are not transitive, there exists traverals J and
K through separate 2-interacting gizmos and traversal sequences X,Y ∈ {A1, A2, A3}
where JK is a subsequence of X and KJ is a subsequence of Y . Then X = Z0JZ1KZ2

and Y = Z3KZ4JZ5 for some 6-traversal sequence Z. A traversal reordering creates
X ′ = Z0JZ1KZ4JZ5 and Y ′ = Z3KZ2. But then X ′ can be shortened to Z0JZ5,
a contradiction since A1A2A3 was as short as possible. So the 2-interacting gizmo
traversals must be transitive.

A similar process can be performed to construct B4 and B5, two ∼-paths in H from
b0 to b1 that do not share interacting gizmos. Then in H[A4A5], every interacting
gizmo has at least one use left, and since B4B5 crosses every interacting gizmo at
most once, then A4A5B4B5 ∈ H, extracting 4 uses out of a 3-use dicrumbler variant,
a contradiction. So no such simulation exists.

40

[a₀]
2

2

2
2

2 2

A₁

A₂

A₃

[a₁]

X₀

G₁

X₂

X₃

G₄

X₅

X₆

G₇

Figure 3-11: An example situation from the proof of Theorem 11. Orange lines
connect locations equivalent by ∼. [a0] = π∼(a0) and [a1] = π∼(a1). 2-interacting
gizmos are tinted red, and other interacting gizmos are tinted yellow. Traversals are
labelled dark red, with ones for 2-interacting gizmos being called Gi instead of Xi.
Note that A1 = X0Z2G4G7X6, A2 = G1X3G4, and A3 = G1X5G7X6. With the
traversal reorderings mentioned in the proof, a ∼-path G1X3G4G7X6 goes through
all 2-interacting gizmos, leaving A4 = X0Z2G4 and A5 = G1X5G7X6.

41

42

Chapter 4

Universality

In the previous section, we show that some gizmos cannot simulate some other gizmos.
Here, we will show that some gizmos can simulate a lot of other gizmos. In fact, they
can simulate every gizmo that has a certain property. The motivation for this is
that simulability classes can be equated using universal gizmos. To show that two
simulability classes A and B equal, it is sufficient to show that some gizmo that
simulates every gizmo in A is in B, and some gizmo that simulates every gizmo in B
is in A.

First, note that there is no gizmo that can simulate every gizmo, even the ones
outside Reg.

Theorem 12. There is no gizmo that can simulate every gizmo.

Proof. The cardinality of the number of gizmos is 2ℵ0 , because the cardinality of
the number of traversal sequences constructible from a (finite) set of locations is ℵ0,
and a gizmo is a set of traversal sequences. Given a gizmo G, the cardinality of the
number of simulations that can be constructed using G is ℵ0, because the cardinality
of the numbers of copies of G that can be made is ℵ0, the cardinality of the number of
equivalence relations (partitions of locations) is finite, since the number of locations is
finite, and the cardinality of the number of subgizmos is also finite for the same reason.
Since the number of gizmos has a higher cardinality than the number of simulations
constructible from G, there must be some gizmo that G cannot simulate.

4.1 Reg
For the simulability class Reg, which, as mentioned before, contains only gizmos that
have a finite number of reachable states, there is in fact a gizmo in Reg that can
simulate all members of Reg: the product of the open door and the closed door. The
proof will be very similar to the one in [1], but adapted to gizmos.

43

Theorem 13. The product G of the open door and the closed door can simulate G′

for all G′ ∈ Reg.

Proof. The product can easily simulate the open door O and the closed door C shown
in Figure 2-3, so we will use them for the proof.

As an overview, the simulation

• constructs a copy of G for each location in G′ (the location doors), a copy
for each combination of location and reachable state in G′ (the location-state
doors), and a copy for each transition in the DFA of G′ that doesn’t lead to the
non-accepting state (the transition doors),

• connects locations to force certain paths through the simulation, so that an
agent must

– traverse the location-state door corresponding to the current state A of G′

and some location a,

– open the transition door corresponding to a chosen transition from A la-
belled [a → b],

– open the location door corresponding to location b,

– close all location-state doors,

– traverse and close the transition door that was opened,

– open the location-state doors corresponding to state A[[a → b]], and

– traverse and close the location door that was opened, ending at simulated
location b.

Create a sequence G of gizmos: a gizmo for each location a in G′ labelled a, a
gizmo for each location a and reachable state A in G′ labelled (a,A), and a gizmo
for each transition A → B labelled [a → b] of the DFA of G′, which said gizmo being
labelled ([a → b], A → B), but only for those transitions that do not lead to the
non-accepting state. Let H :=

⊗
G. Each gizmo labelled (a,G′) for some location

a ∈ G′ is a copy of O, and all others are copies of C.

Let there be an ordering ≺ of the combinations of locations and states in G′,
which S being the first combination and T being the last one. Also let there be an
ordering also called ≺ of the locations of G′, with s being the first location and t
being the last one.

Let ∼ be the minimal equivalence relation of locs(H) where:

• For reachable states A, B in G′, for locations a, b in G′: ua,A ∼ o[a→b],A→B if
A[[a → b]] = B

• For reachable states A, B in G′, for locations a, b in G′: p[a→b],A→B ∼ ob if
A[[a → b]] = B

44

• For location a in G′: pa ∼ cS

• For reachable states A, B in G′, for locations a, b in G′: da,A ∼ cb,B if (a,A)
immediately precedes (b, B) under ≺

• For reachable states A, B in G′, for locations a, b in G′: dT ∼ t[a→b],A→B and
u[a→b],A→B ∼ c[a→b],A→B if A[[a → b]] = B

• For reachable states A, B in G′, for locations a, b in G′: d[a→b],A→B ∼ os,B if
A[[a → b]] = B

• For reachable state A in G′, for locations a, b in G′: pa,A ∼ ob,A if a immediately
precedes b under ≺

• For reachable state A in G′, for location a in G′: pt,A ∼ ta and ua ∼ ca

• For reachable state A in G′, for reachable location a in G′: da ∼ ta,A

An example is shown in Figure 4-1.

Let L = {π∼(da) 7→ a | a ∈ locs(G′)}.

Same-location traversals in O and C do not do anything. Because of how the
locations are connected by ∼, and because closed doors cannot be traversed, a
nonempty minimal ∼-path in H between locations that are equivalent by ∼ to lo-
cations in L must look like the following: X[a→b],A→B := [ta,A → ua,A][o[a→b],A→B →
p[a→b],A→B][ob → pb][cS → dS] · · · [cT → dT][t[a→b],A→B → u[a→b],A→B][c[a→b],A→B →
d[a→b],A→B][os,B → ps,B] · · · [ot,B → pt,B][tb → ub][cb → db], where a, b ∈ locs(G′) and
A,B ∈ states(G′) such that A[[a → b]] = B, with possible additional copies for
different values of a, b, A, and B that still satisfy the condition. Note that after
X[a→b],A→B, the gizmos labelled (c, B) for each location c ∈ G′ are open and the rest
are closed, so the next traversal sequence must start [tc,B → uc,B].

If a traversal sequence [a0 → b0] · · · [an−1 → bn−1] is allowed in G′ for some se-
quences a, b of locations in G′, then an isomorphic traversal sequence induced by the
sequence of ∼-paths X[a0→b0],G′→G′[[a0→b0]] · · ·
X[an−1→bn−1],G′[[a0→b0]···[an−2→bn−2]]→G′[[a0→b0]···[an−1→bn−1]] is allowed in H/ ∼ |L. If a
traversal sequence is allowed in H/∼ |L, it must be induced by X[a0→b0],A0→A1 · · ·
X[an−1→bn−1],An−1→An for sequences a, b of locations in G′ and a sequence A of states
in G′, where Ai[[ai → bi]] = Ai+1 for each valid index i and A0 = G′. Then
[a0 → b0] · · · [an−1 → bn−1] ∈ G′. So H/∼ |L = G′, completing the simulation.

Another simulability class with a universal member is DAG. Specifically, we will
show that the 2-use mismatched dicrumblers (Figure 4-2), which is in DAG, can
simulate every gizmo in DAG. First, it simulates the matched dicrumblers (the (1,
2)-dicrumbler), which then simulates the n-tunnel matched dicrumblers as shown in
Theorem 9. This will be an important helper gizmo.

Lemma 8. The 2-use mismatched dicrumblers can simulate the matched dicrumblers.

45

C

B
A

A

A B C

[a]

[b]

[c]

a,A a,B a,C

b,A

b,B b,C

c,A

c,B c,C

a

b

c

a
b

c

a→c, A→B

a→b, A→C

b→a, B→A

c→a, C→A

Figure 4-1: The open and closed doors simulating an example gizmo shown at the
top, with its resulting states labelled on each traversal. The locations [a], [b], and [c]
are π∼(da), π∼(db), and π∼(dc), respectively. The gizmos are labelled with the labels
used in the proof. This is based on Figure 4 of [1].

a b

c d
2

Figure 4-2: The 2-use mismatched dicrumblers G. Similar to the mismatched dicrum-
blers, but can be crossed only twice before it closes. G = rtp([a → b][c → d])

46

a₀

2 2 2
d₀

b₀

c₀

a₂b₂

c₂
d₂

a₁

b₁

Figure 4-3: The 2-use mismatched dicrumblers simulating the matched dicrumblers.
Equivalent locations are connected with orange lines, and locations whose equivalent
class is in L are purple.

Proof. Let G be a sequence of three 2-use mismatched dicrumblers. Let ∼ be the
minimal equivalence relation in locs(

⊗
G) where b0 ∼ a1 ∼ b2 and c0 ∼ b1 ∼ c2. Let

L map {π∼(a0), π∼(d0), π∼(a2), π∼(d2)}. The only minimal ∼-paths in
⊗

G between
locations that are equivalent to ones in L are Xi := [ai → bi][a1 → b1][ci → di]
for i ∈ {0, 2}. When Xi is taken, [a1 → b1] closes, closing both X0 and X2. No
new minimal ∼-paths between locations equivalent to ones in L appear. Therefore,⊗

G/∼ |L is a matched dicrumblers. The simulation is shown in Figure 4-3.

4.2 DAG
Theorem 14. The 2-use mismatched dicrumblers G can simulate G′ ∈ DAG.

Proof. The simulation will use n-tunnel matched dicrumblers for arbitrary n, since
the 2-use mismatched dicrumblers can simulate them (Lemma 8, Theorem 9).

As an overview, the simulation

• constructs a copy of G for each combination of location and reachable state
in G′ (the location-state gizmos), a copy for each transition in the DFA of
G′ that doesn’t lead to the non-accepting state (the transition gizmos), and a
|locs(G′)|-tunnel matched dicrumblers for each reachable state in G′ (the state
dicrumblers).

• connects locations to force certain paths through the simulation, so that an
agent must

– cross the second tunnel of the location-state gizmo corresponding to the
current state A of G′ and some location a,

– cross the state dicrumblers corresponding to state A,

– cross the first tunnel of the transition gizmo corresponding to a chosen
transition from A labelled [a → b],

47

– cross the first tunnels of all the location-state gizmos corresponding to
state A[[a → b]], and

– cross the second tunnel of the transition gizmo whose first tunnel got
crossed.

• enforces state transitions using the state dicrumblers.

An example is shown in Figure 4-4.

Create a sequence G of gizmos: a copy of G for each location p and reachable
state P in G′ labelled (p, P), a copy of G for each transition P → Q labelled [p → q]
of the DFA of G′, which said gizmo being labelled ([p → q], P → Q), but only for
those transitions that do not lead to the non-accepting state, and a |locs(G′)|-tunnel
matched dicrumblers for each reachable state P in G′ labelled P . The entrance loca-
tions of the multi-tunnel matched dicrumblers will be labelled ap and the respective
exits labelled bp for p ∈ locs(G′).

Let H :=
⊗

G. Each gizmo labelled (p,G′) for some location p ∈ G′ is set to state
G[[p → q]], since that state is just a dicrumbler and can be easily simulated with the
2-use mismatched dicrumblers.

Let there be an ordering called ≺ of the locations of G′, with s being the first
location and t being the last one.

Let ∼ be the minimal equivalence relation of locs(H) where:

• For reachable state P in G′, for location p in G′: dp,P ∼ (ap)P .

• For reachable states P , Q in G′, for locations p, q in G′: (bp)P ∼ a[p→q],P→Q if
P [p → q] = Q.

• For reachable states P , Q in G′, for locations p, q in G′: b[p→q],P→Q ∼ as,Q if
P [p → q] = Q.

• For reachable state P in G′, for locations p, q in G′: bp,P ∼ aq,P if p immediately
precedes q according to ≺.

• For reachable states P , Q, R in G′, for locations p, q in G′: bt,R ∼ c[p→q],P→Q if
P [p → q] = Q.

• For reachable states P , Q, R in G′, for locations p, q in G′: d[p→q],P→Q ∼ cq,R if
P [p → q] = Q.

Let L = {π∼(cp,G′) 7→ p | p ∈ locs(G′)}.

Because of how the locations are connected by ∼, a nonempty minimal ∼-path
in H between locations that are equivalent by ∼ to locations in L without same-
location traversals must start with the following: X[p→q],P→Q := [cp,P → dp,P][(ap)P →
(bp)P][a[p→q],P→Q → b[p→q],P→Q][as,Q → bs,Q] · · · [at,Q → bt,Q][c[p→q],P→Q → d[p→q],P→Q]
where b, q ∈ locs(G′) and P,Q ∈ states(G′) such that P [[p → q]] = Q. In the starting
state, P = G′, since the [c → d] tunnels of only the p,G′ gizmos are traversable.

48

After traversing X[p→q],P→Q, the multi-tunnel matched dicrumblers corresponding to
state P closes, blocking any traversal sequences of the form X[i→j],P→K for i, j ∈
locs(G′) and K ∈ states(G′). In addition, the [c → d] tunnels of the i, Q gizmos
are traversable for i ∈ locs(G′), allowing X[i→j],Q→R for i, j ∈ locs(G′) and R ∈
states(G′) if the multi-tunnel matched dicrumblers corresponding to R is still open.
Thus, minimal ∼-paths between locations equivalent to ones in L must look like
X[p0→q0],P0→P1 · · ·X[pn−1→qn−1],Pn−1→Pn , where p, q are sequences of locations in G′ and
P is a sequence of distinct reachable states in G′ such that Pi[[pi → qi]] = Pi+1.

If a traversal sequence S = [p0 → q0] · · · [pn−1 → qn−1] is allowed in G′ for some
sequences p, q of locations in G′, then an isomorphic traversal sequence induced by
the sequence of ∼-paths X[p0→q0],G′→G′[[p0→q0]] · · ·
X[pn−1→qn−1],G′[[p0→q0]···[pn−2→qn−2]]→G′[[p0→q0]···[pn−1→qn−1]] is allowed in H/∼ |L, when
traversals [pi → qi] where pi = qi and that are unnecessary are skipped. This is
because according to Theorem 5, traversals in S either change the state of G′ to one
not seen before, or are same-location traversals that do not change the state, in which
case they are unnecessary. If a traversal sequence is allowed in H/∼ |L, it must be
induced by X[p0→q0],p0→p1 · · ·X[pn−1→qn−1],pn−1→pn for sequences p, q of locations in G′

and a sequence A of states in G′, where pi[[pi → qi]] = pi+1 for each valid index i
and p0 = G′. Then [p0 → q0] · · · [pn−1 → qn−1] ∈ G′. So H/∼ |L is isomorphic to G′,
completing the simulation.

4.3 Bottom Universality
Universality is a gizmo simulating a whole class of gizmos. The concept of a class of
gizmos simulating a specific gizmo is also interesting, but harder to find results for.
This concept is called bottom universality, as it can be thought of as a class of gizmos
simulating one below them, rather than a gizmo simulating a class of gizmos below it.
It has been explored before, for example in [4], where Demaine et al. that all reversible
deterministic gadgets with interacting tunnels simulates the locking 2-toggle. (This
uses the old model of “gadget”, defined by states and transitions instead of traversal
sequences, and the concept of “deterministic” doesn’t translate well.) This section
lists some partial results for bottom universality.

First, we give a partial characterization of which gizmos can simulate the directed
crumbler.

There are 3 important implication properties that the dicrumbler doesn’t satisfy:

• DirBlind (X =⇒ X−1)

• Reuse (X =⇒ XX)

• Undo (X =⇒ XX−1)

Since the implication properties induce simulability classes, no gizmo with any of
these properties can simulate the dicrumbler.

49

[a]

[b]

[c]

[d]

A

B

B C D

a

b

c

d

C

D

C

DC,D

D
D

a,A

b,A

c,A

d,A

a,B

b,B

c,B

d,B

a,C

b,C

c,C

d,C

a,D

b,D

c,D

d,D

A B

C

a,A→b,B

a,A→d,D

b,A→c,C

a,B→c,D

b,B→d,C

b,B→d,D

b,C→c,D

c,C→a,D

d,B→b,C

Figure 4-4: The 2-use mismatched dicrumblers simulating an example gizmo G shown
at the top, with its resulting states labelled on each traversal. The locations [a], [b],
[c], and [d] are π∼(ca,G), π∼(cb,G), π∼(cc,G), and π∼(cd,G), respectively. The gizmos
are labelled with the labels used in the proof.

50

Definition 8. Let (F, g) be an implication property where Fi and g take 1 traversal
sequence as input. For a gizmo G, a traversal sequence X breaks (F, g) if Fi(X) ∈ G
for all valid indices i, but g(X) /∈ G. If A is a simulability class induced by (F, g),
then X breaks A if X breaks (F, g).

A gizmo G is buttonless if, for all X ∈ G and for all a ∈ locs(G), G[X] = G[X[a →
a]].

Lemma 9. Let G be a buttonless gizmo on tunnels. Let X be a traversal sequence
that breaks X =⇒ X−1, breaks X =⇒ XX, or breaks X =⇒ XX−1 and does not
repeat locations. Then G simulates a gizmo H with a traversal [a → b] that breaks
breaks X =⇒ X−1, breaks X =⇒ XX, or breaks X =⇒ XX−1, respectively.

Proof. This is proven by induction on the number of traversals in X

If X is a single traversal, then let H = G and [a → b] = X, and we are done.

Otherwise, let X = [c0 → d0] · · · [cn−1 → dn−1] for location sequences c and d.
Let ∼ be the minimal equivalence relation where di ∼ ci+1 for all valid indices i. Let
G̃ = G/∼, let c̃i = π∼(ci) where 0 ≤ i < n, and let c̃n = π∼(dn−1). Since G is on
tunnels, for traversal sequences Y, Z ∈ G̃:

• Y [c̃0 → x]Z ∈ G̃ =⇒ x ∈ {c̃0, d̃0}

• Y [c̃i → x]Z ∈ G̃ =⇒ x ∈ { ˜ci−1, c̃i, ˜ci+1}, where 0 < i < n

• Y [c̃n → x]Z ∈ G̃ =⇒ x ∈ { ˜cn−1, c̃n}

For this proof, if A is a traversal sequence in G, then Ã = (π∼)
∗
T (A).

We will show that the traversal that X̃ transitively closes to ([c̃0 → c̃n]) breaks
the same implication property in G̃ that X breaks in G.

If X breaks X =⇒ X−1, then [dn−1 → cn−1] · · · [d0 → c0] /∈ G, and it must be
proven that Z̃ = [c̃n → c̃0] /∈ G̃. Assume this is false. Then Z̃ must be derivable
from a ∼-path Z from dn−1 to c0 in G by transitive closure. Since G is buttonless,
same-location traversals can be removed from Z. Since G is on tunnels and X does
not repeat locations, Z must be [dn−1 → cn−1] · · · [d0 → c0] with possible traversals
from [ci → di] in the middle. If there is such a “backwards” traversal, there must
be a first traversal [ci → di] in Z. But then [di → ci][ci → di] is a substring of Z.
By transitive closure, turn this into [di → di]. Then remove it since G is buttonless,
shrinking Z, and apply this process until it cannot be applied anymore.

If X breaks X =⇒ XX, then [c0 → d0] · · · [cn−1 → dn−1][c0 → d0] · · · [cn−1 →
dn−1] /∈ G, and it must be proven that Z̃ = [c̃0 → c̃n][c̃0 → c̃n] /∈ G̃. The same proof
as above can be applied here, with the caveat that Z is a concatenation of 2 ∼-paths
from c0 to dn−1.

If X breaks X =⇒ XX−1, then [c0 → d0] · · · [cn−1 → dn−1][dn−1 → cn−1] · · · [d0 →
c0] /∈ G, and it must be proven that Z̃ = [c̃0 → c̃n][c̃n → c̃0] /∈ G̃. The same proof

51

[r₀→r₁][r₀→r₁]
not allowed

r₁ u₀

[u₀→u₁][u₁→u₀]
not allowed

u₁ d₀

[d₁→d₀]
not allowed

r₀ d₁

Figure 4-5: Simulation of a dicrumbler with traversals that break DirBlind, Reuse,
and Undo. Orange lines connect equivalent locations, and purple locations are in L.

as the one for X =⇒ X−1 can be applied here, with the caveat that Z is a ∼-path
from c0 to c0 that touches dn−1.

Thus, [c̃0 → c̃n] is a traversal in G̃ that breaks X =⇒ X−1, breaks X =⇒ XX,
or breaks X =⇒ XX−1.

Theorem 15. Let G be a buttonless gizmo on tunnels. Let D, R, and U be a traversal
sequences in G that break DirBlind, Reuse, and Undo, respectively, and do not
repeat locations. Then G simulates a dicrumbler.

Proof. Use the lemma above to construct gizmos Gd, Gr, and Gu which have traversals
[d0 → d1], [r0 → r1], and [u0 → u1] that break DirBlind, Reuse, and Undo,
respectively. Construct gizmo C→ =

⊗
(Gd, Gr, Gu)/∼ |L, where ∼ is the minimal

equivalence relation where r1 ∼ u0 and u1 ∼ d0, and L maps {π∼(r0), π∼(d1)}. It is
enough to show that the only minimal ∼-path in H :=

⊗
(Gd, Gr, Gu) between two

different locations equivalent to locations in L is X := [r0 → r1][u0 → u1][d0 → d1],
and after X is traversed, no other such ∼-paths can be taken.

• [d1 → d0] /∈ H because [d0 → d1] breaks DirBlind.

• [r0 → r1] /∈ H[X] because [r0 → r1] breaks Reuse.

• [u1 → u0] /∈ H[X] because [u0 → u1] breaks Undo.

So H has only X, and H[X] has no ∼-paths between r0 and d1. So C→ is a dicrumbler.

The simulation is shown in Figure 4-5.

Unfortunately, if almost any restriction (on tunnels, no repeating locations) is
removed, this is not true. The 2-use dicrumbler with entrance a and exit b has a
traversal sequence [a → b][a → b] that breaks Reuse, and a traversal sequence [a → b]
that breaks DirBlind and Undo. However, the 2-use dicrumbler cannot simulate
the dicrumbler (Theorem 8). Without the tunnels restriction, the other restriction is
meaningless because two ports can just always be connected by a traversal.

52

Chapter 5

Undecidability

The gizmos described so far were all in Reg and had a finite number of states.
Reachability in mazes made of gizmos in Reg must be in PSPACE. This is because
the amount of space required to store the state of the maze (agent location combined
with a combination of the states of all the gizmos) is polynomial in the number of
locations in the maze, the number of gizmos, and the number of states per gizmo,
proving NPSPACE membership, and NPSPACE = PSPACE [9]. However, gizmos
outside of Reg have no such restriction, and reachability with mazes made with them
can be undecidable.

An example of a gizmo outside of Reg is the inc-dec-jz gizmo, shown in Figure 5-1.
This gizmo acts like a counter. By taking different traversals, it can be incremented
or decremented (but not below 0). The counter can also be checked with a branching
traversal. Thus, it can be shown that reachability in a maze full of value-0 inc-dec-jz
gizmos is undecidable by reducing from a counter machine. It is known that the
halting problem with a counter machine with 3 counters that start at 0 and can
each be incremented, decremented, and checked for equality to 0 with a branch, is
undecidable [7].

Before proving undecidability with the inc-dec-jz gizmo, it is necessary to con-
struct some helper gizmos, allowing the arbitrary duplication of the increment tunnel,
the decrement tunnel, and the branch. In particular, the value-n inci-decd-jzj gizmo
is like a value-n inc-dec-jz gizmo except that it has i increment tunnels, d decrement
tunnels, and j branches.

Lemma 10. Given a, b, c, the value-0 inc-dec-jz gizmo can simulate the value-0
inca-decb-jzc gizmo.

Proof. First, we will show that the increment and decrement tunnels can be arbitrarily
duplicated. This uses a method similar to Lemma 8, where a gizmo is crossed and
then the gizmo that was crossed must be the one that is crossed to leave. The
increment tunnel will be duplicated, and the proof that the decrement tunnel can be

53

i i'

j

z

+

d d'–

z̄
i i'

j

z

+

d d'–

z̄

0 n>0

Figure 5-1: The value-0 inc-dec-jz gizmo G0 (left), and the value-n inc-dec-jz gizmo
Gn (right), where n > 0. These gizmos store a value-n. Traversing [i → i′] adds 1 to
n, and traversing [d → d′] subtracts 1 if n > 0. [j → z] ∈ G0, and [j → z] ∈ Gn for
n > 0. The [i → i′] traversal is called the increment tunnel and traversing it is called
incrementing the gizmo. The [d → d′] traversal is called the decrement tunnel and
traversing it is called decrementing the gizmo. The [j → z] and [j → z] traversals
combined are called the branch.

duplicated is similar. The proof that both can be duplicated is just a combination of
the individual proofs.

Construct a sequence G of n+1 value-0 inc-dec-jz gizmos. Gizmos 0 to n− 1 will
power the tunnel duplicated, and gizmo n will contain the tunnel to be duplicated.
Let H =

⊗
G and let ∼ be the minimal equivalence relation in locs(H) where for k

where 0 ≤ k < n:

• i′k ∼ in

• i′n ∼ jk

• zk ∼ dk

and let L = {π∼(jn), π∼(zn), π∼(zn), π∼(dn), π∼(d
′
n)} ∪

∪n−1
k=0{π∼(ik), π∼(d

′
k)}.

A nonempty minimal ∼-path in H between locations that are equivalent to ones
in L must start with [dn → d′n] or [jn → zn] or Xk = [ik → i′k][in → i′n][jn → zn][dn →
d′n]. After taking Xk, gizmo n will be incremented, gizmo k will be returned to its
initial state, all other gizmos will be untouched, and Xk will still be traversable. So
H/∼ |L is a value-0 incn-dec1-jz1 gizmo. An example is found in Figure 5-2.

Now we will show that the branch can be arbitrary duplicated, specifically that
the value-0 inca-decb-jz1 gizmo can simulate the value-0 inca-decb-jzc gizmo.

Label the entrances of the increment tunnels of an inca-decb-jz1 gizmo i0 through
ia−1, the exits i′0 through i′a−1, the entrances of the decrement tunnels d0 through
db−1, and the exits d′0 through d′b−1. Construct a sequence G of c value-0 inca-decb-jz1
gizmos. They will be wired so that increment and decrement paths cross all the gizmos
so they stay in sync, but branches read from only one gizmo. Let H =

⊗
G and let

∼ be the minimal equivalence relation in locs(H) where for k where 0 ≤ k < c− 1:

• For m where 0 ≤ m < a: (i′m)k ∼ ik+1.

54

i₀ +

–

0

+

–

0
+ –

0

i'₀

j₀

d'₀d₀

z̄₀

z₀

i'₁

j₁

d'₁

i₁

d₀

z̄₁

z₁

i₂

i'₂

z̄₂ z₂

j₂

d₂

d'₂

Figure 5-2: The value-0 inc-dec-jz gizmo simulating the value-0 inc2-dec1-jz1 gizmo.
Orange lines connect equivalent locations, and purple locations are in L.

(i₀)₀
+

–

0
z̄₀

+

–

0

(i₁)₀

(d₀)₀

(d₁)₀

(i₀')₁
(i₁')₁

(d₀')₁

(d₁')₁

z₀

z̄₁

z₁

j₀ j₁

Figure 5-3: The value-0 inc2-dec2-jz1 gizmo simulating the value-0 inc2-dec2-jz2 gizmo.
Orange lines connect equivalent locations, and purple locations are in L.

• For m where 0 ≤ m < b: (d′m)k ∼ dk+1.

and let L map
∪a−1

m=0{π∼((im)0), π∼((i
′
m)c−1)}∪

∪b−1
m=0{π∼((dm)0), π∼((d

′
m)c−1)}∪

∪c−1
m=0{π∼(jm), π∼(zm), π∼(zm)}.

A nonempty minimal ∼-path in H between locations that are equivalent to ones
in L must start with Im = [(im)0 → (i′m)0] · · · [(im)c−1 → (i′m)c−1], 0 ≤ m < a or Dm =
[(dm)0 → (d′m)0] · · · [(dm)c−1 → (d′m)c−1], 0 ≤ m < b or [jm → zm], 0 ≤ m < c. After
traversing Im or Dm, all the gizmos are incremented or decremented, respectively. So
when [jm → zm] or [jm → zm] is traversed, which one is actually traversed depends
only on the number of times Im has been traversed over all m and the number of
times Dm has been traversed over all m. So H/∼ |L is a value-0 inca-decb-jzc gizmo.
An example is found in Figure 5-3.

Theorem 16. Reachability in a maze with the value-0 inc-dec-jz gizmo is undecidable.

Proof. Let P be a program for a 3-counter counter machine. It is a sequence of
instructions, containing instructions like inc(i), which increments counter i by 1,
dec(i), which decrements counter i by 1, jz(i, z), which jumps to instruction Pz if
counter i is 0 and continues otherwise, and halt, which ends the program.

55

First, simulate a value-0 inc|P |-dec|P |-jz|P | gizmo using the previous lemma. Then
make a sequence G of 3 copies of said gizmo. These gizmos make up the counters,
and they will be wired according to the program. Let H =

⊗
G, and let ∼ be the

minimal equivalence relation where for all k where 0 ≤ k < |P |:

• a ∼ b if k < |P | − 1, where:

– a = (i′k)c if Pk = inc(c) for some c

– a = (d′k)c if Pk = dec(c) for some c

– a = (zk)c if Pk = jz(c, p) for some c and p

– b = (ik+1)c if Pk+1 = inc(c) for some c

– b = (dk+1)c if Pk+1 = dec(c) for some c

– b = (jk+1)c if Pk+1 = jz(c, p) for some c and p

– b = (ik+1)0 if Pk+1 = halt

• (zk)e ∼ b if k < |P | − 1 and Pk = jz(e, q) for some e and q, where:

– b = (iq)c if Pq = inc(c) for some c

– b = (dq)c if Pq = dec(c) for some c

– b = (jq)c if Pq = jz(c, p) for some c and p

– b = (iq)0 if Pq = halt

• For all p, q where Pp = Pq = halt: (ip)0 ∼ (iq)0.

Let s be:

• π∼((i0)c) if P0 = inc(c) for some c

• π∼((d0)c) if P0 = dec(c) for some c

• π∼((j0)c) if P0 = jz(c, p) for some c and p

• π∼((i0)0) if P0 = halt

and let t be π∼((ip)0) for some p where Pp = halt. If P does not contain a halt
instruction, the halting problem is easy, so assume it does.

Starting from a location in H that maps to s, a minimal ∼-path X has to follow
the program. If Xm ∈ {[(ik)c → (i′k)c], [(dk)c → (d′k)c], [(jk)c → (zk)c]} for some k
and c, then Xm+1, if it exists, must correspond to the next instruction Pk+1 since the
corresponding location is the only one that is reachable. If Xm = [(jk)c → (zk)c] for
some k and c, then Pk = jz(c, p) for some p, and Xm+1 must correspond to Pp. X0

must correspond to P0 according to the definition of s. X thus reaches a location
equivalent to t if and only if P halts. An example is shown in Figure 5-4.

56

(j₀)₀

+

–
0

(z̄₄)₁

+

–

+

–

+

–

+

–

+

–
0

+

–

+

–

+

–

+

–

+

–
0

+

–

+

–

+

–

+

–

s

t

(j₁)₀

(j₀)₂

(z₄)₁
(z̄₄)₀

(d₀)₀

(i₁)₀

(d₀')₁

(i₀')₁

0: inc(0)

1: inc(1)

2: dec(2)

3: jz(1, 2)

4: halt

Figure 5-4: A maze made of value-0 inc5-dec5-jz5 gizmos, which the value-0 inc-dec-jz
gizmo can simulate. The program the maze is simulating is shown on the left. Only
some locations are labelled to avoid clutter. Purple locations are s and t, and orange
lines connect locations equivalent under ∼.

57

i i'

j

z

+
– z̄

i i'

j

z

+
– z̄

0 n>0

Figure 5-5: The value-0 inc-jzdec gizmo G0 (left), and the value-n inc-jzdec gizmo
Gn (right), where n > 0. These gizmos store a value-n. Traversing [i → i′] adds 1 to
n. [j → z] ∈ G0. [j → z] ∈ Gn when n > 0, and subtracts 1 from n. The [i → i′]
traversal is called the increment tunnel and traversing it is called incrementing the
gizmo. The [j → z] and [j → z] traversals combined are called the branch.

The inc-dec-jz gizmo is perhaps a bit complicated with its seven locations. An-
other example of a gizmo with an infinite number of unreachables states is the inc-
jzdec gizmo, shown in Figure 5-5. It is similar to the inc-dec-jz gizmo, but the decre-
ment tunnel is mixed with the branch, such that if the branch is traversed while the
counter is positive, the counter decrements. We will show that the value-0 inc-jzdec
gizmo can simulate the inc-dec-jz gizmo, and thus reachability in a maze consisting
of it is undecidable.

Theorem 17. The value-0 inc-jzdec gizmo can simulate the value-0 inc-dec-jz gizmo.

Proof. Let G be a sequence of 5 value-0 inc-jzdec gizmos. Gizmos 0 and 1 keep track
of the counter, gizmos 2 and 3 are tunnel duplication scaffolding, and gizmo 4 is used
as a diode. Let H =

⊗
G and let ∼ be the minimal equivalence relation in locs(H)

where:

• i′0 ∼ i′2 ∼ i1

• i′1 ∼ j2

• i′3 ∼ i2

• z0 ∼ i3

• i′4 ∼ i′3 ∼ j1

• z1 ∼ j3

• z0 ∼ z3

Label some equivalence classes according to the locations they intend to simulate:
[i] = π∼(i0), [d] = π∼(j0), [j] = π∼(i4), [i′] = π∼(z2), [d′] = π∼(z3), [z] = π∼(z1), and
[z] = π∼(z2). Let L map {[i], [d], [j], [i′], [d′], [z], [z]}.

Initially, the only minimal nonempty ∼-paths between locations equivalent to ones
in L are Xi = [i0 → i′0][i1 → i′1][j2 → z2], Xdz = [j0 → z0], and Xjz = [i4 → i′4][j1 →
z1]. Both Xdz and Xjz do nothing to the state of H (except incrementing gizmo 4,

58

+

–

[z̄]

0

+
–

0

+
–

0+

–
0

+

[i]

[i']

[d]
[d']

[j]
[z]

gizmo 0 gizmo 1

gizmo 2

gizmo 3

gizmo 4

Figure 5-6: The value-0 inc-jzdec gizmo simulating the value-0 inc-dec-jz gizmo. Or-
ange lines connect equivalent locations, and purple locations are in L.

but since gizmo 4’s branch is unused, this does not matter), as intended. Whenever
Xi is taken, gizmos 0 and 1 increment and all other gizmos do not change state. If
gizmos 0 and 1 have a counter above 0, then Xdz and Xjz close, and new ∼-paths open
up: Xdz = [j0 → z0][i3 → i′3][j1 → z1][j3 → z3] and Xjz = [i4 → i′4][j1 → z1][j3 →
z3][i2 → i′2][i1 → i′1][j2 → z2]. Xjz does not change the state of H as intended, and
Xdz decrements both gizmos 0 and 1 and leaves all others unchanged. Therefore,
H/∼ |L is a value-0 inc-dec-jz gizmo. The simulation is shown in Figure 5-6.

Next, we will show that beating a level in generalized New Super Mario Bros.
is undecidable. New Super Mario Bros. [8] is a 2-dimensional platforming game
made for the Nintendo DS where Mario travels through many words and does various
platforming challenges. Each level has its own platforming challenges, a timer, and a
flagpole that must be reached in time to beat the level. In some levels, there is a pipe
that spawns Goombas. Normally, leaving an enemy behind offscreen resets its state,
and Goomba-spawning pipes can have only a bounded number of Goombas spawned
at a time. But in generalized New Super Mario Bros., enemies never reset their state,
and spawning pipes do not stop spawning.

59

i i'

p z

+
– z̄
0

d
i i'

p z

+
– z̄
n

d

Figure 5-7: The value-0 inc-decnz-pz gizmo G0 (left), and the value-n inc-decnz-pz
gizmo Gn (right), where n > 0. These gizmos store a value-n. Traversing [i → i′]
adds 1 to n. [p → z] ∈ G0. [d → z] ∈ Gn when n > 0, and subtracts 1 from n.

We will need a helper gizmo called the inc-decnz-pz gizmo, shown in Figure 5-7.
This gizmo easily simulates the inc-jzdec gizmo by connecting locations d and p.

Theorem 18. Beating a level in generalized New Super Mario Bros. is undecidable.

Proof. We will show this by a reduction from reachability in a maze of value-0 inc-
decnz-pz gizmos.

For the reduction, a value-0 inc-decnz-pz gizmo must be built in New Super Mario
Bros., and since that game is 2-dimensional, a crossover must also be built.

The inc-decnz-pz gizmo is built in Figure 5-8. When Mario enters via INC in, he
presses the left switch, the topmost 2 brown blocks, the leftmost 2 brown blocks A,
and the brown block B in the long stretch of purple blocks disappear temporarily.
This allows a Goomba to spawn from the pipe. A rising platform appears in place of
A, forcing Mario up and away from the switch. A slowly lowering platform appears
in place of B. The Goomba goes in the hole without being turned around by Goom-
bas already in the hole. The blocks reappear and the lowering platform disappears,
popping the Goombas in the hole back up to their normal position. The switch also
reappears. Mario is forced to exit via INC out. The end result is an extra Goomba
in the hole.

When Mario enters via DECNZ in, he presses the right switch. The nearest 2
brown blocks A to the switch and the rightmost brown block B disappear. A rising
platform appears in place of A, forcing Mario up and away from the switch. In
addition, a Goomba leaves the hole. B reappears before another Goomba can leave.
The Goomba that left goes into the spike hole. Mario can exit via DECNZ out if and
only if there is a Goomba in the spike hole, since the spikes are impossible to clear
otherwise. The end result is one less Goomba in the hole, or a dead Mario if there
were no Goombas in the hole in the first place.

When Mario enters via PZ in, he has to pass over the Goomba hole to get to PZ
out. If there are any Goombas inside, he automatically jumps on them and hits the
spikes. Otherwise, he safely runs over the hole.

The crossover is built in Figure 5-9. When Mario enters the crossover, he presses
the switch he can access, which allows him to cross to the other side, but not turn.

60

Figure 5-8: A value-n inc-decnz-pz gizmo built in New Super Mario Bros, where n is
the number of Goombas in the hole.

Figure 5-9: A crossover built in New Super Mario Bros. The switches on purple
platforms make the horizontal stacks of brown blocks temporarily disappear, and
the switches on blue platforms make the vertical stacks of brown blocks temporarily
disappear.

61

62

Bibliography

[1] Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yevhenii Diomidov, Dylan Hen-
drickson, and Jayson Lynch. Walking through doors is hard, even without stair-
cases: Proving PSPACE-hardness via planar assemblies of door gadgets. In
Proceedings of the 10th International Conference on Fun with Algorithms (FUN
2020), pages 3:1–3:23, La Maddalena, Italy, September 28–30 2020.

[2] Joshua Ani, Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch. Trains,
games, and complexity: 0/1/2-player motion planning through input/output gad-
gets. In Petra Mutzel, Md. Saidur Rahman, and Slamin, editors, Proceedings of
the 16th International Conference and Workshops on Algorithms and Computa-
tion (WALCOM 2022), volume 13174 of Lecture Notes in Computer Science, pages
187–198, Jember, Indonesia, March 24–26 2022.

[3] Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational
complexity of motion planning of a robot through simple gadgets. In Proceedings
of the 9th International Conference on Fun with Algorithms (FUN 2018), pages
18:1–18:21, La Maddalena, Italy, June 13–15 2018.

[4] Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch. Toward a general theory
of motion planning complexity: Characterizing which gadgets make games hard.
In Proceedings of the 11th Conference on Innovations in Theoretical Computer
Science (ITCS 2020), pages 62:1–62:42, Seattle, Washington, January 12–14 2020.

[5] Dylan Hendrickson. Gadgets and gizmos: A formal model of simulation in the
gadget framework for motion planning. Master’s thesis, Massachusetts Institute
of Technology, 2019.

[6] Jayson Lynch. A Framework for Proving the Computational Intractability of Mo-
tion Planning Problems. PhD thesis, Massachusetts Institute of Technology, 2020.

[7] Marvin L. Minsky. Recursive unsolvability of post’s problem of "tag" and other
topics in theory of turing machines. Annals of Mathematics, 74(3):437–455, 1961.

[8] Nintendo. New super mario bros. Nintendo DS, 2006.

[9] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

63

	Introduction
	Gadgets
	Gizmos
	Outline

	Gizmos
	Simulation
	Reachability

	Unsimulability
	1-Toggles
	Simulability Classes
	Implication Properties
	Other Simulability Classes

	Dicrumbler Variants

	Universality
	Reg
	DAG
	Bottom Universality

	Undecidability

