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Abstract
This thesis explores several games from two perspectives: exhaustive search and
hardness proofs. First, we present an exhaustive search for hardness proofs: a system
for finding motion planning simulations. Second, we prove that the pencil-and-paper
puzzle Tatamibari is NP-complete, a proof developed using a Tatamibari solver we
wrote based on the Z3 SMT solver. Third, we find by computer search that the board
game Push Fight played on a board with one column (four squares) removed is a
draw. Then we prove that mate-in-1 in generalized Push Fight is NP-complete and
that determining the winner of a game in progress is PSPACE-hard. Fourth, we prove
that path puzzles are NP-complete, ASP-complete, and #P-complete. We describe a
solver for path puzzles based on depth-first search that solves 14 of 15 puzzles from
the last chapter of the path puzzles book. Fifth, we present a nonogram solver based
on automaton intersection. Relatedly, we prove that finding an optimal automaton
intersection ordering is PSPACE-hard. Sixth, we analyze puzzles from the video game
The Witness and obtain NP-completeness for most clue types and Σ2-completeness
for puzzles containing antibody clues. Finally, we propose a generic framework for
parsing screenshots of grid-based video games.

Thesis Supervisor: Erik D. Demaine
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis explores several games from two perspectives: exhaustive search and
hardness proofs. Table 1.1 summarizes our results. This thesis is organized into
chapters each considering a particular game (by row in the table), but this section
introduces games and summarizes results by topic (by column in the table).

Games Exhaustive search Hardness proofs
Motion planning
through gadgets

(Chapter 2)

Exhaustive search for hardness proofs
(Chapter 2)

Tatamibari
(Chapter 3)

Tatamibari solver
using Z3 SAT solver

(Section 3.4)

NP-hardness
(Section 3.3)

Push Fight
(Chapter 4)

Strongly solved
reduced-board variant

(Section 4.5)

Mate-in-1 NP-hardness
(Section 4.3)
2-player game

PSPACE-hardness
(Section 4.4)

Path Puzzles
(Chapter 5)

Solver based on
depth-first search

(Section 5.4)

NP-hardness
ASP-completeness
#P-completeness

(Section 5.3)

Nonograms
(Chapter 6)

Solver based on
automaton intersection

(Section 6.3)

NP- and PSPACE-hardness
of automaton intersection

(Section 6.4)

The Witness
(Chapters 7 and 8)

Partial solver for
the Challenge,
inspiration for

screenshot parsing
(Section 8.1)

NP-hardness
Σ2-hardness

PSPACE-hardness
(Chapter 7)

Table 1.1: Summary of results in this thesis.
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Figure 1-1: Games considered in this thesis.

1.1 Games
This thesis considers the following games shown in Figure 1-1, ranging from abstract
motion planning and formula satisfaction to pencil-and-paper puzzles to two-player
board games:

Motion planning through gadgets. The motion-planning-through-gadgets frame-
work is an abstract model of reachability problems in which an agent is traversing a
graph of gadgets, where each gadget has local state controlling how it can be traversed
and possibly changing when traversed. The framework aims to characterize which
types of gadgets make for hard reachability problems. This framework is a tool for
proving hardness of games by constructing gadgets in those games.

Tatamibari. Tatamibari is a pencil-and-paper puzzle introduced in Puzzle Commu-
nication Nikoli volume 107 [108]. A Tatamibari puzzle is a rectangular grid with clues
in some cells. The objective is to exactly cover the grid with rectangles such that the
single clue in each rectangle matches the rectangle’s relative aspect ratio (wider than
it is tall, taller than it is wide, or square) and no four rectangles’ corners meet at a

12



point.

Push Fight. Push Fight is an abstract board game for two players designed by
Brett Picotte [115]. Each player has five pieces, three kings and two pawns. On each
turn, the player moves up to two of their pieces along a simple path, then must push a
line of pieces with one of their kings. A player loses when one of their pieces is pushed
off the board or if they are unable to push on their turn.

Path puzzles. Path puzzles, designed by Roderick Kimball [86], are pencil-and-
paper puzzles played on a rectangular grid with numerical clues assigned to the rows
and columns of the grid. The objective is to draw a path through the grid between
two designated endpoints such that the path occupies a number of cells in each row or
column equal to that row or column’s clue.

Nonograms. Nonograms are pencil-and-paper puzzles played on a rectangular grid
where each row and column has a sequence of numerical clues. The objective is to fill
some squares of the grid so that the sequence of lengths of contiguous filled squares in
each row and column matches the corresponding clues.

The Witness. The Witness is a first-person adventure video game designed by
Jonathan Blow (also known for designing Braid) whose primary mechanic is solving
two-dimensional puzzles of a style similar to pencil-and-paper puzzles. The objective
is always to draw a path on a grid from a circle to a semicircle, but puzzles contain a
variety of other clues that constrain the path.

1.2 Exhaustive Search for Hardness Proofs
We developed an exhaustive search for hardness proofs in the motion-planning-through-
gadgets framework. Our system searches for simulations of gadgets by graphs built
from a set of given gadgets. When the system finds a simulation of a known-hard gadget
by a set of gadgets 𝑆, we obtain a proof that gadget set 𝑆 is also hard. Our system uses
deterministic finite automata as specifications for the behavior of a gadget or gadget
network. Instead of explicitly constructing all gadget networks up to a particular size,
our system searches directly on specifications, enabling efficient canonicalization and
deduplication. Simulations found by our system have been featured in a published
paper on motion planning hardness [16].

1.3 Exhaustive Search
Tatamibari. We developed a Tatamibari solver based on the SAT solver Z3 [42].
We used this solver to check the correctness of our gadgets during the development of
our hardness proofs, resulting in the development of a feature specifically for proof

13



development, checking for three-corner violations near reflex corners of nonrectangular
puzzles.

Push Fight. We developed a system to strongly solve Push Fight, that is, to
determine the winner under perfect play from every board position. Unlike most
systems to solve games, we do not use retrograde analysis; instead our system repeats
a forward search until it reaches a fixed point. We find that Push Fight played on
a board with one column (four squares) removed is a draw under perfect play. We
believe standard Push Fight is within reach of our current system given sufficient
computation time.

Path puzzles. We developed a path puzzle solver based on depth-first search. We
tested our solver against 15 puzzles from the last, hardest chapter of the path puzzles
book [86]; our solver solves all but one puzzle and solves 10 of the 15 puzzles in less
than a second.

Nonograms. We developed a nonogram solver based on computing the intersection
of deterministic finite automata. We assign a position in the string to each cell of
the grid, then build automata for each row and column that constrain the positions
corresponding to the cells in that row or column. We then intersect all the clause
automata and read off the solutions from the resulting automaton. Unfortunately, we
find that our solver is not competitive with state-of-the-art solvers. We also find that
the order of the automata intersections has a substantial impact on performance.

The Witness. The Challenge is an end-game area of The Witness containing a
timed series of randomized puzzles. We wrote a game-playing program that can
automatically solve most of the panel puzzles in the Challenge, though human input
is required to navigate through the three-dimensional environment. The solver itself
simply searches over all possible paths to find one that satisfies all the clues; the
interesting part of the program is the puzzle parser that extracts the clues from
screenshots. Our parser is entirely ad hoc, relying on hardcoded lists of colors and
pixel coordinates. Our experience writing this program and several other game-playing
programs leads us to propose a generic framework for parsing screenshots of grid-based
puzzle games (see Chapter 8).

1.4 Hardness Proofs
Tatamibari. We prove Tatamibari is NP-complete by reduction from planar recti-
linear monotone 3SAT. Our proof is an instance of a general framework for hardness
proofs involving local gadgets whose behavior is characterized by area coverage.

Push Fight. We analyze both the problem of deciding whether the current player
can win this turn (the mate-in-1 problem) and the problem of deciding the winner of

14



a game in progress for Push Fight generalized to larger boards with more pieces. If
the number of moves per turn is a constant or unlimited, the mate-in-1 problem is
in P, but if it is a variable provided as part of the problem instance, the problem is
NP-complete. We prove that deciding the winner of a generalized Push Fight game is
PSPACE-hard; it remains open whether it is in PSPACE or EXPTIME-hard.

Path puzzles. We prove path puzzles are NP-complete, ASP-complete, and #P-
complete by parsimonious reduction from numerical three-dimensional matching.

Nonograms. We prove that finding an optimal automaton intersection order, that
is, an order to intersect a set of given automata that minimizes the maximum size of
the intermediate automata, is either NP-complete or PSPACE-hard, depending on
the magnitude of the size limit, and hard to approximate. These hardness results are
a fundamental barrier to improving on our automata-intersection approach to solving
nonograms.

The Witness. We analyze many combinations of clues in The Witness, obtaining
NP-completeness for most clue sets and Σ2-completeness for some clue sets containing
antibody clues (which eliminate another clue in their region and are satisfied only if
this elimination was necessary). We also analyze the metapuzzles in The Witness,
obtaining some PSPACE-completeness results. Along the way, we give polynomial-
time algorithms for puzzles containing broken edges and only monomino clues or only
hexagon clues.

15
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Chapter 2

Exhaustive Search for Motion
Planning Simulations1

2.1 Introduction
In the motion-planning-through-gadgets framework [47, 49, 16], we want to know
whether an agent can traverse a network of gadgets to reach a goal location (reachabil-
ity). Each gadget in the graph has local finite state that determines how the agent can
traverse it. The complexity of the reachability problem depends on the types of gadgets
allowed. In many cases, even one simple type of gadget results in the reachability
problem being NP- or PSPACE-hard. These hard abstract motion-planning problems
have formed the basis of proofs of hardness of concrete problems, such as winning in
video games [47, 10, 16, 18] and reconfiguration in robotic motion planning [22, 36].

We can prove the hardness of a set of gadget types by constructing networks of
those gadgets that simulate gadgets known to be hard. For example, a long chain of
simulations shows that parallel and antiparallel 2-toggles simulate 2-toggle-locks [47].
In this way, we can gradually grow the set of gadgets known to have hard reachability
problems, giving us more options for further hardness proofs.

The gadget simulations in [47] were constructed manually by drawing a gadget
network on a whiteboard, checking whether it allows precisely the desired set of
transitions, repeatedly adding or removing gadgets from the network until it behaves
as desired, and finally proving correctness of the simulation. This process is laborious
and error-prone. We would instead prefer to tell a computer what gadgets we have
available and the gadget we wish to simulate and make the computer do the hard
work.

It turns out that we can: this chapter describes a system for computer search
for gadget simulations. We specify a gadget for the computer by writing a finite
automaton whose language is the set of allowed sequences of traversals through the
gadget. The key insight that makes the computer search practical is that the search
occurs over the space of gadget specifications, by directly composing specifications
using automata operations, instead of the space of gadget networks. In particular,

1This chapter is joint work with Erik D. Demaine and Jayson Lynch.
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automata can be minimized and canonicalized cheaply, making it easy to discard
duplicate constructions. Only once the search has found a simulation are the search
operations replayed in gadget network space to produce the simulating gadget network.

Figure 2-1 gives an example of using the system to find a gadget network built from
parallel 2-toggles (P2Ts) and unconstrained degree-3 vertices (3-splits) that simulates
an antiparallel 2-toggle (A2T). A 2-toggle is a gadget with two tunnels that can each
only be traversed by the agent in one direction; when either tunnel is traversed, both
tunnels flip direction. This behavior is specified in the transition tables for the two
gadgets in Figures 2-1b and 2-1e, which give rise to the automata in Figures 2-1c
and 2-1f. The search system finds a chain of automata operations that transform the
automaton specifying P2T into the automaton specifying A2T. The output of the
search system is the textual trace shown in Figure 2-1g; a separate visualization script
replays the trace in gadget network space and automatically lays out the resulting
network, resulting in Figure 2-1h. In this case, the search system has found the same
simulation given in [47, Figure 13] (with the figure rotated 90∘).

Section 2.2 describes the combine and connect operations our system uses to
construct gadget networks. Section 2.3 describes the use of automata as gadget
specifications, including how to perform combine and connect directly on automata.
Section 2.4 describes the implementation of our search system, which performs a
breadth-first search with parallel worker processes. Section 2.5 describes our visualiza-
tion script.

In Section 2.6 we present simulations found by the system. First, we present
simulations that are simpler than the hand-constructed simulations in [47]. Second,
we present the subset of the simulations used to prove PSPACE-hardness of planar
networks of door gadgets from [16] that were found using our system. Third, we
investigate which output-disjoint input-output gadgets simulate crossovers, discharg-
ing [18]’s assumption of crossovers for a majority of gadgets. We also discuss the
computational resources used to obtain these results.

2.1.1 Definitions
A gadget has a set of locations and a set of states. Each state specifies a set of traversals
between locations the agent is allowed to make. Each traversal specifies the agent’s
entry and exit locations and the state of the gadget subsequent to the traversal. A
gadget only changes state as the result of the agent traversing it. A gadget network
is a collection of gadget instances with specified states where some locations of the
instances are connected in a matching (following the definition in [47]). The agent
can move from one location in a matched pair to the other, which does not change
the state of any gadget. A gadget network having unmatched locations can be viewed
as a gadget whose locations are the network’s unconnected locations, whose set of
states is a subset of the cross product of its component gadgets’ states, and whose
traversals are the transitive closure of the traversals of its component gadgets along
with movements via the matching. Viewing a gadget network as a gadget effectively
hides the network’s internal states.

A planar gadget is a gadget that specifies a circular ordering of its locations. We
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(e) A2T transition table
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(f) Automaton specifying A2T

Target trace :
217 = source {toggle -toggle - antiparallel

-0 -0}
Source trace :

13 = source {3- split }
224 = source {toggle -toggle - parallel }
5131515 = combine 224 splice 0 with 13

rotate 0 connect at 2 @0
5131549 = connect 5131515 at 4 @0
5131583 = combine 5131549 splice 0 with 13

rotate 0 connect at 2 @0
5134583 = combine 5131583 splice 1 with 224

rotate 2 connect at 4 @3
5149050 = connect 5134583 at 3 @3
5221683 = combine 5149050 splice 1 with 224

rotate 2 connect at 4 @3
5446388 = combine 5221683 splice 0 with 13

rotate 0 connect at 2 @0
6593329 = connect 5446388 at 6 @0
10347296 = combine 6593329 splice 0 with 13

rotate 0 connect at 2 @0
24814049 = combine 10347296 splice 1 with

224 rotate 2 connect at 4 @3
26628863 = connect 24814049 at 5 @5
26809409 = connect 26628863 at 1 @0
54722434 = combine 26809409 splice 0 with

224 rotate 1 connect at 7 @3
63906004 = connect 54722434 at 2 @2
120322655 = combine 63906004 splice 0 with

224 rotate 1 connect at 7 @3
217 = connect 120322655 at 2 @0

(g) Search trace for simulating A2T by P2T

0 1

23

(h) Automatic visualization of search
trace: a gadget network simulating

A2T by P2T

Figure 2-1: Searching for a simulation of an antiparallel 2-toggle (A2T) by parallel
2-toggles (P2T) and unconstrained vertices
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consider planar gadgets differing only by rotation of locations to be identical, but
planar gadgets differing by reflection to be distinct. A planar gadget network is a
gadget network of planar gadgets that specifies a combinatorial planar embedding of
its gadgets and whose unconnected locations (if any) are on the exterior face of the
network.

We use definitions of equivalence and simulation based on those in [47]. A consec-
utive traversal sequence is a sequence of traversals where the entry location of each
traversal after the first is equal to the exit location of the previous traversal. Two
gadgets are equivalent if there is a bijection between their locations, a partition of the
states of each gadget, and a bijection between the groups of the partitions such that,
for every consecutive traversal sequence of one gadget, and for every starting state
for the other gadget in the corresponding group, there exists a consecutive traversal
sequence of the other gadget such that the state of the gadgets and the location
of the agent before and after the sequence correspond according to the bijections
relabeling the locations and state groups, and considering states in the same group
to be equivalent. For planar gadgets, the location bijection must preserve the cyclic
order of the locations. A source gadget or set of source gadgets simulates a target
gadget if there exists a gadget network consisting entirely of instances of the source
gadget(s) that, when viewed as a gadget, is equivalent to the target gadget.

2.1.2 Related Work
Motion planning. An early investigation of motion planning through abstract
gadgets is the door gadget metatheorem of [10], obtaining PSPACE-completeness for
reachability in nonplanar networks of door gadgets. The first systematic study of a
family of gadgets is the characterization of deterministic reversible 2-state gadgets on
tunnels [47], again obtaining PSPACE-completeness and showing that all gadgets in
this class simulate each other. A later paper analyzes gadgets whose transition graph
is a directed acyclic graph along with deterministic reversible gadgets and obtains
partial and full characterizations of 1-player, 2-player, and team reachability games
on these these gadgets [49, 48].

Returning to the door gadget from [10], Ani et al. [16] analyze the possible planar
embeddings of the door gadget, showing all but one are PSPACE-complete; some of
the reductions in [16] were obtained through the search described in this chapter (see
Section 2.6.2). Most recently, the complexity of 0-player reachability on deterministic
output-disjoint input-output gadgets was classified [18]; we use our computer search
to discharge the assumption of a crossover gadget/nonplanar gadget network (see
Section 2.6.3).

Search for gadgets in other domains. While computer case analysis has been
used to prove most of some theorems (e.g., the Four-Color Theorem, in 1977 [20, 21]
and again in 1997 [118]), computer search for gadgets for reductions has concen-
trated on Boolean satisfiability and constraint satisfaction problems, especially for
(in)approximability. One line of research is about finding a definition of a gad-
get [25, 137] that is simultaneously precise but general enough to cover many problems.
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Based on this definition, Trevisan et al. [137] use linear programming to prune the
gadget search space, leading to both new approximations and new inapproximability
results. This technology does not cover all constraint problems (e.g., Wiman [147]
can only iteratively approximate the linear program), much less to all search prob-
lems, though there is a recent proposal to extend to all search problems via category
theory [100].

For a broader view of computer search for small examples, see [146]; in particular,
the proposal to search for minimal Boolean circuits has a similar flavor to gadget
search.

Canonicalization We depend crucially on the ability to quickly canonicalize an
automaton over rotations of its alphabet (representing locations on the boundary of
a planar gadget). If we were to consider automata as general directed graphs with
labeled edges, we would have to compute a canonical labeling, which is at least as
hard as graph isomorphism. Instead, after minimizing the automata using Hopcroft’s
algorithm for DFA minimization (implemented following Knuutila’s exposition [88]),
we can run a linear-time canonicalization algorithm [111], taking advantage of the fact
that our automata already have a distinguished state (the initial state).

2.2 Building Gadget Networks with Combine and
Connect

Our gadget search is based on two operations on planar gadget networks, combine
and connect. The combine operation merges two networks and the connect operation
connects locations within a single network. Together, combine and connect are sufficient
to construct any planar gadget network. (Section 2.7.2 discusses modifications to
search for nonplanar networks.)

Combine. The combine operation combines two gadgets into a single gadget network
(see Figures 2-2a to 2-2c). Combine has four operands: the left and right gadgets,
the rotation applied to the right gadget’s locations, and the index at which the right
gadget’s locations are spliced into the left gadget’s location sequence. If the left
gadget has 𝑚 locations and the right gadget has 𝑛 locations, the combined gadget has
𝑚 + 𝑛 locations. The right gadget has 𝑛 rotations and its locations can be spliced in
at any of the 𝑚 positions in the left gadget’s location sequence, so there are 𝑚𝑛 ways
to combine a given pair of gadgets.

Connect. The connect operation takes one input gadget and connects two adjacent
locations to each other. There are 𝑛 ways to combine a gadget with 𝑛 locations, and
each output has 𝑛 − 2 locations. See Figure 2-2d.

Universality. Next we show that combine and connect suffice to build any planar
gadget network. Intuitively, we can find a valid ordering of combine operations by
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(a) The inputs to the combine operation, two four-location gadgets (or gadget networks). In
this example combine, the right gadget will be rotated left one location and its locations

spliced after location 0 in the left gadget’s location sequence.
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1

3

2

+

(b) As the first step of this combine operation, the right gadget is rotated.
0

57 6 4
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(c) Then the right gadget’s locations are spliced after location 0 in the left gadget’s location
sequence. This is the result of the combine operation.

0

5 4
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(d) One possible connect operation on the resulting gadget network is to connect locations 4
and 5.

Figure 2-2: An example of the combine and connect operations.
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topologically sorting the adjacency graph of gadgets (two gadgets are adjacent if a
location of one is connected to a location of the other), and between each pair of
combine operations we connect locations of the gadget just added to the existing
gadgets it is connected to in the network we are building. More formally, we prove
the universality of combine and connect by induction while deconstructing gadget
networks.

Theorem 2.2.1. Given a set 𝑆 of base gadgets, any planar gadget network consisting
only of gadgets in 𝑆 can be constructed using a sequence of combine and connect
operations, where at least one operand of every combine operation is a base gadget.

Proof. We proceed by deconstructing gadget networks using the inverse of combine
and connect until we reach base gadgets. Given an arbitrary planar gadget network,
either it is a base gadget or a network of multiple gadgets. If it is a base gadget, we are
done. Otherwise, choose a base gadget having a location incident to the outside face of
the network and disconnect (the inverse operation of connect) all of its locations from
the other locations in the gadget network. Because that base gadget is on the outside
face, the now-disconnected locations are consecutive in the network’s unmatched
location ordering, so we can remove the base gadget from the network (the inverse
operation of combine). The remaining gadget network has one fewer gadget, so this
deconstruction procedure will terminate in a number of steps equal to the number of
gadgets in the network minus one. Then reversing this sequence of inverse-combine
and inverse-connect operations gives a sequence of combine and connect operations
that constructs the gadget network, as desired.

Search? So if combine and connect are universal for building gadget networks, can
we use them as the basis of a search algorithm for simulations? We run into a problem
when trying to decide whether a gadget network built by the search is the simulating
network we are searching for. The obvious way to check whether two gadget networks
are equivalent is a depth- or breadth-first search through the network from every input
location in each combination of states of each of the network’s gadgets to see whether
they have the same behavior (possibly after a relabeling of locations or states). The
sequence of combines and connects that builds a network is usually not unique, and
to avoid duplicate work during the search we want to maintain a closed set of all
the networks we have built so far and deduplicate each newly-built gadget against
this closed set. But even deciding whether two networks are identical is equivalent to
checking graph isomorphism, and to use a hash table for our closed set, we need to
find a canonical labelling of the network.

What we need is a concise specification of a gadget’s behavior that is easy to
compute and to canonicalize. In the next section, we find that automata are the gadget
specifications we need, and that we can perform combine and connect operations
directly on specifications.
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2.3 Automata as Gadget Specifications
The use of automata as gadget specifications is most easily explained through a specific
example. The parallel 2-toggle (P2T) drawn in Figure 2-1a has four locations, which
we will number circularly 0 to 3, and two states. In the state drawn on the left, the
agent can traverse the gadget from location 0 to location 1 and from location 3 to
location 2 (and in no other ways), in both cases leaving the gadget in the state on the
right, in which the agent can traverse from location 1 to location 0 and location 2 to
location 3, both returning to the left state. Numbering the left state 0 and the right
state 1, the previous sentence is summarized by the transition table in Figure 2-1b.

We can write traversal sequences as strings of pairs of entry and exit locations.
For example, the agent can traverse a P2T in state 0 from location 0 to location 1,
then location 2 to location 3, then location 0 to location 1 again, which we can write
as the string 012301. Then we can define the language of traversal sequences of a
gadget (which we will call the language of the gadget) as the set of all such strings
representing traversals of that gadget. Most interesting gadgets, including the P2T,
have infinite languages of traversals because they can be traversed infinitely many
times, but, for example, a single-use path gadget would have a finite language.

It turns out that the infinite language of the gadget is regular, so can be specified
by a finite automaton accepting that language. We can build such an automaton from
the transition table. In a minimal automaton, each gadget state corresponds to an
accepting state of the automaton. The automaton’s initial state corresponds to the
initial gadget state, so we get one automaton per state of the gadget. The automaton
accepting the language of the P2T is shown in Figure 2-1c.

One or two symbols per traversal. We could alternately represent each gadget
traversal with a single symbol encoding both the entry and exit location. The alphabet
size of the resulting automaton is the square of the gadget’s location size, but the
automaton has no non-accept states so its state size is smaller. In practice, we decided
to use two-symbol traversals because our automata library represents a transition
as a pair of the next state and a bitset of the symbols proceeding to that state, a
representation that assumes the alphabet size is small.

Our gadget search operates by iterations of combining two gadgets, then connecting
some of their locations. Besides combine and connect, we have three additional
operations on gadget specifications that serve to merge equivalent gadgets, reducing
the amount of work done by the search: taking the transitive closure of the gadget’s
traversals, and canonicalizing the automaton. The following subsections describe the
automata operations that realize these basic search operations.

2.3.1 Combine
Given two gadgets, a right gadget rotation amount, and a left gadget location splice
index (the four operands of combine), the combined gadget can be traversed in any
interleaving of the traversals of the input gadgets, appropriately renumbered based
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on the rotation and splice point. There are no traversals entering the left gadget but
leaving the right gadget or vice versa, so the language of the combined gadget is a
pair-granularity interleaving of the languages of the input gadgets. For example, if
0123 is a traversal sequence of the left gadget and 4567 is a traversal sequence of
the right gadget (after location renumbering), then 01234567, 45670123, 01452367,
and 01456723 are all traversal sequences of the combined gadget, but 04567123 is not
(because there is no traversal entering location 0 and exiting location 4).

At the automaton level, this pairwise interleaving results in a combined automaton
having states 𝑄𝐿 × 𝑄𝑅 × {𝐿, 𝑅}, where 𝑄𝐿 and 𝑄𝑅 are the states of the left and right
input automaton and {𝐿, 𝑅} is a flag indicating which automaton we are currently
simulating. We allow the simulation to switch automata using 𝜀-transitions between
(𝑞𝑙, 𝑞𝑟, 𝐿) and (𝑞𝑙, 𝑞𝑟, 𝑅) when both 𝑞𝑙 and 𝑞𝑟 are accepting, in which case the combined
automaton state is accepting; because the input automata are bipartite between
accepting and non-accepting states, this ensures pairs of symbols cannot be split up.
The combined automaton begins with 𝜀-transitions to states 𝑆𝐿, 𝑆𝑅, 𝐿 and 𝑆𝐿, 𝑆𝑅, 𝑅,
where 𝑆𝐿 and 𝑆𝑅 are the initial states of the left and right input automaton, because
the first traversal can be in either gadget.

2.3.2 Connect
Given a gadget and a location 𝑏 to connect to the gadget’s next location 𝑐, whenever
a traversal would exit the gadget at 𝑏, the connected gadget must immediately be
traversed again from location 𝑐, and vice versa. The connected locations 𝑏 and 𝑐
become unavailable for traversals from outside the gadget (they are removed from the
gadget’s location sequence). In terms of the language of the gadget, wherever 𝑎𝑏𝑐𝑑
appears in a traversal string, 𝑎𝑑 can appear instead. Then all occurrences of 𝑏 and 𝑐
are deleted from all traversal strings.

At the automaton level, for every non-accepting state 𝑠 that has a transition on
𝑏 to an accept state 𝑡 having a transition on 𝑐 to non-accepting state 𝑢, we add an
𝜀-transition from state 𝑠 to state 𝑢, and the same with 𝑏 and 𝑐 swapped. Then we
renumber the alphabet to delete 𝑏 and 𝑐, dropping any transitions on 𝑏 and 𝑐 and
compressing the remaining symbols to the locations 0 to 𝑛 − 2.

2.3.3 Closure
The transitive closure operation takes a gadget as input and produces the transitively-
closed gadget as output. In terms of the language of the gadget, whenever 𝑎𝑏𝑐𝑑
appears in a traversal string for any 𝑎, 𝑏, 𝑐, 𝑑, transitive closure allows 𝑎𝑑 to appear
instead. This is similar to connect, but with no restriction on 𝑏 or 𝑐, and without
deleting any locations afterward.

At the automaton level, for every non-accepting state 𝑠 having a transition on any
symbol 𝑏 to an accept state 𝑡 having a transition on 𝑐 to non-accepting state 𝑢, we add
an 𝜀-transition from state 𝑠 to state 𝑢. This is just like the connect implementation,
except with no constraints on 𝑏 and 𝑐.
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Replacing a gadget with its transitive closure does not give the agent any extra
capability to reach the goal. Whenever the agent uses a traversal added by transitive
closure, the agent could have reached the same location with the gadget in the same
state by simply making multiple traversals of the gadget. For this reason, it is not
useful to distinguish gadgets that differ only in traversals added by transitive closure,
so our search always transitively closes its base gadgets.

2.3.4 Canonicalization
The search wants to canonicalize automata to efficiently check whether the search
has already produced that automaton. We first minimize the automaton using
Hopcroft’s algorithm (implemented following Knuutila’s exposition [88]). Then we
run a canonicalization algorithm similar to the full canonical labelling algorithm for
site graphs [111], but simplified by taking advantage of the automaton’s distinguished
initial state.

For each of the permutations that are rotations of the automaton’s symbols,
we perform a lazy breadth-first search starting from the initial state, processing
each transition in order of the permutation. That is, the search using the identity
permutation attempts a transition first on symbol 0, then on symbol 1, and so on,
while the search using the next permutation attempts a transition first on symbol 1,
then symbol 2, coming back to symbol 0 only after trying the rest of the symbols.
One of these searches follows the lexicographically least sequence of edges; we apply
this permutation to canonicalize the location numbering. Each search records the
order in which it first visits the automaton’s states, which we take as the canonical
labelling of the states. Canonicalization thus takes at most 𝑂(𝑘(𝑛 + 𝑚)) time for an
automaton with 𝑘 symbols, 𝑛 states, and 𝑚 transitions.

All automata having the same canonical form specify equivalent gadgets. The
bijection between locations is given by the rotation permutation and the bijection
between groups of gadget states is given by the accepting states in the equivalence
classes of automaton states found by minimization.

Nop traversals. Traversals from a location to itself that do not change the state of
the gadget are called nop (no-operation) traversals. Nop traversals can be introduced
into the language of a gadget during connect or transitive closure. Transitively closing
a parallel 2-toggle (transition table given in Figure 2-1b), for example, introduces nop
traversals for each location: starting in state 0, the agent can traverse from location 0
to 1, then from 1 to 0, so transitive closure introduces a nop traversal from 0 to 0.
The output of connect may have locations that only participate in nop traversals or
that have no traversals at all; as part of canonicalizing the connect output, we delete
these nop-only or unused locations, renumbering further locations as needed to keep
the location numbering dense.

Gadgets with nop traversals are essentially the same as gadgets without, but nop
traversals affect the edge enumeration used to compute the canonical labelling. To
ensure nop traversals do not distinguish gadgets, we add the maximal set of nop
traversals (one for each location in each gadget state) to each automaton before
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Figure 2-3: Relationships between the parts of the gadget search system.

canonicalizing it. At the automaton level, adding a nop traversal in a gadget state
means adding a transition from the accepting automaton state corresponding to that
gadget state to a new non-accepting automaton state and adding a transition from
the non-accept state back to the accept state.

2.4 The Gadget Search System
The gadget search system consists of three main components:

∙ the driver, which decides what needs to be computed;

∙ one or more workers that do the work in parallel;

∙ and the reporter, which prints traces that witness how a gadget specification
was constructed.

The three components communicate through a database storing gadget specifica-
tions, edges recording how gadgets combine and connect to form other gadgets, and
completion intervals recording what has already been computed.

Input and output. The input to the system is multiple JSON or YAML files
containing gadget specifications with human-meaningful names, which are used to
seed the database with the specifications to be searched from or found by the search.
The format is very close to the transition tables shown in Figures 2-1b and 2-1e, with
the addition that pairs of reversible transitions can be abbreviated into “undirected”
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3-split:
uedges : [[0, 0, 1, 0], [0, 0, 2, 0], [0, 1, 2, 0]]

toggle -toggle - parallel :
uedges :
- [0, 0, 1, 1]
- [0, 3, 2, 1]

toggle -toggle - antiparallel :
uedges :
- [0, 0, 1, 1]
- [0, 2, 3, 1]

door -0 xd12d34 :
uedges :
- [0, 0, 0, 0]
dedges :
- [1, 0, 0, 0]
- [0, 1, 2, 0]
- [0, 3, 4, 1]
- [1, 3, 4, 1]
state -names: {0: open , 1: closed }

Figure 2-4: YAML gadget definitions for 3-split, parallel and antiparallel 2-toggles,
and a directed door gadget

transitions. Some of these input files are themselves computer-generated as combina-
tions of simpler gadgets. For example, the parallel and antiparallel 2-toggle gadgets
shown in the introduction are part of a family of gadgets “on tunnels” investigated
in [47]; the definitions of P2T and A2T, shown in Figure 2-4, are generated by a
script that pairs all of the tunnels (including the toggle, tripwire and lock tunnels
investigated in [47]) in all possible ways.

The output of the system consists of the traces printed by the reporter that witness
how a gadget specification was built using combine, connect, and close operations; see
Figure 2-1g for an example. These traces can be replayed directly on gadgets (instead
of on gadget specifications) by a separate visualizer script to produce gadget network
drawings like Figure 2-1h.

Generational search. The search is a breadth-first search where each vertex is a
gadget specification and the edges store the parameters of the operation performed.
For example, a connect operation is stored in the database as an edge from an input
gadget specification (specified by an integer ID) to an output gadget specification,
along with the location being connected (the other is always the circularly next
location). A combine operation is stored in the database as a (hyper)edge from its two
inputs to its output gadget specification, along with the splice point and right gadget
rotation (the two degrees of freedom described in Section 2.3.1), plus the connect
location from the immediately following connect operation.

Each generation in this breadth-first search begins with one combine operation,
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with all gadget specifications in the frontier being used as the left input, but with the
right gadget only being from the initial set of gadget specifications the search started
with. The remainder of the generation consists of connect operations (which always
shrink their input by at least two locations), and transitive closure operations. This
generational structure of combine-then-connect allows the system to make a partial
completeness guarantee: if a gadget is simulated by a gadget network consisting of 𝑘
copies of the input gadgets, that simulation will be found in generation 𝑘 − 1 (after
𝑘 − 1 combines, each introducing a copy of an input gadget to the network, and the
first introducing two).

We also use this generational structure for lack of a distance-to-solution heuristic
in specification space. We could define a notion of a difference of specifications, but
it is not clear how to use it to guide the search. We experimented with a search
structure that put all gadget specifications in a priority queue sorted by size, and
operating (combining and connecting) the smallest gadgets first, but in practice most
interesting simulations have an intermediate state whose specification is relatively
large and complex, so smallest-first is not an effective heuristic. The lack of a good
ordering heuristic is a weakness of the current system.

2.4.1 The Database
We use the LMDB key-value store [38, 74] for our database. LMDB is a B+-tree-based
database using copy-on-write and multiversion concurrency control (MVCC) to provide
full ACID semantics for unlimited parallel readers and a single parallel writer. LMDB
provides multiple “subdatabases”, separate key namespaces that can be operated on
in a single transaction. LMDB is a memory-mapped database, so it provides very
high read throughput when the database fits in memory; when the database is larger
than memory, read throughput from SSDs is reasonable if there are enough parallel
reader threads to use the SSDs at high queue depth. Section 2.4.5 explains how we
work around the single-writer limitation.

Early versions of our system used PostgreSQL, which was useful for prototyping
because declarative SQL queries are easy to iterate on. However, we had to abandon
PostgreSQL because it does not support “select, or insert if not present” queries;
additionally, PostgreSQL has high space overhead because data is duplicated in indices,
and PostgreSQL’s concurrency support was ineffective as most transactions rolled
back and were replayed due to serialization failures.

Gadgets. Gadget specifications are stored in the database as byte strings. The first
two bytes of the string store the number of locations of the gadget (up to a 16 location
maximum) and a bitfield coding the size of the following variable-length fields storing
the gadget’s number of states, the number of undirected and directed transitions in
the following transition lists, and the number of strongly connected components in
the gadget’s state space.2 The gadget’s transitions are split into undirected (where

2For example, a single-use path gadget has two states, one where the path is available and one
where it has been used. There is a transition from the first to the second state, but not the other
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each transition’s reverse transition is also present) and directed groups. Transitions
are 4-vectors (start and end states and from and to locations), which we can map into
integers by multiplying the coordinates by the number of locations and states. For
undirected transitions, only the smaller of the two directions is stored. Each group of
integers is sorted and delta-coded, with the deltas stored as variable-length integers
using SQLite’s scheme.3 (This delta-varint encoding is similar to how search engine
postings lists are compressed.)

Gadget specifications are usually looked up by a 64-bit hash (to determine whether
the gadget has been seen before and to insert it if not), but it is also convenient
for gadget specifications to have an integer ID for use in edges. Accordingly, gadget
specifications are stored using two subdatabases, the gadget hashtable and the gadget
index. The hashtable, as its name suggests, maps the hashes of gadget specification
byte strings to the byte strings followed by their 8-byte4 integer ID. The hashtable
uses linear probing to resolve collisions. The gadget index maps gadget specification
IDs to the hash the gadget specification is stored under in the hashtable. Thus, given a
gadget string, we can quickly check whether we’ve seen this gadget specification before
and get its integer ID if so by querying the hashtable, and given a gadget specification
ID, we can get the corresponding gadget string by looking up the hash in the gadget
index, then using that hash in the gadget hashtable. Both of these databases have
8-byte integer keys, which LMDB provides special support for (MDB_INTEGERKEY).

Edges. For each operation, there are many output gadget specifications for each
input gadget specification: connecting an 𝑛-location gadget can yield up to 𝑛 distinct
gadgets, and combining an 𝑚-location gadget with an 𝑛-location gadget and connecting
the resulting 𝑚 + 𝑛 location gadget can yield up to 𝑚𝑛(𝑚 + 𝑛) distinct gadgets. To
save space, most edges are stored only in “skinny” form, in subdatabases mapping
the input gadget specification ID to a list of output gadget IDs, delta-varint encoded
similarly to gadget transitions.5 Because combine takes two inputs, there is a separate
subdatabase for each combine right operand, in which the keys name the left operand.
If the reporter finds a skinny edge participates in a trace, the operation is repeated and
the resulting full edges (with the parameters of the operation) are stored in separate
full edge subdatabases so the parameters can be printed in the trace.

Other subdatabases. The database also contains subdatabases storing completion
and predicate interval lists used by the driver, described in Section 2.4.2 and Sec-
tion 2.4.6. There is also a subdatabase mapping the human-readable gadget names
from the input files to gadget specification IDs, used by the driver to parse the initial
set of gadgets for a search and by the reporter to print names in traces.

direction, so the gadget’s state space has two strongly connected components.
3https://sqlite.org/src4/doc/trunk/www/varint.wiki
4In practice, 5 bytes would suffice for all databases we have computed, but working with 5-byte

integers is annoying in most languages.
5Compressing these lists of integer IDs is the primary benefit to assigning gadget specification

IDs instead of using hashes as identifiers.
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2.4.2 The Driver

The driver implements the generational search, maintaining a closed set, current
generation, and current subgeneration, all of which are lists of intervals of gadget
specification IDs in the set. The generational search does one combine operation
followed by repeated connect operations until there are no gadget specifications to
connect, so the current generation contains all gadget specifications produced by and
since the last combine operation, while the current subgeneration contains only the
gadget specifications produced by the last operation of either type (i.e., the inputs to
the next connect operation). The search starts from a set of initial gadget specifications
specified on the command line when invoking the driver, either as gadget specification
IDs or as names. These gadget specifications are transitively closed to form the first
subgeneration; they are figuratively “combined against nothing” in generation 0. The
first subgeneration is also sorted as the set of combine right inputs to be used for the
rest of the search.

During the search, every generation’s first subgeneration is produced by combining
all gadget specifications in the previous generation as the left operand with all gadget
specifications in the set of combine right operands. Subsequent subgenerations are
produced by connecting all gadget specifications in the previous subgeneration. Every
gadget produced is added to the closed set, and only gadget specifications not already in
the closed set are retained in the subgeneration (to avoid repeated work). Connecting
always produces a gadget specification with at least two fewer locations, so eventually
the subgeneration will be empty, at which point the next generation begins.

The driver does not carry out automata operations directly. Instead it packages
the gadget specification IDs of the operands and the path to the database into a
MessagePack message and launches a worker process to do the work. The worker
process retrieves the gadget specifications from the database, performs the operation,
commits the output gadget specifications and edges to the database, and returns a
MessagePack message to the driver. The driver then follows edges from the gadget
specifications in the (sub)generation to find the produced gadget specification IDs to
add to the next subgeneration.

In early versions of our system, the MessagePack messages also included the
encoded gadget specification byte strings, allowing the worker processes to run on
remote computers or in a batch queueing system. This batch mode of operation is
still possible, but we now have sufficiently powerful hardware that it is not necessary.

It is common to run the search for 𝑛 generations, run the reporter to see what
simulations the search found, and then run the search again for 𝑛 + 1 generations. To
speed up passing the first 𝑛 generations, as part of committing an operation result to
the database, the worker also commits intervals spanning the input gadget specification
IDs to a subdatabase of completion intervals for that operation type. Then before
each operation, the driver subtracts the completion intervals from the subgeneration
intervals, and only the remaining intervals (if any) need to be operated on. As an
additional benefit, storing separate completion information allows us to omit storing
edges to the empty or 1-location gadget specifications without causing the operations
producing the omitted edges to be repeated.
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2.4.3 The Worker

The worker is the component that actually performs automata operations. Each
worker process reads a MessagePack message as input that directs it to perform
some operation, and produces a MessagePack message as output (besides storing any
computed results in the database). The driver and reporter spawn worker processes to
perform automata operations, as described in their sections. The worker also performs
some utility functions, including initializing new databases (which involves transitively
closing and canonicalizing automata from input files).

2.4.4 The Reporter

The reporter prints traces that witness the sequence of operations that transformed
the input gadget(s) into an output gadget. To do this, the reporter does a breadth-first
search through the edges in the database, recording for each gadget found the source
of the edge; that is, the reporter is inverting the graph, saving only one edge per
vertex. Starting from the an initial set of gadget specifications in the same way as the
driver, the reporter maintains sets (as lists of intervals of gadget specification IDs) of
gadget specifications awaiting close edges, connect edges, and combine edges. In that
order, the reporter takes the first nonempty set and follows the corresponding edges.
For any gadget not already in the reporter’s closed set, the reporter adds the inverse
of one edge leading to the new gadget to the inverse edge set. Following edge types in
this order means the reporter will find a trace with the fewest combine operations.
When the trace is replayed in gadget network space, the produced gadget network
will contain the smallest number of gadgets.

Whenever a newly found gadget has a name, the reporter prints a trace by following
the inverse edges until reaching the gadgets in the initial set. For example, in the
trace shown in Figure 2-1g, the found named gadget is gadget 217. Reading from the
bottom of the trace up, we can see that gadget 217 was the result of connecting gadget
120322655 at location 2, and that gadget 120322655 was the result of combining gadget
63906004 with gadget 224, and so on. The reporter will print traces for all named
gadgets it reaches in its search – we do not have to specify in advance which gadget
we are searching for.

The reporter initially follows the edges from the “skinny” edge databases, which
store only the input and output gadget specifications to the corresponding operation.
Besides saving space in the database, using skinny edges also saves memory in the
reporter process; to further save memory, inverse edges are compressed using delta-
varint coding. To recover the parameters of the operation (e.g., the connect location),
the reporter spawns a worker process that performs the operation with all possible
parameters and stores the resulting full edges in the database, which the reporter then
retrieves from the database.
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2.4.5 Effective Parallelism with LMDB
As described in Section 2.4.1, LMDB is a many-reader, single-writer database. The
readers and the writer do not block each other, but on high thread count machines (in
our experience, after about 16 threads), writing results back to the database becomes
a bottleneck, with multiple workers waiting to begin a write transaction. To work
around this limitation, the driver can instruct workers to write their results (gadget
specifications and edges) to a temporary file instead of to the database. Gadget
specifications in the temporary file are arranged in 256 slices based on the high-order
byte of the encoded gadget byte string’s hash. Periodically, the driver spawns a worker
process that merges these temporary files and writes their results into the database.
The writing worker merges files by slice, which results in better locality for LMDB’s
B+-tree updates; instead of randomly writing across the entire keyspace of the gadget
hashtable, writes are localized to one of the 256 slices of the keyspace. While one
slice is being committed, other threads in the writing worker read ahead for the next
slice by looking up the hashes of the gadget specifications in that slice. Whether the
gadgets are already in the database or not, this readahead reduces the number of page
faults taken by the writing thread. Once all of the slices have been processed, the edges
from each temporary file are committed together after mapping temporary-file-local
gadget IDs to the global gadget IDs assigned as the slices were committed.

When the database fits in main memory, the writing worker can usually keep up
with the computing workers, but when the database does not fit, the writing worker
usually falls behind. Currently our system does not incorporate backpressure, but it
would be easy to modify the driver to stop spawning new workers once the pending
temporary files reach some size threshold.

2.4.6 Partial Search with Predicate Indices
Empirically, we have found it useful to limit the search space by applying predicates to
the list of gadget specifications to be combined or connected in each subgeneration. We
can limit the search on any of the statistics stored in the header bytes of the encoded
gadget specification byte strings (see Section 2.4.1, Gadgets). To support partial
search, the database contains a predicates subdatabase whose keys are a statistic kind
and a number, mapped to an interval list of all gadget specifications whose value for
that statistic are less than or equal to that number. For example, the key states<=4
maps to an interval list containing all the IDs of gadget specifications having four or
fewer states. To keep these interval lists small, gadget IDs are assigned after sorting
the gadget specifications being inserted into the database by their statistics, so that
there are fewer, larger intervals in the predicate lists. The predicates subdatabase
also stores a special valid_before entry whose value is one more than the last ID
included in the indices; the indices are extended on demand by the driver whenever
a query involves a gadget specification ID greater than or equal to valid_before’s
value.

When running with a limited search space, all gadget specifications found are stored
in the database, but each time the driver computes the set of gadget specifications
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needing to be operated on, it applies predicates by intersecting that list of IDs with
the interval list from the predicates subdatabase. Only gadget specifications in this
intersection are operated on. This limits the partial completeness guarantee (see
Generational search). When the limiting predicate is the number of strongly connected
components in the gadget’s state space, the search is complete regarding targets
with fewer than that number of connected components. For example, if the limit on
connected components is 1, the search will still find all simulations of gadgets with
one connected component in their state space, but may fail to find simulations for
gadgets having more components. This is because none of the automata operations
can decrease the number of components in the state space. On the other hand, the
modifications to the guarantee resulting from limiting the number of locations, states,
or edges are harder to visualize. If we limit the number of edges, for example, we fail
to find gadgets where every sequence of automata operations had an intermediate
gadget specification having more than that number of edges.

Limiting the number of components in the state space to 1 is useful when the
gadgets we are hoping to find simulations of have only one component in the state
space (which is most gadgets, because we are usually looking for reusable gadgets).
We found it useful to limit the number of states and edges, because we observed
that gadgets above some complexity limit rarely simplify and automata operations
on complex gadgets are more expensive than on simple gadgets. We also limited
the number of locations of the left input to a combine operation, usually to the
maximum number of locations in the initial set of gadgets plus one (to allow a 3-split
gadget to duplicate a location). Many of the planar door simulations presented in
Section 2.6.2 were found with searches limited to 8 states, 50 edges, and 7 max combine
left locations, in exchange for an increased search depth. But deciding on these limits
is entirely empirical. It is possible to repeat a search with extended limits because
the completions subdatabase reflects that some gadgets were skipped (not present in
the completion interval lists), so we can take an approach of progressively expanding
the limits, but we have no way to tell which limit should be expanded or if we should
instead decrease the limits to improve the search depth.

2.5 Visualization
The trace is a certificate of simulation of a gadget by a gadget network, but manually
interpreting a trace is difficult. To this end, our system includes a visualization
script that parses the trace, replays the combine and connect operations in gadget
network space, and draws the resulting gadget network. The script maintains location
numbers for each gadget (a numbering global to the network), a list of pairs of
connected locations, and the numbers of the unmatched locations on the boundary
of the gadget network (the network’s interface). To replay a combine operation, the
script recursively builds the gadget networks of the left and right operands,6 renumbers
all locations in the right network to not collide with the left network’s numbers, rotates

6Combines in traces produced by our system always have a base gadget as their right operand,
but our script does not depend on this.
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the interface of the right network according to the rotation parameter of the combine
operation, and splices the right network’s interface into the left’s interface at the
splice point parameter of the combine operation. To replay a connect operation, the
script recursively builds the gadget network of the operand, records the location at
the index specified by the combine operation’s parameter and its adjacent index as
being connected, and deletes them from the interface. After both combine and connect
operations, the output network’s interface is rotated according to the rotation applied
during canonicalization (Section 2.3.4). The result is a gadget network stating which
global locations are unconnected (the last output network’s interface) and connections
between all other locations. By looking through the connection edge list in order of
each gadget’s location numbers, we obtain a combinatorial embedding of the gadget
network (the order of edges around each vertex).

One theoretically appealing option for drawing gadget networks is Tutte embedding
[138], but it produces drawings with poor angular resolution . The widely used graph
drawing package GraphViz does not preserve the order of edges at a vertex, but edge
order is important for drawing gadget networks because locations are ordered. To
work around this limitation, we could explode each gadget into a cycle, one vertex per
location, use GraphViz to lay out the graph, and then take the average position of
the vertices in the cycle as the position of the gadget, but doing this averaging well is
not obvious, so we did not attempt this. GraphViz’s layout algorithms are also not
guaranteed to produce a planar drawing when the graph is planar, which we would
like.

Instead of implementing a graph drawing or place-and-route algorithm, we define
the problem as a system of linear inequalities and solve the system using the Z3 SMT
(satisfiability modulo theories) solver [42]. Each gadget is a small rectangle (8 × 8
for most gadgets, 2 × 2 for some simple gadgets including splits, diodes, and fanin).
Locations (points on the boundary of each rectangle) are connected by wires, where
each wire is composed of a configurable number of line segments constrained to share
endpoints. Constraints ensure gadget rectangles and/or wires do not overlap or cross
and that the unmatched locations of the network are on the boundary of the drawing.
We find minimal-area drawings by repeatedly solving the system and using binary
search to find the minimum width and height; e.g., we first solve the system with all
objects constrained to be in an 80 × 80 box, then if that succeeds, we try a 40 × 40
box, and if that fails we try a 60 × 60 box, then after finding the smallest box we try
to minimize either the height or width leaving the other parameter fixed. Optionally,
we minimize the number of wire bends using Z3 soft constraints constraining the wire
segments to have zero length.

Despite our system of linear inequalities not encoding any of the combinatorial
embedding of the graph that we built while replaying the trace, Z3 produces a usable
result within a few minutes even for networks containing up to 15 gadgets when not
minimizing bends. When minimizing bends, Z3 is less performant, taking up to an
hour. Beyond minimizing area and optionally minimizing bends, our model has no
knowledge of what a good graph layout is, but the result is generally interpretable
with some effort by a human familiar with the gadgets in the network, and sometimes
the solver produces a nice-looking graph like Figure 2-1h.
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2.6 Results
In this section we present three types of results obtained through the use of the system.
First, we present simulations between reversible deterministic 2-tunnel gadgets that
are simpler than the manually-constructed simulations in [47]. Second, we present
the simulations used to show PSPACE-hardness of planar door gadgets, previously
published in [16]. Third, we present a partial classification of which output-disjoint
input-output gadgets build crossovers, discharging [18]’s assumption of crossovers for
a majority of gadgets. After presenting these results, we discuss the computational
resources used to achieve them.

2.6.1 Reversible Deterministic 2-Tunnel Simulations
A tunnel is a gadget building block consisting of a pair of matched locations. A
2-tunnel gadget is a composition of two tunnels sharing the same state; for example,
both toggles of a parallel 2-toggle flip direction when either is traversed. There are
three nontrivial tunnel types:

∙ Toggles are traversable in a single direction depending on the state of the gadget
and flip the state of the gadget when traversed. A toggle is symbolized by an
arrow pointing in the direction it is currently traversable in.

∙ Tripwires are always traversable in both directions and flip the state of the gadget
when traversed. A tripwire is symbolized by a line with a shorter perpendicular
line at its midpoint.

∙ Locks are traversable in both directions in one state (unlocked or open) and not
traversable in the other state (locked or closed) and do not flip the state when
traversed. A lock is symbolized by a line with a circle at its midpoint; the circle
is empty when the lock is open and contains an X when the lock is closed.

2-toggle gadgets can be combined in three ways (parallel, antiparallel or cross-
ing); gadgets containing at least one tripwire or lock can be combined in two ways
(noncrossing or crossing).

Demaine et al. [47] proves that all nontrivial reversible deterministic 2-tunnel
gadgets simulate each other and reachability in networks built from them is PSPACE-
complete. In this section, we present simpler simulations found by our search.

2-toggles simulate toggle-lock. Figure 6 of [47] shows a simulation of a noncross-
ing toggle-lock by parallel, antiparallel, and crossing 2-toggles. Our search found
that each type of 2-toggle by itself, plus unconstrained vertices (called “branching
hallways” in [47] and “3-split” in our system’s traces), suffices to simulate a noncrossing
toggle-lock.

Theorem 2.6.1. The gadget network in Figure 2-5 simulates a noncrossing toggle-lock.
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Figure 2-5: Simulation of a noncrossing toggle-lock with parallel 2-toggles.
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Figure 2-6: 1-player simulation of a noncrossing toggle-lock with antiparallel 2-toggles
and one 1-toggle. (Note that a 2-toggle can be used as a 1-toggle by ignoring one
tunnel.)

Proof. The state of the toggle-lock is stored in the center 2-toggle; the other two
2-toggles serve to isolate the toggle tunnel from the lock tunnel. In the state shown
in Figure 2-5, the toggle points right from location 0 to location 1 and the lock is
open between locations 2 and 3. When the agent traverses from location 2 to 3 or vice
versa, it passes through two 2-toggles twice, leaving them in the same state before the
traversal; the left 2-toggle blocks exiting to location 0 or 1.

If the agent takes the toggle path from location 0 to 1, it traverses the center
2-toggle only once, flipping the state of the toggle-lock. Now the lock path is closed
because the center and right 2-toggles point in opposite directions, and the toggle
path is traversable from location 1 to location 0.

Theorem 2.6.2. The gadget network in Figure 2-6 simulates a noncrossing toggle-lock
in one-player.

Proof. The state of the toggle is stored in the 1-toggle. The lock is open when it is in
the state shown in the figure, and otherwise closed. When the toggle path is traversed,
the 1-toggle and left 2-toggle flip, flipping the toggle; this also closes the lock because
any traversal from location 2 or 3 is blocked at some point by a 2-toggle pointing in
the wrong direction.

In the state shown in the figure, the lock path can be traversed in either direction
passing through each 2-toggle twice, leaving the network in the same state (so the
lock remains open). From location 2, the agent traverses the top tunnel of the right
2-toggle, the bottom tunnel of the left 2-toggle, the bottom tunnel of the right 2-toggle,
the bottom tunnel of the center 2-toggle, the top tunnel of the center 2-toggle, the
bottom tunnel of the left 2-toggle and the top tunnel of the center 2-toggle before
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Figure 2-7: Simulation of a noncrossing toggle-lock with crossing 2-toggles.
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Figure 2-8: Simulation of an antiparallel 2-toggle by noncrossing toggle-locks. Com-
pared to [47, Figure 14], eliminates two 1-toggles.

exiting at location 3. From location 3, the agent traverses the top tunnel of the
center 2-toggle, the bottom tunnel of the left 2-toggle, the bottom tunnel of the center
2-toggle, the bottom tunnel of the right 2-toggle, the bottom tunnel of the left 2-toggle
and the top tunnel of the right 2-toggle before exiting at location 2.

Theorem 2.6.3. The gadget network in Figure 2-7 simulates a noncrossing toggle-lock.

Proof. This gadget network is just like the network in Figure 2-5 except that the
unconstrained vertices have been placed on another face. Because each traversal of
the network passes through two 2-toggles, the internal crossing is immediately undone,
so the network still simulates a noncrossing 2-toggle.7

Three other simulations. Here are three other simulations, all improved by the
elimination of 1-toggles.

Theorem 2.6.4. The gadget network in Figure 2-8 simulates an antiparallel 2-toggle.

Proof. The agent can enter the gadget at either location 0 or location 2. Either way,
the agent is forced to complete a full cycle through the toggles before being able to
leave at location 1 or location 3, respectively. After this traversal, all gadgets have
changed state once, and the network is traversable from 1 to 0 or 3 to 2, as desired.

7Crossing 2-toggles can simulate a crossing toggle-lock, but we do not present the simulation
here.
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Figure 2-9: Simulation of a tripwire-toggle by noncrossing tripwire-locks. Compared
to [47, Figure 12], eliminates one 1-toggle and two crossovers.
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Figure 2-10: Simulation of an antiparallel 2-toggle by noncrossing tripwire-locks.
Compared to [47, Figure 16], eliminates two 1-toggles.

Theorem 2.6.5. The gadget network in Figure 2-9 simulates a noncrossing tripwire-
toggle.

Proof. In the state shown in the figure, the toggle is pointing right from location 3 to
location 2; it cannot be traversed in the other direction because the center and right
tripwire-locks are locked. After traversal, the middle tripwire-lock is open, so the only
the reverse traversal is possible. Thus this path is a toggle, as desired.

The path from location 0 to 1 is the tripwire path. Traversing the tripwire path
closes the upper-left tripwire-lock, making the traversal from location 3 to location 2
impossible, and opens the upper-right tripwire-lock, making the traversal from location
2 to location 3 possible. After the latter traversal, the middle tripwire-lock is open,
allowing the reverse traversal. Thus the tripwire path flips the state of the gadget, as
desired.

Theorem 2.6.6. The gadget network in Figure 2-10 simulates an antiparallel 2-toggle.
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Proof. In the state shown in the figure, the upper toggle points right and the lower
toggle points left. When traversing from location 0, the agent cannot exit at location 3
because that tripwire-lock is locked until the agent traverses the tripwire, nor can the
agent exit at 2 because that tripwire-lock locks when the agent traverses the tripwire,
so the only possible exit is at location 1. By a similar argument, if the agent enters at
location 2 it can only exit at location 3.

After either traversal, all four tripwire-locks have flipped their state. Then traversals
from 0 and 2 are impossible because the first lock they would pass through is locked.
Instead traversal is possible from location 1 to location 0 and location 3 to location 2,
as desired.

2.6.2 Planar Directed Door Simulations8

A door is a gadget with two states, named open and closed, and three tunnels, named
open, traverse and close. Traversing the open or close tunnel sets the door’s state to
open or closed, respectively. The traverse tunnel is traversable only when the door
is in the open state. Doors were introduced in [144] to prove PSPACE-hardness of
Lemmings and used soon after in [10] to prove PSPACE-hardness of all three Donkey
Kong Country games and The Legend of Zelda: A Link to the Past. These proofs
used a separate crossover gadget, so the planar arrangement of the open, traverse
and close tunnels is irrelevant. A recent paper on planar door gadgets [16] seeks to
dispense with the crossover gadget. After proving that all doors with only undirected
tunnels or a mix of directed and undirected tunnels simulate some door with only
directed tunnels, Ani et al. [16] proves that 11 of the 12 fully directed doors (shown in
Figure 2-11) build a crossover gadget. Three of those cases are trivial; simulations
for the other eight cases were found through the use of our computer search, and we
re-present those simulations here.

First, we need to introduce two other gadgets that build crossovers that will be
the targets of some of our simulations. A self-closing door, introduced in [16], has two
states, open and closed, but only two tunnels, open and traverse. The open tunnel sets
the door’s state to open; the traverse tunnel sets the door’s state to closed. Self-closing
doors build crossover gadgets [16, Theorem 4.1].

Another gadget that builds a crossover gadget is the ditripwire-dilock, which is like
the tripwire-lock presented in the previous section except both tunnels are directed.
The parallel ditripwire-dilock builds the antiparallel ditripwire-dilock via a simulation
also found by our computer search and presented in the following proof. Together,
the parallel and antiparallel ditripwire-dilock build a crossover gadget using the same
construction as for the tripwire-lock.

Lemma 2.6.7. 1-player planar motion planning with the parallel directed tripwire-lock
is PSPACE-hard.

Proof. The parallel directed tripwire lock can simulate the antiparallel directed tripwire
lock, as in Figure 2-12. Crossing the tripwire in gadget 2 forces the agent to cross

8Proofs and figures in this section are from [16] (also available on arXiv [17]), which is joint work
with Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson and Jayson Lynch.
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Case 1: OcCTt Case 2: OTtCc Case 3: OCcTt Case 4: OTtcC

Case 5: OcCoTt Case 6: OTtoCc Case 7: OCcoTt Case 8: OTtocC

Case 10: OtCcTCase 9: OtcCT Case 11: OCTtc Case 12: OcTtC

Figure 2-11: The twelve cases of a planar directed door without internal crossings.
Opening tunnels with adjacent ports are merged into opening ports.

the tripwire in gadget 1, so exactly one of the locks of gadgets 1 and 2 are locked.
Similarly, exactly one of the locks of gadgets 3 and 5 are locked. Crossing the tripwire
in gadget 4 forces the agent to exit the simulation (or be stuck), and is also the only
way to exit when the agent comes from the top left port, so the lock in gadget 4 is
unlocked after an even number of crossings of the top path and locked after an odd
number of crossings. Since the locks of gadgets 1 and 2 are anti-correlated, if the
agent wants to unlock the lock in gadget 1, it must afterward cross the lock in gadget
3. But said lock must be unlocked by going in a loop through the lock in gadget 4,
which is unlocked only after an even number of crossings of the top path. So during
an even-indexed (second, fourth, etc.) crossing of the top path, the lock in gadget
1 must be locked before the agent can leave. During an odd-indexed crossing, the
agent can take the loop through the lock in gadget 4, unlock the lock in gadget 1, take
the loop again to unlock the exit, and exit. So the top path behaves like a directed
tripwire for the lock in gadget 1, which is the bottom path.

The parallel and antiparallel directed tripwire locks together simulate a directed
tripwire-lock-tripwire with antiparallel tripwires (Figure 2-13). In this gadget going
through the top or bottom pairs of tripwires flips which of the middle locks is closed.
If the top and bottom set of locked tunnels are paired, then it blocks the middle
pathway; however, if they are opposite, the connection in the middle can be used to
traverse them.

This gadget in turn simulates a crossover (Figure 2-14), removing the planarity
constraint. Here both pathways lock two of the gadgets before reaching the center
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Figure 2-12: Simulation of an antiparallel ditripwire-dilock with a parallel ditripwire-
dilock. Gadgets are labelled to aid explanation.

sim

Figure 2-13: Simulation of a directed tripwire-lock-tripwire with antiparallel tripwires
using both parallel and antiparallel ditripwire-dilock. Inspired by Figure 10 of [47].

preventing the agent from exiting via a disallowed path, and then they route through
those gadgets again opening them back up and restoring the directed crossover to its
original state.

We now present the simulations proving PSPACE-hardness of 1-player motion
planning through the doors in Figure 2-11. We give each door a name based on the
cyclic orientation of its ports/tunnels, with entrances using uppercase letters and exits
using lowercase letters. When an open tunnel’s entrance and exit are next to one
another, we combine them into a single location, an open port.

Theorem 2.6.8. 1-player planar motion planning with any directed door without
internal crossings except the Case 8: OTtocC door is PSPACE-hard.

Proof. We divide into multiple cases. Note the cases are numbered according to
Figure 2-11, not in the order they are addressed in this proof.

Case 2: OTtCc, Case 10: OTcCt, and Case 12: OcTtC doors. In all these
doors the opening port/tunnel is a port, and the traverse tunnel output is adjacent to
the closing tunnel input. Thus, we can simulate a directed open-optional self-closing
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Figure 2-14: Simulation of a crossover using a directed tripwire-lock-tripwire with
antiparallel tripwires. Inspired by Figure 11 of [47].

door by wiring the traverse tunnel output to the closing tunnel input and by attaching
a wire to the open port, and these wires do not cross each other. Then this reduces to
[16, Theorem 4.1]. These are the three trivial cases; the simulations for the rest of
this proof were found by our computer search.

Case 1: OcCTt door. can simulate the directed version of the tripwire lock, as
shown in Figure 2-15. We will refer to the gadgets numbered left to right. The lock is
simply the traverse tunnel on door 1. In the two simulated states we will either have
doors 1 and 3 open or door 2 open. If door 2 is open, when traversing the tripwire
tunnel we can go through the traverse tunnel allowing us to open doors 1 and 4. With
door 4 now open, we can go through its traverse tunnel opening door 3, and then
closing door 4 on the way out. This leaves us with doors 1 and 3 open. Going through
the tripwire tunnel again closes door 1 but allows us to go through the traverse tunnel
of door 3, allowing us to open door 2. Doors 3 and 4 are then closed on the way
out. There are states where we could fail to open all of these doors while traversing
the close tunnel, but this will leave the gadget with strictly less traversability and
thus the agent will never want to take such a path. Thus the Case 1: OcCTt door is
PSPACE-complete by Lemma 2.6.7.

Case 3: OCcTt door. This door can simulate a directed open-optional normal
self-closing door (Figure 2-16). If the agent enters from port 𝑂 (the opening port),
they can open doors 2 and 3. If they then leave, they have accomplished nothing
because door 2 was already open, and door 3 can be opened from port 𝑂 anyway
and cannot be traversed from port 𝑇0 or 𝑇1 as we will see later. So they close door
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Figure 2-15: The Case 1: OcCTt door simulates the parallel directed tripwire lock. In
addition, the state diagram of the directed tripwire lock. Arrows are drawn directly
on wires to represent diodes.
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Figure 2-16: Simulation of a self-closing door with the Case 3: OCcTt door. The
simulation starts in the closed state. Ports and gadgets are labelled.

2 instead. Then they can open door 1 and they are forced to traverse door 3. The
agent can then reopen door 2 and return to port 𝑂. Now all the doors are open. If
the agent then enters from port 𝑇0, then they are forced to close door 3. They can
then open door 1 (useless), and then they are forced to traverse door 2 and close door
1, leading to port 𝑇1. The agent could not have taken this path initially because door
1 was closed, and they cannot take it again without visiting port 𝑂 because they just
closed door 1.

Case 4: OTtcC door. This door can simulate a directed open-optional normal
self-closing door (Figure 2-17). If the agent enters from port 𝑂, they can open door 1,
and then they are forced to close door 2. Continuing this loop does nothing, so the
agent then returns to port 𝑂. Now door 1 is open and door 2 is closed. If the agent
then enters from 𝑇0, then they are forced to traverse door 1. They can then open
door 2 and then they are forced to close door 1. Continuing the loop does nothing, so
the agent has no other option but to traverse door 2 to port 𝑇1. The agent could not
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Figure 2-17: Simulation of a self-closing door with the Case 4: OTtcC door. The
simulation starts in the closed state. Ports and gadgets are labelled.
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Figure 2-18: Simulation of a self-closing door with the Case 6: OTtoCc door. The
simulation starts in the closed state. Ports and gadgets are labelled.

have taken this path initially since door 1 was closed, and they cannot take it again
without visiting port O because they closed door 1.

Case 6: OTtoCc door. This door can simulate a directed open-optional normal
self-closing door (Figure 2-18). If the agent enters from port 𝑂, they are forced to
close door 3. If the agent then traverses door 2, they are forced to open door 3 and
return to port 𝑂, accomplishing nothing. So the agent has no other option but to
close door 1. If the agent tries to open door 2, they get stuck, so they instead open
door 1. Continuing the loop involving door 1 does nothing, so the agent then traverses
door 2, opens door 3, and returns to port 𝑂. Now door 1 is open. If the agent enters
from port 𝑇0, then they are forced to close door 2, traverse door 1, and close door 1.
Reopening door 1 puts the agent back into the situation of being forced to close door
1, so the agent instead opens door 2 and traverses door 3 to port 𝑇1. The agent could
not have taken this path initially since door 1 was closed, and they cannot take it
again without visiting port 𝑂 because they closed door 1.

Case 5: OtToCc door. This door can simulate the Case 6: OTtoCc door, which
has been covered, by effectively flipping the traverse tunnel (Figure 2-19). Door 1 is
the gadget that we flip the traverse tunnel of. If the agent enters from port 𝑇0, they
must open door 2, the close door 2. If door 1 is open and the agent then traverses it,
they are back to a previous position with nothing changed. Instead, the agent opens
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Figure 2-19: Simulation of the Case 6: OTtoCc with the Case 5: OcCoTt door. The
traverse tunnel of the leftmost gadget is effectively flipped.

door 3. If the agent then closes door 3, they get stuck because door 2 is closed. So
they must close door 2 (again) or traverse door 3. These actions lead to the same
situation. If the agent opens door 3 (again), they are back to the same situation that
occurred after opening door 3 the first time. If door 1 is open, the agent then traverses
door 1. Then they must open door 2. Closing door 2 leads to a previous situation,
so the agent then traverses door 3. If the agent then traverses door 1 (again), they
must open door 2 (again), leading to a previous situation. So they instead open door
3. Closing door 2 and traversing door 3 lead to different previous situations, so the
agent then closes door 3, and then is forced to traverse door 2 to port 𝑇1, leaving all
the doors unchanged. If door 1 is not open, then the agent is unable to leave.

Case 7: OtTocC door. This door can simulate a directed open-optional normal
self-closing door (Figure 2-20). If the agent enters from port 𝑂, they must open door
1, then close door 2. If the agent then closes door 3, they get stuck because door
2 is closed. The agent can traverse door 1 and leave via port 𝑂, but they can also
open and then traverse door 3 and then do the same thing, which is advantageous. So
the agent opens and traverses door 3, then traverses door 1 to port 𝑂. Now door 1
is open, door 2 is closed, and door 3 is open. If the agent enters from port 𝑇0, they
must close door 1, then open door 2, then traverse door 3. Opening door 3 and then
traversing it is a no-op, and door 1 is closed, so the agent closes door 3 and then must
traverse door 2 to port 𝑇1. This leaves door 1 closed, door 2 open, and door 3 closed.
The agent could not have taken this path initially because door 3 was closed, and
cannot take it again without visiting port 𝑂 first for the same reason.

Case 9: OtcCT door. This door can simulate a directed open-optional normal
self-closing door (Figure 2-21). If the agent enters from port 𝑂, they can open door 1
and must close door 2. If the agent later enters from port 𝑇0, then they must traverse
door 1. They then can open door 2 (and must, since that is the only way out) and
must close door 1. Then the agent traverses door 2 to port 𝑇1. The agent could not
have taken this path initially because door 1 was closed, and cannot take the path
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Figure 2-20: Simulation of a self-closing door with the Case 7: OCcoTt door.
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Figure 2-21: Simulation of a self-closing door with the Case 9: OtcCT door.

again without visiting port 𝑂 first for the same reason.

Case 11: OCTtc door. This door can simulate the Case 12: OcTtC door, which
has been covered, by effectively flipping the traverse tunnel (Figure 2-22). Door 1 is
the gadget that we flip the traverse tunnel of. If the agent enters from port 𝑇0, then
they must traverse the bottom-left diode. The agent can then open doors 2 and 3 but
must pick one to close. If they close door 2, they get stuck. So the agent closes door 3.
Going to open doors 2 and 3 again leads to a previous situation, so the agent instead
traverses door 2. Traversing door 1 (if it is open) leads to a previous situation, and
traversing door 5 leads to being stuck. The agent traverse the right diode, and can
open doors 4 and 5 but must pick one to close. Closing door 4 leads to a previous
situation, so the agent then closes door 5, then must traverse door 4. Going to open
doors 4 and 5 again leads to a previous situation. If door 1 is open, then the agent
traverses door 1. Traversing door 2 leads to a previous situation, so the agent then
opens doors 2 and 3. Closing door 3 leads to a previous situation, so the agent closes
door 2, then must traverse door 4. Traversing door 1 leads to a previous situation, so
the agent instead opens doors 4 and 5. Closing door 5 leads to a previous situation,
so the agent then closes door 4. Traversing door 1 or going to open doors 4 and 5
both lead to previous situations, so the agent then traverses door 5 and must traverse
door 4, leaving via port 𝑇1 and leaving all the doors unchanged. If door 1 is not open,
however, then the agent cannot leave because door 3 is closed and the only way to
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Figure 2-22: Simulation of the Case 12: OcTtC with the Case 11: OCTtc door. The
traverse tunnel of the topmost gadget is effectively flipped.

open it is through door 1’s traverse tunnel.
This covers all the planar directed doors without internal crossings except the

OTtocC door, finishing the proof.

2.6.3 Input-Output Crossover Classification

Ani et al. [18] proved PSPACE-hardness for zero-player reachability in networks built
from unbounded output-disjoint deterministic 2-state input/output gadgets, but they
did so without concern for the planar arrangement of the input and output locations
of each gadget. That is, they studied six types of gadgets, but there are actually 144
distinct gadgets in this class after taking arrangement of locations into account. We
can reframe their unconcern for planarity as an assumption that all these gadgets
build (directed) crossovers. Using our computer search, we discharge this assumption
for all but 10 of the gadgets by finding a crossover simulation.

We do not attempt to present and argue correctness of 134 simulations here.
Instead we take these results as a computer-aided proof: if we believe the gadget
search system’s operations indeed correspond to operations on gadget networks, and
if we believe the implementation is correct, we can depend on traces output by the
system to witness the corresponding simulation. (The traces are available on GitHub.9)

We use different terms to make it easier to generate and parse formulaic names,
particularly to avoid assigning multiple meanings to “toggle”:

9https://github.com/jbosboom/gadget-search-traces
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I/O paper’s name Our name
Set-Up Line diupwire
Set-Down Line didownwire
Toggle Line ditripwire
Switch point
Set-Up Switch uppoint
Set-Down Switch downpoint
Toggle Switch trippoint

We name gadgets by listing the port locations of each component of the gadget.
For example, a 01-diupwire-234-downpoint has a diupwire from location 0 to location
1 and a downpoint from location 2 to location 3 in the up state and location 4 in the
down state.

Figure 2-23 lists the gadgets known to simulate crossovers by themselves (along
with a fanin gadget, as is standard in the input/output gadget model). Figure 2-24
lists the gadgets known to simulate another input/output gadget known to simulate
a crossover, or a gadget known to simulate a gadget known to simulate a crossover,
and so on. Figure 2-25 lists the gadgets not known to build a crossover. The gadget
search cannot prove they do not simulate crossovers, only that, if such a simulation
exists, it is beyond the horizon of the search. We searched 13 generations for the
diupwire-downpoint, 12 generations for the ditripwire-point, 7 generations for the
ditripwire-uppoint, and 9 generations for the diupwire-didownwire-point.

2.6.4 Computational Resources
As an example of the computational resources used during the search, consider the
OCTtc door. Our search for gadgets this door simulates ran for 20 generations, with
predicate limitations (Section 2.4.6) to 1 component in the state space and 8 states
for all operations and 6 locations for combine operations. The search used 618.4
CPU-hours over 13.87 wall-clock hours on our 64-thread AMD Ryzen Threadripper
2990WX with a base clock of 3.0 GHz and a boost clock of 4.2 GHz and 128 GiB of
DDR4-2933 RAM. At the end of the search, the database contained 2,524,692,664
gadget specifications and 24,731,118,894 edges, occupying 379.9 GB of storage space.

2.7 Future Work

2.7.1 Mirror
We could change our definition of planar gadget equivalence to only require the
location bijection to preserve the cyclic order of locations up to reflection. Then
the search could canonicalize away reflections as well as rotations by including the
reflected rotation permutations as well. We chose instead to keep enantiomorphs
distinct because when reducing to a problem it is not always possible to build both
enantiomorphs. For example, endless runner games with gravity fix both left and right
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01−diupwire−234−downpoint
02−diupwire−134−downpoint
02−diupwire−143−downpoint
03−diupwire−124−downpoint
03−diupwire−142−downpoint
03−diupwire−214−downpoint
03−diupwire−241−downpoint
04−diupwire−123−downpoint
04−diupwire−231−downpoint

01−diupwire−234−trippoint
02−diupwire−134−trippoint
02−diupwire−143−trippoint
03−diupwire−124−trippoint
03−diupwire−142−trippoint
03−diupwire−214−trippoint
03−diupwire−241−trippoint
04−diupwire−132−trippoint
04−diupwire−231−trippoint

02−ditripwire−134−point
03−ditripwire−124−point
03−ditripwire−214−point

01−ditripwire−243−uppoint
02−ditripwire−134−uppoint
02−ditripwire−143−uppoint
03−ditripwire−124−uppoint
03−ditripwire−142−uppoint
03−ditripwire−214−uppoint
03−ditripwire−241−uppoint
04−ditripwire−132−uppoint
04−ditripwire−213−uppoint

02−ditripwire−134−trippoint
03−ditripwire−124−trippoint
03−ditripwire−214−trippoint

01−diupwire−23−didownwire−465−point
01−diupwire−25−didownwire−436−point
02−diupwire−13−didownwire−456−point
02−diupwire−13−didownwire−465−point
02−diupwire−14−didownwire−356−point
02−diupwire−14−didownwire−365−point
02−diupwire−15−didownwire−346−point
02−diupwire−15−didownwire−364−point
02−diupwire−15−didownwire−436−point
02−diupwire−15−didownwire−463−point
02−diupwire−16−didownwire−345−point
02−diupwire−16−didownwire−354−point
02−diupwire−16−didownwire−435−point
02−diupwire−16−didownwire−453−point
03−diupwire−12−didownwire−456−point
03−diupwire−14−didownwire−256−point
03−diupwire−14−didownwire−265−point
03−diupwire−15−didownwire−246−point
03−diupwire−15−didownwire−264−point
03−diupwire−15−didownwire−426−point
03−diupwire−15−didownwire−462−point

03−diupwire−16−didownwire−245−point
03−diupwire−16−didownwire−254−point
03−diupwire−16−didownwire−425−point
03−diupwire−16−didownwire−452−point
03−diupwire−21−didownwire−456−point
03−diupwire−25−didownwire−416−point
03−diupwire−25−didownwire−461−point
03−diupwire−26−didownwire−415−point
03−diupwire−26−didownwire−451−point
04−diupwire−12−didownwire−356−point
04−diupwire−12−didownwire−365−point
04−diupwire−13−didownwire−256−point
04−diupwire−13−didownwire−265−point
04−diupwire−15−didownwire−236−point
04−diupwire−15−didownwire−263−point
04−diupwire−15−didownwire−326−point
04−diupwire−15−didownwire−362−point
04−diupwire−16−didownwire−235−point
04−diupwire−16−didownwire−253−point
04−diupwire−16−didownwire−325−point
04−diupwire−16−didownwire−352−point
05−diupwire−12−didownwire−346−point
05−diupwire−12−didownwire−364−point
05−diupwire−12−didownwire−436−point
05−diupwire−12−didownwire−463−point
05−diupwire−13−didownwire−246−point
05−diupwire−13−didownwire−264−point
05−diupwire−13−didownwire−426−point
05−diupwire−13−didownwire−462−point
05−diupwire−14−didownwire−236−point
05−diupwire−14−didownwire−263−point
05−diupwire−14−didownwire−326−point
05−diupwire−14−didownwire−362−point
05−diupwire−16−didownwire−234−point
05−diupwire−16−didownwire−243−point
05−diupwire−16−didownwire−324−point
05−diupwire−16−didownwire−342−point
05−diupwire−16−didownwire−423−point
05−diupwire−16−didownwire−432−point
05−diupwire−21−didownwire−436−point
05−diupwire−21−didownwire−463−point
05−diupwire−23−didownwire−416−point
05−diupwire−23−didownwire−461−point
05−diupwire−26−didownwire−413−point
05−diupwire−26−didownwire−431−point
06−diupwire−12−didownwire−354−point
06−diupwire−13−didownwire−245−point
06−diupwire−13−didownwire−254−point
06−diupwire−13−didownwire−425−point
06−diupwire−13−didownwire−452−point
06−diupwire−14−didownwire−235−point
06−diupwire−14−didownwire−253−point
06−diupwire−14−didownwire−325−point
06−diupwire−14−didownwire−352−point
06−diupwire−15−didownwire−423−point
06−diupwire−23−didownwire−415−point
06−diupwire−25−didownwire−413−point
06−diupwire−25−didownwire−431−point

Figure 2-23: Unbounded output-disjoint deterministic 2-state input/output gadgets
known to simulate directed crossovers.
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Simulating gadget Simulated gadget
04-diupwire-132-downpoint 04-diupwire-132-trippoint
04-diupwire-213-downpoint 04-diupwire-231-downpoint
01-diupwire-243-trippoint 04-diupwire-132-trippoint
04-diupwire-123-trippoint 04-diupwire-132-trippoint
04-diupwire-213-trippoint 04-diupwire-132-trippoint
01-ditripwire-234-point 04-diupwire-231-downpoint
04-ditripwire-213-point 04-diupwire-132-downpoint
01-ditripwire-234-uppoint 04-diupwire-132-downpoint
04-ditripwire-231-uppoint 04-diupwire-231-downpoint
01-ditripwire-234-trippoint 04-diupwire-132-trippoint
04-ditripwire-123-trippoint 01-ditripwire-234-trippoint
04-ditripwire-213-trippoint 04-ditripwire-213-uppoint
01-diupwire-23-didownwire-456-point 06-diupwire-12-didownwire-354-point
01-diupwire-25-didownwire-463-point 01-diupwire-26-didownwire-453-point
01-diupwire-26-didownwire-435-point 04-diupwire-231-downpoint
01-diupwire-26-didownwire-453-point 04-diupwire-213-downpoint
03-diupwire-12-didownwire-465-point 06-diupwire-14-didownwire-253-point
03-diupwire-21-didownwire-465-point 04-diupwire-132-downpoint
06-diupwire-15-didownwire-324-point 04-diupwire-132-downpoint
06-diupwire-15-didownwire-432-point 06-diupwire-14-didownwire-253-point
06-diupwire-21-didownwire-435-point 04-diupwire-231-downpoint
06-diupwire-23-didownwire-451-point 04-diupwire-132-downpoint

Figure 2-24: Unbounded output-disjoint deterministic 2-state input/output gadgets
known to simulate another such gadget in a chain of simulations that eventually leads
to a directed crossover. Each gadget in the left column simulates gadgets in the right
column in that row.
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01−diupwire−243−downpoint

04−ditripwire−123−point

04−ditripwire−123−uppoint

06−diupwire−12−didownwire−345−point
06−diupwire−12−didownwire−435−point
06−diupwire−12−didownwire−453−point
06−diupwire−15−didownwire−234−point
06−diupwire−15−didownwire−243−point
06−diupwire−15−didownwire−342−point
06−diupwire−21−didownwire−453−point

Figure 2-25: Unbounded output-disjoint deterministic 2-state input/output gadgets
not known to simulate a directed crossover, even indirectly.

and up and down. This makes it useful to know whether both morphs are necessary
for a simulation.

2.7.2 Nonplanar Simulations
The implementation of all the operations described earlier in this chapter are planarity-
preserving: gadget networks built from these operations can always be drawn in
the plane. This is important when we are seeking planar simulations, as we did for
the door gadgets presented in Section 2.6.2, but means the search will not find any
nonplanar simulations.

The simplest way to search for nonplanar simulations, and the one we used in some
initial experiments, is to include a crossover gadget in the set of gadgets available
to build simulations with. This requires a combine generation for each crossing, so
strongly favors finding simulations with few crossings.

In nonplanar simulations, the locations of a gadget or gadget network are an
unordered set, instead of being in circular order around the gadget’s exterior. Combine
just merges the locations of the two gadgets instead of splicing the right gadget’s
locations into the left’s at a specific point, and connect can connect any two locations.

The implementations of combine, connect and canonicalize can be modified to
natively allow nonplanar simulations. During combine, instead of splicing in a rotation
of the right gadget’s locations into the left gadget’s locations, simply append the
right gadget’s locations to the left gadget’s. Then during connect, connect all pairs
of locations, not just adjacent ones. Canonicalization for nonplanar searches uses all
permutations of locations, not just rotations, so that gadgets differing only in the
numbering of their locations have the same canonical form. With these alternate im-
plementations, the search does fewer combine operations but more connect operations,
but should be faster overall because gadgets will canonicalize together more often.
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2.7.3 Two-Player Simulations
For one-player and zero-player reachability problems, the number of time steps taken
by the agent is irrelevant; the problem asks only if the agent can reach the goal location
in any number of steps, or not. Thus we do not need to, and in fact prefer not to,
encode timing information in our specifications; when we compose gadget specifications
in the search, we do not record the number of individual gadget traversals making up
a traversal of the composed gadget.

In two-player reachability problems, the two players are racing to reach their
respective goal locations. A precise definition of gadget simulation for two-player
problems remains an open problem, but the most obvious definition is that substituting
the simulating gadget network with or for the gadget being simulated should preserve
the winner, which means preserving precise timing information is important. Thus
our specifications do not permit us to find simulations guaranteed to be valid for
two-player reachability.

Our search can find simulations that are only valid under the assumption that
the agent will maximize the number of available traversals. This assumption is
not valid for two-player reachability because one player may want to block the other.
Theorem 2.6.2 is an example of a simulation produced by our search that is not valid
in two-player. From the state shown in Figure 2-6, the agent can enter at location 3
and traverse through the top tunnel of the center 2-toggle and the bottom tunnel of
the left 2-toggle and exit back at location 3. Now the 1-toggle and the top tunnel of
the left 2-toggle point towards each other, making the toggle path of the simulated
toggle-lock impassable. There are also complete traversals of the lock path that fail
to reset the network to the open state, locking the lock in one or both directions.
Because making these traversals makes the network strictly less traversable, there is
never a reason for the agent in a single-player reachability problem to make them; it is
strictly better to leave the toggle traversable in one or the other direction and/or the
lock open. In two-player, however, one player might want to block the other player,
so for two-player purposes this network does not simulate a noncrossing toggle-lock.
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Chapter 3

Tatamibari1

3.1 Introduction
Nikoli is perhaps the world leading publisher of pencil-and-paper logic puzzles, hav-
ing invented and/or popularized hundreds of different puzzles through their Puzzle
Communication Nikoli magazine and hundreds of books. Their English website [110]
currently lists 38 puzzle types, while their “omopa list” [109] currently lists 456 puzzle
types and their corresponding first appearance in the magazine.

Nikoli’s puzzles have drawn extensive interest by theoretical computer scientists
(including the FUN community): whenever a new puzzle type gets released, researchers
tackle its computational complexity. For example, the following puzzles are all NP-
complete: Bag / Corral [61], Country Road [82], Fillomino [153], Hashiwokakero
[15], Heyawake [79], Hiroimono / Goishi Hiroi [14], Hitori [73, Section 9.2], Kakuro /
Cross Sum [154], Kurodoko [89], Light Up / Akari [102], LITS [103], Masyu / Pearl
[62], Nonogram / Paint By Numbers [139], Numberlink [91, 4], Nurikabe [101, 78],
Shakashaka [50, 5], Slitherlink [154, 153, 3], Spiral Galaxies / Tentai Show [63], Sudoku
[154, 153], Yajilin [82], and Yosenabe [84].

Allen et al. [8] defined the Nikoli gap to be the amount of time between the
first publication of a Nikoli puzzle and a hardness result for that puzzle type. They
observed that, while early Nikoli puzzles have a gap of 10–20 years, puzzles released
within the past ten years tend to have a gap of < 5 years.

In this chapter, we prove NP-completeness of a Nikoli puzzle first published in
2004 [108] (according to [109]), establishing a Nikoli gap of 16 years. Specifically, we
prove NP-completeness of the Nikoli puzzle Tatamibari (タタミバリ), named after
Japanese tatami mats. A Tatamibari puzzle consists of a rectangular 𝑚 × 𝑛 grid of
unit-square cells, some 𝑘 of which contain one of three different kinds of clues: , ,
and . (The remaining 𝑚 ·𝑛−𝑘 cells are empty, i.e., contain no clue.) A solution to
such a puzzle is a set of 𝑘 grid-aligned rectangles satisfying the following constraints:

1. The rectangles are disjoint.
1This chapter, except for Sections 3.4 and 3.5, is from [6] (also available on arXiv [7]), which is

joint work with Aviv Adler, Erik D. Demaine, Martin L. Demaine, Quanquan C. Liu and Jayson
Lynch.
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Figure 3-1: What do these Tatamibari puzzles spell when solved and the dark clues’
rectangles are filled in? Figure 3-16 gives a solution.

2. The rectangles together cover all cells of the puzzle.

3. Each rectangle contains exactly one symbol in it.

4. The rectangle containing a (“square”) symbol is a square, i.e., has equal width
(horizontal dimension) and height (vertical dimension).

5. The rectangle containing a (“horizontal”) symbol has greater width than
height.

6. The rectangle containing a (“vertical”) symbol has greater height than width.

7. No four rectangles share the same corner (four-corner constraint).

To prove our hardness result, we first introduce in Section 3.2 a general “gadget
area hardness framework” for arguing about (assemblies of) local gadgets whose logical
behavior is characterized by area coverage. Then we apply this framework to prove
Tatamibari NP-hard in Section 3.3. In Section 3.8, we show that our framework applies
to at least one existing NP-hardness proof, for the Nikoli puzzle Spiral Galaxies [63].

We also present in Section 3.6 a mathematical puzzle font [45] for Tatamibari,
consisting of 26 Tatamibari puzzles whose solutions draw each letter of the alphabet.
This font enables writing secret messages, such as the one in Figure 3-1, that can be
decoded by solving the Tatamibari puzzles. This font complements a similar font for
another Nikoli puzzle, Spiral Galaxies [13].

3.2 Gadget Area Hardness Framework
Puzzles. The gadget area hardness framework applies to a general puzzle
type (e.g., Tatamibari or Spiral Galaxies) that defines puzzle-specific mechanics. In
general, a subpuzzle is defined by an embedded planar graph, whose finite faces are
called cells, together with an optional clue (e.g., number or symbol) in each cell. The
puzzle type defines which subpuzzles are valid puzzles, in particular, which clue types
and planar graphs are permitted, as well as any additional properties guaranteed by
a hardness reduction producing the puzzles.
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We will use the unrestricted notion of subpuzzles to define gadgets. Define an area
of a puzzle to be a connected set of cells. An instance of a subpuzzle in a puzzle is
an area of the puzzle such that the restriction of the puzzle to that area (discarding
all cells and clues outside the area) is exactly the subpuzzle.

Solutions. An area assignment (potential solution) for a (sub)puzzle is a map-
ping from clues to areas such that (1) the areas disjointly partition the cells of the
(sub)puzzle, and (2) each area contains the cell with the corresponding clue. The
puzzle type defines when an area assignment is an actual solution to a puzzle or a
local solution to a subpuzzle.

Gadgets. A gadget is a subpuzzle plus a partition of its entire area (all of its
cells) into one mandatory area and two or more optional areas, where all clues are
in the mandatory area. A hardness reduction using this framework should compose
puzzles from instances of gadgets that overlap only in optional areas, and provide a
filling algorithm that defines which clues are in the areas exterior to all gadgets.
Each gadget thus defines the entire set of clues of the puzzle within the gadget’s
(mandatory) area.

For a given gadget, a gadget area assignment is an area assignment for the
subpuzzle that satisfies three additional properties:

1. the assigned areas cover the gadget’s mandatory area;

2. every optional area is either fully covered or fully uncovered by assigned areas;
and

3. every assigned area lies within the gadget’s entire area.

A gadget solution is a gadget area assignment that is a local solution as defined by
the puzzle type.

Profiles. A profile of a gadget is a subset of the gadget’s entire area. A profile is
proper if it satisfies two additional properties:

1. the profile contains the mandatory area of the gadget; and

2. every optional area of the gadget is either fully contained or disjoint from the
profile.

Every gadget area assignment induces a proper profile, namely, the union of the
assigned areas.

A profile is locally solvable if there is a gadget solution with that profile. A
profile is locally impossible if, in any puzzle containing an instance of the gadget,
there is no solution to the entire puzzle such that the union of the areas assigned to the
clues of the gadget instance is that profile. These notions might not be negations of
each other because of differences between local solutions of a subpuzzle and solutions
of a puzzle.
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Each gadget is characterized by a profile table (like a truth table) that lists all
profiles that are locally solvable, and for each such profile, gives a gadget solution. A
profile table is proper if it contains only proper profiles. A profile table is complete
if every profile not in the table is locally impossible. A hardness reduction using this
framework should prove that the profile table of each gadget is proper and complete,
in particular, that any improper profile is locally impossible.

Given a puzzle containing some gadget instances, a profile assignment specifies
a profile for each gadget such that the profiles are pairwise disjoint and the union of
the profiles covers the union of the entire areas of the gadgets. In particular, such an
assignment decides which overlapping optional areas are covered by which gadgets. A
profile assignment is valid if every gadget is locally solvable with its assigned profile,
i.e., every assigned profile is in the profile table of the corresponding gadget.

A hardness reduction using this framework should prove that every valid profile
assignment can be extended to a solution of the entire puzzle by giving a composition
algorithm for composing local solutions from the profile tables of the gadgets, possibly
modifying these local solutions to be globally consistent, and extending these solutions
to assign areas to clues from the filling algorithm (exterior to all gadgets).

3.3 Tatamibari is NP-hard
In this section, we prove Tatamibari NP-hard by a reduction from planar rectilinear
monotone 3SAT. In Section 3.3.1 we briefly discuss a more constrained (but still
NP-hard) variant of the classic 3SAT problem from which we will make our reduction;
in Section 3.3.2, Section 3.3.3, and Section 3.3.4, we describe the gadgets (wires,
variables, and clauses) from which we build the reduction; in Section 3.3.5, we discuss
how the spaces between the gadgets are filled; and in Section 3.3.6 we use everything
to show the main result.

3.3.1 Reduction Overview
We reduce from planar rectilinear monotone 3SAT, proved NP-hard in [41]. An
instance of planar rectilinear monotone 3SAT comes with a planar rectilinear drawing
of the clause-variable graph in which each variable is a horizontal segment on the 𝑥-axis
and each clause is a horizontal segment above or below the axis, with rectilinear edges
connecting variables to the clauses in which they appear. Each clause contains only
positive or negative literals (i.e., is monotone); clauses containing positive (negative)
literals appear above (below) the variables. We can always lengthen the variable and
clause segments to remove bends in the edges, so we assume the edges are vertical
line segments. We can further assume that each clause consists of exactly three (not
necessarily distinct) literals: if a clause has 𝑘 < 3 literals, we can just duplicate one of
the clauses 3 − 𝑘 times, which is easy to do while preserving the tri-legged rectilinear
layout.

We create and arrange our gadgets directly following the drawing, possibly after
scaling it up; see Figure 3-2. Edges between variables and clauses are represented by
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clause wirevariable filler
Figure 3-2: The overall layout of the Tatamibari puzzles produced by our reduction
follows the input planar rectilinear monotone 3SAT instance. Clause, variable, and
wire gadgets are represented by purple, green, and red rectangles. Not drawn are
terminator gadgets at the base of all unused copies of variables. Grey rectangles
correspond to individual filler clues. Figure inspired by [41, Figure 2].

wire gadgets that communicate a truth value in the parity of their covering. For each
variable, we create a variable gadget, which is essentially a block of wires forced to
have the same value, and place it to fill the variable’s line segment in the drawing. For
each clause, we create a clause gadget with three wire connection points and place it to
fill the clause’s line segment. Negative clauses and wires representing negative literals
are mirrored vertically. Both the variable and clause gadgets can telescope to any
width to match the drawing; unused wires from the variable gadgets are terminated
at a terminator. By our assumption that the edges are vertical segments, we do not
need a turn gadget.

Covering a clause gadget without double-covering or committing a four-corner
violation requires at least one of its attached wires to be covered with the satisfying
parity (the true parity for positive clauses and the false parity for negative clauses).

To ensure clues in one gadget do not interfere with other gadgets, the wire gadget
is surrounded on its left and right sides by sheathing of clue rectangles and the
clause gadget is surrounded on three sides by a line of clues forced to form 1 × 1
rectangles. Wire sheathing also ensures neighboring wires do not constrain each other,
except in variable gadgets where the sheathing is deliberately punctured.

In our construction, gadgets will not overlap in their mandatory areas, so in the
intended solutions, the mandatory area will be fully covered by rectangles satisfying
the gadget’s clues. Also in our construction, every optional area will belong to exactly
two gadgets, and in the intended solutions, such an area will be covered by clues in
exactly one of those gadgets.

To apply the gadget area hardness framework, we define a local solution of
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a subpuzzle to be a disjoint set of rectangles satisfying the gadget’s clues and the
property that no four of these rectangles share a corner. (At the boundary of the
subpuzzle, there is no constraint.) Our composition algorithm will combine these local
solutions by staggering rectangles to avoid four-corner violations on the boundary
of and exterior to gadgets. We will prove that valid profile assignments correspond
one-to-one to satisfying truth assignments of the 3SAT instance.

We developed our gadgets using a Tatamibari solver based on the SMT solver
Z3 [42]. Section 3.4 describes the solver and Section 3.5 shows the solver-guided
development of the clause gadget. The solver and machine-readable gadget diagrams
are available on GitHub.2 Unfortunately, the solver can only verify the correctness
of constant-size instances of the gadgets, but the variable and clause gadgets must
telescope to arbitrary width. Thus we still need to give manual proofs of correctness.

3.3.2 Wire Gadgets and Terminators
The wire gadget, shown in Figure 3-3, consists of a column of clues surrounded by

clues which encodes a truth value in the parity of whether the squares are oriented
with the clues in their upper left or lower left corners. We will call this the wire
parity or wire value. In this construction, only vertical wires are needed, and thus we
do not give a turn gadget or horizontal wire. We call the column containing the
clues and the empty column next to it the inner wire. The inner wire is covered by
columns of alternating clues, called the (inner) sheathing. In the overall reduction,

clues in columns just outside the wire at its ends (in the variable gadget and either
the clause or terminator gadget) add a further layer of sheathing (called the outer
sheathing) outside the wire gadget, ensuring neighboring wires do not constrain each
other.

The following lemmas will show that the clues in the wire must be covered by
2 × 2 squares, the squares must all have the same parity, and the wire does not impart
any significant constraints onto the surrounding region. These lemmas assume that
no rectangle from a clue can reach the cells to the right of the top and bottom

clues in the wire, a property which we call safe placement. We discharge this
assumption in Section 3.3.5 by showing all wire gadgets produced by our reduction
are safely placed.

Lemma 3.3.1. Each in a safely placed wire covers a 2 × 2 square in the wire.

Proof. There is no 3×3 square in the wire that contains a clue but does not contain
any other clue. Thus we cannot cover the clue by squares larger than 2 × 2.

Now suppose we cover a clue by a 1 × 1 square. Now the cells immediately
above and below this clue must be covered. The clues must be taller than they are
long, so they cannot cover these cells. Thus we must cover them by squares containing
the clues above and below. This leaves the cell directly to the right of the 1 × 1
uncovered. It is easy to see that this cannot be covered by the nearby clues or

2https://github.com/jbosboom/tatamibari-solver
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(a) An unsolved wire gadget. Mandatory
area is purple and optional areas are

brown.

(b) Wire
communicating false

(c) Wire
communicating true

Figure 3-3: Wire gadget and its profile table. The wire can be extended to arbitrary
height by repeating rows. Note that between figures (b) and (c), the clues stay in the
same place (and the rectangles shift to represent the different values of the wire).

(a) An unsolved terminator gadget.
Mandatory area is purple and optional

area is brown.

(b) Terminating a false
wire

(c) Terminating a true
wire

Figure 3-4: Terminator gadget and its profile table.
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clues. The cells next to the top and bottom clues cannot be covered by a clue from
outside the gadget by our assumption that the wire is safely placed.

The only remaining possibility is a clue from outside the gadget extending into
the wire gadget. Such a rectangle cannot extend entirely through the wire because the

clues in the sheathing and the clues inside the wire are in alternating rows. If
the external horizontal rectangle enters the wire from the right and covers a cell next
to the clue, that clue is forced to be a 1 × 1 rectangle and the cell above it must
be covered by the next clue above. This results in a four-corner violation involving
the two clues and the left sheathing except when the clue is at the bottom of the
wire. In that case, the external horizontal rectangle blocks the bottom-right sheathing
clue, making it 1 × 1 and unsatisfied.

Corollary 3.3.2. Satisfied safely placed wires must have all of their 2 × 2 squares
with the clues in the lower left corner or all in the upper left corner.

Proof. By Lemma 3.3.1 all clues must be covered by 2 × 2 squares. To change
whether the clues are in the lower left or upper left, we will end up leaving a row of
two cells between clues blank. By the same arguments in Lemma 3.3.1 these cannot
be covered by the nearby clues or clues.

Lemma 3.3.3. The clues making up the inner sheathing of satisfied safely placed
wires must be covered by 1 × 2 rectangles of opposite parity to the wire’s squares.

Proof. By Corollary 3.3.2 the wire has one of two parities of squares. If a vertical
rectangle ends with the same 𝑦 coordinate as an adjacent square, then we will have
three right angles at a single corner, forcing a four-corner violation or uncovered cell.
Because the squares are 2 × 2, a vertical rectangle of odd height guarantees one of the
ends will share a 𝑦-coordinate with one of the squares. The clues occur every other
cell, so the vertical rectangles cannot be of length greater than 3. This forces them to
be of length 2 and staggered with respect to the squares.

Theorem 3.3.4. The safely placed wire gadget’s profile table is proper and complete.

Proof. By Lemma 3.3.1, each optional area must be fully covered or fully uncovered
by the neighboring clue, so the profile table is proper. Corollary 3.3.2 fixes the
clue parity and Lemma 3.3.3 fixes the sheathing parity, so all other profiles are locally
impossible, so the profile table is complete.

We also have a terminator gadget to terminate unused wires regardless of their
parity. The terminator gadget is shown in Figure 3-4.

Lemma 3.3.5. The terminator does not constrain the wire parity.

Proof. Figures 3-4b and 3-4c show solutions of the terminator with both parities. The
same arguments about wire correctness show this gadget does not allow any additional
wire solutions nor constrain other gadgets.

Theorem 3.3.6. The terminator gadget’s profile table is proper and complete.
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Proof. The profile table in Figure 3-4 contains only proper profiles, so the profile
table is proper. By the same arguments in Lemma 3.3.1, the two local solutions
shown are the only way to cover the wire part of the gadget. A horizontal rectangle
from a outside the gadget could cover part of the top row of the gadget (or the
entire top row when terminating a true wire) while leaving the clues in the gadget
satisfied and covering the remaining area. We prevent this through the global layout:
all clause gadgets (the only gadget containing clues) appear strictly above (for
positive clauses) or strictly below (for negative clauses) all terminator gadgets, so it is
not possible for any rectangles to cover area in the clause gadget. Thus all other
profiles are locally impossible, so the profile table is complete.

3.3.3 Variable Gadgets
The variable gadget is essentially a series of wires placed next to each other with
devices we call couplers in between. Each coupler acts essentially as an “equality”
constraint between neighboring wires, thus forcing all the wires connected via a series
of couplers to represent the same variable; this collection of wires then forms the
variable gadget of the reduction.

Each coupler takes two columns, and consists of (i) a clue which interacts with
the inner sheathing of the wires to force equality, and (ii) eight clues (two above
and two below the clue on each column), which prevent the inner sheathings of
the neighboring wires from constraining each other (except through the clue itself).
See Figure 3-6 for an example with two wires; additional wires can be added to either
side of variable by using more couplers (see Figure 3-7).

First, notice that both wires are constrained to have their squares in one of two
parities by the inner sheathing, as in Corollary 3.3.2. It is also important that wires
do not constrain each other outside the couplers, either directly (if they happen to be
adjacent) or indirectly (through the space in between); we address this in Section 3.3.5.

Now we have to show that two wires separated by the coupler must be in the same
configuration. This happens because the wire parity forces the parity of the inner
sheathing, which forces the parity of the coupler, which then forces the partiy of the
inner sheathing and the wire parity of the next wire over.

Lemma 3.3.7. The coupler has only two valid coverings of its clue.

Proof. The location of the eight clues around the clue ensure that it cannot
be larger than 2 × 2. By Corollary 3.3.2 we know that the wire gadgets next to the
coupler must have their inner sheathing as 2 × 1 rectangles in either the up or down
position. If the clue is covered by a 1 × 1 it will create a four-corner violation
with the inner sheathing. Thus it must be one of the two possible positions for a
2 × 2 square. If both inner sheathings have the same parity, as in Figure 3-6 then the
constraints can be locally satisfied.

Lemma 3.3.8. All wires in a variable gadget must have the same value (i.e. upwards
branches must have the same orientation).
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Proof. We know the coupler has at most two ways to satisfy its constraints, cor-
responding to a 2 × 2 square in either the up or down position. Notice that the
inner sheathing of both wires must be of different parity from the square or they will
cause a four-corner violation. Thus the inner sheathing must have the same parity,
ensuring that the wires themselves must have the same parity. If multiple wires are
all connected by couplers, then they will all be forced to have the same parity by the
same local argument.

Lemma 3.3.9. The variable gadget is locally solvable with a given profile if and only
if the profile satisfies (i) all upwards branches have the same orientation, (ii) all
downwards branches have the same orientation, and (iii) upwards and downwards
branches have opposite orientations from each other.

Proof. The “only if” direction follows from Lemma 3.3.8 and Corollary 3.3.2 (each wire
individually must have opposite orientation for upwards and downwards branches due
to the couplers, and all wires in the gadget must have the same upward orientation).

The “if” direction follows from Lemma 3.3.5, the individual solvability of each wire
and terminator in both orientations (as shown in Figure 3-3b, Figure 3-3c, Figure 3-4b,
and Figure 3-4c), and the solvability of the couplers given that adjacent wires have
the same orientation (Figure 3-6). Neighboring wires (within the variable gadget) do
not conflict with each other (outside of the coupler) because of the “outer sheathing”
columns separating them; the meeting points of the two clues in each “outer sheathing”
column can be adjusted to avoid four-corner violations with each other, as well as
avoiding four-corner violations with the neighboring “inner sheathing”.

Note that this lemma is what we want from a variable gadget: it is locally solvable
if and only if its profile corresponds to a specific value for the variable it represents.

3.3.4 Clause Gadgets
The clause gadget, shown in Figure 3-8, interfaces with three wire gadgets representing
the three literals of this clause. In the upper-left of the variable gadget is an internal
wire, which we call the clause verification wire. The only way to cover the top
two cells of that wire is using the wire’s top clue. This is only possible when at least
one of the wires is true, allowing a variable enforcement line (drawn in figures
as a purple horizontal bar) to provide a parity shift to the clause verification wire.
Otherwise, either those top two cells cannot be covered, or some other cell in the
clause will not be covered, or there will be a four-corner violation.

The mandatory areas of the clause include all clues and cells shown in Figure 3-12
and optional areas consisting of the row of cells at the bottom of the gadget, specifically
the set of cells under the clue lines at the bottom of the gadget.

Each of the three wires in this gadget has two intended solutions: true or false. In
Figure 3-12, the wire is blue if it represents true and red if it represents false. The
leftmost wire behaves somewhat differently from the others because it is closest to the
clause verification wire.
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Figure 3-5: The variable gadget. Mandatory area is purple and optional areas are
brown.
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Figure 3-6: The variable gadget’s profile table. Left: variable set to true. Right:
variable set to false.

Figure 3-7: A variable gadget widened to provide three wires, shown here set to true.
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Figure 3-8: An unsolved clause gadget. Mandatory area is purple and optional areas
are brown.
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⏟  ⏞  
repeatable

⏟  ⏞  
repeatable

Figure 3-9: Example where the columns in between literal wires in the clause gadget
have been expanded. The columns which are able to be repeated an arbitrary number
of times have been labeled as “repeatable” in the figure since they can be repeated an
arbitrary number of times to make the clause an arbitrary width.

Importantly, the clause gadget can be expanded horizontally such that the variable
wires can be spaced an arbitrary amount beyond the width of the base gadget shown
in Figure 3-12. The columns between the literal wires in the clause gadget can be
expanded an arbitrary number of columns. Such an example expansion is shown in
Figure 3-9. In this example, the columns have been expanded such that the entire
gadget is wider by 4 columns and the number of columns between each literal in the
gadget has been expanded by 2 columns.

Lemma 3.3.10. If any wire is in the false configuration, then the variable enforcement
line corresponding to the wire will not be able to go across the gadget.

Proof. If a wire is in the false configuration, then there exists at two cells on the top
of the wire that need to be covered. These two cells can be covered in two different
ways. We first prove this lemma for the leftmost wire and then prove the lemma for
the other wires since the leftmost wire is different from the others. In this case, the
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Figure 3-10: When the leftmost wire is set in the false configuration, the only way
to cover the top two cells of the wire is with a 2 × 2 square that blocks the variable
enforcement line.

only way to cover the two cells is with a 2 × 2 square (see Figure 3-10), blocking the
variable enforcement line from crossing the top of the wire.

For the other two wires, the top two cells can be covered in only two ways. Either
a 1 × 1 square covers one of the two cells and a vertical line from the top covers the
other cell or vice versa (see Figure 3-11).

No other configurations are available that does not violate the four-corner constraint.
Thus, this configuration prevents the corresponding variable enforcement lines from
going across the gadget.

Corollary 3.3.11. When all wires in the gadget are false, the puzzle does not have a
solution.

Proof. By Lemma 3.3.10, no variable enforcement line can go across the gadget if
all wires are false. In order to solve the puzzle presented by the gadget, the top
two cells of the clause verification line must be covered. These two cells cannot be
covered by the horizontal line on top of them nor can they be covered by the vertical
lines beside them. Thus, they must be covered by the 2 × 2 square formed in the
clause verification line. However such a square will either leave a cell in the middle
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(a) The middle wire is false. (b) The right wire is false.

Figure 3-11: For the false wires, the only two configurations that will guarantee that
the two cells at the top of the wires are covered are the cases where one 1 × 1 square
covers one of the two cells and a long rectangle extending from the top covers the
other cell. The 1 × 1 squares are shown in brown in the figures above.

of the clause verification line uncovered or will leave the bottom two cells of the
line uncovered. In this case, no configurations exist in covering these bottom two
cells without violating the four-corner rule. See Figure 3-12a. Thus, the gadget is
unsatisfiable if all wires into the gadget are false.

Lemma 3.3.12. If at least one of the wires entering the clause gadget is in the true
configuration, then the clause gadget is locally solvable.

Proof. In any wire is in the true configuration, then the variable enforcement line
corresponding to the gadget will be able to go across the gadget. For the leftmost
wire, the clause verification line will be in the configuration that ensures that all cells
that need to be covered by the line are covered. Otherwise, the variable enforcement
line will be able to cause the clause verification line to cover all the necessary cells.
See Figures 3-12b to 3-12h.

Using the above lemmas, we are able to prove the following properties of the profile
table of the clause gadget.

Corollary 3.3.13. The profile table of the clause gadget is proper.

Lemma 3.3.14. The profile table of the clause gadget is complete.

Proof. The clause gadget’s profile table contains all profiles shown in Figure 3-12
except for the all-false configuration shown in Figure 3-12a. By Corollary 3.3.11,
the all-false configuration is not locally solvable. It remains to show the all-false
configuration is locally impossible.
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To do this, we show that no solution to a clue outside of this profile is able to
solve any part of the all-false clause profile–essentially that the clause gadget is fully
isolated from the rest of the puzzle. By design, no clue above, to the left of, or to the
right of the clause can cover any of the cells that are left uncovered by the literals,
because the row and columns of single-cell squares blocks any rectangles from reaching
the uncovered cells.

We now prove that no clues from the bottom of the gadget can help cover any of
these cells. Such clues can only potentially cover the optional areas at the bottom of
the gadget. We show that such clues cannot cover parts of the literal gadgets. By
Lemma 3.3.7, there are only two possible configurations of the variable gadgets; thus,
no other outside fillers can cover any cells in the incoming wires. Hence, no clues
adjacent to the bottom of the gadget can help cover any part of the incoming wires.

Thus the all-false profile is locally impossible, so the profile table is complete.

3.3.5 Layout, Sheathing, and Filler

In order to build the full Tatamibari instance corresponding to a planar rectilinear
monotone 3SAT instance, we lay out the gadgets as shown in Figure 3-2: variable
gadgets are positioned on a central line, while positive and negative clauses are
positioned above and below respectively at heights corresponding with how many
layers of clauses are nested below them, with wires running vertically from variables to
clauses (both variable and clause gadgets can be extended arbitrarily far horizontally).
Variable and clause gadgets have rectangular profiles (except for where the wires “plug
in” to them). Variables and clauses have a uniform height, and for any two variable or
clause gadgets, they are placed on exactly the same set of rows or they share no rows.

All wire gadgets in the puzzle produced by our reduction are safely placed; that
is, no rectangle from a clue can reach the cells to the right of the top and bottom

clues in the wire. The only clues in those columns are in clause gadgets. The
row of single-cell squares at the top of the clause gadget blocks any rectangles from
extending upwards out of the clause gadget. If a rectangle from a clue in those
columns of the clause gadget extends downward past the first clue in the column
to its left, the cell below that clue cannot be covered by any clue, so rectangles
cannot extend downward out of the clause gadget in those columns. Thus clues
from clause gadgets cannot interact with wire gadgets, so the wires are safely placed.

Because we want the solvability of the Tatamibari instance to depend only on
solving the gadgets, we need to add filler clues that are always able to cover the
areas outside the gadgets.

First, we set aside any cells horizontally adjacent to a wire gadget. These cells will
be covered by the outer sheathing clues described in described in Section 3.3.2 and
Section 3.3.3 and highlighted in yellow in Figure 3-9 and Figure 3-12. In the global
solution, the areas assigned to the outer sheathing clues thus extend vertically outside
their gadget. For the purposes of the filler algorithm, we consider the cells covered by
the outer sheathing to be part of the wire gadget.
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(a) The (false, false, false) configuration. (b) The (false, false, true) configuration.

(c) The (false, true, false) configuration. (d) The (false, true, true) configuration.

(e) The (true, false, false) configuration. (f) The (true, false, true) configuration.

(g) The (true, true, false) configuration. (h) The (true, true, true) configuration.

Figure 3-12: The clause gadget. All configurations shown here except the all-false
configuration in Figure 3-12a are in the clause gadget profile table. Clues highlighted
in yellow also function as the “outer sheathing” protecting the wires closest to them
(see Section 3.3.5)
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Each filler clue corresponds to a rectangular area of space between gadgets, formed
by breaking each row into maximal horizontally contiguous strips between (and
bordered by) the gadgets, then joining vertically contiguous strips into a single
rectangle if they have the same width. The filler algorithm places a single clue in each
of these rectangles ( , , or depending on the rectangle’s aspect ratio), placed
arbitrarily inside (say, in the upper-right corner). See Figure 3-2 for an example.
While it may be possible for the solver to use these clues differently than shown
here, we only need to prove that if the solver does assign each rectangular area to its
associated clue, it will cover the area.

The only potential problem lies in the possibility of a four-corner violation involving
a filler rectangle. This can only happen where either (i) a corner of a filler rectangle
meets a gadget and a wire coming from that gadget, or (ii) where two corners of filler
rectangles meet along the edge of a gadget. If a corner of a filler section meets an
edge of another filler section or the edge of the board there cannot be a four-corner
violation.

Remark: There is a potential third problem case, where two wires are directly
adjacent with only the outer sheathing (2 columns) between them (see Figure 3-8,
which has this property). This can be dealt with in either of two ways: ensuring that
no wires are directly adjacent to each other by stretching the instance horizontally, or
noting that the meeting points of the outer sheathing of the two adjacent wires can
be adjusted to not produce a four-corner violation between them.

Proposition 3.3.15. If the gadgets can all be satisfied, the filler clues can also be
satisfied.

Proof. Each filler clue will be satisfied by a rectangle covering its entire associated
area; the cells horizontally adjacent to wires will be filled by two width-1 vertical
rectangles from the outer sheathing clues, one coming from the clause gadget above
and the other coming from the variable gadget below. The meeting point between
the two outer sheathing rectangles can be adjusted as needed to avoid a four-corner
violation. As mentioned, we have only two problem cases: (i) a corner of the filler
rectangle meets a gadget and protruding wire; and (ii) corners of two sections meet
on the side of a wire. Because both cases involve the side of a wire, we can avoid
violations in either case by appropriately adjusting the meeting point of the sheathing
clues.

(i) To avoid having a corner where the corner of the filler section meets the wire
and gadget, the meeting point of the two sheathing clues can be placed on the edge
(not corner) of the filler section, thus avoiding a four-corner violation since the corner
of the filler section meets the edge of one of the sheathing rectangles.

(ii) As long as the meeting point of the two sheathing rectangles of the wire is
not at the point where the two filler sections meet, there is no four-corner violation.
The meeting point can trivially be placed on the side of a filler section (while still
respecting the parity of the wire as expressed by the inner sheathing).

Therefore, since the sheathing can always be adjusted to accommodate filler
rectangles, the satisfiability of the Tatamibari instance depends only on the gadgets.
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3.3.6 Finale
Now we can show that Tatamibari is NP-hard. Let 𝑓 be the reduction, which takes
an instance Φ of planar rectilinear monotone 3SAT and returns a Tatamibari instance
𝑓(Φ); we want to show:

Proposition 3.3.16. If Φ has 𝑛 variables and 𝑚 clauses, then 𝑓(Φ) has size polyno-
mial in 𝑛 + 𝑚, and can be computed in time polynomial in 𝑛 + 𝑚.

Proof. Our construction expands the given planar rectilinear monotone 3SAT instance
by a constant factor. Therefore it suffices to prove that planar rectilinear monotone
3SAT is strongly NP-hard when given the coordinates of the rectilinear drawing.
Indeed, the height of the drawing is 𝑂(𝑚) and the width of the drawing is 𝑂(𝑒) if the
graph has 𝑒 edges, which is 𝑂(𝑚 + 𝑛) by planarity.

Proposition 3.3.17. If Φ has a solution, then 𝑓(Φ) also has a solution.

Proof. We begin by taking the solution to Φ and setting the variable gadgets’ profiles
according to those values; by Lemma 3.3.9, they will all be locally solvable. By
Lemma 3.3.12, since each clause gadget is connected to wires representing variables
which satisfy the clause, there must be a solution to the clause gadget. Furthermore,
by Proposition 3.3.15, if the gadgets are satisfiable then the rest of the space can be
filled without contradiction, producing a solution to 𝑓(Φ).

Proposition 3.3.18. If Φ has no solution, then 𝑓(Φ) also has no solution.

Proof. We prove the equivalent statement that if 𝑓(Φ) has a solution, then Φ must
also have a solution.

First, we prove that any solution to 𝑓(Φ) must correspond to some setting of the
variables 𝑥1, . . . , 𝑥𝑛 of Φ. This is a consequence of Lemma 3.3.8, which shows that all
wires in a single variable gadget must carry the same value, which is then taken as
the setting for that variable.

Next, we have to show that these settings of the variables 𝑥𝑖 are a solution of Φ; to
do this, note that by Corollary 3.3.2 each wire ending in a clause gadget must carry
its value into this clause gadget; and by Corollary 3.3.11 and Lemma 3.3.12 there is a
solution to the clause gadget if and only if the wires represent values which satisfy the
clause.

Thus, the values of the variable gadgets must be a solution to Φ.

The above three propositions imply our desired result:

Theorem 3.3.19. Tatamibari is (strongly) NP-hard.

Because a given Tatamibari solution can be trivially checked in polynomial time,
this theorem implies that Tatamibari is NP-complete.
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3.4 Solving Tatamibari with Z3
In this section we describe our Tatamibari solver3 based on the SMT (satisfiability
modulo theories) solver Z3 [42]. The solver is implemented in Python using Z3’s
Python interface. We used the solver during the development of our gadgets, especially
the clause gadget, to verify the gadgets are solvable exactly when they should be.
Section 3.5 presents the solver-guided evolution of the clause gadget.

Variables. The solver creates one Boolean variable for each possible rectangle. A
rectangle is possible if it contains exactly one clue and the rectangle’s aspect ratio
matches the clue. The variable will be assigned true if the rectangle is used in the
solution to the puzzle.

Constraints. In standard operation, the solver creates three sets of pseudo-Boolean
constraints. The first set of constraints enforces that exactly one rectangle correspond-
ing to each clue is part of the solution. The second set of cosntraints enforces that
each cell is covered by exactly one rectangle. The third set of constraints enforces
the four-corner constraint. While enumerating the possible rectangles, the solver
maintains four maps of cells to lists of rectangles having their upper-left, upper-right,
lower-left, and lower-right corners in that cell. Then for each grid point in the interior
of the puzzle, the solver looks up the four lists corresponding to the cells incident on
that grid point and iterates over all of them (a quadruply nested loop) adding the
constraint that at most three of each set of four rectangles meeting at that grid point
are part of the solution.

As an aid to gadget development, the solver supports ignoring some of the con-
straints or making the constraints soft (minimizing the number of violations). When
the one-rectangle-per-clue constraints are ignored, allowing rectangle shapes that do
not match their contained clue, the solver creates a separate set of covering constraints
based on individual cells. The user can request an exact covering (each cell is covered
exactly once), an overapproximate covering (each cell is covered at least once, and
the solver minimizes multiple covering), an underapproximate covering (each cell is
covered at most once, and the solver minimizes uncovered cells), or an incomparable
covering (the solver minimizes the total number of multiply-covered or uncovered
cells). The four-corner constraint can also be ignored or made soft.

As another aid to gadget development, the solver also supports three-corner
constraints at reflex corners of nonrectangular puzzles. Violations of the three-corner
constraint become violations of the four-corner constraint when clues from another
gadget cover the cell just outside the gadget’s reflex corner, so for the gadget to behave
as desired, it is required that there are no three-corner violations.

Input and output. The solver reads simple text files in which each character is
either a clue symbol, a period indicating an empty cell, or a space indicating a cell not
part of the puzzle (for nonrectangular puzzles). The solver outputs a tab-separated

3https://github.com/jbosboom/tatamibari-solver

75

https://github.com/jbosboom/tatamibari-solver


file with the input cell symbols plus integers indicating which rectangle each cell is in.
These output files can be visualized by SVG Tiler4 to produce figures like those in
this chapter.

3.5 Solver-Guided Development of Clause Gadget
We used the solver described in Section 3.4 as we developed the gadgets for our hardness
proof, checking them as we simplified and improved the gadgets. For example, Figure 3-
13 shows the sequence of different clause gadgets we designed, extracted from our Git
history for this work. This figure should be read in normal reading order, left to right,
top to bottom. Our initial attempt at a clause gadget lacked the rows and columns of
single-cell squares that isolate the clause gadget from the rest of the puzzle. We also
had not yet adopted inner sheathing for the wires, so the left wire is free to flip its
signal. After adding these features, further development of the clause gadget mostly
served to regularize clue positions within the gadget, make the gadget narrower and
shorter, and adapt the interface with the wires on the bottom of the gadget to avoid
four-corner violations. During the development process we used the solver to check
the clause is solvable when one of the inputs is true and not solvable when all inputs
are false.

4https://github.com/edemaine/svgtiler

Figure 3-13: Evolution of the clause gadget.
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Figure 3-13: Evolution of the clause gadget.
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Figure 3-13: Evolution of the clause gadget.
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Figure 3-13: Evolution of the clause gadget.
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Figure 3-13: Evolution of the clause gadget.
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3.6 Font
Figure 3-14 shows a series of twenty-six 10 × 10 Tatamibari puzzles that we designed,
whose unique solutions shown in Figure 3-15 reveal each letter A–Z. To represent a
bitmap image in the solution of a Tatamibari puzzle, we introduce two colors for clues,
light and dark, and similarly shade the regions corresponding to each clue. As shown
in Figure 3-15, the letter is drawn by the dark regions from dark clues. These puzzles
were designed by hand, using the solver described in Section 3.4 to iterate until we
obtained unique solutions. The font is also available online.5

3.7 Open Problems
There remain interesting open questions regarding the computational complexity
of Tatamibari. When designing puzzles, it is often desired to have a single unique
solution. We suspect that Tatamibari is ASP-hard (NP-hard to determine whether it
has another solution, given a solution), and that counting the number of solutions
is #P-hard. However, our reduction is far from parsimonious. Some rework of the
gadgets, and a unique filler between gadgets, would be required to preserve the number
of solutions.

We could ask about restrictions or natural variations of Tatamibari. For example,
we are curious whether a Tatamibari puzzle with only clues, or only clues,
remains hard. We have also wondered about the version of the puzzle without the
four-corner constraint. Although initially we thought of the four-corner constraint as
a nuisance to be overcome in our reduction, our final proof uses it extensively and
centrally.

3.8 Example: Spiral Galaxies
As an example of the gadget area hardness framework, we show how the NP-hardness
proof for Spiral Galaxies from [63] can be described using the framework. A Spiral
Galaxies puzzle is a rectangular grid with clues in some grid cells or on some grid
lines. The goal is to partition the puzzle into areas with a single clue per area such
that the area is rotationally symmetric about the clue.

We reduce from planar6 Boolean circuit satisfiability. We have a wire gadget, a
variable gadget, NOT and AND gadgets, a fanout (wire duplicator) gadget, and a
vertical shift gadget. We lay out these gadgets to overlap in their optional areas (only),
and communicate a truth value in whether the optional area is covered or not.

Wire. The wire gadget consists of repeating pairs of clues three grid units apart.
There are two gadget solutions, shown in Figure 3-17: repeating 3 × 2 rectangles, in

5http://erikdemaine.org/fonts/tatamibari/
6Friedman’s proof [63] provides a crossover gadget, but it is not necessary because AND and

NOT build a crossover [68].
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Figure 3-14: Puzzle font: each puzzle has a unique solution whose regions for dark
clues (shown in Figure 3-15) form the shape of a letter.
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Figure 3-15: Solved font: unique solutions to the puzzles in Figure 3-14.
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Figure 3-16: Solution to Figure 3-1.

(a) Unsolved wire gadget (b) Wire carrying true
signal: 3 × 2 rectangles

(c) Wire carrying false
signal: alternating 1 × 2

and 5 × 2 rectangles

Figure 3-17: Spiral Galaxies wire and its profile table (true and false solutions)

which case the wire covers the right optional area, and alternating 1 × 2 and 5 × 2
rectangles, in which case the wire covers the left optional area. The wire carries a true
signal when it covers the right optional area and false when it covers the left optional
area. The wire gadget can be extended to arbitrary length in units of two clues. (The
proof in [63] does not explicitly state this parity requirement, but the gate gadgets
assume the true signal protrudes into the gadget to cover the optional input area and
the false signal does not.)

Boolean circuit satisfiability requires the circuit produce a true output. We can
force a wire to be true simply by terminating it. Because the wire has height two, any
filler clues to the right of the wire cannot cover area in the wire gadget, so the wire
must end in a 3 × 2 rectangle to cover the right optional area, forcing the rest of the
wire to also carry a true signal.

Variable. The variable gadget is shown in Figure 3-18. There are two gadget
solutions, one leaving the optional area uncovered (so the adjacent wire is set to true)
and the other covering it (so the adjacent wire is set to false). Choosing one solution

(a) Unsolved
variable gadget

(b) Variable set to
true

(c) Variable set to
false

Figure 3-18: Spiral Galaxies variable and its profile table (true and false solutions)
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(a)
Unsolved

NOT
gadget

(b) NOT
gadget

converting
true to
false

(c) NOT
gadget

converting
false to

true

Figure 3-19: Spiral Galaxies NOT gadget and its profile table

or the other corresponds to assigning true or false to the variable.

NOT. The NOT gadget is shown in Figure 3-19. If the left optional area is covered
by the input wire (carrying a true signal), the clue in the NOT gadget must cover a
1 × 2 rectangle, so the right optional area must be covered by the output wire carrying
a false signal. If the left optional area is uncovered (when the input wire is false), the
clue in the NOT gadget covers both optional areas, so the output wire must carry a
true signal. Thus the NOT gadget inverts the wire’s signal.

AND. The AND gadget is shown in Figure 3-20. When both inputs are true, both
of the left optional areas are covered by the wire, so the clues to the right of the
optional area are rectangles and the clue at the center of the gadget is a long vertical
rectangle, allowing the right optional area to be covered, propagating a true signal
from the gadget. When either or both of the inputs are false, one or both of the left
optional areas must be covered by the clue(s) to the right of the areas, blocking the
central clue from covering a vertical rectangle, preventing the right optional area from
being covered, thus propagating a false signal from the gadget.

Fanout. Like the AND gadget, the fanout gadget (Figure 3-21) is also based around
forming or not forming a vertical rectangle. The upper optional area is the input.
When it is covered by the input wire (a true signal), the central clue cannot form a
vertical rectangle, so the upper-right optional area must be covered by the clue to its
left, and because the bottom cell in the central column is covered by the clue to its
upper-left, the lower-right optional area must also be covered by the clue to its left.
When the upper optional area is not covered by the input wire, it must be covered by
the central clue forming a vertical rectangle, so the output optional areas cannot be
covered by the clues to their left.

Shift. Because variable and gate outputs are on the right and gate inputs are on
the left, we do not need a turn gadget, but we do need to shift wires vertically, which
is done using the shift gadget. An upward shift gadget is shown in Figure 3-22; the
downward shift gadget is that gadget’s reflection across the horizontal axis. When
the input wire is true, the input wire covers the left optional area, so the left clue is
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(a) Unsolved AND gadget (inputs
at left)

(b) AND with true and true
inputs

(c) AND with true and false
inputs

(d) AND with false and true
inputs

(e) AND with false and false
inputs

Figure 3-20: Spiral Galaxies AND gadget and its profile table

86



(a) Unsolved fanout
gadget (input at top)

(b) Fanout gadget
duplicating true wire

(c) Fanout gadget
duplicating false wire

Figure 3-21: Spiral Galaxies fanout gadget and its profile table

(a) Unsolved shift
gadget

(b) Shift gadget
shifting a true wire

(c) Shift gadget
shifting a false

wire

Figure 3-22: Spiral Galaxies upward shift gadget and its profile table; the downward
shift gadget is this gadget flipped vertically
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covered by a single cell and the right clue covers the right optional area, propagating
true on the output. When the input wire is false, the left clue covers the left optional
area and forces the right clue to be a 1 × 2 rectangle, leaving the right optional area
uncovered, propagating false on the output.

Layout. Friedman’s proof in [63] omits discussion of layout, but we sketch a layout
algorithm here. We start with a grid embedding of the input planar Boolean circuit.
We scale the grid by at least 6 so that our wire gadget fits for unit-length wires, but
possibly by a greater factor if the grid embedding has long vertical segments, because
our shift gadget consumes horizontal distance to move vertically.

Filling algorithm. The filling algorithm places a clue in the center of every cell
that isn’t part of a gadget, forcing them to be covered by single-cell areas. Filler clues
could only cover area in a gadget if two cells in the gadget area are separated by one
filler clue and those cells do not themselves have clues. This is avoided in all gadgets
by ensuring all gadget cells that are separated by filler are separated by two or more
filler cells, so only local gadget solutions are possible.

Composition algorithm. The local gadget solutions are already consistent with
each other, so to form an area assignment for the entire puzzle, the composition
algorithm simply takes the local gadget solutions and assigns each filler clue to the
cell containing it.

Proper and complete profile tables. The profile tables are proper because they
contain only proper profiles. Because the filler clues cannot cover area in the gadgets,
we can verify by case analysis that the profile tables are complete (all other profiles
are locally impossible). This completes the proof.
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Chapter 4

Push Fight1

4.1 Introduction

Figure 4-1: A Push Fight game in
progress. Photo by Brettco, Inc.,
used with permission.

Push Fight [115] is a two-player board game,
invented by Brett Picotte around 1990, popular-
ized by Penny Arcade in 2012 [93], and briefly
published by Penny Arcade in 2015 [77]. Play-
ers take turns moving and pushing pieces on
a square grid until a piece gets pushed off the
board or a player is unable to push on their turn.
Figure 4-1 shows a Push Fight game in progress,
and Section 4.2 details the rules.

In this chapter, we study the computational complexity of optimal play in
Push Fight, generalized to an arbitrary board and number of pieces, from two per-
spectives:

1. Who wins? The typical complexity-of-games problem is to determine which
player wins from a given game configuration.

2. Mate-in-1: Can the current player win in a single turn?

1This chapter, except for Section 4.5, is from [32] (also available on arXiv [33]), which is joint
work with Erik D. Demaine and Mikhail Rudoy.

Computational complexity of. . .
Moves per turn Mate-in-1 Who wins?
≤ 2 P PSPACE-hard, in EXPTIME
≤ 𝑐 constant P open
≤ 𝑘 input NP-complete open
unlimited P open

Table 4.1: Summary of our results.
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Table 4.1 summarizes our complexity results. We then describe our efforts to solve
Push Fight using computer search. We were not able to solve standard Push Fight,
but we determined that Push Fight played on a board with one column (four squares)
removed is a draw under perfect play.

Generalized Push Fight is a two-player game played on a polynomially bounded
board for a potentially exponential number of moves, so we conjecture the “who wins?”
decision problem to be EXPTIME-complete, as with Checkers [119] and Chess [60].
(Certainly the problem is in EXPTIME, by building the game tree.) In Section 4.4,
we prove that the problem is at least PSPACE-hard, using a proof patterned after
the NP-hardness proof of Push-* [76]. Our proof uses a simple, nearly rectangular
board, in the spirit of the original game; in particular, the board we use is hole-free
and 𝑥-monotone (see Figure 4-9). It remains open whether Push Fight is in PSPACE,
EXPTIME-hard, or somewhere in between.

Our mate-in-1 results are perhaps most intriguing, showing a wide variability
according to whether and how we generalize the “up to two moves per turn” rule in
Push Fight. If we leave the rule as is, or generalize to “up to 𝑐 moves per turn” where
𝑐 is a fixed constant (part of the problem definition), then we show that the mate-in-1
problem is in P, i.e., can be solved in polynomial time. However, if we generalize the
rule to “up to 𝑘 moves per turn” where 𝑘 is part of the input, then we show that the
mate-in-1 problem becomes NP-complete. On the other hand, if we remove the limit
on the number of moves per turn, then we show that the mate-in-1 problem is in P
again. Section 4.3 proves these results.

The mate-in-1 problem has been studied previously for other board games. The
earliest result is that mate-in-1 Checkers is in P, even though a single turn can involve
a long sequence of jumps [59]. On the other hand, Phutball is a board game also
featuring a sequence of jumps in each turn, yet its mate-in-1 problem is NP-complete
[46].

After presenting our complexity results, we describe a computer search system
aiming to solve Push Fight in Section 4.5. Unlike most computer searches to solve
games, which are based on retrograde analysis (working backward by undoing moves),
our system is based on repeating a forward search until it reaches a fixed point. We
find that Push Fight played on a board with one column removed is a draw under
perfect play, and we believe our system extends to standard Push Fight given sufficient
computation time.

4.2 Rules

The original Push Fight board is an oddly shaped square grid containing 26 squares;
see Figure 4-2. Part of the boundary of this board has side rails which prevent pieces
from being pushed off across those edges. We generalize Push Fight by considering
arbitrary polyomino boards, with each boundary edge possibly having a side rail.
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Figure 4-4: An example move.

Figure 4-2: The original
Push Fight board. The shaded
regions represent side rails.

Figure 4-3: Our notation for pieces. From left to
right in the middle of the second row: a white
king, a white pawn, a black king, and a black
pawn. The bottom row shows an anchored king
of each color (in an actual game, there is only one
anchor).

Push Fight is played with two types of pieces, each of which takes up a square
of the board: pawns (drawn as circles) and kings (drawn as squares). Each piece is
colored either black or white, denoting which player the piece belongs to. Standard
Push Fight is played with three kings and two pawns per player. Additionally, there
is a single anchor that is placed on top of a king after it pushes (but is never placed
directly on the board). Figure 4-3 shows our notation for the pieces.

Push Fight gameplay consists of the two players alternating turns. During a
player’s turn, the player makes up to two optional moves followed by a mandatory
push.

To make a move, a player moves one of their pieces along a simple path of
orthogonally adjacent empty squares; see Figure 4-4.

To push, a player moves one of their kings into an occupied adjacent square. The
piece occupying that square is pushed one square in the same direction, and this
continues recursively until a piece is pushed into an unoccupied square or off the board.
If this process would push a piece through a side rail, or would push the anchored
king, the push cannot be made. Pushes always move at least one other piece. When
the push is complete, the pushing king is anchored (the anchor is placed on top of
that king). Figure 4-5 shows a valid push.

A player loses if any of their pieces are pushed off the board (even by their own
push) or if they cannot push on their turn.
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Figure 4-5: An example push.

Push Fight does not have a fixed initial position. Instead, before the first turn is
taken, white places their pieces on the half of the board closest to them, then black
places their pieces on their half of the board. (In our hardness proofs, our reduction
produces a game in progress, so this opening procedure is not relevant.)

Definition 4.2.1. A Push Fight game state is a description of the board’s shape,
including which board edges have side rails, and for each board square, what type of
piece or anchor occupies it (if any).

Note that the position of the anchor encodes which player’s turn it is: if the anchor
is on a white king, it is black’s turn, and vice versa. If the anchor has not been placed
(no turns have been taken), it is white’s turn.

4.3 Mate-in-1
We consider three variants of mate-in-1 Push Fight, varying in how the number of
moves is specified: as a constant in the problem definition, as part of the input, or
without a limit.

4.3.1 𝑐-Move Mate-in-1
Problem 4.3.1. 𝑐-Move Push Fight Mate-in-1: Given a Push Fight game state,
can the player whose turn it is win this turn by making up to 𝑐 moves and one push?

The standard Push Fight game has 𝑐 = 2.

Theorem 4.3.2. 𝑐-Move Push Fight Mate-in-1 is in P.

Proof sketch. The number of possible turns is ≤ 𝐴2𝑐+4 on a board of area 𝐴.

Proof. Let 𝐴 denote the area of the board. There are at most 𝐴 of the current player’s
pawns (because every piece occupies a square). On each of the 𝑐 moves, any of those
pawns may move to any of those squares, for a maximum of 𝐴2 possibilities for each
move. (“Moving” pawns to their own square represents making fewer than 𝑐 moves.)
Then there are at most 𝐴 kings of the current player, each of which can potentially
push in four directions. Thus there are at most 𝐴2𝑐+4 possible turns.
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Checking that a turn is legal and results in the current player winning requires
checking that the moves are all legal and that the push is legal and leads to a win.
A move can be verified in polynomial time by finding a path of unoccupied squares
between the pawn’s start and end positions. A push can be checked in polynomial
time by scanning across the board in the direction of the push to see if one of the
other player’s pieces is pushed off the board, or if the push is invalid because of the
anchored king or a side rail.

4.3.2 𝑘-Move Mate-in-1 is in NP
Problem 4.3.3. 𝑘-Move Push Fight Mate-in-1: Given a Push Fight game state
and a positive integer 𝑘, can the player whose turn it is win this turn by making up to
𝑘 moves and one push?

In this section, we prove the following upper bound on the number of useful moves
in a turn:

Theorem 4.3.4. Given a Push Fight game state on a board having 𝑛 squares, if the
current player can win this turn, they can do so using at most 𝑛6 moves followed by a
push.

Proof sketch. We divide the reachable game states into ≤ 𝑛4 equivalence classes, and
show that two equivalent configurations can be reached via ≤ 𝑛2 moves within that
class.

Our bound directly implies an NP algorithm for 𝑘-Move Push Fight Mate-in-1:

Corollary 4.3.5. 𝑘-Move Push Fight Mate-in-1 is in NP.

Proof. Use the following NP algorithm. Given a Push Fight game state on a board
with 𝑛 squares, nondeterministically choose an integer 𝑚 between 0 and min{𝑘, 𝑛6},
then nondeterministically choose 𝑚 moves (a piece and a destination) and one push
(a king and a direction). Accept if and only if the chosen moves and push are legal
and result in a win for the current player.

The remainder of this section is devoted to proving Theorem 4.3.4.
A turn consists of making some number of moves followed by a single push. For

the purpose of analyzing a single turn, kings other than the single king that pushes
are indistinguishable from pawns, so we can assume the current player first chooses a
king, then replaces all of their other kings with pawns before making their moves and
push. The following definitions are based on this assumption.

Definition 4.3.6. Given a single-king game state, a board configuration is a placement
of pieces reachable by the current player making a sequence of moves.

Definition 4.3.7. The pawnspace of a board configuration is the (possibly discon-
nected) region of the board consisting of the empty squares and the squares containing
the current player’s pawns. Equivalently, the pawnspace is the region consisting of all
squares not occupied by the current player’s king or the other player’s pieces.
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Definition 4.3.8. The signature of a board configuration is a list of nonnegative
integers, where each integer is a count of the current player’s pawns in a connected
component of the configuration’s pawnspace, ordered according to row-major order on
the leftmost topmost square in the corresponding connected component.

Definition 4.3.9. Given two board configurations 𝐶1 and 𝐶2 derived from the same
game state, we say that 𝐶1 ≡ 𝐶2 if and only if

1. 𝐶1 and 𝐶2 have the same pawnspace (that is, the current player’s only king
occupies the same square in 𝐶1 and 𝐶2) and

2. 𝐶1 and 𝐶2 have the same signature (that is, each connected component of the
pawnspace contains the same number of the current player’s pawns in 𝐶1 and
𝐶2).

Relation ≡ is clearly reflexive, symmetric, and transitive, so it is an equivalence
relation inducing a partition of the set of board configurations derived from a given
game state into equivalence classes. We need the following two lemmas about ≡ for
our proof of Theorem 4.3.4:

Lemma 4.3.10. For a given game state on a board with 𝑛 squares, there are at most
𝑛4 equivalence classes of board configurations.

Proof. Let 𝑠 be the square occupied by the current player’s king. There are at most 𝑛
choices for 𝑠, so it remains to show that, for each 𝑠, there are at most 𝑛3 equivalence
classes where the current player’s king occupies 𝑠.

The choice of 𝑠, together with the game state (containing the position of the other
player’s pieces), defines the pawnspace for all board configurations having the current
player’s king at 𝑠. For each connected component 𝑅 of the pawnspace, 𝑠 is either
adjacent to 𝑅 or not. In the case where it is not, 𝑅 is surrounded by the boundary
of the board and/or the other player’s pieces, so no sequence of moves can change
the number of the current player’s pawns in 𝑅, and all board configurations have the
same number of the current player’s pawns in 𝑅.

Thus the only connected components that may have different numbers of pieces in
different board configurations are the connected components bordering 𝑠, of which
there are at most 4. Each of these components comprises at most 𝑛 − 1 squares and so
contains between 0 and 𝑛 − 1 pieces. The total number of pieces in these components
is invariant across all board configurations in each equivalence class, so the count of
pawns in one of the components is fully determined by the others (that is, if there are
𝑞 components, there are 𝑞 − 1 degrees of freedom). There are 𝑛 possible values for
each of up to 3 free-to-vary pawn counts, so there are at most 𝑛3 equivalence classes
in which the current player’s king occupies 𝑠. Together with the at most 𝑛 choices for
𝑠, there are at most 𝑛4 equivalence classes of board configurations.

Lemma 4.3.11. If 𝐶1 ≡ 𝐶2, then 𝐶2 can be reached from 𝐶1 in at most 𝑛2 − 1 moves
without leaving the equivalence class of 𝐶1.
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Proof. By the assumption that 𝐶1 ≡ 𝐶2, the current player’s king and the other
player’s pieces are already in the same positions in 𝐶1 and 𝐶2. Notice that while
moving the king may change the connected components of the pawnspace, moving
pawns never does, nor can pawns move from one component to another (by the same
argument as in Lemma 4.3.10). Thus to ensure we remain in the equivalence class of
𝐶1, it is sufficient to give an algorithm that moves only pawns.

Initialize the current configuration 𝐶 to be 𝐶1. Call a pawn misplaced if it occupies
a square in 𝐶 that is empty in 𝐶2. While there are misplaced pawns, choose one
and let 𝑠 denote the square it occupies. Let 𝑅 be the connected component in the
pawnspace2 of 𝐶 containing 𝑠 and let 𝑇 be the set of squares in 𝑅 that contain pawns
in 𝐶2. By the assumption that 𝐶1 ≡ 𝐶2, there are the same number of pawns in 𝑅 in
𝐶1 and 𝐶2, so because there is a misplaced pawn, there is at least one square 𝑡 ∈ 𝑇
that is empty (a missing pawn). Let 𝑠1, 𝑠2, . . . , 𝑠𝑙 be the squares containing pawns
along a shortest path in 𝑅 from 𝑠 to 𝑡 (with 𝑠1 = 𝑠). Move the pawn at 𝑠𝑙 to 𝑡, then
move the pawn at 𝑠𝑙−1 to 𝑠𝑙, and so on, finishing by moving the pawn at 𝑠1 to 𝑠2.
The net effect of this sequence of moves is that 𝑡 now holds a pawn and 𝑠 no longer
holds a pawn (so 𝐶 now contains one fewer misplaced pawn). Continue with the next
iteration of the loop.

During each iteration of the above loop, each pawn moves at most once. The
number of misplaced pawns decreases by 1 each iteration, so the number of iterations
is at most the number of pawns, of which there are at most 𝑛 − 1. Thus the number
of moves used to transform 𝐶1 into 𝐶2 is at most (𝑛 − 1)2 ≤ 𝑛2 − 1.

We are now ready to prove Theorem 4.3.4:

Theorem 4.3.4. Given a Push Fight game state on a board having 𝑛 squares, if the
current player can win this turn, they can do so using at most 𝑛6 moves followed by a
push.

Proof. By our assumption that the current player can win this turn, there exists
a sequence of moves for the current player after which they can immediately win
with a push, corresponding to a sequence of board configurations 𝐶1, 𝐶2, . . . , 𝐶𝑙.
Configuration 𝐶1 is obtained from the initial game state by replacing all of the current
player’s kings, except the one that ends up pushing, with pawns. Each 𝐶𝑖+1 can be
reached from 𝐶𝑖 in one move, and 𝐶𝑙 is a configuration from which the current player
can win with a push.

We now define simplifying a sequence of board configurations over an equivalence
class 𝐸. If the sequence contains no configurations from 𝐸, then simplifying the
sequence over 𝐸 leaves it unchanged. Otherwise, let 𝐴𝑖 be the first configuration
in the sequence in 𝐸 and 𝐴𝑗 be the last configuration in the sequence in 𝐸. By
Lemma 4.3.11, there exists a sequence of fewer than 𝑛2 − 1 moves that transforms 𝐴𝑖

into 𝐴𝑗 , corresponding to a sequence of board configurations 𝐴𝑖 = 𝐷0, 𝐷1, . . . , 𝐷𝑢 = 𝐴𝑗

with 𝑢 ≤ 𝑛2 − 1. Then simplifying over 𝐸 consists of replacing all configurations
between and including 𝐴𝑖 and 𝐴𝑗 with the replacement sequence 𝐷0, 𝐷1, . . . , 𝐷𝑢.

2Being in the same equivalence class, 𝐶1, 𝐶2 and all values of 𝐶 have the same pawnspace.
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Notice that simplifying a sequence (over any class) never changes the first or last
configuration in the sequence, and each configuration in the resulting sequence remains
reachable in one move from the previous configuration in the resulting sequence. After
simplifying over a class 𝐸, the only configurations in the resulting sequence in 𝐸 are
those in the replacement sequence, so the number of configurations in the sequence in
𝐸 is at most 𝑛2. Furthermore, all configurations in the replacement sequence are in 𝐸,
so simplifying over 𝐸 never increases (but may decrease) the number of configurations
falling in other classes.

Let 𝐶 ′
1, 𝐶 ′

2, . . . , 𝐶 ′
𝑙 be the result of simplifying 𝐶1, 𝐶2, . . . , 𝐶𝑙 over every equivalence

class. By Lemma 4.3.10, there are at most 𝑛4 such classes, and by the above paragraph
there are at most 𝑛2 configurations from each class in 𝐶 ′

1, 𝐶 ′
2, . . . , 𝐶 ′

𝑙 , so the length of
𝐶 ′

1, 𝐶 ′
2, . . . , 𝐶 ′

𝑙 is at most 𝑛6. Each configuration in 𝐶 ′
1, 𝐶 ′

2, . . . , 𝐶 ′
𝑙 is reachable in one

move from the previous configuration, and that sequence of at most 𝑛6 moves leaves
the current player in position to win with a push, as desired.

4.3.3 Unbounded-Move Mate-in-1
Problem 4.3.12. Unbounded-Move Push Fight Mate-in-1: Given a Push Fight
game state, can the player whose turn it is win this turn by making any number of
moves and one push?

Theorem 4.3.13. Unbounded-Move Push Fight Mate-in-1 is in P.

We can of course solve Unbounded-Move Push Fight Mate-in-1 by trying
all possible sequences of moves to find a board configuration from which the current
player can win with a push, but there are exponentially many board configurations,
so such an algorithm takes exponential time. Instead, we can use the fact that any
two configurations in the same equivalence class are reachable from each other in a
polynomial number of moves (from Lemma 4.3.11) to search over equivalence classes
of board configurations instead of searching over board configurations. There are at
most 𝑛4 equivalence classes (by Lemma 4.3.10), so they can be searched in polynomial
time.

We will make use of the following definitions:

Definition 4.3.14. Two equivalence classes of board configurations 𝐶1 and 𝐶2 are
neighbors if there exist board configurations 𝑏1 ∈ 𝐶1 and 𝑏2 ∈ 𝐶2 such that 𝑏1 can be
reached from 𝑏2 with a king move of exactly one square. The equivalence class graph
is a graph whose vertices are equivalence classes of board configurations and whose
edges connect neighboring equivalence classes.

An equivalence class of board configurations 𝐶 is a winning equivalence class if
there exists a board configuration 𝑏 ∈ 𝐶 such that the player whose turn it is can win
with a push.

The key idea for our algorithm is the following:
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Lemma 4.3.15. There exists a path in the equivalence class graph from the equivalence
class of the initial board configuration to a winning equivalence class if and only if
there exists a winning move sequence.

Proof. Let 𝑏0 be the initial board configuration, and let 𝐶0 be the equivalence class of
𝑏0.

First, suppose that there exists a path 𝐶0, 𝐶1, . . . , 𝐶𝑘 in the equivalence class graph
which ends at some winning equivalence class. Consider any 𝑖 ∈ {0, 1, . . . , 𝑘 − 1}.
Because 𝐶𝑖 is adjacent to 𝐶𝑖+1 in the equivalence class graph, equivalence class
𝐶𝑖 neighbors 𝐶𝑖+1, and therefore there exist two board configurations 𝑏′

𝑖 ∈ 𝐶𝑖 and
𝑏𝑖+1 ∈ 𝐶𝑖+1 such that 𝑏𝑖+1 can be reached from 𝑏′

𝑖 with a king move of exactly one
square. Because 𝐶𝑘 is a winning equivalence class, there exists a board configuration 𝑏′

𝑘

such that the current player can win with a push. Then consider the sequence of board
configurations 𝑏0, 𝑏′

0, 𝑏1, 𝑏′
1, . . . , 𝑏𝑘, 𝑏′

𝑘. For each 𝑖, 𝑏𝑖 and 𝑏′
𝑖 are both in equivalence class

𝐶𝑖, so by Lemma 4.3.11, there exists a sequence of moves converting board configuration
𝑏𝑖 into 𝑏′

𝑖. Together with the single-square king moves between 𝑏′
𝑖 and 𝑏𝑖+1, we can

use these sequences to form a winning move sequence from board configuration 𝑏0 to
board configuration 𝑏′

𝑘.
Next, suppose there exists a winning move sequence. Break each king move along

a path of more than one square in that sequence into a sequence of king moves of
exactly one square. This yields a new winning move sequence whose moves are all king
moves of one square or pawn moves. Pawn moves never change the equivalence class
of the current board configuration, and single-square king moves always change the
equivalence class of the current board configuration to a neighboring equivalence class.
Thus, this sequence of moves corresponds to a path in the equivalence class graph.
Because this is a winning move sequence, the last board configuration has the property
that the player whose turn it is can win with a push, and so the last equivalence class
in the path is a winning equivalence class. Thus there exists a path in the equivalence
class graph from the equivalence class of the initial board configuration to a winning
equivalence class.

The size of the equivalence class graph is polynomial in 𝑛 (by Lemma 4.3.10), so
provided the graph can be constructed and the winning equivalence classes identified,
this type of path in the equivalence class graph, if it exists, can be found in polynomial
time.

Recall from Definition 4.3.9 that equivalence classes of board configurations are
defined by the pawnspace and signature, and that, for configurations derived from
the same game state (i.e., having the other player’s pieces in the same positions),
the pawnspace is defined by the position of the current player’s king. Thus we can
uniquely name a class using the king position and signature.

Definition 4.3.16. The class descriptor of an equivalence class of board configurations
for a given game state is the ordered pair of the position of the current player’s king
and the signature defining that class.

To prove Theorem 4.3.13, we need to give polynomial-time algorithms to compute
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the neighbors of an equivalence class and to decide whether a class is a winning
equivalence class.

Lemma 4.3.17. Given an initial game state and a class descriptor for some class
𝐶, we can compute in polynomial time the equivalence classes (as class descriptors)
neighboring 𝐶.

Proof. Moving the king to an adjacent square changes the pawnspace by adding
the previously occupied square to a connected component and removing the newly
occupied square from the pawnspace. Moving the king to an adjacent square may also
join up to three components adjacent to the king’s previous square or split a component
containing the king’s new square into up to three components. Other components are
unaffected, and their corresponding signature elements are not modified.

In all cases, the component in the current configuration containing the king’s
new position must have area at least one greater than the number of pawns in that
component. That is, there must be an empty square in that component. Otherwise,
moving the king in that direction is not possible. All neighboring class descriptors
specify the new king position, but how the signature is updated varies.

If the king move does not change the number of connected components of the
pawnspace, the signature is left unchanged in the neighboring class descriptors.

If the king move joins components, then the neighboring class descriptor is updated
by inserting a signature element for the newly joined component with value equal to
the sum of the components it was created from, and deleting the signature elements
corresponding to the joined components.

If the king move splits components, then there are potentially multiple neighboring
class descriptors, one for each possible resulting signature. Suppose the signature value
of the component being split is 𝑆. There is one neighboring class descriptor for each of
the weak compositions3 of 𝑆 of length equal to the number of newly split components
such that each term in the composition is at most the area of the corresponding newly
split component. Each neighboring class descriptor’s signature is updated by removing
the element corresponding to the component having been split and inserting the terms
of the composition in the positions corresponding to the newly split components.

There are up to four directions in which the king can move. Each of the above
update procedures takes time polynomial in the number of class descriptors produced.
By Lemma 4.3.10, there are only polynomially many classes, so only polynomially many
descriptors can be produced, and thus we can compute the neighboring descriptors in
polynomial time.

Lemma 4.3.18. Given an initial game state and a class descriptor for some class 𝐶,
we can decide in polynomial time whether 𝐶 is a winning equivalence class.

Proof. We wish to decide whether 𝐶 contains a board configuration such that the
current player can win with one push.

3A weak composition of an integer is a way of writing that integer as a sum of other positive
integers, where terms may be 0 and order is significant.
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Consider each possible push direction. The king’s position is specified in the
class descriptor of 𝐶, so let 𝐿 be the line of squares starting adjacent to the king in
the chosen direction and continuing to the boundary of the board. Pushing in this
direction results in a win exactly when

1. The square in 𝐿 furthest from the king contains a piece belonging to the other
player.

2. There is no side rail at the boundary edge at the end of 𝐿 furthest from the
king.

3. No square in 𝐿 contains the anchored king.

4. Every square in 𝐿 contains a piece.

The first three conditions depend only on the current player’s king’s position and
the positions of the other player’s pieces, information specified in the given class
descriptor and game state, and so can be checked in polynomial time independent of
any specific board configuration in 𝐶. Because the current player’s pawns can move
freely within the connected components of the pawnspace without leaving 𝐶, the
fourth condition is equivalent to the condition that the intersection of 𝐿 with each
connected component of the pawnspace has area less than or equal to the number of
the current player’s pawns in that component.

Thus, we can check in polynomial time for each direction whether there exists
a board configuration in 𝐶 such that pushing in the chosen direction results in the
current player winning. By repeating this check for all four possible push directions,
we can decide whether 𝐶 is a winning equivalence class in polynomial time.

We are now ready to prove Theorem 4.3.13:

Theorem 4.3.13. Unbounded-Move Push Fight Mate-in-1 is in P.

Proof. First, compute the class descriptor for the equivalence class of the initial board
configuration. Then perform a breadth- or depth-first search of the equivalence class
graph, using the algorithm given in the proof of Lemma 4.3.17 to compute the neigh-
boring class descriptors and the algorithm given in the proof of Lemma 4.3.18 to decide
if the search has found a winning equivalence class. Each of these procedures takes
polynomial time. By Lemma 4.3.10, there are only polynomially many equivalence
classes, so the search terminates in polynomial time. By Lemma 4.3.15, there exists a
winning move sequence if and only if this search finds a path to a winning equivalence
class.

The key idea of the above proof is that, if we do not care how many moves we
make inside an equivalence class, then it is sufficient to search the graph of equivalence
classes. Thus the above proof does not apply to 𝑘-Move Push Fight Mate-in-1,
and in the next section, we prove 𝑘-Move Push Fight Mate-in-1 is NP-hard.
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4.3.4 𝑘-Move Mate-in-1 is NP-hard
To prove 𝑘-Move Push Fight Mate-in-1 hard, we reduce from the following
problem, proved strongly NP-hard in [64]:

Problem 4.3.19. Integer Rectilinear Steiner Tree: Given a set of points in
R2 having integer coordinates and a length ℓ, is there a tree of horizontal and vertical
line segments of total length at most ℓ containing all of the points?

Theorem 4.3.20. 𝑘-Move Push Fight Mate-in-1 is strongly NP-hard.

Proof sketch. The basic idea of our reduction is to create a game state mostly full of
the current player’s pawns, but with a few empty squares (holes). The player must
“move” the holes (by moving pawns into them, creating a new hole at the pawn’s
former square) to free a king that can push one of the other player’s pieces off the
board. Initially each pawn can only travel one square (into an adjacent hole) per move,
but once two holes have been brought together, a pawn can travel two squares per
move, and so on. Bringing the holes together optimally amounts to finding a Steiner
tree covering the holes’ initial positions.

Reduction: Suppose we are given an instance of Integer Rectilinear Steiner
Tree consisting of points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) with 𝑖 = 1, . . . , 𝑛 and length ℓ. For convenience,
and without affecting the answer, we first translate the points so that min 𝑥𝑖 = 2 and
min 𝑦𝑖 = 4 and reorder the points such that 𝑦1 = 4.

We then build a Push Fight game state with a rectangular board with a height of
max 𝑦𝑖 and a width of 𝑛 + max 𝑥𝑖, indexed using 1-based coordinates with the origin
in the bottom-left square; refer to Figure 4-6. The entire boundary of the board has
side rails except the edge adjacent to square (𝑥1, 1). There is a white king in square
(𝑥1 + 𝑛, 2) and a black king with the anchor in square (𝑥1 − 1, 2). There is a black
pawn in square (𝑥, 𝑦) if any of the following are true:

1. 𝑦 = 3 and 𝑥 ̸= 𝑥1,

2. 𝑦 = 2 and either 𝑥 < 𝑥1 − 1 or 𝑥 > 𝑥1 + 𝑛, or

3. 𝑦 = 1.

The squares (𝑥𝑖, 𝑦𝑖) with 1 ≤ 𝑖 ≤ 𝑛 (corresponding to the points in the Integer
Rectilinear Steiner Tree instance) are empty. All remaining squares are filled
with white pawns. The output of the reduction is this Push Fight board together with
𝑘 = ℓ + 3.

This reduction can clearly be computed in polynomial time. It remains to show
that there exists a solution to the Integer Rectilinear Steiner Tree instance if
and only if White can win in the corresponding 𝑘-Move Push Fight Mate-in-1
instance.
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Figure 4-6: A Push Fight board (right) produced during the reduction from the points
in an example rectilinear Steiner tree instance (left).

Move sequence =⇒ Steiner tree: To win, White must push a black piece off
the board. The only boundary edge without a side rail in the game state produced
by the reduction is the south edge of square (𝑥1, 1), so White must move their king
to (𝑥1, 2) and push downward. Call the 𝑛 squares directly to the left of the white
king the alley and all squares with 𝑦 > 3 the plaza. Before moving the white king
into position to push, White must move the 𝑛 white pawns in the alley into the plaza
(which has exactly 𝑛 empty squares). For the example reduction output in Figure 4-6,
Figure 4-7 shows the state of the board after moving all pawns from the alley into the
plaza, then moving the white king through the now-empty alley.
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Figure 4-7: The result of moving all alley pawns in Figure 4-6 into the plaza, then
moving the white king through the alley. White wins by pushing down.

Suppose White can win with at most 𝑘 moves and a push. Let 𝑆 be the set of
squares that are ever empty during the winning move sequence and let 𝑆 ′ be the
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subset of the plaza induced by 𝑆. We prove two useful facts about 𝑆 ′.
Lemma 4.3.21. 𝑆 ′ is connected.

Proof. We can use the move sequence (except for the king move(s)) to build a set of
paths 𝑃1, 𝑃2, . . . , 𝑃𝑛 from the empty squares in the plaza to the squares in the alley.
Each path essentially traces the path of one hole over the course of the move sequence.
As we go through the move sequence building the paths we maintain the invariant
that the currently empty squares are the last elements in the paths. Initialize the 𝑛
different paths to start in the 𝑛 empty plaza squares. This satisfies the invariant at
the start of the move sequence. During each move, a pawn moves from some square
𝑠, through some sequence of empty squares 𝑠1, 𝑠2, . . . , 𝑠𝑙, and into a currently empty
square 𝑡. By our invariant, there exists a path currently ending at 𝑡, so we extend that
path with the sequence 𝑠𝑙, . . . , 𝑠2, 𝑠1, 𝑠. The new endpoint of that path is the square
that was just emptied, so the invariant is maintained.

All squares added to paths during this procedure are empty when they are added,
so ⋃︀

𝑃𝑖 ⊆ 𝑆. In the other direction, all of the initially empty squares are endpoints of
paths, the square emptied by each move is always appended to a path, and squares
are never removed from paths, so 𝑆 ⊆ ⋃︀

𝑃𝑖. Thus ⋃︀
𝑃𝑖 = 𝑆.

We know that the alley must be empty for the king to move in position to push,
so the final endpoints of the paths are exactly the alley squares. Consider any two
squares 𝑠, 𝑡 ∈ 𝑆. 𝑠 occurs in at least one path 𝑃𝑖, and the section of that path starting
at 𝑠 (call it 𝑃 𝑠

𝑖 ) is a path in 𝑆 from 𝑠 to an alley square. Similarly, there is a section
𝑃 𝑡

𝑗 starting at 𝑡 of some path 𝑃𝑗 that also ends in an alley square. Then 𝑃 𝑠
𝑖 and the

reverse of 𝑃 𝑡
𝑗 , joined by a horizontal path entirely within the alley, is a path in 𝑆 from

𝑠 to 𝑡. Thus we can construct a path in 𝑆 between any two elements of 𝑆, so 𝑆 is
connected.

Because the plaza is separated from the alley by black pawns except at (𝑥1, 3), all
paths in 𝑆 containing squares both inside and outside the plaza must contain (𝑥1, 3).
Then we can convert any path in 𝑆 starting and ending in 𝑆 ′ to a path entirely in 𝑆 ′

by deleting all squares between and including the first and last instances of (𝑥1, 3) (if
any), so 𝑆 ′ is also connected.
Lemma 4.3.22. |𝑆 ′| ≤ ℓ + 1.

Proof. The reduction leaves 𝑛 squares empty. Of the 𝑘 moves in the move sequence,
at least one moves the king; the remaining 𝑘 − 1 moves empty at most one square
each, so |𝑆| ≤ 𝑛 + 𝑘 − 1. There are 𝑛 + 1 squares in 𝑆 that are not in the plaza (the
𝑛 alley squares and (𝑥1, 3)), so

|𝑆 ′| = |𝑆| − (𝑛 + 1)
≤ 𝑛 + 𝑘 − 1 − 𝑛 − 1
= 𝑘 − 2
= ℓ + 1
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Consider the grid graph 𝐺 induced by vertex set 𝑆 ′. 𝑆 ′ is connected (Lemma 4.3.21),
so 𝐺 is also connected. Let 𝑇 be any spanning tree of 𝐺. Each edge in 𝐺 (and therefore
in 𝑇 ) is a unit-length vertical or horizontal segment. 𝑆 ′ contains every 𝑝𝑖, so 𝑇 does
also. By Lemma 4.3.22, 𝐺 has |𝑆 ′| ≤ ℓ + 1 vertices, and 𝑇 has one fewer edge than it
has vertices, so the total length of 𝑇 is at most ℓ. Thus 𝑇 is a solution to the Integer
Rectilinear Steiner Tree instance, and such a solution exists if White can win
in the 𝑘-Move Push Fight Mate-in-1 instance.

Steiner tree =⇒ move sequence: We are given a Steiner tree with total length
at most ℓ = 𝑘 − 3. Hanan’s Lemma [71, Theorem 4] states that there exists an optimal
tree whose edges are entirely contained on vertical and horizontal lines through each 𝑝𝑖,
so we assume without loss of generality that the given tree has this form. Each 𝑝𝑖 has
integer coordinates, so we can subdivide the edges of the given tree into unit-length
edges, resulting in a tree with at most ℓ + 1 vertices, all having integer coordinates. By
our assumption that the tree is optimal, each leaf of the tree is one of the 𝑝𝑖 (though
not all 𝑝𝑖 are necessarily leaves).

Let 𝑇 be the result of augmenting the subdivided given tree with a path through
the vertices corresponding to square (𝑥1, 3) and the squares in the alley, and consider
𝑇 to be rooted at (𝑥1 + 𝑛 − 1, 2) (the alley square adjacent to the white king). We
added 𝑛 + 1 vertices, so 𝑇 has at most ℓ + 1 + 𝑛 + 1 = (𝑘 − 3) + 1 + 𝑛 + 1 = 𝑘 + 𝑛 − 1
vertices. Observe that each vertex in 𝑇 corresponds to a square that is either occupied
by a white pawn or empty.

We build the move sequence from 𝑇 by repeatedly choosing a move as follows.
Choose any leaf (𝑥, 𝑦) of 𝑇 and walk along the tree towards the root until a vertex
(𝑥′, 𝑦′) corresponding to an occupied square is reached. The reverse of that walk is
a valid move of the white pawn at square (𝑥′, 𝑦′) through some number of holes to
the hole at (𝑥, 𝑦). Append that move to the sequence (updating the board state
accordingly), then remove the leaf (𝑥, 𝑦) from 𝑇 . Continue this loop until the root of
𝑇 corresponds to an empty square (such that the preceding procedure would fail to
find an occupied square when moving towards the root).

𝑇 initially contains vertices corresponding to 𝑛 holes (the 𝑝𝑖). Each move creates
a hole at (𝑥′, 𝑦′), but fills in a hole at (𝑥, 𝑦), so the number of vertices corresponding
to holes in 𝑇 always remains at 𝑛. The loop ends when there is a path from a leaf to
the root containing only vertices corresponding to holes. All paths from the root of
𝑇 begin with a specific path of length 𝑛 + 1 (the path we augmented the given tree
with), so when the loop terminates, the first 𝑛 squares corresponding to that path
(the alley) must be holes. Each iteration of the loop removes a vertex from 𝑇 and
appends a move to the move sequence. 𝑇 initially contains 𝑘 + 𝑛 − 1 vertices and ends
containing 𝑛 vertices, so the generated move sequence contains 𝑘 − 1 moves, to which
we append a move of the white king through the now-empty alley into position to win
by pushing down. Thus the move sequence is a solution to the 𝑘-Move Push Fight
Mate-in-1 instance, and such a solution exists if there is a solution to the Integer
Rectilinear Steiner Tree instance.

Having proved both directions, we have proved Theorem 4.3.20.
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Figure 4-8: An overview of the Push Fight board produced by our reduction.

4.4 Push Fight is PSPACE-hard
In this section, we analyze the problem of deciding the winner of a Push Fight game
in progress.

Problem 4.4.1. Push Fight: Given a Push Fight game state, does the current
player have a winning strategy (where players make up to two moves per turn)?

Theorem 4.4.2. Push Fight is PSPACE-hard.

To prove PSPACE-hardness, we reduce from Q3SAT, proved PSPACE-complete
in [130, 65]:

Problem 4.4.3. Q3SAT: Given a fully quantified boolean formula in conjunctive
normal form with at most three literals per clause, is the formula true?

Our proof parallels the NP-hardness proof of Push-* in [76]. Push-* is a motion-
planning problem in which a robot (agent) traverses a rectangular grid, some squares
of which contain blocks. The robot can push any number of consecutive blocks when
moving into a square containing a block, provided no blocks would be pushed over the
boundary of the board. The Push-* decision problem asks, given a initial placement
of blocks and a target location, can the robot reach the target location by some
sequence of moves? In our proof, the white king takes the place of the Push-* robot4

and white pawns function as blocks. Our proof has the additional complication that
Black sets the universally quantified variables, and that White’s moves and Black’s
push must be forced at all times to keep the other gadgets intact.

Figure 4-8 shows an overview of the reduction. The sole white king begins at the
bottom-left of the variable gadget I block, setting existentially quantified variables as

4The Push-* robot can move without pushing blocks, so the correspondence is not exact.
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Figure 4-9: The result of performing the reduction on the formula ∀𝑥∃𝑦 (𝑥 ∨ ¬𝑦) ∧
(¬𝑥 ∨ 𝑦). Gadgets and blocks are outlined.

it pushes up and right. The variable gadget II block contains black pawns and holes
that allow Black to set the universally quantified variables. After all the variables have
been set, the white king traverses the bridge to the clause gadget block. The variable
and clause gadgets interact via a pattern of holes in the connection block encoding
the literals in each clause. The white king can traverse the clause gadgets only if the
variable gadgets were traversed in a way corresponding to a satisfying assignment of
the variables. The reward gadget contains a boundary square without a side rail, such
that the white king can push a black pawn off the board if the white king reaches the
reward gadget. The overflow block contains empty squares needed by the variable
gadgets that were not used in the connection block (for variables appearing in few
clauses). The move-wasting gadget forces White’s moves and Black’s push, ensuring
the integrity of the other gadgets. Finally, all other squares on the board are filled
with white pawns, and the boundary has side rails except at specific locations in
the reward and move-wasting gadgets. Figure 4-9 shows an example output of the
reduction.

We first prove the behavior of each of the gadgets, then describe how the gadgets
are assembled.

4.4.1 Move-Wasting Gadget
The move-wasting gadget requires White to use both moves to prevent Black from
winning on the next turn (unless White can win in the current turn). The move-wasting
gadget contains the only black king, thus consuming (and allowing) Black’s push each
turn. When analyzing the other gadgets, we can thus assume White can only push
and Black can only move. The move-wasting gadget comprises the entire bottom three
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(a) Initial state

...

(b) One white turn after (a)

...

(c) One black turn after (b)

...

(d) One white turn after (c)

Figure 4-10: The move-wasting gadget.

rows of the board, but pieces only move in the far-right portion. Figure 4-10a shows
the initial state of the gadget. Throughout this analysis, we assume White cannot win
in one turn; Section 4.4.5, which analyzes the reward gadget, describes the position in
which White can immediately win in one turn, and can therefore disregard the threat
from Black in the move-wasting gadget.

In the initial state, the anchor is on the black king, so it is White’s turn. White
must move the pawn above the black king to avoid losing next turn. There are only
two reachable empty squares, both in the column left of the black king. If the other
square in that column remains empty, Black can move the black king into it and push
the white pawn in that column off the board. Thus White must fill the other square
in that column, and the only way to do so is to move the pawn two columns left of the
white king one square right. Figure 4-10b shows the resulting position (after White
pushes elsewhere in the board).

Black’s only legal push is to the left, resulting in the position shown in Figure 4-10c.
The rightmost four columns in Figure 4-10c are simply the reflection of those

columns in Figure 4-10a, so by the same argument White must fill the column to the
right of the black king, resulting in Figure 4-10d.

Again, the rightmost four columns of Figures 4-10b and 4-10d are reflections of
each other. Black’s only legal push is to the right, restoring the gadget to the initial
state shown in Figure 4-10a. Thus until White can win in one turn, White must use
both moves in the move-wasting gadget, and at all times Black must (and can) push
in the move-wasting gadget. In the analysis of the remaining gadgets, if the white king
reaches a position from which it cannot push, we conclude that White immediately
loses, because if White moves a pawn or the king into position to push, Black can win
on the next turn as explained above.

4.4.2 Variable Gadgets
The existential variable gadget forces White to fill all empty squares in one row of the
connection block, corresponding to setting the value of that variable. The universal
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Figure 4-11: The initial configuration of the core gadget together with upper bounds
on the number of pushes out of the gadget at each boundary edge. Omitted columns
do not have a given upper bound.

variable gadget allows Black to choose the value of the corresponding variable, then
forces White to similarly fill a row of empty squares. We first analyze a core gadget;
the existential variable gadget is a minor variant of the core gadget and its correctness
follows directly, while the universal variable gadget has an additional component to
allow Black to choose the variable’s value. Throughout our analysis, we take advantage
of the board being filled with white pawns to limit the number of pieces that can leave
the gadget.

The core gadget occupies a rectangle of width 𝑝+5 and height 5. When instantiated
in the reduction, the gadget lies entirely within the variable gadget I block. Integer 𝑝
is one more than the maximum number of occurrences of a literal in the input formula.
The initial state of the core gadget is shown in Figure 4-11. Each number along the
boundary of the figure gives the number of empty squares outside the gadget in that
direction, and thus an upper bound on the number of pieces that can leave the gadget
via that edge.

The following lemma summarizes the constraints we prove about the core gadget.

Lemma 4.4.4. Starting from the position in Figure 4-11, and assuming the white
king does not push down or left from this position,

(i) the white king leaves in the second-rightmost column, and

(ii) when the white king leaves either

(a) the gadget is as shown in Figure 4-12 and 𝑝 + 1 white pawns have been
pushed out along the bottom row of the gadget, or

(b) the gadget is as shown in Figure 4-13 and 𝑝 white pawns have been pushed
out along the second-to-bottom row of the gadget,

(iii) and no other pieces have left the gadget.

We will construct the existential and universal variable gadgets from the core
gadget such that the assumption holds. Lemma 4.4.4(i) ensures we can chain variable
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Figure 4-12: The final configuration of
the core gadget after setting the vari-
able to true.

...

Figure 4-13: The final configuration of
the core gadget after setting the vari-
able to false.
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Figure 4-14: One possible push sequence starting from the initial state of the core
gadget. The starred arrow elides a series of pushes to the right.

gadgets together in sequence without the white king escaping. The outcomes implied
by Lemma 4.4.4(iia) and Lemma 4.4.4(iib) correspond to setting the variable to true
or false (respectively) by filling in the empty squares in the connection block that
could be used to satisfy a clause gadget for a clause containing the opposite literal;
that is, pushing pawns out along the bottom row of a gadget prevents all negative
literals from being used to satisfy a clause, and similarly for the second-to-bottom
row and positive literals.

Proof. We proceed by case analysis starting from Figure 4-11. The move-wasting
gadget consumes White’s moves, and there are no black pieces in the core gadget, so
we need only analyze the sequence of White’s pushes.

Suppose the white king first pushes right. Because of the upper bounds along the
top and bottom edges of the gadget, the only legal push in the resulting configuration
is to the right, and this remains the case until the white king reaches the fourth
column from the right of the gadget. At this point 𝑝 + 1 pawns have been pushed off
the right edge along the bottom row of the gadget, so there are no empty squares
remaining in that row, so pushing right is no longer possible and the only legal push
is up. Then the only legal push is again up because of the constraints on the left edge
of the gadget. Figure 4-14 shows the result of this sequence of pushes.

If the white king pushes left from this position, the only possible next push is
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Figure 4-15: The result of pushing left and down from the last position in Figure 4-15.
White has no legal pushes in the final position.
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Figure 4-16: The result of pushing right from the last position in Figure 4-14, reaching
the position in Figure 4-12.

down, after which there are no legal pushes, resulting in a loss for White. Figure 4-15
shows this sequence of pushes.

The only other legal push from the last position in Figure 4-14 is to the right, after
which pushes right, up, up and up again are the only legal pushes. This sequence
results in the white king, preceded by a white pawn, exiting the top of the gadget in
the second-rightmost column, as desired by Lemma 4.4.4(i). Figure 4-16 shows the
positions resulting from this sequence. The final position reached is the position in
Figure 4-12, 𝑝 + 1 pawns were pushed out of the gadget to the right along the bottom
row, as desired by Lemma 4.4.4(iia), and and no other pieces were pushed out of the
gadget, as desired by Lemma 4.4.4(iii).

Now suppose that the white king pushes up from the initial configuration. Because
of the constraints on the gadget boundary, the only legal push is to the right until
the white king reaches the fourth column from the right of the gadget. At this point
𝑝 pawns have been pushed off the right edge along the second-to-bottom row of the
gadget, so there are no empty squares remaining in that row, so pushing right is no
longer possible and the only legal push is up. Then the only legal push is again up
because of the constraints on the left edge of the gadget. Figure 4-17 shows the result
of this sequence of pushes.

If the white king pushes up from this position, there are no legal pushes in the
resulting position, resulting in a loss for White. Figure 4-18 shows this push and the
resulting losing position.

The only other legal push from the last position in Figure 4-17 is to the right, after
which pushes right, up, up and up again are the only legal pushes. This sequence
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Figure 4-17: The other possible push sequence starting from the initial state of the
core gadget. The starred arrow elides a series of pushes to the right.
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Figure 4-18: The result of pushing up from the last position in Figure 4-17. White
has no legal pushes in the final position.

results in the white king, preceded by a white pawn, exiting the top of the gadget
in the second-rightmost column, as desired by Lemma 4.4.4(i). Figure 4-19 shows
the positions resulting from this sequence. The final position reached is the position
in Figure 4-13, and 𝑝 pawns were pushed out of the gadget to the right along the
second-to-bottom row, as desired by Lemma 4.4.4(iib). No other pieces were pushed
out of the gadget, as desired by Lemma 4.4.4(iii).

This completes the case analysis.

...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

p + 1

0

0

0

0

0

0

0

0 0 0 0 0

000000

0

→
...

Figure 4-19: The result of pushing right from the last position in Figure 4-17, reaching
the position in Figure 4-13.
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Figure 4-20: The existential variable gadget.

Existential variable gadget: The existential variable gadget, shown in Figure 4-
20, is nearly the same as the core gadget, differing only in the bottom of the leftmost
column. When instantiated in the reduction, the white king enters the gadget by
pushing a white pawn up into the leftmost column, becoming exactly the core gadget.
From the position immediately after the white king enters the gadget, the white king
cannot push left (because there are no empty spaces in the row to the left) nor down
(because it just pushed up, leaving an empty space in its former position), satisfying
the assumption in Lemma 4.4.4. Thus by Lemma 4.4.4(i), the white king leaves the
existential variable gadget in the second-rightmost column with a white pawn above
it, and by either Lemma 4.4.4(iia) or 4.4.4(iib), all empty squares in one of two rows
of the connection block are now filled by pawns pushed out of the existential variable
gadget.

Universal variable gadget: The universal variable gadget consists of two discon-
nected regions. The left subregion of the gadget occupies a (𝑝 + 6) × 5 rectangle in
the variable gadget I block. As the white king proceeds through the left region of the
gadget, a subregion of the gadget reaches the initial state of the core gadget. The right
region of the gadget occupies a 4 × 4 rectangle in the variable gadget II block and
contains a black pawn to allow Black to control the value of the variable. The bottom
of the right region is one row lower than the bottom of the left region. The area
between the two regions of the gadget (in the three rows shared by both) is entirely
filled by white pawns. Figure 4-21 shows the universal variable gadget, including the
pawn-filled area between the regions.

As with the existential variable gadget, when instantiated in the reduction, the
white king enters the universal variable gadget by pushing a white pawn up into the
leftmost column. Figure 4-22 shows the resulting position. Regardless of Black’s move,
White’s only legal push is to the right. By moving the black pawn, Black can choose
between the two positions in Figure 4-23, depending on which of the two rows the
black pawn is in when White pushes.

In both of the resulting positions, the black pawn is surrounded, so Black can
no longer influence events in this gadget. The left region of the gadget, without the
leftmost column, is identical to the initial position of the core gadget. In both positions,
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Figure 4-22: The universal variable gadget after the white king enters.
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Figure 4-23: The two possible configurations of the universal variable gadget one
white turn after the configuration from Figure 4-22.
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Figure 4-24: The two possible final positions of the universal variable gadget after the
white king exits.
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the white king cannot push left (empty space) or down (no empty spaces down in the
column), satisfying the assumption in Lemma 4.4.4. Thus either Lemma 4.4.4(iia)
or Lemma 4.4.4(iib) holds. Because of the edge constraints, in Figure 4-23a, only
Lemma 4.4.4(iia) is possible, resulting in Figure 4-24a. Similarly, in Figure 4-23b, only
Lemma 4.4.4(iib) is possible, resulting in Figure 4-24b. By moving the black pawn to
select one of these two cases, Black sets the value of the corresponding variable. Then
by Lemma 4.4.4(i), the white king leaves in the second-rightmost column of the left
region (in the variable gadget I block) of the gadget. In both cases, the black pawn
remains surrounded by white pawns in the right region of the gadget.

4.4.3 Bridge Gadget

The bridge gadget, shown in Figure 4-25, brings the white king from the exit of the
last variable gadget to the entrance of the first clause gadget. When instantiated in
the reduction, the white king enters the bridge gadget from the bottom of the leftmost
column, preceded by a white pawn. The white king’s traversal of the bridge gadget is
entirely forced. The white king leaves the gadget by pushing a white pawn out to the
right in the second-to-top row.

113



...

0

0

0

0

0 0 0

0

0

...

00

→
...

0

0

0

0

0 0 0

0

0

...

00

→ · · · →
...

0

0

0

0

0 0 0

0

0

...

00

→

...

0

0

0

0

0 0 0

0

0

...

00

→
...

0

0

0

0

0 0 0

0

0

...

00

→
...

0

0

0

0

0 0 0

0

0

...

00

→
...

0

0

0

0

0 0 0

0

0

...

00

→
...

0

0

0

0

0 0 0

0

0

...

00

→ · · · →
...

0

0

0

0

0 0 0

0

0

...

00

→
...

0

0

0

0

0 0 0

0

0

...

00

→
...

0

0

0

0

0 0 0

0

0

...

00

→
...

0

0

0

0

0 0 0

0

0

...

00

Figure 4-28: The sequence of configurations of the bridge gadget as it is traversed by
the white king.
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Figure 4-29: The sequence of forced configurations of the clause gadget as it is traversed
by the white king.
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Figure 4-30: Starting from the last position in Figure 4-29, the push sequence by
which the white king exits the clause gadget.

4.4.4 Clause Gadget
The clause gadget, shown in Figure 4-26, verifies that a column below the gadget
contains at least one empty square. When instantiated in the reduction, the white
king enters the gadget from the left in the top row, preceded by a white pawn. The
resulting sequence of forced pushes includes a push down in the central column of
the gadget; if there are no empty squares below the gadget in that column, the white
king has no legal pushes and White loses. If there are more empty squares, White can
continue to push down, but (when instantiated in the reduction) there are at most
three total empty squares in that column, and once those squares are filled, White
cannot push. Thus the white king must push right instead and leave the gadget by
pushing a white pawn out to the right in the second-to-top row.

4.4.5 Reward Gadget
The reward gadget, shown in Figure 4-27, allows White to win if the white king reaches
the gadget. The black pawn in this gadget cannot move because it is surrounded.
When instantiated in the reduction, the white king enters the gadget from the left in
the top row, preceded by a white pawn. After pushing right until the white king is
in the third column of Figure 4-27, White can win by moving a white pawn and the
white king, then pushing upwards to push the black pawn off the board, as shown in
Figure 4-32. (Recall that the move-wasting gadget no longer binds White once White
can win in one turn; Black loses before Black can win using the move-wasting gadget.)

4.4.6 Layout
Having described the gadgets, it remains to show how to instantiate them in a
Push Fight game state for a given quantified 3-CNF formula. We first place gadgets
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Figure 4-31: The sequence of forced configurations of the reward gadget as it is
traversed by the white king.
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Figure 4-32: Once the White king reaches the third column of the reward gadget,
White can win in a single turn.

with respect to each other, remembering which squares should be left empty, then
define the board as the bounding box of the gadgets and fill any squares not recorded as
empty with white pawns. The resulting board is mostly rectangular with side rails on
all boundary edges, with two exceptions: one edge along the top of the rectangle lacks
a side rail as part of the reward gadget, and the board is extended in the bottom-right
to accomodate the move-wasting gadget along the bottom of the board.

We begin by building the variable gadget I block containing the existential variable
gadgets and the left portion of the universal variable gadgets. Gadgets are stacked

......

......

...... ...

Figure 4-33: The shape of the Push Fight board produced by the reduction.
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Figure 4-34: The layout of variable gadgets in the variable gadget I block.

Figure 4-35: The layout of clause gadgets in the clause gadget block.

from bottom to top in the order of the quantifiers in the input formula (using the
gadget corresponding to the quantifier), with the leftmost column of each gadget
aligned with the second-to-right column of the previous gadget. (Recall that the width
of the variable gadgets is defined based on 𝑝, one more than the maximum number of
occurrences of a literal in the input formula.) This alignment allows (and requires) the
white king to traverse the gadgets in sequence as specified by Lemma 4.4.4. Figure 4-34
shows the relative layout of these variable gadgets.

We place the white king one square below the first variable gadget aligned with
its leftmost column, and place a white pawn one square above the white king. The
white king will push upwards into the first gadget on White’s first turn. (If the king
was instead placed directly in the variable gadget, if the first variable is universally
quantified, Black would not have a move with which to choose the value of the variable
before White commits it.)

We then build the variable gadget II block by placing the right regions of the
universal variable gadgets to the right of the corresponding left regions in a single
column (further right than any part of the variable gadget I section).

Next we place one clause gadget for each clause in the input formula. Each clause
gadget is directly to the right of and one square lower than the previous clause gadget.
The entire clause gadget block is further right of and above the variable gadget II
block. Figure 4-35 shows the relative layout of the clause gadgets. Then we place a
bridge gadget such that the entrance of the bridge gadget aligns with the exit of the
last variable gadget and the exit of the bridge gadget aligns with the entrance of the
first clause.

We place the reward gadget so that its entrance aligns with the exit of the last
clause gadget.

We leave empty squares in the connection block to encode the literals in each
clause in the input formula. When traversing each variable gadget, the white king
pushes pawns to the right in one of two rows. The lower (upper) row corresponds
to setting the variable to true (false), or equivalently, preventing negative (positive)
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literals from satisfying clauses. Associate each row with the literal it prevents from
satisfying clauses. Each clause gadget enforces that at least one empty square remains
below its middle column, corresponding to at least one of its literals not having been
ruled out by the truth assignment. To realize this relation, for each literal in a clause,
we leave an empty square at the intersection of the column checked by the clause
gadget and the row associated with that literal. All other squares in the connection
block are filled with white pawns (as are all squares in the board whose contents are
not otherwise specified).

The variable gadgets require each row associated with a literal to contain exactly
𝑝 − 1, 𝑝 or 𝑝 + 1 empty squares (depending on the type of gadget and whether the row
is the upper or lower row). This is at least the number of occurrences of that literal
(by the definition of 𝑝), but it may be greater. We place any remaining empty squares
in each row in columns further right than the reward gadget, forming the overflow
block.

The boundary of the board is the bounding box of all the gadgets placed thus far
with a move-wasting gadget appended to the bottom of the board. The left column of
the move-wasting gadget is aligned with the leftmost column of the first (leftmost)
variable gadget and the sixth-from-right column (the rightmost column having height
3) is aligned with the rightmost column of the overflow block. We then fill all squares
not part of a gadget nor recorded as empty with white pawns and place side rails on
all boundary edges except as described in the move-wasting and reward gadgets. The
anchor is on the black king as part of the initial state of the move-wasting gadget.

4.4.7 Analysis
Our analysis of gadget behavior in the preceding sections constrains the white king’s
pushes under the assumption that there are a specific number of empty spaces (often 0)
in a particular row or column on a side of the gadget. We have already discharged the
assumptions regarding the rows associated with literals by our layout of the connection
and overflow blocks. For every other gadget except the variable gadgets, none of
the constrained rows or columns intersects with another gadget, so the constraints
on the edges are implied by the dense sea of white pawns outside the gadgets. For
the variable gadgets, we assumed that pushing down in the second-to-left column
of a variable gadget is not possible, but that column contains the previous variable
gadget’s rightmost column. We discharge this assumption by noting that in the final
state of each variable gadget (after the white king has left the gadget), the rightmost
column of that gadget is filled with white pawns, so pushing down in that column is
indeed not possible.

Thus the white king must traverse the variable gadgets, setting the value of each
variable, then traverse through the bridge gadget to the clause gadgets, where at
least one empty space must remain in each checked column for the king to reach
the reward gadget. If the choices made while traversing the variable gadgets results
in filling all of the empty spaces in a checked column (i.e., the clause is false under
the corresponding truth assignment), then White can only push by using a move
outside the move-wasting gadget and Black wins on the next turn. If the white king
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successfully traverses every clause gadget (i.e., every clause is true under the truth
assignment), then White wins when the white king pushes the black pawn off the
board in the reward gadget. Thus White has a winning strategy for this Push Fight
game state if and only if the input quantified 3-CNF formula is true.

4.5 Solving Push Fight
In this section, we describe our efforts to solve standard, non-generalized Push Fight.
We aim to strongly solve5 the game, that is, to give a strategy for perfect play from
any position, not just the initial positions. We find that Push Fight played on a board
with one column (four squares) removed is a draw. We believe the standard version of
Push Fight is within reach of our current system given sufficient computation time.
Then we propose a solver-driven exploration of the design space of Push Fight variants
that exploits our solver’s ability to generalize to different boards and rule sets, and
as a first step in this direction, prove that Push Fight on the same reduced board
remains a draw when each player must make exactly one move on their turn.

4.5.1 Overview
Our Push Fight solver is based on repeating a forward search until it reaches a fixed
point (unlike most efforts to solve games or create endgame databases, which are based
on retrograde analysis). In the first generation, the solver enumerates all positions with
an anchored king and takes all possible turns (moves and push) from each position.
The position is a win if any turn pushes an opposing piece off the board, and a loss if
every turn pushes an allied piece off the board (including when no pushes are possible).
These won and lost positions are encoded as integers and stored as level 0 of the
win-loss database.

In subsequent generations, the solver enumerates all positions with an anchored
king not already identified as a win or a loss and takes all possible turns from each
position. The successors are looked up in all previous levels of the win-loss database.
The position is a win if at least one successor is a loss, and a loss if all successors are
wins. The newly-identified won and lost positions are stored as level 𝑖 of the win-loss
database. The search continues iterating until in some generation no new won or lost
positions are identified. Any positions not identified as won or lost at the end of the
search are drawn. Drawn positions are stored in the database only implicitly (by not
being stored as won or lost).

After the search completes, the win-loss database contains complete information
about all positions containing an anchored king. The database can be directly queried
for the win-loss-draw value of a position by encoding it as an integer and searching all
levels of the database, but the turn to take to realize that value is not stored explicitly
in the database. To find the turn, that position’s successors must be generated and
looked up in the database. For a won position, turns leading to lost positions in the
earliest level of the database provide the quickest win; for a lost position, turns leading

5This terminology is from Allis [9].
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to won positions in the latest level of the database provide the longest loss; for a
drawn position, any turn leading to another drawn position preserves the draw.

A Push Fight game begins with the first player placing their pieces on their half of
the board, then the second player doing the same. The resulting initial position does
not have an anchored piece, so determining the winner requires taking all turns from
that initial position and, if they are not immediately winning or losing, looking them
up in the win-loss database and inverting the result (as in the looked-up position it is
the second player’s turn). After computing which initial positions win and lose for the
first player, the overall game is a win for the first player if, for some placement of the
first player’s pieces, all placements of the second player’s pieces result in a winning
opening; the game is a loss for the first player if each placement of the first player’s
pieces has a placement of the second player’s pieces resulting in a losing opening; and
the game is a draw otherwise.

4.5.2 Related Work
Retrograde analysis. Retrograde analysis [131, 142] is a method for determining
whether a class of game positions is a win, loss or draw (or unknown) under perfect
play by working backwards. Starting from lost positions (e.g., checkmated positions
in Chess), we generate all predecessor positions and record that they are known to
be wins for the current player. We then generate all predecessors of those positions,
but we do not immediately know they are losses. Instead, we must either do a 1-ply
forward search to see whether all successors are known to be wins, or store a count of
“outs” (possibly losing successors) and detect when it reaches zero. (See outcounting,
below.) We then continue until no new positions are generated (within the class we are
solving; e.g., 8-piece positions in Chess), at which point all positions not yet recorded
as wins or losses are draws.

Retrograde analysis has been used to strongly solve Awari [120] and Pentago [81]
and to weakly solve Nine Men’s Morris in combination with a forward search cover-
ing the placement phase of the game [66]. Retrograde analysis has also been used
to create endgame databases for Chess [134, 106], Chinese Chess [58, 151], Check-
ers [122] (contributing to the weak solution of Checkers by proof-number search [123]),
Kriegspiel [39], and the backgammon variant Plakoto [113].

Outcounting. There is a time-memory tradeoff revolving around how lost positions
are detected in retrograde analysis [24]. Each predecessor of a lost position is a
win, but predecessors of wins are not necessarily lost. The obvious strategy is to
perform a 1-ply forward search to check whether all the successors of the position in
question are known to be lost. This forward search must be repeated each time the
position is generated as the predecessor of a win until it is known to be lost (or won),
introducing some repeated computation, and in distributed implementations, repeated
communication to check the status of positions owned by other machines. The other
strategy is to store the count of unknown successors of each state (the out count) and
decrement this count each time the position is generated as a predecessor of a win.
When the count reaches zero, the position is known to be lost. If the count is nonzero
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at the end of the analysis (and the position isn’t known to be a win), then it is part
of a drawing line of play for that many positions.

Our Push Fight solver does not use retrograde analysis, but it uses a variant of
the outcounting idea to exploit locality in win-loss database queries.

Design space exploration. Sturtevant [132] uses a combination of retrograde
analysis and forward search to explore how modifying puzzles in the single-player
puzzle game Fling! affects their solvability and difficulty. Work in procedural level
generation and evolutionary game design (see Section 8.3) often uses search agents of
varying sophistication as part of fitness functions, approximating difficulty or human
interest.

4.5.3 Implementation
This section describes implementation details of our solver, including referencing
function and class names, so it may be useful to read this section along with the code.
The code is available on GitHub.6

Board representation. Because the Push Fight board is irregularly shaped, we
identify squares by index rather than by their coordinates. We assign indices to squares
arbitrarily without reference to their coordinates, except that we assign lower indices
to anchorable squares. Because every push must push at least one other piece, and
pushing a piece off the board ends the game, there are only 18 anchorable squares on
the standard Push Fight board. For a square to be anchorable, it must have squares
either above and below it or to its left and right. Assigning lower indices to anchorable
squares makes our encoding of positions as integers more compact.

The topology of the board is represented as an array of integers, four per square,
indicating the left, above, right, and below neighbors of that square. Each integer is
either the index of the neighboring square in that direction or the special values RAIL
(indicating there is a side rail in that direction) or VOID (indicating that direction is
off the edge of the board). This topology specification is general enough to support
holes in the interior of the board, rails between squares in the middle of the board,
including rails that can be moved through in one direction but not the reverse, and
cylindrical boards.

While not, strictly speaking, part of the board, the board object also specifies the
number of kings and pawns, the number of allowed moves per turn (which need not
be a range, e.g., exactly 1 or 3 moves), and the areas for placement of pieces during
the opening procedure (as lists of square indices).

Board compiler. To facilitate experimentation with different boards and rule
sets, boards are specified using a small language defining areas and rails, along
with the number of kings and pawns and the allowed numbers of moves per turn.
Board definitions are compiled into C++ code by the board compiler, a Python

6https://github.com/jbosboom/pushfight-solver
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- name: traditional
topology :

- add rectangle (0, 0) 4 8
- remove square (0, 0)
- remove square (0, 1)
- remove square (0, 7)
- remove square (3, 0)
- remove square (3, 6)
- remove square (3, 7)
- rail up line (0, 2) (0, 6)
- rail down line (3, 1) (3, 5)

pawns: 2
pushers : 3
placement :

-
- add rectangle (0, 0) 4 4
- remove square (0, 0)
- remove square (0, 1)
- remove square (3, 0)

-
- add rectangle (0, 4) 4 4
- remove square (0, 7)
- remove square (3, 6)
- remove square (3, 7)

moves: [0, 1, 2]

Listing 4.1: Definition of the standard Push Fight board and rule set.

script. Listing 4.1 shows the definition for the standard Push Fight board (here, and
throughout the solver, kings are called pushers).

Position representation. Positions are represented as instances of struct State,
a group of five bitsets: four bitsets storing the indices of the allied kings, allied pawns,
opposing kings, and opposing pawns, and one additional bitset storing the index of
the anchored king, if any. The allied pieces belong to the player whose turn it is and
the opposing pieces belong to the opponent.

Encoding positions as integers. The rank function, shown in Listing 4.2, encodes
a position as an integer for storage in the win-loss database. The basic idea of the
encoding is to convert a position to a tuple containing the square indices of (in order)
the anchored piece (assumed to be an opposing king), the remaining opposing king,
the opposing pawns, the allied kings and the allied pawns, then convert this tuple
to an integer using a variable base. Each tuple item is multiplied by the number of
squares that have not been used by an encoded piece. That is, for the standard Push
Fight board with 26 squares, the first tuple item is multiplied by 26, then the next by
25, and so on.

The square indices are recovered from the position representation using the trailing
zero count instruction (exposed by the C++ standard library as std::countr_zero).
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1 unsigned long rank(State state , const Board& board) {
2 unsigned long result = 0;
3 unsigned int pext_mask = (1 << board. squares ()) - 1;
4 unsigned int squares = board. squares ();
5
6 int anchored_pusher_idx = std :: countr_zero (state. anchored_pieces );
7 result += anchored_pusher_idx ;
8 pext_mask &= ~state. anchored_pieces ;
9 --squares ;

10
11 auto enemy_pushers = state. enemy_pushers & ~state. anchored_pieces ;
12 enemy_pushers = pext( enemy_pushers , pext_mask );
13 pext_mask &= ~state. enemy_pushers ;
14 while ( enemy_pushers ) {
15 int low_bit = std :: countr_zero ( enemy_pushers );
16 result *= squares ;
17 result += low_bit ;
18 --squares ;
19 enemy_pushers >>= low_bit + 1;
20 }
21
22 auto enemy_pawns = pext(state. enemy_pawns , pext_mask );
23 pext_mask &= ~state. enemy_pawns ;
24 while ( enemy_pawns ) {
25 int low_bit = std :: countr_zero ( enemy_pawns );
26 result *= squares ;
27 result += low_bit ;
28 --squares ;
29 enemy_pawns >>= low_bit + 1;
30 }
31
32 auto allied_pushers = pext(state. allied_pushers , pext_mask );
33 pext_mask &= ~state. allied_pushers ;
34 while ( allied_pushers ) {
35 int low_bit = std :: countr_zero ( allied_pushers );
36 result *= squares ;
37 result += low_bit ;
38 --squares ;
39 allied_pushers >>= low_bit + 1;
40 }
41
42 auto allied_pawns = pext(state. allied_pawns , pext_mask );
43 pext_mask &= ~state. allied_pawns ;
44 while ( allied_pawns ) {
45 int low_bit = std :: countr_zero ( allied_pawns );
46 result *= squares ;
47 result += low_bit ;
48 --squares ;
49 allied_pawns >>= low_bit + 1;
50 }
51 return result ;
52 }

Listing 4.2: Definition of the rank function for encoding a position as an integer.
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Before executing the trailing zero count, however, we use the parallel bit extract
instruction (the calls to pext in Listing 4.2) to compress the bitsets from the position
representation by skipping over any bits from bitsets already processed. This makes
the encoding more compact by making the tuple items smaller.

This encoding is compact: it needs 44 bits to encode all 278,008,038,000 anchored
positions on the standard Push Fight board, which require a minimum of just over
38 bits. On the other hand, there are gaps in the encoding (some integers do not
correspond to positions) and the encoding is not easily reversible, so when the solver
enumerates all anchored positions not in the win-loss database, it must actually
enumerate all positions and look up in the database rather than scan the database
and convert the missing integers back into positions.

Win-loss database. Each level of the win-loss database consists of four files, a
pair each for wins and losses. Contiguous runs of encoded positions are collected
into intervals; one file stores the interval start positions in sorted order, while the
other stores interval lengths. The win-loss database is queried by mapping all levels
into memory, binary searching in each one for the largest interval start less than the
query point, getting the corresponding length and checking whether the query point
is within the interval. (We tried using interpolation search, but it turned out to be
slower.) The WinLossUnknownDatabase class implements database queries and the
write_intervals function implements writing new levels of the database.

Position enumerator. The position enumerator (the enumerate_anchored_states
function) enumerates all anchored positions. First the anchored opposing king is
placed on one of the anchorable squares. Then the remaining opposing kings, opposing
pawns, allied kings and allied pawns are placed on unoccupied squares. To be generic
over variable numbers of kings and pawns, instead of using one nested loop per piece,
all pieces of the same type are placed simultaneously based on precalculated bitsets of
the possible placements of 1 <= 𝑖 <= 3 pieces on the board. The position enumerator
calls the turn generator on each position.

Turn generator. The turn generator has two parts, the move generator (the next_
states function) and the push generator (do_all_pushes). The push generator is
invoked before each move if the number of moves made this turn is in the board’s
allowable number of moves (for the standard game, this is 0, 1 or 2 moves). Then if
the number of moves made this turn is less than the maximum number of allowed
moves, the move generator is invoked to make a move and calls the turn generator
recursively.

The move generator iterates over each allied piece and calls a bitset-based flood fill
algorithm to find the connected component of empty space (if any) adjacent to that
piece. The move generator then moves the piece by moving the bit in the corresponding
position bitset, then calls the turn generator recursively.

The push generator iterates over each allied king and each direction, building a
sequence of pieces next to the king in that direction using the board’s topology array.
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If the piece sequence ends in VOID, the last piece in the chain is removed from the
position; if the sequence ends in RAIL, the push is invalid and the push generator
continues with the next direction. If a valid push is made, each piece in the sequence
is moved to the square of the next piece in the sequence, the anchored piece bitset is
updated to anchor the king that just pushed on its new square, then the allied and
opposing piece bitsets in the position are swapped because it is now the other player’s
turn.

Position evaluator. The turn generator passes each resulting position and the
piece pushed off (if any) to a position evaluator’s accept method. Position evaluators
also expose begin and end methods that the turn generator calls with the predecessor
position before and after generating successors. begin and accept can return false to
cause the turn generator to skip generating all or the rest of the successor positions.

The first generation uses the inherent-value position evaluator (InherentValue
Visitor), which implements the rules for the first generation: a position is a win if
any turn results in an opposing piece being pushed off the board (in which case turn
generation stops early), and a loss if all turns result in an allied piece being pushed
off the board (including when no pushes are possible).

Subsequent generations use a more complicated position evaluator based on out-
counting to exploit locality in win-loss database queries. The rules for subsequent
generations are simple: a position is a win if any successor is a loss, and is a loss if all
successors are wins. We started with a straightforward implementation of these rules
(CompositeValueVisitor). Through instrumentation, we discovered the win-loss
database was being queried repeatedly for the same positions. The nature of Push
Fight turns, particularly moves, means that similar positions tend to have overlap in
their successors. We exploit this locality using outcounting. OutcountingVisitor’s
accept method merely encodes the successor position as an integer and stores it in a
set. The end method records the size of the successor set as the predecessor position’s
out count and appends successor-predecessor pairs to a buffer. When this buffer
fills up, we sort it by successor using a radix sort [128], grouping the predecessors
by successor (like the reduce step in a MapReduce computation). We look up each
successor in the win-loss database. If it is a loss, all associated predecessors are
recorded as wins. If it is a win, the out count of the predecessors is decremented. Then
after processing all successors, any predecessors whose out count is zero are recorded
to be losses (because all their successors are wins). Outcounting cuts the number of
win-loss database lookups by about 1000 for the standard Push Fight board, so it is
worth the extra complexity.

Opening evaluation uses a position evaluator (OpeningProcedureVisitor) im-
plementing both the first generation’s rules about the pushed-off piece and a non-
outcounting version of the subsequent generation’s rules about successor positions. We
can get away without the complexity of outcounting here because there are relatively
few openings. Because the forward search has completed, this position evaluator has
full information about anchored positions, so openings that are not won or lost can be
conclusively recorded as drawn.
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Opening enumerator. The opening enumerator enumerates openings, non-anchor-
ed states in which each player’s pieces are in their respective placement areas (their
half of the board). The opening enumerator first computes half-positions for the allied
and opposing pieces, then uses a nested loop to iterate over each pair of half-positions
and invoke the turn generator on the merged position.

Opening database. Won, lost, and drawn openings are recorded in an opening
database written at the end of the search. There are few enough openings that this
database can consist of human-readable plain text files for each allied half-position
storing the won, lost, and drawn enemy half-positions. The game is an overall win for
the first player if there exists an allied half-position that combines with all opposing
half-positions to be a winning opening, an overall loss for the first player if each allied
position combines with at least one opposing half-position to be a lost opening, and is
a draw otherwise.

Parallelism and checkpointing. To scale effectively to large boards, the solver
must be parallel. To make progress on hardware with less-than-perfect uptime,
the solver must split generations into chunks to provide resumption points. We
implemented two position generators with differing task granularity, defined in terms
of slices and subslices. A slice is a set of positions having their anchored king on a
particular square (so there is one slice per anchorable square); a subslice is a set of
positions having their non-anchored opposing kings on particular squares. For the
standard Push Fight board, there are 18 slices each with 325 subslices (25 of which
contain no positions because the anchored and non-anchored kings conflict).

The coarse-grained position enumerator splits the generation by slice and par-
allelizes across subslices. Thus the solver process runs 18 times per generation
(sequentially), using all hardware threads on the machine to enumerate subslices of
that slice. The fine-grained position enumerator splits the generation by slice and
subslice, doing no parallelism of its own; instead, multiple solver processes can be
run in parallel using a tool like GNU parallel [133]. In both cases, the solver writes
chunks of the current level of the win-loss database before exiting that need to be
concatenated before the next generation begins.

The fine-grained position enumerator offers better checkpointing because each
subslice is computed independently. It also offers theoretically better CPU utilization
because subslices from different slices can proceed in parallel, while the coarse-grained
enumerator must wait for the longest subslice to finish before proceeding to the next
slice. However, in practice the fine-grained enumerator has lower throughput because
we use memory-mapped files to read the win-loss database and each page must be
faulted into each process separately, resulting in more time being spent handling
page faults instead of doing work. For the first slice of the standard Push Fight
board, we take 2.1 times as many page faults using the fine-grained enumerator as
we do using the coarse-grained enumerator, a major contributor to the computation
requiring 87.05 hours with the fine-grained enumerator compared to 42.75 hours with
the coarse-grained enumerator.

126



Symmetries. For our purposes, only distinguishing the current player’s turn is
relevant, not the colors of the pieces, hence our use of allied and opposing pieces
instead of white and black pieces. The standard Push Fight board also offers 180-
degree rotational symmetry. Our solver implements this symmetry by canonicalizing
the position so the anchor is in player 1’s piece placement area. If we enumerate only
canonical slices, we only need to do this canonicalization in the turn generator just
before calling the position evaluator. This symmetry is currently hard-coded in the
solver, not deduced from the board specification by the board compiler.

4.5.4 Results

Figure 4-36: Modified Push Fight board with one column removed (compare to
Figure 4-2). The bold line indicates how the board is divided at the beginning of the
game.

We find that Push Fight played on a board with one column (four squares) removed
and the new middle column split between the players for placement purposes (see
Figure 4-36) is a draw under perfect play. We ran our solver on an AMD Ryzen
Threadripper 2990WX with 64 hardware threads and 128 GiB of RAM running Arch
Linux kernel version 5.5.3. Our code was compiled with GCC 9.2.1. The computation
took six generations. The initial generation took 3.25 hours and resolved 89% of the
positions as wins or losses, while each subsequent generation took between 10.5 and
11.5 hours and resolved positions as shown in Table 4.2, for a total of 59.2 hours. The
win-loss database is 33.9 GB in size. Evaluating the opening positions took only 17
seconds; of the 21344400 opening positions, 19847380 are a win for the first player,
1497020 are drawn, and none are losses for the first player. For each placement of
the first player’s pieces, there is at least one placement of the second player’s pieces
resulting in a drawn opening, so the overall game is a draw.

The results of the initial generation show that most positions in this variant are
immediate wins for the player to move. This is surprising from the perspective of most
combinatorial board games, but makes sense for Push Fight because most positions
have at least one opposing piece on the edge of the board and an allied pusher can
usually move into position to push it off unless the other pieces form a wall. The
results of the opening evaluation show that most openings are wins and none are
losses. Together, these results show the first move is a significant advantage in this
Push Fight variant.
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gen wins T% R% losses T% R% CPU time real time util
0 27719245608 89.102 89.102 48 0.000 0.000 145h10m41s 3h14m58s 44.7
1 0 0.000 0.000 4752534 0.015 0.140 516h28m13s 11h30m23s 44.9
2 15414038 0.050 0.455 0 0.000 0.000 515h14m31s 11h31m01s 44.7
3 0 0.000 0.000 38860 0.000 0.001 510h41m55s 11h20m29s 45.0
4 404724 0.001 0.012 0 0.000 0.000 482h26m50s 10h56m49s 44.1
5 0 0.000 0.000 0 0.000 0.000 462h57m28s 10h38m53s 43.5

Table 4.2: Summary of solver generations for the one-column-removed Push Fight
board. For each generation, this table gives the number of winning and losing positions
found as a raw number and as percentages of the total positions and of the remaining
positions (not yet known to be won or lost), plus the total CPU time, real time, and
utilization on our 64-thread machine.

We believe standard Push Fight is within reach of our current system given
sufficient computation time. We have computed the initial generation for standard
Push Fight, taking 2780.3 CPU-hours over 53.5 real-time hours and using 113.8 GB
of storage, and the first of 9 slices (using the rotational symmetry of the board) of the
second generation, taking 1395 CPU-hours. Assuming perfect utilization of a 64-thread
machine and the search reaching a fixed point after five generations, we would need
40.9 days to compute all of the non-initial generations. With the coarse-grained
position enumerator we only get about half utilization (32.6) because positions in
different subslices have verying numbers of successors; this utilization is worse than
on the one-column-removed board because the variance in subslice computation time
increases with board size. We believe a computation time of 82 days is still feasible.
Unfortunately, our machine is not reliable enough to compute entire slices at once,7
necessitating the use of the fine-grained enumerator for better checkpointing. Using
the fine-grained enumerator halves our utilization again due to increased page faults,
increasing the required time to about 160 days.

4.5.5 Future Work: Design Space Exploration
After using our solver to solve standard Push Fight, we propose a solver-driven
exploration of the design space of Push Fight variants. These are some of the
questions we could answer by solving variants:

∙ Board topology. The standard Push Fight board has side rails on two sides
and some corner squares removed. What if we add those corner squares back,
so that the board is a complete rectangle? What if, instead of pushing over
the side rails being illegal, the pushed pieces “wrap around” to the opposite
side of the board, as if the board is on a cylinder? What if there are thin walls
(blocking piece movement/pushing, but not occupying squares) in the middle of
the board?

7Our machine hangs under sustained loads, requiring a power cycle. Our ability to troubleshoot
the machine is limited due to the COVID-19 pandemic.
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∙ Piece count. Standard Push Fight uses three kings and two pawns per player.
What if each player has three pawns and two kings instead, or some other
combination? What if the second player has additional pieces as compensation
for going second? Is there a piece density (ratio of pieces to squares) after which
no draws are possible?

∙ Initial piece placement. To start a standard Push Fight game, the first player
places their pieces on their half of the board, then the second player places
their pieces. What if players alternated placing single pieces (as in Nine Men’s
Morris)? What if players can place pieces anywhere on the board instead of only
in their half? What if the first player places all pieces for both players, then the
second player chooses which set to play?

∙ Move count. In standard Push Fight, a player may make up to two moves
each turn. What if players could make up to one move, or up to three? What if
players must make some number of moves, possibly introducing zugzwang?

∙ Win condition. In standard Push Fight, a player loses when one of their pieces
is pushed off the board, regardless of which player is pushing. What if a player
can continue playing after pushing their own piece off the board? (Having fewer
pieces is not obviously a disadvantage.)

Our solver is generic enough to handle some of these questions already and can be
extended to handle others. We already support different board shapes through the
board compiler, including thin walls (by specifying rails in the interior of the board),
and even one-way walls. It is not currently possible to specify a board is on a cylinder,
but our board representation can encode cylindrical boards in its topology array. We
also already support games with other numbers of pieces, and the solver (but not the
board compiler) does not care if the players have different numbers of pieces. The
solver supports other allowed move counts, but does not currently prevent a piece
from being moved more than once. Different placement areas are already supported,
but different opening procedures (e.g., players alternate placing single pieces) require
writing new opening enumerators. Finally, allowing the game to continue after a piece
is pushed off the board would require several changes, including to the rank function
used to encode positions as integers, as it will not be one-to-one if some encoded
positions have fewer pieces than others.

As a first step in design space exploration, we computed that Push Fight played
on the same one-column-smaller board where each player must make exactly one move
on their turn remains a draw. The computation took 13 generations, indicating that
this variant has longer forced wins compared to the variant with just the modified
board. There are also substantially more lost positions in this variant.
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gen wins T% R% losses T% R% CPU time real time util
0 26637037392 85.623 85.623 239796 0.001 0.001 10h10m36s 0h11m14s 54.4
1 2380284 0.008 0.053 15036188 0.048 0.336 32h19m15s 1h56m24s 16.7
2 14306410 0.046 0.321 23888 0.000 0.001 32h21m11s 1h58m39s 16.4
3 34456 0.000 0.001 421018 0.001 0.009 32h05m43s 1h59m45s 16.1
4 531672 0.002 0.012 798 0.000 0.000 32h15m11s 2h01m15s 16.0
5 4024 0.000 0.000 2358 0.000 0.000 32h18m14s 2h02m43s 15.8
6 13474 0.000 0.000 40 0.000 0.000 32h21m19s 2h03m56s 15.7
7 0 0.000 0.000 204 0.000 0.000 32h08m40s 2h04m36s 15.5
8 1176 0.000 0.000 0 0.000 0.000 32h32m47s 2h04m58s 15.6
9 0 0.000 0.000 9 0.000 0.000 27h54m46s 1h47m35s 15.6

10 10 0.000 0.000 5 0.000 0.000 32h13m21s 2h03m17s 15.7
11 10 0.000 0.000 0 0.000 0.000 30h18m37s 1h56m08s 15.7
12 0 0.000 0.000 0 0.000 0.000 32h06m46s 2h03m42s 15.6

Table 4.3: Summary of solver generations for the one-column-removed Push Fight
board when each player must make exactly one move on their turn. Columns are the
same as Table 4.2.
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Chapter 5

Path Puzzles1

5.1 Introduction
Path puzzles are a type of pencil-and-paper logic puzzle introduced in Roderick
Kimball’s 2013 book [86] and featured in The New York Times’s Wordplay blog [19].
Figure 5-1 gives a small example. A puzzle consists of a (rectangular) grid of cells
with two exits (or “doors”) on the boundary and numerical constraints on some subset
of the rows and columns. A solution consists of a single non-intersecting path which
starts and ends at two boundary doors and which passes through a number of cells in
each constrained row and column equal to the given numerical clue. Many variations of
path puzzles are given in [86] and elsewhere, for example using non-rectangular grids,
grid-internal constraints, and additional candidate doors, but these generalizations
make the problem only harder.

Path puzzles are closely related to discrete tomography [75], in particular the 2D
orthogonal form: given the number of black pixels in each row and column, reconstruct

1This chapter, except for Section 5.4, is from [31] (also available on arXiv [30]), which is joint
work with Erik D. Demaine, Martin L. Demaine, Adam Hesterberg, Roderick Kimball and Justin
Kopinsky.
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Figure 5-1: A Path Puzzle with complete row/column information (left) and its
solution (right).
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Figure 5-2: The chain of reductions used in our proof.

a black-and-white image. This problem arises naturally in reconstruction of shapes
via x-ray images (which measure density). Vanilla 2-dimensional discrete tomography
is known to have efficient (polynomial-time) algorithms [75], though it becomes hard
under certain connectivity constraints on the output image [43].2 A path puzzle is
essentially a 2-dimensional discrete tomography problem with partial information (not
all row and column counts) and an additional Hamiltonicity (single-path) constraint
on the output image.

Our results. Unlike 2-dimensional discrete tomography, we show that path puzzles
are NP-complete, even with perfect information (i.e., with all row and column counts
specified). In other words, 2-dimensional discrete tomography becomes NP-complete
with an added Hamiltonicity constraint. In fact, we prove the stronger results that
perfect-information path puzzles are Another Solution Problem (ASP) hard
and (to count solutions) #P-complete.

Figure 5-2 shows the chain of reductions we use to prove hardness of Path Puzzle.
To preserve hardness for the ASP and #P classes, our reductions are parsimonious;
that is, they preserve the number of solutions between the source and target problem
instances, generally by showing a one-to-one correspondence thereof. We start from
the source problem of Positive 1-in-3-SAT which is known to be ASP-hard [127, 80]
and (to count solutions) #P-complete [80]. Along the way, we newly establish strong
ASP-hardness and #P-completeness for 3-Dimensional Matching, Numerical
4-Dimensional Matching, Numerical 3-Dimensional Matching, and a new
problem Length Offsets, in addition to Path Puzzle.

Solver. We also describe a path puzzles solver based on depth-first search and
evaluate its performance on the most difficult puzzles from the path puzzles book [86].
Our solver is available on GitHub.3

Fonts. To further communicate the challenge of path puzzles to the general public,
we designed a mathematical puzzle typeface (as part of a series4). Figure 5-3 gives the
puzzle font, which has one path puzzle for each letter of the alphabet. Their solutions
are designed to look like the 26 letters of the alphabet, and are verified unique using
our solver. Look ahead to the solved font in Figure 5-8 in Section 5.6 when you no
longer want to solve the puzzles.

2Most sets of row and column constraints are ambiguous; constraining the output image makes
the problem harder by preventing an easy image from being found instead.

3https://github.com/jbosboom/pathpuzzle-solver
4See http://erikdemaine.org/fonts
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Figure 5-3: Puzzle font

5.2 Numerical 3DM is ASP-complete and #P-complete
The goal of this section is to prove that Numerical 3-Dimensional Matching is
strongly ASP- and #P-complete, i.e., ASP- and #P-complete even when the 𝑛 numbers
are bounded by a polynomial in 𝑛. We follow a similar chain of reductions by Garey
and Johnson [65], namely 3SAT → 3-Dimensional Matching → 4-Partition
→ 3-Partition, but replacing 𝑘-Partition with Numerical 𝑘-Dimensional
Matching and starting from a different version of SAT:

Problem 5.2.1 (Positive 1-in-3-SAT). Given a 3CNF formula 𝐶 with only positive
literals, is there an assignment of variables such that exactly one literal in each clause
of 𝐶 is true?

Lemma 5.2.2. Positive 1-in-3-SAT is ASP-hard and #P-hard.

Proof. 3SAT is shown to be #P-hard in [141]. Section 3.2.1 of [127] shows that 3SAT
is ASP-hard.5 Theorem 3.8 of [80] gives a parsimonious reduction from 3SAT to
Positive 1-in-3-SAT.6 Combining these results gives the claim.

Problem 5.2.3 (3-Dimensional Matching). Given three sets 𝑋, 𝑌, 𝑍 of equal
cardinality and a set 𝑇 of triples (𝑥, 𝑦, 𝑧) where 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍, is there a set
𝑆 ⊆ 𝑇 such that each element of 𝑋, 𝑌, 𝑍 appears in exactly one triple in 𝑆?

Theorem 5.2.4. 3-Dimensional Matching is ASP-hard and #P-hard, even when
𝑇 is constrained not to contain any two triples agreeing on more than one coordinate.

5Section 3.2.4 of [127] proves that 1-in-3-SAT is ASP-hard. Unfortunately, their problem
definition allows negative clauses, while we need Positive 1-in-3-SAT.

6In [80], Positive 1-in-3-SAT is called “1-Ex3MonoSat”.
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Proof. We give a parsimonious reduction from Positive 1-in-3-SAT, using the
variable gadget from Garey and Johnson’s reduction from 3-SAT to 3-Dimensional
Matching [65, Thm. 3.2, p. 50]. Given a Positive 1-in-3-SAT instance with a
set 𝑉 of variables and 𝐶 of clauses, we construct the corresponding 3-Dimensional
Matching instance as follows. We will represent the 3-Dimensional Matching
instance as a hypergraph that is tripartite and 3-uniform, i.e., in which each edge
connects exactly three vertices of different colors according to a 3-coloring of the
vertices. We will say that vertices colored 0 belong to 𝑋, vertices colored 1 belong
to 𝑌 , and vertices colored 2 belong to 𝑍.

Clause triplication. First we triplicate each clause, producing the multiset 𝐶 ′ =
𝐶 ⊔ 𝐶 ⊔ 𝐶 (the disjoint union of three copies of 𝐶). As a result, the number 𝑛𝑥 of
occurrences of each variable 𝑥 ∈ 𝑉 in clauses in 𝐶 ′ (multiply counting if 𝑥 occurs
multiple times in the same clause) is divisible by 3. A truth assignment for 𝑉 satisfies
𝐶 ′ if and only if it satisfies 𝐶, so this triplication does not affect correctness, but it
will help us obtain a 3-coloring.

Variable gadget. Next, for each variable 𝑥 ∈ 𝑉 , we create a variable gadget
consisting of 4𝑛𝑥 vertices associated with 𝑥; refer to Figure 5-4. We call 𝑛𝑥 of the
vertices positive 𝑥 vertices, denoted 𝑥0, 𝑥1, . . . , 𝑥𝑛𝑥−1 (one for each occurrence of 𝑥
in 𝐶 ′); we call 𝑛𝑥 of the vertices negative 𝑥 vertices, denoted �̄�0, �̄�1, . . . , �̄�𝑛𝑥−1; and we
call 2𝑛𝑥 of them auxiliary vertices, denoted 𝑥′

0, 𝑥′
1, . . . , 𝑥′

2𝑛𝑥−1. The edges covering the
auxiliary vertices are as follows: for each 𝑖 ∈ {0, 1, . . . , 𝑛𝑥 − 1}, we add the “positive”
edge (𝑥𝑖, 𝑥′

2𝑖, 𝑥′
2𝑖+1) and the “negative” edge (�̄�𝑖, 𝑥′

2𝑖+1, 𝑥′
(2𝑖+2) mod 2𝑛𝑥

). No other edges
cover the auxiliary vertices, so there are only two ways to cover them: choose all
the positive edges, thereby covering all the positive vertices and none of the negative
vertices, or choose all the negative edges, thereby covering all the negative vertices and
none of the positive vertices. The former choice represents assigning 𝑥 to be true,
while the latter choice represents assigning 𝑥 to be false.

Because 𝑛𝑥 is divisible by 3, we can 3-color the vertices by assigning colors
0, 1, 2, 0, 1, 2, . . . to the auxiliary vertices 𝑥′

0, 𝑥′
1, 𝑥′

2, . . . , then coloring each positive
and negative vertex with the one color not used in its edge, as shown in Figure 5-4.

The final edges of the variable gadget serve to collect “garbage” negative vertices.
For each 𝑖 ∈ {0, 1, . . . , 𝑛𝑥/3 − 1} (using that 𝑛𝑥 is divisible by 3), we add another
positive edge (�̄�3𝑖, �̄�3𝑖+1, �̄�3𝑖+2). These positive edges overlap the negative edges, so
cannot be chosen in the false assignment, but do not overlap the positive edges, and
then they cover all the negative vertices. No other edges cover the negative vertices,
so again we must choose all the positive edges or all the negative edges.

Therefore, local to the variable gadget, we cover all the auxiliary and negative 𝑥
vertices, and either all or none of the positive 𝑥 vertices. Only the positive 𝑥 vertices
will interact with other gadgets, through clause gadgets.

Clause gadget. Finally, for each clause 𝑐 = ⟨𝑥, 𝑦, 𝑧⟩ ∈ 𝐶 ′, we identify one positive 𝑥
vertex, one positive 𝑦 vertex, and one positive 𝑧 vertex all of the same color, resulting
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Figure 5-4: 3DM variable gadget for vari-
able 𝑥 occurring in 𝑛𝑥 = 6 clauses in 𝐶 ′

(two clauses in 𝐶). Hyperedges are drawn
as shaded triangles; any solution must in-
clude all the positive (blue) or all the nega-
tive (red) hyperedges. Vertex colors 0, 1, 2
are drawn as magenta, green, and cyan.
Only the positive vertices (drawn with
doubled outlines) are attached to other
gadgets.

Figure 5-5: 3DM clause gadget, identifying
cyan positive vertices from three variable
gadgets (Figure 5-4). Although here we
draw the three variables as distinct, we
may also identify positive vertices from
the same variable gadget (when the same
variable appears twice in the same clause).
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in a single vertex covered by one positive edge from each of the three corresponding
vertex gadgets; refer to Figure 5-5. The three identified vertices are chosen to be
unique to this clause gadget, so they will not be identified again, and thus will be
covered exactly once if and only if exactly one of the three variables is assigned true.

For each of the three copies of a clause in 𝐶, we choose the identified vertices
to be a different color among {0, 1, 2}, so that each clause in 𝐶 consumes exactly
one positive vertex of each color from each of the three variable gadgets. (When a
variable appears twice in the same clause, two of these variable gadgets will actually
be the same, and we will end up consuming two positive vertices of each color, but
the accounting remains the same.) Thus we will be able to use each positive vertex in
each variable gadget exactly once, without running out of any particular color.

Equivalence. Because the identified (𝑥, 𝑦, 𝑧) vertex in a clause gadget must be
covered by exactly one edge in the 3-Dimensional Matching problem, exactly
one of 𝑥, 𝑦, 𝑧 must have an assignment of true, which is the Positive 1-in-3-
SAT constraint. Thus, given a solved instance of 3-Dimensional Matching, we
can extract exactly one solution to the original Positive 1-in-3-SAT instance.
Furthermore, given a solution to the Positive 1-in-3-SAT instance, we can produce
exactly one solution to the 3-Dimensional Matching instance by choosing all the
positive 𝑥 edges if 𝑥 is set to true and all the negative edges if 𝑥 is set to false.
Thus the reduction is parsimonious.

Examining Figures 5-4 and 5-5, we also see that no hyperedge shares more than
one vertex, as claimed.
Problem 5.2.5 (Numerical 𝑘-Dimensional Matching). Given 𝑘 multisets of
positive integers 𝑋1, . . . , 𝑋𝑘 and a positive integer target sum 𝑡, does there exist a set
𝑆 ⊆ 𝑋1 × · · · × 𝑋𝑘 of 𝑘-tuples such that, for each (𝑥1, . . . , 𝑥𝑘) ∈ 𝑆, 𝑥1 + · · · + 𝑥𝑘 = 𝑡,
and each element of each 𝑋𝑖 appears as the 𝑖th coordinate in exactly one element of 𝑆?
(Thus |𝑋1| = · · · = |𝑋𝑘| = |𝑆|, and we denote this common size by 𝑛.)

We will consider specially the cases 𝑘 = 3 and 𝑘 = 4 for which we label the sets
𝑋, 𝑌, 𝑍 and 𝑊, 𝑋, 𝑌, 𝑍 respectively.
Theorem 5.2.6. Numerical 4-Dimensional Matching is strongly ASP-hard and
#P-hard, even if 𝑌 ∪ (𝑌 + 𝑍) (where 𝑌 + 𝑍 = {𝑦 + 𝑧 : 𝑦 ∈ 𝑌, 𝑧 ∈ 𝑍}) is guaranteed
to be a set (not a multiset).
Proof. We give a parsimonious reduction from 3-Dimensional Matching where no
two triples in 𝑇 agree on more than one coordinate, as guaranteed by Theorem 5.2.4.
Our reduction loosely follows Garey and Johnson’s original reduction [65, Thm. 4.3,
p. 97] with extra care to ensure parsimony.

We are given a 3-Dimensional Matching instance with elements partitioned
into sets

𝑋 = {𝑥1, . . . , 𝑥𝑛}, 𝑌 = {𝑦1, . . . , 𝑦𝑛}, 𝑍 = {𝑧1, . . . , 𝑧𝑛}

and a set of triples 𝑇 ⊆ 𝑋 × 𝑌 × 𝑍. Let 𝑚𝑇 (𝑥𝑖) be the multiplicity of 𝑥𝑖 in 𝑇 , that is,
the number of triples of 𝑇 where 𝑥𝑖 is the first coordinate, and similarly define 𝑚𝑇 (𝑦𝑗)
and 𝑚𝑇 (𝑧𝑘).
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𝑥𝑖 ∈ 𝑋 𝑦𝑗 ∈ 𝑌 𝑧𝑘 ∈ 𝑍 (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑇

𝑊 ′ (10, 𝑖, 0, 0, 0, 0)𝐵 (12, 0, 0, 0, −𝑗, 0)𝐵(10, 𝑖, −𝑖, 0, 0, 0)𝐵

𝑋 ′ (10, 0, 0, 𝑗, 0, 0)𝐵 (7, 0, 0, 0, 0, −𝑘)𝐵(10, 0, 0, 𝑗, −𝑗, 0)𝐵

𝑌 ′ (10, 0, 0, 0, 0, 𝑘)𝐵 (10, 0, 𝑖, 0, 𝑗, 𝑘)𝐵

𝑍 ′ (11, 0, −𝑖, 0, 0, 0)𝐵 (10, −𝑖, 0, −𝑗, 0, −𝑘)𝐵

Table 5.1: The constructions of 𝑊 ′, 𝑋 ′, 𝑌 ′, 𝑍 ′. Each column represents the source
of the constructed elements from the original 3-Dimensional Matching instance.
Most elements have multiplicity 1; bold elements have multiplicity one fewer than the
corresponding 3-Dimensional Matching source item.

First we pick a large base 𝐵 = 100𝑛. We use the notation (𝑑5, 𝑑4, 𝑑3, 𝑑2, 𝑑1, 𝑑0)𝐵 to
represent the base-𝐵 number equal to ∑︀5

𝑖=0 𝑑𝑖𝐵
𝑖 = 𝑑5𝐵

5+𝑑4𝐵
4+𝑑3𝐵

3+𝑑2𝐵
2+𝑑1𝐵+𝑑0.

In the discussion that follows, we use that 𝐵 is large enough that addition with a
digit of the base-𝐵 representation of the numbers in question will never carry over to
another digit, so (𝑑5, 𝑑4, 𝑑3, 𝑑2, 𝑑1, 𝑑0)𝐵 + (𝑑′

5, 𝑑′
4, 𝑑′

3, 𝑑′
2, 𝑑′

1, 𝑑′
0)𝐵 = (𝑑5 + 𝑑′

5, 𝑑4 + 𝑑′
4, 𝑑3 +

𝑑′
3, 𝑑2 + 𝑑′

2, 𝑑1 + 𝑑′
1, 𝑑0 + 𝑑′

0)𝐵.
We construct a Numerical 4-Dimensional Matching instance with target

𝑡 = (40, 0, 0, 0, 0, 0)𝐵 and multisets 𝑊 ′, 𝑋 ′, 𝑌 ′, 𝑍 ′ having the following elements (also
refer to Table 5.1):

(a) For each 𝑥𝑖 ∈ 𝑋, place (10, 𝑖, 0, 0, 0, 0)𝐵 in 𝑊 ′, (11, 0, −𝑖, 0, 0, 0)𝐵 in 𝑍 ′, and
𝑚𝑇 (𝑥𝑖) − 1 copies of (10, 𝑖, −𝑖, 0, 0, 0)𝐵 in 𝑊 ′.

(b) For each 𝑦𝑗 ∈ 𝑌 , place (10, 0, 0, 𝑗, 0, 0)𝐵 in 𝑋 ′, (12, 0, 0, 0, −𝑗, 0)𝐵 in 𝑊 ′, and
𝑚𝑇 (𝑦𝑗) − 1 copies of (10, 0, 0, 𝑗, −𝑗, 0)𝐵 in 𝑋 ′.

(c) For each 𝑧𝑘 ∈ 𝑍, place (10, 0, 0, 0, 0, 𝑘)𝐵 in 𝑌 ′ and (7, 0, 0, 0, 0, −𝑘)𝐵 in 𝑋 ′.

(d) For each (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑇 , place (10, −𝑖, 0, −𝑗, 0, −𝑘)𝐵 in 𝑍 ′ and (10, 0, 𝑖, 0, 𝑗, 𝑘)𝐵

in 𝑌 ′.

Importantly, the 𝑥𝑖, 𝑦𝑗, 𝑧𝑘 above are indexed starting at 1, not 0. One can verify
that the only quadruples summing to 𝑡 are the following (given in 𝑊 ′, 𝑋 ′, 𝑌 ′, 𝑍 ′ order):

Type 1. For (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑇 :

(10, 𝑖, 0, 0, 0, 0)𝐵

+(10, 0, 0, 𝑗, 0, 0)𝐵

+(10, 0, 0, 0, 0, 𝑘)𝐵

+(10, −𝑖, 0, −𝑗, 0, −𝑘)𝐵

=(40, 0, 0, 0, 0, 0)𝐵

Type 2. For (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑇 :

(12, 0, 0, 0, −𝑗, 0)𝐵

+( 7, 0, 0, 0, 0, −𝑘)𝐵

+(10, 0, 𝑖, 0, 𝑗, 𝑘)𝐵

+(11, 0, −𝑖, 0, 0, 0)𝐵

=(40, 0, 0, 0, 0, 0)𝐵

Type 3. For (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑇 :

(10, 𝑖, −𝑖, 0, 0, 0)𝐵

+(10, 0, 0, 𝑗, −𝑗, 0)𝐵

+(10, 0, 𝑖, 0, 𝑗, 𝑘)𝐵

+(10, −𝑖, 0, −𝑗, 0, −𝑘)𝐵

=(40, 0, 0, 0, 0, 0)𝐵

Furthermore, there is a one-to-one correspondence between solutions to the source
instance and solutions to the constructed instance by choosing a triple to be in the
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solution 𝑆 ⊆ 𝑇 of the 3-Dimensional Matching instance if and only if both the
corresponding triples of the types 1 and 2 above are included in the solution 𝑆 ′ of the
constructed Numerical 4-Dimensional Matching instance. If a type-1 quadruple
is included in the solution for some (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑇 , then the corresponding type-2
quadruple must also be included because there is no other way to cover the element
(10, 0, 𝑖, 0, 𝑗, 𝑘)𝐵 ∈ 𝑌 ′, and similarly for the reverse. To confirm that the rest of the
elements can be covered by the type-3 quadruples, notice that there are exactly the
correct number of (10, 𝑖, −𝑖, 0, 0, 0)𝐵 ∈ 𝑊 ′ and (10, 0, 0, 𝑗, −𝑗, 0) ∈ 𝑋 ′ elements. In
particular, for every 𝑖, there are 𝑚𝑇 (𝑥𝑖) triples of the form (10, −𝑖, 0, *, 0, *)𝐵 ∈ 𝑍 ′

and exactly one of these is covered by a type-1 quadruple, so the remaining ones can
be matched with the 𝑚𝑇 (𝑥𝑖) − 1 elements of the form (10, 𝑖, −𝑖, 0, 0, 0)𝐵 ∈ 𝑊 ′, and
similarly for the 𝑦𝑗. Thus we have a parsimonious reduction from 3-Dimensional
Matching to Numerical 4-Dimensional Matching.

We can verify the claim that 𝑌 ′ ∪ (𝑌 ′ + 𝑍 ′) is a set (not a multiset) using the
initial assumption that no two triples in 𝑇 agree on more than one coordinate. First,
𝑌 ′ is a set because, for each 𝑧𝑘, there is exactly one element (10, 0, 0, 0, 0, 𝑘)𝐵 ∈ 𝑌 ′,
and for each triple (𝑥𝑖, 𝑦𝑗, 𝑧𝑘) ∈ 𝑇 , there is exactly one element (10, 0, 𝑖, 0, 𝑗, 𝑘)𝐵 ∈ 𝑌 ′;
these two types of elements are disjoint because the third and fifth digits are always
zero in the former but nonzero in the latter. Similarly, 𝑍 ′ is a set (a fact we will need
later). Also, 𝑌 ′ and 𝑌 ′ + 𝑍 ′ are disjoint because the first digit of any element of 𝑌 ′ is
10 while the first digit of any element of 𝑌 ′ + 𝑍 ′ is at least 20.

To see that 𝑌 ′ + 𝑍 ′ is a set, consider two equal sums 𝑠1 = 𝑦′
1 + 𝑧′

1 and 𝑠2 = 𝑦′
2 + 𝑧′

2
for 𝑦′

1, 𝑦′
2 ∈ 𝑌 ′ and 𝑧′

1, 𝑧′
2 ∈ 𝑍 ′. From 𝑠1 = 𝑠2, it follows that 𝑦′

2 − 𝑦′
1 = 𝑧′

2 − 𝑧′
1. We

claim that, if 𝑠1 = 𝑠2, then 𝑧′
1 = 𝑧′

2 and thus 𝑦′
1 = 𝑦′

2, which suffices because we argued
that 𝑌 ′ and 𝑍 ′ are sets. To prove the claim, we have two cases, one for each type of
element of 𝑍 ′:

Case 1: If 𝑧′
1 = (11, 0, −𝑖1, 0, 0, 0)𝐵, then 𝑧′

2 = (11, 0, −𝑖2, 0, 0, 0) or else 𝑠1 and 𝑠2
would differ in the first digit. Thus 𝑦′

2 − 𝑦′
1 = 𝑧′

2 − 𝑧′
1 = (0, 0, 𝑖1 − 𝑖2, 0, 0, 0)𝐵, but by

the assumption that there are no two distinct triples of 𝑇 sharing both 𝑦𝑗 and 𝑧𝑘,
there are no two distinct elements of 𝑌 ′ whose last two digits are equal but whose
third digits are not, so this difference is impossible unless 𝑦′

1 = 𝑦′
2 and 𝑧′

1 = 𝑧′
2.

Case 2: If 𝑧′
1 = (10, −𝑖1, 0, −𝑗1, 0, −𝑘1)𝐵, then 𝑧′

2 = (10, −𝑖2, 0, −𝑗2, 0, −𝑘2)𝐵 or else
𝑠1 and 𝑠2 would differ in the first digit. Thus 𝑦′

2 − 𝑦′
1 = 𝑧′

2 − 𝑧′
1 = (0, 𝑖1 − 𝑖2, 0, 𝑗1 −

𝑗2, 0, 𝑘1 − 𝑘2)𝐵, but no elements of 𝑌 ′ have nonzero second or fourth digits, so it must
be that 𝑖1 = 𝑖2 and 𝑗1 = 𝑗2. By the assumption that no distinct triples of 𝑇 share
both 𝑥𝑖 and 𝑦𝑗, it must be that 𝑘1 = 𝑘2 as well, so 𝑧′

1 = 𝑧′
2 as claimed.

Theorem 5.2.7. Numerical 3-Dimensional Matching is strongly ASP-hard and
#P-hard, even if 𝑋 is required to be a set (not a multiset).

Proof. We give a parsimonious reduction from Numerical 4-Dimensional Match-
ing where 𝑊 ∪ (𝑊 + 𝑋) is a set, as guaranteed by Theorem 5.2.6 (relabelling 𝑌, 𝑍 to
𝑊, 𝑋). Our reduction is essentially Garey and Johnson’s reduction from 4-Partition
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to 3-Partition [65, Thm. 4.4, p. 99], with some extra care regarding identical elements
and splitting elements into separate sets 𝑋 ′, 𝑌 ′, 𝑍 ′.

Following the reduction in [65], given a Numerical 4-Dimensional Matching
instance 𝑊 = {𝑤1, . . . , 𝑤𝑛}, 𝑋 = {𝑥1, . . . , 𝑥𝑛}, 𝑌 = {𝑦1, . . . , 𝑦𝑛}, 𝑍 = {𝑧1, . . . , 𝑧𝑛}
with target 𝑡, we will construct a Numerical 3-Dimensional Matching instance
𝑋 ′, 𝑌 ′, 𝑍 ′ with target sum 𝑡′ = (64, 4)𝐵 in base 𝐵 = 𝑡. We assume without loss of
generality that every element of 𝑊, 𝑋, 𝑌, 𝑍 is strictly between 𝑡/5 and 𝑡/3.7 First we
define the elements that will appear in 𝑋 ′ ∪ 𝑌 ′ ∪ 𝑍 ′:

𝑤′
𝑖 = (21, 4𝑤𝑖 + 1)𝐵,

𝑥′
𝑗 = (19, 4𝑥𝑗 + 1)𝐵,

𝑦′
𝑘 = (19, 4𝑦𝑘 + 1)𝐵,

𝑧′
ℓ = (21, 4𝑧ℓ + 1)𝐵,

𝑢[𝑤𝑖, 𝑥𝑗] = (24, −4(𝑤𝑖 + 𝑥𝑗) + 2)𝐵,

�̄�[𝑤𝑖, 𝑥𝑗] = (20, 4(𝑤𝑖 + 𝑥𝑗) + 2)𝐵,

𝐶 = (20, 0)𝐵.

Now we can construct the desired Numerical 3-Dimensional Matching instance,
splitting these elements into three multisets 𝑋 ′, 𝑌 ′, 𝑍 ′:

𝑋 ′ = {𝑤′
𝑖 : 1 ≤ 𝑖 ≤ 𝑛} ∪ {�̄�[𝑤𝑖, 𝑥𝑗] : 1 ≤ 𝑖, 𝑗 ≤ 𝑛},

𝑌 ′ = {𝑥′
𝑗 : 1 ≤ 𝑗 ≤ 𝑛} ∪ {𝑧′

ℓ : 1 ≤ ℓ ≤ 𝑛} ∪ {𝑛2 − 𝑛 copies of 𝐶},

𝑍 ′ = {𝑢[𝑤𝑖, 𝑥𝑗] : 1 ≤ 𝑖, 𝑗 ≤ 𝑛} ∪ {𝑦′
𝑘 : 1 ≤ 𝑘 ≤ 𝑛}.

There are 2 × 3 × 2 = 12 possible forms of triples, shown below grouped by the
equivalence classes modulo 4 of the second coordinate of their sum (with shaded boxes
to indicate the only triples that will turn out to be valid):

0 (mod 4) 1 (mod 4) 2 (mod 4) 3 (mod 4)
(𝑤′

𝑖′ , 𝑥′
𝑗′ , 𝑢[𝑤𝑖, 𝑥𝑗]) (�̄�[𝑤�̄�, 𝑥𝚥], 𝑥′

𝑗′ , 𝑢[𝑤𝑖, 𝑥𝑗]) (𝑤′
𝑖′ , 𝐶, 𝑦′

𝑘′) (𝑤′
𝑖′ , 𝑥′

𝑗′ , 𝑦′
𝑘′)

(𝑤′
𝑖′ , 𝑧′

ℓ′ , 𝑢[𝑤𝑖, 𝑥𝑗]) (�̄�[𝑤�̄�, 𝑥𝚥], 𝑧′
ℓ′ , 𝑢[𝑤𝑖, 𝑥𝑗]) (𝑤′

𝑖′ , 𝑧′
ℓ′ , 𝑦′

𝑘′)
(�̄�[𝑤�̄�, 𝑥𝚥], 𝑥′

𝑗′ , 𝑦′
𝑘′) (𝑤′

𝑖′ , 𝐶, 𝑢[𝑤𝑖, 𝑥𝑗])
(�̄�[𝑤�̄�, 𝑥𝚥], 𝑧′

ℓ′ , 𝑦′
𝑘′) (�̄�[𝑤�̄�, 𝑥𝚥], 𝐶, 𝑦′

𝑘′)
(�̄�[𝑤�̄�, 𝑥𝚥], 𝐶, 𝑢[𝑤𝑖, 𝑥𝑗])

The second coordinate of 𝑡′ is congruent to 0 (mod 4), so triples in the second,
third, and fourth columns never sum to 𝑡′.

Of the triples in the first column, two of them cannot actually sum to 𝑡′. Triples of
the form (𝑤′

𝑖′ , 𝑧′
ℓ′ , 𝑢[𝑤𝑖, 𝑥𝑗]) sum to (66, 4(𝑤𝑖′ + 𝑧ℓ′ − 𝑤𝑖 − 𝑥𝑗) + 4)𝐵. For this to equal

𝑡′, the second coordinate must equal −2𝑡 + 4, so 𝑤𝑖′ + 𝑧ℓ′ − 𝑤𝑖 − 𝑥𝑗 must equal −𝑡/2.
7If a Numerical 4-Dimensional Matching instance has any elements ≥ 𝑡, it trivially has no

solutions (as all elements are positive). Otherwise, we can convert it to an instance with this property
by adding 2𝑡 to each element in 𝑊, 𝑋, 𝑌, 𝑍 and changing the target sum from 𝑡 to 𝑡 = 9𝑡. Then every
element is strictly between 2𝑡 and 3𝑡, and thus strictly between 𝑡/5 = 9𝑡/5 and 𝑡/3 = 9𝑡/3.
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But by the assumption that every element of 𝑊, 𝑋, 𝑌, 𝑍 is strictly between 𝑡/5 and
𝑡/3, the smallest possible value for 𝑤𝑖′ + 𝑧ℓ′ − 𝑤𝑖 − 𝑥𝑗 is greater than −4𝑡/15, so triples
of this form never sum to 𝑡′. Similarly, triples of the form (�̄�[𝑤�̄�, 𝑥𝚥], 𝑥′

𝑗′ , 𝑦′
𝑘′) sum to

(58, 4(𝑤�̄� + 𝑥𝚥 + 𝑥𝑗′ + 𝑦𝑘′) + 4)𝐵. For this to equal 𝑡′, the second coordinate must equal
6𝑡 + 4, so 𝑤�̄� + 𝑥𝚥 + 𝑥𝑗′ + 𝑦𝑘′ must sum to 3𝑡/2, but the largest possible value for that
expression is less than 4𝑡/3, so triples of this form never sum to 𝑡′.

This leaves three forms of triples that can sum to 𝑡′ = (64, 4)𝐵:

(𝑤′
𝑖′ , 𝑥′

𝑗′ , 𝑢[𝑤𝑖, 𝑥𝑗]), (�̄�[𝑤�̄�, 𝑥𝚥], 𝑧′
ℓ′ , 𝑦′

𝑘′), and (�̄�[𝑤�̄�, 𝑥𝚥], 𝐶, 𝑢[𝑤𝑖, 𝑥𝑗]).

A triple of the second form encodes a quadruple in the input Numerical 4-Dimen-
sional Matching instance; the triple sums to 𝑡′ (after a carry (60, 4𝑡+4)𝐵 = (64, 4)𝐵)
exactly when 𝑤�̄� +𝑥𝚥 +𝑧ℓ′ +𝑦𝑘′ = 𝑡. The map 𝑤�̄� +𝑥𝚥 ↦→ �̄�[𝑤�̄�, 𝑥𝚥] is one-to-one, so from
our assumption that 𝑊 + 𝑋 is a set, {�̄�[𝑤𝑖, 𝑥𝑗]} is also a set, and so this encoding is
unique. A triple of the first form sums to 𝑡′ exactly when 𝑤𝑖′ +𝑥𝑗′ −𝑤𝑖−𝑥𝑗 = 0. Because
𝑊 + 𝑋 is a set and the map 𝑤𝑖 + 𝑥𝑗 ↦→ 𝑢[𝑤𝑖, 𝑥𝑗] is one-to-one, we must have 𝑖′ = 𝑖
and 𝑗′ = 𝑗 in valid triples of the first form, uniquely collecting the 𝑢[𝑤𝑖, 𝑥𝑗] elements
corresponding to �̄�[𝑤�̄�, 𝑥𝚥] elements used in triples of the second form. Similarly, �̄� = 𝑖
and 𝚥 = 𝑗 in valid triples of the third form, uniquely collecting the unused 𝑢[𝑤𝑖, 𝑥𝑗 ] and
�̄�[𝑤𝑖, 𝑥𝑗 ] elements using all 𝑛2−𝑛 copies of 𝐶. Thus there is a one-to-one correspondence
between solutions to the input Numerical 4-Dimensional Matching instance and
the constructed Numerical 3-Dimensional Matching instance, so the reduction
is parsimonious and Numerical 3-Dimensional Matching is ASP- and #P-hard.

It remains to verify that 𝑋 ′ = {𝑤′
𝑖} ∪ {�̄�[𝑤𝑖, 𝑥𝑗]} is a set (not a multiset). We

argued above that {�̄�[𝑤𝑖, 𝑥𝑗]} is a set (using that 𝑊 + 𝑋 is a set), and {𝑤′
𝑖} is a set

because we assumed 𝑊 is a set and the map 𝑤𝑖 ↦→ 𝑤′
𝑖 = (20, 4𝑤𝑖 + 1)𝐵 is one-to-one.

It remains to show that {𝑤′
𝑖} is disjoint from {�̄�[𝑤𝑖, 𝑥𝑗 ]}, which follows because 𝑤′

𝑖 ≡ 1
(mod 4) and �̄�[𝑤𝑖, 𝑥𝑗] ≡ 2 (mod 4). Therefore 𝑋 ′ is a set.

5.3 Parsimonious Reductions from Numerical 3DM
to Path Puzzles

The goal of this section is to parsimoniously reduce Numerical 3-Dimensional
Matching (as analyzed in Section 5.2) to Path Puzzle, thereby proving the latter
strongly NP-, ASP-, and #P-hard. We first introduce a more geometric view of
Numerical 3-Dimensional Matching, called Length Offsets, and prove its
equivalence. It will then be relatively easy to represent Length Offsets as a Path
Puzzle.

Problem 5.3.1 (Length Offsets). Given a set (not a multiset) of positive integer
lengths 𝑎1, 𝑎2, . . . , 𝑎𝑛, and given 𝑚 nonnegative integer target densities 𝑡0, 𝑡1, . . . , 𝑡𝑚−1,
can we place 𝑛 intervals with integer endpoints within [0, 𝑚] and lengths 𝑎1, 𝑎2, . . . , 𝑎𝑛,
respectively, such that the number of intervals overlapping (𝑖, 𝑖 + 1) is exactly the target
density 𝑡𝑖? In other words, can we choose nonnegative integer offsets 𝑏1, 𝑏2, . . . , 𝑏𝑛
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target density ti
Figure 5-6: Length Offsets instance obtained by reducing from Numerical
3-Dimensional Matching where 𝑋 = {5, 6, 7}, 𝑌 = {4, 5, 5}, 𝑍 = {4, 4, 5}, 𝑡 = 15;
and its solution corresponding to the Numerical 3-Dimensional Matching
solution of (5, 5, 5), (5, 6, 4), (4, 7, 4).

such that 𝑎𝑗 + 𝑏𝑗 ≤ 𝑚 for each 𝑗 (1 ≤ 𝑗 ≤ 𝑛); and, for each 𝑖 (0 ≤ 𝑖 < 𝑚), there are
exactly 𝑡𝑖 indices 𝑗 such that 𝑏𝑗 ≤ 𝑖 < 𝑎𝑗 + 𝑏𝑗?

Theorem 5.3.2. Length Offsets is parsimoniously reducible from Numerical
3-Dimensional Matching in which at least one of the three multisets is actually a
set.

Proof. We give a parsimonious reduction from Numerical 3-Dimensional Match-
ing where 𝑋 is a set, as guaranteed by Theorem 5.2.7. Specifically, consider a Numeri-
cal 3-Dimensional Matching instance with set 𝑋 = {𝑥1, . . . , 𝑥𝑛}, multisets 𝑌 and
𝑍, and a target sum 𝑡. Assume without loss of generality that every element of 𝑋, 𝑌, 𝑍
is strictly between 𝑡/4 and 𝑡/2.8 We construct a Length Offsets instance that we
claim has the same number of solutions: the 𝑛 lengths are given simply by 𝑎𝑖 = 𝑥𝑖,
and the target densities are given by 𝑡𝑖 = 𝑛 − |{𝑦 ∈ 𝑌 : 𝑦 > 𝑖}| − |{𝑧 ∈ 𝑍 : 𝑡 − 𝑧 ≤ 𝑖}|,
where 0 ≤ 𝑖 < 𝑚 and 𝑚 = 𝑡. See Figure 5-6 for an example. The intuition is that
we place intervals for 𝑋, 𝑌, 𝑍, left-align the intervals for 𝑌 , right-align the intervals
for 𝑍, and count the remaining density for 𝑋 intervals.

It remains to show that every solution to the original Numerical 3-Dimensional
Matching instance corresponds to a solution to the constructed Length Offsets
instance, and different Numerical 3-Dimensional Matching solutions correspond
to different Length Offsets solutions. Equivalently, we will provide an injective
map from Numerical 3-Dimensional Matching solutions to Length Offsets
solutions, and an injective map from Length Offsets solutions to Numerical
3-Dimensional Matching solutions.

8If a Numerical 3-Dimensional Matching instance has any elements ≥ 𝑡, it trivially has
no solutions (as all elements are positive). Otherwise, we can convert it to an instance with this
property by adding 𝑡 to each element in 𝑋, 𝑌, 𝑍 and changing the target sum from 𝑡 to 𝑡 = 4𝑡. Then
every element is strictly between 𝑡 and 2𝑡, and thus strictly between 𝑡/4 = 4𝑡/4 and 𝑡/2 = 4𝑡/2.
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N3DM to Length Offsets. To convert a Numerical 3-Dimensional Matching
solution into a Length Offsets solution, we assign 𝑏𝑗 = 𝑦𝑘 for each solution triple
(𝑥𝑗, 𝑦𝑘, 𝑧ℓ). Figure 5-6 shows this solution for the example.

For each 𝑖 and each triple (𝑥𝑗, 𝑦𝑘, 𝑧ℓ), 𝑏𝑗 ≤ 𝑖 < 𝑎𝑗 + 𝑏𝑗 if and only if 𝑦𝑘 ≤ 𝑖 and
𝑖 < 𝑥𝑗 + 𝑦𝑘 = 𝑡 − 𝑧ℓ, so either

1. 𝑦𝑘 > 𝑖; or

2. 𝑡 − 𝑧ℓ ≤ 𝑖; or

3. 𝑏𝑗 ≤ 𝑖 < 𝑎𝑗 + 𝑏𝑗.

The first case applies |{𝑦 ∈ 𝑌 : 𝑦 > 𝑖}| times, and the second case applies |{𝑧 ∈ 𝑍 : 𝑡−
𝑧 ≤ 𝑖}| times, so the third case applies 𝑛−|{𝑦 ∈ 𝑌 : 𝑦 > 𝑖}|−|{𝑧 ∈ 𝑍 : 𝑡−𝑧 ≤ 𝑖}| = 𝑡𝑖

times. Thus our choice of the offsets is a valid solution to the Length Offsets
instance.

If two Numerical 3-Dimensional Matching solutions differ, then (using that
𝑋 is a set) some 𝑥 is matched with a different 𝑦 in each solution, so when converting
those solutions to Length Offsets solutions, we assign the corresponding length
different offsets.

Length Offsets to N3DM. To convert a Length Offsets solution into a Nu-
merical 3-Dimensional Matching solution, for each length–offset pair (𝑎𝑖, 𝑏𝑖),
we match the triple (𝑎𝑖, 𝑏𝑖, 𝑡 − 𝑎𝑖 − 𝑏𝑖). These triples obviously sum to 𝑡 and are
therefore legal, but we need to show that their elements exist and cover 𝑋, 𝑌 , and 𝑍,
respectively.

1. Every 𝑎𝑖 is an 𝑥𝑖 and vice versa, so 𝑋 is covered by {𝑎𝑖}.

2. For each 𝑖, we have

𝑡𝑖 − 𝑡𝑖−1 = (𝑛 − |{𝑦 ∈ 𝑌 : 𝑦 > 𝑖}| − |{𝑧 ∈ 𝑍 : 𝑡 − 𝑧 ≤ 𝑖}|)
− (𝑛 − |{𝑦 ∈ 𝑌 : 𝑦 > 𝑖 − 1}| − |{𝑧 ∈ 𝑍 : 𝑡 − 𝑧 ≤ 𝑖 − 1}|)

= |{𝑦 ∈ 𝑌 : 𝑦 = 𝑖}| − |{𝑧 ∈ 𝑍 : 𝑡 − 𝑧 = 𝑖}|

For 𝑖 < 𝑡/2, the second term is 0 (because 𝑧 < 𝑡/2 by assumption), so 𝑡𝑖 − 𝑡𝑖−1
is precisely the number of elements of 𝑌 that equal 𝑖. On the other hand, in a
Length Offsets instance, when 𝑖 < 𝑡/2, 𝑡𝑖 − 𝑡𝑖−1 is the number of segments
which pass through 𝑖 but not 𝑖 − 1, i.e., the number of segments which begin at
𝑖 and therefore have offset 𝑏𝑗 = 𝑖. Therefore, 𝑌 is covered by {𝑏𝑗}.

3. Following the same argument as above, but for 𝑖 > 𝑡/2, we have that 𝑡𝑖 − 𝑡𝑖−1 =
−|{𝑧 ∈ 𝑍 : 𝑡 − 𝑧 = 𝑖}|. On the other hand, in the Length Offsets problem,
for 𝑖 > 𝑡/2, 𝑡𝑖 − 𝑡𝑖−1 is the negative of the number of segments which end at
𝑖 − 1; i.e., it is the negative of the number of indices 𝑗 such that 𝑎𝑗 + 𝑏𝑗 = 𝑖, or
equivalently, 𝑡 − (𝑡 − (𝑎𝑗 + 𝑏𝑗)) = 𝑖. Thus, 𝑍 is covered by {𝑡 − (𝑎𝑗 + 𝑏𝑗)} as
claimed.
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Different solutions to the Length Offsets instance correspond to different
solutions to the Numerical 3-Dimensional Matching instance because, if two
Length Offsets solutions differ, then some length 𝑎𝑗 gets different offsets, so
the corresponding 𝑥𝑗 is matched to different elements of 𝑌 in the two Numerical
3-Dimensional Matching solutions.

We have shown two injective maps between solutions of the Length Offsets
instance and solutions of the Numerical 3-Dimensional Matching instance, so
our reduction is parsimonious.

We now make a brief observation that we make use of later.

Lemma 5.3.3. In every solution to Length Offsets instances produced by the
reduction in the proof of Theorem 5.3.2, no line segment shares its left endpoint with
the right endpoint of another.

Proof. By assumption, all elements of the Numerical 3-Dimensional Matching
instance lie in the exclusive interval (𝑡/4, 𝑡/2). Our reduction sets 𝑎𝑖 = 𝑥𝑖, so 𝑡/4 <
𝑎𝑖 < 𝑡/2. Our mapping between solutions assigns 𝑏𝑖 = 𝑦𝑘, so 𝑡/4 < 𝑏𝑖 < 𝑡/2. Adding
these inequalities yields 𝑡/2 < 𝑎𝑖 + 𝑏𝑖 < 𝑡 for all 𝑖. Then 𝑏𝑖 < 𝑡/2 < 𝑎𝑗 + 𝑏𝑗 for all 𝑖
and 𝑗, so the sets of left and right endpoints are disjoint.

We are now ready to prove our main theorem.

Theorem 5.3.4. Path Puzzle is NP-, #P- and ASP-hard.

Proof. We give a parsimonious reduction from Length Offsets, as produced by
Theorem 5.3.2 so that Lemma 5.3.3 applies. Given a Length Offsets problem with
lengths 𝑎1, . . . , 𝑎𝑛 and target densities 𝑡0, . . . , 𝑡𝑚−1, we construct an equivalent Path
Puzzle instance as follows. Figure 5-7 shows our construction instantiated for the
same Length Offsets instance from Figure 5-6.

Dimensions: The grid has 2𝑚 + 3 rows and (12𝑛 + 6)𝑛 − 1 columns.
We group the columns into 𝑛 blocks 𝐵1, . . . , 𝐵𝑛 of 12𝑛 + 5 columns each, inter-
spersed with 𝑛 − 1 lone columns. Thus block 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑛) consists of columns
(12𝑛 + 6)𝑖 − (12𝑛 + 5), . . . , (12𝑛 + 6)𝑖 − 1 and the 𝑖th lone column (1 ≤ 𝑖 < 𝑛) is
column (12𝑛 + 6)𝑖.

Doors: We place doors at the left and right ends of the top row.

Row labels: Counting up from the bottom, the (2𝑖 + 2)nd row has a label of 4𝑛 + 𝑡𝑖,
for each 𝑖 (0 ≤ 𝑖 ≤ 𝑚); the (2𝑚 + 2)nd and (2𝑚 + 3)rd (topmost) rows have
labels 4𝑛 and 5𝑛 − 1, respectively; and all other row labels are blank.

Column labels: Each lone column has a column label of 1. Each block 𝐵𝑗 (1 ≤ 𝑗 ≤ 𝑛)
has labels of 2𝑚 + 3 on its first two and last two columns; a label of 2𝑎𝑗 + 1
on its middle column (6𝑛 + 3th column); and labels of 1 on all other columns
(which split into two sections of 6𝑛 consecutive columns).
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Figure 5-7: Solution to a Path Puzzle instance, reduced from Length Offsets from
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Any solution to this path puzzle has the following properties:

1. Every square in the first two and last two columns of each block is visited, by
the column labels of 2𝑚 + 3.

2. Every section of 6𝑛 consecutive columns labeled 1 (within a block) corresponds
to a single horizontal path, which must be in one of the blank rows because all
row labels are less than 6𝑛.

3. Every column labeled 2𝑎𝑖 + 1 is a single vertical line segment, because both
neighboring columns are labeled 1, just enough to enter and exit the column
once.

4. No top square of a column labeled 2𝑎𝑖 + 1 is visited, because if one were, the
second square from the top of such a column would also be visited (by Property 3
and because 2𝑎𝑖 + 1 > 1), but then that row would have more than 4𝑛 visited
squares (by Property 1).

5. In each line column, the top square (and only that square) is visited, because
those are the remaining squares on the top row that can be visited, and are just
enough (with Property 1) to account for a total of 5𝑛.

6. The vertical line segment in the (unique) column labeled 2𝑎𝑖+1 (from Property 3)
visits 𝑎𝑖 rows with labels of 4𝑛 + 𝑡𝑗 for various 𝑗. Of that 4𝑛 + 𝑡𝑗, 4𝑛 visits are
accounted for by the full columns of Property 1, so the positions of those line
segments are a solution to the Length Offsets problem.

7. Given placements of the vertical line segments corresponding to a valid solution
to the Length Offsets problem, we claim that the rest of the path is uniquely
determined. The set of visited squares in each gadget is uniquely determined by
the previous properties. In each pair of columns labeled 2𝑚 + 3:

(a) The bottom two squares each have only two visited neighbors, each other
and the square above them, so each of them connects by the path to those
two squares.

(b) For squares in the pair of columns below the entry point of the length 6𝑛
horizontal path, the long U-shaped path shown in Figure 5-7 is forced. For
each horizontal pair of squares except the bottom pair, the squares below
connect to them. If the pair squares connect to each other, they form a
closed loop, so they must connect to the squares above them instead.

(c) For squares above the entry point of the length 6𝑛 horizontal path, the
zig-zag path is forced. The pair of columns divides evenly into 2 × 2 chunks
because the entry point of the length 6𝑛 path is in a row with no label,
and the only such rows are at even height. Let inside and outside be
relative to the center of the block. In each chunk, the bottom inside square
can’t connect to the square below (because that square is already known
to connect down and to the inside), so it connects to the outside and up.
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Similarly, the top outside square can’t connect to the square below (because
that square is already known to connect down and to the bottom inside
square), so it connects to the inside and up (except that in the very top
2 × 2 chunk, the top outside square can’t connect down and can and must
connect to the outside to satisfy the top row).

Thus, each solution to the path puzzle determines a solution to the Length Offsets
problem, and that solution is uniquely determined, so the number of solutions to
the Length Offsets problem is the same as the number of solutions of the path
puzzle, and the reduction is parsimonious as desired. Note that we are relying on the
uniqueness of the lengths 𝑎𝑖 from the Length Offsets problem definition; otherwise,
permuting which copy of a duplicated length gets which offset in the path puzzle
would generate multiple solutions to Path Puzzle from each solution of Length
Offsets.

In fact, our reduction can be converted into one giving complete information (i.e.,
all row and column labels), demonstrating that partial information is not the source
of Path Puzzle’s hardness.

Theorem 5.3.5. Perfect-information Path Puzzle (with all row and column labels
given as labels) is NP-, #P- and ASP-hard.

Proof. Recall that the reduction from the proof of Theorem 5.3.4 (referring to Figure 5-
7) already provides all column sums and about half of the row sums. We show how to
provide the remaining row sums without giving away information about the solution
to the original Length Offsets instance.

The rows with missing labels are the (2𝑖−1)st rows for 𝑖 = 1, 2, . . . , 𝑚. In each such
row, the solution path must visit (6𝑛+2)𝑟𝑖 cells, where 𝑟𝑖 is the number of segments in
the Length Offsets solution which have an endpoint at 𝑖. Recall from Lemma 5.3.3
that no line segment shares its left endpoint with the right endpoint of another.
Thus there is only one type of endpoint at each coordinate 𝑖, and we can compute
𝑟𝑖 = |𝑡𝑖+1 − 𝑡𝑖|. The value of 𝑟𝑖 depends only on the Length Offsets instance, not
its solutions, so we can modify our reduction to specify a label of (6𝑛 + 2)𝑟𝑖 for row
2𝑖 − 1, producing a perfect-information instance of Path Puzzle.

5.4 Solving Path Puzzles Using Depth-First Search
We implemented a path puzzles solver in C++ based on depth-first search. We used
this solver to verify that our path puzzle font has unique solutions. In this section, we
describe the solver and investigate its performance on the most difficult puzzles from
the path puzzles book [86].

The basic idea of the solver is to explore possible paths in a depth-first manner
while tracking the count of cells remaining to be used for each clue. When the solver
considers extending the path into a neighbor of the last cell in the path, the counters
for each clue covering that neighbor are checked. If all those counters are greater
than zero, the solver decrements all the counters and extends the path; if any of those
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counters is 0, moving into that cell would violate a clue. After trying all the neighbors
of a cell, the solver backtracks, incrementing counters for the cell being removed from
the path. When the path reaches an exit, if all the counters are 0, all the clues are
satisfied and the path is reported as a solution. The solver continues the search after
reporting a solution to check that the solution is unique.

Details. The core of the solver (excluding puzzle input and solution output) is small
enough to be presented in Listing 5.1. Each cell in the puzzle is represented by an
instance of struct Cell in the cells vector and each clue is represented by an int
in the counters vector. To simplify handling of non-rectangular puzzles, we identify
cells and clues by index instead of their coordinates in the puzzle. The terminals
vector stores the indices of door cells in sorted order.

Each cell stores its index, its row and column in the puzzle (for use when printing
solution paths), the indices of its four neighbor cells (padded with -1 if a cell has
fewer than four neighbors), and the indices of four counters corresponding to the clues
covering the cell.

Each counter in the counters vector that corresponds to a clue is initialized to the
clue’s number. Additionally, there is one dummy counter initialized to -1 that does not
correspond to a clue. Cells covered by fewer than four clues use this dummy counter
(possibly multiple times) so that every cell references four counters, simplifying the
loops that check, decrement and increment counters.

Most of the solver’s logic is in the solve_recurse function. The current path
is stored in a tsl::ordered_set,9 a hash set that maintains the order of insertion.
First, the solver checks whether the current path ends at a door cell (lines 14-15) and
all the counters are less than or equal to zero (line 16); if so, the current path is a
solution and the solver saves it in the results vector. The condition on line 13 that
the last cell in the path has a greater index than the first cell ensures each path is
found only once; without it, the solver would find each path twice (once reversed).

After checking for solutions, the solver attempts to extend the path into a neighbor
of the last cell in the path. This is not possible if the neighbor index is -1 (line 21) or
if the neighbor is already in the path when the solver tries to insert it (line 27). The
solver also does not extend the path if any of the candidate cell’s counters are 0 (lines
22-26); such counters represent clues that would be violated if the path was extended.
The dummy counter is initialized to -1 and no counter is ever incremented above
its initial value, so the dummy counter cannot cause a candidate to be rejected. If
these checks all pass, the newly-added cell’s counters are decremented and the solver
recurses. After the recursive call returns, the cell’s counters are incremented and the
newly-added cell is removed from the path.

In the solve function, the solver iterates over each terminal except the last, adding
it as the first cell in the path, decrementing the terminal’s counters and calling
solve_recurse to begin the depth-first search. After the search terminates, the
terminal’s counters are incremented and the solver continues with the next terminal.
The solver does not search from the last terminal in the terminals vector because the

9https://github.com/Tessil/ordered-map
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1 struct Cell {
2 unsigned int n, r, c;
3 std :: array <int , 4> neighbors ;
4 std :: array < unsigned int , 4> counters ;
5 };
6
7 std :: vector <Cell > cells;
8 std :: vector < unsigned int > terminals ;
9 std :: vector <int > counters ;

10
11 void solve_recurse (tsl :: ordered_set < unsigned int >& path ,
12 std :: vector <std :: vector < unsigned int >>& results ) {
13 if (path.back () > path.front () &&
14 std :: find( terminals .begin (), terminals .end (),
15 path.back ()) != terminals .end () &&
16 std :: all_of ( counters .begin (), counters .end (), le_zero ))
17 results . push_back (std :: vector < unsigned int >( path.begin (),
18 path.end ()));
19
20 for (int n : cells[path.back ()]. neighbors ) {
21 if (n < 0) continue ;
22 bool counters_continue = false;
23 for (int ci : cells[n]. counters )
24 if ( counters [ci] == 0)
25 counters_continue = true;
26 if ( counters_continue ) continue ;
27 if (! path. insert (n). second ) continue ;
28
29 for (int ci : cells[n]. counters )
30 --counters [ci];
31 solve_recurse (path , results );
32 for (int ci : cells[n]. counters )
33 ++ counters [ci];
34 path. pop_back ();
35 }
36 }
37
38 std :: vector <std :: vector < unsigned int >> solve () {
39 std :: vector <std :: vector < unsigned int >> results ;
40 tsl :: ordered_set < unsigned int > path;
41 for ( unsigned int ti = 0; ti + 1 < terminals .size (); ++ti) {
42 path.clear ();
43 path. insert ( terminals [ti ]);
44 for (int ci : cells[path.back ()]. counters )
45 --counters [ci];
46 solve_recurse (path , results );
47 for (int ci : cells[path.back ()]. counters )
48 ++ counters [ci];
49 }
50 return results ;
51 }

Listing 5.1: Core of the path puzzle solver.
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puzzle cells clues doors runtime (s)
p. 109 56 17 2 0.1
p. 110 top 69 20 2 0.1
p. 110 bottom 88 18 2 5.1
p. 112 top 64 16 2 0.0
p. 113 90 22 2 41.4
p. 114 top 57 16 4 0.1
p. 114 bottom 100 20 2 0.2
p. 116 bottom 49 14 2 0.0
p. 117 top 57 14 2 0.0
p. 117 bottom 84 12 2 1.2
p. 119 63 15 2 0.1
p. 120 top 62 19 7 0.0
p. 120 bottom 83 21 2 0.3
p. 122 61 14 2 3.5
p. 124 194 56 2 –

Table 5.2: Running times of our solver on the puzzles from the last chapter of the
path puzzles book [86]. “–” indicates the solver exceeded the 10-minute time limit.

symmetry-breaking check on line 13 implies searches starting at a particular terminal
will only find paths to terminals coming later in the sorted terminals vector.

The solver takes as input a text file containing cell data, counters and their initial
values, and terminal cell indices. A separate Python script converts tab-separated
puzzle files (such as those exported from a spreadsheet program) into the solver’s
input format. The solver prints solution paths to standard output using the row and
column stored for each cell.

Evaluation. We evaluated our solver on all 15 puzzles with numeric clues10 from
the last chapter of the path puzzles book [86]. We ran the solver on an AMD Ryzen
2200G with a base clock of 3.5 GHz and a boost clock of 3.7 GHz with 6 GiB of
DDR4-3200 memory running Arch Linux kernel version 5.6.14. Table 5.2 shows the
results.

Overall, our solver performed well, solving all but one puzzle and solving 10 of the
15 puzzles in less than a second. Two puzzles stand out as taking a long time to solve,
the puzzles on page 113 and page 124. It is not just that these puzzles are large —
note that the bottom puzzle on page 114 is larger than the puzzle on page 113, but is
solved in less than a second — but that they have a large amount of area far away
from the doors. If the solver makes a mistake near the doors, it will spend a long
time enumerating paths in the area far from the doors before being able to correct its
mistake. Solving these puzzles quickly probably requires a solver that tries to make
human-like deductions about the puzzle instead of just checking paths.

10Some puzzles in the book have “encrypted” clues, where the numbers are replaced one-to-one
with letters.
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5.5 Open Problems
One interesting open problem is whether Planar 3DM, where the bipartite graph
of elements and triples is planar, is also ASP-hard and #P-hard. This problem is
known to be NP-hard [53], and the variable–clause gadget structure in the proof of
Theorem 5.2.4 is close to preserving planarity. Unfortunately, the initial clause tripling
destroys any planarity in the input, and seems difficult to avoid.

Another intriguing open problem is whether discrete tomography with partial
information, but no Hamiltonian path constraint, is NP-hard. If true, this would be
another aspect of path puzzles which make them hard.

5.6 Solution to the Font Puzzles
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Figure 5-8: Solved font
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Chapter 6

Solving Nonograms with Automata

6.1 Introduction
Nonograms (also known as Paint-by-Numbers, Griddlers, and Picross) are a type of
logic puzzle involving coloring the faces of a square grid either black (present) or
white (absent). Each row and column of the puzzle (collectively called lines) may
have a sequence of integer clues indicating the sequence of lengths of black cells in
that line, each of which is separated by at least one white cell, possibly with white
cells before the first black cell or after the last black cell. Lines without clues are
unconstrained (may have any pattern of white and black cells). See Figure 6-1 for an
example nonogram puzzle and its solution.

In this chapter, we present experiments in using automata to solve nonograms.
Automata are an appealing way to solve nonograms because the constraints have a
reasonable representation as regular expressions and thus solutions can be straight-
forwardly implemented on top of existing libraries providing basic automata and
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Figure 6-1: “Dancer” by Jan Wolter and its solution. Per the survey [149] (of which
Jan Wolter is the author), permission for redistribution of this puzzle has been granted.
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regular expression operations. Unfortunately, we find that the performance of our
automata-based solver is not competitive with state-of-the-art solvers [149].

We find that the order in which automaton intersections are carried out strongly
affects the space required to solve nonograms. Our experience matches related work
on solving all-solutions Boolean satisfiability with automata, which found strong
performance effects from automata intersection ordering (clause ordering) [37]. We
prove that finding an optimal intersection ordering is strongly NP-complete or weakly
PSPACE-hard depending on the magnitude of the upper bound on intermediate au-
tomaton size, and hard to approximate in both cases. These results improve upon prior
work [28] that proved NP-completeness for intersection optimization with polynomially
bounded intermediate automaton size, and did not consider inapproximability.

6.2 Related Work
Nonograms. Nonograms are NP-complete and ASP-complete [139]. Nonethe-
less, there are many published algorithms for solving nonograms [155, 23, 150, 26].
Wolter [149] surveys many solvers, including both solvers specialized for nonograms
and frontends for generic constraint solvers, and benchmarks them on a set of puzzles
taken from Wolter’s nonogram website, webpbn.com. We use Wolter’s benchmark set
in our experiments. Of the solvers surveyed, some use regular expressions as an input
format for a generic constraint solver, and some use regular expression engines for
solving single lines, but none use automata directly to solve the whole puzzle.

Automata for specification and solving. Automata and regular expressions are
commonly used to specify constraints in constraint satisfaction problems, to the point
of being included in the MiniZinc standard constraint modeling language [104]. For
example, the Gecode constraint solving system supports both automata and regular
expressions [126, Section 4.4.13, Section 7.4] and uses them in the example solvers
for nonograms. Lagerkvist and Pesant [94] describe regular expression encodings
of pentomino puzzles and solitaire battleship puzzles and solve them using Gecode.
However most constraint solvers do not use automata operations to solve the system,
instead translating them into a generic representation used for all supported constraint
types. There has also been work to use automata as input for SAT solvers [117].

Automata have also been used to solve constraint problems, both for generic
problems [143, 12] and specifically problems over strings [67]. They have also been
used to solve all-solutions Boolean satisfiability [37], with explicit mention of the
impact of automata intersection ordering (clause ordering) on performance.

6.3 Our Nonogram Solver
Our nonogram solver works by computing an automaton whose language is the set of
solutions to the nonogram (using an alphabet of 0 for white cells and 1 for black cells).
For each row and each column having clues, our solver creates an extended regular
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expression describing exactly the set of solutions to that line while not constraining
other lines and compiles it into a finite automaton. The resulting automata are
sorted according to an intersection ordering heuristic, then the intersection of the
first two automata is computed and the result is minimzed to form the “accumulator”
automaton. For each remaining line automaton, the intersection of the accumulator
and that line automaton is computed and minimized to form the new accumulator
automaton. The solution(s) to the puzzle can then be read off the accepting paths of
the final accumulator automaton.

Note that our solver always finds all solutions to the puzzle. This allows the solver
to determine whether the solution is unique. On the other hand, for puzzles with
many solutions, always tracking them all can be a disadvantage if all solutions are not
required.

Creating a regular expression for a row is straightforward. For each clue 𝑛, we
create the expression 1𝑛, separated by 0+ and padded on each end with 0*. That
expression is intersected with a regular expression matching any string of the row’s
length, and the result is padded on either side by expressions matching the prior and
subsequent rows. For example, the second row of the puzzle in Figure 6-1 has clues 2 1,
for which our solver would build the regular expression .5((0*120+10*)&.5).40, where
dot matches any symbol and & represents intersection. (The regular expressions for
each row could all be combined into a single regular expression, but we leave them
separate so the ordering heuristics can reorder them.)

Creating a regular expression for a column is more complicated because the
symbols for a column are not adjacent in the string as they are for rows. If there
are 𝑎 columns before and 𝑏 columns after the current column, for each clue 𝑛, we
create the expression (.𝑎1.𝑏)𝑛, separated by (.𝑎0.𝑏)+ and padded on each end with
(.𝑎0.𝑏)*. That expression is intersected with a regular expression matching any string
of length equal to the size of the puzzle. For example, the second column of the
puzzle in Figure 6-1 has clues 2 1 3, for which our solver would build the regular
expression ((.10.3)*(.11.3)2(.10.3)+(.11.3)(.10.3)+(.11.3)3(.10.3)*)&.50. Because column
regular expressions are more complex than row regular expressions, column automata
are larger than row automata and vary more in size with the number of clues.

After the regular expressions are compiled into automata, the automata are sorted
according to one of the following intersection ordering heuristics:

∙ Rows: row automata in order of the corresponding rows, then column automata
in order of the corresponding columns. (This is the order the automata are
generated in, so this heuristic is a no-op.)

∙ Cols: column automata in order of the corresponding columns, then row au-
tomata in order of the corresponding rows.

∙ Interleave: alternating row and column automata in order of the corresponding
rows and columns, then any remaining automata in order. (For example, for
the puzzle in Figure 6-1, the order would alternate row 1, then column 1, then
row 2, then column 2, and so on, until after column 5 when the remaining rows
appear in order.)
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∙ Fewest (most) solutions: automata sorted in ascending (descending) order by
the number of solutions to the line.

∙ Fewest (most) states: automata sorted in ascending (descending) order by their
number of states.

Experimental setup. We conducted our experiments on an AMD Ryzen Thread-
ripper 2990WX with a base clock of 3.0 GHz and a boost clock of 4.2 GHz and 128
GiB of DDR4-2933 RAM running Arch Linux kernel version 5.5.3. Our code was
compiled with GCC 9.2.1. We ran our solver on each puzzle with each heuristic, with
a time limit of 30 minutes (using timeout from GNU coreutils) and a memory limit
of 16 GiB (via ulimit -v1). (This memory limit is twice that used in the survey.)
Running times and memory high-water marks were recorded using time -f "%e %M"
from GNU coreutils. GNU parallel [133] was used for orchestration. For puzzles
with multiple solutions, we include the time to count the solutions (the number of
accepting paths in the final automaton), but not the time to enumerate them.

Results. Table 6.1 shows the running time for every puzzle and heuristic combination.
No trial exceeded the time limit, but many trials were killed to due exceeding the
memory limit (indicated in the table by a dash). The solver performed best using
the rows-first heuristic, solving 13 of the 28 puzzles in the benchmark set. The solver
performed worse overall using the fewest-states heuristic, but solved one puzzle (Flag)
that it did not solve with the rows-first heuristic, so rows-first is not strictly better.
Because column automata are larger and more varied in size than row automata,
the difference between these two heuristics is mostly in the ordering of the column
automata.

As a check on the quality of our heuristics, for puzzles that finished within one
minute under any heuristic, we also ran 20 trials with a random intersection order
and an additional 20 trials where only the column automata order was randomized,
both with a 1 minute timeout. Of these 480 random trials, 180 finished within the
time limit. None of the times were better than the time of the best heuristic for that
puzzle. While this is a small sample, it suggests our heuristics are reasonable.

In comparison to solvers from the survey, our solver’s performance is poor, as most
solvers from the survey solved more puzzles (including one that solved all 28) faster
while running on a much weaker machine (an AMD Phenom II X4 810) with a lower
memory limit (8 GiB).

The solver failed with most puzzle-heuristic combinations due to exceeding the
memory limit. The solver’s memory consumption is at its maximum during intersection,
when it has to store the two input automata, the output automaton, and a hash table
mapping pairs of states in the input automata to states in the output automaton.
The intersection order impacts the peak memory consumption. Figure 6-2 shows
two graphs of accumulator automaton size for each heuristic as the solver solves two

1This is a virtual address space limit, but our solver touches all memory it maps and our system
has no swap, so this is effectively a resident set size limit.
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puzzle rows cols interl. few. sol. most sol. few. st. most st.
#1: Dancer 0.0 0.1 0.0 0.0 0.0 0.0 0.1
#6: Cat 0.1 – – – 11.3 0.2 –
#21: Skid 0.1 – 52.5 0.4 – 0.4 –
#27: Bucks 0.4 – – – – 19.5 –
#23: Edge 0.0 42.2 0.1 0.0 0.2 0.0 26.4
#2413: Smoke 0.2 – – 82.8 – 0.2 –
#16: Knot – – – – – – –
#529: Swing 26.5 – – – – 275.4 –
#65: Mum 139.6 – – – – – –
#7604: DiCap 48.4 – – – – – –
#1694: Tragic – – – – – – –
#1611: Merka – – – – – – –
#436: Petro 5.4 – – – – – –
#4645: M&M – – – – – – –
#3541: Signed 22.8 – – – – – –
#803: Light – – – – – – –
#6574: Forever 48.1 – – – – – –
#10810: Center – – – – – – –
#2040: Hot – – – – – – –
#6739: Karate – – – – – – –
#8098: 9-Dom 0.9 – – 19.1 – 0.6 –
#2556: Flag – – – – – 71.9 –
#2712: Lion – – – – – – –
#10088: Marley – – – – – – –
#18297: Thing – – – – – – –
#9892: Nature – – – – – – –
#12548: Sierp – – – – – – –
#22336: Gettys – – – – – – –

Table 6.1: Running times (in seconds) of our automata-based nonogram solver on
the benchmark puzzles from the survey [149]. “–” indicates the solver exceeded the
16 GiB memory limit. Puzzles are listed in the same order as in the survey, roughly
sorted by increasing size and difficulty.
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Figure 6-2: Graphs of the size of the accumulator automaton after each intersection
(before minimizing) with each heuristic for two puzzles. (Note the y-axis scale is in
millions in the left graph and tens of millions in the right graph.)

puzzles. For the Edge puzzle (which was solved under every heuristic), we can see
in Figure 6-2a that the cols-first and most-states heuristics result in accumulator
automata that get large, then simplify as more line automata are intersected. These
two heuristics also took much longer to solve the puzzle than the other heuristics. For
the Signed puzzle, which was only solved under the rows-first heuristic, we can see the
most of the other heuristics’ accumulator size spike early in the process before hitting
the memory limit, while the fewest-states heuristic spikes about halfway through when
it begins processing column automata (this puzzle is nearly square).

6.3.1 Scalability Analysis on the 𝑛-Dom Puzzles

The 9-Dom puzzle from the survey’s benchmark set, shown in Figure 6-3, is one
instance of a family of puzzles of varying varying size that are the subject of a solver
scalability analysis [148] as a part of Wolter’s survey. As explained in [148], these
puzzles share the same solution logic regardless of size: the black cells in the upper-
right of the puzzle can be deduced, after which the next block of black cells in the
upper-right of the remaining area can be deduced, and so on. Effectively, making a
deduction in 𝑛-Dom leaves (𝑛 − 1)-Dom in the remaining area, to be solved the same
way. For humans, all 𝑛-Dom puzzles are of the same difficulty.

Most computer solvers are not capable of this logic and instead exhibit exponentially
increasing runtime as 𝑛 increases; of the solvers examined in the survey’s scalability
analysis, the Kjellerstrand solver running on the lazyfd constraint engine clearly
performs better than the other solvers, but still exhibits exponential growth (just more
slowly). As shown in Tables 6.2 and 6.3 and Figure 6-4, our automata-based solver is
no different, with both running time and memory usage growing exponentially with 𝑛.
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Figure 6-3: “Domino Logic III” (9-Dom) by Josh Greifer. Per the survey [149],
permission for redistribution of this puzzle has been granted.

puzzle rows fewest states
4-Dom 0.0 0.0
5-Dom 0.0 0.0
6-Dom 0.1 0.0
7-Dom 0.1 0.1
8-Dom 0.3 0.2
9-Dom 0.7 0.5

10-Dom 2.0 1.7
11-Dom 5.5 5.4
12-Dom 13.1 14.8
13-Dom 29.8 42.6
14-Dom 63.6 116.2
15-Dom 131.3 303.7
16-Dom 263.6 778.1
17-Dom 533.8 –
18-Dom 1043.7 –
19-Dom – –

Table 6.2: Running times (in seconds) of our automata-based nonogram solver on the
𝑛-Dom puzzles. – indicates the solver exceeded the 16 GiB memory limit.
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puzzle rows fewest states
4-Dom 5.6 5.1
5-Dom 7.2 6.4
6-Dom 10.8 9.1
7-Dom 17.6 14.7
8-Dom 33.6 34.4
9-Dom 65.2 62.1

10-Dom 146.0 109.1
11-Dom 244.4 191.7
12-Dom 430.7 503.4
13-Dom 797.6 993.0
14-Dom 1560.2 2218.5
15-Dom 2092.6 4600.5
16-Dom 3409.0 14134.7
17-Dom 6689.7 –
18-Dom 13071.0 –
19-Dom – –

Table 6.3: Peak memory consumption (in MiB) of our automata-based nonogram
solver on the 𝑛-Dom puzzles. “–” indicates the solver exceeded the 16 GiB memory
limit.
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Figure 6-4: Graphs of the data in Table 6.2 and Table 6.3, with a logarithmic scale on
the y-axis.
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6.4 Optimal Automaton Intersection is Hard2

In the previous section, we found that automata are not a competitive way to solve
nonograms. The order in which our solver carried out automata intersections strongly
affected our solver’s ability to finish solving puzzles without running out of memory.
Work on solving all-solutions Boolean satisfiability by automaton intersection [37] also
found that performance depended on intersection ordering. This evidence naturally
raises the problem of finding an optimal intersection ordering, that is, an ordering
that minimizes the maximum size of the intermediate automata. We formalize this as
the following decision problem.

Problem 6.4.1 (Optimal Automaton Intersection). Given 𝑘 automata 𝐴1, . . . , 𝐴𝑘

and an integer 𝑀 , is there a expression tree of intersection operations such that, for
each tree node, the smallest automaton recognizing the intersection of the languages of
descendants of that node has at most M states?

This problem statement is phrased in terms of an expression tree and languages to
permit implementations more advanced than the linear-order intersect-then-minimize
implementation we used for solving nonograms. In particular, an algorithm that
can analyze the input automata can directly construct automata for the intersection
languages instead of using the generic intersection algorithm based on taking the
cross product of the states. Even with this freedom, this problem is hard, even to
approximate.

Prior work studied a similar problem in which intersections are constrained to occur
in some linear order instead of a general expression tree, proving NP-completeness
when the limit on intermediate automaton size is polynomially bounded by reduction
from the travelling salesman problem [28]. We give a proof of NP-completeness for our
problem (allowing a general expression tree) by reduction from Boolean satisfiability,
further obtaining an inapproximability result. Then we study the case when the limit
on intermediate automaton size is exponential and prove it PSPACE-hard and hard
to approximate; it remains open whether it is in PSPACE or EXPTIME-complete.

Both of our reductions are based on the idea that when the input problem is a
yes instance there is a linear intersection order resulting in the empty language where
all the intermediate languages have automata of size less than 𝑀 , after which all
the remaining automata can be intersected with no size constraint; when the input
problem is a no instance, any intersection order results in a language containing
strings of length 𝑥 mod 𝑃 where 𝑃 > 𝑀 is a product of primes, which requires at
least 𝑃 states to recognize by repeated application of [116, Theorem 5].

Theorem 6.4.2. When 𝑀 is polynomially bounded, Optimal Automaton Intersection
is strongly NP-complete and NP-hard to approximate within a factor of 𝑛2/3−𝜀.

Proof. This problem is in NP: we can guess an expression tree of intersection operations
and evaluate each node by computing the intersection and minimizing the resulting

2This section is joint work with Josh Brunner, Michael Coulombe, Erik D. Demaine, and Jayson
Lynch.
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automaton. The largest intersection we might evaluate is between two automata with
𝑀 states, which may result in minimizing an automaton with at most 𝑀2 states, so
we can verify in polynomial time.

To prove NP-hardness, we reduce from EU3SAT-4, a SAT variant where each
clause contains three literals, each variable appears in at most four clauses, and each
variable appears at most once in each clause, which is NP-complete [136]. Given an
EU3SAT-4 formula, for each variable 𝑥𝑖, we add the clause 𝑥𝑖 ∨ ¬𝑥𝑖, breaking the EU3
property and adding two variable occurrences, but preserving uniqueness of literals
in each clause. The resulting formula has 𝑛 variables and 𝑚 clauses. We then set
𝑀 = 𝑛3𝑐 for some constant 𝑐 and choose the three smallest primes 𝑝1, 𝑝2, 𝑝3 > 𝑛𝑐

(i.e., greater than 3
√

𝑀) and the two smallest primes 𝑞1, 𝑞2 > 𝑛3𝑐/2 (i.e., greater than√
𝑀). The automata we generate are over an alphabet containing a symbol 𝑥𝑖 for

each variable, a symbol 𝑐𝑖 for each clause (including the clauses we added), and an
extra symbol 0.

For each variable, we generate two automata 𝐴𝑖 and ¬𝐴𝑖 that correspond to setting
that variable true or false. Both 𝐴𝑖 and ¬𝐴𝑖 accept strings that begin with 0 or any
variable symbol except 𝑥𝑖, followed by a large alternation over clause symbols, where
branches of the alternation representing literals that conflict with the truth assignment
for 𝑥𝑖 give rise to large loops in the automaton. For 𝐴𝑖, if ¬𝑥𝑖 appears as the 𝑘th
literal in clause 𝑐𝑖, this alternation contains (𝑐𝑖

𝑝𝑘)* if 𝑐𝑖 contains three variables and
(𝑐𝑖

𝑞𝑘)* if 𝑐𝑖 contains two variables; otherwise, this alternation contains 𝑐𝑖
*. Automaton

¬𝐴𝑖’s alternation is similar except defined with respect to clauses containing positive
𝑥𝑖 literals. Finally, for both automata, the alternation always contains (0𝑞1)*. For
example,

𝐴𝑖 = 𝑉𝑖(𝑐1
*|(𝑐2

𝑝2)*|𝑐3
*|(𝑐4

𝑞1)*|(0𝑞1)*)

where 𝑉𝑖 denotes 0 or any variable symbol except 𝑥𝑖, is one possible variable automaton.
Each variable has conflicting literals in up to four clauses in the input formula and in
one binary clause we added, necessitating at most 4𝑝3 + 𝑞2 states for those branches
of the alternation, plus another 𝑞1 states for the 0 branch and up to 𝑚 states in
the branches for other clause symbols. Then each variable automaton takes at most
2𝑞2 + 4𝑝3 + 𝑚 + 1 = 𝑂(

√
𝑀) states.

We also create a finalizer automaton 𝐹 that accepts strings beginning with any
variable symbol followed by an alternation over 𝑐𝑖

* for each clause symbol 𝑐𝑖 and (0𝑞2)*.
𝐹 also has 𝑂(

√
𝑀) states.

If the input formula has a satisfying assignment, intersecting the corresponding
variable automata results in an automaton of size less than 𝑀 . The intersection
automaton accepts strings starting with 0 followed by an alternation over clause
symbols and 0 (the same structure as the individual variable automata). Because the
assignment is satisfying, at least one literal in each clause is satisfied, so each branch
of the alternation is a loop of size at most 𝑝2𝑝3 (or 𝑞1 or 𝑞2, which are smaller), so the
overall automaton size is less than (𝑚+1)𝑝2𝑝3 +2 < (5𝑛+1)𝑝2𝑝3 +2 = 𝑂(𝑛2𝑐+1). Then
intersecting this automaton with the finalizer automaton gives the empty language,
after which all unused variable automata can be intersected.

If there is no satisfying assignment, you must eventually intersect either a group of
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two or three variable automata that falsify a clause, or the finalizer automaton with
any automaton accepting 𝑥𝑖(0𝑞1)*. In the former case, the resulting automaton must
contain a loop of size 𝑝1𝑝2𝑝3 > 𝑀 or 𝑞1𝑞2 > 𝑀 to count the number of occurrences
of the clause symbol 𝑐𝑖 corresponding to the falsified clause. In the latter case, the
resulting automaton must contain a loop of size 𝑞1𝑞2 > 𝑀 to count ocurrences of 0.

In fact, we have proved that it is NP-hard to distinguish between instances having
intermediate automaton size less than 𝑂(𝑛2𝑐+1) and those with size greater than
𝑛3, for a gap ratio of 𝑛𝑐−1. Our instances contain 2𝑛 + 1 automata of size 𝑂(

√
𝑀)

each for a total problem size of 𝑁 = 𝑂(𝑛3𝑐/2+1), so this problem is NP-hard to
approximate within a factor of 𝑁2/3−𝜀, where we can make 𝜀 as close to 0 as desired
by increasing 𝑐.

Before we can prove PSPACE-hardness, we need two lemmas.

Lemma 6.4.3. Given an automaton accepting a language 𝐿, we can modify it to
accept {𝑤 * | 𝑤 ∈ 𝐿} by adding two states.

Proof. Introduce a new symbol not already in the automaton’s alphabet. Add a
transition on from every accepting state to a single new accept state. From this
new accept state, add a transition on to itself and a transition on all other symbols
to a new rejecting state. Then add a transition on from all rejecting states to the
new reject state (including itself). After these modifications, if the original automaton
accepted a string 𝑤, the modified automaton accepts 𝑤 *.

Lemma 6.4.4. Given a minimal deterministic 𝑚-state automaton 𝐴 accepting a
language 𝐿 over an alphabet Σ, there is a minimal deterministic automaton 𝐴 + Γ
accepting 𝐿 + Γ = {(𝑥1, 𝑔1)(𝑥2, 𝑔2) · · · (𝑥𝑛, 𝑔𝑛) | 𝑥1𝑥2 · · · 𝑥𝑛 ∈ 𝐿, 𝑔1𝑔2 · · · 𝑔𝑛 ∈ Γ*} over
alphabet Σ × Γ with exactly 𝑚 states.

Proof. First, we can build an automaton 𝐴 + Γ accepting 𝐿 + Γ by expanding each
transition 𝑎 →

𝑥
𝑏 into transitions 𝑎 →

(𝑥,𝑔)
𝑏 for all 𝑔 ∈ Γ. The number of states is

unchanged, and the automaton remains deterministic.
Now we prove that 𝐴 + Γ is minimal. By the Myhill–Nerode Theorem [107], there

are 𝑚 equivalence classes 𝐶1, 𝐶2, . . . , 𝐶𝑚 partitioning 𝐿 where no two strings in a
common class have a distinguishing extension, and any two strings from different
classes have a distinguishing extension. We claim that the equivalence classes for 𝐿+Γ
are 𝐶1 + Γ, 𝐶2 + Γ, . . . , 𝐶𝑚 + Γ. Consider two strings 𝑥′ ∈ 𝐶𝑖 + Γ and 𝑦′ ∈ 𝐶𝑗 + Γ with
a distinguishing extension 𝑧′; assume by symmetry that 𝑥′𝑧′ ∈ 𝐿 + Γ and 𝑦′𝑧′ /∈ 𝐿 + Γ.
Let 𝑥, 𝑦, 𝑧 be the corresponding strings over Σ from dropping the second coordinate
of 𝑥′, 𝑦′, 𝑧′ respectively. By the definition of +, the string 𝑥𝑧 ∈ 𝐿 and 𝑦𝑧 /∈ 𝐿, which
implies that 𝑖 ̸= 𝑗.

Theorem 6.4.5. Optimal Automaton Intersection is weakly PSPACE-hard and PSPACE-
hard to approximate to within a factor of 2Θ(

√
𝑛 log 𝑛).

Proof. We reduce from the problem of deciding whether the intersection of 𝑘 automata
𝐴1, . . . , 𝐴𝑘 over a constant-size alphabet Σ is nonempty, which is known to be PSPACE-
hard [92, Lemma 3.2.3]. We modify these automata using Lemma 6.4.3.
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We then create 𝑚 auxiliary unary automata 𝐵1, . . . , 𝐵𝑚 (𝑚 to be defined later)
over Γ = {𝑥} where 𝐿(𝐵𝑖) = {𝑥𝑗 | 𝑗 ≡ 0 (mod 𝑝𝑖)} where 𝑝𝑖 is the 𝑖th prime. These
automata have 𝑝𝑖 states and their intersection has 𝑀 = ∏︀

𝑖 𝑝𝑖 states by repeated
application of [116, Theorem 5]. We modify these automata using Lemma 6.4.3, so
each automaton has 𝑝𝑖 + 2 states and their intersection has 𝑀 + 2 states.

Now create automata 𝐴′
𝑖 = 𝐴𝑖 + Γ and 𝐵′

𝑖 = Σ + 𝐵𝑖 by modifying all automata
𝐴𝑖, 𝐵𝑖 to work over the alphabet Σ × Γ, where the 𝐴′

𝑖 ignore the Γ part and the 𝐵′
𝑖

ignore the Σ part. The intersection of the 𝐵′
𝑖 is equivalent to Σ + (the intersection of

the 𝐵𝑖), which by Lemma 6.4.4 has at least 𝑀 states like the intersection of the 𝐵𝑖.
Our produced problem instance consists of the 𝐴′

𝑖 and 𝐵′
𝑖.

We need 𝑀 to be larger than the number of states in any intermediate intersection⋂︀
𝑖∈ℐ 𝐴′

𝑖, which is at most

∏︁
𝑖

|𝐴′
𝑖| ≤

(︂
max

𝑖
|𝐴′

𝑖|
)︂𝑘

≤
(︂

2 + max
𝑖

|𝐴𝑖|
)︂𝑘

.

So we set 𝑚 > 𝑘 log (2 + max𝑖 |𝐴𝑖|).
If ⋂︀

𝑖 𝐿(𝐴′
𝑖) = ∅, then the maximum number of states of any intersection in the

linear intersection order 𝐴1 ∩ · · · ∩ 𝐴𝑘 ∩ 𝐵1 ∩ · · · ∩ 𝐵𝑚 will be less than 𝑀 .
Otherwise, let 𝑤 be the shortest word in ⋂︀

𝑖 𝐿(𝐴′
𝑖). We claim that[︃⋂︁

𝑖

𝐿(𝐴′
𝑖) ∩

⋂︁
𝑖

𝐿(𝐵′
𝑖)

]︃
projected to second coordinate = {𝑥𝑗 𝑙 | 𝑗+𝑙 ≥ |𝑤|, 𝑗 ≡ 0 (mod 𝑀)}

which requires at least 𝑀 states. For the ⊆ direction, 𝑗 + 𝑙 ≥ |𝑤| follows from ⋂︀
𝑖 𝐿(𝐴′

𝑖)
and 𝑗 ≡ 0 (mod 𝑀) follows from ⋂︀

𝑖 𝐿(𝐵′
𝑖). For the ⊇ direction, note that the string

(𝑤1, 𝑥) . . . (𝑤|𝑤|, 𝑥)( , 𝑥)𝑗( , )𝑙 ∈ ⋂︀
𝑖 𝐿(𝐴′

𝑖) ∩ ⋂︀
𝑖 𝐿(𝐵′

𝑖) whenever |𝑤| + 𝑗 ≡ 0 (mod 𝑀).
In fact, we have proved it is PSPACE-hard to distinguish between instances

having intermediate automaton size at most (2 + max𝑖 |𝐴𝑖|)𝑘 and instances having
intermediate automaton size at least (2 + max𝑖 |𝐴𝑖|)𝑘 + ∏︀

𝑖 𝑝𝑖. As we increase 𝑚, the
problem size 𝑁 grows as Θ(𝑚2 log 𝑚) (the sum of the first 𝑚 primes), but the gap
between yes and no instances grows as 2Θ(𝑚 log 𝑚) (the product of the first 𝑚 primes),
so this problem is PSPACE-hard to approximate within a factor of 2Θ(

√
𝑁 log 𝑁).
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Chapter 7

The Witness1

7.1 Introduction

Figure 7-1: A screenshot from The Witness, fea-
turing 2D puzzles in a 3D world.

The Witness2 [145] is an ac-
claimed 2016 puzzle video game
designed by Jonathan Blow (who
originally became famous for de-
signing the 2008 platform puz-
zle game Braid, which is undecid-
able [69]). The Witness is a first-
person adventure game, but the
main mechanic of the game is solv-
ing 2D puzzles presented on flat
panels (sometimes CRT monitors)
within the game; see Figure 7-1.
The 2D puzzles are in a style similar to pencil-and-paper puzzles, such as Nikoli
puzzles. Indeed, one clue type in The Witness (triangles) is very similar to the Nikoli
puzzle Slitherlink (which is NP-complete [152]).

In this chapter, we perform a systematic study of the computational complexity of
all single-panel puzzle types in The Witness, as well as some of the 3D “metapuzzles”
embedded in the environment itself. Table 7.1 summarizes our single-panel results,
which range from polynomial-time algorithms (as well as membership in L) to complete-
ness in two complexity classes, NP (i.e., Σ1) and the next level of the polynomial hier-
archy, Σ2. Table 7.3 summarizes our metapuzzle results, where PSPACE-completeness
typically follows immediately.

1This chapter is from [2] (also available on arXiv [1]), which is joint work with Zachary Abel,
Michael Coulombe, Erik D. Demaine, Linus Hamilton, Adam Hesterberg, Justin Kopinsky, Jayson
Lynch, Mikhail Rudoy and Clemens Thielen.

2The Witness is a trademark owned by Jonathan Blow. Screenshots and game elements are
included under Fair Use for the educational purposes of describing video games and illustrating
theorems.
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broken edge hexagon square star triangle polyomino antipolyomino antibody
complexity ref

X ∈ L Obs 7.3.2
X Xvertices NP-complete Obs 7.3.3

Xvertices OPEN Prob 7.3.1
Xedges NP-complete Thm 7.3.5

X Xon boundary ∈ P Thm 7.3.7
X1 color always yes Obs 7.4.1

X2 colors NP-complete Thm 7.4.2
[90]

X1 color OPEN Prob 7.5.2
X𝑛 colors NP-complete Thm 7.5.1

X Xany NP-complete [152]
X NP-complete Thm 7.6.1
X NP-complete Thm 7.6.2
X NP-complete Thm 7.6.3

X ∈ P [90]
X X ∈ P Thm 7.7.1

X X NP-complete Thm 7.7.3
X NP-complete Thm 7.7.2
X NP-complete Thm 7.7.4

X X X X X X X ∈ NP Obs 7.8.2
X X X X X X𝑛 ∈ NP Thm 7.8.3

X X2 Σ2-complete Thm 7.8.8
X X X X X X X1 ∈ NP Thm 7.8.4

X X X1 Σ2-complete Thm 7.8.9
X X X X X X X X𝑛 ∈ Σ2 Thm 7.8.5

Table 7.1: Our results for one-panel puzzles in The Witness: computational complexity
with various sets of allowed clue types (marked by X). Allowed polyomino clues are
either arbitrary (X), or restricted to be monominoes (X ), vertical dominoes (X ),
or rotatable dominoes (X ).

Witness puzzles. Single-panel puzzles in The Witness (which we refer to henceforth
as Witness puzzles) consist of an 𝑥 × 𝑦 full rectangular grid;3 one or more start circles
(drawn as a large dot, ); one or more end caps (drawn as half-edges leaving the
rectangle boundary); and zero or more clues (detailed below) each drawn on a vertex,
edge, or cell4 of the rectangular grid. Figure 7-2 shows a small example and its solution.
The goal of the puzzle is to find a simple path that starts at one of the start circles,
ends at one of the end caps, and satisfies all the constraints imposed by the clues
(again, detailed below). We generally focus on the case of a single start circle and
single end cap, which makes our hardness proofs the most challenging.

We now describe the clue types and their corresponding constraints. Table 7.2

3While most Witness puzzles have a rectangular boundary, some lie on a general grid graph. This
generalization is mostly equivalent to having broken-edge clues (defined below) on all the non-edges of
the grid graph, but the change in boundary can affect the decomposition into regions. We focus here
on the rectangular case because it is most common and makes our hardness proofs most challenging.

4We refer to the unit-square faces of the rectangular grid as cells, given that “squares” are a type
of clue and “regions” are the connected components outlined by the solution path and rectangle
boundary. “Pixels” will be used for unit squares of polyomino clues.
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Figure 7-2: A small Witness puzzle featuring all clue types (left) and its solution
(right). (Not from the actual video game.)

lists the clues by what they are drawn on — grid edge, vertex, or cell — which we
refer to as “this” edge, vertex, or cell. While the last five clue types are drawn on a
cell, their constraint applies to the region that contains that cell (referred to as “this
region”), where we consider the regions of cells in the rectangle as decomposed by the
(hypothetical) solution path and the rectangle boundary.

The solution path must satisfy all the constraints given by all the clues. (The
meaning of this statement in the presence of antibodies is complicated; see Section 7.8.)
Note, however, that if a region has no clue constraining it in a particular way, then it is
free of any such constraints. For example, a region without polyomino or antipolyomino
clues has no packing constraint.

As summarized in Table 7.1, we prove that most clue types by themselves are enough
to obtain NP-hardness. The exceptions are broken edges, which alone just define a
graph search problem; and vertex hexagons, which are related to Hamiltonian path
in rectangular grid graphs as solved in [83] but remain open. But vertex hexagons
are NP-hard when we also add broken edges. On the other hand, vertex and/or
edge hexagons restricted to the boundary of the puzzle (even for nonrectangular
boundaries) are polynomial; this result more generally solves “subset Hamiltonian
path” (find a simple path visiting a specified subset of vertices and/or edges) when
the subset is on the outside face of a planar graph. For squares, we determine that
exactly two colors are needed for hardness. For stars, we do not know whether
one or any constant number of colors are hard. For triangles, each single kind of
triangle clue alone suffices for hardness, though the proofs differ substantially between
kinds. For polyominoes, monominoes alone are easy to solve, but monominoes plus
antimonominoes are hard, as are rotatable dominoes by themselves and vertical
nonrotatable dominoes by themselves. All problems without antibodies or without
(anti)polyominoes are in NP. Antibodies combined with (anti)polyominoes push the
complexity up to Σ2-completeness, but no further.
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clue drawn on symbol constraint
broken edge edge The solution path cannot include this edge.
hexagon edge The solution path must include this edge.
hexagon vertex The solution path must visit this vertex.
triangle cell There are three kinds of triangle clues ( ,

, ). For a clue with 𝑖 triangles, the path
must include exactly 𝑖 of the four edges
surrounding this cell.

square cell A square clue has a color. This region must
not have any squares of a color different
from this clue.

star cell A star clue has a color. This region must
have exactly one other star, exactly one
square, or exactly one antibody of the same
color as this clue.

polyomino cell A polyomino clue has a specified polyomino
shape, and is either nonrotatable (if drawn
orthogonally, like ) or rotatable by any
multiple of 90∘ (if drawn at 15∘, like ).
Assuming no antipolyominoes, this region
must be perfectly packable by the poly-
omino clues within this region, each used
exactly once.

antipolyomino cell Like polyomino clues, an antipolyomino
clue has a specified polyomino shape and is
either rotatable or not. For some 𝑖 ∈ {0, 1},
each cell in this region must be coverable by
exactly 𝑖 layers, where polyominoes count
as +1 layer and antipolyominoes count as
−1 layer (and thus must overlap), with
no positive or negative layers of cover-
age spilling outside this region, and each
polyomino/antipolyomino clue used exactly
once.

antibody cell Effectively “erases” itself and another clue
in this region. This clue also must be neces-
sary, meaning that the solution path should
not otherwise satisfy all the other clues. See
Section 7.8 for details.

Table 7.2: Witness puzzle clue types and the definitions of their constraints.
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features complexity ref
sliding bridges PSPACE-complete Thm 7.10.1

elevators and ramps PSPACE-complete Thm 7.10.2
power cables and doors PSPACE-complete Thm 7.10.3

light bridges OPEN Prob 7.10.4

Table 7.3: Our results for metapuzzles in The Witness: computational complexity
with various sets of environmental features.

Nonclue constraints. In Section 7.9, we consider how additional features in The
Witness beyond clues can affect (the complexity of) Witness puzzles. Specifically,
these features include visual obstruction caused by the surrounding 3D environment
(which blocks some edges), symmetry puzzles (where inputting one path causes a
symmetric copy to be drawn as well), and intersection puzzles (where multiple puzzles
must be solved simultaneously by the same solution path).

Metapuzzles. We also consider some of the metapuzzles formed by the 3D envi-
ronment in The Witness, where the traversable geometry changes according to 2D
single-panel puzzles. See Section 7.10 for details of these interaction models. Table 7.3
lists our metapuzzle results, which are all PSPACE-completeness proofs following the
infrastructure of [10] (from FUN 2014).

Puzzle design. In Section 7.11, we consider designing 2D Witness puzzles using
the variety of clues available. In particular, we introduce the Witness puzzle design
problem where the goal is to find a puzzle whose solution is a specific path or set of
paths. This problem naturally arises in metapuzzles, or if we were to design a Witness
puzzle font (in the style of [45, 13]). Although many versions of this problem remain
open, we present some basic universality results and limitations.

Open Problems. Finally, Section 7.12 collects together the main open problems
from this chapter.

7.2 Hamiltonicity Reduction Framework
We introduce a framework for proving NP-hardness of Witness puzzles by reduction
from Hamiltonian cycle in a grid graph 𝐺 of maximum degree 3. Roughly speaking,
we scale 𝐺 by a constant scale factor 𝑠, and replace each vertex by a block called a
chamber; refer to Figure 7-3. Precisely, for each vertex 𝑣 of 𝐺 at coordinates (𝑥, 𝑦), we
construct a (2𝑟+1)×(2𝑟+1) subgrid of vertices {𝑠𝑥−𝑟, . . . , 𝑠𝑥+𝑟}×{𝑠𝑦−𝑟, . . . , 𝑠𝑦+𝑟},
and all induced edges between them, called a chamber 𝐶𝑣. This construction requires
2𝑟 < 𝑠 for chambers not to overlap. For each edge 𝑒 = {𝑣, 𝑤} of 𝐺, we construct a
straight path in the grid from 𝑠𝑣 to 𝑠𝑤, and define the hallway 𝐻𝑣,𝑤 to be the subpath
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(a) Instance of
grid-graph

Hamiltonicity

(b) A possible
solution to (a)

(c) Corresponding chambers (turquoise)
and hallways (pink)

Figure 7-3: An example of the Hamiltonicity framework with 𝑟 = 1 and 𝑠 = 4.

connecting the boundaries of 𝑣’s and 𝑤’s chambers, which consists of 𝑠 − 2𝑟 edges.
Figure 7-3 illustrates this construction on a sample graph 𝐺.

In each reduction, we define constraints to force the solution path to visit (some
part of) each chamber at least once, to alternate between visiting chambers and
traversing hallways that connect those chambers, and to traverse each hallway at most
once. Because 𝐺 has maximum degree 3, these constraints imply that each chamber is
entered exactly once and exited exactly once. Next to one chamber on the boundary of
𝐺, called the start/end chamber, we place the start circle and end cap of the Witness
puzzle. Thus, any solution to the Witness puzzle induces a Hamiltonian cycle in 𝐺.
To show that any Hamiltonian cycle in 𝐺 induces a solution to the Witness puzzle,
we simply need to show that a chamber can be traversed in each of the

(︁
3
2

)︁
ways.

7.2.1 Simple Applications of the Hamiltonicity Framework
In this section, we briefly present some simple constructions based on this Hamiltonicity
framework. All of these results are subsumed by stronger results presented formally in
later sections, so we omit the details of these simpler NP-hardness proofs. Membership
in NP for all puzzles except antibodies will be proved in Observation 7.8.2.

Corollary 7.2.1. It is NP-complete to solve Witness puzzles containing broken edges
and squares of two colors.

Proof. We make hallways with broken edges and chambers with one square of each
color. See Figure 7-4.
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(a) Unsolved (b) Solved

Figure 7-4: Example of the Hamiltonicity framework applied to Witness with squares
and broken edges.

Corollary 7.2.2. It is NP-complete to solve Witness puzzles containing broken edges
and stars of arbitrarily many colors.

Proof. We make hallways with broken edges and chambers with four stars of one color
(a different color for each chamber). See Figure 7-5.

Corollary 7.2.3. It is NP-complete to solve Witness puzzles containing broken edges
and 𝑘-triangle clues, for any (single) 𝑘 ∈ {1, 2, 3}.

Proof. We make hallways with broken edges and chambers with a single 𝑘-triangle
clue. See Figure 7-6.

7.3 Hexagons and Broken Edges
Hexagons are placed on vertices or edges of the graph and require the path to pass
through all of the hexagons. Broken edges are edges which cannot be included in
the path. In this section, we show two positive results and two negative results.
On the positive side, we show that puzzles with just broken edges are solvable in 𝐿
(Section 7.3.1), and puzzles with hexagons just on the boundary of the puzzle (even
when the boundary is not rectangle) and arbitrary broken edges are solvable in 𝑃
(Section 7.3.4). On the negative side, we show that puzzles with just hexagons on
vertices and broken edges are NP-complete (Section 7.3.2), and puzzles with just
hexagons on edges (and no broken edges) are NP-complete (Section 7.3.3). We leave
open the complexity of puzzles with just hexagons on vertices (and no broken edges):

169



(a) Unsolved (b) Solved

Figure 7-5: Example of the Hamiltonicity framework applied to Witness with stars
and broken edges.

(a) Unsolved (b) Solved

Figure 7-6: Example of the Hamiltonicity framework applied to Witness with 1-
triangles and broken edges.
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Figure 7-7: 2 × 3 vertex gadget.

Open Problem 7.3.1. Is there a polynomial-time algorithm to solve Witness puzzles
containing only hexagons on vertices?

7.3.1 Just Broken Edges
Observation 7.3.2. Witness puzzles containing only broken edges, multiple start
circles, and multiple end caps are in L.

Proof. We keep two pointers and a counter to track which pairs of starts and ends
we have tried. For each start and end pair, we run an (𝑠, 𝑡) path existence algorithm,
which is in L. If any of these return yes, then the answer is yes. Thus, we have solved
the problem with a quadratic number of calls to a log-space algorithm, a constant
number of pointers, and a counter, all of which only require logarithmic space.

7.3.2 Hexagons and Broken Edges
The following trivial result motivates Open Problem 7.3.1 (do we need broken edges?).

Observation 7.3.3. It is NP-complete to solve Witness puzzles containing only broken
edges and hexagons on vertices.

Proof. Hamiltonian path in grid graphs [83] is a strict subproblem.

For edge hexagons, we first present a simple application of the Hamiltonicity
framework that uses broken edges; this result will be subsumed by Theorem 7.3.5 by
a more involved application that avoids broken edges.

Theorem 7.3.4. It is NP-complete to solve Witness puzzles containing only broken
edges and hexagons on edges.

Proof. Apply the Hamiltonicity framework with scale factor 𝑠 = 5 and chamber radius
𝑟 = 1. All edges within chambers and hallways are unbroken, and all other edges
are broken, forcing hallways to be traversed at most once. Within each chamber,
we place a hexagon on one of the edges incident to the center of the chamber. This
hexagon forces the chamber to be visited, while having enough empty space to enable
connections however desired. In fact, a smaller 2 × 3 chamber with a hexagon on the
middle edge also suffices, as shown in Figure 7-7.
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(a) Instance corresponding to Figure 7-3a (b) Solution corresponding to Figure 7-3b

Figure 7-8: Example of the Hamiltonicity framework applied to Witness with edge
hexagons.

7.3.3 Just Edge Hexagons
Theorem 7.3.5. It is NP-complete to solve Witness puzzles containing only hexagons
on edges (and no broken edges).

Proof. Apply the Hamiltonicity framework with scale factor 𝑠 = 8 and chamber radius
𝑟 = 2; refer to Figure 7-8. As before, within each chamber, we place a hexagon on one
of the edges incident to the center of the chamber. Consider the grid graph 𝐺 formed
by the chambers and hallways, and its complement grid graph �̄� (induced by all grid
points in Z2 ∖ 𝐺).

To constrain the solution path to remain mostly within 𝐺, we add hexagons as
follows. For each connected component 𝐶 of �̄� (including the region exterior to 𝐺),
we add a cycle of hexagons on the boundary edges of 𝐶. (These cycles outline the
chambers and hallways, without intersecting them.) We break each cycle by removing
one or two consecutive hexagons, leaving a path of hexagons called a wall. The
removed hexagon(s) are adjacent to the holey chamber of the cycle: for a non-outer
cycle, the holey chamber is the leftmost topmost chamber adjacent to the cycle, and
for the outer cycle, the holey chamber is the rightmost bottommost chamber adjacent
to the cycle. For each non-outer cycle, we remove one hexagon, from the horizontal
edge immediately below the bottom-right cell of the holey chamber. For the outer
cycle, we remove two hexagons, from the horizontal edges immediately below the two
rightmost cells in the bottom row of the holey chamber; these two horizontal edges
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share a vertex called the gap vertex. Thus, in all cases, the removed hexagon(s) of a
cycle are below the bottom right of its holey chamber, so each chamber is the holey
chamber of at most one cycle.

We place the start circle and end cap at the bottom of the diagram, with the start
circle at the left endpoint of the outer wall, and the end cap below the gap vertex.
(Thus, the rightmost bottommost chamber is the start/end chamber.)

Witness solution → Hamiltonian cycle. We claim that any solution to this
Witness puzzle contains each wall as a contiguous subpath. Let 𝑒1, 𝑒2, . . . , 𝑒𝑘 be
the path of edges with hexagon clues forming a wall, and let 𝑣0, 𝑣1, . . . , 𝑣𝑘 be the
corresponding vertices on the path. When the solution path visits an edge 𝑒𝑖, where
1 ≤ 𝑖 < 𝑘, the solution path must visit edge 𝑒𝑖+1 immediately before or after; otherwise,
𝑒𝑖+1 could not be visited at another time on the solution path (contradicting its hexagon
constraint) because its endpoint 𝑣𝑖 has already been visited. By induction, any solution
path visits the wall edges consecutively, as either 𝑒1, 𝑒2, . . . , 𝑒𝑘 or 𝑒𝑘, 𝑒𝑘−1, . . . , 𝑒1.

Next we claim that any solution path must enter and exit each non-outer wall
from its corresponding holey chamber. The cycle corresponding to the wall is the
boundary of a connected component 𝐶 of �̄�. The wall contains all vertices of the
boundary of 𝐶, so the only way for the solution path to enter or exit the interior of 𝐶
is by entering or exiting the wall. But the start circle and end cap are not interior to
𝐶 or on the wall, so the solution path must enter and exit the wall from the exterior
of 𝐶. The only such neighbors of the wall endpoints are in the holey chamber.

By the previous two claims, any solution to this Witness puzzle cannot go strictly
inside any connected component of �̄�, except the outer component, and traversing a
wall starts and ends in the same chamber. Hence, a solution can traverse from chamber
to chamber only via hallways, and it must visit every chamber to visit the hexagon in
the middle. The solution effectively begins and ends at the rightmost bottommost
chamber, the gap vertex being the only way in from the outside. Therefore, any
solution can be converted into a Hamiltonian cycle in the original grid graph.

Hamiltonian cycle → Witness solution. To convert any Hamiltonian cycle into
a Witness solution, first we route the Hamiltonian cycle within the chambers and
hallways so that, in every chamber, the routed cycle visits the hexagon in the middle of
the chamber as well as the bottom edge of the bottom-right cell of the chamber. The
routing along each hallway is uniquely defined. To route within a chamber, we connect
one visited hallway along a straight line to the central vertex of the chamber; then
traverse the incident edge with the hexagon unless we just did; then walk clockwise or
counterclockwise around the remainder of the chamber in order to visit the bottom
edge of the bottom-right cell of the chamber before reaching the other visited hallway.

Next we modify this routed cycle into a Witness solution path by including the
walls. For each wall, within the corresponding holey chamber, we replace the bottom
edge 𝑒 of the bottom-right cell of the chamber by the two vertical edges below 𝑒.
For non-outer walls, the two endpoints of the wall attach to these two vertical edges,
effectively replacing the edge 𝑒 with the wall path. Thus, before we modify the holey
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chamber of the outer wall, we still have a cycle. For the outer wall, the right endpoint
of the wall attaches to the right vertical edge, while the left endpoint of the wall is
the start circle; the left vertical edge attaches to the gap vertex, which leads to the
end cap. Thus, we obtain a path from the start circle to the end cap.

7.3.4 Boundary Hexagons and Broken Edges
In this section, we solve Witness puzzles with arbitrary broken edges and hexagons
just on boundary of the puzzle. To make this result more interesting, we allow a
generalized type of Witness puzzle (also present in the real game) where the board
consists of an arbitrary simply connected set 𝐶 of cells (instead of just a rectangle),
and hexagons can be placed on any vertices and/or edges on the outline of 𝐶.

This result is essentially a polynomial-time algorithm for solving subset Hamiltonian
path — find a simple path visiting a specified subset of vertices and/or edges — on
planar graphs when the subset lies entirely on the outside face of the graph. This
problem is a natural variation of subset TSP — find a minimum-length not-necessarily-
simple cycle visiting a specified subset of vertices. A related result is that Steiner tree

— find a minimum-length tree visiting a specified subset of vertices — can be solved
in polynomial time on planar graphs when the subset lies entirely on the outside
face of the graph [57]. This result is a key step in the first PTAS for Steiner tree in
planar graphs [29]. It seems that simple paths are trickier to find than trees, so our
algorithm is substantially more complicated. Hopefully, our result will also find other
applications in planar graph algorithms.

Define a forced division (𝐶, 𝐹 ) to consist of a simply connected set 𝐶 of empty cells
(possibly with broken edges between them) together with a set 𝐹 of forced vertices
and edges (i.e., vertices and/or edges with hexagon clues) on the outline of 𝐶. A
(𝐶, 𝐹 )-path is a simple path using only vertices and edges incident to cells in 𝐶 that
traverses all vertices and edges in 𝐹 .

To enable a dynamic program for finding (𝐶, 𝐹 )-paths when they exist, we prove
a strong structural result about (𝐶, 𝐹 )-paths that leave the “most room” for future
paths, which may be of independent interest.

For any two vertices 𝑢 and 𝑣 on the outline of 𝐶, any (𝐶, 𝐹 )-path 𝑃 from 𝑢 to 𝑣
decomposes the cells of 𝐶 into one or more connected components. For each vertex 𝑡
on the outline of 𝐶, if 𝑃 does not visit 𝑡, then there is a unique connected component
𝑅𝑡(𝑃 ) incident to 𝑡. We call 𝑅𝑡(𝑃 ) the 𝑡-remainder of 𝑃 . The intent is for the path
to continue on from 𝑣 into the 𝑡-remainder, so we are interested in the case where 𝑣 is
incident to 𝑅𝑡(𝑃 ), which is equivalent to preventing the path from going “backward”
along the outline of 𝐶 between 𝑣 and 𝑡.

Lemma 7.3.6. Given a forced division (𝐶, 𝐹 ) with possibly broken edges, for distinct
vertices 𝑢, 𝑣, 𝑡 appearing in clockwise order on the outline of 𝐶, if there is any (𝐶, 𝐹 )-
path from 𝑢 to 𝑣 that does not visit the outline of 𝐶 in the clockwise interval (𝑣, 𝑡], then
there exists a unique maximum 𝑡-remainder 𝑅* over all such paths. More precisely,
the 𝑡-remainder of any such path is a subset of 𝑅*, and there is such a path with
𝑡-remainder exactly 𝑅*. The same result holds for any forbidden interval (𝑣, 𝑥) of the
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2 2 2 1 2 1 0 0 0 0 0 0
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2 2 2 2 1 1 1 0 1 0 0 0 0
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3 3 3 2 1 1 1 0 0 0 0 0 1

3 3 3 2 1 1 1 0 0 0 0 1 1

3 3 3 2 1 1 1 1 1 0 0 1 1

3 3 3 1 1 1 1 1

(a) 𝑃1 and 𝑃1-depth.

4 4 4 2 2 2 0 0 0 0

4 4 4 3 2 1 1 0 0 0 0 0

4 4 4 4 3 2 1 1 0 0 0 0 0

4 4 4 4 3 2 1 1 1 0 0 0 0

3 3 3 3 3 2 1 0 1 0 0 1 1

3 3 2 2 2 2 1 0 0 0 0 1 1

3 3 2 2 2 2 1 0 0 0 0 1 1

3 3 2 2 2 3 1 1 0 0 0 1 1

3 3 3 3 1 1 1 1

(b) 𝑃2 and 𝑃2-depth.
2 2 2 2 2 0 0 0 0 0

2 2 2 1 2 1 0 0 0 0 0 0

2 2 2 2 1 1 1 0 0 0 0 0 0

2 2 2 2 1 1 1 0 1 0 0 0 0

3 3 3 2 1 1 1 0 1 0 0 0 1

3 3 2 2 1 1 1 0 0 0 0 0 1

3 3 2 2 1 1 1 0 0 0 0 1 1

3 3 2 2 1 1 1 1 0 0 0 1 1

3 3 3 1 1 1 1 1

(c) Depth (the minimum of 𝑃1-depth and
𝑃2-depth). Note the 1-cavity inside the

depth-0 area.

2 2 2 2 2 0 0 0 0 0

2 2 2 1 2 1 0 0 0 0 0 0

2 2 2 2 1 1 1 0 0 0 0 0 0

2 2 2 2 1 1 1 0 0 0 0 0 0

3 3 3 2 1 1 1 0 0 0 0 0 1

3 3 2 2 1 1 1 0 0 0 0 0 1

3 3 2 2 1 1 1 0 0 0 0 1 1

3 3 2 2 1 1 1 1 0 0 0 1 1

3 3 3 1 1 1 1 1

(d) 𝑃3. After filling the cavity, the ledges
form a path from 𝑢 to 𝑣.

Figure 7-9: Example remainder computation, where 𝐹 is represented by hexagons, 𝑢 is
the start circle, 𝑣 is the other endpoint of the paths, and 𝑡 is the end cap. Maximizing
the remainder leaves the maximum freedom for completing the path. (Note that the
two edges in each reflex corner have two exterior depths; they happen to be the same
in this example, but they may differ in general.)

outline of 𝐶 that contains (𝑣, 𝑡].

Proof. Let 𝑃1 and 𝑃2 be any two (𝐶, 𝐹 )-paths from 𝑢 to 𝑣 that do not visit the outline
of 𝐶 in the clockwise interval (𝑣, 𝑡] (or any larger forbidden interval). We will construct
another such path 𝑃3 (built entirely from edges of 𝑃1 and 𝑃2) whose 𝑡-remainder is a
superset of the 𝑡-remainders of 𝑃1 and 𝑃2. Refer to Figure 7-9 for an example. By
applying this construction repeatedly to all such paths, we obtain a single such path
whose 𝑡-remainder is a superset of the 𝑡-remainder of all such paths.

Define the 𝑃𝑖-depth of a cell 𝑐 ∈ 𝐶 to be the minimum possible number of crossings
of 𝑃𝑖 by a curve within 𝐶 from a point interior to 𝑐 to 𝑡. (This number is most easily
seen to be well-defined by allowing the curve to cross cell boundaries only at edges,
not vertices.) Define the depth of a cell 𝑐 ∈ 𝐶 to be the minimum of the 𝑃1-depth and
𝑃2-depth of 𝑐.
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(a) Alternating filled
depths < 𝑘, ≥ 𝑘, < 𝑘, ≥ 𝑘.

(b) Alternating filled
depths < 𝑘, ≥ 𝑘, < 𝑘 on

the boundary.

Figure 7-10: Two impossible situations in the proof of Lemma 7.3.6: alternating filled
depths.

Define a 𝑘-cavity to be a connected set of cells of depth ≥ 𝑘 (with at least one cell
of depth exactly 𝑘) “surrounded” by cells of depth < 𝑘: every edge on the outline
of the cavity must have an incident exterior cell that has depth < 𝑘. The outline of
a cavity therefore shares no edges with the outline of 𝐶. (On the other hand, this
definition allows the outline of a cavity to share a vertex with the outline of 𝐶, though
we will argue later that this is impossible.) Furthermore, by this definition, every
cavity is a maximal connected set of cells of depth ≥ 𝑘.

Define the filled depth of cells 𝑐 ∈ 𝐶 to be the result of the following process. Start
with filled depth equal to depth. If there is a 𝑘-cavity with the current notion of
(filled) depth, set the filled depth of all cells in the cavity to 𝑘 − 1. Repeat until there
are no more cavities.

Next we claim that we never have cells 𝑐1, 𝑐2, 𝑐3, 𝑐4 in clockwise order around a
vertex 𝑥 with filled depths of < 𝑘, ≥ 𝑘, < 𝑘, ≥ 𝑘 respectively; refer to Figure 7-10a.5
First, neither 𝑐1 nor 𝑐3 belongs to a filled cavity, or else 𝑐2 and 𝑐4 would belong to the
same cavity, so filling this cavity would place 𝑐2 and 𝑐4 at the same depth as either 𝑐1
or 𝑐3. Thus, 𝑐1 and 𝑐3 have depths equal to filled depths which are < 𝑘. By definition
of depth, for 𝑖 ∈ {1, 3}, we can draw a simple curve from 𝑐𝑖 to 𝑡 that remains in depth
< 𝑘. Because filling only decreases depths, these simple curves also remain in filled
depth < 𝑘. Connecting these two curves at 𝑥, we obtain a simple closed curve through
𝑥 and 𝑡 that traverses cells only of filled depth < 𝑘. By planarity, this closed curve
must contain either 𝑐2 or 𝑐4 of filled depth ≥ 𝑘, so there must in fact be a 𝑘-cavity
that is not yet filled, a contradiction, proving the claim.

Similarly, we claim that we never have a vertex 𝑥 on the outline of 𝐶 with incident
cells 𝑐1, 𝑐2, 𝑐3 in clockwise order interior to 𝐶 with filled depths of < 𝑘, ≥ 𝑘, < 𝑘
respectively; refer to Figure 7-10b. Otherwise, as above, for 𝑖 ∈ {1, 3}, 𝑐𝑖 was not
filled, and we can draw a simple curve from 𝑐𝑖 to 𝑡 that remains in depth < 𝑘; connect
these curves into a simple closed curve through 𝑥 and 𝑡 that traverses cells only of

5For simplicity, we assume here that every vertex has degree at most 4, as in The Witness, though
this argument can easily be generalized to arbitrary planar graphs: replace each 𝑐𝑖 with an interval
of cells around 𝑥, so that 𝑐𝑖 is indeed adjacent to 𝑐𝑖+1, and generalize to ≥ 4 alternations.
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filled depth < 𝑘; and by planarity this cycle must contain 𝑐2 of filled depth 𝑘, forming
an unfilled 𝑘-cavity and a contradiction.

As a consequence of the previous claim, no 𝑘-cavity can touch a vertex 𝑥 of the
outline of 𝐶. Furthermore, the previous claim holds for 𝑃𝑖-depths as well as filled
depths: by the same argument, we get a simple closed curve (through 𝑥 and 𝑡) that
traverses cells only of 𝑃𝑖-depth < 𝑘, yet containing a cell of 𝑃𝑖-depth ≥ 𝑘, contradicting
that 𝑃𝑖 is a simple path.

For an edge 𝑒 on the outline of 𝐶, define the interior depth of 𝑒 to be the depth of
the incident cell of 𝐶; the exterior 𝑃𝑖-depth of 𝑒 to be the minimum possible number
of crossings of 𝑃𝑖 by a curve that starts just outside 𝑒, immediately crosses 𝑒, and
continues within 𝐶 to 𝑡; and the exterior depth of 𝑒 to be the minimum of the exterior
𝑃1-depth and exterior 𝑃2-depth of 𝑒. Note that the exterior depth of 𝑒 is always at
least the interior depth of 𝑒. (These notions do not need to distinguish between depth
and filled depth, because we never fill a cell incident to an edge on the outline of 𝐶.)

We claim that the exterior 𝑃1-depth and exterior 𝑃2-depth of 𝑒 have the same
parity. By the definition of exterior 𝑃𝑖-depth, we can draw a simple curve starting
at a point 𝑞 just outside 𝐶, immediately crossing 𝑒, and continuing within 𝐶 to 𝑡,
crossing 𝑃𝑖 that many times. We can close these curves without adding 𝑃𝑖 crossings
by adding a simple curve exterior to 𝐶 from 𝑞 to 𝑡. The resulting simple closed curves
for both 𝑃1 and 𝑃2 enclose the same interval of the outline of 𝐶, so 𝑢 is either inside
or outside of both closed curves, and similarly for 𝑣. If 𝑢 and 𝑣 are on the same side
of the closed curves, then 𝑃𝑖 from 𝑢 to 𝑣 must cross the closed curve an even number
of times, so 𝑒 has even exterior 𝑃𝑖-depth; while if 𝑢 and 𝑣 are on different sides, 𝑒 has
odd exterior 𝑃𝑖-depth. In either case, the parities are the same for both 𝑖.

We claim that two consecutive edges 𝑒1, 𝑒2 of the outline of 𝐶 have the opposite
exterior depth parity if and only if their common endpoint is 𝑢 or 𝑣. Consider the
curve proceeding around the common endpoint 𝑥 from just outside 𝑒1, immediately
crossing 𝑒1, crossing all cells incident to 𝑥, and crossing 𝑒2 to just outside 𝑒2. This
curve crosses 𝑃𝑖 zero or two times unless 𝑥 is one of 𝑃𝑖’s endpoints, in which case it
crosses exactly once. Thus, the exterior 𝑃𝑖-depths of 𝑒1 and 𝑒2 have the same parity
unless 𝑥 is 𝑢 or 𝑣, in which case they have opposite parity. The exterior depths of 𝑒1
and 𝑒2 therefore satisfy the same parity relationship.

Define ledges as follows: an edge 𝑒 on the outline of 𝐶 is a ledge if it has different
interior and exterior depths, and an edge 𝑒 interior to 𝐶 is a ledge if its two incident
cells have different filled depths. Filled depth changes exactly at ledges, by ±1, so in
particular every ledge is an edge of 𝑃1 or 𝑃2 or both.

We claim that, at every vertex of 𝐶 except 𝑢 or 𝑣, the number of incident ledges is
0 or 2; and at 𝑢 and 𝑣, the number of incident ledges is 1. By the < 𝑘, ≥ 𝑘, < 𝑘, ≥ 𝑘
and < 𝑘, ≥ 𝑘, < 𝑘 claims, every vertex has at most two incident ledges. For a vertex
interior to 𝐶, we must therefore have zero or two incident ledges: there cannot be
just one change in a cycle of numbers. A vertex 𝑥 on the outline of 𝐶 might have
zero, one, or two incident ledges. Let 𝑒1 and 𝑒2 be the two (consecutive) edges of the
outline of 𝐶 incident to 𝑥. As in the previous claim, consider the curve proceeding
around 𝑥 from just outside 𝑒1, immediately crossing 𝑒1, crossing all cells incident to 𝑥,
and crossing 𝑒2 to just outside 𝑒2. As we traverse this curve, the filled/exterior depth
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changes by ±1 at ledge edges, and at no other edges (by definition of ledge). Thus,
𝑥 has exactly one incident ledge if and only if the exterior depths of 𝑒1 and 𝑒2 have
opposite parity, which by the previous claim must happen exactly when 𝑥 ∈ {𝑢, 𝑣};
otherwise, 𝑥 has zero or two incident ledges as desired.

By the previous claim, the set of ledges forms a path 𝑃3 between 𝑢 and 𝑣 plus zero
or more disjoint simple cycles. We claim that, in fact, there can be no cycles of ledges.
Suppose for contradiction that there were such a cycle 𝑋. There are two cases:

1. If 𝑋 touches the outline of 𝐶 at just one vertex (which cannot be 𝑡 by its degree
bound) or not at all, then 𝑋 is surrounded by cells of a constant filled depth 𝑘
(because filled depth changes exactly at ledges), and the filled depths of cells
interior and incident to 𝑋 must have filled depth either < 𝑘 or > 𝑘. In fact, no
cells interior to 𝑋 can have filled depth < 𝑘, as they would have a curve to 𝑡
(which is exterior to 𝑋) that only visits cells with filled depth < 𝑘, contradicting
the filled depth of the cells surrounding 𝑋. But if all cells interior to 𝑋 have
filled depth > 𝑘, then 𝑋 is the outline of a > 𝑘-cavity, contradicting that we
already filled all cavities.

2. If 𝑋 touches the outline of 𝐶 at two or more vertices then, because 𝑋 is disjoint
from 𝑃3, there is a subpath 𝑌 of 𝑋 whose endpoints 𝑦1, 𝑦2 lie on the outline
of 𝐶 separating the rest of 𝑋 from 𝑃3 and thus 𝑢 and 𝑣. Refer to Figure 7-11.
Label 𝑦1 and 𝑦2 to be closer to 𝑢 and 𝑣 respectively on the outline of 𝐶, i.e., so
that their clockwise order is either 𝑦1, 𝑢, 𝑣, 𝑦2 or 𝑢, 𝑦1, 𝑦2, 𝑣. Because 𝑃1 and 𝑃2
and thus all ledges are not on the outline of 𝐶 in the clockwise interval (𝑣, 𝑡],
𝑡 is on the same side of 𝑌 as 𝑣. Therefore 𝑌 is a ledge transition from some
filled depth 𝑘 on the 𝑢, 𝑣, 𝑡 side to filled depth 𝑘 + 1 on the 𝑋 side (locally on
either side of 𝑌 ). Indeed, the entire 𝑋 side of 𝑌 has filled/exterior depth > 𝑘;
otherwise, there would be a curve to 𝑡 (and thus crossing 𝑌 ) of filled depths ≤ 𝑘.
Therefore, the other (nonempty) path of 𝑋, 𝑋 ∖ 𝑌 , must be a ledge transition
from filled depth 𝑘 + 1 to 𝑘 + 2, so there must be a filled/exterior depth of 𝑘 + 2
on the 𝑋 side of 𝑌 .
Now consider the transition from filled depth 𝑘 to 𝑘 + 1 on the edge 𝑒 of 𝑌
incident to 𝑦1, and let 𝑐𝑘 and 𝑐𝑘+1 be the cells of 𝐶 incident to 𝑒 of filled depths
𝑘 and 𝑘 + 1 respectively (which are exterior and interior respectively to 𝑋). In
fact, 𝑐𝑘 and 𝑐𝑘+1 have depth 𝑘 and 𝑘 +1 respectively: cell 𝑐𝑘 could not have been
filled as it has a neighbor 𝑐𝑘+1 of higher depth, and cell 𝑐𝑘+1 could not have been
filled because that would have made its filled depth match 𝑐𝑘’s. By definition of
depth, for some 𝑖 ∈ {1, 2}, the 𝑃𝑖-depth of 𝑐𝑘 is 𝑘 while the 𝑃𝑖-depth of 𝑐𝑘+1 is
𝑘 + 1. To achieve this transition, 𝑃𝑖 must have a subpath 𝑄𝑖 between 𝑦1 and
some vertex 𝑧 on the outline of 𝐶, with 𝑒 as its first or last edge, where one side
of 𝑄𝑖 locally has 𝑃𝑖-depth 𝑘 while the other side of 𝑄𝑖 locally has 𝑃𝑖-depth 𝑘 + 1.
Because the entire 𝑋 side of 𝑌 has filled/exterior depth > 𝑘, 𝑄𝑖 cannot strictly
enter the 𝑋 side of 𝑌 , so 𝑄𝑖 must be nonstrictly on the 𝑡 side of 𝑌 . Viewed from
the other side, 𝑋 must be nonstrictly on the 𝑘 + 1 side of 𝑄𝑖, while 𝑡 must be
strictly on the 𝑘 side of 𝑄𝑖. By our labeling of 𝑦1 and 𝑦2, 𝑧 lies on the interval
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Figure 7-11: Case 2 of the proof of Lemma 7.3.6.

of the outline of 𝐶 between 𝑡 and 𝑦2 not containing 𝑦1 (or 𝑢), so 𝑢 and 𝑣 lie on
the same (𝑘) side of 𝑄𝑖 as 𝑡. Now beyond the endpoints 𝑦1, 𝑧 of 𝑄𝑖, the simple
path 𝑃𝑖 must proceed on the 𝑘 side of 𝑄𝑖 which contains 𝑢 and 𝑣, so 𝑃𝑖 never
goes strictly on the 𝑘 + 1 side of 𝑄𝑖, which is nonstrictly on the 𝑡 side of 𝑌 . But
this contradicts that there must be a transition from 𝑃𝑖-depth 𝑘 + 1 to 𝑘 + 2 on
𝑋 ∖ 𝑌 , which is on the 𝑋 side of 𝑌 .

Therefore the set of ledges forms exactly a path 𝑃3 between 𝑢 and 𝑣.
We claim that 𝑃3 visits all forced vertices and edges in 𝐹 . First, 𝑃3 visits every

forced edge because such an edge is in both 𝑃1 and 𝑃2 and thus is a ledge via differing
internal and external depths, which are unaffected by cavity filling. Second, we claim
that 𝑃3 visits every vertex 𝑥 on the outline of 𝐶 that is visited by both 𝑃1 and 𝑃2,
and thus every forced vertex. Specifically, we show that 𝑥 is incident to two different
depths (cell or exterior), which implies (because cavities cannot touch a vertex 𝑥 on
the outline of 𝐶) that 𝑥 is incident to two different filled depths, and thus incident to a
ledge. Suppose for contradiction that every depth incident to 𝑥 is equal to the same 𝑘,
and thus every incident 𝑃𝑖-depth is ≥ 𝑘 and every cell or edge exterior has either
𝑃1-depth or 𝑃2-depth equal to 𝑘; refer to Figure 7-12. Because the 𝑃𝑖-depth changes
by ±1 across each edge of 𝑃𝑖, 𝑥 must be incident to a 𝑃𝑖-depth of > 𝑘 as well. Let 𝑒1
and 𝑒2 be the two edges of the outline of 𝐶 incident to 𝑥 in counterclockwise order
around the outline of 𝐶, so that the edges incident to 𝑥 proceed clockwise from 𝑒1
to 𝑒2. Assume by symmetry that the exterior 𝑃1-depth of 𝑒1 is 𝑘. By the < 𝑘, ≥ 𝑘, < 𝑘
claim applied to 𝑃1-depth at 𝑥, the exterior 𝑃1-depth of 𝑒2 cannot be 𝑘; otherwise,
there would be a 𝑃1-depth of > 𝑘 in between 𝑒1 and 𝑒2 of exterior 𝑃1-depths 𝑘. Thus,
the 𝑃1-depths clockwise around 𝑥 must proceed 𝑘, 𝑘 + 1, 𝑘 + 2. The exterior depth
of 𝑒2 is 𝑘, while the exterior 𝑃1-depth of 𝑒2 is 𝑘 + 2, so the exterior 𝑃2-depth of 𝑒2
must be 𝑘. By a symmetric argument, the 𝑃2-depths clockwise around 𝑥 must proceed
𝑘 + 2, 𝑘 + 1, 𝑘. Because there are no incident depths > 𝑘, the transition of 𝑃2-depth
from 𝑘 + 2 to 𝑘 must occur fully before (counterclockwise of) any of the transition
of 𝑃1-depth from 𝑘 to 𝑘 + 2. Because of the transition from 𝑃𝑖-depth 𝑘 to 𝑃𝑖-depth
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Figure 7-12: An impossible situation in the proof of Lemma 7.3.6: vertex 𝑥 visited by
both paths 𝑃1 and 𝑃2 incident to only a single depth 𝑘.

𝑘 + 1, each 𝑃𝑖 has a subpath 𝑄𝑖 between 𝑥 and a point 𝑦𝑖 on the outline of 𝐶, without
visiting any vertices on the outline of 𝐶 in between, where 𝑄𝑖 has 𝑃𝑖-depth 𝑘 locally
on one side and 𝑃𝑖-depth 𝑘 + 1 locally on the other side. Because of the transition
from 𝑃𝑖-depth 𝑘 + 1 to 𝑃𝑖-depth 𝑘 + 2, locally at 𝑥, 𝑃𝑖 proceeds strictly to the 𝑘 + 1
side of 𝑄𝑖, and by planarity and simplicity of 𝑃𝑖, one endpoint of 𝑃𝑖 (𝑢 or 𝑣) must
be strictly on the 𝑘 + 1 side of 𝑃𝑖. Because 𝑢, 𝑣, 𝑡 appear in clockwise order on the
outline of 𝐶, 𝑢 must be strictly on the 𝑘 + 1 side of 𝑄1 while 𝑣 must be strictly on
the 𝑘 + 1 side of 𝑄2. Because 𝑡 is on the 𝑘 side of both 𝑄1 and 𝑄2, we must have
𝑡, 𝑦1, 𝑢, 𝑥, 𝑣, 𝑦2, 𝑡 appearing in clockwise order on the outline of 𝐶. Because 𝑃2 does
not visit the clockwise interval (𝑣, 𝑡], we must have 𝑣 = 𝑦2. But then 𝑃2 consists of 𝑄2
preceded by a path strictly on the 𝑘 + 1 side of 𝑄2, so 𝑃2 cannot reach a vertex on the
outline of 𝐶 on the 𝑘 + 1 side of 𝑄1, so in particular cannot reach 𝑢, a contradiction.

Now that 𝑃3 is a path from 𝑢 to 𝑣 that visits all forced vertices and edges, we
just need to check a few more properties. The remainder of 𝑃3 contains all cells of
filled depth 0 because such a cell can be connected to 𝑡 via a curve that does not cross
any ledges; therefore, the remainder of 𝑃3 includes all cells of depth 0, and thus all
cells of 𝑃𝑖-depth 0, which is the remainder of 𝑃𝑖. Every edge in path 𝑃3 is a ledge
and thus an edge of 𝑃1 or 𝑃2, so 𝑃3 uses no broken edges and shares the property of
not visiting the outline of 𝐶 in the clockwise interval (𝑣, 𝑡] (or any larger forbidden
interval). Therefore, 𝑃3 is the path we were searching for.

Now we give our dynamic programming algorithm for generalized Witness puzzles
with boundary hexagons and broken edges.

Theorem 7.3.7. Given a forced division (𝐶, 𝐹 ) with possibly broken edges, for any
two vertices 𝑠 and 𝑡 on the outline of 𝐶, we can decide in polynomial time whether
there exists a (𝐶, 𝐹 )-path from 𝑠 to 𝑡.

Proof. We use dynamic programming to solve this problem. For every clockwise
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interval [𝑎, 𝑏] of the outline of 𝐶 containing 𝑠 and not strictly containing 𝑡 (i.e.,
𝑡 /∈ (𝑎, 𝑏)), we define two subproblems based on Lemma 7.3.6:

∙ find a maximum-remainder (𝐶, 𝐹 ∩ [𝑎, 𝑏])-path from 𝑠 to 𝑏 that does not visit
the outline of 𝐶 in the clockwise interval (𝑏, 𝑎), or report that no such path
exists; and

∙ find a maximum-remainder (𝐶, 𝐹 ∩ [𝑎, 𝑏])-path from 𝑠 to 𝑎 that does not visit
the outline of 𝐶 in the clockwise interval (𝑏, 𝑎), or report that no such path
exists.

To solve the original problem, we apply either subproblem on the clockwise interval
[𝑡, 𝑡] (understood to mean the entire outline of 𝐶, starting and ending at 𝑡). In this
case, 𝑎 = 𝑏 = 𝑡 and the clockwise interval (𝑏, 𝑎) = ∅, and the remainder is undefined,
so the subproblem statement is exactly to find a (𝐶, 𝐹 )-path from 𝑠 to 𝑡.

To find a maximum-remainder (𝐶, 𝐹 ∩ [𝑎, 𝑏])-path 𝑃 * from 𝑠 to 𝑏 not visiting (𝑏, 𝑎),
if such a path exists, we guess (try all options for) the last vertex 𝑥 before 𝑏 of the
outline of 𝐶 visited by the path 𝑃 *. Such a vertex 𝑥 ∈ [𝑎, 𝑏) exists because 𝑠 is a
candidate for 𝑥, except in the base case 𝑠 = 𝑏, where we simply return the empty path
from 𝑠 to 𝑠. Vertex 𝑥 splits 𝑃 * into a path 𝑃 *

1 from 𝑠 to 𝑥 followed by a path 𝑃 *
2 from

𝑥 to 𝑏. The latter path 𝑃 *
2 visits the outline of 𝐶 only at its endpoints, except when

𝑃 *
2 is a single edge (𝑏 − 1, 𝑏) where 𝑏 − 1 denotes the clockwise previous vertex before

𝑏 on the outline of 𝐶. We divide into two overlapping cases based on the relation
between 𝑥 ∈ [𝑎, 𝑏) and 𝑠:

1. If 𝑥 is in the clockwise interval [𝑠, 𝑏), then there must not be any forced ver-
tices/edges in the clockwise interval (𝑥, 𝑏), except possibly a single forced edge
(𝑏 − 1, 𝑏) when 𝑥 = 𝑏 − 1. Otherwise, 𝑃 *

2 could not include any such forced
vertices/edges (as it cannot visit the outline of 𝐶 in that interval) and 𝑃 *

2
effectively “hides” such forced vertices/edges from 𝑃 *

1 (as 𝑠 is outside the cycle
formed by 𝑃 *

2 and [𝑥, 𝑏]). Thus, 𝑃 *
1 can visit forced vertices/edges only in the

interval 𝐼 = [𝑎, 𝑥].

2. If 𝑥 is in the clockwise interval [𝑎, 𝑠], then there must not be any forced ver-
tices/edges in the clockwise interval (𝑎, 𝑥). Otherwise, 𝑃 *

2 cannot include any
such forced vertices/edges (as it cannot visit the outline of 𝐶 in that interval)
and 𝑃 *

2 effectively “hides” such forced vertices/edges from 𝑃 *
1 (as 𝑠 is outside

the cycle formed by 𝑃 *
2 and [𝑏, 𝑥]). Furthermore, the edge (𝑏 − 1, 𝑏) cannot be a

forced edge unless 𝑥 = 𝑏 − 1 = 𝑠: it could not be visited by 𝑃 *
2 (as it includes no

edges of the outline of 𝐶) nor by 𝑃 *
1 (or else 𝑃 * would be a cycle, not a simple

path). Thus, 𝑃 *
1 can visit forced edges only in the interval 𝐼 = [𝑥, 𝑏 − 1].

3. If 𝑥 = 𝑠, then the constraints of both above cases must hold: there must not
be any forced vertices/edges in the clockwise interval (𝑎, 𝑏), except possibly a
single forced vertex 𝑠 and a single forced edge (𝑏 − 1, 𝑏) when 𝑥 = 𝑏 − 1 = 𝑠.
Furthermore, 𝑃 *

1 must be the trivial path from 𝑠 to 𝑠, so it can visit forced
vertices/edges only in the trivial interval 𝐼 = [𝑠, 𝑠].
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If any of the stated constraints do not hold, then this choice of 𝑥 fails.
Otherwise, we recursively find a maximum-remainder (𝐶, 𝐹 ∩ 𝐼) path 𝑃1 from 𝑠

to 𝑥 that does not visit the outline of 𝐶 outside the interval 𝐼 defined above in each
case. Note that 𝐼 is strictly contained in [𝑎, 𝑏] in all cases, so the recursive calls cannot
form a cycle. By a cut-and-paste argument, we can assume 𝑃1 = 𝑃 *

1 , i.e., that the
path 𝑃1 we find matches the prefix 𝑃 *

1 of the desired path 𝑃 *. Otherwise, modify
𝑃 * by replacing 𝑃 *

1 with 𝑃1, resulting in an equally suitable maximum-remainder
(𝐶, 𝐹 ∩ [𝑎, 𝑏])-path 𝑃 * that does not visit (𝑏, 𝑎). First, the remainder of 𝑃 * is the
remainder of 𝑃 *

2 , so remains unchanged. Second, 𝑃 *
2 lies in the remainder of 𝑃 *

1 , which
is contained within the (maximum) remainder of 𝑃1, so 𝑃 * remains non-self-crossing.

Next we depth-first search using the left-hand rule to find a maximum-remainder
path 𝑃2 from 𝑥 to 𝑏 while avoiding all broken edges, all vertices on the outline of 𝐶,
and all vertices of 𝑃1. If the depth-first search fails to find such a path, then this choice
of 𝑥 fails. Otherwise, we claim that 𝑃2 = 𝑃 *

2 . At each step, the depth-first search
makes the leftmost choice that can be completed into a path. Hence, if 𝑃 *

2 deviates
from 𝑃2 at any step, 𝑃 *

2 must be to the right of 𝑃2 at that step. But that deviation
is incident to a cell in 𝑃 ’s remainder that is not in 𝑃 *’s remainder (because 𝑃2 does
not visit the outline of 𝐶 until 𝑏, and the interval (𝑏, 𝑎) has not been visited by 𝑃1 or
𝑃2), contradicting that 𝑃 * is maximum-remainder. Here we crucially use Lemma 7.3.6
that there is a unique maximum remainder according to the subset relation, not two
possible remainders that are mutually incomparable.

Finally, we concatenate 𝑃1 and 𝑃2 to form a path 𝑃 , which is a candidate for 𝑃 *

that (as argued above) equals 𝑃 * assuming our guess for 𝑥 was correct. By trying all
choices for 𝑥, and returning the resulting path 𝑃 that has the maximum remainder,
we are sure to find 𝑃 * if it exists.

The other type of subproblem, to find a maximum-remainder (𝐶, 𝐹 ∩ [𝑎, 𝑏])-path
𝑃 * from 𝑠 to 𝑎 not visiting (𝑏, 𝑎), is symmetric.

Overall, if 𝐶 has 𝑛 cells and 𝑚 = 𝑂(𝑛) edges on the outline, then there are 𝑂(𝑚2)
subproblems, 𝑂(𝑚) choices per subproblem, and the depth-first search spends 𝑂(𝑛)
time per subproblem and choice. Therefore, the total running time is 𝑂(𝑚3𝑛) =
𝑂(𝑛4).

7.4 Squares

Each square clue has a color and is placed on a cell of the puzzle. Each region formed
by the solution path and puzzle boundary must have at most one color of squares. In
this section, we prove NP-hardness of square clues of two colors. This result is tight
given the following:

Observation 7.4.1. Witness puzzles containing only squares of one color do not
constrain the path, so are always solvable.
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(a) Unsolved gadget (b) Unbroken solution
path.

(c) Broken solution path.

Figure 7-13: Breakable degree-4 vertex gadget.

7.4.1 Tree-Residue Vertex Breaking
Our reduction is from tree-residue vertex breaking [51]. Define breaking a vertex of
degree 𝑑 to be the operation of replacing that vertex with 𝑑 vertices, each of degree 1,
with the neighbors of the vertex becoming neighbors of these replacement vertices in
a one-to-one way. The input to the tree-residue vertex breaking problem is a planar
multigraph in which each vertex is labeled as “breakable” or “unbreakable”. The
goal is to determine whether there exists a subset of the breakable vertices such that
breaking those vertices (and no others) results in the graph becoming a tree (i.e.,
destroying all cycles without losing connectivity). This problem is NP-hard even if all
vertices are degree-4 breakable vertices [51].

7.4.2 Squares of Two Colors
Theorem 7.4.2. It is NP-complete to solve Witness puzzles containing only squares
of two colors.

Concurrent work [90] also proves this theorem. However, we prove this by showing
that the stronger Restricted Squares Problem is also hard, which will be useful to
reduce from in Section 7.5.

Problem 7.4.3 (Restricted Squares Problem). An instance of the Restricted Squares
Problem is a Witness puzzle containing only squares of two colors (red and blue),
where each cell in the leftmost and rightmost columns, and each cell in the topmost
or bottommost rows, contains a square clue; and of these square clues, exactly one is
blue, and that square clue is not in a corner cell; and the start vertex and end cap are
the two boundary vertices incident to that blue square; see Figure 7-15a.

Theorem 7.4.4. The Restricted Squares Problem is NP-complete.

Proof. We reduce from tree-residue vertex breaking on a planar multigraph with
breakable vertices of degree 4. The overall plan is to fill the board with red squares,
and then embed the multigraph into the strict interior of the board (i.e., without
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(a) Edge gadget (b) Local solution

Figure 7-14: Edge gadget.

(a) Boundary of the Restricted
Squares Problem

(b) Connecting the boundary to
the center

Figure 7-15: Boundary of the Restricted Squares Problem.

using the extreme rows and columns). The gadgets representing the graph use a
combination of blue squares and empty cells. Figures 7-13 and 7-14 illustrate the
gadgets for a breakable vertex of degree 4 and an edge (including turns), respectively.
The square constraints dictate that any solution path must traverse the edge shared
by two cells with squares of opposite color. By this property, the only possible local
solutions to the gadgets are the ones shown in the figures.

To connect these gadgets together, we first lay out the multigraph orthogonally on
a linear-size grid with turns along the edges (e.g., using [124]), scale by a constant
factor,6 place the vertex gadgets at the vertices, and route the edges to connect
the vertex gadgets (roughly following the drawing, but possibly adding extra turns).
Finally, we choose any edge on the bounding box of the embedded multigraph and
connect it to the boundary as shown in Figure 7-15b. This effectively introduces an
unbreakable vertex of degree 3, which does not affect the solvability of the tree-residue
vertex breaking instance. We place the start vertex and end cap at the two boundary
vertices at the end of this boundary connection, as required by the Restricted Squares
Problem.

6For example, a scale factor of 8 in each dimension suffices. The center of a vertex gadget is at
most 2 × 2, and three more rows and columns on each side suffice to wiggle the incident edges to a
desired row or column to match an adjacent gadget. More efficient scaling is likely possible.
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Figure 7-16: The boundary of the reduction. Each visual (color, number) pair
represents a distinct color in the constructed instance. All stars depicted as blue
correspond to blue squares in the source instance and must be in the inside region.
Stars depicted as red correspond to red squares and must be in the outside region.
The other stars enforce this.

We claim that there is a bijection between solutions of the constructed Restricted
Squares Problem and solutions to the given instance of tree-residue vertex breaking: a
vertex gets broken if and only if we choose the locally disconnected solution (Figure 7-
13c) in the corresponding vertex gadget. It remains to show that breaking a subset
of vertices results in a tree if and only if the corresponding local solutions form a
global solution path to the Witness puzzle. The local solutions mimic an Euler tour of
the planar graph after breaking the subset of vertices, and this Euler tour is a single
connected cycle if and only if the graph is connected and acyclic. The one difference
is the subdivided edge with an extra unbreakable vertex of degree 3 connected to the
boundary (Figure 7-15b), which transforms an Euler tour into a solution path starting
at the start vertex and ending at the end cap. Provided that a vertex breaking solution
exists, the corresponding solution path will satisfy all square constraints because it
will have all blue squares on its interior and all red squares on its exterior.

7.5 Stars
Star clues are in cells of a puzzle. If a region formed by the solution path and boundary
of a puzzle has a star of a given color, then the number of clues (stars, squares, or
antibodies) of that color in that region must be exactly two. A star imposes no
constraint on clues with colors different from that of the star.

Theorem 7.5.1. It is NP-complete to solve Witness puzzles containing only stars (of
arbitrarily many colors).

Proof. We reduce from the Restricted Squares Problem (Problem 7.4.3 above). For
every square in the source instance 𝐼, we use exactly one pair of stars of a distinct
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(a) After visiting
the vertex in the

center of four
stars of the same
color, the path

cannot turn.
(Rotations
omitted.)

(b) The star in the right column
prevents the path from splitting the

four stars horizontally.

(c) Thus, the path
must split the four stars
vertically and separate
the right star by using
these forced edges, so

the rightmost star
cannot be in the same
region as the middle

stars.

(d) No valid assignment of stars to
regions places the white star in the
same region as the rightmost black

star.

Figure 7-17: Analysis of the group of contiguous black stars.

color corresponding to that square, as well as ten auxiliary colors. Figure 7-16 shows
the high-level structure of the reduction: if the given squares instance 𝐼 has 𝑅 red
squares and 𝐵 blue squares, then in the stars instance, we use 𝑅+𝐵 +10 colors: black,
white, 𝑐1, 𝑐2, 𝑐3, 𝑐4 (all drawn as cyan), 𝑜1, 𝑜2, 𝑜3, 𝑜4 (all drawn as orange), 𝑟1, 𝑟2, . . . , 𝑟𝑅

(all drawn as red), and 𝑏1, 𝑏2, . . . , 𝑏𝐵 (all drawn as blue). A subrectangle 𝑆 of the
constructed puzzle is designated for recreating 𝐼. For each pair of stars corresponding
to a square, we place one of the two stars on the boundary of the puzzle, and the
other in 𝑆 in the same position as the corresponding square in 𝐼. We will show that
the solution path is forced to divide the overall puzzle into exactly three regions—an
“inside”, an “outside”, and a 2-cell region of just black squares—such that all of the
boundary stars corresponding to red squares are on the outside and all of the boundary
stars corresponding to blue squares are on the inside. Then, inside of 𝑆, the solution
path must ensure that all stars corresponding to red squares are in the outside region
and all stars corresponding to blue squares are in the inside region, or else the star
constraint will be violated. Then any solution path for the puzzle, restricted to 𝑆,
must correspond exactly to a solution path in 𝐼.

Consider the group of five contiguous black stars. Figure 7-17 shows that any
solution must place the two leftmost black stars in the same region, the two middle
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black stars in another region, and the two rightmost black stars (including the star
outside the group) in a third region. Now consider the extragroup black star, which is
adjacent to a 𝑐1 star, a 𝑐2 star, a 𝑐3 star, and a 𝑐4 star. At least one of the four edges
of the extragroup black star is absent, so the extragroup star is in the same region
as at least one of its neighboring cyan stars, and thus also in the same region as the
singular other star of that cyan color in the far right of the puzzle. By transitivity,
the rightmost intragroup black star (named 𝑏 in the following) is in the same region
as at least one far-right cyan star.

Consider the edge 𝑒 to the left of 𝑏. Any solution path passes through 𝑒 to separate
𝑏 from the star to its left. Then consider the maximal part 𝑃 of the solution path
that contains 𝑒 but not any boundary edges. Orient 𝑃 so that it starts with edge 𝑒;
note that this orientation may be opposite the orientation of the whole solution path.
If 𝑃 ’s other endpoint lies on the part of the boundary between the black stars and
the far-right cyan stars, then 𝑏 and those stars are in different regions, a contradiction.
Therefore, all the boundary cells between 𝑏 and the far-right cyan stars are in the
same region. In particular, the blue stars of colors 𝑏1, 𝑏2, . . . , 𝑏𝐵 are all in the same
region as 𝑏, that is, on the right of 𝑃 .

Now consider the white star 𝑤 adjacent to the group of black stars. As shown in
Figure 7-17d, 𝑤 is not in the same region as 𝑏, so 𝑤 is to the left of 𝑃 (though not
necessarily in the region immediately to the left of 𝑃 ), and thus the other (leftmost)
white star is also left of 𝑃 . As with the cyan stars, at least one orange star among
those adjacent to the leftmost white star lies on the left of 𝑃 , and so does at least one
far-left orange star. As with the cyan, black, and blue stars, this implies that the red
stars of colors 𝑟1, 𝑟2, . . . , 𝑟𝑅 are on the left of 𝑃 .

Thus, we have shown that the red stars are on a different side of 𝑃 from the blue
stars. This is possible only if the original Restricted Squares Problem instance has
a solution. Conversely, if the original squares instance is possible to solve, then we
can augment that solution into a solution to the constructed stars Witness puzzle as
shown in Figure 7-16.

Open Problem 7.5.2. Is it NP-hard to solve Witness puzzles containing only a
constant number of colors of stars? Or just a single color of stars?

7.6 Triangles
Triangles are placed in cells. The number of edges on the solution path that are
incident to that cell must match the number of triangles. This constraint is similar to
Slitherlink, which is known to be NP-complete [152]. Table 7.4 summarizes known
and new results for Slitherlink puzzles with clues chosen from {0, 1, 2, 3}. The one
difference is that The Witness does not allow 0-triangle clues. Unfortunately, the proof
in [152] relies critically on being able to force zero edges around a cell using 0 clues.
We can simulate 0 clues using broken edges, as in Table 7.1. To avoid broken edges,
we develop new proofs that 1-triangle, 2-triangle, and 3-triangle clues are NP-hard.

187



Clue types Complexity
0 P [152]
1 NP-complete [Theorem 7.6.1]
2 NP-complete [Theorem 7.6.2]
3 NP-complete [Theorem 7.6.3]
4 P [trivial]
0 and (1 or 2 or 3) NP-complete [152]

Table 7.4: Summary of Slitherlink / Witness triangle constraints. New results are
bold. Recall that “0” is not a valid clue in The Witness. (The proof in [152] is for 0
and 1 clues, but can be straightforwardly adapted to replace 1 clues with 2 or 3 clues.)

7.6.1 1-Triangle Clues

Proving hardness of Witness puzzles containing only 1-triangle clues is challenging
because it is impossible to (locally) force turns on the interior of the puzzle. Any
rectangular subpuzzle with any set of 1-triangle clues can be satisfied by a set of disjoint
paths containing either every second row of horizontal edges in that rectangle or every
second column of vertical edges in that rectangle, regardless of the configuration of
1-triangle clues. Therefore, any local arguments about gadgets in the interior of the
puzzle must confront the possibility of local solutions which are comprised of just
horizontal or vertical paths straight through. 2-triangle clues, discussed in Section 7.6.2,
present a similar challenge. Nonetheless, we are able to prove NP-hardness:

Theorem 7.6.1. It is NP-complete to solve Witness puzzles containing only 1-triangle
clues.

Proof sketch. We reduce from X3C, making use of the fact that the solution path must
be a single closed path. Refer to Figure 7-18. Sets and elements are represented by sets
of rows in a puzzle almost completely filled with 1-triangle clues. Boundary conditions
alone force any solution to form disconnected cycles and one path consisting largely
of horizontal lines, but we can build gadgets by deleting 1-triangle clues in specific
locations. Set–element connection gadgets allow connecting the horizontal lines of
a chosen set exactly when we connect the horizontal lines of a specific element, but
only if the element is so covered exactly once, and the 3-set gadget allows connecting
the horizontal lines of an unchosen set. The cycles can be connected to form a single
solution path exactly when the X3C instance has a solution.

Proof. We reduce from Exact Cover by 3-Sets, which we abbreviate X3C [65]: given
a set 𝑋 of 𝑛 elements, and given a family 𝐶 of 𝑚 cardinality-3 subsets of 𝑋, decide
whether there exists a subset 𝑃 ⊆ 𝐶 such that 𝑃 is a partition of 𝑋 (i.e., 𝑃 covers
every element in 𝑋 exactly once). Without loss of generality, let 𝑋 = {0, 1, . . . , 𝑛 − 1}.
Figure 7-18 shows how to fit together the gadgets we will now describe.
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free
join 3-set set-element

connection

set 1

set 2

elt 1
elt 2
elt 3

left
side

right
side

Figure 7-18: Full example schematic (drawn roughly to scale) of the reduction from
X3C to 1-triangle clues of Theorem 7.6.1, with three elements and two 3-sets each
consisting of all three elements. Pink lines indicate the “solution” of the initial
puzzle filled with 1-triangles in all but the leftmost and rightmost columns. Each box
represents one of the gadgets in the proof, with vertical lines to indicate the horizontal
lines that could be connected by the gadget.

Left and right sides of the construction. We start from (and later modify)
a Witness puzzle where all cells have a 1-triangle clue except for the leftmost and
rightmost columns of cells, as shown in Figure 7-19a. The rightmost column follows the
repeating pattern (1-triangle, empty, empty, 1-triangle)𝑘, while the leftmost column
has the same pattern except for the top four rows which instead of two empty cells
have the start circle and end cap, in the bottom-left of the first and third row of cells
respectively. The number of rows of cells is 4𝑘 = 2 + 28𝑚 + 8𝑛 + 2.

If we relax the “solution” to allow multiple paths and/or cycles, then we claim
that this puzzle has the unique solution shown in Figure 7-19b. (Thus, with the usual
constraint of a single path, there is no solution.) Even stronger, for any modified
puzzle still having 1-triangles throughout the topmost two rows and the same leftmost
three columns and rightmost three columns as Figure 7-19a, we claim that any solution
must look like Figure 7-19b in those columns.

First we claim that the path goes right from the start vertex; refer to Figure 7-20.
If the path goes up into the top-left corner, then it must then go right, violating the
1-triangle clue in the top-left cell. If the path goes down, the 1-triangle forces it to
go down again, but then it has reached the end cap without satisfying most of the
1-triangles in the puzzle. Therefore, the path must initially go right.

Next, by repeated application of Rule 1 of Figure 7-21 in the topmost two rows,
the path must continue right from the start circle until reaching the right side of
the puzzle. By repeated application of Rule 3 of Figure 7-21, rows of cells alternate
between having the path on their bottom and having the path on their top, thereby
making 2𝑘 horizontal lines of path. If we perfectly pair up adjacent rows of cells
(pairing every odd row, including the first, with the row below it), then there is exactly
one horizontal line in between each pair of rows. These horizontal lines must join
using the edges incident to blank cells in the leftmost and rightmost columns (except
at the start and end cap).
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(a) Unsolved. (b) Solved.

Figure 7-19: Leftmost and rightmost three columns of the puzzle. Empty cells are
shaded gray for emphasis.

(a) Failed attempt to
start by going up.

(b) Failed attempt to
start by going down

then right.

(c) Failed attempt to
start by going down

twice.

Figure 7-20: Nonsolutions to the leftmost columns.
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(a) Rule 1: When an edge adjacent to two
1-triangle clues is present in the solution

path, then it must extend at least one more
step in both directions.

(b) Rule 2: When the three edges along
the long side of four 1-triangle clues

arranged in a 𝑇 shape are present in the
solution path, then the edge opposite

them must also be present.

(c) Rule 3: An application of Rule 2
followed by an application of Rule 1.

Figure 7-21: Local rules for 1-triangle clues. A red X means that the edge cannot be
in the solution path due to constraints imposed by triangles.

Hence, the unique “solution” to this initial puzzle consists of 𝑘 connected com-
ponents, one start-to-end path in the top four rows and one cycle in every following
consecutive four rows. In the remainder of the proof, we will place gadgets in the
interior of the puzzle (removing some 1-triangle clues) to enable connecting these
solution components together into one path exactly when the X3C instance has a
solution. This modification will not touch the topmost two rows, the bottommost two
rows, the leftmost three columns, or the rightmost three columns, thereby still forcing
those columns to look like Figure 7-19b.

Free-join gadget. Figure 7-22 shows one gadget for joining components of the
“solution” together, called the free-join gadget. By placing a 4 × 4 “circle” of empty
cells, we allow the solution to optionally deviate from horizontal lines and thereby
connect together two components by joining the bottom line of one component with
the top line of the next component. (This gadget, and all future gadgets, can be
argued to have exactly two local solutions using Rules 1–3 of Figure 7-21.) Later
gadgets will perform similar joins between adjacent pairs of components, but with
more constraints on when the join is allowed. Figure 7-22c shows that performing two
such joins on the same two lines results in an isolated cycle in the middle of the puzzle,
which in our construction can never be connected to other components. Therefore,
to form one connected solution path, we will need to make exactly one join between
each even-numbered horizontal line (in particular, excluding the first line) and the
line immediately below it.
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(a) Lines unjoined.

(b) Lines joined once.

(c) Lines joined twice (invalid).

Figure 7-22: Free-join gadget and how it interacts with the left and right boundaries.
In fact, only one of the two 4 × 4 circles are needed for this gadget, but this form
illustrates the negative effect of joining twice.
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(a) Unsolved. (b) Solution when the set
is unchosen.

(c) Solution when the set
is chosen.

Figure 7-23: The 3-set gadget consists of 28 rows of cells: 4 “support” on top to enable
this gadget, followed by 8 ·3 rows, where each group of 8 rows connects to one element.

3-set gadgets. We do not place any gadgets in the topmost two rows of cells (and
thus do not touch the topmost horizontal line), effectively shifting the parity of lines in
all gadgets relative to the left and right sides of the puzzle. In the remaining rows, the
top 28𝑚 rows of the puzzle represent the 𝑚 3-sets, where each group of 28 consecutive
rows represents one 3-set. Intuitively, the top 4 rows of a 3-set are “support” rows
(containing exactly 2 lines), while the following 24 = 8 · 3 rows leave 8 rows (containing
4 lines) for each of the 3 connections to elements. The primary 3-set gadget is shown
in Figure 7-23; we place it near the left side of every 3-set. This gadget will enforce
that each set is either entirely unchosen (Figure 7-23b) or entire chosen (Figure 7-23c).
We also place a free-join gadget to join together the two horizontal lines in the four
support (top) rows of each 3-set.

Element gadgets. The following 8𝑛 rows, which reach down to all but the bottom-
most two rows of the puzzle, represent the elements. Each element is represented
simply by 8 consecutive rows (containing 4 horizontal lines).
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Connecting sets to elements. For each occurrence of an element in a set, we
connect the 8 rows of the element to the corresponding 8 rows of the set (among
the 24 = 3 · 8 nonsupport rows) using the set–element connection gadget in Figure 7-
24. This gadget has two solutions. When the set is not chosen, all lines proceed
horizontally through the gadget. When the set is chosen, the solution is as shown in
Figure 7-24b, which connects together adjacent pairs of horizontal lines among the
4 lines in the set and the 4 lines in the element, while leaving all other horizontal
lines unaffected (topologically in terms of which ends they connect, even though they
bend geometrically). Each element connects to potentially several sets in this way,
but referring to Figure 7-22, the element’s lines will be properly connected if and only
if exactly one set containing the element is chosen while the rest are unchosen.

The set–element connection gadget can be extended to larger sizes than drawn
in Figure 7-24 by adding an equal number of rows and columns, and extending the
pattern of the four “diagonals” of empty cells in the top half of the gadget. Similarly,
it can be reduced in size. This resizing enables us to connect together any set’s 8 rows
with any element’s 8 rows. Because the width of the gadget depends upon its height,
the nonoverlapping placement of these gadgets affects the total number of columns in
the puzzle. Because we use only a polynomial number of polynomial-sized gadgets,
the constructed puzzle remains polynomial size.

Equivalence to X3C. As argued above, the partial solution in Figure 7-19b joins
together into a single solution path if and only if every even-numbered horizontal line
(skipping the first line) has exactly one join with the line immediately below it (as
in Figure 7-22). The top two lines of each 3-set can always join together (exactly
once) via their free-join gadget (and in no other way). The remaining ten lines of
each 3-set are joined exactly once if and only if the 3-set gadget and all three incident
set–element connection gadgets either all use the “unchosen” solution (in which case
the connections are from the 3-set gadget) or all use the “chosen” solution (in which
case the connections are from the set–element connection gadgets). The four lines
of each element are joined exactly once if and only if exactly one of the incident
set–element connection gadgets uses the “chosen” solution. Therefore, solving the
Witness puzzle is equivalent to solving the X3C instance.

7.6.2 2-Triangle Clues
As with 1-triangle clues, any rectangle containing only 2-triangle clues can be locally
satisfied by a set of disjoint path segments containing either all the vertical edges or all
the horizontal edges in the rectangle. However, compared to 1-triangle-only puzzles,
locally-satisfying paths can turn with more flexibility even in areas completely filled
with 2-triangle clues. Accordingly, our proof for puzzles containing only 2-triangle
clues is based around connecting concentric cycles instead of straight path segments.

Theorem 7.6.2. It is NP-complete to solve Witness puzzles containing only 2-triangle
clues.
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(a) Unsolved.

(b) Solution when the set is chosen.

Figure 7-24: Set–element connection gadget. When this set is unchosen, the solution
simply proceeds horizontally across the gadget.
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(a) A turn between clues forces
further turns in both directions

along the ray.

(b) The corners of the
puzzle always emit one or

three rays.

(c) Rays can reflect off the puzzle boundary in two ways
(here, the top boundary).

Figure 7-25: Local rules for 2-triangle clues regarding wave propagation.

Proof sketch. We reduce from X3C, making use of the fact that the solution path must
be a single closed path. The puzzle is almost completely filled with 2-triangle clues.
Local conditions alone force any solution to form disconnected concentric cycles, but
we can build gadgets by deleting 2-triangle clues. Elements are represented by rows in
the bottom quadrant of the puzzle, where sets are represented by gadgets intersecting
these rows (see Figure 7-26). Used set gadgets connect the concentric cycles of their
element rows, and cleanup gadgets allow connecting the cycles not corresponding to
elements. The cycles can be connected to form a single solution path exactly when
the X3C instance has a solution.

Proof. As in the 1-triangle reduction of Theorem 7.6.1, we reduce from X3C. Consider
an instance (𝑋, 𝐶) with |𝑋| = 𝑛 elements and |𝐶| = 𝑚 cardinality-3 subsets of 𝑋,
and assume without loss of generality that 𝑋 = {0, 1, . . . , 𝑛 − 1}.

Similar to the previous reduction, we start by considering a puzzle completely
filled with 2-triangle clues together with a clue-satisfying set of disjoint paths, namely
concentric squares in a square grid, and placing gadgets (arrangements of empty cells)
such that these paths can be joined into a full solution path if and only if the X3C
instance has a solution.

Wave propagation. A path can turn in puzzle areas filled with 2-triangle clues,
but when it does so, it becomes a wave that continues to propagate, turning along a
ray directed based on where the turns “point” (see Figure 7-25a). When a path turns
on a 2-triangle clue cell, and the ray points to a diagonally adjacent 2-triangle clue
cell, then the path must also turn in the same direction on that cell, extending the ray
outwards. Similarly, the wave propagates inward (opposite the ray) when there are
only 2-triangle clues nearby, as the path would otherwise produce an isolated 2 × 2
square. The solution path necessarily turns at the corner of the puzzle, so each corner
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emits one ray (directed into the corner) or three rays (one out and two in) along the
main diagonals of the puzzle (see the top-right of Figure 7-25b).

Wave propagation imposes structure on any possible solution path: in an area full
of 2-triangle clues, the solution path divides the area into horizontally- and vertically-
oriented subareas (containing parallel horizontal or vertical path edges respectively)
separated by the rays of the waves. By the propagation rules, rays can only start and
end at either an empty cell or the boundary of the puzzle, and cannot intersect other
rays propagating in a different direction except at an empty cell or at the boundary of
the puzzle.

Overall layout. Figure 7-26 shows the overall layout of the produced Witness
puzzle. The rays emitted from the corners of the puzzle divides the puzzle into four
quadrants. Because the puzzle is full of 2-triangle clues except in our gadgets, the
path cannot turn except along those main diagonal rays, so the initial “solution” to
the puzzle is a set of concentric square cycles. In the remainder of the proof, we add
gadgets (remove 2-triangle clues) to enable connecting these cycles into a single path
exactly when the X3C instance has a solution.

We associate some pairs of concentric squares with elements in the X3C instance
and add X3C gadgets that allow connecting the square pairs associated with each of
the elements in a 3-set. The filler diamond gadgets connect the cycles between the
element-representing cycles. The bulk connector gadgets connect the cycles in the rest
of the puzzle and resolve the collision of the main diagonal rays at the very center of
the puzzle.

Each of these gadgets contains some empty cells, so there is a risk that rays could
start in one gadget and end in another, or travel between distant empty cells in the
same gadget in unintended ways, disrupting the pattern of concentric squares. To
contain the rays, we place gadgets such that there are no empty cells outside the
gadget along the diagonals of the gadget’s empty cells (see Figure 7-27). We also
take into account possible reflections off of the puzzle boundary (see Figure 7-25c) by
adding buffer space below the gadget and protecting additional diagonals to its left
and right. By placing gadgets in this way, any ray escaping a gadget will crash into
one of the main diagonal rays (possibly after reflecting off of the puzzle boundary); as
there are no empty cells along the main diagonals (except the very center cell), there
is no way to avoid violating the 2-triangle clue at the ray intersection.

We isolate the different types of gadgets from one another by placing them in
different quadrants (separated by a main diagonal). Besides being convenient for
layout, using separate quadrants is necessary because the bulk connector gadget
contains empty cells on most diagonals.

X3C gadget. For each 𝑥 ∈ 𝑋, we associate an adjacent pair of concentric squares 𝑝𝑥

with radii 𝑟𝑥 and 𝑟𝑥 + 1, separated from other pairs such that 𝑟𝑥+1 = 4 + 𝑟𝑥. For each
{𝑖, 𝑗, 𝑘} ∈ 𝐶, we place an X3C gadget, which is built to permit one nontrivial solution
where each of 𝑝𝑖, 𝑝𝑗 , and 𝑝𝑘 merge, representing using the set in the cover. The trivial
solution, with all paths continuing horizontally through the gadget, represents not
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Figure 7-26: The layout of gadgets within the X3C reduction puzzle. Quadrants
defined by corner rays separated by thick dashed lines, and ray escape risk areas by
thin dashed lines.
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Figure 7-27: How to safely place a gadget (e.g., an X3C gadget) anywhere within 𝑝0
to 𝑝𝑛−1. Possible ray escape areas are delimited by dashed lines, and the reserved
space for the gadget by a gray box.

198



Figure 7-28: The X3C gadget for {𝑥, 𝑥 + 1, 𝑥 + 2}, solved to join 3 pairs of adjacent
paths 𝑝𝑥, 𝑝𝑥+1, and 𝑝𝑥+2. All other traversing paths’ connections are unaffected. In
the other solution, all paths continue horizontally across the gadget.

pi

pj

pk

pi

pj

pk

Figure 7-29: A blueprint for constructing an X3C gadget for any {𝑖, 𝑗, 𝑘}. The polygon
represents the border of the vertically oriented interior of the gadget: its points are
the centers of the empty cells, and its edges are the rays, all on unique diagonals of
the grid. The dotted lines mark the width of each interior section.
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(a) Unused (not joining
any cycles).

(b) Used to join the
center pair of cycles into a

single cycle.

Figure 7-30: The two local solutions of a diamond gadget.

using the set in the cover. Figure 7-28 shows the smallest X3C gadget, and a general
X3C gadget can be constructed by stretching it to cover any 𝑝𝑖, 𝑝𝑗, and 𝑝𝑘 pairs, as
detailed in Figure 7-29. Each empty cell in an X3C gadget shares a diagonal with
exactly two other empty cells, each on a different diagonal. Because our overall layout
leaves no way to terminate a ray that leaves the gadget, when the nontrivial solution
is used, the rays are forced to trace out the unique polygon that merges the three
pairs of paths and preserves connectivity of other paths.

Diamond gadget. The diamond gadget, shown in Figure 7-30, is the simplest
gadget that can connect adjacent cycles in a controlled way. Again, due to our overall
layout, only the trivial fully-horizontal/vertical local solution and the nontrivial local
solution shown in the figure are possible in a global solution. We place diamond
gadgets in the right quadrant to connect the three adjacent pairs between each 𝑝𝑥 and
𝑝𝑥+1. As these gadgets are the only way to connect those pairs, the nontrivial local
solution is always used.

Bulk Connector Gadget. The bulk connector gadget is an extensible pattern
connecting all concentric squares smaller or larger than a desired radius (see Figure 7-
31). The X3C gadgets take care of connecting 𝑝0, . . . , 𝑝𝑛−1, and the diamond gadgets
connect the pairs in between; we use bulk connector gadgets in the top quadrant to
join all squares with radii from 1 to 𝑟0 and from 𝑟𝑛−1 + 1 to the boundary. This places
an empty cell at the center of the puzzle to terminate the main diagonal rays.

Analysis. If (𝑋, 𝐶) is a yes instance of X3C, then the puzzle can be solved using
the partition 𝑃 ⊆ 𝐶 of 𝑋. Start with the concentric squares set of disjoint paths,
which satisfies all two-triangle clues, then use the bulk connector gadget and all filler
diamond gadgets to join all adjacent squares except 𝑝0, . . . , 𝑝𝑛−1. For each {𝑖, 𝑗, 𝑘} ∈ 𝑃 ,
use the corresponding X3C gadget to join 𝑝𝑖, 𝑝𝑗 , and 𝑝𝑘. Because each 𝑥 ∈ 𝑋 appears
in exactly one 𝑆 ∈ 𝑃 , each 𝑝𝑥 will be joined exactly once. Because using a gadget
preserves clue satisfaction, and every concentric square is joined into one path, the
path is a solution to the Witness puzzle.

Likewise, if the puzzle has a solution path, then (𝑋, 𝐶) must be a yes instance
of X3C. As argued, gadgets are sufficiently spaced apart and the main diagonals of
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(a) The inner bulk connector gadget. The leftmost empty
cell is the puzzle’s center cell.

(b) The outer bulk
connector gadget,

incorporating the start
circle and end cap.

Figure 7-31: The bulk connector gadget used to connect all concentric squares smaller
or larger than a desired radius. The bulk connector gadget can be instantiated in any
orientation; in the orientation shown here, vertical pairs are connected. The concentric
squares representing elements lie between the inner and outer bulk connector gadgets.

the puzzle isolate each quadrant, so any ray leaving a gadget would intersect with a
main diagonal ray (possibly after reflecting off of the puzzle boundary), violating the
2-triangle clue at the intersection. Because X3C and diamond gadgets only have one
nontrivial solution not emitting any rays, and using X3C gadgets is the only way to
join adjacent concentric squares 𝑝0, . . . , 𝑝𝑛−1 without violating 2-triangle clues, the
solution path defines a 𝑃 ⊆ 𝐶 by its use of the X3C gadgets. 𝑃 must cover every
𝑥 ∈ 𝑋 otherwise the solution path would be disjoint, and it cannot double-cover
any 𝑥 ∈ 𝑋 otherwise the solution path would create a disconnected cycle out of the
concentric squares in 𝑝𝑥, so 𝑃 is a partition of 𝑋.

With respect to the complexity of the reduction, notice that the bounding box of
the X3C gadget for {𝑖, 𝑗, 𝑘} is Θ(𝑘 − 𝑖) × Θ(𝑘 − 𝑖) cells, for 𝑖 < 𝑗 < 𝑘 ≤ 𝑛 − 1. The
size of the buffer space surrounding each X3C gadget is Θ(𝑛) × Θ(𝑛) cells and the
total lineup of X3C gadgets is Θ(𝑚𝑛) cells wide and Θ(𝑛) tall. Similarly, each of the
3𝑛 filler diamond gadgets takes up Θ(𝑛) × Θ(𝑛) cells of buffer space, for a total of
Θ(𝑛2) cells tall and Θ(𝑛) cells wide. Thus, the side length of the puzzle is Θ(𝑛𝑚 + 𝑛2)
cells to fit the simple-to-construct gadgets along the border without interference, and
therefore the puzzle can be constructed in polynomial time.

7.6.3 3-Triangle Clues

3-triangle clues admit a much simpler construction than those needed for 1-triangles
and 2-triangles, as 3-triangles are constraining enough to build gadgets whose properties
can be verified purely locally. The proof roughly follows the Hamiltonicity framework
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(a) Unsolved. (b) One possible solution, using the left
and bottom edges.

Figure 7-32: A chamber with edges to the left, right, and below.

of Section 7.2, using adjacent 3-triangle clues to force the solution path to form
impassable “walls”.

Theorem 7.6.3. It is NP-complete to solve Witness puzzles containing only 3-triangle
clues.

Proof. We use a variation of the Hamiltonicity framework—reducing from Hamiltonic-
ity in a maximum-degree-3 grid graph, 𝐺, by scaling by a constant factor 12, and
representing each vertex by a square-region chamber—but we will represent edges
slightly differently than hallways. Each chamber is a 11 × 11 grid of cells. Initially,
we place 3-triangle clues in the center cell and in every boundary cell except the
four corners. Because the scale factor is 12, there is exactly one row or column of
empty cells between adjacent chambers. If there is an edge between vertices in 𝐺
corresponding to two chambers, then we remove the 3-triangle clues from the two cells
adjacent to the center cell of the walls of both chambers (i.e., the fourth and sixth
cells of each wall), as depicted in Figure 7-34.

The rightmost bottommost chamber is the special start/end chamber. We remove
the center 3-triangle clue on its bottom edge, and place the start circle and end cap
just below, as can be seen in the full graph instance shown in Figure 7-35.

Now we prove that every solution to this Witness puzzle corresponds to a Hamil-
tonian path. The key observation is that 𝑘 consecutive 3-triangle clues (in a row or
column) force the solution path to have one of two local zig-zag patterns, shown in
Figure 7-33.

Each chamber gadget is surrounded by such consecutive sequences of 3-triangle
clues. Pairs of these sequences meet diagonally adjacently at each corner of the
chamber, which in fact forces the solution path to use a particular zig-zag for these
two sequences. As a result, the solution path’s behavior is forced around all 3-triangle
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(a) One possible local solution. (b) The other possible local solution.

Figure 7-33: The only local solutions to a string of contiguous 3-triangle clues.

(a) Boundary between
two chambers (unsolved).

(b) Solution when edge
is unused.

(c) Solution when edge is
used.

Figure 7-34: The boundary between two chambers with an edge between them.

clues except the lone clues in the center of each side of a chamber corresponding to an
edge in 𝐺.

Every chamber must be visited in order to satisfy its center 3-labeled cell. When a
chamber is visited, all of its 3-labeled wall cells can be satisfied by following the walls
around from the entry point to just before the intended exit point, then traversing
through the center 3-labeled cell back to the other side of the entry point, and then
around to and out the exit point, as shown in each chamber of Figure 7-35.

If there is an edge in 𝐺 between vertices corresponding to two chambers 𝑎 and 𝑏,
then the solution path can travel from 𝑎 to 𝑏 (or vice versa) as shown in Figure 7-34c.

Examining Figure 7-32, a simple case analysis shows that the path satisfying the
two 3-triangle cells comprising each corner of a chamber is completely forced, and
this in turn forces the path around the rest of the 3-labeled cells comprising the
walls. Similarly, case analysis on the middle of the walls in Figure 7-34 shows that
the path cannot escape to another chamber, so the path can only travel between
adjacent chambers. Finally, there isn’t enough space to use an edge more than once,
and therefore exactly two edges incident to each chamber must be traversed, because
𝐺 has max degree 3 and if the solution path traverses only one edge incident to a
chamber, it could not have left that chamber and therefore could not have made it to
the end cap.

7.7 Polyominoes
This section covers various types of polyomino and antipolyomino clues, giving both
positive and negative results. Polyomino clues can generally be characterized by the
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Figure 7-35: A complete 3-triangles Hamiltonicity framework instance with solution.

size and shape of the polyomino and whether or not they can be rotated ( vs. ).
For each region, it must be possible to place all polyominoes and antipolyominoes
depicted in that region’s clues (each placed as exactly one copy, not necessarily within
the region) so that, for some 𝑖 ∈ {0, 1}, each cell inside the region is covered by exactly
𝑖 more polyominoes than antipolyominoes and each cell outside the region is covered
by the same number of polyominoes and antipolyominoes. In Section 7.7.1, we prove
that monomino clues alone can be solved in polynomial time, even in the presence
of broken edges, generalizing a result of [90]. In Sections 7.7.2, 7.7.3, and 7.7.4 we
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give several negative results showing that some of the simplest (anti)polyomino clues
suffice for NP-completeness.

7.7.1 Monominoes and Broken Edges
In this section, we prove the following theorem:

Theorem 7.7.1. Witness puzzles containing only monominoes and broken edges are
in P.

Concurrent work [90] gives a polynomial-time algorithm for Witness puzzles where
every cell has a square clue of one of two colors. Such puzzles are equivalent to puzzles
with only monomino clues, by replacing one color of square with monominoes and
the other color with empty cells (or vice versa for the reverse reduction). The only
constraint on the two puzzle types is that there can be no region with a mix of square
colors or, equivalently, monomino clues and empty cells. Accordingly, our proof of
Theorem 7.7.1 is similar. In our case, we reduce to the result from Section 7.3.4 that
path finding is easy with broken edges and forced edges on the boundary of the puzzle,
which we considered in Section 7.3.4 in the context of boundary edge hexagons.

Proof. When a puzzle contains only monomino clues and broken edges, every region
outlined by the solution path that contains a monomino clue must have a monomino
clue in every cell in the region to satisfy the polyomino area constraint. Any solution
path must therefore include all of the edges shared between an empty cell and a cell
containing a monomino clue. If any of these forced edges is broken, or the forced
edges form a cycle, then we can immediately reject the puzzle as a no instance. In
particular, we reject if any connected component of monomino clues either does not
touch the boundary or has a hole of empty cells. The solution path is forced to trace
the outline of each clue-containing component except where it meets the boundary.
Thus, the problem reduces to connecting the endpoints of these forced outline paths
into a path from the start circle to the end cap.

Some connected components of monomino clues divide the puzzle into disconnected
groups of cells. We call these groups divisions, and the connected components of clues
that give rise to them dividers. A division may contain more than one region, but
a region is never split across divisions. Call a division empty if it does not contain
a monomino clue, the start circle, or the end cap, and call it nonempty otherwise.
Because of our rejection rule above, every division is simply connected.

When a solution path visits the forced outline edges of a divider (from one of the
incident divisions), the path must visit all of the forced edges before entering one
of the incident divisions, because it can never exit that division without revisiting a
vertex. In particular, if any divider neighbors three or more nonempty divisions, then
we reject the puzzle as a no instance: only two divisions can be visited by a solution
path (before and after the forced edges, respectively), and each nonempty division
must be visited to visit either some forced edge, the start circle, and/or the end cap.

Because each divider neighbors at most two nonempty divisions, we can define a
graph where nodes correspond to the nonempty divisions and edges correspond to
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dividers. Each edge in this graph can only be traversed once by the solution path
because doing so consumes all the forced edges surrounding that divider. Therefore
if this graph is not a path, or if the endpoints of this path are not the divisions
containing the start vertex and end cap, respectively, then we reject the puzzle as a
no instance, because no path from the start vertex to the end cap can visit all of the
nonempty divisions while using each adjacency graph edge only once.

For each division 𝐷, let 𝐹𝐷 be forced edges between an empty cell and a cell
containing a monomino clue within the division, that is, the subset of the edge outline
separating 𝐷 from its neighboring dividers and the nonboundary edge outline of any
nondivider components of monomino clues in the division. Because there is a forced
edge where each divider’s outline touches the puzzle boundary, the path can enter and
exit this division at each of two possible vertices (at opposite ends of the dividers).
The start circle is the sole entry vertex for the first division and the end cap is the
sole exit vertex for the last division.

We build a connectivity graph 𝐺 whose nodes represent the entry and exit vertices
of all nonempty divisions (including the start circle and end cap). For each division
𝐷, let 𝐶𝐷 be the subset of empty cells in 𝐷. Set 𝐶𝐷 is connected because any set of
cells (containing monominoes) separating 𝐶𝐷 into two components would be a divider.
By our first rejection rule, 𝐶𝐷 is also simply connected. Every edge in 𝐹𝐷 is incident
to a single empty cell, so 𝐹𝐷 is a subset of the edge outline of 𝐶𝐷. Hence, (𝐶𝐷, 𝐹𝐷)
is a forced division as defined in Section 7.3.4. For each pair (𝑠, 𝑡) of entry and exit
vertices of 𝐷, respectively, we apply Theorem 7.3.7 to decide whether there is a path
from 𝑠 and 𝑡 entirely within 𝐶 and traversing all forced edges in 𝐹𝐷. Whenever there
is such a path, we add an edge in 𝐺 between the nodes corresponding to 𝑠 and 𝑡.

The forced edges of each divider, plus some puzzle boundary edges interior to the
divider, form paths connecting each possible exit vertex to an entry vertex in the next
division, and we add the corresponding edges to 𝐺. Then we can find a puzzle solution
by searching for a path in 𝐺 from the start circle to the end cap, and replacing each
edge from that path in 𝐺 with the Witness puzzle path it represents. If there is no
such path in 𝐺, then the Witness puzzle has no solution.

7.7.2 Rotatable Dominoes
Theorem 7.7.2. It is NP-complete to solve Witness puzzles containing only rotatable
dominoes.

Proof. We reduce from the rectilinear Steiner tree problem [64]: given 𝑛 points with
integer coordinates (𝑥′

𝑖, 𝑦′
𝑖) in the plane, 𝑖 ∈ {1, 2, . . . , 𝑛}, and given an integer 𝑘,

decide whether there exists a rectilinear tree connecting the 𝑛 points having total
length at most 𝑘. Hanan’s Lemma [71, Theorem 4] states that this is equivalent to
the existence of a rectilinear tree of length at most 𝑘 on the integer grid, or even
on the grid formed by a horizontal and a vertical line through each of the 𝑛 points.
By globally translating the points by (− min𝑖 𝑥′

𝑖, − min𝑖 𝑦′
𝑖), we can find an equivalent

instance of 𝑛 points (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ {1, 2, . . . , 𝑛}, with all coordinates nonnegative and
where min𝑖 𝑦𝑖 = 0. Let 𝑚 = max𝑖{𝑥𝑖, 𝑦𝑖}. Because this problem is strongly NP-hard
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(a) Unsolved. (b) Solved.

Figure 7-36: Example of the rotatable dominoes NP-completeness proof, where 𝑘 = 5,
𝑛 = 4, and 𝑚 = 3.

[64], [65, Problem ND13, p. 209], we can assume 𝑚 = 𝑛𝑂(1).
We construct a (2𝑚+4𝑘+3)×(2𝑚+4𝑘+3) Witness puzzle with a (2𝑚+1)×(2𝑚+1)

center 𝐶𝑚; refer to Figure 7-36. Within 𝐶𝑚, we include exactly 𝑛 dominoes: for every
point (𝑥𝑖, 𝑦𝑖) in the rectilinear Steiner tree input, we include a domino in cell (2𝑥𝑖, 2𝑦𝑖),
where these coordinates are relative to the lower-left corner of 𝐶𝑚. Consider the
leftmost point with a 𝑦 coordinate of zero, whose corresponding domino clue is on the
bottom row of 𝐶𝑚; call this cell the root. Define the trunk to be the 2𝑘 + 1 cells in
the same column as and below the root. We include exactly (2𝑘 + 1) − 𝑛 dominoes in
the trunk, starting at the bottom of the board. We place the start circle and end cap
on the boundary vertices adjacent to the trunk (in either order).

Steiner tree → Witness solution. First suppose that the rectilinear Steiner tree
instance has a solution 𝑆 with total length at most 𝑘. By Hanan’s Lemma, we can
assume that the vertices and horizontal/vertical segments of 𝑆 lie on the integer grid,
with all 𝑦 coordinates nonnegative. Scale the tree 𝑆 by a factor of 2, and consider
the set 𝑃 of integer grid points that lie on the vertices or segments of this scaled tree.
If two points in 𝑃 have distance 1 on the grid, then (by the scaling) they must have
come from a common segment of the tree 𝑆. Thus, 𝑃 induces a grid graph that is a
tree. This grid tree is the dual of a set 𝐶 ⊆ 𝐶𝑚 of cells. Because 𝑆 is a Steiner tree
on the 𝑛 points, 𝐶 contains all the cells with domino clues in 𝐶𝑚. In particular, one
vertex of 𝑆 corresponds to the root clue, and we define this vertex to be the root of
the tree 𝑆.

Consider a segment (𝑢, 𝑣) of the tree 𝑆 of length ℓ, oriented so that 𝑢 is closer than
𝑣 to the root. Vertices 𝑢 and 𝑣 map to cells 𝑐𝑢 and 𝑐𝑣 in 𝐶 in the same row or column,
with 2ℓ − 1 cells from 𝐶 between them. We can tile these 2ℓ − 1 cells together with 𝑐𝑣
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with exactly ℓ dominoes. By our orientation of segments, dominoes from different
segments do not overlap, so we obtain a tiling of 𝐶 except the root using exactly 𝐿
dominoes.

Next we construct a set 𝐶 ′ of cells, by adding to 𝐶 the 2𝑘 + 1 cells in the trunk
(which includes all remaining domino clues). The trunk has an odd number of cells in
a single column, so together with the root it can be tiled by exactly 𝑘 + 1 dominoes.
In total, we have tiled 𝐶 ′ with 𝐿 + 𝑘 + 1 dominoes.

Finally, we construct a set 𝐶 ′′ by adding to 𝐶 ′ the cells of 𝑘 − 𝐿 disjoint dominoes
immediately right of the trunk (e.g., starting from the bottom). Set 𝐶 ′′ can be tiled
by exactly 2𝑘 + 1 dominoes, is connected and hole-free, and contains all domino clues.
The border of 𝐶 ′′ is therefore a cycle on the integer grid; removing the bottommost
edge of the trunk leaves a path which solves the Witness puzzle.

Witness solution → Steiner tree. Now suppose that the Witness puzzle has a
solution.

Consider the cells containing domino clues in 𝐶𝑚. Every such cell is in a region
that borders the boundary of the board and can be tiled by dominoes equal in number
to the number of domino clues inside that region. Each such region has area strictly
greater than 2𝑘 + 1 because the region must reach from the boundary of the board
into 𝐶𝑚. But the total number of domino clues in the whole board is 2𝑘 + 1, so the
total area in all such regions is 2(2𝑘 + 1). Therefore, there is exactly one region 𝐴
that contains all the domino clues in 𝐶𝑚.

We now show that there is a connected subset 𝐵𝑚 of 𝐶𝑚, of size at most 2𝑘 + 1,
containing all the domino clues of 𝐶𝑚. We start with 𝐵𝑚+(2𝑘+1) = 𝐴 and inductively
define sets 𝐵𝑖 for all 𝑚 ≤ 𝑖 ≤ 𝑚 + (2𝑘 + 1) such that 𝐵𝑖 (1) is a subset of the
(2𝑖 + 1) × (2𝑖 + 1) center 𝐶𝑖 of the board, (2) is connected, (3) contains all the domino
clues in 𝐶𝑚, (4) has size at most 𝑖 − 𝑚 + (2𝑘 + 1), and (5) is connected to one of the
four boundary sides of 𝐶𝑖.

Given 𝐵𝑖+1, define 𝐵𝑖 to include all the cells of 𝐵𝑖+1 that are in 𝐶𝑖 plus, for each
cell of 𝐵𝑖+1 on the boundary of 𝐶𝑖+1, the nearest cell on the boundary of 𝐶𝑖. (1) 𝐵𝑖 is,
by definition, a subset of 𝐶𝑖. (2) To prove 𝐵𝑖 connected, consider the (2𝑖 + 3) × (2𝑖 + 3)
grid graph representing the dual of 𝐶𝑖+1, with cells of 𝐵𝑖+1 marked. Then transforming
from 𝐵𝑖+1 to 𝐵𝑖 is equivalent to contracting dual edges with exactly one endpoint on
the boundary of 𝐶𝑖+1 and the eight dual edges with one endpoint at a corner of 𝐶𝑖+1
and then marking each contracted vertex if and only if at least one of the endpoints
of the contracted edge was marked. This transformation preserves connectivity of the
marked vertices, so 𝐵𝑖 is connected. (3) 𝐵𝑖+1 contained all the domino clues in 𝐶𝑚, so
because those are all in 𝐶𝑖, 𝐵𝑖 still contains them. (4) Because 𝐵𝑖+1 was connected to
a boundary of the board and 𝐶𝑚, it contains at least one adjacent pair of squares on
the boundaries of 𝐶𝑖+1 and 𝐶𝑖, so at least one dual edge with both endpoints marked
is contracted, making 𝐵𝑖 smaller than 𝐵𝑖+1 by at least one square. Hence 𝐵𝑖 has size
at most |𝐵𝑖+1| − 1 ≤ (𝑖 + 1 − 𝑚 + (2𝑘 + 1)) − 1 = 𝑖 − 𝑚 + (2𝑘 + 1). (5) By the existence
of the same edge, 𝐵𝑖+1 and hence also 𝐵𝑖 has a cell on the boundary of 𝐶𝑖, completing
the induction.
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(a) Unsolved. (b) Solved.

Figure 7-37: Example of the monominoes + antimonominoes NP-completeness proof,
converted from Figure 7-36.

We claim that any spanning tree 𝑇 of the dual graph of 𝐵𝑚 is a factor-2 scaling of
a Steiner tree of length at most 𝑘. Any such 𝑇 has |𝐵𝑚| ≤ 2𝑘 + 1 vertices and hence
at most 2𝑘 edges. Each edge has length 1 in the grid, so 𝑇 is a tree of total rectilinear
length at most 2𝑘. In addition, we know that 𝑇 touches the points with coordinates
(2𝑥𝑖, 2𝑦𝑖) for 𝑖 ∈ {1, 2, . . . , 𝑛}. Scaling 𝑇 by a factor of 1

2 yields a tree of total length at
most 𝑘 which touches the points with coordinates (𝑥𝑖, 𝑦𝑖) for 𝑖 ∈ {1, 2, . . . , 𝑛}, solving
the given rectilinear Steiner tree instance.

7.7.3 Monominoes + Antimonominoes
Theorem 7.7.3. It is NP-complete to solve Witness puzzles containing only monomi-
noes and antimonominoes.

Proof. Like Theorem 7.7.2, we reduce from the rectilinear Steiner tree problem; refer
to Figure 7-37. Given an instance 𝐼 of this problem, let 𝑊 be the Witness puzzle that
is constructed from 𝐼 by the reduction in Theorem 7.7.2; 𝑊 contains only domino clues.
Modify 𝑊 as follows: in each cell with a domino clue, instead place an antimonomino
clue, and in each cell that was previously empty, add a monomino clue. This modified
puzzle, 𝑊 ′, which contains only monomino and antimonomino clues, is the output of
our reduction.

Consider any region in a solution of 𝑊 ′ which contains an antimonomino. The
total area of the antipolyomino clues in this region is less than the total area of the
region. Thus, the total area of the clues must be exactly zero in order to satisfy the
polyomino constraint. In other words, the area of the region must be exactly double
the number of antimonominoes in the region.
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Therefore every region must either contain only monominoes, or its area must
equal twice the number of antimonomino clues (i.e., the region must contain an equal
number of monominoes and antimonominoes). In fact, as long as a path satisfies this
area condition, it is a solution.

This condition is strictly weaker than that imposed by 𝑊 , so any solution to 𝑊 is
also a solution to 𝑊 ′. So if the Steiner tree instance is solvable, so is 𝑊 ′.

Conversely, suppose 𝑊 ′ is solvable. In the Witness solution → Steiner tree
direction of the proof of Theorem 7.7.2, we relied only on area conditions: that the
area of every region with a domino equals twice the number of domino clues in the
region. This exactly corresponds to the area conditions imposed by 𝑊 ′, so an identical
proof shows that any solution to 𝑊 ′ can be converted into a Steiner tree that solves
𝐼.

7.7.4 Nonrotatable Dominoes
Theorem 7.7.4. It is NP-complete to solve Witness puzzles containing only nonro-
tatable vertical dominoes.

Proof. We reduce from planar rectilinear monotone 3SAT [87], which is a special case
of 3SAT where the formula can be represented by the following planar structure. Each
variable has an associated variable segment on the 𝑥 axis, and the variable segments
are disjoint. Each clause has an associated clause segment which is horizontal but not
on the 𝑥 axis. Each clause segment is connected by vertical segments to the variable
segments corresponding to the literals in the clause. Clause segments above the 𝑥
axis represent positive clauses whose literals are all positive (not negated), and clause
segments below the 𝑥 axis represent negative clauses whose literals are all negated.

We will convert such an instance into a Witness puzzle with nonrotatable vertical
domino clues. Our construction will have the following properties:
Property 7.7.1. No two domino clues are in vertically adjacent cells.
Property 7.7.2. There is exactly one cell ℓ in the leftmost column that contains a
domino clue; and there are no other domino clue cells in the rightmost column, top
two rows, or bottom two rows.
Property 7.7.3. The start circle is the bottom-left corner of ℓ, and the end cap the
top-left corner of ℓ.

Domino tiling problem. Before describing the construction, we show how solving
a Witness puzzle satisfying the properties above can be rephrased as solving a special
kind of domino tiling problem: choosing one domino tile to cover each domino-clue
cell (and the cell either above or below it) such that the boundary of the union of the
domino tiles forms a simple cycle.

Any solution path to the constructed Witness puzzle must divide the board into
regions such that each region containing domino clues can be exactly tiled by a number
of domino tiles equal to the number of contained domino clues. In such a tiling, every
domino-clue cell must be covered by exactly one domino tile. By Property 7.7.1, no
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domino tile can cover multiple cells with domino clues. Therefore, there is a one-to-one
correspondence between domino clues and domino tiles in any solution, where each
domino tile covers the cell with the corresponding domino clue. Equivalently, a valid
such tiling can be specified by choosing whether the domino tile covering a domino-clue
cell also covers the cell above or below.

By Property 7.7.2, exactly one domino tile can be adjacent to the board boundary.
Every tiled region in the solution must touch the board boundary, and must therefore
contain the unique domino tile adjacent to the board boundary. Thus, there is exactly
one region containing all the domino clues, which must be tiled by all corresponding
domino tiles. The solution path must (as a subpath) outline the part of the boundary
of this region that lies interior to the board.

We claim that solving the Witness puzzle is equivalent to choosing one domino
tile to cover each domino-clue cell (and the cell either above or below it) such that
the boundary of the union of the domino tiles forms a simple cycle. On the one hand,
any simple boundary cycle can be converted into a solution path by removing the left
edge of ℓ, by Property 7.7.3. On the other hand, for any solution path, we can take
the subpath outlining the tiled region and add two edges (the left edges of the domino
tile covering ℓ) to form a simple cycle that is the boundary of the tiled region.

Variable gadget. For a variable appearing in 𝑘 clauses, its variable gadget consists
of 4𝑘 domino clues in a positive-slope diagonal line, with each clue immediately
above and to the right of the previous one. Divide these clues into 𝑘 blocks of four
contiguous clues each. Each block will be used to connect to one of the clause gadgets
corresponding to a clause in which the variable appears. Suppose the variable appears
in 𝑘+ positive clauses 𝐶+

1 , 𝐶+
2 , . . . , 𝐶+

𝑘+ and in 𝑘− negative clauses 𝐶−
1 , 𝐶−

2 , . . . , 𝐶−
𝑘−

(so 𝑘+ + 𝑘− = 𝑘). We assign the leftmost 𝑘− blocks for connections to the negative
clauses, followed by the remaining 𝑘+ blocks for connections to the positive clauses.

Dominoes in the variable gadget that have the path extending one cell above them
(“up” dominoes) represent an assignment of true to the corresponding variable and
dominoes with the path extending one cell below them (“down” dominoes) represent
an assignment of false. We implement the connections to the clause gadgets such
that all other domino clues are at least three cells away from the diagonal. Under
this property, the path may switch mid-variable-gadget from up to down dominoes,
but not from down to up (the path would intersect itself). Because connections to
the negative clauses precede connections to the positive clauses, switching from up to
down is never beneficial. See Figure 7-38.

Clause gadget. The clause gadget is a horizontal line of domino clues with horizontal
extent exactly matching the extent of the blocks allocated from variable gadgets for
connections to this clause. See Figure 7-39.

Layout and connections. Given an instance 𝐼 of planar rectilinear monotone
3SAT, we construct a Witness puzzle 𝑊 whose only clues are 1 × 2 nonrotatable
dominoes; refer to Figure 7-41.
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(a) Unset. (b) True. (c) False. (d) False to true
(invalid).

Figure 7-38: A 2-block-wide variable gadget and its possible domino tilings. Switching
from false to true mid-gadget is impossible.

Figure 7-39: A negative clause gadget and its three literal connections.
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(a) Satisfied. (b) Unsatisfied. (c) Invalid. (d) Invalid.

Figure 7-40: A negative literal connection to a variable gadget. The other two
possibilities are invalid because the solution path would touch itself.

We place the variable gadgets in the same order as the corresponding variable
intervals appear on the 𝑥-axis in 𝐼. The bottom-left clue of each variable gadget is two
cells to the right of the top-right clue of the previous variable gadget, with a domino
clue in the cell between allowing the path to switch freely from up to down or down
to up at the transition point between gadgets.

We place the clause gadgets with their left and right ends aligned with the left and
right ends of the outermost blocks in the variable gadgets they connect to and sorted
vertically with respect to the variable gadgets and other clause gadgets in the same
way as the corresponding clause line segments in 𝐼. We scale the vertical distance
between clause line segments such that every pair of clause gadgets is separated by a
vertical distance of at least five cells. In particular, positive (negative) clause gadgets
are above (below) the variable gadgets.

Each connection between a variable and a clause is allocated to one block of four
clues in the corresponding variable gadget. Of the two center columns of that block,
we choose the column in which the variable’s clue’s vertical parity is opposite to the
vertical parity of the line of clues that constitute the clause gadget. We place domino
clues in every square of the clause line’s vertical parity in that column between the
clause and variable gadgets, except the one such square adjacent to a clue in the
variable. See Figure 7-40.

We place one domino clue in the square 𝑆 immediately to the left of the bottom-left
clue in the leftmost variable gadget. The left boundary of the board is immediately
left of 𝑆, while the other three boundaries are three empty cells away from the most
extreme clue in that direction. We put the start circle and end cap at the bottom-left
and top-left vertices of 𝑆.

Witness solution → Satisfying assignment. Suppose the Witness puzzle pro-
duced by our reduction has a solution: a path from the start circle to the end cap such
that each induced region that contains domino clues is exactly tiled by that many
(vertical) dominoes. As a result, every square containing a domino clue is covered
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(a) The puzzle. (b) The solution.

Figure 7-41: A Witness puzzle produced from (𝑥∨𝑦∨𝑧)∧(¬𝑥∨¬𝑦∨¬𝑧)∧(¬𝑥∨¬𝑦∨¬𝑦)
and its solution (𝑥 and 𝑦 are false, 𝑧 is true). Shaded cells show the domino tiling
on the interior of the path.
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by a domino. Because no two domino clues are vertically adjacent, we can associate
each clue with the domino that covers it. By this correspondence, those are the only
dominoes in the tiling.

By construction, the domino covering 𝑆 is the only domino touching the boundary
of the board (all other domino clues are too far from the boundary), and so only one
region containing domino clues touches the boundary. Because solution paths are
simple paths, every region in a Witness puzzle touches the boundary, so all domino
clues are in a single region.

We can read off a truth assignment from the position of the dominoes covering the
clues in the variable gadget: true if the domino is up and false if the domino is
down. As explained above, the path may switch from up to down in the middle of a
variable gadget, but such switches do not help in satisfying clauses, so we take the
first domino in each variable gadget to determine the assignment of that variable.

It remains to show that this assignment satisfies the formula. Because all domino
clues are in a single region, the clause gadgets are all in the region. For the path to
reach and encircle a positive (negative) clause gadget, it must follow a connection up
(down) from a variable gadget domino that is up (down) and then return along the
other side of that connection; any other path to or from a clause gadget results in a
region too large to cover with the domino clues. That variable gadget, connection and
clause gadget correspond to the variable that satisfies the literal in that clause. Thus,
the recovered truth assignment satisfies the formula.

Satisfying assignment → Witness solution. Given a satisfying assignment, we
can construct a domino tiling of a tree of cells rooted at 𝑆, the boundary of which
is a solution path. Refer to Figure 7-41. We begin by covering each domino clue in
the variable gadgets with a domino positioned according to the value of that variable
(up for true, down for false). We cover the connections corresponding to satisfied
positive literals with up dominoes and satisfied negative literals with down dominoes,
such that the connection connects the variable and clause gadgets. Then for all but
one of the satisfying literals, we move the two dominoes furthest from the clause gadget
to the other orientation (further away from the variable gadget), disconnecting the
connection to avoid forming a closed loop that would make drawing the solution path
impossible. We cover the unsatisfied positive literals with down dominoes and satisfied
negative literals with up dominoes, leaving them connected to the clause gadget but
not the variable gadget. Then we cover the remaining clause gadget domino clues
with up dominoes for positive clauses and down dominoes for negative clauses. See
Figure 7-42.

This domino tiling is a tree: the variable gadgets are connected in a line because
they have adjacent domino clues, exactly one connection connects each clause gadget
to exactly one variable gadget, and the remaining connections connect to either their
variable gadget or their clause gadget (not both). 𝑆 is covered by the tiling because it
contains a domino clue. Then the boundary of this domino tiling (deleting 𝑆’s left
edge) is a solution path in the Witness puzzle.
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Figure 7-42: A negative clause gadget with the left two literals satisfied and the right
literal unsatisfied. The left and middle literal connections connect to their variable
gadgets, while the right literal does not. The middle literal could be used to satisfy
this clause (instead of the left literal) by moving the bottom two dominoes in that
column up and the bottom two dominoes of the left literal’s connection column down.

7.8 Antibodies
An antibody ( ) eliminates itself and one other clue in its region. For the antibody
to be satisfied, this region must not be satisfied without eliminating a clue; that is,
the antibody must be necessary. An antibody may be colored, but its color does
not restrict which clues it can eliminate.7 Very few Witness puzzles contain multiple
antibodies, making the formal rules for the interactions between antibodies not fully
determined by the in-game puzzles. We believe the following interpretation is a natural
one: each antibody increments a count of clues that must necessarily be unsatisfied
for their containing region to be satisfied. If there are 𝑘 antibodies in a region, then
there must be 𝑘 clues which can be eliminated such that those 𝑘 clues were unsatisfied
and all other clues were satisfied; furthermore, there must not have been a set of fewer
than 𝑘 unsatisfied clues such that all other clues are satisfied8. Antibodies cannot
eliminate other antibodies. The choice of clue to eliminate need not be unique; for
instance, a region with three white stars and one antibody is satisfied, even though
the stars are not distinguished. Formally:

Definition 7.8.1 (Simultaneous Antibodies). A region with 𝑘 antibody clues is satis-
fied if and only if there exists a set 𝑆 of 𝑘 non-antibody clues such that eliminating
all clues in 𝑆 and all 𝑘 antibodies leaves the region satisfied, and there does not exist

7Antibody color matters when checking whether the antibody is necessary; a region containing
only a star and an antibody of the same color is unsatisfied because the antibody is not necessary.

8Whether or not a clue is satisfied is usually determined only by the solution path; however, in
the case of polyominoes and antipolyominoes, there might be several choices of packings which satisfy
different sets of clues.
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a set 𝑆 ′ of non-antibody clues with |𝑆 ′| < 𝑘 such that eliminating all clues in 𝑆 ′ and
only |𝑆 ′| of the antibodies leaves the region satisfied.

7.8.1 Positive Results
This section gives algorithms and arguments showing various types of Witness puzzles
can be solved in NP or Σ2. We begin with a simple case: puzzles with no antibodies
are in NP. Then we show that puzzles with antibodies but without polyominoes or
antipolyominoes is also in NP. Next we restrict to a single antibody and add polyomino
clues back in, which remains in NP. Finally, we show that puzzles with all clue types
are in Σ2. These last three results provide tight matches for our lower bounds in
Section 7.8.2.

Observation 7.8.2. Witness puzzles containing all clue types except antibodies are
in NP.

Proof. For all clues except polyominoes and antipolyominoes, a witness to such puzzles
is the solution path. (Because the solution path must be simple, it has linear size.)
For each region defined by the solution path that has a polyomino or antipolyomino
clue, we also include the (anti)polyomino packing as part of the witness. This packing
can be encoded as (𝑥, 𝑦) coordinates for the topmost leftmost pixel of each polyomino
and each antipolyomino. These coordinates can be assumed to be polynomial in the
input size: given any solution packing, delete any rows or columns not intersecting
the board nor the bounding box of any polyomino. Because some polyomino in the
packing covers a cell of the region in the board, the other polyominoes can be no
farther away than the number of polyominoes times the maximum size of the board
or a polyomino’s bounding box.

Theorem 7.8.3. Witness puzzles containing all clue types except polyominoes and
antipolyominoes are in NP.

Proof. We give a polynomial-time algorithm to verify a claimed solution path. Each
region induced by the path can be verified separately because no clues can interact
with clues in other regions. For regions not containing antibodies, we simply check
that all clues in the region are satisfied, which can be done in polynomial time.

An elimination set is a set of eliminated non-antibody clues. An elimination set
is proper if it has size equal to the number of antibodies in the region and improper
if it is smaller. A region is satisfied under an elimination set if the non-eliminated
non-antibody clues are satisfied; we say the region is properly satisfied if the elimination
set is proper and improperly satisfied otherwise. Then the region is satisfied if it
is properly satisfied under at least one elimination set (all of the antibodies can be
used) and not improperly satisfied under any elimination set (all of the antibodies are
necessary).

We proceed by marking non-antibody clues that must be in any elimination set
that satisfies the region (properly or improperly). When we have a choice of clues
to mark, we mark as few clues as possible, or if it cannot be known how many clues
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to mark, we evaluate the subproblem resulting from each choice. After processing
all clue types, we check whether the elimination set of the marked clues properly or
improperly satisfies the region (or neither).

To begin, we mark all edge and vertex hexagons in the interior of the region
(i.e., not visited by the solution path) and all triangle clues not adjacent to the
corresponding number of edges in the solution path. Hexagons and triangles do not
interact with each other or other clue types, so we have no choices to make here.

The remaining allowed clue types are squares, stars and antibodies, which interact
by their color. Within a region, clues of these types with the same color are inter-
changeable because their location is irrelevant to their satisfaction, so we record only
how many clues of each type and color have been marked. We assume for the moment
that all antibodies are used and thus eliminate themselves. Of stars and squares, a
star can be satisfied by pairing with a square of the same color, but the presence or
absence of stars has no effect on squares, so we consider squares first. Squares are
only satisfied if the region is monochromatic in squares, so we must mark all clues of
all but one color of square. We evaluate the subproblems resulting from each choice
of surviving square color.

Only clues of the same color are relevant to satisfying stars, so we process each
star color independently. For each color of star, we have a choice between marking all
stars of that color (zero stars survive), all but one star of that color and all but one
square of that color (only possible if the star matches the surviving square color), or
all but two stars of that color and all squares of that color (if any). We choose the
number of surviving stars that results in marking the fewest clues; if there is a tie, we
choose the smaller number of surviving stars.9

At this point, all unmarked clues are satisfied. We now check whether the region
is satisfied under the elimination set consisting of the marked clues.

∙ If the region contains more marked clues than antibodies, then the region is not
satisfied under this elimination set. We continue with the next choice of square
color.

∙ If this elimination set is improper, then some of the antibodies are not used,
contrary to our assumption. Unused antibodies do not eliminate themselves,
so they may cause a star to be unsatisfied. Let 𝑢 be the number of unused
antibodies and 𝑣 be the number of antibody clues not sharing a color with a
surviving star clue. If 𝑢 > 𝑣, at least one of the unused antibodies causes a
star to be unsatisfied, so the region is not satisfied under this elimination set,
and we continue with the next choice of square color. Otherwise (𝑢 ≤ 𝑣), the
region is improperly satisfied under the marked clues, so we reject the solution
path. Note that our tie-breaking preference for zero surviving stars maximizes 𝑣
without decreasing 𝑢, ensuring that we detect improper satisfaction.

∙ If this elimination set is proper, then we need to check one special case to
discharge our assumption that all antibodies are used: if the region contains an

9We must choose zero surviving stars if possible; between one and two surviving stars there is no
difference.
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antibody of the same color as a marked star and all other non-antibody clues
of that color (if any) are marked, then the region is also satisfied if that star
survives and that antibody is unused. In that case, the region is improperly
satisfied after that star is removed from the elimination set, so we reject the
solution path. Our tie-breaking preference for zero surviving stars ensures that
we detect this. That is the only way an unused antibody can satisfy another
clue, so otherwise our assumption that all antibodies are used holds, and we
record that the region can be properly satisfied. We still have to evaluate any
remaining choices of square color to verify they do not allow the region to be
improperly satisfied.

If, after checking all choices of surviving square color, we did not reject the solution
path, and the region was properly satisfied under at least one elimination set, then
this region is satisfied. The path is a solution exactly when all regions are satisfied.

It remains to show this algorithm runs in polynomial time. There are only
polynomially many regions to check. For each region, there are only polynomially
many squares in the region, and thus at most polynomially many colors of squares.
For each color of square, we do work proportional to the number of colors of stars, but
similarly there are only polynomially many stars in the region and so only polynomially
many colors of stars. The work done at the end of each iteration requires only counting
the number of clues of a particular type or color that are marked or unmarked. Then an
NP algorithm to solve Witness puzzles containing all clue types except polyominoes and
antipolyominoes follows directly from this polynomial-time verification algorithm.

Theorem 7.8.4. Witness puzzles containing all clue types except antipolyominoes
and for which at least one solution eliminates at most one polyomino in each region
are in NP.

Proof. We give a polynomial-time algorithm to verify a certificate. Similar to Ob-
servation 7.8.2, the certificate includes a solution path and a polyomino packing for
each region defined by the solution path that has an uneliminated polyomino. In
addition, the certificate includes which clue gets eliminated by each antibody, satisfy-
ing the promise that at most one polyomino from each region gets eliminated. (The
NP-hardness of polyomino packing [44] necessitates this promise; otherwise, verifying
a packing resulting from using two antibodies to eliminate two polyominoes would
require checking that there is no packing resulting from using just one of the antibodies
to eliminate one (larger) polyomino.)

We first verify the packing witnesses. The certificate is invalid if it contains a
packing witness for a region with no polyomino clues or if the specified arrangement
of the polyominoes does not actually pack the region. Otherwise, for each region
containing polyomino clues:

∙ If the certificate does not provide a packing witness for this region, this region
must contain exactly one polyomino clue and one antibody, and the polyomino
clue must not have the shape of the entire region (because then the polyomino
is satisfied and can’t be eliminated); otherwise, the certificate is invalid. We
record the antibody as eliminating the polyomino clue.
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∙ If the certificate contains a packing witness omitting the position of more than one
polyomino clue (requiring two polyomino clues to be eliminated), the certificate
is invalid. (The solution path in the certificate may be a valid solution to the
Witness puzzle, but this algorithm cannot verify it. By the promise that there
exists a solution eliminating at most one polyomino per region, there is some
other certificate attesting that this Witness puzzle is a yes instance that this
algorithm can verify.)

∙ If the certificate contains a packing witness omitting the position of exactly one
polyomino clue, this region must contain an antibody; otherwise, this certificate is
invalid. We record the antibody as eliminating the omitted polyomino clue. (We
know the antibody necessarily eliminates the omitted polyomino clue because
otherwise the total area of the polyominoes would be greater than the size of
the region.)

∙ If the certificate contains a packing witness specifying the position of every
polyomino clue, the polyominoes enforce no further constraint.

Now consider the Witness puzzle obtained by taking the initial instance and
removing all polyomino clues and the antibodies we recorded as eliminating polyomino
clues. The resulting puzzle contains neither polyominoes nor antipolyominoes, so
we can apply the algorithm given in the proof of Theorem 7.8.3 to verify that the
remaining clues in each region are satisfied under the solution path. The certificate is
valid exactly when the solution path is valid for the resulting puzzle. Then an NP
algorithm to solve Witness puzzles containing all clue types except antipolyominoes
and for which at least one solution eliminates at most one polyomino in each region
follows immediately from this polynomial-time verification algorithm.

Theorem 7.8.5. Witness puzzles containing any set of clue types (including polyomi-
noes, antipolyominoes, and antibodies) are in Σ2.

Proof. Solving this Witness puzzle requires picking clues for antibodies to eliminate
and finding a path which respects the remaining clues, such that the regions cannot be
satisfied if only a subset of antibodies are used to eliminate clues. Membership in Σ2
requires an algorithm which accepts only when there exists a certificate of validity for
which there is no certificate of invalidity (i.e., one alternation of ∃𝑥∀𝑦). A certificate
of invalidity allows a polynomial-time algorithm to check whether an instance of a
given problem is false. Our certificate of validity is a solution path, a mapping from
antibodies to eliminated clues, and a packing witness for any region with at least one
uneliminated polyomino. Our certificate of invalidity is the solution path (from the
certificate of validity), a mapping of a subset of the antibodies to eliminated clues,
and a packing witness for any region with at least one uneliminated polyomino.

Our verification algorithm begins checking the certificate of validity by verifying
the packing witnesses and checking that the antibody mapping specifies distinct
eliminated clues in the same region as each antibody. Then we remove all antibody
clues, polyomino and antipolyomino clues, and eliminated clues from the Witness
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puzzle and (like the proof of Theorem 7.8.3) verify in polynomial time that the
remaining clues in each region are satisfied under the solution path.

To verify the certificate of invalidity, we again check its packing witnesses and its
(partial) antibody mapping. Then we remove the used antibody clues, polyomino and
antipolyomino clues, and eliminated clues from the Witness puzzle. Because unused
antibodies interact with stars (and only stars), we replace any unused antibodies with
stars of their color if they are in the same region as an (uneliminated) star of that
color, then remove any remaining antibodies. We verify in polynomial time that the
resulting Witness puzzle is satisfied by the solution path. Our algorithm accepts if and
only if the certificate of validity is valid and all certificates of invalidity are invalid.

7.8.2 Negative Results

In this section, we prove that Witness puzzles in general are Σ2-complete. We will
proceed in two steps, first considering puzzles which have two (or more) antibodies
which might be eliminating polyominoes in the same region, then considering puzzles
which have only one antibody but both polyominoes and antipolyominoes. In both
cases, we reduce from Adversarial-Boundary Edge-Matching, a one-round two-player
game defined as follows:

Problem 7.8.6 (Adversarial-Boundary Edge-Matching). A signed color is a sign (+
or −) together with an element of a set 𝐶 of colors. Two signed colors match if they
have the same element of 𝐶 and the opposite sign. A tile is a unit square with a signed
color on each of its edges.

An 𝑛 × (2𝑚) boundary-colored board is an 𝑛 × (2𝑚) rectangle together with a
signed color on each of the unit edges along its boundary. Given such a board and a
multiset 𝑇 of 2𝑛𝑚 tiles, a tiling is a placement of the tiles at integer locations within
the rectangle such that two adjacent tiles have matching colors along their shared edge,
and a tile adjacent to the boundary has a matching color along the shared edge. There
are two types of tiling according to whether tiles can only be translated or can also be
rotated.

The adversarial-boundary edge-matching game is a one-round two-player game
played on a 2𝑛 × 𝑚 boundary-colored board 𝐵 and a multiset 𝑇 of 2𝑛𝑚 tiles. Name
the unit edges along 𝐵’s top boundary 𝑒0, 𝑒1, . . . , 𝑒2𝑛 from left to right. During the first
player’s turn, for each even 𝑖 = 0, 2, 4, . . . , 2𝑛 − 2, the first player chooses to leave
alone or swap the signed colors on 𝑒𝑖 and 𝑒𝑖+1. During the second player’s turn, the
second player attempts to tile the resulting boundary-colored board 𝐵′ such that signed
colors on coincident edges (whether on tiles or on the boundary of 𝐵′) match. If the
second player succeeds in tiling, the second player wins; otherwise, the first player
wins.

The adversarial-boundary edge-matching problem is to decide whether the first
player has a winning strategy for a given adversarial-boundary edge-matching game;
that is, whether there exists a choice of top-boundary swaps such that there does not
exist an edge-matching tiling of the resulting boundary-colored board.
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This problem is similar to a known Σ2-complete problem called finite tiling extension
[52, 121]. The main difference is that, in our adversarial-boundary edge-matching
game, each given tile must be used exactly once, whereas in finite tiling extension,
each given tile (type) can be used any number of times (including zero).

Lemma 7.8.7. Adversarial-boundary edge-matching is Σ2-hard, with or without tile
rotation, even when the first player has a losing strategy.

See Section 7.13 for the proof. Both our reduction and the related past results [52]
are inspired by Berger’s famous undecidability result for tiling the infinite plane [27];
the main issue in our case is collecting garbage to ensure every tile gets used exactly
once.

Theorem 7.8.8. It is Σ2-complete to solve Witness puzzles containing two antibodies
and polyominoes.

Proof. We reduce from adversarial-boundary edge-matching with the guarantee that
the first player has a losing strategy. We create a Witness puzzle containing two
antibodies. We will force the solution path to split the puzzle into two regions, with
both antibodies in the same region and with part of the solution path encoding top-
boundary swaps. In the construction, it will be easy to find a solution path satisfying
all non-antibody clues when both antibodies are used to eliminate clues, but the
antibodies themselves are only satisfied if they are necessary. When only one antibody
is used, the remaining polyominoes in one of the regions, together with the solution
path, simulate the adversarial-boundary edge-matching instance. The remaining
polyominoes cannot pack the region (necessitating the second antibody and making
the Witness solution valid) exactly when the adversarial-boundary edge-matching
instance is a yes instance. (In the context of The Witness, the human player is the
first player in an adversarial-boundary edge-matching game, and The Witness is the
second player.)

Encoding signed colors. We encode signed colors on the edges of polyominoes in
binary as unit-square tabs (for positive colors) or pockets (for negative colors) [44,
Figure 7]. If the input adversarial-boundary edge-matching instance has 𝑐 colors, we
need ⌈log2(𝑐 + 1)⌉ bits to encode the color10. To prevent pockets at the corners of a
tile from overlapping, we do not use the 2 × 2 squares at each corner to encode colors,
so tiles are built out of squares with side length 𝑤 = ⌈log2(𝑐 + 1)⌉ + 411.

Clue sets. We consider the clues in the Witness puzzle to be grouped into two clue
sets, 𝐴 and 𝐵, which we place far apart on the board. We will argue that any solution
path must partition the puzzle into two regions, such that each set is fully contained
in one of the regions. The clue sets are shown in Figures 7-43 and 7-44.

Clue set 𝐴 contains:
10We cannot use 0 as a color because we need at least one tab or pocket to determine the sign.
11At the cost of introducing disconnected polyomino clues, we could leave only one pixel at each

corner out of the color encoding; that pixel is disconnected when the colors on its edges both have
pockets next to it.
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(a)
Antibodies.

× 2𝑛𝑤 − 𝑞
(b)

Monominoes.

× 2𝑛𝑚
(c) Tile polyominoes.

(d) The medium polyomino. (e) The left
board-frame
polyomino.

(f) The right
board-frame
polyomino.

Figure 7-43: The contents of clue set A in the proof of Theorem 7.8.8 (not to scale).
Pink wavy edges bear tabs and pockets encoding signed colors.

(a) 2𝑛 stamps. (b) The large polyomino.

Figure 7-44: The contents of clue set B in the proof of Theorem 7.8.8 (not to scale).
Pink wavy edges bear tabs and pockets encoding signed colors.
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(a) The trivial packing of the puzzle after
eliminating both board-frame polyominoes.
The medium polyomino slots inside the large
polyomino and the tiles fill the medium
polyomino’s holes. The stamps fill in their
matching handle slots in the large polyomino
and the monominoes fill in the pockets and
any extra space in the stamp accommodation
zone. This packing is always possible.

(b) The intended packing of the puzzle after
eliminating the medium polyomino (not to
scale). The left and right board-frame
polyominoes slot inside the large polyomino,
and the monominoes fill the holes in the left
board-frame polyomino. The stamps fill in their
matching handle slots in the large polyomino,
leaving only the boundary-colored board for the
simulated adversarial-boundary edge-matching
instance.

Figure 7-45: The two possible polyomino packings.

224



∙ Two antibodies.

∙ 2𝑛𝑤 − 𝑞 monominoes, where 𝑞 is the total number of pockets minus the total
number of tabs across the “dies” of the “stamps” in clue set 𝐵 (see below).
There are 2𝑛 stamps each having up to ⌈log2(𝑐 + 1)⌉ tabs or pockets, so the
total number of monominoes is between 2𝑛𝑤 − 2𝑛⌈log2(𝑐 + 1)⌉ = 8𝑛 and
2𝑛𝑤 + 2𝑛⌈log2(𝑐 + 1)⌉ = 4𝑛𝑤 − 8𝑛 inclusive.

∙ A 𝑤 × 𝑤 square polyomino for each of the 2𝑛𝑚 tiles in the adversarial-boundary
edge-matching instance. The edges of each polyomino are modified with tabs
and pockets encoding the signed colors on the corresponding edges of the
corresponding tile. Call the upper-left corner of the 𝑤 × 𝑤 square the key pixel
of that polyomino (even if tabs caused other pixels to be further up or to the
left).

∙ A “medium” sized polyomino formed from a 2𝑛(𝑤 + 3) − 1 × 𝑚(𝑤 + 3) + 3
rectangle polyomino. Cut a hole out of this rectangle in the image of each
tile polyomino, aligning the key pixel of each tile polyomino to a 2𝑛 × 𝑚 grid
with upper-left point at the fourth row, second column of the rectangle and
𝑤 + 3 intervals between rows and columns. Regardless of the pattern of tabs
and pockets on each tile, this spacing ensures at least two rows of pixels above
the top row of tile-shaped holes, at least one row on each other side, and at
least one row between adjacent holes. Then add pixels above the upper-leftmost
and upper-rightmost pixel of the rectangle (the horns) and below the middle-
bottommost pixel of the rectangle (the tail). Finally, cut 2𝑛𝑤 pixels out of the
top row of the rectangle starting from the third pixel; this cutout is the stamp
accommodation zone.

∙ Two board-frame polyominoes. Again, starting from a 2𝑛(𝑤+3)−1×𝑚(𝑤+3)+3
rectangle polyomino, add horns and tail pixels in the same locations. Then
cut out a 2𝑛𝑤 × 𝑚𝑤 rectangle whose upper-left pixel is the third pixel in the
top row of the rectangle. The left, right and bottom edges of this cutout are
modified with tabs and pockets encoding the signed colors on the corresponding
sides of the boundary-colored board in the adversarial-boundary edge-matching
instance. Split the polyomino vertically along the column of edges immediately
to the right of the tail pixel.
Finally, for each monomino in this clue set, cut a pixel out of the left board-
frame polyomino, starting from the second-bottommost pixel in the second
column, continuing across every other column, then continuing with the fourth-
bottommost pixel in the second column, and so on. The left board-frame
polyomino has width 𝑛𝑤 + 3𝑛, we cut pixels out of every other column, and
we do not cut holes in its left or right columns, so we cut pixels out of 𝑛𝑤+3𝑛−2

2
columns. Below the 𝑚𝑤-tall cutout and allowing two rows to ensure cut pixels
do not join with pockets encoding signed colors along the edges of the cutout, we
can cut pixels out of 3𝑤−1

2 rows (or 3𝑤
2 , depending on parity). This allows up to

(𝑛𝑤+3𝑛−2
2 )(3𝑤−1

2 ) = 𝑛(𝑤−4)2+2𝑤(𝑛𝑤−3)+13𝑛+2
4 + 4𝑛𝑤 − 8𝑛 pixels to be cut out, but
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there are at most 4𝑛𝑤 − 8𝑛 monominoes, so we can always cut enough pixels
without interfering with any other cuts.

Clue set 𝐵 contains:

∙ A stamp polyomino for each of the 2𝑛 edge segments of the top edge of the
boundary-colored board. Each stamp is composed of a 𝑤 × 2 rectangle modified
to encode the signed color on the corresponding edge segment (called the die), a
pixel centered above that rectangle, and a 2×ℎ rectangular handle whose bottom-
right pixel is immediately above that pixel, where ℎ = max(𝑚(𝑤 + 3) + 7, 𝑛).
Stamps corresponding to 1-indexed edge segments 2𝑖 and 2𝑖 + 1 have pockets
encoding 𝑖 in binary cut into the left edge of their handle, starting from the
second-to-top row of the handle.

∙ A “large” sized polyomino built from a 2𝑛(𝑤 + 3) + 1 × 𝑡 rectangular polyomino,
where 𝑡 is the total area of all other polyominoes so far defined. Modify this
polyomino by cutting out the middle pixel of the bottom row, the 2𝑛(𝑤 +
3) − 1 × 𝑚(𝑤 + 3) + 3 horizontally-centered rectangle immediately above that
removed pixel, and the pixels above the upper-left and upper-right removed
pixels. (That is, cut out space for the medium polyomino, including the horns
and tail but not including the stamp accommodation zone.) Then cut out the
image of each stamp in the order of their corresponding edge segments in the
adversarial-boundary edge-matching instance, aligning the leftmost-bottom pixel
of the first stamp’s die two pixels to the right of the upper-left removed pixel
and aligning successive dies immediately adjacent to one another.

Puzzle. The Witness puzzle is a 2𝑛(𝑤 + 3) + 1 × 𝑡 rectangle. The start circle and
end cap are at the middle two vertices of the bottom row of vertices.

Placement of 𝐴 clues. We place a monomino from clue set 𝐴 in the cell having
the start circle and end cap as vertices, then place an antibody above that monomino,
surrounded by a monomino in each of its other three neighbors. We then place the
other antibody, surrounded by monominoes in its neighboring cells, three cells above
the first antibody. (See Figure 7-46.) It is always possible to surround the antibodies
in this way because there are at least 8𝑛 monominoes. We place the remaining clues
from clue set 𝐴 inside the 2𝑛(𝑤 + 3) − 1 × 𝑚(𝑤 + 3) + 3 rectangle one row above the
bottom of the puzzle; this is always possible because |𝐴| ≤ 4𝑛𝑤 − 8𝑛 + 2𝑛𝑚 + 5.

Placement of 𝐵 clues. We place the large polyomino clue in the upper-left cell of
the board and the stamp clues in the 2𝑛 cells to its right.

Argument. In any solution to the resulting puzzle, the large polyomino is not
eliminated. If it were, it must be in the same region as an antibody. Because each
antibody is surrounded by monomino clues, the number of polyomino clues in this
region is strictly greater than the number of antibodies, so the region must be packed
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Figure 7-46: Because both antibodies are surrounded by monominoes, any region
containing an antibody also contains at least one monomino.

by the non-eliminated polyomino clues. The nearest (upper) antibody is 𝑡 − 4 columns
and 𝑛𝑤 + 3𝑛 rows away from the large polyomino clue, so this region has area at least
𝑡. Recall that 𝑡 is the total area of all polyomino clues except the large polyomino. If
the large polyomino is eliminated, there is no way to pack this region, even if all other
polyomino clues are used.

The large polyomino is as wide and as tall as the entire puzzle, so it has a unique
placement. The large polyomino intersects its bounding box everywhere except one
unit-length edge aligned with the start vertex and end cap, so any solution path can
only touch the boundary at the start and end. Thus, the solution path divides the
puzzle into at most two regions (an inside and an outside).

Suppose the solution path places the entire puzzle into a single region; that is,
suppose the solution path proceeds (in either direction) from the start vertex to the
end cap without leaving the boundary. Then by the assumption that the first player
has a losing strategy in the input adversarial-boundary edge-matching instance, we
can pack the region while eliminating only one clue. The large polyomino’s placement
is fixed. We eliminate the medium polyomino, place the two board-frame polyominoes
inside the large polyomino, and place the monominoes in the pixels cut out of the left
board-frame polyomino. It remains to place the stamps and tiles. By the assumption,
there is a losing set of top-boundary swaps; we swap the corresponding pairs of stamps
when placing them into the cutouts in the large polyomino, and then place the tiles in
the remaining uncovered area bordered by the board-frame polyominoes and stamp
dies. Because we satisfied all non-antibody constraints after eliminating only one clue,
the unused antibody is unsatisfied, so any path resulting in a single region is not a
solution to the puzzle. Thus, there are exactly two regions.
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The cells containing the stamp clues are covered by the large polyomino, so any
solution places the stamps in the same region as the large polyomino. The handles of
the stamps are taller than the cutout in the bottom-middle of the large polyomino, so
they must instead be placed in the stamp-shaped cutouts in the large polyomino. The
pockets cut into the left edges of the handles ensure that stamps can only swap places
corresponding to top-boundary swaps in the adversarial-boundary edge-matching
instance.

All clues in set 𝐴 are in the other region. The monomino clue in the cell having
both the start circle and end cap as vertices cannot be in the same region as the
large polyomino (else the path could not divide the puzzle into two regions). Because
each antibody is surrounded by monomino clues, the number of polyomino clues in
this region is strictly greater than the number of antibodies, so the region must be
packed by the non-eliminated polyomino clues. When both antibodies are used to
eliminate clues, they must eliminate both board-frame polyominoes, and when only
one is used, it must eliminate the medium polyomino; any other elimination leaves
polyomino clues with too much or too little area to pack the area of the puzzle not yet
covered by the large polyomino or the stamps. Thus, either the medium polyomino
or both board-frame polyominoes will not be eliminated. The medium polyomino
and board-frame polyominoes have unique placements within the large polyomino
determined by the horns and tail. The intersection of the outlines of these placements
covers all the 𝐴 clues, so they are all in the same other region.

By this division of the clues into regions, any solution path traces the inner
boundary of the large polyomino and the dies of the stamps (possibly after swapping
some pairs). It remains to show that the path is a solution exactly when the implied set
of top-boundary swaps is a winning strategy in the adversarial-boundary edge-matching
instance.

When using both antibodies to eliminate the board-frame polyominoes, the remain-
ing polyominoes always pack their region (see Figure 7-45a). The medium polyomino’s
placement is fixed by the horns and tail; the stamp accommodation zone ensures this
placement is legal regardless of the pattern of tabs on the dies of the stamps. The
tile polyominoes fit directly into the cutouts in the medium polyomino and there are
exactly enough monominoes to fill in the uncovered area in the stamp accommodation
zone and the pockets of the dies.

The path is a solution only if both antibodies are necessary. When using one
antibody to eliminate the medium polyomino, the board-frame polyominoes’ position
is forced by the horns and tail. The monominoes are the only way to fill the single-pixel
holes in the left board-frame polyomino and there are exactly enough monominoes
to do so. Then the dies of the stamps and the edges of the rectangular cutout
in the board-frame polyominoes models the boundary-colored board of the input
adversarial-boundary edge-matching instance (see Figure 7-45b). The tile polyominoes
cannot pack this area, necessitating the second antibody and making the path a
solution, exactly when the set of top-boundary swaps is a winning strategy in the
adversarial-boundary edge-matching instance.

Theorem 7.8.9. It is Σ2-complete to solve Witness puzzles containing one antibody,
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(a) One antibody.
× 2𝑛𝑚

(b) Tile polyominoes.

(c) The antikit
antipolyomino.

(d) The sprue
polyomino.

(e) The medium polyomino. The attached kit polyomino
and sprue cutout are to scale with each other, but not

with the body of the medium polyomino.

Figure 7-47: The contents of clue set A in the proof of Theorem 7.8.9 (not to scale).
Pink wavy edges bear tabs and pockets encoding signed colors.

polyominoes and antipolyominoes.

Proof. As in the previous proof, we reduce from adversarial-boundary edge-matching
(though we do not need the first player to have a losing strategy), and the reduction
is similar. The primary difference is that the medium polyomino is also the (singular)
board-frame polyomino.

Clue sets. As before, we have two clue sets. Clue set 𝐴 is shown in Figure 7-47.
Clue set 𝐵 is nearly the same as it is in the previous proof (see Figure 7-44), only
with the large polyomino being slightly wider (not visibly different at the scale of the
figure).

Clue set 𝐴 contains:

∙ One antibody.

∙ A 𝑤 × 𝑤 square polyomino for each of the 2𝑛𝑚 tiles in the adversarial-boundary
edge-matching instance. The edges of each polyomino are modified with tabs
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(a) The trivial packing of the puzzle after
eliminating the medium polyomino. The sprue
and tiles annihilate with the antikit
antipolyomino. The bottom region is
unconstrained because it does not contain any
surviving polyomino clues. After the stamps
are placed in their handle slots, the path
simply traces the exterior of the surviving
polyominoes. This packing is always possible.

(b) When the antibody is not used, the antikit
antipolyomino annihilates part of the medium
polyomino, allowing it to fit inside the large
polyomino. The sprue polyomino fills the
cutout in the medium polyomino. The stamps
fill in their matching handle slots in the large
polyomino, leaving only the boundary-colored
board for the simulated adversarial-boundary
edge-matching instance.

Figure 7-48: The two possible polyomino packings.
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and pockets encoding the signed colors on the corresponding edges of the
corresponding tile. Call the upper-left corner of the 𝑤 × 𝑤 square the key pixel
of that polyomino (even if tabs caused other pixels to be further up or to the
left).

∙ An antikit antipolyomino, which we define in terms of a kit polyomino (which is
not itself a clue). Start with 𝑚 copies of a 2(𝑛 − 1)(𝑤 + 5) + 3 × 1 rectangle,
vertically aligned and spaced at 𝑤 + 5 intervals. Connect these rectangles with
1×𝑤+4 rectangles in the left column. Align the key pixels of the tile polyominoes
to a 2𝑛 × 𝑚 grid spaced at 𝑤 + 5 intervals, then place this grid such that the
key pixel of the upper-left polyomino is three pixels below and to the right of
the upper-left pixel of the polyomino being built. (A tile polyomino having tabs
on each edge is 𝑤 + 2 wide and tall, but there is 𝑤 + 4 width and height in
the grid, so this placement is always possible.) Connect each tile polyomino to
the rectangle above it by adding two pixels immediately above the key pixel.
Finally, add one pixel immediately to the left of the upper-left pixel. The antikit
antipolyomino is just the antipolyomino with an antipixel for each pixel in the
kit polyomino. (See Figure 7-47c.)

∙ A sprue polyomino shaped like the sprue12, the non-tile-polyomino area of the
kit polyomino.

∙ A medium polyomino built from a 2𝑛(𝑤 + 5) + 5 × 𝑚(2𝑤 + 5) + 2 rectangle
polyomino. Add a pixel directly below the center pixel of the rectangle (the tail).
Cut out a 2𝑛𝑤 ×𝑚𝑤 rectangle whose upper-left pixel is the third pixel in the top
row of the rectangle. The left, right and bottom edges of this cutout are modified
with tabs and pockets encoding the signed colors on the corresponding sides of
the boundary-colored board in the adversarial-boundary edge-matching instance.
Then add the kit polyomino, placing the leftmost pixel of the kit to the right of
the upper-rightmost pixel of the rectangle. Then cut out the shape of the sprue
polyomino, aligning the leftmost pixel in the second column and the bottommost
pixels in the second-to-bottom row of the rectangle. This is always possible
because the sprue is bounded by a 2(𝑛 − 1)(𝑤 + 5) + 4 × (𝑚 − 1)(𝑤 + 5) + 2
rectangle, so the sprue cutout fits within the medium polyomino even after the
board cutout.

Clue set 𝐵 contains:

∙ A stamp polyomino for each of the 2𝑛 edge segments of the top edge of the
boundary-colored board. The stamps are exactly as specified in the previous
proof.

∙ A large polyomino built from a 2𝑛(𝑤+5)+7×𝑡 rectangular polyomino, where 𝑡 is
the total area of all other polyominoes so far defined. Modify this polyomino by

12In molding, the sprue is the waste material that cools in the channels through which the material
is poured or injected into the mold. Specifically, in plastic model kits, the sprue is the frame from
which the model pieces are snapped out.
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cutting out the middle pixel of the bottom row and the 2𝑛(𝑤+5)+5×𝑚(2𝑤+5)+2
horizontally-centered rectangle immediately above the removed pixel. Then cut
out the image of each stamp in the order of their corresponding edge segments in
the adversarial-boundary edge-matching instance, aligning the leftmost-bottom
pixel of the first stamp’s die one pixel above and two pixels to the right of the
upper-left pixel of the rectangular cutout and aligning successive dies immediately
adjacent to one another. (This is the same procedure as in the previous proof,
but with slightly different dimensions.)

Puzzle. The Witness puzzle is a 2𝑛(𝑤 + 5) + 7 × 𝑡 rectangle. The start circle and
end cap are at the middle two vertices of the bottom row of vertices.

Placement of 𝐴 clues. We place the antibody in the cell having the start circle
and end cap as vertices, then place the medium polyomino above the antibody. We
place the remaining 2𝑛𝑚 + 2 clues from clue set 𝐴 contiguously, directly to the left
and right of the medium polyomino, half on each side.

Placement of 𝐵 clues. We place the large polyomino clue in the upper-left cell of
the board and the stamp clues in the 2𝑛 cells to its right.

Argument. The medium polyomino clue is wider than the puzzle, so any solution
must eliminate it. There is only one antibody, so the large polyomino is not eliminated
in any solution.

The large polyomino is as wide and as tall as the entire puzzle, so it has a unique
placement. The large polyomino intersects its bounding box everywhere except one
unit-length edge aligned with the start vertex and end cap, so any solution path can
only touch the boundary at the start and end. Thus, the solution path divides the
puzzle into at most two regions (an inside and an outside).

Suppose the solution path places the entire puzzle into a single region; that is,
suppose the solution path proceeds (in either direction) from the start vertex to the
end cap without leaving the boundary. After eliminating the medium polyomino, the
remaining polyominoes and antipolyomino have less net area than the puzzle, so any
path resulting in a single region is not a solution to the puzzle. Thus, there are exactly
two regions.

The cells containing the stamp clues are covered by the large polyomino, so any
solution path places the stamps in the same region as the large polyomino. The
handles of the stamps are taller than the cutout in the bottom-middle of the large
polyomino, so they must instead be placed in the stamp-shaped cutouts in the large
polyomino. The pockets cut into the left edges of the handles ensure that stamps can
only swap places corresponding to top-boundary swaps in the adversarial-boundary
edge-matching instance.

All clues in set 𝐴 are in the other region. The antibody clue is in the cell having
both the start circle and end cap is vertices, so it cannot be in the same region as
the large polyomino (else the path could not divide the puzzle into two regions). The
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medium polyomino is eliminated, so it must be in the same region as the antibody. The
remaining 𝐴 clues (the sprue polyomino, tile polyominoes and antikit antipolyomino)
have net area 0. If a polyomino from this group is in the first region, the other region’s
clues require negative area to be satisfied; if the antikit is in the first region, the other
region’s clues do not have enough area to pack the area of the puzzle not already
covered by the large polyomino or the stamps. Thus, the remaining clues are in the
other region (and, because there are no other non-eliminated polyomino clues in the
region, are satisfied).

By this division of the clues into regions, any solution path traces the inner
boundary of the large polyomino and the dies of the stamps (possibly after swapping
some pairs). It remains to show that the path is a solution exactly when the implied set
of top-boundary swaps is a winning strategy in the adversarial-boundary edge-matching
instance.

By the above arguments, any solution path of this form satisfies all non-antibody
clues when the antibody is used to eliminate the medium polyomino (see Figure 7-
48a), but the antibody is only satisfied if it is necessary. If the antibody is not used
to eliminate the medium polyomino, the antikit antipolyomino must annihilate the
portion of the medium polyomino shaped like a kit polyomino. The rest of the medium
polyomino is exactly the right size to fit inside the large polyomino and the sprue
polyomino fills the sprue cutout in the medium polyomino. Then the dies of the
stamps and the edges of the rectangular cutout in the medium polyomino models the
boundary-colored board of the input adversarial-boundary edge-matching instance
(see Figure 7-48b). The tile polyominoes cannot pack this area, necessitating the
antibody and making the path a solution, exactly when the set of top-boundary swaps
is a winning strategy in the adversarial-boundary edge-matching instance.

By Theorem 7.8.4, Theorem 7.8.8 and Theorem 7.8.9 are tight.

7.9 Nonclue Constraints
In this section, we analyze Witness puzzle constraints that are not represented by
clues on vertices, edges, or cells. This is not an exhaustive list of elements included
in puzzles in The Witness. In most cases, these elements do not appear to change
the computational complexity of the problem. However, containment in L for broken
edges is no longer obvious in many cases. In addition, it is unclear how to modify some
of our reductions to obey the symmetry constraint, though we believe the problem
still remains hard for all prior cases.

7.9.1 Visual Obstruction
Some panels are placed in the 3D world in such a way that obstacles obstruct the
player’s vision of some of the panel. Because the player can only draw paths along
edges they can see, the obstructions constrain the panel’s solution set, similar to
broken edges. Indeed, we show how to reduce visual obstructions to broken-edge
puzzles:
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Theorem 7.9.1. Witness puzzles constrained only by visual obstruction are in P.

Proof. We can determine the combinatorially different viewing positions (where dif-
ferent sets of vertices and/or edges are obstructed) in 𝑂(𝑛3) time by building the
arrangement of the planes extending the obstacle faces [56]. For each viewing position
reachable in the environment, we can reduce the visual obstruction puzzle to an
equivalent puzzle using only broken edges: starting from a puzzle with the same
size, start circles, and end caps, break each obstructed edge and break all edges
incident to each obstructed vertex.13 This set of broken edges exactly captures the
obstruction’s restrictions on path drawing. Puzzles containing only broken edges are in
L (Observation 7.3.2), and there are only polynomially many viewing positions, so we
can solve from all positions in polynomial time. The visual obstruction puzzle is a yes
instance exactly when at least one of the broken-edge puzzles is a yes instance.

Some puzzles constrained only by visual obstruction from The Witness can obvi-
ously only be viewed from a single position in the game world, so building the plane
arrangement is unnecessary. Such puzzles are in L if there exists an L algorithm
to decide whether the projection onto the puzzle panel of some face of the obstacle
overlaps a particular edge or vertex.

More generally, for any puzzle type allowing broken edges from P or larger com-
plexity classes, adding visual obstructions results in puzzles in the same complexity
class, as we can simply try all of the polynomially many viewpoints by the proof of
Theorem 7.9.1.

7.9.2 Symmetry
In symmetry puzzles, there are an even number of start circles (usually exactly two),
and drawing a path from one of them also causes one reflectionally symmetric path
(reflected across one axis, or reflected across both axes which is equivalent to 180∘

rotation) to be drawn from another start circle. The paths must not intersect and both
paths must reach an end cap. The paths induce regions that must satisfy all clues just
as in no-symmetry puzzles. In some symmetry puzzles, the paths are colored yellow
and blue, as are some vertex or edge hexagons; each path must visit the hexagons
of its color (and any hexagons of other colors must be visited by either path). Path
color is not relevant for other clue types.

We now discuss the implications of adding symmetry to each of the clue sets we
have considered so far in this chapter.

Containment. Our proofs for containment in NP or in Σ2 are based on algorithms
for verifying certificates. Our verifiers can be straightforwardly modified to check
that the paths in the certificates are indeed symmetric, do not intersect, and visit all

13Some puzzles in The Witness have end caps halfway along edges instead of at vertices. If only
one half-edge or adjacent vertex is obstructed for such an end cap, replace the edge with an end cap
at the other vertex instead of breaking edges.
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hexagons of their color (if any). From then on it is irrelevant that there are two paths
instead of one, so the containments still hold when the symmetry constraint is added.

Observation 7.3.2 establishes that puzzles with only broken edges, even with
multiple start circles and end caps, are in L. For each start circle, we can determine
the symmetric start circle in L, and the connectivity algorithm can follow the progress
of both paths (if necessary, by running another instance of the algorithm in lockstep)
to ensure paths are extended only if both edges are not broken. However, it is not
obvious how to ensure that the paths do not intersect each other (as there is not
enough space to store them). Thus, we have only that Witness puzzles with only
broken edges and symmetry are in P.

Theorem 7.3.7 and Theorem 7.7.1 establish polynomial-time algorithms for edge
hexagons on the boundary of a puzzle and monominoes, respectively. While we suspect
that these algorithms can be extended to solve symmetric puzzles of these types, we
leave these as open problems.

Hardness. To prove that adding symmetry does not make puzzles easier, we need
to modify the constructions from our proofs to tolerate the addition of a symmetric
copy. For most of our constructions, this is straightforward:

∙ Vertex hexagons and broken edges (Observation 7.3.3): Under the symme-
try constraint, Hamiltonian path is no longer a strict special case. We can add
a symmetric copy of the puzzle if we separate it from the original by breaking
all the edges in a row or column between the copies. This wall of broken edges
ensures the two paths cannot interact, making Hamiltonian path a special case
again.

∙ Edge hexagons (Theorem 7.3.5): We can add a symmetric copy in any position
with a row and/or column of empty cells between them to ensure that the paths
do not touch. The rightmost bottommost chamber, which contains the start
circle and end cap, is on the bottom boundary of the board, so the symmetric
copy’s start circle and end cap are also on the boundary of the board (possibly
the top boundary). Then each path is confined to its copy by the existing
argument.

∙ Squares (Theorem 7.4.2): If we consistently use the same colors inside and
outside the path, we can add a symmetric copy of the puzzle in any position.
The boundary of red squares ensures that each path is confined to its copy of
the puzzle.

∙ Rotatable dominoes (Theorem 7.7.2): We can add a symmetric copy of the
puzzle in any position. The distance between the copies is twice the existing
distance from the Steiner tree area to the boundary, so the copies cannot
interact. Then hardness preservation for monominoes and antimonominoes
(Theorem 7.7.3) follows in the same way as the no-symmetry construction.
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∙ Nonrotatable dominoes (Theorem 7.7.4): We can add a symmetric copy of
the puzzle without affecting the proof if we add padding rows and/or columns
to ensure that there are at least five empty cells between the closest domino
clues. This preserves Properties 7.7.1, 7.7.2, and 7.7.3 (rotated and/or reflected
in the symmetric copy), so solving the puzzle still requires solving the domino
tiling problem. Then because there are at least five empty cells between clues,
the symmetric paths cannot cross from their tree of domino clues to the other.

∙ 1-triangle clues (Theorem 7.6.1): We can add a symmetric copy above the
original construction. The original copy’s path is forced to proceed from the
start circle entirely across the puzzle, forming a barrier preventing the two paths
from interfering.

∙ 3-triangle clues (Theorem 7.6.3): We can add a symmetric copy of the puzzle
in any position because each path is confined to the chambers of its copy.

But for others of our constructions, adapting to a symmetry puzzle is not so simple,
and we leave solutions as open problems:

∙ Stars (Theorem 7.5.1): While Figure 7-16 is not to scale, it does accurately
depict that there is plentiful blank space outside the simulated squares instance;
note that the number of cells occupied by the red and blue stars is equal inside
and outside the simulated instance, but the outside stars are arranged in a line
instead of a rectangle. Thus, there is space for the symmetric path to disrupt the
argument about what colors of stars must be in which region. It may be possible
to fix this by packing the outside stars more densely, so that the simulated
squares instance occupies the full width or height of the puzzle, blocking the
symmetric path from interfering.

∙ 2-triangle clues (Theorem 7.6.2): Our construction relies on forcing paths
throughout the entire puzzle, particularly wave propagation from the four corners
of the puzzle. To add a symmetric copy, we need some way to force simulated
corners exactly halfway across the puzzle.

∙ Antibodies (Theorems 7.8.8 and 7.8.9): Obviously, the symmetric copy includes
a copy of the antibody clue(s), so adding symmetry weakens the theorems to
require four and two antibodies for hardness (respectively). Substantively, both
proofs rely on the large polyomino not being eliminated and having a unique
placement. With a symmetric copy, this is no longer true: one large polyomino
could be eliminated and the other placed in the middle of the board instead
of up against the boundary, or the two large polyominoes could exchange the
intended placements. Then arguments that polyominoes must be in the same
region because the placement of the large polyomino overlaps the cells containing
their clues no longer hold.
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7.9.3 Intersection
In intersection puzzles, multiple puzzles must be solved simultaneously by the same
solution path. That is, the set of solutions to an intersection puzzle is the intersection
of the sets of solutions to its component puzzles. The Witness contains one intersection
puzzle in the mountain consisting of six panels. Drawing a path on any of these panels
causes the path to be drawn on all of them, and the game only accepts a path if it
satisfies all the panels. (Initially only the first panel is energized, with each additional
panel activating when all the previous panels are solved, but this is not relevant for
the complexity analysis.)

Intersection puzzles are typically in the same complexity class as the hardest of
their component puzzles. Solving an intersection puzzle containing only broken edges
is the same as solving a single broken-edges puzzle (which is in L, Observation 7.3.2)
where an edge is broken if it is broken in any component puzzle; the path existence
algorithm simply checks that the edge is present in every component puzzle. If the
hardest component puzzle is in NP or Σ2, membership for the intersection puzzle
follows by combining the certificate verification algorithms (as in Section 7.9.2). An
interesting challenge is monomino puzzles (Theorem 7.7.1); it is unclear whether
intersection puzzles of monominoes can still be solved in polynomial time.

7.9.4 Recursion
In recursive puzzles, one or more panels are embedded in the cells of a larger panel.
The inner panels contain non-antibody clues and at least one antibody. The inner
panels are solved independently and any surviving clue(s) from each inner panel
“bubble up” to the cell in the outer puzzle containing that panel. If a surviving clue is
a rotatable polyomino clue, it bubbles up as a nonrotatable clue oriented as it was
used in the inner panel.14 Once all of the inner panels have been solved, the outer
panel is solved just like a normal puzzle with the surviving clues in those cells (along
with any other clues in the outer puzzle). As antibodies are only satisfied if they are
necessary, an inner panel always provides the same number of clues to its outer panel
regardless of how it is solved.

Because clues are only promoted from inner to outer levels, recursive puzzles are
contained in the larger of the largest class among the complexity classes of their
inner puzzles and the largest class possible for the outer puzzle (considering all
possible sets of surviving clues). For example, consider an outer puzzle containing two
antibodies and inner puzzles each containing one antibody, one polyomino clue, and
one nonpolyomino clue. Then the inner puzzles are in NP, and when the inner puzzles
all provide the nonpolyomino clue, the resulting outer puzzle contains only antibodies
and nonpolyominoes, and so is also in NP. But because some possible resulting outer
puzzles may contain polyominoes, we obtain the weaker bound that the recursive

14See https://gaming.stackexchange.com/q/253987. As this puzzle (on the bottom floor of the
mountain) is the sole recursive puzzle in The Witness, another consistent interpretation is that the
solution paths of the inner puzzles are what matters, not the surviving clues, but that definition does
not generalize to nonpolyomino clue types.
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puzzle is in Σ2.

7.10 Metapuzzles

Figure 7-49: A screenshot from The Witness, fea-
turing a panel whose solution controls a sliding
bridge.

In this section, we analyze sev-
eral of the metapuzzles that ap-
pear in The Witness. Metapuz-
zles are puzzles which have one
or more puzzle panels as a sub-
component of the puzzle, and in
which solving the puzzle panel af-
fects the surrounding world in a
way that depends on the choice
of solution that was used to solve
the panel. Figure 7-49 shows one
example from The Witness.

Unlike the single-panel path-
finding puzzles, metapuzzles are naturally a kind of reconfiguration puzzle with no
obvious bound on the number of moves (solving and re-solving panels). Indeed, we
show PSPACE-completeness for three different metapuzzles: sliding bridges, elevators
and ramps, and power cables and doors. Refer to Table 7.3.

Our PSPACE-hardness results use the door framework of [10]. Specifically, [10,
Section 2.2] shows that the following gadgets suffice to prove a one-robot motion
planning puzzle PSPACE-hard:

1. One-way: allows the robot/player to traverse from a point A to a point B but
not from B to A.

2. Door: has three paths, open, traverse, close and two states open and close.
The open and close paths transition the gadget to the open and close states
respectively. The traverse path can be traversed if and only if the door is in the
open state and is blocked otherwise.

3. Crossover: has two non-interacting paths which can be independently traversed
and which geometrically cross (in projection). This gadget is trivial to build in a
3D game like The Witness with ramps and tunnels. (The Witness is inherently
nonplanar.)

7.10.1 Sliding Bridges
The first such metapuzzle we will discuss are the sliding bridges found in the marsh
area. In this metapuzzle, each bridge has a corresponding puzzle panel, and solving
the puzzle causes the bridge to move into the position depicted by the outline of the
solution path. The following theorem demonstrates that, regardless of the difficulty of
the puzzle panels (i.e., even if it is easy to find all solutions of each individual panel),
it is PSPACE-complete to solve sliding bridge metapuzzles.
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Figure 7-50: Sliding-bridge gadgets for Theorem 7.10.1, drawn from a birds-eye view.

Theorem 7.10.1. It is PSPACE-complete to solve Witness metapuzzles containing
sliding bridges.

Proof. We apply the door framework described above using the gadgets in Figure 7-50.
The one-way gadget consists of a sliding bridge that can be adjacent to one of two

docks; see Figure 7-50a. The entry dock has a puzzle panel which controls the bridge.
When the player is at the entry dock, they can change the bridge’s position by solving
the panel. To cross to the exit dock, the player stands on the bridge and solves the
panel to set the bridge’s position to the exit dock. The panel is not viewable from the
exit dock, so once the bridge reaches the exit dock, the player cannot return to the
entry dock.

The door gadget consists of five docks, named traverse-entry, traverse-exit, close-
entry, close-exit and open, and a single bridge with two states, spanning the gap
between either the two traverse docks or the two close docks; see Figure 7-50b. There
is also a one-way gadget on either side of the close-entry and close-exit so the player
can only enter from the close-entry side and exit from the close-exit side. In either
bridge state, the player can cross between the docks adjacent to the bridge, but not
the other pair of docks. We place the controlling puzzle panel visible from only the
open and close-entry docks, allowing the player to set the state of the bridge from
those two docks only. The panel is far enough away from the end of the close-entry
dock to prevent the player from running onto the bridge after sending the bridge to
the gap between traverse docks. The player opens the door by using the panel from
the open dock to move the bridge to the traverse docks, and can then traverse that
path; to cross between the close docks, the player is forced to use the panel from the
close-entry dock to move the bridge to the close docks, closing the door.
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Figure 7-51: Elevator control puzzle panel for the door gadget for Theorem 7.10.2.

Using these gadgets, we can construct any instance of TQBF using the framework
from [10] and so The Witness metapuzzles with just sliding bridges are PSPACE-hard.
Sliding bridge puzzles have only a polynomial amount of state (given by the position
of each bridge and the position of the player) so these puzzles are also in PSPACE.
Thus, sliding bridge puzzles are PSPACE-complete.

7.10.2 Elevators and Ramps
Another metapuzzle which appears in The Witness consists of groups of platforms
that move vertically at one or both ends to form an elevator or ramp, controlled by
the path drawn on puzzle panels. Because the player cannot jump or fall in The
Witness, the player can walk onto an elevator platform only if it is at the same height
as the player. The player can adjust the height of the platforms from anywhere with
line-of-sight to the controlling panel, including while on the platforms themselves.
Groups of these elevator puzzles are PSPACE-complete by a similar argument to
sliding bridges puzzles, and indeed the sliding ramp in the sawmill can also be used in
our construction for sliding bridges. Besides the sawmill, the other building in the
quarry contains a ramp and an elevator. The marsh contains a single puzzle with a
3 × 3 grid of elevators controlled by two identical panels; as a metapuzzle, our puzzle
could be built out of multiple marsh puzzles with two platforms and one panel each.

Theorem 7.10.2. It is PSPACE-complete to solve Witness metapuzzles containing
elevator reconfiguration, even when each panel controls at most one elevator.

Proof. Again we apply the door framework, building our one-way and door gadgets
by modifying the gadgets from the sliding-bridges proof.

For the one-way gadget, we replace the bridge with an elevator controlled by a
panel on the lower level. When the elevator is on the lower level, the player can access
the puzzle panel to raise the elevator and reach the upper level. From the upper level,
the player cannot see the panel at all and cannot move the elevator to reach the lower
level. This gadget’s requirement that the player travel from the lower level to the
upper level is not a constraint, as we can freely add elevators controlled by a panel
visible from both levels.

For the door gadget, we use the puzzle panel in Figure 7-51 to allow the player
to flip between the two states. (We show a panel using an edge hexagon, but
equivalent (possibly larger) panels can be constructed using squares, stars, triangles,
or monominoes instead.) Now the moving bridge in the previous reduction (Figure 7-
50b) is replaced with two up/down platforms which are constrained by the puzzle
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panel such that exactly one of them can be up at any given time, and the player can
only traverse between an entry and exit dock if the corresponding block is down.

7.10.3 Power Cables and Doors
In the introductory area of The Witness, there are panels with two solutions, each of
which activates a power cable. Activated cables can power one other panel (allowing
it to the solved) or one door (opening it). If a cable connected to a door is depowered,
the door closes. Cables cannot be split and panels can power at most one cable at a
time.

Theorem 7.10.3. It is PSPACE-complete to solve Witness metapuzzles containing
power cables and doors.

Proof. Again we wish to apply the door framework. One difficulty is that power cables
in The Witness are initially off until their powering puzzle has been solved, so initially
all doors are closed. We use an additional construction to allow the player to open the
doors that are initially open in the one-way-and-doors instance we are reducing from.

This gadget is akin to an airlock: there are two doors in sequence (an entry and
an exit) which are both initially closed. There is a puzzle panel just outside the entry
door with two solutions connected by power cables to the entry and exit doors. When
the player approaches the one-way gadget, the player can open the entry door (closing
the exit door if it is open) using the panel and walk through the door. To leave via
the exit door, the player must solve the panel with the other solution while standing
inside the airlock looking through the open entry door, thereby opening the exit door
but closing the entry door. Once the entry door is closed, the panel is not visible from
the airlock, preventing the player from traversing from the exit to the entry door.

The door gadget is almost identical to that of Theorem 7.10.1 (shown in Figure 7-
50b), except that instead of a moving bridge, the puzzle panel is connected by cables
to two doors located in the positions where the bridge could have been. As before,
in order to traverse the close path, the player must solve the panel puzzle such that
the bottom door is open, thereby closing the top door. The open path can be used to
open the top door, and finally, the traverse path is traversable if and only if the top
door is open.

The one-way-and-doors instance we are reducing from may have some of the door
gadgets initially open. Because The Witness is three-dimensional, we can build a
skybridge above the rest of the puzzle allowing the player to open any door gadgets
that should be initially open. For each such door gadget, a path branches off the
skybridge to an overlook point with line of sight to the puzzle panel controlling that
gadget. The player can use this overlook to open the door from the skybridge. Using
walls along the sides of the skybridge (including its branches), we block line of sight to
the panels controlling door gadgets that should be initially closed. The skybridge ends
in a one-way gadget leading to the starting point of the one-way-and-doors instance,
ensuring the player cannot return to the skybridge. Note that setting a door gadget
to the open state allows the player to traverse strictly more paths than the closed
state, so the player cannot benefit from leaving any skybridge-visible doors closed.
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7.10.4 Light Bridges
Light-bridge metapuzzles consist of a large void between two platforms, with a
controller panel at one or both ends. Drawing a path on the controller panel causes
a “hard light” bridge to follow a corresponding path between the two platforms. As
with all panels, solution paths remain displayed on the panel after the player finishes
drawing them, so the player can traverse the light bridge to the other platform. If there
is a controller panel on that side of the void, the player can draw another path to create
another light bridge. Each controller panel can only control the bridge originating
on its side, but both paths appear on the panel, so the first bridge’s path constrains
the second, and any clues in the panels must be satisfied in each configuration. The
objective of the metapuzzle is to position the bridge(s) so that the player can view
(and solve) panels located around the void, or to use the bridge(s) to reach an exit
platform on a third side of the void.

The Witness has two light-bridge metapuzzles inside the mountain. The first
metapuzzle has a single bridge. There is a pillar in the center of the void that blocks
the player from traversing straight through it, but permits the player to enter from
the bridge and exit at a 90-degree angle, slightly divorcing the player’s path from the
path drawn on the panel. Besides panels on the platform across the void, there are
additional panels mounted on the walls of the void area, so a secondary goal is to have
the bridge pass in front of these panels (as if the panel has “virtual” edge hexagons).
Neither of these features is interesting for hardness.

The second light bridge metapuzzle has two bridges. The objective of this meta-
puzzle is to exit through a door on the side of the void. This door is only open when
both bridges are in place, and even if it were always open, it is not possible to draw a
solution path on the first controller panel directly to the door (because the panel’s
clues cannot be satisfied). Instead the player must cross to the other platform, draw
the second bridge, return to the first platform and adjust the first bridge, and so on.
The optimal solution requires crossing and returning twice before the first bridge can
be drawn to the exit.

The hardness of light-bridge reconfiguration metapuzzles remains open. We specu-
late that they are PSPACE-complete, as many reconfiguration problems are.

Open Problem 7.10.4. Is it PSPACE-complete to solve Witness light-bridge recon-
figuration metapuzzles?

7.11 Puzzle Design Problem
The previous sections analyzed the hardness of solving Witness puzzles. In this section,
we consider the Witness puzzle design problem: creating a Witness puzzle having a
specified set of solution paths. While most of the panels in The Witness only need
to be interesting to solve, the controller panels for metapuzzles depend critically on
having a specific set of solutions corresponding to the positions of the environmental
objects they control. That is, the panel controlling a sliding bridge metapuzzle that
brings the player from one platform to another must have solutions representing the
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bridge being at each end. The controller also must not have a solution representing
the bridge in the middle, lest the player get stuck on one platform by moving the
bridge to the middle while not on it.

Open Problem 7.11.1. What is the complexity of the Witness puzzle design problem?

7.11.1 Path Universality
More specifically, it is natural to ask whether there can exist an algorithm using only
a subset of the available clue types and nonclue constraints. Ideally, we would hope
for a small clue set having path universality, the ability to express all possible sets
of solution paths. Unfortunately, an information-theoretic argument rules out path
universality for reasonable clue sets.

Observation 7.11.2. A rectangular board with 𝑛 cells admits 2Θ(𝑛) simple paths and
22Θ(𝑛) sets of simple paths, even if we fix the endpoints to opposite corners of the puzzle.

Proof. Fixing the endpoints reduces the number of paths by Θ(𝑛2), so we focus on the
fixed-endpoint case. For the upper bound, a simple path makes 𝑂(𝑛) steps with at
most three choices (turn left, turn right, or go straight) at each step, beyond the first
step with four choices (north, west, south, east), so there are 𝑂(3𝑛) paths. For the
lower bound, we consider the case that the fixed endpoints are diagonally opposite,
namely top-left and bottom-right, and describe a family of 2Ω(𝑛) such paths. Suppose
the puzzle is 𝑥 × 𝑦, and assume by symmetry that 𝑥 ≥ 𝑦. We start with 2𝑥−1 possible
paths within the top row of cells, from the top-left corner to the bottom-right corner
of the row, by choosing whether each cell except the rightmost is left or right of the
path (while the rightmost is forced to be on the left, to ensure the correct endpoint).
Then we continue the path down one unit, and apply the same construction to the
third row of cells from the top-right corner to the bottom-left corner. We repeat this
process, zig-zagging back and forth, until we must stop to leave room to get to the
bottom-right corner of the puzzle. In total, we obtain

(2𝑥−1)2⌊(𝑦−1)/4⌋+1 ≥ 2(𝑥−1)((𝑦−1)/2+1) = 2(𝑥−1)(𝑦+1/2) = 2Ω(𝑛)

paths. Combining the upper and lower bounds gives 2Θ(𝑛) paths, and so the powerset
of the set of paths has size 22Θ(𝑛) .

For clues of constant size, there are 𝑐 = 𝑂(1) choices of clue for each vertex, edge,
and cell (including not placing a clue at that position), and 𝑂(𝑛) clue positions, so
there are only 𝑐𝑂(𝑛) puzzles. Even if we allow polyominoes and antipolyominoes of size
𝑘(𝑛), there are at most 𝑐𝑂(𝑛·𝑘(𝑛)) puzzles. By Observation 7.11.2, most sets of solution
paths do not have a corresponding puzzle.

7.11.2 𝑘-Path Universality
Instead, we must settle for 𝑘-path universality, the ability to express all sets of up to
𝑘 solution paths, for some small 𝑘. Here we focus on 𝑘 = 1.
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(a) Empty puzzle (b) Short path (c) Long path

Figure 7-52: Path universality requires distinguishing the short and long boundary
paths.

Observation 7.11.3. Broken edges are 1-path-universal.

Proof. Break all edges not in the desired solution path.

Observation 7.11.4. Edge hexagons are 1-path-universal.

Proof. Place edge hexagons on exactly those edges in the desired solution path. When
the path visits an edge, it visits one of the vertices incident to the next edge, so if the
path ever deviates from the edges with hexagons, at least one of the hexagons cannot
be visited because one of its incident vertices has already been visited.

Many clue sets are not even 1-path-universal, often because they cannot distinguish
between different paths along the boundary. Consider the empty puzzle in Figure 7-52a.
The following observations are based on trying to add clues that distinguish the short
path in Figure 7-52b from the long path in Figure 7-52c.

Observation 7.11.5. Squares, stars, polyominoes, and antipolyominoes, in any com-
bination, are not 1-path-universal.

Proof. These clue types cannot distinguish the short and long paths because their
satisfaction depends only on the other clues contained in or the shape of their region,
not the path that induced the region.

Observation 7.11.6. Vertex hexagons are not 1-path-universal.

Proof. Placing vertex hexagons at each boundary vertex (Figure 7-53a) rules out the
short path, but does not force the long path because the path can enter the interior
and return to the boundary at the next hexagon (Figure 7-53b). Vertex hexagons are
entirely redundant for enforcing the short path because the vertices bearing the start
circle and end cap are already required to appear in the path.

Vertex hexagons combined with antibodies can force the short and long paths as
shown in Figure 7-54. This example shows that adding antibodies can increase the set
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(a) Puzzle (b) Unintended solution

Figure 7-53: Vertex hexagons can rule out the short path, but not force the long path.

(a) Short path (b) Long path

Figure 7-54: Vertex hexagons with antibodies can force the short and long paths.

(a) Horizontal zigzag (b) Vertical zigzag

Figure 7-55: Vertex hexagons cannot distinguish these solutions, and antibodies cannot
help.
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Figure 7-56: 1-triangle clues can rule out the long path, but not force the short path.

of expressible paths. However this combination is still not 1-path-universal as vertex
hexagons cannot distinguish the paths in Figure 7-55 and there are no unsatisfied
hexagons to be eliminated by antibodies.

Observation 7.11.7. 1-triangle clues are not 1-path-universal.

Proof. Adding a 1-triangle clue in the cell adjacent to both the start circle and end cap
rules out the long path, but doesn’t force the short path, as shown by the unintended
solution in Figure 7-56.

7.11.3 Region Universality
As paths along the boundary are the source of problems, we can settle for specifying
the same interior edges as a given path, but possibly with different boundary edges.
This is equivalent to the ability to specify all region decompositions (sets of regions
inducible by some path and whose union is the entire puzzle), so we call it region
universality. There are 𝑂(𝑛2) paths consistent with a given region decomposition (see
Lemma 7.11.8 below), so Observation 7.11.2 also roughly counts the number of (sets
of) region decompositions, so the same information-theoretic argument makes general
region universality impossible. Therefore, we consider 𝑘-region universality where up
to 𝑘 region decompositions must be realized, and focus on 𝑘 = 1.

Lemma 7.11.8. In polynomial time, we can decide whether a given set 𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝑚}
of disjoint sets of cells is a region decomposition, and if so, produce a path that induces
that region decomposition.

Proof. If the union of the sets of cells is not the set containing all cells in the puzzle,
𝐷 is not a region decomposition. If any 𝐷𝑖 does not contain a cell adjacent to the
boundary, 𝐷 is not a region decomposition, because the path along 𝐷𝑖’s outline is a
cycle. If any vertex in the puzzle is incident to cells in more than two regions, 𝐷 is
not a region decomposition, because more than two edges incident to that vertex are
forced to be in any solution.
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Otherwise, we will search for a path 𝑃 inducing 𝐷. Initially, 𝑃 consists of all edges
between adjacent pairs of cells not in the same region (all paths inducing 𝐷 must
contain these edges). Because every 𝐷𝑖 contains at least one cell on the boundary,
each path segment in 𝑃 begins and ends at a boundary vertex. To avoid inducing
additional regions, the edges we add to complete 𝑃 must lie entirely on the boundary.

For each pair (𝑠, 𝑡) of endpoints of (possibly different) segments, consider the other
endpoint 𝑠′ of the segment starting at 𝑠. The path can go clockwise or counterclockwise
along the boundary, connecting 𝑠′ to the next endpoint in that direction. After this
choice, the boundary segments must alternate between not being in the path and
being in the path, so that every endpoint except 𝑠 and 𝑡 has degree 2. If there is
such a choice of 𝑠, 𝑡 and boundary segment parity, then the resulting path induces 𝐷;
otherwise, 𝐷 is not a region decomposition. There are only 2𝑖 choices for 𝑠 and 𝑡 and
two choices for parity, so this algorithm runs in polynomial time.

Any 1-path-universal set of clues is also 1-region-universal. We revisit the examples
above that are not 1-path-universal:

Observation 7.11.9. Vertex hexagons are not 1-region-universal.

Proof. The puzzle in Figure 7-55 contains the maximal set of vertex hexagons and
admits at least two region decompositions (induced by the solutions shown in the
figure). Removing vertex hexagons from a puzzle can only add additional solutions
and region decompositions, not remove them, so vertex hexagons cannot express only
one of the region decompositions shown in the figure.

Observation 7.11.10. Squares are not 1-region-universal.

Proof. Squares cannot force the entire puzzle to be a single region. If the puzzle
contains only squares of a single color, the squares do not constrain the path or the
region decomposition. If the puzzle contains multiple colors of squares, all solutions
induce at least two regions.

Observation 7.11.11. Stars are not 1-region-universal.

Proof. Stars cannot express some region decompositions in which a region consists of
a single cell. Consider a desired decomposition in which the bottom-left cell forms
a singleton region. Any cell containing a star cannot be in a singleton region in any
solution, so the bottom-left cell must be empty. But stars are not affected by empty
cells in their region, so if there is a solution path placing the bottom-left cell alone
in a region, the path remains a solution after being locally modified to place the
bottom-left cell in the adjacent region instead.

Open Problem 7.11.12. Are polyominoes 1-region-universal?

It is tempting to think that monominoes are 1-region-universal by 2-coloring the
regions and placing monominoes in every cell in one color class. While this forces any
solution path to visit all the specified region boundaries, it leaves the path free to
further subdivide those regions.

247



Nonclue constraints. Previously uninteresting nonclue constraints become more
interesting for universality. For example, intersection puzzles inherently take the
intersection of the solution sets of their component puzzles, so adding intersection to a
set of clue types may allow specifying more solution sets than before, possibly making
them universal.
Theorem 7.11.13. Intersection puzzles having

∙ one component puzzle containing only squares of 2 colors, or

∙ one component puzzle containing only monominoes;
and

∙ two component puzzles containing only stars of 𝑞 colors, or

∙ 𝑞 − 1 component puzzles containing only stars of 1 color, or

∙ one component puzzle containing nonmonomino polyominoes, or

∙ 𝑞 − 1 component puzzles containing only monominoes and antimonominoes, or

∙ 𝑞 − 1 component puzzles containing only antibodies and antimonominoes,
are 1-region universal, where 𝑟 is the number of regions in the input region decomposi-
tion and 𝑞 is half of the maximum number of exterior cells in any region in the input
region decomposition, rounded down.
Proof sketch. The clue types in the first set of component puzzles constrain groups of
cells to be in different regions (disjointness). Conversely, the clue types in the second
set of component puzzles constrain groups of cells to be in the same region (cohesion).
Intersection puzzles allow us to overcome the one-clue-per-cell limit to fully specify
the region decomposition using these groupwise constraints. For colored clue types,
there is a trade-off between the number of components and the number of colors.

Proof. We give an algorithm taking as input a region decomposition 𝐷 = {𝑅1, 𝑅2, . . . , 𝑅𝑟}
and producing an intersection puzzle for which all solutions induce 𝐷 (and there is at
least one such solution). Each component puzzle is shaped like the union of the 𝑅𝑖.
By Lemma 7.11.8, we can produce a path 𝑃 inducing 𝐷. In every component puzzle,
we place the start circle and end cap at the endpoints of 𝑃 .

Disjointness. The component puzzle enforcing disjointness constrain the solution
path to induce 𝐷 or a refinement of 𝐷 (splitting some 𝑅𝑖 into multiple regions).

∙ Squares of 2 colors: We 2-color 𝐷 and create one component puzzle in which
each cell contains a square of that cell’s color. Regions must be monochromatic
in squares, so this puzzle enforces disjointness.

∙ Monominoes: We 2-color 𝐷 and create one component puzzle having monomino
clues in all the cells in one color class, leaving the cells in the other class empty.
By the polyomino area constraint, no solution can place a cell containing a
monomino clue in the same region as an empty cell, so this puzzle enforces
disjointness.
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(a) Numbering the
non-interior cells. The

interior cells are shaded.

(b) The two component puzzles implementing cohesion.

Figure 7-57: An example of implementing cohesion using stars of 𝑞 colors.

Cohesion. The component puzzle(s) enforcing cohesion constrain the solution to
place cells in the same 𝑅𝑖 in the same region. Note that our constructions for cohesion
can assume disjointness, because it is enforced by the first component puzzle.

The constructions for some sets depend on a constant 𝑞, defined as follows. First,
define the interior cells of 𝑅𝑖 to be the cells in 𝑅𝑖 having all four neighbors also in 𝑅𝑖,
and call the remaining cells of 𝑅𝑖 non-interior. Then 𝑞 is half of the maximum number
of non-interior cells in any 𝑅𝑖, rounded down.

∙ Stars of 𝑞 colors: Create two component puzzles. Arbitrarily number the
non-interior cells of each 𝑅𝑖 starting at 0. In each 𝑅𝑖, place stars of color 𝑐
in the even-parity cell pairs (2𝑐, 2𝑐 + 1) in the first component puzzle and in
the odd-parity cell pairs (2𝑐 + 1, 2𝑐 + 2) in the second component puzzle. See
Figure 7-57 for an example.
There may be up to 2𝑟 stars of each color in each component puzzle, but any
path satisfying disjointness cannot pair any star in 𝑅𝑖 with a star in 𝑅𝑗 for 𝑖 ̸= 𝑗,
so each star color is effectively unique within 𝑅𝑖. Then cells numbered 2𝑐 and
2𝑐 + 1 must be in the same region to satisfy the stars in the first component
puzzle, and cells numbered 2𝑐+1 and 2𝑐+2 must be in the same region to satisfy
the stars in the second component puzzle. Then by transitivity, all non-interior
cells of each 𝑅𝑖 must be in the same region in any solution. Any path under
which the non-interior cells are in the same region also places the interior cells in
that region because the edges separating the interior cells from the non-interior
cells constitute a cycle. Thus, all cells in each 𝑅𝑖 must be in the same region.

∙ Stars of 1 color: Create 𝑞 − 1 component puzzles. As in the previous construc-
tion, number the non-interior cells of each 𝑅𝑖 starting at 0. In puzzle 𝑝, in each
𝑅𝑖 containing a (𝑝, 𝑝 + 1) cell pair, place a star in those cells.
In each puzzle, each 𝑅𝑖 contains only two stars, so those cells must be in the
same region in any solution, and so by transitivity all non-interior cells in each
𝑅𝑖 are in the same region. Then the interior cells are also in the region by the
previous argument, so all cells in each 𝑅𝑖 must be in the same region.

∙ Nonmonomino polyominoes: Create one component puzzle. For each 𝑅𝑖

containing more than one cell, place a polyomino clue shaped exactly like 𝑅𝑖
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in the leftmost bottommost cell in 𝑅𝑖. A path satisfying disjointness can only
satisfy these polyomino clues by refraining from further dividing the 𝑅𝑖. (We
do not place monomino clues in single-cell 𝑅𝑖 because they cannot be divided
further in any case.)

∙ Monominoes and antimonominoes: Use the construction for stars of 1 color,
except when placing pairs of stars, place a monomino and an antimonomino
instead. In each of the 𝑞 − 1 component puzzles, each 𝑅𝑖 contains only a single
monomino and antimonomino, so they must be in the same region in any solution.
Then follow the same argument.

∙ Antibodies and antimonominoes: Use the construction for stars of 1 color,
except when placing pairs of stars, place an antibody and an antimonomino
instead. In each of the 𝑞 − 1 component puzzles, each 𝑅𝑖 contains only a single
antibody and antimonomino, so they must be in the same region in any solution.
Then follow the same argument.

The first set of component puzzles constrains any solution to place cells in different
𝑅𝑖 in different regions and the second set constrains any solution to place cells in the
same 𝑅𝑖 in the same region. Thus, any solution path must induce 𝐷, and 𝑃 is such a
path.

7.11.4 Further Variants
All of the analysis above looked for exact matches to a path or region decomposition.
We can also consider applying a scale factor, where each edge in the specified path is
represented by 𝑠 consecutive edges, or each cell in the specified region decomposition
is represented by an 𝑠 × 𝑠 square, in the produced puzzle.

Returning to the motivation of specifying 𝑘 > 1 paths or region decompositions,
metapuzzles differ in the size of the sets they require. Light-bridge metapuzzles, for
example, require only a small constant number of paths, because the player will be
spending time traversing the bridge and interacting with any panels or other objects
in the void. But the moving ramp and log claw in the sawmill can be moved to a
linear number of positions, so we might hope for 𝑂(𝑛)-path or -region universality.

Open Problem 7.11.14. Classify sets of clue types and/or nonclue constraints by
their degree of path and region universality, or more generally, characterize the sets of
paths and regions they can express.

7.12 Open Problems
We restate here the open problems defined in the previous sections, then briefly suggest
additional possible lines of inquiry.

Open Problem 7.3.1. Is there a polynomial-time algorithm to solve Witness puzzles
containing only hexagons on vertices?
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Open Problem 7.5.2. Is it NP-hard to solve Witness puzzles containing only a
constant number of colors of stars? Or just a single color of stars?

Open Problem 7.10.4. Is it PSPACE-complete to solve Witness light-bridge recon-
figuration metapuzzles?

Open Problem 7.11.1. What is the complexity of the Witness puzzle design problem?

Open Problem 7.11.12. Are polyominoes 1-region-universal?

Open Problem 7.11.14. Classify sets of clue types and/or nonclue constraints by
their degree of path and region universality, or more generally, characterize the sets of
paths and regions they can express.

Parsimony. Which hardness reductions can be made (or are already) parsimonious,
and thus prove #P-hardness and ASP-hardness? For example, Theorem 7.6.1 is
a parsimonious reduction from X3C, and X3C is #P- and ASP-complete [80]. On
the other hand, Theorem 7.4.2 is a parsimonious reduction from tree-residue vertex
breaking, but is tree-residue vertex breaking #P/ASP-hard?

Fixed-parameter tractability with respect to board height. We conjecture
that many Witness puzzles can be solved in polynomial time (XP) when there are a
constant number of rows in the puzzle, using dynamic programming over the possible
vertical cross-sections and how they are topologically connected on either side. In
particular, we believe this to be possible for broken edges, hexagons, triangles, squares,
stars, and constant-sized polyominoes and antipolyominoes. This leaves three clue
types: antibodies and unbounded polyominoes and antipolyominoes. Antibodies seem
difficult to handle because of the need to verify that they are necessary. Unbounded
polyomino clues are NP-hard in 2 × 𝑛 puzzles by a simple reduction from 3-Partition
(similar to [54, Theorem 3]), so are not in XP unless P = NP.

Beyond just membership in XP as above, are any of these problems fixed-parameter
tractable with respect to the number of rows? For example, we conjecture that this is
possible for broken edges, hexagons, triangles, and squares and stars of 𝑂(1) colors.

7.13 Adversarial-Boundary Edge-Matching Prob-
lem is Σ2-complete

Proof of Lemma 7.8.7. We reduce from QSAT2, which is the Σ2-complete problem
of deciding a Boolean statement of the form ∃𝑥1 : ∃𝑥2 : · · · : ∃𝑥𝑛 : ∀𝑦1 : ∀𝑦2 : · · · :
∀𝑦𝑛 : 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛; 𝑦1, 𝑦2, . . . , 𝑦𝑛) where 𝑓 is a Boolean formula using and (∧), or
(∨), and/or not (¬). We convert this formula into a circuit, lay out the circuit on a
square grid, and implement each circuit element as a set of tiles. The first player’s
boundary-edge swaps encode a setting of true or false for the first player’s variables.
Then, as part of solving the edge-matching problem, the second player must exhibit a
setting of their variables that makes the formula false; otherwise the first player wins.
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Conversion to circuit. We convert the formula into a Boolean circuit with and,
or, and not gates for the Boolean operations, plus 2𝑛 input gates to represent the
𝑥𝑖s and 𝑦𝑖s, binary fan-out gadgets to make copies of these values, and one output
gate to represent the formula output (which must be true).

Circuit layout. We construct a planar layout of this circuit on an integer grid.
Each cell in the grid views itself as being “connected” to zero, one, two, or three of its
edge neighbors:

∙ Each and and or gate maps to a three-neighbor cell (two neighbors for the
inputs, one neighbor for the output).

∙ Each fan-out gate maps to a three-neighbor cell (one neighbor for the input,
two neighbors for the outputs).

∙ Each not gate maps to a two-neighbor cell (one neighbor for the input, one
neighbor for the negated output).

∙ Each input gate maps to a one-neighbor cell (one neighbor for the output).

∙ Each output gate maps to a one-neighbor cell (one neighbor for the input).

∙ Each wire between gates maps to a (possibly empty) path of two-neighbor wire
cells (one neighbor for the input, one neighbor for the copied output).

∙ All other cells are zero-neighbor null cells.

We construct the layout as follows. Let 𝑔 be the number of (and, or, fan-out,
not, input, and output) gates. Because the graph has maximum degree 3, we can
find an orthogonal layout in a (𝑔

2 + 1) × 𝑔
2 grid of cells [114].

We want each 𝑥𝑖 input to appear in the top row of the grid, in an even column,
with its output on the south side, with all other cells in the top row (including all odd
columns) being null cells. To guarantee this, we add a top row, move each 𝑥𝑖 input
gadget to an even column in this top row, and connect the old location of that gadget
to the new location via an orthogonally routed edge by adding 𝑂(1) new empty rows
and columns.

Then we replace each orthogonally routed edge by a path of wire cells. Addition-
ally, we scale the coordinates by a constant factor, and replace each crossover between
pairs of edges with a crossover gadget built out of and and not gates, implementing
a nand crossover which can be built from the standard 3-xor crossover [68].

Constructing the board. The adversarial-boundary edge-matching board is di-
vided into two regions, an upper circuit region and a lower garbage region. In between,
we have a single row of tiles called the wasteline that is forced to separate the regions
(explained later). The circuit region is tileable only if the circuit is satisfied. The
garbage region is always tileable; it provides space for tiles that weren’t used in the
circuit region to be placed.
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Circuit region. In the circuit region, each cell in the circuit layout is mapped to a
set of tiles, one of which will be used in that position in the solution. The other tile
choices for that cell will be garbage collected in the garbage region. The first player’s
boundary-edge swaps set the 𝑥𝑖 inputs to the circuit. The second player will then try
to solve the resulting problem by choosing a value for the 𝑦𝑖 inputs, then evaluating
the circuit; all other tile choices are forced by the inputs.

In the circuit region of the board, all tile edges encode a circuit signal from the set
{true, false, null}. To preserve the circuit layout in all legal placements of the tiles, the
top and bottom edges of each tile in the circuit region also encode their position. The
tile at position (𝑥, 𝑦) (where the origin is the upper-left tile) encodes (𝑥, 𝑦) on its top
edge and (𝑥, 𝑦 + 1) on its bottom edge. In this way, we can associate each circuit cell
with the set of tiles that may appear in the corresponding slot in the tiling problem.

The set of tiles produced for each cell depends on its type. Unless explicitly
mentioned otherwise, the position encoding on the top and bottom edges is as above.

∙ and, or: four tiles encoding the truth-table operation on the edges connecting
to other cells. For example, an and cell with inputs on its top and left edges
and output on its right edge would produce four tiles with (𝐹, 𝐹, 𝐹 ), (𝐹, 𝑇, 𝐹 ),
(𝑇, 𝐹, 𝐹 ) and (𝑇, 𝑇, 𝑇 ) as the circuit signals on its top, left and right edges
respectively, with null on its bottom edge.

∙ not, wire, fanout: two tiles encoding their truth table on the edges connecting
to other cells and null on the other edges.

∙ output: one tile with the false circuit signal on its connected edge and null on
its other edges. Because there is no tile for this cell with true on its connected
edge, the tiling can only be completed when the circuit evaluates to false.

∙ input representing 𝑥𝑖: two tiles that propagate the circuit signal selected by the
first player’s top-boundary swap. By the layout process above, these cells are
always in the top row and an even column. These tiles encode their column pair
number instead of their position on their top edge, along with a circuit signal (so
either (𝑥

2 , 𝑇 ) or (𝑥
2 , 𝐹 )). The bottom edge uses the usual position encoding and

propagates the circuit signal (so ((𝑥, 1), 𝑇 ) or ((𝑥, 1), 𝐹 ), respectively). Their
left and right edges always encode the null circuit signal.

∙ input representing 𝑦𝑖: two tiles, one with true and the other with false on the
connecting edge, and null on the other edges.

∙ null: one tile with the null circuit signal on all edges. For cells in the top row,
the top color encodes ⌊𝑥

2 ⌋ instead of the usual (𝑥, 0) position, so that the first
player’s swapping does not affect the tile’s placeability. Cells in the top row
immediately to the right of an input cell representing 𝑥𝑖 instead have two tiles
in their set, encoding true and false circuit signals on their top edge (and null on
their other edges), to terminate whichever signal the first player did not assign
to 𝑥𝑖.
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Figure 7-58: Examples of tile sets produced for each type of cell in the circuit region.
𝑥 and 𝑦 represent the position of the cell and tan, blue and gray represent the false,
true and null circuit signals respectively. Except for the inputs representing 𝑥𝑖 and
their special null neighbors, each tile type can be instantiated with connecting edges
in any direction.
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(b) The garbage dominoes collecting the
garbage collection tiles that would have been

used for the both-inputs-true or tile had it not
been placed in the circuit region.

Figure 7-59: Collecting garbage for the or cell with tile set shown in Figure 7-58b,
assuming the rightmost (both inputs true) tile was placed in the circuit region.

Wasteline. The wasteline is a row of tiles that transitions from the circuit region
to the garbage region. The top of each tile encodes the null circuit signal and the
position of the cell in the same way as in the circuit region. The left and right edges
in each tile are unique colors encoding the column of the tile, forcing the wasteline
to occur in order as a contiguous row in the tiling. The bottom of each tile is the
garbage color 𝑔.

Garbage region. The garbage region provides space for the unused tiles from each
set to be placed. For each tile 𝑡 in the circuit region (even if it’s the only tile in its
set), we emit four garbage tiles, each having one of 𝑡’s edge colors on one side and 𝑔
on the other three sides, and four tiles having 𝑔 on all four edges, allowing that tile to
be encapsulated into a 3 × 3 block having 𝑔 on its exterior, as in Figure 7-59a.

Consider the boundary edges of the circuit region (that is, the entire top board
boundary, parts of the left and right board boundary, and the top edges of the
wasteline). In a valid tiling, these edges will always match a circuit tile edge, so
for each of those edges we remove a corresponding garbage collection tile (with that
boundary color and three 𝑔 edges) that we just produced.

We then need to provide a way to garbage collect the garbage collection tiles for
the used tiles. Each nonboundary edge of each used tile corresponds to an edge of
a neighboring used tile, so we can pair the corresponding garbage collection tiles to
create a vertical or horizontal domino having 𝑔 on its exterior, as in Figure 7-59b.

Finally, we need to provide exactly enough tiles having 𝑔 on all four sides to fill the
garbage region. If the circuit region is 𝑤 tiles wide and ℎ𝑐 tiles tall (assuming 𝑤 ≥ 3)
and we produced 𝑡 total circuit tiles, we have 𝑡 − 𝑤ℎ𝑐 3 × 3 blocks, 2𝑤ℎ𝑐 − 2𝑤 vertical
dominoes and 2𝑤ℎ𝑐 − 2ℎ𝑐 horizontal dominoes to pack. Using a simple strategy of
packing the 3 × 3 blocks horizontally in as many rows as necessary, followed by the
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vertical dominoes and horizontal dominoes, each type starting on a new row, the
garbage region has height ℎ𝑔 = 3⌈3(𝑡−𝑤ℎ𝑐)

𝑤
⌉ + 4(ℎ𝑐 − 1) + ⌈4ℎ𝑐(𝑤−1))

𝑤
⌉. We provide

𝑤ℎ𝑔 − 9(𝑡 − 𝑤ℎ𝑐) − 2(4𝑤ℎ𝑐 − 2𝑤 − 2ℎ𝑐) tiles with 𝑔 on all four sides to pack the
remaining area in the garbage region.

Boundary-colored board. The board’s width is determined by the width of the
circuit region, which is in turn determined by the circuit layout. The height is the
circuit region height, plus 1 for the wasteline, plus the garbage region height (i.e.,
ℎ𝑐 + 1 + ℎ𝑔). The top edge of the board is colored (⌊𝑥

2 ⌋, 𝑇 ) and (⌊𝑥
2 ⌋, 𝐹 ) above the

input cells corresponding to 𝑥𝑖 variables and the null cells immediately to their right,
and (⌊𝑥

2 ⌋, 𝑁) elsewhere. The left and right edges of the board above the wasteline
have the null circuit signal color. The left and right edges at the wasteline have the
unique colors on the left (right) edge of the leftmost (rightmost) wasteline tile. Below
the wasteline, the left, right and bottom edges are all colored 𝑔.

Argument. The first player swaps pairs of top-boundary edges, then the second
player attempts to tile the resulting board.

Garbage tiles cannot be placed in the circuit region. Because each garbage tile
has 𝑔 on three or four of its edges, there is no placement of garbage tiles with non-𝑔
colors on its entire exterior. Thus, if any garbage tiles are placed in the circuit region,
the entire region must be filled with garbage tiles, but this is impossible because the
corners of the boundary of the circuit region have two non-𝑔 edges.

The wasteline’s placement is fixed by the unique colors on the left and right
boundary. The wasteline tiles encode their position on their top edge, so this also fixes
all the tiles above in place; each tile in the circuit region must be from the set created
for the corresponding circuit cell. Then the tiles corresponding to the 𝑥𝑖 input cells
must correctly conduct the circuit signal (true or false) from the boundary. (Swaps of
the boundary above the null cells in the top row change nothing because those edges
have the same color.)

If the second player knows an assignment to the 𝑦𝑖 variables that makes the circuit
evaluate to false, they can select the tiles conducting that circuit signal from the sets
corresponding to their input cells. After that, the tiling in the circuit region is forced;
from the sets of tiles corresponding to gate and wire cells, only one tile can be placed
(based on the inputs from its connecting cells), and its output connection forces further
cells. If the circuit indeed evaluates to false, then the tiling can be completed at the
output cell, whose only tile requires its input to be false. In that case, the remaining
tiles can be garbage collected (by the construction of the garbage region given above),
and the second player wins the game.

Otherwise, if the circuit evaluates to true under all 𝑦𝑖 variable settings, there is no
way to place a tile that connects to the output cell’s tile, and the first player wins
the game.

Losing strategy guarantee. We can easily adapt this proof to guarantee that
the first player always has a losing strategy in the produced adversarial-boundary
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edge-matching instance (regardless of whether they have a winning strategy). Simply
amend the QSAT2 instance by adding an additional existential variable 𝑥𝑛+1 which
is conjoined with the formula (𝑓(. . . ) ∧ 𝑥𝑛+1). Performing the boundary-edge swap
corresponding to setting 𝑥𝑛+1 to false is a losing strategy.

Tile rotation. The reduction above remains valid when tile rotation is allowed.
The wasteline’s position and orientation are fixed by the unique boundary colors, then
the position encoding on the top boundary and top edge of the wasteline prevents
the circuit tiles from being rotated. Allowing the garbage collection tiles to rotate is
harmless because they still cannot be placed in the circuit region.

Signed colors. The reduction above produces an unsigned edge-matching instance,
but every unsigned edge-matching puzzle can be converted into a signed edge-matching
puzzle with a constant-factor increase in size and the number of colors [44, Theorem
4].
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Chapter 8

A Proposal for Parsing Screenshots
of Grid-based Games1

8.1 Motivation
Video games are a rich source of interesting search problems like those considered in
this thesis, but extracting the problem instances from games is a source of accidental
challenge. Transcribing instances by hand is tedious and error-prone. Extracting
instances by reverse-engineering the game’s data files requires a different skillset from
the study of the search problem, and is not possible if the instances are procedurally
generated. The most obvious approach is to parse screenshots from the game; unso-
phisticated parsers based on testing the colors of specific pixels are inflexible and work
only for simple games, while sophisticated computer vision processing again requires
a different skillset.

As an enabling technology for the study of these search problems, we propose to
build a generic framework for parsing grid-based video game images using a high-level
description of the relationships between primitive elements in the screenshots. The
framework will use existing techniques from image processing and computer vision to
locate the primitive elements in the image and fit them to the high-level description.
The parser can be used directly in a game-playing program (“bot”), or the parsed
game state can be rendered into human- or machine-readable text or back into an
image format such as SVG (useful for writing papers about the game or the resulting
search algorithms).

To get an idea for what such a framework would need, we built several parsers
tailor-made for specific games as part of writing programs that play those games.

LYNE. LYNE is a game played on dense grid graphs of triangles, squares, diamonds,
and octagons (see Figure 8-1a). There are two terminals of each shape except octagons,
denoted by a light color at the center of that shape. The objective is to connect the
terminals of each shape via a path containing only nodes of that shape and octagons.

1Screenshots in this chapter are used under Fair Use for the educational purpose of describing an
approach to parsing them. All trademarks are the property of their respective owners.
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Each octagon must be visited by paths a number of times equal to the number of
small squares inset in the octagon.

We have written a complete bot2 that can automatically solve all levels in the
game. The bot parses a puzzle by building connected component regions of RGB
pixel values, filtering out shapes by their colors, and recovering the grid by aligning
the centers of the connected components. The bot finds terminals and octagon pips
by looking for regions of the terminal or pip colors inside the bounding boxes of the
shapes. This parser does not attempt to recognize the shapes except by their color.

Sokobond. Sokobond is a Sokoban-like game in which the player moves a particular
atom through the faces of a grid graph (see Figure 8-1b). When two atoms with free
electrons become adjacent, they form a bond and move together from then on. Fixed
objects located at grid vertices break bonds, form double or triple bonds, or rotate
a molecule. The level is solved when no atom has free electrons, usually reached by
forming a single molecule from all atoms.

We have written a bot3 that solves some Sokobond puzzles. The bot’s parser
recognizes atoms by color, then finds free electrons by looking for connected components
of white pixels inside the atom’s black outline and finds bonds by looking between
each pair of adjacent atoms. Empty squares, the puzzle boundaries, and grid vertex
objects are similarly detected by color. Free electrons rotate around their parent atom,
sometimes occluding bonds, so the bot takes multiple screenshots and checks that
they agree before calling the solver.

Hexcells. Hexcells is a series of Minesweeper-like games of logical deduction played
on a hexagonal grid (see Figure 8-1c). Each cell in the puzzle is present or absent.
Clues along axis-aligned rays through the grid indicate the number of present cells
on that ray, and clues in absent cells (revealed only after marking the cell as absent)
indicate the number of present cells in their neighborhood. The objective is to mark
all the present cells. Each Hexcells game includes hand-crafted levels of increasing
difficulty, and the last game in the series, Hexcells Infinite, includes a procedural
puzzle generator.

We began to implement a bot that plays Hexcells, but stopped because we could
not reliably parse puzzles. Our attempt at a Hexcells puzzle parser recognizes hexes
by their color and recovers the grid structure by aligning the centers of the hexes
(similar to our parser for LYNE puzzles). The parser collects clues along lines of hexes
by considering the grid to extend for one further hex in each direction. The parser
attempts to recognize clues (numbers possibly surrounded by braces or dashes) by
nearest-neighbor comparison with a human-classified training set, but this recognition
is unreliable due to antialiasing causing the same clue to render differently in different
grid positions.

2https://github.com/jbosboom/lynebot
3https://github.com/jbosboom/sokobondbot
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(a) LYNE (b) Sokobond

(c) Hexcells (d) Sigmar’s Garden

Figure 8-1: Screenshots from games we have written bots for.
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Sigmar’s Garden. Sigmar’s Garden is a marble-matching solitaire minigame (see
Figure 8-1d) included in the alchemy-themed programming game Opus Magnum.
Marbles of the four classical elements match with themselves or with salt, salt matches
with itself, vitae matches with mors, and metals match with quicksilver in order from
lead to gold. Only marbles with three contiguous adjacent empty spaces (including
spaces off the edge of the board) can participate in a match, with other marbles
being faded to indicate their inactivity. Puzzles are procedurally generated and every
instance is winnable.

We have written a bot4 that solves Sigmar’s Garden puzzles. The bot’s parser has
hardcoded pixel coordinates of the centers of each hex on the game board, found by
running a circle detector on a screenshot of an empty board. The bot classifies marbles
by extracting a circular region from each hex, building four histograms, and comparing
those histograms to average histograms from each marble class in human-classified
training data (a nearest-centroid classifier). The first histogram is of RGB values,
primarily serving to distinguish active marbles, as inactive marbles are faded and
desaturated. The second histogram is of circle sizes found by a Hough circle detector;
this histogram is intended to distinguish salt and quicksilver marbles, which are the
same color but whose symbols include circles of different sizes. The remaining two
histograms are of the radial distribution (bins on angle and distance from center) of
keypoints found by the GFTT and MSER feature detectors; GFTT tends to find
keypoints on the marble’s symbol, while MSER is more sensitive to the non-symbol
area of the marble. The bot uses the sum of OpenCV’s “alternate” chi-squared distance
between corresponding histograms as its distance score. This parser is reasonably but
not perfectly accurate; the bot successfully obtained the achievement for solving 100
puzzles, but only with a human supervising and manually starting a new game when
the bot misparsed a puzzle.

The Witness. The Witness is a first-person adventure and exploration game, but
much of it revolves around two-dimensional line-drawing puzzles presented on panels
in the three-dimensional environment. Solutions to a Witness puzzle are lines from a
circle to a semicircle such that the constraints imposed by clues on grid vertices, edges,
and faces are all satisfied. For a full description of Witness puzzles, see Section 7.1.

We have written a bot that solves most of the panel puzzles in the Challenge,
an end-game area containing a timed series of randomized puzzles. Human input is
still required to navigate from panel to panel in the environment. The bot’s parser
is specialized for the Challenge and does not generalize to other puzzles. For each
puzzle in the Challenge, the panel’s pixel coordinates, start and end vertices, and path
and background colors are hardcoded in the parser, except for the puzzles containing
triangle clues, where these values are dynamically determined based on the puzzle’s
vertices and edges being of a specific color. Clues are recognized by their color; while
the colors are randomized, they are drawn from disjoint lists so there is no ambiguity,
especially because the parser has hardcoded knowledge of which clues can appear in
which puzzles. Four puzzles in the middle of the Challenge are displayed in random

4https://github.com/jbosboom/sigmars-gardener
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locations; the parser determines which location it is at (and so which set of hardcoded
coordinates to use) based on summing the total color distances of a hardcoded set of
pixels (a nearest-neighbor classifier). The fourth puzzle is not parsed because it is laid
on a table and the parser cannot correct for perspective distortion, and the cylindrical
puzzles at the end of the Challenge are not parsed because the parser cannot stitch
multiple screenshots together.

8.2 Parsing with Grammars
All of the games we have written parsers for, many other puzzle games, and some
games of other genres (e.g, Advance Wars, a turn-based tactics game) are visually
based on square or hexagonal grids. The Witness is even recursively grid-based, as
polyomino and antipolyomino clues are grids within faces. The grid structure of these
games makes them amenable to high-level description organized around the vertices,
edges, and faces of the grid. In this section, we present a design for a framework
for parsing screenshots of grid-based video games using a high-level, grid-structured
description of the relationships between primitive elements in the screenshots.

Figure 8-2: A screenshot from The Witness.

Consider the screenshot in Figure 8-2, which we would like to parse against the
(partial) high-level description of a Witness puzzle in Listing 8.1. Together with
the high-level description, the feature information shown in Figure 8-3 is enough
information to parse the puzzle in the center of the image (and to reject the other
puzzles):

1. First, we can localize the puzzles because they are low-energy areas: they have
a low Canny edge density, low Hough circle density, and low Shi-Tomasi corner
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1 puzzle :
2 shape: square grid with vertices , edges , faces
3 location : usually centered
4 grid:
5 face rows: <= 20
6 face cols: <= 20
7 vertex :
8 shape: square
9 color:

10 - consistent - within parent puzzle
11 - same -as edge
12 - different -than face
13 children :
14 start - circle :
15 shape: circle
16 color: same -as parent vertex
17 diameter : >= 1.3 * parent vertex .width
18 count: >= 1 within parent puzzle
19 end -cap:
20 shape: semicircle
21 color: same -as parent vertex
22 count: >= 1 within parent puzzle
23 edge:
24 shape: rectangle
25 color:
26 - consistent - within parent puzzle
27 - same -as vertex
28 - different -than face
29 face:
30 shape: square
31 color:
32 - consistent - within parent puzzle
33 - different -than vertex
34 - different -than edge
35 width: >= 2 * min(edge.width within parent puzzle )
36 height : >= 2 * min(edge. height within parent puzzle )
37 children :
38 polyomino :
39 shape: square grid with vertices
40 grid:
41 sparse : vertices
42 vertex rows: <= parent puzzle .face rows
43 vertex cols: <= parent puzzle .face cols
44 vertex :
45 shape: square
46 color:
47 - different -than parent face
48 - consistent - within parent face
49 - usually consistent - within parent puzzle
50 - usually near rgb (255 ,199 ,12)

Listing 8.1: Partial grammar for Witness puzzles. See Listing 8.3 for the full grammar.
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(a) Canny edge detection.

(b) Hough circle detection.
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(c) Shi-Tomasi corner detection.

(d) MSER feature detection.

Figure 8-3: The result of processing the screenshot in Figure 8-2.
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density. (The lower-right corner of the image (below the puzzle panels) is also
low-energy.)

2. The Shi-Tomasi corner detector finds the corners of each face of the grid, the
MSER detector finds a region center in the center of each face, and the Canny
edge detector finds the boundaries of each face and the outer boundary of each
grid. From the puzzle definition, we know a puzzle is a square grid with vertices,
edges, and faces. By fitting these points to a grid, we can recognize there are
two full panels in the image, and that there is not a panel in the lower-right
corner. We can also correct for perspective distortion and re-run the feature
detectors, though doing so is not necessary in this example.

3. The Hough circle detector finds the start circle and end semicircle of the center
panel, and the start circle of the right panel. This confirms there are two
separate panels. (We can reject the stray circle inside the right panel’s face
because, according to the high-level description, circles cannot appear in faces;
only squares in a sparse square grid can.)

4. The vertices and edges in the right panel are not all of the same color, apparent
both by direct color comparison and by stray edges found by the edge detector.
Additionally the end cap was not found in the right panel and the center panel
is more centered, as the high-level description states is usually the case. Thus,
between the two panels, we can conclude the center one is a better fit to the
high-level description, and so probably the puzzle we seek to parse.

5. Each square in the polyomino clues in the faces of the center panel are detected
as MSER regions and their corners are Shi-Tomasi corners. We can again fit a
grid to the points within each face to recover the shape of the polyomino clues.

6. Using the constraint on the size of the grid in a polyomino clue and that previous
steps determined the panel to be a 4 × 4 grid (of faces), the disconnected
polyomino clue in the lower-right quadrant of the puzzle likely has two empty
vertices separating its components. (If the panel was only three faces wide, then
only one empty vertex could be present.)

This results in a parse tree mirroring the hierarchical structure of the puzzle
description. Omitting empty vertices, edges, and faces for brevity, we get the puzzle
definition in Listing 8.2. We could emit a more concise puzzle definition by writing
code that traverses the parse tree. If we are using the parser as part of a bot, we
would additionally retain the pixel coordinates of each puzzle element, so that the bot
can draw a solution path by simulating a click on the start circle, drawing the path
along edges and vertices, and finishing at the end semicircle.

The screenshots in Figure 8-3 were produced by OpenCV sample code with
minimal modifications, and OpenCV already includes code for grid fitting and camera
calibration (removing perspective distortion). OpenCV includes additional feature
detectors not shown here, and should these not prove sufficient, there are many
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puzzle :
grid:

face rows: 4
face cols: 4
edge rows: 5
edge cols: 5
vertex :

row: 4
col: 0
start - circle : # no children

vertex :
row: 0
col: 4
end -cap: # no children

face:
row: 0
col: 0
polyomino :

grid:
vertex rows: 3
vertex cols: 3
vertex :

row: 0
col: 0

vertex :
row: 0
col: 1

vertex :
row: 0
col: 2

vertex :
row: 1
col: 2

vertex :
row: 2
col: 2

face:
row: 1
col: 3
polyomino :

grid:
vertex rows: 2
vertex cols: 1
vertex :

row: 0
col: 0

vertex :
row: 1
col: 0

face:
row: 2
col: 1
polyomino :

grid:
vertex rows: 2
vertex cols: 4
vertex :

row: 0
col: 0

vertex :
row: 0
col: 3

vertex :
row: 1
col: 0

vertex :
row: 1
col: 3

Listing 8.2: The result of parsing Figure 8-
2.
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algorithms described in the image processing literature not yet implemented in OpenCV.
It should not be necessary to do novel image processing.

Integration system. Instead, the interesting part of our proposed framework is
the system that integrates the low-level information to produce a puzzle fitting the
high-level description. Some low-level feature information is naturally expressed in
the high-level description, particularly shapes, colors and sizes. The features produced
by feature detection algorithms such as SURF or ORB are less intuitive to humans.
The programmer can annotate the high-level description with this information, but it
may be more convenient to have the framework learn weights and parameters from a
small set of screenshots and corresponding puzzles.

Because the goal of the framework is to relieve humans from manually transcribing
puzzles, the training data available to learn from will necessarily be very limited, small
enough that it might be more accurately called “fitting” to the data. For example,
The Witness has approximately 300 panels5, so transcribing 30 of them is already 10%
of the entire task. We are relying on the high-level description to provide structure,
reducing the number of parameters and weights that must be learned; for simple
games we expect not to need any training data. We still expect machine learning
to be useful for or classifying individual puzzle elements (for an example from our
bots, learning to read the clues in Hexcells). Part of this research is to investigate
the tradeoffs between learning from annotated images and annotating the high-level
description.

If the parser is being used as part of a bot, the bot can ask a human to label
puzzles where the parser had to ignore some features to fit the remaining features
to the high-level description. If the bot can detect when the game rejects a puzzle
solution, those images can also be presented to the human (in this case, the solver
may also have a bug). In this way, each human annotation is known to be helpful,
in that it corrects a mistake made by the parser. (Truly minimizing the amount of
training data necessary requires a non-incremental approach.)

We can also learn from successful parses by increasing the weight of features that
supported the successful parse and decreasing the weight of features that disagreed
(reinforcement learning). Reinforcement is particularly applicable to puzzle games, as
they usually have a difficulty curve for the benefit of human players; that is, puzzle
elements are gradually introduced and puzzle complexity gradually increases. Easy
puzzles are the most likely to parse unambiguously using only information from the
high-level description (such as shape and color), so the parser has an opportunity to
learn which features are useful before confronting more complex puzzles later in the
game.

In our exploratory attempts at building the proposed framework, unifying bottom-
up and top-down parsing was a challenge. Most of the parsers in our bots parsed
the image bottom-up, first finding elements appearing at the leaves of the high-level
description, then recovering the grid structure. In contrast, the approach to parsing

5The Witness actually has 523 panels, but many of them depend on the three-dimensional
environment or are otherwise not grid-based.
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The Witness presented earlier in this section works top-down, first localizing the
puzzle in the image, then finding the grid structure, and finally recognizing elements
inside the grid. An ideal parser would instead use Bayesian reasoning to parse at
multiple levels at the same time, gaining confidence in its parse when the arrangement
of features matches the high-level description. When used by bots that can detect
when the game rejects a puzzle solution, such a parser could provide first the most
likely parse, then if an error is detected, the next most likely parse.

Code generation. Aside from its use in parsing, the high-level description can also
be used to generate high-level puzzle representations in various programming languages
using existing systems for data representation synthesis [72, 95]. High-performance
searches use sophisticated low-level representations to make common operations fast,
often trading higher asymptotic complexity for reduced constant factors, so these
representations will not be suitable within the search itself, but they allow the searches
to take a convenient representation as input instead of a generic machine-readable text
format. The synthesized representation could also be the basis of tools for visualizing
a puzzle solution or for implementing puzzle transformations (for example, reductions
between different problems).

8.3 Related Work
Video game definition languages. There are a number of languages that define
video games for the purposes of procedural level generation [85, 99], general game
playing agent research [55, 125], evolutionary or procedural game design [40, 97, 35, 34,
129], or as domain-specific programming languages for game development [96]. These
languages necessarily focus on defining the semantics of the game; for example, VGDL
includes a collision matrix defining what should happen when various types of sprites
intersect. In contrast, our high-level description describes only what a puzzle looks like,
not what it means; the example in Listing 8.1 defines start-circle and end-cap,
but those are just identifiers with no meaning to the parser. Semantic information
might be useful for resolving ambiguous or incorrect parses, but our parser relies on
feedback from the solver when a parsed puzzle is logically inconsistent or when the
game rejects a solution.

See also [135] for a survey of search-based procedural content generation for video
games, language-based and otherwise.

Sketch understanding. The field of sketch understanding aims to make pen/stylus
input a viable mode of user interaction with computers by understanding the structures
being sketched, for example, chemical structures or circuit diagrams. This proposed
work is closest to SketchREAD [11], which uses the LADDER [70] “hierarchical shape
description language” to assign semantic meanings to shapes and relations, similar
to our proposed high-level description of a puzzle. Besides the obvious differences
between vector (pen) and raster (screenshot) inputs, pen input also has a temporal
component (the sequence of strokes) that screenshots lack. SketchREAD exploits
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this with a bottom-up Bayesian network inference approach, generating and pruning
hypotheses incrementally with pen strokes. In contrast, we get our input all at once
in the screenshot.

The ChemInk [112] parser for sketches of chemical structure incorporates domain
knowledge about chemical valence to recover from incorrect parses. Similarly, our
high-level description allows our parsers to determine that particular puzzle elements
cannot appear in certain locations, and so some features must be disregarded.

Visual languages. There are many formal and semi-formal models of visual lan-
guages for human-computer interaction, visual programming, or computer vision; for a
survey, see [98]. Our high-level descriptions can be viewed as a grammar in the sense
that they have hierarchical structure. However, our descriptions also describe the
primitive elements rather than treating them as abstract symbols, and our parsers also
function as lexers in that they recognize individual elements. On the other hand, we
do not attempt to give a complexity analysis of our parser framework nor to precisely
define the class of languages it can parse.

Fusion of simple/generic features. Uijlings et al. [140] propose image regions
representing three-dimensional objects in real-world images by evaluating multiple
simple feature detectors in multiple color spaces in small regions and joining them
bottom-up. A more expensive object recognizer is then applied to these regions such
that regions proposed by multiple proposal algorithms are prioritized. We also use
fusion of simple, game-independent features.

Direct play. Mnih et al. [105] describe a deep-learning-based system that plays
Atari 2600 games directly taking only the raw pixels as input. While an impressive
accomplishment, our objective is instead to extract the puzzles for separate study.
Deep learning methods seem of limited value here due to a lack of training data. There
are only 523 panels in The Witness, and we only expect to parse about half of those;
if we were to apply deep learning using hand-labeled examples (either as training data
or to evaluate the performance of reinforcement learning), we would likely need to
transcribe all the puzzles we hope to parse, rendering our effort moot.

8.4 Full Grammar for The Witness
To give a deeper sense of the style of grammar to be used by the proposed framework,
Listing 8.3 is a possible full grammar for parsing puzzles from The Witness.

1 puzzle :
2 shape: square grid with vertices , edges , faces
3 location : usually centered
4 grid:
5 face rows: <= 20
6 face cols: <= 20
7 vertex :
8 shape: square
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9 color:
10 - consistent - within parent puzzle
11 - same -as edge
12 - different -than face
13 children :
14 start - circle :
15 shape: circle
16 color: same -as parent vertex
17 diameter : >= 1.3 * parent vertex .width
18 count: >= 1 within parent puzzle
19 end -cap:
20 shape: semicircle
21 color: same -as parent vertex
22 count: >= 1 within parent puzzle
23 vertex - hexagon :
24 shape: hexagon
25 color: usually near rgb (90 ,90 ,90)
26 vertex -symmetry - hexagon :
27 shape: hexagon
28 color:
29 - usually near rgb (225 , 174, 4) # orange
30 - usually near rgb (137 , 211, 136) # blue
31 remember : color
32 requires :
33 - >= 2 start - circle within parent puzzle
34 - >= 2 end -cap within parent puzzle
35 edge:
36 shape: rectangle
37 color:
38 - consistent - within parent puzzle
39 - same -as vertex
40 - different -than face
41 children :
42 edge - hexagon :
43 shape: hexagon
44 color: usually near rgb (90 ,90 ,90)
45 edge -symmetry - hexagon :
46 shape: hexagon
47 color:
48 - usually near rgb (225 , 174, 4) # orange
49 - usually near rgb (137 , 211, 136) # blue
50 remember : color
51 requires :
52 - >= 2 start - circle within parent puzzle
53 - >= 2 end -cap within parent puzzle
54 broken -edge:
55 shape: rectangle
56 color: different -than parent edge
57 face:
58 shape: square
59 color:
60 - consistent - within parent puzzle
61 - different -than vertex
62 - different -than edge
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63 width: >= 2 * min(edge.width within parent puzzle )
64 height : >= 2 * min(edge. height within parent puzzle )
65 children :
66 square :
67 shape: rounded square
68 color: different -than parent face
69 remember : color
70 star:
71 corners : 8
72 color: different -than parent face
73 remember : color
74 antibody :
75 corners : 9
76 color: usually rgb (255 , 255, 255)
77 remember : color # relevant for star clues
78 polyomino :
79 shape: square grid with vertices
80 grid:
81 sparse : vertices
82 vertex rows: <= parent puzzle .face rows
83 vertex cols: <= parent puzzle .face cols
84 vertex :
85 shape: square
86 color:
87 - different -than parent face
88 - consistent - within parent face
89 - usually consistent - within parent puzzle
90 - usually near rgb (255 ,199 ,12)
91 rotatable - polyomino :
92 shape: square grid with vertices rotated 15 degrees
93 grid:
94 sparse : vertices
95 vertex rows: <= parent puzzle .face rows
96 vertex cols: <= parent puzzle .face cols
97 vertex :
98 shape: square
99 color:

100 - different -than parent face
101 - consistent - within parent face
102 - usually consistent - within parent puzzle
103 - usually near rgb (255 ,199 ,12)
104 antipolyomino :
105 shape: square grid with vertices
106 grid:
107 sparse : vertices
108 vertex rows: <= parent puzzle .face rows
109 vertex cols: <= parent puzzle .face cols
110 vertex :
111 shape: square
112 stroke -color: near rgb (69, 95, 188)
113 fill -color: parent face.color
114 rotatable - antipolyomino :
115 shape: square grid with vertices rotated 15 degrees
116 grid:
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117 sparse : vertices
118 vertex rows: <= parent puzzle .face rows
119 vertex cols: <= parent puzzle .face cols
120 vertex :
121 shape: square
122 stroke -color: near rgb (69, 95, 188)
123 fill -color: parent face.color

Listing 8.3: Grammar for Witness puzzles.
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