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ABSTRACT

Stephen’s Sausage Roll is a relatively unstudied puzzle game with a fascinating set of
mechanics for computational hardness problems. The only past results are from a class
project in MIT’s 6.5440 class of Fall 2023, which only dealt with two specific subsets of the
mechanics restricted to two-dimensional forms of the game [1]. This project presents a more
complete characterization of problems based off of Stephen’s Sausage Roll, and provides
solutions for a significant portion. In particular, both variants of Stephen’s Sausage Roll
considered in prior work can be solved by one of these results.
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Chapter 1

Introduction

Computational hardness is the study of difficult problems and classifying exactly how chal-
lenging they are. While the field was created to study more practical algorithms and problems
such as the Travelling Salesman Problem, significant work is also spent on more recreational
problems: games. Much work has gone into proving the hardness of games across many
genres: board games such as Konane or Amazons, platform games like Mario and Celeste,
puzzle games such as Baba is You, and many many more [2|-[5]. While many questions could
be asked about games including, but not limited to, ability to force a win, ability to force
a loss (in two-player games), or perhaps constructing complicated states within a game, the
primary question of interest is usually that of whether a player can guarantee a win. Despite
the significant effort put into studying games, and even when victory is the only question of
interest, the ever increasing number of games available to study means that there are always
many more available to be studied and many cases within each game to consider.

In this thesis, we study a relatively unstudied game: Stephen’s Sausage Roll, a puzzle
game made in 2016 by Increpere games [6]. The game itself starts with relatively simple
mechanics, but creates complex mechanics by taking advantage of every corner case that
appears when you combine the behavior of multiple objects while trying to respect basic
physics. As such, it makes for a fascinating game to study in the context of computational
hardness, as even including just a few mechanics can create strange interactions that lead
to perhaps harder problems than expected. The hardness of the game has, as of yet, no
published results. The only results I know of are two unpublished results from Prof. Erik
Demaine’s 6.5440 class in Fall 2023, which prove PSPACE-completeness of the game for two
subsets of the mechanics [1|. Nonetheless, there is much available to be studied, and this
project aims to learn as much as possible about the game.

In a bit more detail, Stephen is approximately a 2 x 1 x 1 (height 1) object in a three-
dimensional world pushing 2 x 1 x 1 sausages around the world to cook them over grills. While
the world is three-dimensional, we can mostly think of it as stacked 2-dimensional layers as
Stephen’s movement is mostly in two dimensions. There are also two types of immovable
objects of interest: walls and grills. Walls and grills both block movement, but grills will
cook any sausages moving over them while burning Stephen’s feet. We also consider empty
spaces to be their own type of “block™ layers without empty spaces are fully filled with
walls, grills, and possibly also immobile sausages and players. Finally, the main exception to
Stephen’s two-dimensional movement is his ability to move on ladders. Ladders are attached
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Layers containing
Player | Sausages | Walls Grills | Empty | Difficulty Source

2 2 1 1 1,2 PSPACE | |1, Theorem 3|
2 2 1,2 1 2 PSPACE | [1, Theorem 4|
2 2 1 1 2 PSPACE Theorem 6

3 2 1,2 1 2,3 PSPACE Theorem 7

2 2,3,4 2,3,4 | 1,2,3,4|1,2,3,4 P Lemma 8, Case 1
2 1,2,3,4 |1,2,3,4|1,2,3,4| 1,3,4 P Lemma 8, Case 2
2 4 1,2,3,411,2,3,4|1,2,3,4 P Lemma 8, Case 3
3 1,2 1,2,3,411,2,3,4| 1,3,4 P Lemma 8, Case 4
3 1,2,3,4 | 1,2,3,4 3,4 1,2,3,4 P Lemma 8, Case 5
2 1,2,3,4 | 1,2,3,4| 2,3,4 2,3,4 P Lemma 8, Case 6
3 1,2 1,2,3,4| 2,3,4 |1,2,3,4 P Lemma 8, Case 7
3 1,2,3,4 | 1,3,4 2,3,4 |1,2,3,4 P Lemma 8, Case 8
2 3,4 1,2,4 1,2,4 |1,2,3,4 P Lemma 8, Case 9

Table 1.1: PSPACE-hard and P cases of Stephen’s Sausage Roll. For PSPACE-hard results
we may add more options to each of the sausage, wall, grill, and empty columns to get more
results. For P results we may remove options from each column to get more results. We
assume that all options are available in Levels 5 and higher.

to walls and allow Stephen to climb to the top or bottom of ladders as appropriate.

1.1 Results

In this thesis, we propose a categorization of Stephen’s Sausage Roll based on whether
each type of block or object is present in each layer of a level. In particular, this thesis
focuses on the case the level has no ladders, thereby constraining Stephen to mostly interact
with a few neighboring layers.! As such, most results can be summarized with simply the
parameterization of a few neighboring layers to whichever layer Stephen is in (the “player
layer”).2. See Table 1.1 for a summary of past results and results from this thesis. In this
thesis, we prove several cases in which Stephen’s Sausage Roll is PSPACE-hard, along with a
number of results of cases where Stephen’s Sausage Roll turns out to be in P due, in almost
all cases, to the level being unsolvable if any sausages at all are present.

1.2 Related Work

In general, proving some simple computational upper bounds for many games isn’t too
challenging. For example, deciding whether victory is possible for single-player games that
are guaranteed to end within a polynomial number of moves (such as Minesweeper) is clearly

!Stephen is technically still able to interact with faraway layers using stacked sausages.
2Tf ladders are included then in many cases determining hardness might need information about much
more than just a few neighboring layers
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an NP problem: a winning sequence of moves would clearly show that victory is possible.
Similarly, single-player games with a potentially exponential numbers of moves but with a
polynomial amount of game state (such as Rush Hour) belong in PSPACE. Indeed, such
games belong in NPSPACE because a nondeterministic machine can verify the possibility of
victory simply by guessing one move at a time and verifying that the sequence of moves leads
to a victory condition, and Savitch’s theorem |7] shows that PSPACE equals NPSPACE.

Whereas generic upper bounds are easy to find, generic lower bounds tend to be somewhat
more challenging to prove due to the variety in different game mechanics. One important
framework for proving lower bounds used by many modern PSPACE-hardness proofs is
planar motion planning. At a high level, (single-player) planar motion planning consists
of a robot moving around through a collection of gadgets whose states can change as the robot
interacts with them. Problems of interest include reachability, where the robot attempts
to get from a start location to some target location, and reconfiguration, where the robot
attempts to get each gadget into some target state. Early examples by Viglietta [8], although
not explicitly called planar motion planning, proved PSPACE hardness when given a door
that could only be opened and closed by stepping on specific pressure plates that could be
arbitrarily far away or doors that were operated using buttons that changed the state of 3
doors at once.

1.3 Gadget Theory

A gadget G = (Q,L,T) is a finite collection of states @, locations L, and some tran-
sittons T C Q x L x () x L representing the ability to go from a given location in some
initial state to some other location in some final state [9]. Transitions are usually denoted
(¢1,11) — (g2,l2) to represent a transition starting from state ¢; in location /; and ending
in state ¢o and location l5. Gadgets can be summarized with gadget diagrams with one
diagram per state, with transitions marked by arrows on the diagram corresponding to the
starting state and labelled with their ending state. See Figure 1.1a for an example.

The entire problem is then modeled as a collection of gadgets, with connections between
locations on (possibly different, possibly the same) gadgets that allows full traversal of a
robot in either direction. Planar motion planning (for reachability) therefore is the question
of whether a robot can reach an end location, given a starting location on a planar collection
of gadgets and connections and starting states of each gadget [9].

While some gadgets were studied individually in prior works, gadget theory for motion
planning was first studied in depth by Demaine, Hendrickson, and Lynch [9]. Of particular
interest to this thesis however, is later work by Ani et al. [3] focusing specifically on proving
hardness using only door gadgets.

An early door gadget is a door with opening and closing paths by Viglietta et al. [10], as
seen in Figure 1.1a. This gadget has two states open and closed, six locations oy, 09, ¢1, C3, S, t,
and transitions (o1,-) — (02,0pen), (c1,-) — (cg,closed), and (s,open) — (t,open) where
each - can be either open or closed [10]. Viglietta et al. [10] showed that the existence of
such doors along with crossovers is sufficient to prove PSPACE hardness. Later door gadgets
expand on these doors either by changing some tunnels to be bidirectional or connecting some
locations of the gadget.
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(a) Directed door with opening and closing (b) Gadget diagram for directed self-closing
paths door

Of particular interest is the following result by Ani et al. [3] regarding open-optional
directed self-closing doors.

Theorem 1 ([3, Corollary 3.4|). I-player motion planning with any self-closing door is
PSPACE-hard.

Importantly, this theorem removes the need for crossover gadgets. Note also that while
motion planning with self-closing doors is PSPACE-hard, both initially open and initially
closed self-closing doors are needed to achieve PSPACE-hardness.

An open-optional directed self-closing door is, in essence, a door where locations
t and c; are connected and locations o; and oy are connected. This gadget only has three
locations o, s,t and has transitions (o, closed) — (0,0pen) and (s,open) — (¢,closed). In
other words, traversing through the door will automatically close the door which can only
be opened via the opening location. While many other variants exist such as undirected and
open-mandatory doors, this open-optional directed self-closing door is what we will need for
our proof of PSPACE-hardness of Stephen’s Sausage Roll. See Figure 1.1b for an example
of a gadget diagram for a directed self-closing door.
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Chapter 2

Stephen’s Sausage Roll

Stephen’s Sausage Roll is a puzzle game developed by Increpere games in 2016 [11]. In
Stephen’s Sausage Roll, the player controls Stephen in his quest to cook all sausages. The
game starts with relatively simple mechanics, but creates complex mechanics by taking
advantage of every corner case that appears when you combine the behavior of multiple
objects while trying to respect basic physics. As such, it makes for a fascinating game to
study in the context of computational hardness, as even including just a few mechanics can
create strange interactions that lead to perhaps harder problems than expected.

2.1 Why Stephen’s Sausage Roll?

While there are many games that can be studied using planar motion planning, Stephen’s
Sausage Roll still provides interesting new challenges via its mechanics. We first cover some
of these challenges to defend the interest in this game before explaining the mechanics of the
game.

First, each Stephen’s Sausage Roll level involves a fixed number of sausages that must be
cooked but not overcooked. In order to create reusable gadgets, cooking should presumably
not be part of the main gadget use case and therefore the gadgets must either use fully
uncooked sausages that are cooked afterwards in some sort of correction-checking procedure,
fully cooked sausages that are pre-cooked in an initialization procedure, or a combination of
some sort of partial pre-cooking and partial post-cooking. There exist prior results about
adding a set of checking traversals to each gadget that could for example be used to post-cook
every uncooked sausage [12]. Nonetheless, earlier work in MIT’s 6.5440 class concluded that
it was easier to reason about gadgets with fully cooked sausages and therefore this thesis, like
prior work, will prove hardness while using gadgets that require initialization [1|. One part
of the interest in Stephen’s Sausage Roll is therefore the analysis and usage of previously
unstudied gadgets that require initialization.

Secondly, Stephen’s Sausage Roll levels can involve multiple layers, with players able to
potentially affect objects many layers above or below the player. As such, even when player
movement is restricted to a plane, Stephen’s Sausage Roll allows for very interesting analysis
of much more complex gadgets than many purely two-dimensional games.

Furthermore, Stephen’s Sausage Roll includes ladders that simply allow the player itself
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to move between layers. While our current constructions make minimal use of this mechanic,
there are many cases remaining where it may be necessary to use this mechanic to produce
even more complicated gadgets.

2.2 Game Mechanics [13]

Note that while we give an overview of most mechanics of the game for ease of reference
for future work, the key mechanics for this thesis are sausage pushing and cooking as well
as walking on a sausage. Sausage spearing is used in prior work, and ladders, as well as
sausages on top of bodies or sausages are included because they are very interesting options
for future exploration.

Stephen’s Sausage Roll is, approximately, split into levels, each consisting of a map and
a set of movable objects fully within the level. The map is, in full generality, an M x M x N
lattice of cells with M = poly(N), which we will often think of as N horizontal layers of
size M x M each. Objects are orthogonally connected rigid sets of single-cell parts, where
rigidity means that the parts of an object will all translate in parallel when pushed, although
some special objects have the additional ability to roll (sausages) or rotate (sausages and
forks) in some form. In other words, taking C' to be our set of all cell types, the state of a
level can be described as an element of CM*M*N together with a list of objects, each with
position, orientation, and for sausages, cooking status.

The most common objects are player and sausage objects. The player can be further
subdivided into a 1 x 1 x 1 body and a 1 x 1 x 1 fork. The fork has a handle end and a spear
end: under normal gameplay, the body and fork are always connected, with the handle side
of the fork being the closer side of the fork to the body. Nonetheless, the fork and body
may disconnect during gameplay under certain special circumstances. Like the body-fork
combination, the sausage is also a 2 X 1 x 1 object. Each of the two cells of the sausage has
a two faces: top and bottom. Aside from these standard objects, there are several other
objects in the game, most notably the serpent and tree-island. I do not anticipate using these
additional items, as the mechanics get significantly more complicated when implementing
these.

The set C of cells contains empty space, walls (possibly with ladders), and grills. In
particular, “land” as described in prior work is, in essence, walls that are one level below the
player. Similarly, “water” is really just empty space that happens to be at the bottom of the
map: in particular, the body, fork, and sausages are not allowed to fall out of the level. For
completeness, we assume that everything outside of the level is empty space.

e Walls prevent a block from being travelled through by any object. Standing on them
prevents falling, and trying to walk/move into them prevents movement.

e Ladders attached to the same side of a vertical stack of walls allows the player to
climb the ladders up or down. Once on the ladder, the player has no control of their
movement: they will attempt to go all the way along the ladder and exit it, and if
movement is blocked they will return all the way to the starting point. Note that
ladders may be attached to walls but not grills.

18



e Grills prevent objects from passing through them, and cook any sausages above them on
the face of the sausage directly in contact with the grill. Due to their high temperature,
if the body moves onto a grill it will immediately move back in the opposite direction
from its initial movement.

e Empty space can be passed through freely by all objects.

While the blocks are relatively simple, the objects are somewhat less so. The player can
move forwards and backwards and rotate ninety degrees around the fork. When holding the
fork, the fork will always point in the forwards direction. Rotation requires a 2 x 2 x 1 area
to be empty: the current location of the body, the current and future locations of the fork,
and the fourth square of the 2 x 2 x 1 box outlined by these three squares. Whenever the
player tries to move (other than falling) in such a way that the fork cannot stay attached,
the move will not happen. When not holding the fork, the player can reattach the fork by
moving the body to the handle and facing the fork. Otherwise, the fork can be pushed by
any object attempting to move into its block.

When holding the fork, ladders can be climbed from the side: that is, the fork must be
pointing neither towards nor away from the ladder. Without the fork, ladders are climbed
from the front: the player must face the ladder when on the ladder.

The body may not attempt to move onto empty space. As such, the only non-ladder way
to change the height of the player is to stand on a falling object. A disconnected fork may
not fall below the level.

See Figure 2.1 for an example of how the objects and blocks look in game.

Sausages move away, if possible, from other objects that try to move into one of the two
blocks of the sausage. If the incoming object approaches along the axis of the sausage or
from below, it will slide out of the way. If the incoming object approaches from the two sides
of the sausage, it will roll one block: the top face now becomes the bottom face and vice
versa. If the sausage is unable to move, the object trying to move onto it will be blocked
from moving. However, if said object is a fork approaching spear-first, then the fork will be
embedded in the sausage. If the fork is not attached to a body, the sausage will still behave
as before, but if the fork is attached to a body the sausage will move with the fork-body
combination. The player will no longer be able to turn and the sausage can no longer roll,
but the player gains the ability to walk directly to the left and right. If the sausage is blocked
from movement, the player will also be blocked unless the player is moving backwards. If the
player is moving backwards, the sausage will instead be detached from the fork. See Figure
2.2 for examples of how sausage rolling works.

No sausage may fall below the level.

The sausages can be cooked by grills. Each of the two faces (top, bottom) of each of
the two blocks of the sausage can be cooked independently, and cooking the same face twice
causes burning. The goal of the level is to cook all four faces of every sausage exactly one
time each before returning to the exact position and orientation where the level started.

If an body on top of a sausage attempts to move perpendicular to the axis of the sausage,
the sausage will attempt to roll in the opposite direction of the object’s movement. As a
result, a body on top of a sausage can only move off the sausage in a perpendicular direction
to the axis if the sausage is prevented from rolling in either direction, and there is something
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Figure 2.1: Sausages, player, and many blocks in a Stephen’s Sausage Roll level
Screenshot of the game from the Steam page as the author does not currently have access
to a copy of the game [11]
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Figure 2.2: Pushing a half-cooked sausage along the long and short axes



for the body to step on. A body on top of a sausage can move off a sausage along the axis
of the sausage as long as there is something for the body to step on.

Sausages on top of blocks or objects will not fall as long as one of the two blocks below
the sausage is nonempty. If there is a non-moving block supporting the sausage (either an
object not in motion or a wall/grill), the sausage will not be affected by any movement in
the other supporting block. If the only block supporting the sausage is a fork object, then
the sausage will stay on the fork when it makes translational moves (either by being pushed
or when the player walks forwards and backwards). If the fork instead rotates around the
player, the sausage will fall off without moving in the x, y directions. If the only blocks
supporting the sausage are the body and optionally an attached fork, then the sausage will
stay on the body’s head and rotate, if possible, when the player rotates. However, blocking
the sausage’s movement will not block the player’s movement rotationally or translationally,
although it can stop the player from climbing up a ladder. In essence, the sausage moves
with the player but is not attached: the only reason climbing can be blocked is because the
sausage is a physical object in the way of climbing up further. If a sausage is supported by
moving sausages, then if either lower sausage is moving along its axis the upper sausage will
stay at the same position relative to the lower sausages. Otherwise, if the upper sausage is
parallel to the lower sausages supporting it, it will also stay at the same relative position.
However, if the upper sausage is perpendicular to the lower sausages, and the lower sausages
are rolling instead of sliding, then the upper sausage will move two blocks for every one block
that the lower sausages move.

At the start of each level, each object must be resting on some object or nonempty block.
Furthermore, since there are no examples in the original game of a sausage starting on top
of a grill, we further require that no sausages start on top of a grill since the behavior of
such sausages is unclear.

The goal of a level is simply to cook all sausages without dropping them into the water
and return the player and fork to the original position in the original orientation. In particu-
lar, if the original position is on top of a sausage then the player must return to standing on
the same side of that same sausage, but the sausage itself need not be in its original position
or orientation.

To explore some of these mechanics in a two-dimensional version of the game without
“walls,” there exists a fan-made demake of the game [14].

2.3 Existing results [1]

As a single-player game with unbounded moves but polynomial state, Stephen’s Sausage
Roll levels can be solved nondeterministically using polynomial space. Thus determining
solvability is an NPSPACE problem and hence by Savitch’s theorem it is a PSPACE problem
[7].

Theorem 2 ([1, Theorem 1|). Solvability of a general Stephen’s Sausage Roll level is in
PSPACE.

Prior work on proving PSPACE-completeness of subsets of the mechanics rely on the
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difficulty of planar motion planning given certain kinds of self-closing door gadgets [1], [3].
However, the game was only considered when restricted to essentially a two-dimensional
level. The two specific cases considered were when a M x M x 2 level has only empty blocks
on the top half, with possible empty blocks in the lower half as well, and a M x M x 2 level
with no empty blocks in the bottom half and possible wall blocks in the top half. These were
described as “water, grills, and land” and “walls, grills, and land,” respectively [1]. Prior work
has also created a level editor for the planar version of the game, including gadget-checking
under the assumptions that sausages are never left partially cooked when leaving a gadget
[15]. Unfortunately it turns out that this is an invalid assumption, so gadgets in this thesis
are checked manually without the assistance of a gadget-checker.

2.4 Problem Framework

We consider a variety of Stephen’s Sausage Roll problems, paramaterized by the following:
e An integer 2 < s < N denoting the layer where the player starts
e Whether we allow ladders in the level

e N subsets 51, 5%,...,5yv € C U {sausages} denoting the types of blocks and objects
(aside from possibly the player) that are initially found in each layer

Note that when all other parameters are fixed, PSPACE-hardness is preserved when
turning allowing ladders in a level where they were previously banned simply by adding
unusable ladders to the construction. Likewise PSPACE-hardness is preserved when adding
more elements to any S; (as these elements don’t need to be used). In contrast, solvability
in P is not preserved under these operations.

Note that banning ladders and selecting parameters s = 2, S; = {walls, grills, empty},
Sy = {empty, sausages} and S; = {empty} for i > 2 reproduces the “water, grills, and land”
problem. Similarly, banning ladders and setting s = 2, S = {walls, grills}, Sy = {empty,
walls, sausages} and S; = {empty} for i > 2 reproduces the “walls, grills, and land” problem.
Finally, banning ladders and setting s = 2, S; = {walls, grills}, Sy = {empty, sausages}
and S; = {empty} for i > 2 creates a “land and grills” problem, which is the probably most
general case previously unsolved.
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Chapter 3

Results

3.1 Initialization-required gadgets

While prior work has a theorem for initialization-required gadgets, we also include the proof
of this theorem here for completeness [1]. Furthermore, this thesis uses a relaxed definition of
initialization-required gadgets: prior work required that the only traversal starting from an
uninitialized state would go from uninitialized to initialized, whereas in this thesis we only
require that the only transition from a certain uninitialized entry point to a certain other
location will initialize the gadget. In particular, transitions entering an uninitialized gadget
from other locations may be allowed to produce arbitrary pathological behavior. We define
four gadgets: an initialization-first directed self-closing door, an initialization-needed directed
self-closing door and two types of initialization-needed opening door. For comparison, we
provide gadget diagrams in Figures 3.1 and 3.2 of some versions of the initialization-needed
gadgets for comparison with Figure 1.1b. We have two types of each gadget because both
forms are useful in different proofs: the close-first, for example, will be used in the “Land and
Grills” proof while the no-close was used in both the “Land, Grills, and Water” and “Land,
Grills, and Walls” proofs. The key commonality between the two is that a visit to s followed
by a visit to o can transform the gadget into a freely traversable s —t path and that there
is never any way to reach o from s or t or vice versa.

Definition 1. An initialization-first directed self-closing door is a gadget with states includ-
ing uninitialized, open, and closed, and locations s,t,i, and 0. We require the transitions
(7, uninitialized) — (¢, open), (s, open) — (¢, closed), (o, closed) — (0, open). We also require
there are no location-changing transitions starting or ending at ¢, no other transitions start-
ing from an uninitialized state, no other location-changing transitions starting from either an
open or closed state, no transitions from either open or closed to any state that is not open
or closed, and no transitions starting at s or ¢ from closed to open.'Essentially, the gadget
behaves as a standard directed self-closing door after being initialized from an external path.

Definition 2. An initialization-needed directed self-closing door is a gadget with states
including uninitialized, open, and closed, and locations s, ¢, and 0. We require the transitions
(s, uninitalized) — (¢, closed), (s, open) — (¢, closed), (o, closed) — (0, open). We also require
there are no other transitions starting from s in the uninitialized state to either o or ¢, no
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other location-changing transitions starting from either an open or closed state, no transitions
from either open or closed to any state that is not open or closed, and no other transitions
from closed to open.! Essentially, the gadget behaves as a standard directed self-closing door
after being initialized via an s — ¢ traversal.

Definition 3. A close-first initialization-needed opening door is a gadget with states in-
cluding uninitialized, open, and closed, and locations s,t, and o. We require transitions
(s,open) — (t,open), (t,open) — (s,open), (s, uninitialized) — (s, closed), and (o, closed) —
(0,0open). We also require that there are no other transitions starting with either an open or
closed state, no transitions starting from s in the uninitialized state going to ¢, and no other
transitions either starting or ending at o. In particular, we allow the possibility of further
transitions from s to itself that lead to other unspecified states.

Definition 4. A no-close initialization-needed opening door is a gadget with states including
uninitialized and open, and locations s, ¢, and 0. We require transitions (s, open) — (¢, open),
(t,open) — (s,open), and (o, uninitialized) — (o0, open). We also require that there are no
other transitions starting with an open state, no transitions starting from s in the uninitial-
ized state going to ¢, and no other transitions either starting or ending at o. In particular,
we allow the possibility of further transitions from s to itself that lead to other unspecified
states.

These gadgets are sufficient to produce PSPACE-hardness, as shown in the following
result analagous to Lemma 2 of the unpublished previous Stephen’s Sausage Roll paper [1,
Lemma 2|.

Theorem 3. Planar motion planning with initialization-needed directed self-closing doors
and either form of initialization-needed opening doors is PSPACE-hard.

Proof. We reduce from planar motion planning with directed self-closing doors which is
PSPACE hard due to Theorem 1.

For any such planar motion planning problem with start S, target 7', and some planar
embedding G of directed self-closing doors and connections, we reduce to a problem using
initialization-needed gadgets.

First, we add a new start point S’ and an initialization path S’ — S going through
location s of every directed self-closing door and immediately exiting out of the corresponding
location ¢ of the self-closing door.

We then replace each crossing between the initialization path and the original problem G
with an initialization-time crossover gadget and replace each directed self-closing door with
an expanded door gadget, to be described below using shorthand from Figure 3.3.

The initialization-time crossover gadget has two single-use paths (namely, initialization-
needed directed self-closing doors with no access to the o location) on the initialization path
immediately before and after the crossing. There are also initialization-needed opening doors

!Note that in both self-closing door definitions we allow the possibilities of transitions that close the door
from any location without going to another location. This changes nothing about the behavior because
closed doors are strictly less useful than open doors, and therefore the robot would never try to close the
door without going anywhere when solving reachability problems.
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Figure 3.1: Gadget diagrams for initialization-needed self-closing doors. Note that the dashed
arrows are transitions that may or may not exist, and may or may not send the gadget to
other unspecified states with further transitions.
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Figure 3.2: Gadget diagrams for initialization-needed opening doors. Note that the dashed
arrows are transitions that may or may not exist, and may or may not send the gadget to
other unspecified states with further transitions.
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the left) t on the right) left, ¢ on the right)

Figure 3.3: Shorthand for some initialization-needed gadgets

immediately before and after the crossing on the edge in G, with the gadgets oriented so
that their s side is connected to the crossing point while their ¢ side is not, and with their
o side connected to the initialization path after the second single-use path. See Figure 3.4a
for a diagram.

The expanded door gadget looks similar to the initialization-time crossover gadget, but
with an initialization-needed self-closing door on the shared portion of the initialization path
and the path from G instead of a single point of crossover. In particular, since there are
external edges to most self-closing doors connected to the opening location o, there is an
extra crossover needed between the initialization path and the edge to location o of the
initialization needed opening path. In the case that the original self-closing door was meant
to be open in G, we add a partial crossover gadget so as to allow the robot to toggle the
initialization-needed directed self-closing door open between the two crossovers. See Figure
3.4b for a diagram.

Our new problem is now to go from S’ to T in this modified planar diagram G’ where all
gadgets start off in the uninitialized state.

Note that this reduction can be performed in polynomial time, using only polynomially
more space, because G is polynomially sized and therefore we can find in polynomial time
an appropriate S — S path with polynomially many crossings with edges in G. We now
prove that a robot can get from S to T in G if and only if a robot can get from S’ to T in

G

First we observe that a single-use path from s to ¢t where location s is guaranteed to be
visited before location ¢ can be simulated with an initialization needed directed self-closing
door simply by removing any access to location o: the only relevant transition remaining is
the transition from s to ¢ that permanently closes the gadget.
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Figure 3.4: Gadgets used for the initialization path

Next, note that the robot has no way to permanently leave the initialization path until
it reaches S. Suppose for the sake of contradiction that the robot somehow leaves the initial-
ization path before reaching S. The first such occurrence can only happen by the robot going
through an initialization-needed opening door, or by the robot interacting somehow with the
initialization-needed self-closing door. We consider the former case first. The robot’s first
access to each initialization-needed opening door is from the s side, which when the door
starts uninitialized provides no way for the robot to leave location s. The robot is unable to
reach any other location of the opening door until they go through a single-use path, after
which the s location of the opening door becomes unreachable. After proceeding through
this single-use path, the robot is only able to access the o location of the single-use path,
which cannot reach either the s or ¢ locations and therefore does not allow the robot to leave
the initialization path. Thus the former case is impossible. Now consider the latter case.
The first interaction of the robot with each initialization-needed self-closing door is to enter
from s while uninitialized and to exit from ¢, which we know must put the door in the closed
state. The only other possible interaction of the robot with each self-closing door (prior
to reaching S) is with the opening location o, which by definition of initialization-needed
self-closing doors is unable to access either s or ¢ in either the open or closed states. Thus,
the latter case is also impossible. Thus we see that the robot cannot leave the initialization
path until reaching S.

Third, we show that we may assume without loss of generality that the robot’s initial
moves are to go from S’ to S, and that once the robot reaches S every single-use path is
blocked, every opening-door is open, and every initialization needed self-closing door of G’
is open or closed depending on whether the corresponding self-closing door of G is initially
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open or closed. Firstly, since the robot cannot leave the initialization path it may as well
follow the path to the end and therefore reach S. Secondly, every single-use path is trivially
blocked because the initialization path goes through all of them. Thirdly, every close-first
initialization-needed opening door can be opened because we visit s first before visiting o for
each opening door, which is sufficient to first initialize and close the door before opening it.
Likewise, every no-close opening door can be opened because each o location of each opening
door is visited. Furthermore, there is no reason not to open any opening door because opening
the door allows for free traversal between s and ¢, which by construction is the maximum
possible amount of freedom for traversing an opening door (location o is unreachable within
the gadget from either s or ¢). Put another way, opening the door makes the reachability
problem from S to T as easy as possible. As such, we may assume that every opening door
is open. Finally, note that every self-closing door is traversed and therefore closed along
the initialization path. Only those that are initially open in G are then given the option
to be opened, so since opening a door always makes reachability no harder, we may assume
without loss of generality that all doors are opened whenever possible. Thus, reachability in
G’ from S’ to T is equivalent (after the robot moves from S’ to S) to reachability from S to
T in a variant of G’ where all single-use paths are closed, all opening doors are open, and all
self-closing doors are open or closed depending on their initial state in G.

But initialization-needed directed self-closing doors, once initialized, behave equivalently
to standard directed self-closing doors. Thus reachability in G’ under these conditions is
exactly equivalent to reachability in G' from S to T because all modifications to G have
essentially been undone by our traversal through the initialization path: there is no longer any
way to get onto the initialization path, all (partially) blocked edges of G are now once again
unblocked, and the self-closing doors now operate properly. As such, the reduction preserves
reachable instances and unreachable instances so the PSPACE-hardness of reachability with
directed self-closing doors also proves PSPACE-hardness of reachability with initialization-
needed directed self-closing doors. O]

Remark 4. Note that by appropriately adjusting the definition of initialization-needed di-
rected self-closing doors we can also produce initialization-needed forms of other self-closing
doors defined by Ani et al. [3]. By essentially the same construction as in Theorem 3, we can
prove that planar motion planning with either form of initialization-needed opening doors
and any form of initialization-needed self-closing doors is also PSPACE-hard, although when
open is mandatory there will be additional crossovers needed in order in the expanded door.

Corollary 5. Planar motion planning with initialization-needed directed self-closing doors
and either form of initialization-needed opening doors is PSPACE-hard.

Proof. We can use the exact same construction, but with an additional visit to the ¢ location
on each initialization-first self-closing door before the initialization path visits the s location.
We may need to add some additional crossovers in order to facilitate this visit. In particular,
while it may be possible to reopen closed doors from location i, it is impossible to reach
location ¢ so that doesn’t matter.

Alternatively, we can ignore the s — ¢ visit and corresponding crossovers when the door
is allowed to start open. O
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3.2 Land and Grills

In this section we prove that the Land and Grills case is PSPACE-hard. As a reminder,
this is the ladder-less case with s = 2, S; = {walls, grills}, So = {empty, sausages} and
S; = {empty} for ¢ > 2. This implies both the “Land, Grills, and Water” and “Land, Grills,
and Walls” results from prior work.

Theorem 6. Stephen’s Sausage Roll is PSPACE-complete without ladders when s = 2,
S1 = {walls, grills}, So = {empty, sausages} and S; = {empty} fori > 2.

Proof. Note that from Theorem 2 we know Stephen’s Sausage Roll is in PSPACE under
these conditions. From Theorem 3 it suffices to construct a close-first initialization-needed
opening door and an initialization-needed directed self-closing door. See Figure 3.5 for the
opening doors and Figure 3.6 for the self-closing door. In these diagrams, cells with orange
bars are grills one level below the player, green cells are walls one level below the player, and
sausages are pink ovals that becomes brown when fully cooked. Note that these sausages
are on the same level as the player, and the only things the player can walk on are green
cells. We will justify that these constructions work as long as we ban all states that result
in sausages being impossible to ever fully cook, since sausages that cannot be fully cooked
will prevent victory.

We first show that the opening door construction satisfies Definition 3. Note that there
is, indeed, no way to traverse from o to any other location, since there is no path of blocks
available. Likewise, once the opening door is in the state corresponding to either of the lower
two images, traversals in either direction between s and t are freely available: the sausage
is completely nonblocking in Figure 3.5d and can be pushed up from either the left or the
right in Figure 3.5¢ to reach the last state. Also, the path is fully blocked in Figure 3.5b
because from the left and right the sausage can only be pushed down, left, or right, all of
which would overcook the sausage. Also, starting from s in the uninitialized state, we can
reach the closed state simply by pushing the sausage 6 times to the right.

Finally, we justify that there is no transition from s in the uninitialized state to ¢t without
leaving the gadget. Entering the gadget from the left, we note that there is no way to push
the sausage to the left (without leaving first) unless we push it up or down first. As such,
any attempt to cross the gadget must start by pushing the sausage right some number of
times and then pushing it either up or down. Pushing it down is possible only after 0, 1,4, 5,
or 6 pushes to the right, and pushing it up is only possible after 1,2, 3, or 4 pushes to the
right. We consider the cases one at a time.

e Pushing down after 0 pushes to the right: The sausage will no longer be able to be
fully cooked, as there will never be any way to move the sausage back up (pushing it
all the way to the right next to location o will at minimum overcook the lower half of
the sausage), and so there is no other way to cook the upper half without cooking the
lower half. As such, pushing down after 0 pushes to the right will create a state where
the sausage can never be fully cooked, which is not allowed.

e Pushing down after 1 push to the right: The sausage is evenly cooked on its current
bottom side, but the only way to move it at this point is to push it left or right in
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) An uninitialized opening door (b) A closed opening door

(c¢) An opened opening door not yet traversed (d) An opened opening door after traversal

Figure 3.5: Opening doors in a land and grills framework. Locations s,t,0 are on the left,
right, and bottom, respectively.
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which case the lower half is once again more cooked than the upper half. There is no
way to resolve this in this gadget without pushing the sausage back up, which again is
impossible. As such, pushing down after 1 push to the right will create a state where
the sausage can never be fully cooked, which is not allowed.

e Pushing down after 4,5, or 6 pushes to the right: This overcooks the sausage and is
therefore not allowed.

e Pushing up after 1,2,3, or 4 pushes to the right: This overcooks the sausage and is
therefore not allowed.

As such, we see that the opening door construction satisfies Definition 3, with the slight
difference that there are technically two open states that we merge together.

We now show that the self-closing door construction satisfies Definition 2. Note that the
construction is essentially split into two portions: the left portion, which we call a diode,
and the right portion, which we call the gate. We prove some properties of these gadgets
separately.

First, note that the only way to traverse the diode when uninitialized from left to right
must involve pushing the sausage either up or down after at most six pushes to the right
(there is no way to push the sausage left until you push it up or down at least once). Due to
the position of the path, pushing up is only possible after 0, 1,2, 3, or 4 pushes to the right,
while pushing down is only possible after 1,4,5, or 6 pushes. We consider the cases one at
a time.

e Pushing up after 0 pushes to the right: The sausage will be more cooked in the upper
than the lower half, which can only be corrected by pushing the sausage down at some
point which is impossible. This sausage will therefore become impossible to properly
cook, which is not allowed.

e Pushing up after 1, 2, 3, or 4 pushes to the right: The sausage will be overcooked which
is not allowed.

e Pushing down after 1 push to the right: The sausage will be unable to move up or down
without overcooking, so traversing the diode will require the sausage to be pushed to
the right again. Once that occurs, pushing down, left, or right would all overcook the
sausage while pushing up is impossible since the fork cannot reach below the sausage,
so we cannot traverse the diode. Thus pushing down after 1 push to the right does not
work.

e Pushing down after 4 or 5 pushes to the right: The sausage will be overcooked which
is not allowed.

e Pushing down after 6 pushes to the right: The sausage is now fully cooked and there-
fore constrained to lie within two of the four vertically-connected cells of the diode.
Traversal is possible by pushing it two steps down, walking to the lower right of the
diode, then pushing the sausage two steps up before exiting.
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(¢) An open self-closing door

Figure 3.6: Self-closing doors in a land and grills framework. Locations s, ¢, o are on the left,
top, and bottom, respectively.
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Thus we see that an uninitialized diode can be traversed from left to right, but such
traversal will leave the sausage in the top two cells of the four vertically-connected cells.
Once the sausage is in that position, it can be pushed either one or two cells down from the
left without traversing. Such diodes are considered to be initialized.

Suppose for the sake of contradiction that an initialized diode can be traversed from right
to left. This must start by pushing the sausage to the upper two spots in order to reach the
lower right of the diode, then by pushing the sausage to the lower two spots in order to exit
on the left. However if the sausage is in the upper two spots then it is only reachable from
the left, so this sequence of operations is impossible.

Thus a diode can be initialized from a left-to-right traversal, after which arbitrarily many
left-to-right traversals are possible but right-to-left traversals are impossible.

Now consider the gate: suppose we try to traverse the gate from left to right starting
from an uninitialized state. In order to do this, we must push the sausage either up or down
after some number of pushes to the right, as we have no way to push it to the left. We can
push it up after 0,1,4,5, or 6 pushes to the right, and we can push it down after 1,2,3 or 4
pushes to the right. We consider cases one at a time.

e Pushing up after 0 pushes to the right: The upper half of the sausage will be more
cooked than the lower half, which can only be resolved by pushing it back down at
some point or by pushing it all the way to the right or left into either the gate or diode
gadget. However it is impossible to reach the sausage from above and pushing the
sausage into either gadget will overcook it and thus this sausage is uncookable, which
is not allowed.

e Pushing up after 1 push to the right: The sausage is evenly cooked on its current
bottom side, but the only way to move it at this point is to push it left or right in
which case the lower half is once again more cooked than the upper half (pushing up
overcooks the sausage). There is no way to resolve this without pushing the sausage
back down, which as in the previous case is impossible. As such, pushing up after 1
push to the right will create a state where the sausage can never be fully cooked, which
is not allowed.

e Pushing up after 4 or 5 pushes to the right: This overcooks the sausage and is therefore
not allowed.

e Pushing up after 6 pushes to the right: The sausage is now fully cooked and trapped
within the four vertically connected cells near the right of the gate. In particular it is
in the top two cells, so the player can travel to the upper right of the gate and push
the sausage down to the middle two cells. Then by travelling to the middle right of the
gate the player can knock the sausage down another cell in order to exit the gadget,
leaving the gate in the closed state as in Figure 3.6b.

e Pushing down after 1,2, 3, or 4 pushes to the right: This overcooks the sausage and is
therefore not allowed.
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Thus an uninitialized gate can be traversed from left to right, but such traversal will
leave the gate in the closed state. Likewise an open gate can also be traversed from left
to right, with essentially the same process but without the need to cook the sausage via 6
pushes to the right as that has already been done. Note that in the closed state, there is no
way to traverse the gate from left to right because the player cannot reach below the sausage
to push it up out of the way. There is also no way to open the gate from the right without
traversing the gate from right to left because returning to the right /upper side of the gate
will force the sausage to be pushed to the lower two cells in the process. Also note that the
gate can be easily opened from the opening path simply by pushing the sausage up a cell.
Finally, the opening path is evidently completely separated from any other location in the
gadget.

Putting this information together we arrive at the following properties of a self-closing
door. First, traversing from s to ¢t in either an uninitialized or open door is possible and
is guaranteed to leave the door in a closed state. Second, the door can be opened from
the opening path. Therefore all the necessary transitions exist. Thirdly, location o is fully
separated from s and ¢, and there is no way to transition starting from an open or closed
door into a door that is neither open or closed: both sausages are trapped within 4 vertically-
connected cells, and moving the diode up and down doesn’t change its state (infinite traversal
left-to-right is still possible while banning traversals right-to-left) and the gate portion is open
in the upper two positions and closed in the bottom. There is no way to traverse from s to ¢
in a closed door because a closed gate portion is untraversable from left to right, and there
are never any traversals from ¢ to s in an open or closed door because the diode will block the
traversal. Finally there are no other transitions from closed to open: the gate can only be
opened either from the opening path or by a right-to-left traversal, which would have to be
immediately reversed because the diode blocks any further movement to the left. Therefore
the combination of our diode and gate gives us a self-closing door.?

Since we have successfully constructed both an initialization-needed directed self-closing
door and a close-first initialization-needed opening door, we know that Stephen’s Sausage
Roll is PSPACE-complete without ladders when s = 2, S; = {walls, grills}, Sy = {empty,
sausages} and S; = {empty} for i > 2. O

3.3 Underground sausages

In this section we consider, essentially, the case where sausages are removed from the player’s
layer. Specifically, suppose that all sausages are in the layer below the player: cooking is still
possible since sausages roll when the player walks over them. Alternatively, we can think of
this problem as the land, grills, and walls case where the player is trapped in the layer above
the grills.

Theorem 7. Stephen’s Sausage Roll is PSPACE-complete without ladders when s = 3,
S1 = {walls, grills}, So = {empty, walls, sausages} and S; = {empty} fori > 2.

2Technically we have multiple open states and multiple close states depending on the state of the diode.
Note however that although the gate has multiple open states, the sausage cannot actually be in the topmost
two cells when the player is outside of the gadget, because the sausage will only stay there if we somehow
manage to reverse our way out of the diode.
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) An uninitialized opening door (b) An open opening door

Figure 3.7: Opening doors in an underground framework. Locations s,t, 0 are on the bottom
left left, top left, and bottom right respectively.

Proof. Note that from Theorem 2 we know Stephen’s Sausage Roll is in PSPACE under
these conditions. From Corollary 5 it suffices to construct an open-first initialization-needed
opening door and an initialization-first directed self-closing door. See Figure 3.7 for the
opening doors and Figure 3.8 for the self-closing door. In these diagrams, cells with orange
bars are grills two levels below the player, blue cells are walls two levels below the player,
green cells are walls one level below the player, and the sausages are pink ovals that becomes
brown when fully cooked. Note that in this construction sausages are one level below the
player, and the only things the player can move on are green cells and sausages. We will
justify that these constructions work as long as we ban all states that result in sausages
being impossible to ever fully cook, since sausages that cannot be fully cooked will prevent
victory.

We first show that the opening door construction satisfies Definition 4. First we observe
that the desired transitions exist: entering from o, moving onto the right-most sausage,
and then rolling the sausage 5 times to the left will also push the other two sausages and
thereby move the door into the open state, after which the player can exit again from o by
walking down from the right-most sausage to exit. When open, the door can be traversed
simply by walking across the left-most sausage. Also note that no other transitions exist:
an uninitialized door cannot be affected from the s or ¢ locations because those locations
cannot reach any sausages or any other locations in an uninitialized state. Furthermore,
from an uninitialized state the only way to change the state of the gadget is to walk onto
the right-most sausage from o. At this point, there is no longer any way to move onto the
right-most path because you can only step off a sausage perpendicular to its axis of rotation
if the sausage is unable to roll, so you must roll the sausages five steps to the left before
exiting downwards back to o. Also, in the open state no sausages are able to move without
overcooking and we cannot step from one sausage to another because they are all able to
roll and thus there are no other transitions starting from an open state.

As such, we see that the opening door construction satisfies Definition 4 and in fact does
so with the minimal number of transitions and states.

We now show that the self-closing door construction satisfies Definition 1. First note
that the needed transitions do exist: an uninitialized gadget in state ¢+ will become open if
the player steps onto the left-most sausage and rolls all of them left 9 times before stepping
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(a) An uninitialized self-closing door (b) A closed self-closing door

(¢) An open self-closing door prior to first (d) An open self-closing door after first
traversal traversal

Figure 3.8: Self-closing doors in an underground framework. Locations s,t,7,0 are on the
bottom left, top left, bottom right, and top right, respectively.

of the lower half to exit from 7. An open door can be traversed from s by stepping onto the
leftmost sausage, rolling right, and exiting from above, leaving the door in the closed state.
Finally, after entering a closed door from o we can step onto the third sausage, roll left and
then right, and step back up to leave the gadget in the state in Figure 3.8d.

We now show that no banned transitions exist: First, note that an uninitialized door
cannot have any transitions starting from s, ¢, or o because there is nothing reachable from
those locations. The only transition starting from ¢ will be to step onto the rightmost sausage,
after which the sausage can only be exited by rolling left 9 times and stepping down, so there
is a unique transition that starts from an uninitialized state. Once all sausages are in the left
blue portion, they can never leave that portion of the gadget, so the remaining possible states
correspond to knowing which column is empty. Furthermore each column can only be made
empty by moving a sausage out of that column and immediately stepping off said sausage, so
the only possible empty columns are columns 1, 3,5, and 7. An empty column 1 is the closed
state, in which case there is no way to go from s to ¢ because there is nothing reachable from
t. An empty column 3,5, or 7 leads to an open state, so there are no transitions starting
from open or closed that end in a state that is neither open nor closed. In all states there
is no way to go from ¢ to s because there is no way to step left onto the green path. There
is also no way to go from i to any other location or from o to any other location because
the constrained space means that sausages can roll at most one cells to the left or right, and
both i and o are two cells (horizontally) away from any other path. Finally, note that a
closed door also cannot be opened from ¢ because the only blank column is column 1, and so
the only possible actions starting from ¢ would be to step onto the sausage, roll the sausage
to the left, roll back to the right because the sausage cannot be exited, and end up in the
closed state again.

Thus, we see that the self-closing door construction satisfies Definition 1, albeit with
multiple possible open states.
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Since we have successfully constructed both an initialization-first directed self-closing
door and a no-close initialization-needed opening door, we know that Stephen’s Sausage
Roll is PSPACE-complete without ladders when s = 2, S; = {walls, grills}, Sy = {empty,
sausages} and S; = {empty} for i > 2. O

3.4 Cases without ladders

In this section we give a brief categorization of cases when ladders are banned, depending on
the contents of S,_5, Ss_1, s, and S,,;. Since each S has at most 4 elements, there are 15*
possibilities as no set can be empty. This is far too many for a table, but computer checks
suggest that over 90% of cases are covered.

3.4.1 Solvable in P

Lemma 8. In the following cases, Stephen’s Sausage Roll is in P.
1. If Ss_1 contains neither wall or sausage then Stephen’s Sausage Roll is in P.
2. If S5 doesn’t contain empty then Stephen’s Sausage Roll is in P.

3. If sausage is not an element of Ss_1US;USsy1 and there are no ladders then determining
solvability in Stephen’s Sausage Roll is in P.

4. If the sets Sg, Ssi1 do not contain sausage and Ss_y doesn’t contain empty, then Stephen’s
Sausage Roll is in P.

5. If grill is not an element of Ss_1 U Ss_o and there are no ladders then determining
solvability in Stephen’s Sausage Roll is in P.

6. If grill and empty are not elements of S,_1 and there are no ladders then determining
solvability in Stephen’s Sausage Roll is in P.

7. If grill is not an element of Ss_o and sausage is an element of Ss_1 but not Sy or Ssi1
and there are no ladders then determining solvability in Stephen’s Sausage Roll is in

P.

8. If grill is not an element of Ss_s and sausage is an element of Ss_1 but wall is not, and
there are no ladders then determining solvability in Stephen’s Sausage Roll is in P.

9. If sausage is not an element of Ss_1 U Sy and walls and grills are both not elements of
Ss11 and there are no ladders then determining solvability in Stephen’s Sausage Roll is
n P.

Proof. 1. In this case there are no valid levels as there is nothing for the player to stand
on. As such this lemma is vacuously true.

2. In this case the player cannot move (and arguably doesn’t even have any place to
spawn in) and therefore the level is unsolvable if there exist any sausages.
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3. If sets Ss_1, S5, 5511 all have no sausages, then there are no sausages that can interact
with the player, as there are no sausages they can stand on or push with a fork, and
no sausages on top of their head that they can knock off by moving. As such, if there
are any sausages at all then the level cannot be completed and otherwise the level is
trivially solved. As such, solvability of Stephen’s Sausage Roll in this case is equivalent
to lack of existence of sausages, which can be checked in P.

4. The only directly accessible sausages must always be in layers s — 1,s, or s + 1, of
which only s — 1 has sausages. Such sausages cannot move and therefore cannot be
cooked. Thus solvability of Stephen’s Sausage Roll in this case is equivalent to lack of
existence of sausages, which can be checked in P.

5. First note that since there are no ladders, there is no way to remove sausages at or
above layer s 4+ 1 that are resting on one or more walls or grills. As such, any cooking
must be performed when the sausage is at or below level s, using grills at or below
level s — 1, in order to fully cook every sausage.

If sets S,_ and Ss_; have no grills, then all cooking must occur when the sausage is at
least two layers below the player, after which sausages cannot go up any layers. Thus
the last sausage to be cooked will be impossible to flip, as by that point all sausages
will be at or below level s — 2 and thus inaccessible to the player. Thus if any sausages
exist, then the level is unsolvable.

As such, solvability of Stephen’s Sausage Roll in this case is equivalent to lack of
existence of sausages, which can be checked in P.

6. The last sausage in layers s — 1, s, or s + 1 must always be cooked on a grill in either
layer s — 2 or s — 1, all of which are blocked since empty and grills do not exist in the
layer s — 1. Thus solvability of Stephen’s Sausage Roll in this case is equivalent to lack
of existence of sausages, which can be checked in P.

7. In this case the only directly accessible sausages are in layer s — 1 or lower and can
only be cooked once they drop to layer s — 2 or lower, so analogous to the grill-less
case the last sausage of layer s — 1 will be uncookable. If there are no sausages in layer
s — 1 then no other sausages are reachable, so solvability of Stephen’s Sausage Roll in
this case is equivalent to lack of existence of sausages, which can be checked in P.

8. In this case the player must start off standing on a sausage that is in layer s — 1. The
same logic as the previous part implies that the last sausage in this layer cannot be
cooked.

9. In this case the only directly accessible sausages are those in layer s + 1 that are only
accessible if they are on your head. These sausages cannot be knocked off of your head
because there is nothing to knock them against.

O
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3.4.2 PSPACE-hard cases

If S;_1 contains both grills and walls and S contains both empty and sausages then
by Theorem 6 Stephen’s Sausage Roll is PSPACE-hard.?

If layer Ss_5 contains both grills and walls, S,_; contains walls, sausages, and empty,
and S, contains empty, then by Theorem 7 Stephen’s Sausage Roll is PSPACE-hard.?
This covers 2! cases.

3.4.3 Unsolved

We list some notable unsolvable cases that are tricky to consider and some comments as to

why.

3.9

Ss—o = {grill, wall, empty, sausage}, S;_1 = {grill, sausage, empty}, Ss DO {empty}.
In this case we can only stand on sausages, which makes path construction tricky.
In particular it is possible that solutions involve intentionally dropping the levels of
sausages since the player only needs to be at or above the level of the (possibly dropped)
initial sausage they stood on.

Ss_o = {empty, sausage, grill}, S;_; = {grill, sausage, wall, empty}, and Sy = Ssy1 =
{empty}. In this case the sausages all start off resting on other sausages. While it
is possible to roll them off of the sausages underneath onto grills for cooking, gadget
initialization and design still becomes much more difficult. In particular the lower
sausages can only be cooked by vertical stacks of sausages, which when perfectly aligned
are completely irreversible.

Ss_o = {empty, grill, wall}, S, ; = {wall, empty}, S, = {empty, sausage}. While intu-
itively it seems simple to push sausages off the player’s level onto the level below into
the gadgets introduced in Theorem 7, it seems highly nontrivial to prevent leakage in
the gadgets: if only some sausages are pushed into the level below, it may be possible
to escape the initialization path early and potentially return to fix the initialization
issues afterwards.

Sausage is not in either S;_; or Ss. In this case many sausages are balanced on top
of the player, with each sausage at least half-on either some sausage or the player but
with no sausage resting on any grill or wall. These sausages can be knocked off the
player’s head, but it is unclear what constraints can be placed on the landing positions
of these sausages.

Ladders

Adding ladders to PSPACE-hard cases does not affect PSPACE-hardness, and indeed allows
for the player s to start at a level other than the ones immediately nearby the sausages.
However, many of the P cases are no longer trivial, and we encounter the possibility of

3Note that we do allow the possibility of additional options in each layer in this case.
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multi-level gadgets or even three-dimensional gadgets, the exploration of which we leave to
future researchers.
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Chapter 4

Conclusion

We have shown that two variants of Stephen’s Sausage Roll are PSPACE-complete in Sections
3.2 and 3.3. Furthermore, we have shown that initialization-needed gadgets can be used to
perform planar motion planning with various kinds of initialization-needed self-closing doors
and opening doors.

Nonetheless, there is still a significant number of cases open for future research. Such
cases include the ones listed in Section 3.4.3, as well as most cases that involve ladders.
Other possibilities include finding difficulty bounds when given only a few sausages, and an
analysis of any changes in difficulty (if any) introduced by the addition of movable objects
such as the serpent and tree-island mentioned in Section 2.2. A less interesting but still
useful problem would be to adapt the solver by Chengyuan Ma to work when sausages may
be left partially cooked during a traversal to be fully cooked by later traversals [15].
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