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Abstract
This thesis develops a framework for proving computational complexity results about motion
planning problems. The model captures reactive environments with local interaction. We
introduce a motion planning problem involving one or more agents that move around a
connection graph and through “gadgets” which are stateful parts of the environment whose
state and traversability can change only in response to traversals of the agent within the
gadget. The model includes variants for 0-player, 1-player, 2-player, and team imperfect
information games.

This thesis considers various classes of gadgets and give both algorithms and hardness
results ranging from NL-completeness to Undecidability. Full dichotomies are obtained
for some classes including the natural class of gadgets which can be traversed a bounded
number of times. For 1-player this gives a separation between containment in NL ver-
sus NP-completeness, for 2-player a separation between containment in P and PSPACE-
completeness, and for team imperfect information games a separation between containment
in P and NEXPTIME-completeness.

Our model builds on and generalizes several other proof techniques for motion planning
problems and games. This thesis also provides examples of how this new framework can
simplify many of those old results, as well as applying to many new hardness results for
video games and variants of block pushing puzzles. New hardness results include PSPACE-
hardness for Trainyard, Sokobond, The Legend of Zelda: Breath of the Wild, The Legend of
Zelda: The Minish Cap, The Legend of Zelda: Oracle of Seasons, Captain Toad: Treasure
Tracker, Super Mario Oddsey, Super Mario Galaxy 1 and 2, Super Mario Sunshine, and
Super Mario 64.

Thesis Supervisor: Erik D. Demaine
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Many aspects of the world we live in are well modeled by a semi-static environment, i.e. one

which only changes in response to actions we or other agents perform upon it. We expect

inanimate objects like ladders, keys, and cups of tea to stay in the same places we last left

them. Given how common and mundane this experience of the world is, it is not surprising

that this assumption of stasis between actions shows up in many abstract models of the

world, whether they be models for robotic planning, simplifying assumptions to algorithms,

or aspects of video games. Once we start considering abstract models, it is very natural to

ask about the computational complexity of motion planning in such an environment. This

thesis describes a general model to help understand the computational complexity of motion

planning in these semi-static environments. It provides a formalization and generalization of

prior techniques used to prove hardness results about agent based motion planning problems.

Our model additionally has the property of interaction being local, captured by restricting

changes in the environment to be constant-sized gadgets, where the gadget changes state

when it is traversed by an agent according to a general transition function, enabling and/or

disabling certain traversals in the future. In general, we model a gadget as consisting of a

finite number of locations (entrances/exits) and a finite number of states; see Figure 1-1

for two examples. An agent has a location and is able to take transitions in a gadget,

changing the gadget’s state and the agent’s location. Each state 𝑠 of the gadget defines a
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Figure 1-1: State diagrams for the Locking 2-Toggle and the Non-deterministic Locking 2-Toggle.

labeled directed graph on the locations, where a directed edge (𝑎, 𝑏) with label 𝑠′ means that

an agent can enter the gadget at location 𝑎 and exit at location 𝑏, and that such a traversal

forcibly changes the state of the gadget to 𝑠′. These gadgets are further connected together

by a connection graph among their locations. The agent is able to freely move along the

connection graph outside of the gadgets.

We study this model primarily from the single-robot (one-player) perspective, but we

also introduce variations that look at two robots or teams of robots competing to reach their

respective goals and a 0-player model where the agent’s next location is fully deterministic.

This model’s simplicity and locality typically allow for “local replacement” [40] or “gadget

based” reductions, allowing us to simplify several prior hardness proofs. Yet this model is

also general enough to capture a range of situations and to generate interesting complexity

questions in its own right. Applications of this model include hardness for block-pulling puz-

zles [11,23], models of microassembly with global control [11,15], generalizations of switching

graphs [33], and generalizations of well known video games including Mario Kart, Zelda, and

Portal (Section 5).

Our objective in studying these gadgets is twofold. First, we wish to characterize the

computational complexity of motion planning problems whose input is world comprised of

a system of such gadgets and a starting and goal location for an agent, and whose output is
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Table 1.1: Table of complexity class containment based on the type of game and whether the
number of moves is bounded.

0-Player 1-Player 2-Player Team

Polynomially
Bounded

P-complete NP-complete PSPACE-
complete

NEXPTIME-
complete

Polynomially
Unbounded

PSPACE-
complete

PSPACE-
complete

EXPTIME-
complete

RE-complete
(Undecid-
able)

whether the agent can reach the target location from the starting location. This ambitious

goal would ideally generate a full characterization similar in spirit to Schaefer’s Dichotomy

Theorem for boolean CSPs [55]. Second, we want to find and highlight gadgets that seem

natural and easy to construct in other systems, furthering the goal of this model being a

useful intermediary for proving hardness results.

Inspired by past work on the complexity of games, as well as the formalization of Con-

straint Logic [44] in 0-player, 1-player, 2-player, and Team Imperfect Information variations,

we define 0-player, 1-player, 2-player, and Team Imperfect Information versions of our mo-

tion planning model and consider many of the prior classes of gadgets in those variants,

yielding problems with tight complexity bounds for the generated classes.

To this end we fully characterize a few special classes (infinite in size) of gadgets. For

every class of gadget we consider, we typically find that it is either “trivial”, meaning it is no

harder than the corresponding problem on a static graph, or “as hard as possible” given the

type of game and whether the number of moves is polynomially bounded. Table 1.1 gives

this breakdown. There are some notable exceptions though; for example the undirected

door-opening gadget, turns out to be P-complete for the 1-player problem, see Section 2.5.

In addition, deterministic single-input input-output gadgets, ones in which there is only one

location from which the agent can travel, are all contained in NP ∩ coNP in the 0-player

model, even though we might expect some to be PSPACE-complete, see Section 4.1.

One major distinction is whether gadgets have several state transitions which are poly-

nomially bounded or whether they are unbounded, meaning the agent can traverse the
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gadgets in such a way that the gadgets can continue changing state forever.

For gadgets that can only be traversed a polynomial number of times (DAG gadgets),

we give a full characterization. We classify a significant portion of the more general case

of gadgets with polynomially bounded state changes (LDAG gadgets). We also show how

the “shortest-path victory condition”, where we ask if the agent can reach the goal while

traversing gadgets no more than 𝑘 times, simplifies the characterization of polynomially

bounded gadgets.These results are summarized in Table 1.2.

For unbounded gadgets, we consider three main categories. First, we give a full char-

acterization of reversible, deterministic gadgets. Second, we study planar door gadgets and

self-closing door gadgets inspired by the “door gadget” of Viglietta [4,61]. Third, we investi-

gate simple input/output gadgets where locations the agent can enter the gadget are distinct

from locations in which the agent can exit. These gadgets are inspired by switching graphs

and models and puzzles about train routing.

Since many applications of this model will be in an approximately 2D environment, we

often consider the case of planar layouts of the gadgets. Frequently we are able to show

that the gadgets remain as computationally intractable in a planar setting as in the general

setting. One particularly interesting case we explore are door gadgets which were useful tool

in many prior proofs. We show PSPACE-completeness for all but one of the many planar

cases of door gadgets, leaving an NP-hard to PSPACE gap for the last one. This allows

the elimination of the crossover gadget from these past proofs, simplifying the constructions

needed. We also show all planar variations of the self-closing door gadget are PSPACE-

complete, see Section 2.6, and use this new, simpler gadget to prove several new hardness

results about video games, see Section 5.

In addition to problems concerned with reachability, where the decision problem is

whether the agent can reach the target location in a given system of gadgets, we also con-

sider several variations. We examine the complexity of the reconfiguration problem which

asks whether the agent can cause the system of gadgets to reach a target state. We show

a gadget with non-interacting tunnels whose reconfiguration problem is PSPACE-complete,

10



Table 1.2: Results for polynomially bounded gadgets

0-Player 1-Player 2-Player Team

DAG partial (§4.2) full (§2.3.5) full (§3.3.1) full (§3.3.2)

LDAG partial (§4.2) partial
(§2.3.7)
full for
shortest-path
(§2.3.6)

2-state IO full (§4.2) full (§2.5)

Table 1.3: Results for polynomially unbounded gadgets

0-Player 1-Player 2-Player Team

reversible
deterministic

full (§2.2)
planar
(§2.2.4)

partial
(§3.2.1)

partial
(§3.2.2)

2-state IO full (§4.3) full (§2.5)

Doors full (§2.6)
partial planar
(§2.9.3)

Single input
IO

partial (§4.1) partial (§2.5)

even though the reachability problem for any gadget with non-interacting tunnels is in NL.

We also show that, for reversible deterministic gadgets, PSPACE-completeness of the reach-

ability problem implies PSPACE-completeness of the reconfiguration problem. In contrast,

we exhibit a gadget for which the reconfiguration problem becomes easier, contained in P,

whereas reachability is NP-complete. We also consider the shortest-path problem, which

asks whether the agent can reach the target location while crossing less than 𝑘 gadgets. For

the shortest-path problem we show a class of gadgets whose reachability problem is in P

which becomes NP-complete.

The results of this thesis are an amalgam of the research in [6–9,12,25,29] and represent

work by a large number of people. My collaborators and coauthors whose ideas and words
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are represented here include: Joshua Ani, Sualeh Asif, Jeffrey Bosboom, Michael Coulombe,

Erik Demaine, Yevhenii Diomidov, Jonathan Gabor, Isaac Grosof, Dylan Hendrickson, Ama

Koranteng, Lorenzo Najt, Mikhail Rudoy, Sarah Scheffler, and Adam Suhl. Dylan Hendrick-

son in particular has been a central figure in almost all of these papers.

1.1 Model

In our model gadgets consist of locations, states, and transitions between state and

location pairs. Agents can be at locations and can move across gadgets via transitions

changing the gadget’s state and the agent’s location.

A gadget can be specified by its transition graph,1 a directed graph whose vertices

are state/location pairs, where a directed edge from (𝑠, 𝑎) to (𝑠′, 𝑏) represents that the agent

can traverse the gadget from 𝑎 to 𝑏 if it is in state 𝑠, and that such traversal will change the

gadget’s state to 𝑠′. Gadgets are local in the sense that traversing a gadget does not change

the state of any other gadgets.

A state graph of a gadget is a graph with a vertex for every state of the gadget with

directed edges between vertices where there exists a transition that takes that gadget from

one vertex’s state to the other’s. Many gadgets will share the same state graph. One

additionally needs to annotate the edges with ordered pairs of locations to fully specify the

gadget. The state graph of a gadget can be obtained by collapsing all of the state-location

nodes in a transition graph which share the same location.

The traversability between an ordered pair of locations (𝑎, 𝑏) in a gadget with specified

state (often implicitly the current state) refers to whether at least one transition from 𝑎 to

𝑏 in that gadget in that state exists. The traversability of a gadget in a specified state is

the set of traversability of all pairs of that gadget in that state. A traversal from location

𝑎 to location 𝑏 is any transition from location 𝑎 to location 𝑏. There is a subtle different

between transitions and traversals which is mostly relevant when we want to discuss moving

1In [25], the transition graph is called the “state space”, but we feel that “transition graph” more clearly
captures the automaton nature of transitions, which are discrete and directed.
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from one location to another location across multiple states of a gadget. These transitions

by definition must be different (since they have different starting states) but they may have

the same traversals.

A system of gadgets consists of gadgets, their states, and a connection graph on

the gadgets’ locations. 2 If two locations 𝑎, 𝑏 of two gadgets (possibly the same gadget) are

connected by a path in the connection graph, then the agent can traverse freely between

𝑎 and 𝑏 (outside the gadgets). (Equivalently, we can think of locations 𝑎 and 𝑏 as being

identified, effectively contracting connected components of the connection graph.) Since an

agent can move freely along any path in the connection graph, connection graphs whose

connected components are the same are essentially equivalent. These are all the ways that

the agent can move: exterior to gadgets using the connection graph, and traversing gadgets

according to their current states. A configuration is a system of gadgets along with a set

of agents and locations for those agents.

The primary problem considered in this thesis is 1-player reachability motion plan-

ning. This problem consists of a system of gadgets, a start location, and a set of goal

locations. The question is whether there exists a series of moves which takes an agent from

the start location to one of the goal locations. Different decision questions and models are

described in Sections 1.1.2, 1.1.3, and 1.1.4.

1.1.1 Diagrammatic Representations

We will frequently depict a gadget as a box or a circle, labeled with a state, and with transi-

tions between locations depicted as arrows or lines (depending on whether they are directed)

which are also labeled with the states that they transition the gadget into. Deterministic

gadgets will always have one state label per arrow, while non-deterministic ones may have

a list of states. Gadgets we deal with often have embodied state, where the traversability

in a state (and thus the configuration of arrows) is unique to that state. In these cases we

may omit the state label. Further, since many gadgets have both embodied state and are
2In [25], locations could only be matched to exactly one other location and a “branching hallway” gadget

was introduced to fulfill the need of the connection graph.
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Figure 1-2: A diagram of a system of gadgets involving Locking 2-Toggles

deterministic, we will also frequently omit the labels on the transitions.

To define a gadget, we can give a series of these diagrams, one for each state. This is

often easier to interpret than a list of transitions or a transition graph. In addition, the

diagrams can sometimes be arranged so the output location after a traversal has a dotted

arrow to the state diagram it corresponds to.

For example, Figure 1-1 shows the state diagrams of the Locking 2-Toggle and the Non-

deterministic Locking 2-Toggle. The Locking 2-Toggle, shown in Figure 1-1a, is a 3-state

2-tunnel reversible deterministic gadget. In state three, it has two directed traversals. Going

over either traversal flips its direction and closes the other tunnel. From states one and two,

each has a single transition and that transition brings the gadget back to state three. The

nondeterministic locking 2-toggle, shown in Figure 1-1b, is a four-state gadget where

each state has two transitions, each across the same tunnel. The top pair of states each allow

a single traversal downward, and allow the agent to choose either of the two bottom states

for the gadget. Similarly, the bottom pair of states each allow a single traversal upward to

one of the top states.

The figure below shows a system of locking 2-toggles. The boxes and transitions are

unlabled since the locking 2-toggle has embodied state and thus the state of the gadget in

each case is clear from the diagram. Further, we sometimes show the connection graph as

a subdivided connection for clarity. The black dots along the middle axis of the diagram

denote a connection between those ports.

14



1.1.2 Planarity

Since many of the applications of the model come from 2D environments, it is natural to

restrict our model to better respect the resulting mobility and connectivity constraints from

such a 2D environment. Thus we define planar motion planning where the cyclic order

of locations on a gadget is specified, and the system of gadgets must be embedded in the

plane without intersections. Specifically, construct the following graph from a system of

gadgets: replace each gadget with a wheel graph, which has a cycle of vertices corresponding

to the locations on the gadget in the appropriate order, and a central vertex connected to

each location. Connect locations on these wheels with edges according to the connection

graph. The system of gadgets is planar if this graph is planar. In planar motion planning,

we restrict the problem to planar systems of gadgets. Note that this allows rotations and

reflections of gadgets, but no other permutation of their locations. In some contexts, one

may want to disallow reflections of gadgets, which corresponds to imposing a handedness

constraint on the planar embedding of each wheel. One could allow more general embedding,

however, in our experience the proofs that use this framework have an easy time reflecting

the gadgets constructed by cannot build all of the combinatorial orderings of locations.

1.1.3 Victory Conditions

We typically consider the problem of whether the agent can reach a target location, or,

in a multiplayer setting, whether one team’s agent can reach a target location before the

other team has an agent reach their target location. These are called reachability motion

planning problems. Some useful alternatives are considered in this thesis. These variants

are all only explored for the 1-player model, but natural generalizations for 0-player and

multi-player versions exist.

In shortest-path motion planning, we ask whether there exists a series of at most 𝑘

moves which bring the agent to the target location. Here is will be important to specify

whether 𝑘 is of polynomial size (thus putting the 1-player problem in NP) or if it can be

exponential size (in which case one may only be proving weak-NP or weak-PSPACE-hardness
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since the input has numbers of exponential size).

In reconfiguration motion planning, we are given a system of gadgets, a start location,

and a target configuration for that system of gadgets. We ask whether there exists a series of

moves after which the system of gadgets is in the target configuration. One could additionally

specify a target location for the agent, though this seems unlikely to matter. One could also

consider the version where only some of the gadgets have specified target states. This more

general notion may make proving hardness easier, although we are able to obtain the stronger

result for full reconfiguration in all cases.

1.1.4 Number of Players

Altering the number of players in a motion planning problem can drastically change its

complexity. The general categorization follows the same one noted in earlier games, for

example Constraint Logic [44]. The single player case is the primary case considered and is

described above; here we give more detail on zero and multiplayer models.

In 1-player reachability motion planning we are given a system of gadgets, the start

location for the player, and a set of goal locations for that player. The decision question is

then: does there exist a series of traversals which takes the player from their start location

to one of the goal locations? Results in this model are discussed in Chapter 2.

In 2-player reachability motion planning we are given a system of gadgets, a start

location for the Existential Player (Player 1), a start location for the Universal Player

(Player 2), a set of goal locations for the Existential Player, and a set of goal locations for

the Universal Player. Each player takes turns, starting with the Existential Player, moving

through the system of gadgets with the same rules of traversability as the 1-player model.

Here we only count transitions through gadgets as moves, and allow free movement along

the connection graph. The Existential Player wins if they reach one of their goal locations

before the Universal Player has reached any of their goal locations. The decision question

is whether, under perfect play, the Existential Player can force a win. Results in this model

are discussed in Chapter 3.
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The team reachability motion planning problem is similar to the 2-player case. We

now have two teams, the Existential Team and the Universal Team, each of whom has a set

of players with start locations and a set of goal locations. We also have an ordering for the

players each of whom take turns moving in the system of gadgets. The Existential Team wins

if some player on the Existential Team reaches one of the Existential goal locations prior

to any one the players on the Universal Team reaches any of the Universal goal locations.

In the perfect information setting, this is essentially equivalent to a 2-player game where

each player controls multiple agents, since, under perfect play, the players will be able to

coordinate perfectly.

Thus, we also consider the team imperfect information reachability motion plan-

ning problem. In addition to everything in the team reachability motion planning problem,

we also have a visibility function for each player which maps the state of the world into the

gadgets. Each player is given access to the states of the gadgets returned by their visibility

function on the current state of the world. Normally we will restrict the visibility function

to either be a constant function (each player always knows the state of some portion of the

gadgets and is never told the state of any other gadgets) or only a function of the player’s

location. The constant visibility function is what is used in most prior models, for example

Team Constraint Logic [44], Team Computation Game, Team Private Peak, or Team For-

mula Game [51]. Here we will use the visibility model in which the player is able to see

the state of any gadget which is connected to their current location. Note this visibility

function is highly sensitive to the difference between defining a system of gadgets as a set of

connections between locations (the current one used) versus a matching on locations with

the addition of the branching hallway gadget (the original definition in [24]). Results in this

model are discussed in Chapter 3.

In 0-player reachability motion planning we want to capture a model in which there

is no player choice but we still have an agent moving mindlessly forward through a system of

gadgets. Thus we restrict the location connectivity graph to be a matching. We call a system

of gadgets whose connectivity graph is a matching branchless. After an agent follows a
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transition in a gadget, it immediately enters the location connected which is connected in

the matching and takes one of the available transitions in that new gadget. Thus the agent is

never able to choose where to go between gadgets or to “turn around” after exiting a gadget.

If all gadgets are themselves deterministic, then at no point will the agent ever have a choice

about what location to go to. This currently leaves behavior undefined when the agent enters

a location with no transitions or exits a location that is not connected to another location.

One natural resolution is for the agent to stop moving and become “stuck” if this ever occurs,

thus preventing the agent from winning if they have not already done so. Another resolution

is to have the agent “bounce off” the gadget or unconnected location, causing it to reenter

the location it last exited. This is used in a model of reversible computation [36] which

resembles our 0-player model. We partially avoid the issue by considering a class of gadgets

and constructions which prevent this situation from ever arising. Results in this model are

discussed in Chapter 4.

1.1.5 Classes of Gadgets

Here is a description of all of the different types of gadgets considered in this thesis.

A gadget is deterministic if every traversal can put it in only one state and every

location has at most one traversal from it. More precisely, its transition graph has maximum

out-degree 1.

A gadget is reverse-deterministic if its transition graph has maximum in-degree and

out-degree of one.

A gadget is reversible if every transition can be undone after being taken. More pre-

cisely, for all transitions 𝑡 from location 𝑙1 and state 𝑠1 to location 𝑙2 and state 𝑠2 there exists

a transition 𝑡′ from location 𝑙2 and state 𝑠2 to location 𝑙1 and state 𝑠1.

Reversible deterministic gadgets are thus gadgets whose transition graphs are matchings.

They are also reverse-deterministic.

DAG gadgets are gadgets whose state graph forms a directed acyclic graph (dag).

LDAG gadgets are gadgets whose state graph which forms a dag with self-loops.
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DAG gadgets are a class of naturally bounded gadgets, in that they can only be traversed

a bounded number of times. LDAG gadgets represent a large class of gadgets whose 1-player

motion planning problem is in NP, as the state transitions of the gadgets are still bounded.

Eventually static gadgets which are a class of LDAG gadgets where the self-loops are

only allowed in states which are sinks in the state graph. These are a special case of LDAG

gadgets and DAG gadgets are a special case of eventually static gadgets.

A 𝑘-tunnel gadget has 2𝑘 locations, which are partitioned into 𝑘 pairs called tunnels,

such that every transition is between two locations in the same tunnel. In this thesis we will

primarily be considering 𝑘-tunnel gadgets and thus this will often not be specified. We will

sometimes refer to a 𝑘-tunnel gadget as a gadget which is on tunnels.

An input/output gadget is one whose locations can be partitioned into input locations

(entrances) and output locations (exits) such that every traversal brings an agent from

an input location to an output location, and in every state, there is at least one traversal

from each input location. In particular, deterministic input/output gadgets have exactly one

traversal from each input location in each state. Note that input/output gadgets cannot be

reversible nor DAGs.

An input/output gadget is output-disjoint if, for each output location, all of the tran-

sitions to it are from the same input location. This notion is more general than 𝑘-tunnel

for input/output gadgets because it allows a many-to-one relation from a single input to

multiple outputs.

A door gadget is a 2-state, 3-tunnel gadget which has a “traverse” tunnel, an “open”

tunnel, and a “close” tunnel. The traverse tunnel is only traversable in the “open” state.

The close tunnel has traversals in both states and both traversals set the state to “closed”.

The open tunnel has traversals in both states and those traversals (optionally) set the state

to open. There are 8 door gadgets based on whether the tunnels have directed or undirected

transitions and whether the door opening is optional.

A self-closing door gadget is a 2-state, 2-tunnel gadget which has an “open tunnel”

and a “self-closing tunnel”. The self-closing tunnel only has transitions from the “open” state
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to the “closed” state. The open tunnel has transitions which set the state of the gadget to

“open”. There are 4 self-closing door gadgets based on whether the two tunnels are directed.

Sometimes we will refer to door gadgets and self-closing door gadgets collectively as door

gadgets.

A monotonically opening gadget is one in which the traversability of a gadget never

decreases as transitions are taken. More formally, for all states 𝑠, if there is a transition from

location 𝑙1 to location 𝑙2 then for all states reachable from 𝑠 there is some transition from

location 𝑙1 to location 𝑙2.

A monotonically closing gadget is one in which the traversability of a gadget never

increases as transitions are taken. More formally, for all states 𝑠, if there is not a transition

from location 𝑙1 to location 𝑙2 then for all states reachable from 𝑠 there is not a transition

from location 𝑙1 to location 𝑙2.

An unchanging gadget is one in which the traversability of a gadget never changes.

More formally, for all states 𝑠 if there is a transition from location 𝑙1 to location 𝑙2 then for

all states reachable from 𝑠 there is some transition from location 𝑙1 to location 𝑙2 and if there

is not a transition from location 𝑙1 to location 𝑙2 then for all states reachable from 𝑠 there is

not a transition from location 𝑙1 to location 𝑙2. 1-state gadgets are trivially unchanging as

the traversability of a gadget cannot change if it cannot change state.

A gadget with embodied state is one in which no two states of a gadget have the same

traversability. More formally, for all pairs of states 𝑠𝑖 and 𝑠𝑗 in the gadgets, there exists a

pair of locations 𝑙𝑎 and 𝑙𝑏 such that there is at least one transition from 𝑙𝑎 to 𝑙𝑏 in exactly

one of 𝑠𝑖 or 𝑠𝑗 and no transition from 𝑙𝑎 to 𝑙𝑏 in the other state. Thus each state can be

uniquely determined simply by looking at the gadget’s traversability (as opposed to needing

to know the transitions).

1.2 Related Work

We build on four main bodies of work: the Constraint Logic formalism of Hern and Demaine

[45], the doors-and-buttons framework of Forišek [35] and Viglietta [60], the Mario/Portal

20



framework [5,31], and the door-gadget framework [16]. These papers all provided important

ideas and computationally hard problems, but were insufficient for our target purpose in

some fashion. Constraint Logic was not an agent-based model, the doors-and-buttons and

door-gadget frameworks were insufficiently general, and the Mario/Portal framework was

not sufficiently formal serving merely as a guideline for how to set up a reduction. In the

following section we summarize some of this prior work and also compare it to our model.

1.2.1 Constraint Logic

Constraint Logic is a type of constraint satisfaction on directed weighted graphs. In this

model, edges have weights and vertices have a requirement that the sum of the weights of

the edges directed towards the vertex exceeds a target value. A common question studied on

such graphs is reconfiguration: given a satisfied graph, and the ability to flip the directions

of edges one at a time, does there exist a sequence of flips in which the graph remains satisfied

and some target edge is flipped? Both bounded and unbounded 0-player, 1-player, and team

imperfect information version of constraint logic games have been defined [45]. Details on

these problems are given in Section 1.4.1. One of the main useful features was showing that

the unbounded, 1-player version of the problem is still PSPACE-complete even when the

graph consists of max-degree 3 vertices which all require weight 2 and have either three

weight-2 edges or one weight 2 and two weight 1 edges. Further, the problem remains hard

when the constraint graphs are planar. Other versions of the problem remain hard with

similar restrictions.

This problem was originally introduced in [44] to aid in proving the PSPACE-hardness

of sliding block puzzles. Constraint Logic is a reconfiguration problem where the moves are

reversible and global, just like sliding block puzzles. Constraint Logic become a useful tool

in proving many more hardness results about games and puzzles [28, 45, 47, 58], graph and

shape reconfiguration [14,46], and robotic swarm motion planning [10,15]. However, in some

of these use cases, the environment is changed by a localized agent acting on its environment.

In this case the global nature of moves in constraint logic becomes a barrier. One of the
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motivations in defining our model was to create an agent-based version of constraint logic to

make proofs of these types of problems easier. This is also one of the reasons that reversible

deterministic gadgets were the first class of gadget we examined.

We use unbounded 1-player, 2-player, and Team versions of constraint logic in proving

hardness for 𝑘-tunnel reversible deterministic gadgets in those models. These can be found

in Sections 2.2 and 3.2.1

1.2.2 Doors-and-Buttons Model

The doors-and-buttons model was defined and explored by Forišek [35] and Viglietta [60],

and the main remaining questions posed about the model were resolved by Van Der Zanden

and Bodlaender [58].

This model involves an agent in a 2D square grid attempting to reach a target location.

In the environment there are walls and doors which block the agent’s movement. However,

a door only blocks an agent while it is “closed”. Around there environment there are also

buttons which the agent can press can “open” or “close” doors to which it is connected.

In particular each button has an associated set of doors and for each of those doors either

“open” or “close”. When pressed, those doors are set to the corresponding open or closed

states. Each button exists in a tile in the environment and if the agent is on the same tile,

the agent is free to press the button. The model also considers pressure plates which act

exactly like doors except that they are pressed if the agent ever moves into the same square.

One restriction studied in this series of papers is the size of the button’s set of doors and

the number of button sets each door can appear in. We parameterize this by 𝑘-button-𝑗-door

to mean each button can effect no more than 𝑘 doors and each door can have no more than

𝑗 buttons change its state. We could similarly replace “button” and “door” with “pressure

plate” and “trapdoor”. Prior work then gives the following dichotomies.

1. The 1-button-𝑑-door for all 𝑑 ≥ 1 with crossovers is P-complete [60].

2. The 𝑐-button-1-door for all 𝑐 ≥ 2 is NP-complete [60].
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3. The 𝑐-button-𝑑-door for all 𝑐 ≥ 2 and 𝑑 ≥ 2 is PSPACE-complete [58].3

There is a similar characterization of pressure plates from [60].

1. The ≥ 1-pressure plates-1-door with crossovers is P-complete.

2. The 1-pressure plates-≥ 1-door is NP-complete.

3. The ≥ 2-pressure plates-≥ 2-door is PSPACE-complete.

The papers also provide various other NP-hardness results for keyed-doors or toll bridges

that open when some item or quantity of items is collected. These results are directly used to

prove hardness for ten video games in those papers, as well as several works that directly use

those theorems provided [5,29,31,56]. However, the ideas and adaptations of the techniques

can be seen in several papers and are likely even more important than the model and meta-

theorems provided.

In [58] there are two extensions of the doors-and-buttons model. One is the notion of a

trapdoor which prevents movement onto a square rather than between squares. The other

is a switch which has an associated set of doors and swaps their current state between open

and closed whenever it is pressed. Buried in the proof that motion planning with 2-buttons-

2-doors is PSPACE-complete, the problem of motion planning with 1-switch-2-doors, where

each switch is only connected to two doors and each door is only connected to one switch,

is also shown to be PSPACE-complete. This result has been useful in several PSPACE-

completeness proofs including Portal [31], Zelda [12], and several results in this thesis. A

more recent paper [38] defines a model almost identical to doors-and-buttons with switches

without being aware of the work of [58]. It shows that motion planning with switches and

doors remains PSPACE-complete even when restricted to maps of height 3 in a square grid.

These sorts of extensions lead to a more general model which we describe in Section 1.3.

This framework has also been used to prove hardness results about Offspring Fling, Back

to Bed [17], Zelda: Breath of the Wild [12], and Portal [31].

3 [60] had resolved this for 𝑐 ≥ 3 and 𝑑 ≥ 2.
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1.2.3 Mario/Portal Framework

The Mario/Portal Framework gives a methodology for constructing NP-hardness proofs for

videogames. The original paper [5] lays out how to use enemies that can be defeated from afar

(for example, in Mario this is done by sending a Koopa shell through a passage Mario cannot

go through) to build a reduction from 3SAT. It is inspired by the technique for hardness of

PushPush block puzzles in [21]. It involves constructing one-way gadgets, crossover gadgets,

variable gadgets, and clause gadgets. One-way gadgets are usually trivially given by long

falls, ones which the agent cannot go back up. For variable gadgets the agent is given a

choice of going down one of two paths, enforced by the one-way gadgets, and along those

paths are locations where the agent is able to successfully dispatch an enemy from a safe

location. The enemies are guarding some other path, and for the clause gadget we place a

choice of three paths each guarded by an enemy which can be dispatched from the associated

variable gadget. The paper applies this framework to show NP-hardness (via a reduction

from 3SAT) of generalized versions of classic SNES games in the Mario, Zelda, Donky Kong,

and Metroid series. This framework is later used by others to show NP-hardness results for

Portal [31], Mario Kart [13], Wings of VI [49], and Fire Emblem [39].

In [31] it is noted that the key properties are that there is an enemy blocking a traversal,

and there is a way to remove that enemy from a separate location. (At this point, this

should have been seen as a more general interpretation, or perhaps an application of Forišek’s

Metatheorem 1 [35]) The paper goes on to describe several common relationships between

characters, enemies, and environments which fulfill this criteria, such as having stronger

short-range or long-range weapons, or having asymmetric visibility. It further lists several

games for which hardness should follow fairly simply.

This framework shows up in Section 2.3. We believe it is much simpler to now view these

constructions as consisting of diode, crossover, and door-opening gadgets; where the door

opening gadget is serving the role of the literals in the formula. With this view, each of the

variable and clause gadgets can be simplified and arguments about the layout and overall

structure are no longer needed.
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1.2.4 Door-Gadget Framework

The Door-Gadget framework introduced in [61] and simplified and used with great success

in [5] is in some sense the prototypical gadget which the motion-planning-through-gadgets

framework is modeled after.

The notion of “opening and closing a door” is preserved from the doors-and-buttons

framework, but using notions of traversable pathways as is seen in parts of [35] but also

treats the notion of “door” as abstract traversability as seen in the Mario/Portal framework.

It also gives a framework for proving PSPACE-completeness which was also provided by the

doors-and-buttons framework but was lacking in Metatheorem 1 of [35] and the Mario/Portal

framework.

This framework was used to prove PSPACE-hardness for Lemmings [61], Donky Kong

Country 1-3, Legend of Zelda: A Link to the Past [5], Super Mario Bros. [32], Fire Emblem

[39] and The Witness [1]. It was also extended to a 2-player game framework to prove

EXPTIME-completeness of Xiangqi, Janggi [65], and Dou Shou Qi [64].

This technique is brought into our framework and studied in more depth in Section 2.6.

It has lead to hardness results for additional Mario (Section 5.2), Zelda (Section 5.3), and

block-pushing puzzle games (Section 5.1).

1.3 Extended Doors and Buttons Model

In the first three papers laying out the doors-and-buttons model [35, 58, 60] we already see

the papers pushing at the boundaries of what was allowed in prior models: distinguishing

optional and mandatory use with buttons and pressureplates, having doors live between tiles

versus trapdoors taking up entire tiles, and switches swapping door state rather than setting

it to a fixed value. This suggests the following simple generalization.

In the generalized doors-and-buttons model we are given a graph with a start loca-

tion and goal location. The edges and vertices are labeled with activators and effectors

which are analogs of buttons and doors. The effectors have two states if they are on a vertex:

25



“open” and “close”. The effectors have four states if they are on an edge: “open”, “close”,

“directed 𝑎 to 𝑏”, and “directed 𝑏 to 𝑎” where 𝑎 and 𝑏 are the edge’s vertices. When the

agent crosses an edge with an activator or enters a vertex with an activator, the agent must

choose one “action set” from a set of allowed action sets for the activator. An action consists

of a target effector and a function from effector states to new states. So common actions

might be to set the state of effector 𝑒 to closed, or to swap the state between “directed 𝑎 to

𝑏”, and “directed 𝑏 to 𝑎”. Activators are optional if one of the action sets is the empty set.

Thus our buttons in the original doors-and-buttons model become vertex activators with two

action sets, the empty set and another set with functions that map to one value, either open

or closed. Now we still have most of the simplicity and intuition of the doors-and-buttons

model, but can express a fuller space around the individually defined aspects.

From this view, we can see that many gadgets in the motion-planning-through-gadgets

framework are the same as edge activators and edge effectors with strong restrictions on

connectivity. The door gadget is comprised of activators whose action set is either to set an

effector closed or set an effector open, and which can connect to no more than one effector.

The effectors are restricted to connect to no more than two activators.

With this generalization, there is an interesting question that arises about the computa-

tional complexity of switches connected to only one door. In [58] it was shown that having a

vertex activator connected to no more than two edge effectors which switched the states of

those effectors between open and closed, and had effectors connected to no more than one

activator was sufficient for PSPACE-completeness. If one reduces that case to the case of

an activator only connecting to one edge effector, it is unknown whether this remains hard

but seems likely and we conjecture it to be in P. In particular if it is an optional activator

this is known to be in P from [60]. With a vertex activator, having the freedom to step off

and then on again will make the activator effectively optional. In contrast, the toggle-lock,

described in Section 2.2.6, is essentially an edge activator connected to one edge effector and

is known to be PSPACE-complete. In this case the edge activator is very different because

in some sense it remembers which side the agent was on and requires completing a cycle in
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the graph to flip its state rather than just having an adjacent vertex.

It is useful to note that neither the gadgets model nor the generalized doors-and-buttons

model are strictly more general than each other, and there are cases in which it is difficult to

express one in terms of the other. The generalized doors-and-buttons model can chain many

activators and effectors together, yielding what would look like a gadget with potentially

linear number of traversals. In addition, gadgets do not have internal vertices in the way

that activators and effectors can sit on vertices. However, the gadgets can have complex

internal states, whereas the total state in the generalized doors-and-buttons model is shown

in the ability to cross the edges with effectors. Further, gadgets can have transitions which

change the state of the gadget also change their own traversability, whereas in the doors-

and-buttons model activators and effectors are normally forced to be on different locations

(though this need not generally be the case). We believe that some of the power of these

two models is from there simplicity.

We now define an even more general model which encompasses both the generalized

doors-and-buttons and the gadgets models. We do not believe this is an ideal model to work

in, but we will apply restrictions to this model until we reach both the doors-and-buttons

and the gadgets model. Along the way, we wo;; offer ideas of why it may be prudent to pick

one of those models over the other, or what additional restrictions in those models may be

useful to consider.

In the fully generalized doors-and-buttons model we are given a graph labeled with

controllers and the traversability of edges and vertices. Vertices can be passable or

impassable, and edges can be passable in one, both or neither direction. Controllers are

finite state machines which additionally send an output signal and dictate the traversability

of the edge/vertex they live on. When an agent enters or leaves a vertex with a controller, or

crosses an edge with a controller, that agent has a set of inputs from which they must select

one to send to the controller. That input then causes the controller to potentially change

state, change the traversability of the edge or vertex it is on, and send inputs to other

controllers causing them to also update and perform actions. A gadget can be constructed
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by controllers which track the state of the gadget and send signals to each other with their

name whenever they are crossed. Doors and buttons are each very simple types of controllers.

However, we think there is a lot of utility in the restrictions imposed by the gadgets and the

doors-and-buttons models, and will describe some of those here.

One very important simplification is that controllers only send signals in response to

states reached from the agent’s input. This means we do not need to worry about timing

between agent and controller steps. Also, determining if such a system of message passing

finite automaton ever stop can be computationally intractable in itself. This forces our

environment to be reactive and temporally bounded in some sense.

The generalized doors-and-buttons model goes further and splits up controllers into ef-

fectors which dictate the traversability of the vertex or edge they live on, and activators

which take in the agent’s input and send signals to effectors. We further see the restriction

that each vertex or edge can have at most one activator or effector on it at a time. We could

imagine investigating analogous restrictions in the Gadgets model in which some transitions

never change the traversability between their locations and other transitions never cause a

state change in the gadget. In particular, the Door gadget from [16] and studied further

in [5] obeys this property. The traversal tunnel never changes the gadgets state, and the

open and close tunnels never change how they can be traversed.

Further, in doors-and-buttons activators are stateless and effectors have no state besides

the traversability of their location. If we ignore switches, which were not in the original

doors-and-buttons papers, then the actions of effectors do not need to consider their state.

A potentially interesting and analogous restriction in the gadgets model would be for them

to have embodied state where no two states of a gadget can have the same set of traversals.

Thus there are no states that “look the same” but are distinguishable. Most of the gadgets

we examine do have this property.

The gadget model has a notion of gadget locality where it only exists on some small,

fixed number of edges. The doors-and-buttons model also investigates a similar notion by

only allowing the doors to be controlled by a constant number of buttons, and the buttons
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to control a constant number of doors. We can apply the same constraint to our general

activators and effectors. Further, we could also demand that the entire connected component

of activators and effectors remain below a certain size.

The gadget model has a notion of spatial locality when looking at the planar case. Al-

though the doors-and-buttons model was defined on grid graphs, the ability of the doors and

buttons to be spatially disparate allowed long distance interactions in the world. For the

generalized doors and buttons model we suggest three possible restrictions: full planarity,

𝑘-hop locality, and face locality. In full planarity it would be required that if edges are

added to the location graph for all of the connections between controllers, the resulting graph

is still planar. This keeps pathways from having to cross the connections between gadgets,

but also forces a sparsity on the connection graph among controllers. Face locality requires

the location graph to be planar and requires that controllers which are connected share a face

with each other. Finally, 𝑘-hop locality does not care about planairty but instead wants

to keep pieces of gadgets near to each other. In this case, all controllers must be within a

distance 𝑘 in the location graph of the controllers to which they are connected with.

1.4 Related Problems for Reductions

In this section we provide full definitions for problems related to Constraint Logic and quan-

tified boolean formulas which are used in reductions throughout this thesis.

1.4.1 Constraint Logic

Constraint Logic [27, 44] is a uniform family of games — one-player, two-player, or team,

with both bounded and unbounded variants — with the appropriate complexity in each

case (as in Table 1.1). We will only describe the unbounded variants of Constraint Logic,

as we use formula games for our bounded reductions. We also do not describe zero-player

Constraint Logic, as we do not need it here.

In general, a constraint graph is an undirected maximum-degree-3 graph, where each
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edge has a weight of 1 (called a red edge) or 2 (called a blue edge). A legal configuration

of a constraint graph is an orientation of the edges such that, at every vertex, the total

incoming weight is at least 2. A legal move in a legal configuration of a constraint graph

is a reversal of a single edge that results in another legal configuration.

In 1-player Constraint Logic (also called Nondeterministic Constraint Logic or

NCL), we are given a legal configuration of a constraint graph and a target edge 𝑒, and we

want to know whether there is a sequence of legal moves ending with the reversal of target

edge 𝑒. In this game, two types of vertices suffice for PSPACE-completeness: an OR vertex

has exactly three incident blue edges, and an AND vertex has exactly one incident blue

edge and exactly two incident red edges. We can also assume that each OR vertex can be

assigned two “input” edges, and the overall construction is designed to guarantee that at

most one input edge is incoming at any time; thus, we only need a “Protected OR” gadget

which does not handle the case of two incoming inputs. Furthermore, the problem remains

PSPACE-complete for planar constraint graphs.

In 2-player Constraint Logic (2CL), each edge of a constraint graph is also colored

either black or white, and two players named Universal and Existential4 alternate making

valid moves where each player can only reverse an edge of their color. Given a legal config-

uration of a constraint graph, a target white edge for the Existential player, and a target

black edge for Universal, the goal is to determine whether the Existential player has a forced

win, i.e., a strategy for reversing their target edge before any Universal player can reverse

their target edge. In this game, six types of vertices suffice for EXPTIME-completeness:

and and or vertices where all edges are white, and vertices where all edges are black, and

vertices where the blue edge is white and one or both of the red edges are black, and degree-2

vertices where exactly one edge is black.

In Team Private Constraint Logic (TPCL), there are two players on the Existential

team and one player on the Universal team, who play in round-robin fashion. In each move,

the player can reverse up to a constant number 𝑘 of edges of their color. Each player has

4These were initially the Black and White players to reflect the edge coloring, but we adopt the names
Universal and Existential to reflect what role these players take in the formula alternation.
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a target edge to reverse, and can see the orientation of a specified set of edges, including

edges of their own color and edges incident to those edges. Given a legal configuration of

a constraint graph, the goal is to determine whether the Existential team has a forced win;

i.e., whether one of the Existential players can reverse their target edge before Universal

can. In this game, all possible black/white colorings of and and or vertices suffice for RE-

completeness. (Only undecidability has been claimed before, but RE-completeness follows

by the same arguments.)

1.4.2 Formula Games

A 3-CNF formula is a boolean formula 𝜙 of the form 𝐶1 ∧ · · · ∧ 𝐶𝑘, where each clause

𝐶𝑖 is the disjunction of up to three literals, which are variables or their negations. An

assignment for such a formula specifies a truth value for each variable, and is satisfying

if the formula is true under the assignment.

In 3SAT , we are given a 3-CNF formula, and we want to know whether it has a satisfying

assignment. 3SAT is NP-complete [40].

A partially quantified boolean formula is a formula of the form 𝑄1𝑥1 : · · · : 𝑄𝑛𝑥𝑛 : 𝜙,

where 𝑄𝑖 is one of the quantifiers ∀ or ∃, 𝑥𝑖 is a (distinct) variable, and 𝜙 is a 3-CNF formula.

An assignment for a partially quantified boolean formula specifies a truth value for each

variable in 𝜙 that is not any 𝑥𝑖, called free variables. For a partially quantified boolean

formula 𝜓 = 𝑄1𝑥1 : · · · : 𝑄𝑛𝑥𝑛 : 𝜙 with 𝑛 > 0, let 𝜓′ = 𝑄2𝑥2 : · · · : 𝑄𝑛𝑥𝑛 : 𝜙. Given an

assignment 𝑆 for 𝜓, define assignments 𝑆 + 𝑥1 and 𝑆 + ¬𝑥1 for 𝜓′ which assign the same

truth value as 𝑆 to each free variable of 𝜙 and assign “true” and “false” to 𝑥1, respectively.

The truth value of 𝜓 under 𝑆 is defined recursively as follows:

∙ If 𝑛 = 0 (so 𝜓 = 𝜙), 𝜓 is true under 𝑆 if and only if 𝜙 is true under 𝑆.

∙ If 𝑛 > 0 and 𝑄1 = ∀, 𝜓 is true under 𝑆 if and only if 𝜓′ is true under both 𝑆 + 𝑥1 and

𝑆 + ¬𝑥1.

∙ If 𝑛 > 0 and 𝑄1 = ∃, 𝜓 is true under 𝑆 if and only if 𝜓′ is true under at least one of
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𝑆 + 𝑥1 and 𝑆 + ¬𝑥1.

A quantified boolean formula is a partially quantified boolean formula with no free

variables. A quantified boolean formula has only one assignment (which is empty), so we

say it is true if it is true under this unique assignment.

The truth value of a quantified boolean formula 𝜓 = 𝑄1𝑥1 : · · · : 𝑄𝑛𝑥𝑛 : 𝜙 is equivalent

to whether the ∃ player has a forced win in the following game: two players ∃ and ∀ choose

an assignment for 𝜙 by assigning variables in the order they are quantified, with player 𝑄𝑖

choosing the truth value of 𝑥𝑖. ∃ wins if the assignment satisfies 𝜙.

In QBF , we are given a (fully) quantified boolean formula, and we want to know whether

it is true. QBF is PSPACE-complete, even if we restrict to formulas with alternating quan-

tifiers beginning with ∃. This restriction is equivalent to that ∃ and ∀ take alternating turns,

with ∃ going first [40].

A dependency quantified boolean formula is a formula of the form ∀𝑥1 : · · · : ∀𝑥𝑚 :

∃𝑦1(𝑠1) : · · · : ∃𝑦𝑛(𝑠𝑛) : 𝜙, where 𝑥𝑖 and 𝑦𝑗 are (distinct) variables, 𝜙 is a 3-CNF formula,

and 𝑠𝑗 is a subset of {𝑥𝑖 | 𝑖 ≤ 𝑚}. We also require that every variable in 𝜙 is some 𝑥𝑖 or

𝑦𝑗 (𝜙 has no free variables). A strategy for a dependency quantified boolean formula is a

collection of functions 𝑓𝑗 : {true, false}𝑠𝑗 → {true, false} for 𝑗 = 1, . . . , 𝑛. A strategy solves

a dependency quantified boolean formula if for every map 𝑆 : {𝑥𝑖 | 𝑖 ≤ 𝑚} → {true, false},

the assignment given by 𝑥𝑖 ↦→ 𝑆(𝑥𝑖) and 𝑦𝑗 ↦→ 𝑓𝑗(𝑆|𝑠𝑗
) satisfies 𝜙. Intuitively, 𝑦𝑗 is only

allowed to depend on the variables in 𝑠𝑗. A quantified boolean formula is a special case

of a dependency quantified boolean formula, where each 𝑠𝑗 = {𝑥𝑖 | 𝑖 < 𝑘} for some 𝑘. A

dependency quantified boolean formula is true if there is a strategy that solves it.

The truth value of a dependency quantified boolean formula ∀𝑥1 : · · · : ∀𝑥𝑚 : ∃𝑦1(𝑠1) :

· · · : ∃𝑦𝑛(𝑠𝑛) : 𝜙 is equivalent to whether the “∃” team has a forced win in the following

game, which puts a team of one player ∀ against a team of players ∃𝑗 for 𝑗 = 1, . . . , 𝑛: ∀

picks a truth value for each 𝑥𝑖. ∃𝑗 sees the truth value for each element of 𝑠𝑗 (and nothing

else) and picks a truth value for 𝑦𝑗. The ∃ team wins if the resulting assignment satisfies 𝜙.

In the DQBF problem, we are given a dependency quantified boolean formula, and we
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want to know whether it is true. DQBF is NEXPTIME-complete even if we restrict to

formulas of the form ∀𝑥⃗1 : ∀𝑥⃗2 : ∃𝑦⃗1(𝑥⃗1) : ∃𝑦⃗2(𝑥⃗2) : 𝜙, where 𝑥⃗𝑖 and 𝑦⃗𝑖 may contain multiple

variables, and each variable in 𝑦⃗𝑖 can depend on all the variables in 𝑥⃗𝑖. This restriction is

equivalent to requiring that the ∃ team has two players who each choose multiple variables,

and they see disjoint exhaustive subsets of the variables the ∀ player picks [52].
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Chapter 2

Single Player

The single player model, where a single agent is navigating a semi-static environment in order

to reach a goal, is the primary focus of our study. We give a through study of several different

classes of gadgets, often considering the planar case and often classifying the complexity of

all gadgets in that class. Reversible, deterministic gadgets were inspired by the success of

constraint logic, another reversible system, and by the undoability of Push-Pull block puzzles.

Door gadgets came from a desire to simplify prior proofs which used the door framework

by providing proofs of planar motion planning with those gadgets, as well as exploring

related gadget types which may be even easier to use. Input-output gadgets were inspired

by switching graphs and train based games and puzzles, although their main consideration

is in the 0-player model in Chapter 4. Finally LDAG gadgets are the naturally bounded

class of gadgets and thus one of the most general cases we could hope to study for insight

into NP-complete 1-player motion planning problems.

In Section 2.1 we give containment in PSPACE and show a class of gadgets which is

in NL. These or similar proofs will be used im multiple later sections. In Section 2.2 we

consider 𝑘-tunnel reversible deterministic gadgets and give a dichotomy classifying them as

either PSPACE-complete or in NL. This work comes primarily from [29] and [25] written

in collaboration with Erik Demaine, Isaac Grossof, Dylan Hendrickson, and Mikhail Rudoy.

We also examine the reconfiguration problem for reversible deterministic gadgets, showing
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that hardness for reachability implies hardness for reconfiguration for this class and exhibit-

ing a reversible deterministic gadget for which the reachability problem is in NL but the

reconfiguration problem is PSPACE-complete.

In Section 2.3 we examine polynomially bounded gadgets. Sections 2.3.3 to 2.3.5 give

both algorithms and hardness results for various classes of LDAGs and concludes with a

dichotomy theorem for DAG gadgets. Section 2.3.7 then extends some of those results to

give a dichotomy for deterministic eventually static gadgets. Section 2.3.6 examines bounded

gadgets under shortest-path alternate victory condition. Section 2.3.8 shows a specific and

commonly used gadget, the crossing NAND, is NP-complete in the planar case. Section 2.3.6

shows the shortest-path victory condition collapses LDAGs to have the same characterization

as DAG gadgets.

Section 2.4 examines reconfiguration, giving a more general class of gadgets which is in

NP, exhibiting both gadget for which reconfiguration is easier than reachability and another

gadget for which reachability is easier than reconfiguration. Finally, it shows PSPACE-

completeness for gadgets whose traversability only increases or only decreases, showing that

having a bounded number of changes in traversability does not suffice for a gadget to be in

NP. Results in Sections 2.3 and 2.4 primarily comes from [29] and [8] written in collaboration

with Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, and Dylan Hendrickson.

In Section 2.5 we consider 2-state input/output gadgets. These gadgets have locations

which act either only as entrances or only as exits. In Section 2.5.2 we show NL-hardness

and containment in NP for single-input gadgets. In Section 2.5.3 we show NP-hardness for

a class of single-input gadgets and bounded gadgets. For unbounded multi-input gadgets

PSPACE-completeness follows from 0-player work in Section 4.3. This work comes from [9],

done in collaboration with Joshua Ani, Erik Demaine, and Dylan Hendrickson.

In Section 2.7 we perform a through study of door gadgets. We show all but one of the

planar cases of door gadgets to be PSPACE-complete in Section 2.9.3. We also introduce

a similar gadget, the self-closing door, in Section 2.8 and show all of its variations are

hard in the planar case in Section 2.9.2. This work primarily comes from [7], written in
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collaboration with Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yevhenii Diomidov, and

Dylan Hendrickson.

2.1 General Upper Bounds

We give two upper bounds that will be used repeatedly throughout this chapter. The first

is the observation that 1-player motion planning problems are in PSPACE. The second

identifies a property of gadgets, roughly that going through one tunnel does not change any

other tunnels, which puts the motion planning problem in NL. This, or slight variations

on this property, show up in several dichotomy theorems and is the main defining feature

we have seen for computationally tractable gadgets. This section comes from [29] and [25]

written in collaboration with Erik Demaine, Isaac Grossof, Dylan Hendrickson, and Mikhail

Rudoy.

Lemma 1. 1-player motion planning with any set of gadgets is in PSPACE.

Proof. This was shown in [25], but included here for convenience. A configuration of the

system of gadgets consists of the state of each gadget and the location of the robot, and

has polynomial length. The algorithm that repeatedly nondeterministically picks a legal

transition, and updates the configuration based on it, accepting when the robot reaches the

goal location, decides the reachability problem in nondeterministic polynomial space. By

Savitch’s theorem, the problem is in PSPACE.

Theorem 2. 1-player motion planning with any 𝑘-tunnel gadget that does not have inter-

acting tunnels is in NL.

Proof. We first show that, if a system of such gadgets has a solution, then it has a solution

which visits each location at most once. Suppose there is a solution, and consider the last time

a solution of minimal length visits a previously visited location, assuming there is any such

time. Let 𝑣 be the vertex of this last self-intersection. After leaving 𝑣 for the last time, every

transition the robot makes is through a tunnel that it had not previously traversed. Since the
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gadget does not have interacting tunnels, these tunnels have the same traversability when

the robot goes through them as they do originally. We modify the solution by “shortcutting”:

remove the portion of the solution between the first visit to 𝑣 and the last visit to 𝑣, so the

robot only visits 𝑣 once, and skips the loop that begins and ends at 𝑣. The new path is still a

solution: the segment before 𝑣 is identical to the unmodified solution, and the segment after

𝑣 consists of tunnels whose traversability is not changed before the robot goes through them.

The shortcut path is shorter than the original solution, which was assumed to be minimal.

Thus a solution of minimal length has no self-intersections.

We will want to treat the system of gadgets as though it were a directed graph by replacing

each tunnel with an edge in the appropriate direction, or a pair edges if it is traversable in

either direction. We can locally walk through all the available transitions in a gadget, assess

which locations they lead to, and non-deterministically pick one to try, allowing this to be

executed in NL. A path from the start location to the end location in this graph is exactly a

solution for the system of gadgets with no self-intersections; the traversability of each tunnel

used in such a solution does not change before the tunnel is used.

Since reachability in directed graphs is in NL, the motion planning problem is also in

NL. Moreover, if the gadget has any state in which a tunnel can be traversed in one direction

but not the other, the motion planning problem is NL-complete, and otherwise it is in L.

2.2 1-Player Reversible Deterministic Gadgets

In this section, we study reversible deterministic 𝑘-tunnel gadgets giving a complete catego-

rization as either in NL or PSPACE-complete for reversible, deterministic gadget. Recall

a gadget if reversible if every transition can be undone after being taken, and a deter-

ministic gadget is one who’s transition graph has maximum out-degree of 1. For upper

bounds, Theorem 2 showed that 1-player motion planning problems with non-interacting-𝑘-

tunnel gadgets is in NL and Theorem 1 shows containment in PSPACE. For the PSPACE-

hardness half of the characterization, we introduce a new base gadget, the locking 2-toggle

(L2T) shown in Figure 2-1a. In Section 2.2.2 we show that all interacting-𝑘-tunnel reversible
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(b) 1-toggle transition diagram

Figure 2-1: State diagrams for the Locking 2-Toggle and the Non-deterministic Locking 2-Toggle.

deterministic gadgets are able to simulate the locking 2-toggle. Then in Section 2.2.3 we

show that 1-player motion planning with locking 2-toggles is PSPACE-complete by simulat-

ing Nondeterministic Constraint Logic. Section 2.2.3 shows how to adapt the construction

to show these gadgets remain PSPACE-hard even for the planar 1-player motion plan-

ning problem. This work comes primarily from [29], [25], and [8] written in collaboration

with Joshua Ani, Isaac Grossof, Dylan Hendrickson, Erik Demaine, Yevhenii Diomidov, and

Mikhail Rudoy.

2.2.1 Closure Properties

Lemma 3. Any system of gadgets composed of two reversible gadgets is reversible.

Proof. Consider any transition through the system formed by composing two reversible gad-

gets. This transitions is a walk through the gadgets and connections that form a system.

Since both gadgets are reversible, it is possible for the robot to enact the exact reverse of

this walk after the walk is done. This will exactly reverse the effect of the walk within each

gadget. Thus, it is possible to reverse the entire transition.

Since every transition of the system can be reversed, the system is reversible.

Since all of the gadgets we consider in this thesis are reversible, Lemma 3 means our
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systems will all be reversible as well.

Lemma 4. Any branchless system of gadgets composed of deterministic reversible gadgets is

deterministic and reversible.

Proof. The state space of a reversible, deterministic gadget is an undirected matching of

some (state, location) pairs to each other. This a necessary and sufficient characterization

of reversible, deterministic gadgets.

When we compose two such gadgets, we create paths through the pair of gadgets. How-

ever, no (state, location) pair has more than two edges: One connection to the other gadget,

and one edge through its original gadget. Moreover, any (state, location) pair that forms

an external location has a most one edge, as it does not connect to the other gadget. As a

consequence, the path from any external location through the gadget is either a deterministic

path to another external location, or a dead end. There is no branching, as branching would

require a location with three edges.

Thus, the resultant object is deterministic. By Lemma 3 it is reversible as well.

2.2.2 Reducing to Locking 2-Toggles

In this section, we introduce the locking 2-toggle shown in Figure 2-1a, and we show that

all interacting-𝑘-tunnel reversible deterministic gadgets can simulate it. The proof first

examines what constraints on a gadget are implied by being interacting-𝑘-tunnel, reversible,

and deterministic, and goes on to identify that all such gadgets have a pair of special states

with some useful common properties. From this pair of states we construct a 1-toggle, and

then combine that with our special states to build a locking 2-toggle. One of the major

insights is identifying this special pair of states which belongs to all gadgets in the class, and

after that the primary challenge is in preventing undesired transitions, which are plentiful

when allowing such a wide class of gadgets.

Theorem 5. Every interacting-𝑘-tunnel reversible deterministic gadget simulates a locking

2-toggle.
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Figure 2-2: An arbitrary interacting-𝑘-tunnel reversible deterministic gadget. Hollow arrows
indicate traversals that may or may not be possible. Solid or absent arrows indicate traversals that
are or are not possible, respectively.

Proof. We begin by examining an arbitrary interacting-𝑘-tunnel reversible deterministic gad-

get, as shown in Figure 2-2. Because the gadget has interacting tunnels, we can find a pair

of states in which traversing the top line can change the traversability of the bottom line

to the right. Since it is also reversible, the inverse transition is also possible, so traversing

the top line can change in either direction the left-to-right traversability of the bottom line.

Then without loss of generality, the gadget has the form shown in Figure 2-2: in state 1,

traversing the top line to the right switches to state 2, and the bottom line is not traversable

to the right. In state 2, traversing the top line to the left switches to state 1, and the bottom

line is traversable to the right, say to state 3 (which may be the same as state 1). All other

traversals may or may not be possible in either state, indicated by the question marks.

Lemma 6. Every interacting-𝑘-tunnel reversible deterministic gadget simulates a one-

directional edge, that is, a tunnel which (in some state) can be traversed in one direction

but not the other.

Proof. If in some state, some edge in the gadget can be traversed in one direction but not

the other, then it is a one-directional edge. Otherwise, the gadget has the form shown in

Figure 2-3a. Then the construction in Figure 2-3b is equivalent to a one-directional edge:

currently the gadget is in state 1, so the path from the bottom to the top is blocked by the

bottom edge, but from the top, you can go across the top edge, switching the gadget to state

2, and then back across the bottom edge.

Lemma 7. Every interacting-𝑘-tunnel reversible deterministic gadget simulates a 1-toggle

(Figure 2-1b).
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(a) State graph, refining Figure 2-2.
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(b) Simulating a one-directional edge.

Figure 2-3: An arbitrary interacting-𝑘-tunnel reversible deterministic gadget which has no one-
directional edge.
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(a) Form of state graph.

2 1?

(b) Simulating a 1-toggle.

Figure 2-4: A one-directional edge gadget.

Proof. By the previous lemma, we can build a one-directional edge, which has the structure

shown in Figure 2-4a: in state 1, we can traverse the edge to the right and switch to state

2, but not to the left. In state 2, we can undo this transition, and possibly also traverse

the edge to the right. The construction in Figure 2-4b is then a 1-toggle. In the current

state, it can be traversed to the right but not to the left because of the gadget on the left.

After making this traversal, it becomes the rotation of the current state, and it cannot be

traversed to the right again because of the gadget on the right.

To build a locking 2-toggle, we put the arbitrary gadget (in state 2), an antiparallel pair of

1-toggles, and the rotation of the arbitrary gadget (also in state 2) in series, as in Figure 2-5.

Currently, the top edge is traversable to the left and the bottom edge is traversable to the

right, but not in the other direction. After traversing the top edge to the left, the 1-toggles

prevents us from traversing either edge to the left, and the leftmost gadget (in state 1)

prevents us from traversing the bottom edge to the right, so the only legal traversal is going

back across the top edge to the right. Similarly after traversing the bottom edge, the only

legal traversal is across the bottom edge in the opposite direction. Thus this construction is

equivalent to a (antiparallel) locking 2-toggle.

Traversing the simulated locking 2-toggle takes either 4 or 6 transitions of the raw gadget,
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Figure 2-5: An arbitrary interacting-𝑘-tunnel reversible deterministic gadget and a 1-toggle sim-
ulate a locking 2-toggle.

(a) An AND vertex gadget. The leftmost edge
has weight two and is pointing in (up). The other
edges have weight one and are pointing away
(down).

(b) An OR vertex gadget. All edges are weight 2.
The leftmost edge is pointing in (up), the middle
edge is free, and the rightmost edge is pointing
away (down).

Figure 2-6: Vertex gadgets in the NCL reduction.

depending on whether it contains a one-directional edge (from Lemma 6). For simplicity,

we can include additional gadgets (e.g. another pair of 1-toggles) to ensure it always takes

exactly 6 transitions; this will be relevant to timing considerations in multiplayer games.

(a) An edge gadget pointed up, in the unlocked
state. The gadget is accessed by the loose end on
the left.

(b) The same edge gadget in the locked state.

Figure 2-7: Edge gadget in the NCL reduction.
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2.2.3 PSPACE-hardness

In this section, we show that 1-player motion planning with the locking 2-toggle is PSPACE-

complete by a reduction from Nondeterministic Constraint Logic (NCL). See Section 1.4.1

for a definition of NCL. We represent edges by pairs of locking 2-toggles. The construction

requires edge gadgets which are directed and can be flipped, as well as AND and OR vertex

gadgets which apply constraints on how many edges must be directed towards them at any

given point in time.

Theorem 8. 1-player motion planning with the locking 2-toggle is PSPACE-complete.

Proof. Motion planning with the gadget is in PSPACE by Lemma 1. We use a reduction

from Nondeterministic Constraint Logic (NCL) to show PSPACE-hardness.

The edge gadget, shown in Figure 2-7, contains two locking 2-toggles, each of which is

also attached to a vertex gadget. It is oriented towards one of the vertices, can be either

locked or unlocked. Specifically, the edge gadget is unlocked (Figure 2-7a) if either lock-

ing 2-toggle is in the middle state (with both lines traversable), and locked (Figure 2-7b)

otherwise. It is oriented towards the vertex attached to the locking 2-toggle whose edge not

accessible from the edge gadget is traversable. The robot can access the free line on the left.

If the edge gadget is unlocked, the robot can traverse a loop through one edge of each locking

2-toggle to change the orientation of the edge gadget. The edge gadget switches between

being locked and unlocked when the robot moves through a vertex gadget to traverse one of

the edges not accessible from the edge gadget.

The vertex gadgets are shown in Figure 2-6. The robot can access the free line on

the top, and traverse loops to lock and unlock edge gadgets, enforcing the constraints of

vertices. Specifically, if all three edges are pointing towards an AND vertex, the robot can

traverse a loop to lock both weight-1 edges and unlock the weight-2 edge, or vice versa. If

multiple edges are pointing towards an OR vertex, the robot can traverse a loop to unlock

the currently locked edge and lock another edge. Observe that for both vertex gadgets, the

sum of the weights of locked edges does not change.
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Given an NCL graph, we construct a system of locking 2-toggles. Each edge in the

graph corresponds to an edge gadget (Figure 2-7). Each locking 2-toggle in the edge gadget

corresponds to a vertex incident to the edge. When three edges meet at a vertex, we put a

vertex gadget on the locking 2-toggles corresponding to that vertex. We use an AND vertex

gadget (Figure 2-6a) or an OR vertex gadget (Figure 2-6b) depending on the type of vertex.

The vertical “entrance” line on each vertex gadget and horizontal “entrance” line on each

edge gadget is connected to the starting location. Each edge is oriented as in the NCL graph.

For each vertex, we pick a set of edges initially pointing at the vertex with total weight 2.

The edge gadgets corresponding to the chosen edges are locked, and other edge gadgets are

unlocked. The goal location is placed inside the edge gadget corresponding to the target

edge so that it is reachable if and only if the target edge is unlocked.

If the original NCL graph is solvable, the robot can perform the same sequence of edge

flips, visiting vertex gadgets to lock and unlock edges as necessary, and reach the goal

location. If the robot can reach the goal location, the same sequence of edge flips solves the

NCL graph. So the problem is solvable if and only if the NCL graph was.

This reduction is also possible without edge gadgets, and leads to a system with only one

L2T for each constraint logic edge. We use edge gadgets because the reduction is easier to

understand, and adaptations of this construction in Sections 2.2.4, 3.2.1, and 3.2.2 will need

them.

Corollary 9. 1-player motion planning with any interacting-𝑘-tunnel reversible determinis-

tic gadget is PSPACE-complete.

Proof. Hardness follows from Theorems 5, and 8. For any such gadget, we have a reduction

from systems of locking 2-toggles to systems of that gadget by replacing each locking 2-toggle

with a simulation of one built from the arbitrary gadget. Motion planning with the gadget

is in PSPACE by Lemma 1.
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2.2.4 Planarity

In this section, we show that interacting-𝑘-tunnel reversible deterministic gadgets are PSPACE-

complete even for the planar 1-player motion planning problem. We once again work with

the locking 2-toggle, showing that each of its planar versions can simulate each other. From

there we use the crossing locking 2-toggle to build an A / BA crossover, which is less pow-

erful than a full crossover but will suffice to make our reduction in Section 2.2.3 planar.

An interesting question is whether the locking 2-toggle is powerful enough to build a full

crossover, which can be done with any of the 2 state gadgets. Although not needed here, it

would allow the multiplayer game results later in this thesis to carry over to the planar case.

Recall for the planar problem we allow rotations and reflections of gadgets. This leaves

three distinct embeddings of the locking 2-toggle into a plane: parallel, antiparallel, and

crossing, shown in Figure 2-8, and which we abbreviate PL2T, APL2T, and CL2T. (Up to

only rotation, there are four, the other being the antiparallel locking 2-toggle with the other

handedness). We will allow reflections of gadgets, so these are the three kinds of locking

2-toggles we will consider.

(a) A parallel locking 2-toggle
(PL2T).

(b) An antiparallel locking 2-
toggle (APL2T).

(c) A crossing locking 2-toggle
(CL2T).

Figure 2-8: Types of locking 2-toggles for planar problems.

Lemma 10 ( [25]). Parallel, antiparallel, and crossing locking 2-toggles all simulate each

other in planar graphs.
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Proof. Figure 2-9 shows APL2T simulating CL2T, Figure 2-10 shows CL2T simulating

PL2T, and Figure 2-11 shows PL2T simulating APL2T. Note that we use both APL2Ts

of both handednesses, so we need to be able to reflect gadgets.

Figure 2-9: APL2T simulating CL2T.
(Based on [25, Figure 4].)

Figure 2-10: CL2T simulating PL2T.
(Based on [25, Figure 5].)

Figure 2-11: PL2T simulating APL2T. (Based on [25, Figure 13].)

Theorem 11. Every interacting-𝑘-tunnel reversible deterministic gadget simulates each type

of locking 2-toggle in planar graphs.

1

?

?
2

3

? 1 2

?

Figure 2-12: The antiparallel case of an arbitrary interacting-𝑘-tunnel reversible deterministic
gadget.

Proof. We follow the proof of Theorem 5. As before, we assume that traversing a line to

switch from state 1 to state 2 makes a traversal on another line legal. This new traversal

can be parallel to, antiparallel to, or cross the first traversal; we consider each case. If the
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Figure 2-13: An arbitrary antiparallel interacting-𝑘-tunnel reversible deterministic gadget and a
1-toggle simulate a PL2T.
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Figure 2-14: The crossing case of an arbitrary interacting-𝑘-tunnel reversible deterministic gadget.
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Figure 2-15: A crossing interacting-𝑘-tunnel reversible deterministic gadget simulates a one-way
edge.
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Figure 2-16: An arbitrary crossing interacting-𝑘-tunnel reversible deterministic gadget and a
one-toggle simulate a PL2T.

new traversal is parallel, the construction in the proof of Theorem 5 works to simulate an

APL2T in a planar graph.

If it is antiparallel, the gadget has the form shown in Figure 2-12. Either the gadget

has a one-directional edge, or it has the form in Figure 2-3a, and simulates a one-directional

edge by the construction in Figure 2-3b. Thus it simulates a 1-toggle by the construction in

Figure 2-4b. Then the construction in Figure 2-13 simulates a PL2T: currently either edge

can be traversed to the left, if the top edge is traversed, the left gadget blocks the bottom

edge, and if the bottom edge is traversed, the right gadget blocks the top edge.

Finally, if the new traversal crosses the first traversal, the gadget has the form shown

in Figure 2-14. Either it has a one-directional edge, or the construction in Figure 2-15
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simulates a one-directional edge, similarly to Lemma 6. So the gadget simulates a 1-toggle

by the construction in Figure 2-4b. Then the construction in Figure 2-16 simulates a PL2T,

similarly to the previous case.

Once the gadget simulates some locking 2-toggle, we can use Lemma 10 to simulate all

three types.

Theorem 12. 1-player planar motion planning with any interacting-𝑘-tunnel reversible de-

terministic gadget is PSPACE-complete.

Proof. We begin by constructing some weak crossover gadgets. The crossover locking 2-

toggle is itself a very weak crossover. We use it to construct an A/BA crossover , shown

in Figure 2-17a. Calling the traversal from top to bottom A and that from left to right

B, we can perform either of the sequences A and BA. Since everything is reversible and

deterministic, we can also undo those sequences. The A/BA crossover is sufficient for the

rest of the proof; we abbreviate it as shown in Figure 2-17b.

We modify the proof of Theorem 8, giving a reduction from planar NCL to planar system

of gadgets with locking 2-toggles. By Theorem 11, this is sufficient to show PSPACE-

hardness. Our gadgets use PL2Ts, CL2Ts, and A/BA crossovers; they do not use APL2Ts.

The edge gadget is shown in Figure 2-18, and vertex gadgets are shown in Figure 2-19.

Given a planar NCL graph, we construct a system of gadgets as follows.

Pick a rooted spanning tree of the dual of the NCL graph, directed away from the root;

the robot will use this tree to navigate the graph. The system of gadgets will contain a

vertex for each face 𝑓 of the NCL graph, which is a vertex of the spanning tree.

For each edge of the graph, we place an edge gadget. When an edge is in the spanning

tree, we orient it so that the A/BA crossover points, from entrance to exit, in the same

direction as the edge points in the spanning tree (left to right in Figure 2-18, and away from

the root). If an edge is in the spanning tree and has target 𝑓 , we connect its exit to 𝑓 . For

each edge 𝑒, we connect its entrance to the vertex 𝑓 corresponding to the face containing its

entrance, i.e. the face adjacent to 𝑒 to which we can connect its entrance without crossings.

If 𝑒 is in the spanning tree, this connects the entrance of 𝑒 to the source 𝑓 of 𝑒.
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Now we place a vertex gadget of the appropriate type for each vertex of the NCL graph,

so that the gadget shares a PL2T with each incident edge gadget. AND vertex gadgets must

be oriented so the weight-2 edge has the appropriate PL2T (the bottom one in Figure 2-19a).

The entrance of each vertex gadget is connected to the vertex 𝑓 corresponding to the face

containing the entrance.

We set each edge gadget to the orientation of its corresponding edge. For each vertex, we

select edges directed towards it with total weight 2, and set the selected edges to locked and

other edges to unlocked. The goal location is placed inside the target edge so that reaching

it requires flipping the target edge. The starting location is the vertex corresponding to the

root of the spanning tree.

Play on this system of gadgets proceeds as follows: the robot travels down the spanning

tree, crossing edges until it reaches some face. It goes into an edge or vertex attached to

that face, and manipulates it. Then the robot travels back up the spanning tree and down

a different branch, manipulating another edge or vertex, and so on. The edge and vertex

gadgets enforce the NCL constraints. If the target edge can be flipped, the robot can reach

the goal location. Thus the system of gadget is solvable if and only if the NCL graph was.

The system of gadget is planar by its construction, using the planarity of the NCL graph.

This completes the proof of PSPACE-hardness. Containment in PSPACE is by Lemma 1,

so the problem is PSPACE-complete.

2.2.5 Restricted Starting States and the Nondeterministic Lock-

ing 2-toggle

The doors-and-buttons model has been considered when the initial states of the doors are

restricted, for example to all start open. One can similarly ask whether the local motion

planning problem remains hard if the instance only contains gadgets in some subset of the

gadget’s states. We have not explored this question in detail because none of our applica-

tions have needed this additional structure; however, while investigating a gadget closely

related to the locking 2-toggle, we conveniently strengthened our prior results to show that
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(a) Simulating an A/BA crossover using CL2Ts.
(b) A state diagram and notation for the A/BA
crossover.

Figure 2-17: An A/BA crossover gadget: the robot can traverse top to bottom (A), or traverse
left to right (B) and then top to bottom. Thinking of the gadget as a crossing pair of 1-toggles, the
vertical 1-toggle is always traversable, and the horizontal 1-toggle is traversable when the vertical
one is pointing down.

Figure 2-18: An edge gadget for planar graphs, currently unlocked and directed up. This is
analogous to Figure 2-7, with two changes. First, the bottom PL2T is “twisted” to have the same
handedness as the top PL2T for connecting to vertex gadgets; the CL2T is sufficient for the crossing
caused by this. Second, the A/BA crossover allows the robot to cross the edge from left to right,
regardless of the state of the edge. We call the line on the left the entrance and the line on the
right, on the other side of the A/BA crossover, the exit.
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(a) An AND vertex for planar graphs. Cur-
rently the weight-2 edge, connected at the
bottom PL2T, is directed towards the ver-
tex and locked, and both weight-1 edges are
directed away. If the weight-1 edges be-
come directed towards the vertex, the robot
can visit the vertex gadget and traverse a
loop through all three PL2Ts, locking the
weight-1 edges and unlocking the weight-2
edge. The CL2T is a sufficient crossover.

(b) An OR vertex for planar graphs. Currently the
edge containing the bottom PL2T is directed towards
the vertex, and the other edges are directed away. If
multiple edges are ever directed towards the vertex,
the robot can visit the vertex gadget, unlock the locked
edge, and lock another edge.

Figure 2-19: NCL vertex gadgets for planar graphs, analogous to the gadgets in Figure 2-6. In
each gadget, each of the three PL2Ts is also part of an edge gadget. The robot enters at the line
on the left, called the entrance, traverses loops that enforce the NCL constraints, and then leaves
at the entrance.

1-player motion planning with the locking 2-toggle remains PSPACE when the gadgets are

restricted to start in leaf states. In addition, we prove that 1-player motion planning with

the nondeterministic locking 2-toggle is PSPACE-complete.

Work in this section comes from [6] written in collaboration with Joshua Ani, Sualeh

Asif, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, Scheffler, Sarah and Adam

Suhl.

The nondeterministic locking 2-toggle, shown in Figure 2-21, is a four-state gadget

where each state has two transitions, each across the same tunnel. The top pair of states each
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Figure 2-20: State space of the locking 2-
toggle.

1 3

2 4

2,4 2,4

1,3 1,3

Figure 2-21: State space of the nondeterministic
locking 2-toggle.

allow a single traversal downward, and allow the agent to choose either of the two bottom

states for the gadget. Similarly, the bottom pair of states each allow a single traversal upward

to one of the top states. We can imagine this as being similar to the locking 2-toggle if the

tunnel to be taken next is guessed ahead of time: the bottom state of the locking 2-toggle

is split into two states which together allow the same traversals, but only if the agent picks

the correct one ahead of time.

We use the construction shown in Figure 2-22 to show both that locking 2-toggles starting

in leaf states can simulate a locking 2-toggle starting in a nonleaf state, and nondeterministic

locking 2-toggles can simulate a locking 2-toggle. This construction consists of two nonde-

terministic locking 2-toggles and a 1-toggle. A 1-toggle can be trivially simulated by taking

a single tunnel of a locking 2-toggle or nondeterministic locking 2-toggle.

Theorem 13. 1-player planar motion planning with the nondeterministic locking 2-toggle is

PSPACE-complete.

Proof. In the construction shown in Figure 2-22, the agent can enter through either of the

top lines; suppose they enter on the left. Other than backtracking, the agent’s only path

is across the bottom 1-toggle, then up the leftmost tunnel, having chosen the state of the

nondeterministic locking 2-toggle which makes that tunnel traversable.

Now the only place the agent can usefully enter the construction is the leftmost line. The

agent can only go down the leftmost tunnel, up the 1-toggle, and out the top right entrance,
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Figure 2-22: Constructing a locking 2-toggle from a nondeterministic locking 2-toggle. It is
currently in the unlocked state. The nondeterministic locking 2-toggles are in leaf states (top
states in Figure 2-21).

again making the appropriate nondeterministic choice when traversing the left gadget.

Symmetrically, if (from the unlocked state) the agent enters the top right, they must exit

the bottom right, and the next traversal must go from the bottom right to the top right and

return the construction to the unlocked state. Thus this construction simulates a locking

2-toggle.

If we instead build the above construction with locking 2-toggles in leaf states, then all

three of the locking 2-toggles used are in leaf states (the 1-toggle is one tunnel of a locking

2-toggle). A very similar argument as the nondeterministic locking 2-toggle construction

shows this gadget also simulates a locking 2-toggle. Thus, given a 1-player motion planning

problem with locking 2-toggles, we can replace all of the locking 2-toggles in nonleaf states

with this gadget to obtain an instance where all starting gadgets are in leaf states.

Corollary 14. 1-player motion planning with the locking 2-toggle where all of the locking

2-toggles start in leaf states is PSPACE-complete.

2.2.6 Self-simulation of 2-State Reversible Deterministic Gadgets

In this section we show that all of the 2-state reversible deterministic gadgets can simulate

each other with a constant number of gadgets. Although we already know these gadgets
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are PSPACE-complete from the prior section, we think the ability to replicate behavior in

a simple manner is interesting. In addition, many of the named gadgets in this class seem

useful and worth explicitly stating. This section comes from [25] written in collaboration

with Erik D. Demaine, Isaac Grossof, and Mikhail Rudoy.

Catagorizing 2-state 2-tunnel reversible deterministic gadgets

To categorize the possible deterministic reversible 2-state 2-tunnel gadget types, we first

categorize the possible tunnel types in such a gadget. A tunnel is trivial if its traversability

does not change with the gadget’s state or if traversing it does not change the gadget’s state.

A trivial tunnel can always be split into a separate 1-state 1-tunnel gadget, so we can ignore

them. What remain are three possible nontrivial tunnel types:

Tripwire A tunnel that can always be traversed in either direc-

tion, but traversing it switches the gadget’s state.

Lock In the unlocked state (shown above), the tunnel can be

traversed in either direction; in the locked state (shown

below), the tunnel cannot be traversed in either direc-

tion.

Toggle A tunnel that can always be traversed in a single di-

rection, where the direction differs in the two states of

the gadget. The state is switched when the gadget is

traversed.

There are six ways to combine these tunnel types into pairs. Two combinations, Lock–

Lock and Tripwire–Tripwire, are trivial combinations equivalent to one-state gadgets in which

each tunnel is either always traversable in both directions or never traversable. Thus we

restrict our attention to the four other combinations, listed below. Because we are interested

in planar systems, we consider the multiple planar gadgets for each nontrivial combination.

As a result, there are nine different nontrivial two-tunnel two-state gadgets, abbreviated and

listed below. The bulk of this Section focuses on the six gadgets shown in Figure 2-23, which
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(a) NWL (b) NTL (c) NWT (d) P2T (e) AP2T (f) C2T

Figure 2-23: Six of the nine deterministic reversible 2-state gadgets on two tunnels. We leave out
the CWL, CTL, and CWT gadgets as they are not heavily used in this Section.

omits most crossing variants.

1. Tripwire–Lock: Traversing the tripwire makes the other tunnel flip between being

passable and impassable, causing it to “lock” or “unlock”. There are crossing and non-

crossing varieties, abbreviated CWL (crossing wire lock) and NWL (non-crossing wire

lock).

2. Toggle–Lock: Traversing the toggle flips the lock tunnel between being passable

and impassable. Crossing the lock tunnel, by definition, does not change the state of

the gadget. Notice that one direction of the toggle corresponds to an open lock and

the other direction to the closed lock. There are crossing and non-crossing varieties,

abbreviated CTL (crossing toggle lock) and NTL (non-crossing toggle lock).

3. Tripwire–Toggle: Here traversing either the tripwire or the toggle flips the direc-

tion of the toggle. There are crossing and non-crossing varieties, abbreviated CWT

(crossing wire toggle) and NWT (non-crossing wire toggle).

4. Toggle–Toggle: Also known as a 2-toggle [24]. Traversing either toggle flips the

direction of both of them. This is the only case where there are two directed tunnels,

leading to three possibilities: crossing, parallel, and anti-parallel. They are abbreviated

C2T (crossing 2-toggle), P2T (parallel 2-toggle), and AP2T (anti-parallel 2-toggle).
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Self-simulation constructions

To show all 2-state 2-tunnel reversible deterministic gadgets simulate each other, roughly we

will show that the 2-toggle simulates every other 𝑘-tunnel 2-state reversible deterministic

gadget, and then show that each of those in turn simulate the 2-toggle.

Theorem 15. The 2-toggles, toggle-locks, tripwire-locks and tripwire-toggles, in all orienta-

tions, can each simulate each other.

Proof. We will show:

∙ AP2Ts can simulate P2Ts, C2Ts, NTLs, NWTs, and NWLs and crossovers

∙ P2Ts, C2Ts, NTLs, NWLs and NWTs can each simulate AP2Ts,

∙ CTLs can simulate NTLs, CWLs can simulate NWLs, and CWTs can simulate NWTs.

Thus, every gadget can simulate AP2Ts, and AP2Ts can simulate every non-crossing gad-

get, as well as crossovers. By combining non-crossing gadgets with crossovers, AP2Ts can

simulate every gadget.

This gives a simulation of every gadget by every other gadget, via AP2Ts as an interme-

diate step.

Lemma 16. Antiparallel 2-toggles (AP2Ts) simulate a crossing 2-toggle (C2T).

Proof. The construction is given in Figure 2-24. In the state of the construction shown in

the figure, there are two possible transitions: the robot can move from the upper left to the

bottom right of the construction, or from the upper right to the bottom left. Either of those

transitions toggles both AP2Ts, leaving the construction mirrored top to bottom. Thus, the

construction has two states. The possible traversals in one state (as shown above) are from

the top left to the bottom right and from the top right to the bottom left, while the possible

traversals in the other state are (by symmetry) from the bottom left to the top right and

from the bottom right to the top left. Following any of these traversals swaps the state of

the construction. Notice that this is exactly the behavior of a C2T.
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Figure 2-24: Anti-parallel 2-toggles simu-
late a crossing 2-toggle

Figure 2-25: Crossing 2-toggles simulate a
parallel 2-toggle

 1

3 4

2

5 6

Figure 2-26: 2-toggles simulate 1-toggle-
lock.

If the robot enters the construction shown from the upper left, upon reaching the center

the robot can only proceed to the bottom right, or come back the way it came. Therefore, the

upper left to bottom right transition is the only possible transition from that location. By

symmetry, the same is true from top left to bottom right. Thus, the one traversal described

for each location in each state is the only one possible.

Lemma 17. Crossing 2-toggles (C2Ts) simulate a parallel 2-toggle (P2T).

Proof. The construction is given in Figure 2-25. In the state of the construction shown in

the figure, there are two possible transitions: the robot can move from the top left to the

top right of the construction, or from the bottom left to the bottom right. Either of these

transitions toggles both C2Ts, leaving the construction mirrored left to right. The allowed

traversals in one state (as shown above) are from the top left to the top right and from

the bottom left to the bottom right, while the allowed traversals in the other state are (by

symmetry) from the top right to the top left and from the bottom right to the bottom left.

Following any of these traversals swaps the state of the construction. Notice that this is

exactly the behavior of a P2T.

Since the system is composed entirely of C2Ts (without even branching hallways), which

are both reversible and deterministic, the result is also both reversible and deterministic,

by Lemma 4. Thus, the one transition described for each location in each state is the only

transition possible.
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Lemma 18. 2-toggles (AP2Ts, P2Ts and C2Ts) simulate a noncrossing toggle lock (NTL).

Proof. The construction is shown in Figure 2-26.

In this lemma, we will refer to toggles 1 and 2 in the figure as the “outer toggles”, toggles

3 and 4 as the “middle toggles”, and toggles 5 and 6 as the “bottom toggles”. We will call

the pathway through the lower tunnels of the bottom toggles the “bottom tunnel” of the

overall gadget, and the rest of the gadget the “middle tunnel” of the overall gadget.

An NTL has two externally observable states: locked, and unlocked. The locked state

corresponds to the upper tunnels of the bottom toggles oriented out, and the unlocked state

corresponds to the bottom toggles oriented in. The unlocked state is shown in Figure 2-26.

In this gadget, there are two internal states corresponding to each external state: with

the horizontal tunnels of the middle toggles both oriented left, and with both oriented right.

The only accessible states of this gadget are the states with the outer toggles oriented in, the

middle toggles oriented both left or both right, and upper pathways of the bottom toggles

oriented both in or both out. We will show that the gadget allows exactly the traversals of

the NTL from these configurations, and cannot be left in any other configuration.

The bottom tunnel traversals are straightforward — the bottom tunnel acts as a toggle,

and a traversal flips both bottom toggles, and hence the externally observable state.

Also clearly, the robot cannot move between the bottom tunnel and the middle tunnel.

Now, we wish to establish that in the unlocked state, the robot can always traverse the

middle tunnel in either direction. In the state shown, the middle tunnel may be traversed

from external location to external location as follows:

∙ The robot can get across, left to right, by traversing the following toggles in the fol-

lowing order: enter through toggle 1’s lower tunnel, down to toggle 5, up to toggle 4’s

vertical tunnel, through toggle 1’s upper tunnel, around the top to toggle 2’s top tun-

nel, back down through toggle 4, back out through toggle 5, across through toggle 3’s

horizontal tunnel, then through toggle 4’s horizontal tunnel, then out through toggle

2’s lower tunnel.
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∙ The robot can get across, right to left, by traversing the following toggles in the fol-

lowing order: enter through toggle 2’s lower tunnel, down to toggle 6, up to toggle 4’s

vertical tunnel, through toggle 2’s top tunnel, around to toggle 1’s top tunnel, down

through toggle 3’s vertical tunnel, back out through toggle 6, across through toggle 4’s

horizontal tunnel, then through toggle 3’s horizontal tunnel, then out through toggle

1’s lower tunnel.

∙ If the middle toggles are in the opposite orientation, the system is simply mirrored,

left to right, and the traversals are still possible.

Next, we wish to establish that the robot cannot cross the middle tunnel in the locked

state. After entering from either middle tunnel location, the only traversable toggles are the

middle toggles. After traversing those, the robot can go no further. The bottom toggles can

not be traversed, so the entire middle region is inaccessible. As a consequence, the opposite

outer toggle’s upper pathway can not be accessed. Therefore the robot can only leave via

its original location.

We also must establish that if the gadget starts in one of the configurations mentioned,

the robot must leave it in the proper state, and can not leave it in a configuration that was

not mentioned. This is straightforward for the bottom tunnel, so we will focus on the middle

two locations.

We will show that the accessible configurations of the gadget are exactly as described.

To do so, we will make use of the concept of a cut in a gadget.

Lemma 19. Let 𝐴 be a connected region of a planar embedding of a gadget system which

does not contain any locations. Then the boundary of 𝐴, which we will call a cut, is traversed

an even number of times during any traversal of the construction.

Proof. Whenever the boundary of 𝐴 is crossed, the robot goes from inside 𝐴 to outside or

vice versa. Since the robot starts a traversal outside 𝐴 and ends it outside 𝐴, it must cross

the boundary an even number of times.
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The upper pathways of the outer toggles form a cut, and the lower pathways of the

outer toggles form a cut. Thus, the upper pathways of the outer toggles are crossed an even

number of times, and the lower pathways are passed an even number of times, so the outer

toggles must be passed an even number of times in total. Thus, the toggles must either be

both oriented in or both out when leaving. However, when leaving the gadget, the outer

toggle which the robot exited through must end up oriented in, so both outer toggles must

end up oriented in.

The vertical pathways of the middle toggles form a cut. The horizontal pathways form

a cut. Thus, upon leaving, the middle toggles must have been traversed an even number of

times in total, and hence must end up both left or both right.

The upper pathways of the bottom toggles must be passed an even number of times. So

the upper pathways of those toggles must either be both in or both out when leaving the

gadget system.

Thus, the gadget system must be left in a state where the outer toggles are oriented in,

the middle toggles are oriented either both left or both right, and the upper pathways of

the bottom toggles are oriented either both in or both out. Therefore, these are exactly the

accessible configurations, as desired.

Finally, we show that the robot leaves the gadget in the same state it was entered in,

if it is entered on the middle tunnel. If the robot passes through one of the upper tunnels

of the bottom toggles, when it leaves the region bounded by the bottom toggles’ upper

tunnels, it must leave one of the bottom toggle’s upper tunnels oriented in. By the parity

constraint, both bottom toggles’ upper tunnels will be oriented in, thus leaving the gadget in

the unlocked state. If the central tunnels are entered in the unlocked state, they will be left

in the unlocked state. In the locked state, the upper tunnels of the bottom toggles cannot

be passed, and so the gadget will be left in the locked state.

Thus, the construction correctly simulates a NTL.

We introduce some new three tunnel objects. There are several distinct planar topologies

of the tunnels in a three tunnel object. We will focus on the two topologies which can
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r
Figure 2-27: Round antiparallel 2-toggle-lock construction

be drawn with no internal crossing tunnels: three tunnels around the perimeter, and three

tunnels in parallel. We will call the former a “round” topology, and the latter a “stacked”

topology. Note that in the stacked topology, the order of the tunnels is relevant. In either

topology, if there are multiple toggles, the relative orientation must still be specified.

Lemma 20. 2-toggles and noncrossing toggle locks simulate a round antiparallel 2-toggle-lock

(RAP2TL) and a round parallel 2-toggle-lock (RP2TL).

Proof. The construction shown in Figure 2-27 simulates the behavior of a round antiparallel

2-toggle-lock. It has two externally accessible states: as shown, and with the middle two

gadgets flipped. These correspond to the 2-toggle of the RAP2TL being pointed counter-

clockwise and clockwise respectively.

We will demonstrate that this gadget is equivalent to a RAP2TL by examining all possible

traversals. From the two locations that are on the lock tunnel of the NTL, the only possible

traversals are to each other, if the lock tunnel is unlocked. This forms the lock tunnel of the

RAP2TL.

Traversals from the top left location: The robot must go down and to the right, due to

the orientation of the toggle of the NTL. Then, the robot can go through the C2T, at which
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point it is blocked by the orientation of the bottom P2T. Thus, no traversal is possible from

this location in this state.

Traversals from the top right location: The robot can go through the C2T, then through

the NTL. At this point, the robot cannot go through the C2T again, because the C2T has

been toggled. Therefore, its only option is to go through the upper P2T and leave at the

top left location. This traversal toggles both of the middle two gadgets, and toggles the

upper P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent of

traversing the upper toggle of the RAP2TL that we are simulating.

Traversals from the bottom left location: The robot must go up and to the left, due to

the orientation of the C2T. Then, the robot can go through the NTL. Due to the orientation

of the upper P2T, the robot must now go through the C2T. Now, the robot can leave at the

bottom right location. This traversal toggles both of the middle two gadgets, and toggles

the lower P2T twice. Thus, the external state of the gadget is flipped. This is the equivalent

of traversing the lower toggle of the RAP2TL that we are simulating.

Traversals from the bottom right location: The robot is blocked by the orientation of the

C2T. Thus, no traversal is possible from this location in this state.

The opposite state is equivalent to a top-bottom mirror reversal, except for a change

in the state of the lock, which does not affect which traversals are possible. Thus, in every

state, this system of gadgets is equivalent to a round antiparallel two-toggle-lock (RAP2TL).

Consider the gadget which is the same as the one in Figure 2-27, except that the bottom

P2T is replaced with a C2T with its toggles allowing traversals from the bottom locations into

the gadget. Clearly, the effect of this change is to swap the roles of the bottom two locations.

As a result, this new construction is a round parallel two-toggle-lock, a RP2TL.

Lemma 21. RP2TLs and 2Ts simulate a stacked antiparallel 2-toggle-lock (SAP2TL).

Proof. A SAP2TL is a three tunnel gadget where the three tunnels cross the gadget in

parallel, with the two antiparallel toggle tunnels next to each other.

Starting with a RP2TL and two C2Ts, we can simulate a SAP2TL as shown in Figure 2-

28. The lock tunnel is straightforward. The two other traversals are from the top left to the
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Figure 2-28: A round parallel 2-toggle lock
is used to construct a stacked antiparallel 2-
toggle lock

Figure 2-29: A noncrossing tripwire lock
constructed from an anti-parallel 2-toggle
and lock with the lock on the side

bottom left, and from the bottom right to the top right. Both of these traversals pass through

every gadget. In the other state, all three gadgets are flipped, and the same traversals are

possible in the opposite direction.

Since every state-affecting traversal traverses all gadgets, the states of the three gadgets

always switch together, and the behavior is that of an SAP2TL. Equivalently, by Lemma 4,

the system of gadgets is deterministic and reversible, so the three traversals mentioned are

the only ones possible, and the construction simulates a SAP2TL.

Lemma 22. AP2TLS simulates a NWL.

Proof. By connecting the locations of the SAP2TL as shown in Figure 2-29, we can simulate

a NWL.

Each traversal of either connected toggle tunnel flips the state. The connections between

these two tunnels ensure that travel in either direction is always possible. As a result, the

combination of these connected pathways acts as a tripwire, always allowing the robot to

pass in either direction and opening or closing the lock with each traversal.

On our way to simulating a crossover, we will simulate another three tunnel gadget, a

stacked tripwire-lock-tripwire (SWLW). Note that the lock tunnel is specifically the center

tunnel.
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Figure 2-30: A stacked tripwire-lock-tripwire constructed from non-crossing tripwire locks.

Figure 2-31: A crossover constructed from stacked tripwire-lock-tripwires

Lemma 23. NWLs simulate a stacked tripwire-lock-tripwire (SWLW).

Proof. The construction is shown in Figure 2-30. There are four accessible states of this

gadget, which are any of the states where there is one locked and one unlocked NWL among

the two top NWLs, and one of each among the two bottom NWLs.

The states can only be changed by traversing the tripwire tunnels, and doing so flips

both NWLs on the side traversed, maintaining the invariant.

If both left NWLs are locked, or both right NWLs are locked, the center tunnel is not

passable. In the other two accessible states, the center tunnel is passable. The two pairs
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correspond to the two external states, with the lock locked and unlocked respectively. In any

state, traversing either tripwire moves the gadget to a state with the opposite passability of

the lock tunnel. Thus, this construction simulates a SWLW.

Lemma 24. SWLWs simulate a crossover.

Proof. The gadget shown in Figure 5-9 implements a crossover. The robot may always cross

from left to right, right to left, top to bottom and bottom to top, but in no other directions.

There is a single accessible state, the one with all four SWLWs in the unlocked state.

When the robot enters from any of the four external locations it has only a single option

up until the point where it reaches the four-way intersection at the center. Upon reaching

this point, the robot has traversed the tripwire tunnels of two of the SWLWs, locking them.

In particular, the SWLWs whose lock tunnels are on the two orthogonal pathways are locked.

For instance, if the robot entered from the top, the left and right pathway’s SWLWs would

be locked at this point. As a result, the only way for the robot to continue is to go straight,

passing through the other tripwires of the same two SWLWs, and emerging from the other

side. The robot has completed a crossover traversal, with no other options.

Because the robot passed through the tripwires of two SWLWs twice, and only the lock

tunnels of the other two SWLWs, the object is left in its original state, making the state shown

in Figure 5-9 the only accessible state. This construction correctly simulates a crossover.

Lemma 25. AP2Ts simulate an NWT.

Proof. We will construct a NWT as shown in Figure 2-32. This requires NWLs, crossovers,

and 1-toggles. We already have existing constructions of NWLs and crossovers with AP2Ts.

We can also build a 1-toggle with an AP2T simply by ignoring one of the two tunnels. Thus,

all that is left is to show that the construction successfully simulates a NWT.

There are four accessible states: As shown in Figure 2-32, with all of the NWLs flipped,

with the toggle flipped, and with everything flipped. The first and last correspond to the

external state where the toggle is pointed right, while the other two correspond to the

external state where the toggle is pointed right. The horizontal tunnel corresponds to the
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Figure 2-32: A noncrossing wire toggle constructed from a toggle, four noncrossing tripwire locks,
and two crossovers.

toggle, while the U-shaped tunnel corresponds to the tripwire in the composed gadget. In

the state shown in the figure, the toggle is oriented to the right from the external perspective.

Clearly, traversing the U-shaped tunnel will flip all of the tripwires of the NWL, resulting

in a state which corresponds to the opposite external state, as desired.

In the state shown in the figure, the horizontal tunnel may be traversed from left to right

along a unique pathway due to the placement of the locks, flipping the toggle along the way.

The orientation of the toggle blocks the right to left traversal. Thus, in this state, the upper

tunnel may be traversed in one direction resulting in an allowed state which corresponds to

the opposite external state, as desired.

Placing the toggle in the opposite state is equivalent to a rotation by 𝜋 of the upper
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Figure 2-33: Parallel 2-toggles simulate anti-parallel 2-toggles

tunnel, showing this state also correctly simulates an NWT.

Flipping the states of all of the NWLs is equivalent to a vertical reflection of the upper

tunnel, showing this state also correctly simulates an NWT.

Thus, we have built an NWT.

Lemma 26. P2Ts simulate an AP2T.

Proof. Figure 2-33 gives a construction of an antiparallel-2-toggle out of parallel-2-toggles.

There are two accessible states: As shown, and with the four inner P2Ts flipped. The

former corresponds to the AP2T having a tunnel connecting the left two locations with its

toggle oriented upward, and a tunnel connecting the right locations with its toggle oriented

downward, while the latter corresponds to the two toggles flipped.

First, let us examine the bottom right location in the state shown in the figure. After

passing the rightmost P2T, the robot is blocked. No transitions or state changes are possible.

This matches the desired behavior, because the right toggle in the AP2T being simulated is

oriented down.

Next, let us examine the top right location in the state shown in Figure 2-33. After

passing the rightmost P2T, then the upper right P2T, the robot may now either proceed

along the top tunnel, or down to the central loop. In the former case, the robot may pass

through the upper left P2T, but then is blocked. In the later case, the robot may either

proceed around the loop to the left or to the right. If the robot goes to the right, it can pass
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Figure 2-34: Noncrossing-toggle-lock simulates anti-parallel-2-toggle

through the lower tunnel of the upper right P2T, but then is stuck. If the robot goes to the

left, it can pass through the lower tunnel of the upper left P2T, then the upper tunnel of

the lower left P2T.

At this point, the robot may either continue around the loop, or exit the loop downward.

If the robot continues around the loop, it can pass through the upper tunnel of the lower

right P2T, but then is stuck. If it exits the loop, it can either go left or right on the bottom

tunnel. If it goes left, it can pass through the lower tunnel of the lower left P2T, but then

is stuck. If it goes right, it can pass through the lower tunnel of the lower right P2T, then

the lower tunnel of the rightmost P2T, and exit the gadget.

Overall, we observe that the robot can make exactly one transition, from top right to

bottom right. The right toggle is traversed twice, and the inner toggles are all traversed

once, leaving the gadget in the other accessible state. No other transition or state change is

possible, from that entrance.

Since the gadget is rotationally symmetric about its center, the possible transitions from

the right mirror the possible transitions from the left. Since the other state is simply the state

shown in the figure mirrored top-to-bottom, the transitions described mirror the transitions

in the other state as well.

Thus, the construction simulates an AP2T.

Lemma 27. NTLs simulate an AP2T.
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Proof. The construction is shown in Figure 2-34. The two accessible states are the state

shown in the figure and the state with all of the NTLs flipped, but the one-toggles still

oriented inward. These correspond to an AP2T with the top tunnel directed left and bottom

tunnel directed right, and the left-right mirror image.

If the robot enters from the top right, after passing the lock of the top right NTL, it

must pass the upper one-toggle and proceed into the central loop. Since the lower toggle is

directed upward, the robot must eventually leave the central loop via the upper toggle. The

robot may now proceed around the loop. The loop may only be traversed counterclockwise,

and it may only be traversed once. The robot may of course backtrack at any point, but

when it leaves via the upper toggle, it must have either traversed the loop zero or one times.

In the former case, the robot must leave via the top right location, leaving the system in

its original state. In the latter case, the robot must leave via the top left location, as all of

the locks have flipped. Thus, the top tunnel may be traversed via a right to left traversal,

flipping the state, and that is the only traversal in that direction.

If the robot enters from the top left, it is immediately blocked by the lock, and no traversal

is possible. Thus, the top tunnel works as desired.

Since the gadget possesses rotational symmetry around its center, the bottom tunnel is

exactly the same, allowing only a left to right traversal, flipping the state.

The opposite state is the same as the original state except for a left-right right mirror

reversal, so it also functions exactly as desired from the AP2T.

Thus, we have constructed an AP2T.

Lemma 28. NWTs simulate an AP2T.

Proof. A noncrossing wire toggle can simulate an anti-parallel 2-toggle with the simple con-

struction shown in Figure 2-35. The direction of each tunnel is dictated by the toggle on

the tunnel, and the wire ensures both toggles are synchronized. Thus when either tunnel is

traversed, both NWTs flip and the direction each tunnel can be traversed flips.

Lemma 29. NWLs simulate an AP2T.

70



Figure 2-35: Noncrossing-wire-toggle simulates anti-parallel-2-toggle

Proof. The construction of an anti-parallel 2-toggle from non-crossing tripwire locks can

be seen in Figure 2-36. Note that a 1-toggle can be constructed from an NWL by simply

connecting one location of the wire to one location of the lock. A closed lock will prevent

travel in one direction, but crossing the tripwire in the other direction will open the lock

and allow the robot to proceed. An open lock will allow travel in the other direction. In

the direction starting from the tripwire, the tripwire will close the lock in front of the robot

preventing traversal. In either traversal, the tripwire is crossed, flipping the state.

There are two main parts to this gadget, the top and bottom tunnels, and the inner

loop. As with the NTL construction from Lemma 27, the 1-toggles ensure that the loop

must be exited from the same place it was entered, which ensures all gadgets on the loop

are traversed the same number of times. Since all wires are on this loop, in a given traversal

of this gadget system, all of the NWLs will change state the same number of times, keeping

them in sync. The upper and lower paths each contain a locked and unlocked tunnel. The

locked portion prevents entry and interaction with the gadget. From the unlocked side, the

robot is able to enter the gadget and flip its state an arbitrary number of times. If the state

is flipped an even number of times, the robot’s only path out is the way it came. If an odd

number of flips have occurred, the robot can now exit through the opposite side of its path,

leaving the gadget in the opposite state.

Therefore, the gadget may traversed right to left along the top tunnel, flipping the state,

and left to right along the bottom tunnel, flipping the state. We have built an AP2T.

Lemma 30. CWTs simulate an NWT, CWLs simulate an NWL, CTLs simulate an NTL.

In general, one can very easily simulate a non-crossing version of a 2-tunnel gadget

from the crossing version. Figure 2-37 shows a parallel-2-toggle being constructed from a
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Figure 2-36: Noncrossing-wire-lock simulates anti-parallel-2-toggle

Figure 2-37: Crossing 2-toggles simulate parallel 2-toggle

crossing-2-toggle. The same construction works for uncrossing the other gadgets we have

analyzed, namely tripwire-toggles, tripwire-locks and toggle-locks. Going from non-crossing

to crossing versions is significantly more complicated (except in the case of anti-parallel-2-

toggle to crossing-2-toggle) but we are rescued from the need of such constructions by being

able to simulate a general crossover in Lemma 24.

2.2.7 Reconfiguring Reversible Gadgets

In this section we first show that for any reversible gadget the reachability problem being

PSPACE-complete implies the reconfiguration problem is also PSPACE-complete. We

then exhibit a reversible, deterministic gadget with non-interacting tunnels for which the

reconfiguration problem is PSPACE-complete showing an example where reconfiguration is

a harder problem than reachability. This work primarily comes from [8] written in collabo-

ration with Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, and Dylan Hendrickson.

Theorem 31. 1-player reconfiguration motion planning is PSPACE-complete for any set
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of reversible gadgets for which 1-player reachability motion planning is PSPACE-complete.

Proof. We use the same technique for showing reconfiguration NCL is PSPACE-complete

[45]. First we take a hard instance of the 1-player reachability motion planning. Now at the

target location we add a loop with a single gadget which permits a traversal which changes

its state. For the reconfiguration problem, we set the target states of all but the newly added

gadget to be the same as the initial states, and we set the target state of the added gadget to

be one reachable by making a traversal in the loop. Since the gadgets in this system are all

reversible, the agent can always take the inverse transitions that have been made so far to

return the start location and restore the states of all the gadgets to their initial states. Thus

if the agent can reach the added gadget, the agent will be able to traverse the gadget and

then undo the rest of the path except for that final traversal. Since the agent must interact

with the added gadget to achieve the desired reconfigured state, the agent must be able to

reach the gadget. Thus the agent is able to solve the reconfiguration problem if and only if

the agent could solve the reachability problem.

There are cases where the reconfiguration problem can be harder. Below we describe a

2-tunnel reversible deterministic gadget with non-interacting tunnels for which the reconfig-

uration problem is PSPACE-complete.

The non-interacting box gadget is a reversible, deterministic, 12-state, 2-tunnel gadget

shown in Figure 2-38. We will refer to states the right-top and right-middle states as the

right leaf states and left-bottom and middle-bottom states as the bottom leaf states. We call

the right leaf states and their two adjacent states the right square and similarly the bottom

leaf states and their two adjacent states the bottom square. Notice that from some states a

tunnel either only once in the same direction or potentially twice. Although going through

one tunnel never changes the traversability of the other tunnel, it may change whether

that tunnel can be traversed twice in a row in the same direction. To show PSPACE-

completeness we will first show that a cooperative, multi-agent reconfiguration problem is

hard by reduction from 1-player reconfiguration motion planning with a locking 2-toggle.

We then show how we can augment that construction to allow a single agent to simulate the
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actions of all of the others in our multi-agent construction.

Multi-agent 1-Toggle. Recall a 1-toggle is a 2-state, 1-tunnel, reversible, deterministic

gadget that allows a directed traversal in one direction in one state and the other direction

in the other state. A regular 1-toggle can be easily constructed from the non-interacting box

gadget by taking a single tunnel in a leaf state. Instead we will build a gadget that does not

allow individual agents through at all, but if it has an agent on either side of it, a third agent

can use the gadget as though it were a 1-toggle. Our construction will only work as intended

if there are three or fewer agents adjacent to the gadget at any point in time; however, these

gadgets will only be used in a way that this condition remains satisfied.

To build our multi-agent 1-toggle we simply connect the tunnels together, as shown

in Figure 2-39 and consider the bottom-middle state to be the canonical configuration for

the leftward pointing state of the 1-toggle, and the middle-right state to be the canonical

configuration for the rightward pointing state. More configurations will need to be considered

shortly, but we first describe the intended usage. In the bottom-middle state two agents can

move up into the middle connection of the gadget, then the remaining agent can moves left

joining them in the middle connection. The gadget is now in one of the upper left states.

If one agent exits down, the other two can then exit to the right putting the gadget in the

desired middle-right state with two agents on the right side. The transition in the other

direction is symmetric.

Next we argue that the only ways agents can move through this gadget are equivalent to

the intended usage. First, consider the case where there is no more than one agent on either

side of the gadget. From the bottom middle state no right or down traversals can be made.

Further, if no more than one up traversal is made then no more than one down traversal can

be made, and the same is true for right and left. Thus the agents can put the gadget into

four pairs of agent location and gadget state pairs, including only the bottom square states.

Rather than just the middle-bottom state with one agent on each side, we actually consider

these four agent and state pairs to be the rightward facing state of our multi-agent 1-toggle.

Importantly these are the only reachable agent and state pairs and none of them have more
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than one agent on any side of the gadget.

Now consider the case where the gadget is rightward facing and there is a second agent

on the right side. None of the previously reachable states will allow more than one left

transition, and thus the second agent is unable to interact with the gadget.

Finally we are back to the case of a rightward pointing gadget with an extra agent on

the bottom. In this state there can be no more downward traversals than upward traversals

and there can be at most one more rightward traversal than leftward traversals. Thus we

cannot move extra agents to the left side of the gadget and we can move at most one extra

agent to the right side of the gadget. Further, after making two right traversals, there be

at least two agents on the rightward side of the gadget and the gadget must be in a right

leaf state. Thus, once there are two agents on the rightward side, we are in one of the right

square states above with an extra agent. This is exactly the situation where the multi-agent

one-toggle has changed state and allowed an agent to traverse it.

Multi-agent Locking 2-Toggle. The multi-agent locking 2-toggle will be comprised of

one non-interacting box gadget, four multi-agent 1-toggles, and six helper agents. It will

allow an additional agent to interact with it as though it were a locking 2-toggle. Two helper

agents will be located in the horizontal and vertical connections next to the non-interacting

box gadget, and the other four agents will be external, each adjacent to one of the multi-

agent 1-toggles. Note, these external four agents will be shared between gadgets rather than

duplicated.

The canonical unlocked state is shown in Figure 2-40 with the non-interacting box gadget

in the upper-left state, the 1-toggles pointing right and down, and the internal agents in the

left and top sides respectively. If a second agent comes in from the top, it is able to cross

the first 1-toggle, both agents can move down through the non-interacting box gadget, and

then the two agents can allow one of them to cross the second 1-toggle. We consider this

resulting state to be the canonical up locked state. The non-interacting box gadget is in the

lower left state, the 1-toggles are pointed right and up, and the internal helper agents are on

the left and bottom. The right locked state and transition to it are symmetric.
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From the locked bottom state, if an agent arrives on the left, it could move through the

1-toggle, but only one agent would be able to pass the non-interacting box gadget. Thus it

would not be able to pass the second 1-toggle preventing a traversal of our gadget as desired.

Notice in the locked states the internal helper agents will only be able to shift the state

of the gadget over once, ensuring that they cannot move the gadget outside of the bottom

or the right square states respective to being locked up or left. This is the property that

ensures only one agent can cross the non-interacting box gadget along the incorrect pathway

while it is locked. The other traversals are prevented by the directionallity of the multi-agent

1-toggles.

Now we must inspect the construction as a whole because our gadgets depend on never

having more than two agents on any side and no more than three adjacent agents total. In

this construction all pathways have two multi-agent 1-toggles between every non-interacting

box gadget. Since individual agents can freely cross the non-interacting box gadget, let

us imagine replacing them with simple connections. Now every multi-agent 1-toggle (except

next to the start location) has exactly 1 agent on either side of it. There is only one additional

agent in the entire construction, so from the properties of the multi-agent 1-toggles we know

that we will never end up with more than one extra agent adjacent to any of the gadgets

fulfilling our needed condition.

The states of the locking 2-toggles in the single agent 2-toggle reconfiguration can now be

represented by the canonical agent location and gadget pairs in this multi-agent reduction.

The movement of the agent is represented by the movement of the location containing two

agents. Since the doubled agent can only move through the system of gadgets in the same

way as the single agent in the original instance, and we have shown that the canonical pairs

are reachable if the original instance is true, but are disjoint from reachable states which do

not correspond to a valid traversal in the original instance we obtain PSPACE-hardness for

the cooperative multi-agent reconfiguration problem with the non-interacting box gadget.

Simulating Extra Agents. Now we wish to simulate the multi-agent reduction with a

single agent. Recall that we can directly build a (single agent) 1-toggle out of the non-
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interacting box gadget. Also recall that our reduction ensured that no connection contained

more than two agents at any given point in time. For each connection in the multi-agent

instance, we connect two 1-toggles to that connection, each representing a potential agent.

The other side of all the one toggles are connected together so that this central location

has access to all of our simulated edges. If the multi-agent instance has an agent at some

location, in the single-agent instance we direct a number of 1-toggles towards that connection

for each agent there. All other 1-toggles are directed towards the central connection. Finally

we start the agent in the central connection.

From the central connection, the agent is able to cross a 1-toggle “instantiating” the agent

it represents in the multi-agent problem. The agent is then in the same location and able to

interact with original instance. If the agent then traverses a 1-toggle from some connection

to the central connection, the flip in direction of that 1-toggle will allow the agent to return

effectively “remembering” the location of that agent in the multi-agent instance. Since the

multi-agent problem never has more than two agents along the same connection, we need

not worry about running out of 1-toggles to record the agent locations. If we pick one of

the toggles to always flip when representing the presence of a single agent, we can directly

map states of the gadgets onto pairs of gadget states and agent locations in the multi-agent

instance, completing the reduction.
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Figure 2-38: The state diagram of the non-interacting box gadget
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Figure 2-39: The multi-agent 1-toggle. The two helper agents are denoted by red dots.

Figure 2-40: The multi-agent locking 2-toggle in the unlocked state.
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2.3 1-Player Bounded Motion Planning

In this section, we consider a broad class of gadgets which are naturally in NP. These LDAG

gadgets are the 𝑘-tunnel gadgets whose state graph forms a DAG with self-loops. Thus it is

the class of 𝑘-tunnel gadgets which has a polynomially bounded number of state changes. For

a subset of those gadgets, the DAG gadgets, which have a polynomially bounded number of

transitions, we give a dichotomy classifying them as NP-complete or in NL in Section 2.3.5.

We are also able to classify another subset, deterministic eventually statics gadgets, into NP-

complete, P-complete, or in NL, given in Section 2.3.7. These proofs, which are more general

than needed for our dichotomy theorems, also give a significant picture of the computational

complexity of LDAG gadgets; however, a full characterization of LDAG gadgets remains to

be completed.

The NP-hardness results can be seen as similar to Viglietta’s Metatheorem 1 about

location traversal (being implemented by the interacting tunnels in gadgets) and single-

use paths [60]. They also bear resemblance to Metatheorem 4 about pressure plates which

only affect one door [60]. However, our proof reduces from 3SAT rather than Hamiltonian

Path, uses a different underlying model which makes different features salient, and gives

generalizations in a different direction. Structurally the proof follows the proof structure

used to show Mario as well as many other games are NP-hard [4].

We go on to consider other victory conditions. In Section 2.3.6 we give a dichotomy

for LDAG gadgets under the shortest-path victory condition. In Section 2.4 we examine the

reconfiguration victory condition, showing there are gadgets which are both harder and easier

under reconfiguration and using it as intuition for showing a broader class of gadgets is in

NP and another seemingly bounded class of gadgets actually has cases that are PSPACE-

complete.

2.3.1 Upper Bounds

We start with a general upper bound showing LDAG gadgets are always in NP. In a system

of gadgets, the LDAG gadgets can only undergo a polynomial number of state changes. This
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is the core reason that motion planning involving these gadgets are in NP.

Lemma 32. 1-player motion planning with any set of LDAG gadgets is in NP.

Proof. We will use as a witness a list of all state changing traversals taken in order by the

agent on a solution path. This may be an empty set, but trivially exists as long as a solution

path exists. Since the number of state changes is polynomially bounded, this witness is also

polynomially bounded. To verify this witness we will construct a polynomial length path

from the start to the goal which respects those state changing traversals.

Take the system of gadgets and construct a graph with locations as vertices and edges

which are transitions in gadgets that do not change the gadget’s state and edges of the

connection graph. Search this graph for a path between the start location and the entrance

of the first transition in the witness. Next, update the system of gadgets with transitions

along that path and the first transition of the witness. For each pair of state changing

transitions, construct the graph of non-state changing transitions as before and check that a

path exists. After verifying that there are moves that allow the agent to get from the start to

each state-changing transition and then to the goal, we have constructed a polynomial length

solution to the problem instance. This additionally proves that if a solution to a 1-player

motion planning problem with LDAGs exists, there exists a polynomial length solution.

Since DAG gadgets are a subset of LDAG gadgets, containment in NP trivially follows

for DAG gadgets. In Section 2.4.1 we will use a similar proof to show an even more general

class of gadgets is in NP.

Corollary 33. 1-player motion planning with any set of DAG gadgets is in NP.

2.3.2 Characterization Overview

Recall from Theorem 2 that all gadgets without interacting tunnels are in NL. Thus one

might hope to show that all interacting-𝑘-tunnel LDAG gadgets are NP-complete, similar

to the classification for reversible deterministic gadgets. This hope is unfortunately not true

for LDAG gadgets. We will define two behaviors a gadget may have: “distant opening” and
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“forced distant closing.” We show that having neither of these properties puts the gadget

in NL. This behavior is similar to non-interacting, with an exception that an agent will

generally not close a tunnel if there is an otherwise equivalent option not to do so. Reversible,

deterministic gadgets do not have nondeterminism and always pair a distant opening with

a distant closing and thus do not need this distinction. We then show forced distant closing

suffices for NP-hardness. Distant opening by itself only suffices for P-hardness, but distant

opening with a non-undoable tunnel does give NP-hardness. Since all DAG gadgets have a

non-undoable tunnel, this will suffice to categorize DAG gadgets. We then dig a little deeper

and show another condition for when door opening gadgets yield NP-hardness and will use

this to give a dichotomy for deterministic eventually static gadgets.

2.3.3 Distant opening and non-undoable tunnel is NP-hard

A distant opening in a DAG gadget is a transition in some state across a tunnel which

opens a different tunnel. A tunnel is opened if a transition has taken it from a state where

the tunnel did not have traversability in some direction to a state where it is now traversable.

A non-undoable tunnel is a tunnel with locations 𝐴 and 𝐵 and a state 𝑠 such that

in state 𝑠 there exists a transition from location 𝐴 to location 𝐵 and for all transition in

state 𝑠 from location 𝐴 to location 𝐵 the resulting state 𝑠′ does not have any transition from

location 𝐵 to location 𝐴. Simply put, going across means you can not immediately go back

over the tunnel in the opposite direction.

We now show NP-hardness for gadgets which contain these elements. This is comparable

to a generalization of comparable to Forišek’s Meta-theorem 3 [35] which covers a similar

notion of door opening and diodes.

Lemma 34. 1-player motion planning with any 𝑘-tunnel gadget with a distant opening and

a non-undoable tunnel is NP-hard.

Proof. We show this problem is hard by a standard reduction from 3SAT. However, we will

need to break it into three cases depending on the behavior of our non-undoable tunnel and

each case will require a slightly different construction for the variable gadget.
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Our construction makes use of the tunnel which is traversed in the distant opening and

one of the tunnels it opens. Each literal in a 3-CNF formula will be represented by those

two tunnels in a single gadget, in the state of the distance opening. Each variable 𝑥𝑖 is

represented by a connection to two different paths, one which goes through the opening

transitions for the 𝑥𝑖 literals, and one for the ¬𝑥𝑖 literals. The non-undoable edges will need

to be placed at the start and ends of these variable pathways to prevent the agent from

opening both sets of doors.

Each clause contains connections between the openable tunnels for each of its literals. All

variable gadgets are laid out in series followed by the clause gadgets, with the goal location at

the end of the clause gadgets. Each clause gadget can only be traversed if at least one of its

corresponding variable gadgets has been traversed, allowing at least one passage to be open.

The agent can reach the goal location exactly when it has a path through the variable gadgets

which makes each clause gadget traversable, which corresponds to a satisfying assignment

of the 3-CNF formula.

Now that the overall construction is laid out, we return to the question of how to protect

the variable gadgets. Recall our non-undoable tunnel has locations 𝐴 and 𝐵 and a state 𝑠

such that (1) in state 𝑠 there exists a transition from location 𝐴 to location 𝐵; and (2) for

all transitions in state 𝑠 from location 𝐴 to location 𝐵, the resulting state 𝑠′ does not have

any transition from location 𝐵 to location 𝐴. We will call a gadget forward if the first

location reach while going through a variable branch is 𝐴 and backward if it is 𝐵.

Case 1: There is no traversal 𝐵 to 𝐴 in state 𝑠. In this case we put a copy of the

non-undoable edge at the start and end of each variable branch as shown in Figure 2-41.

After crossing the first non-undoable edge, the agent will not be able to go backward across

that edge and will thus need to continue forward through the branch. The agent cannot

go backward through either branch because the crossed non-undoable edge has no 𝐵 to 𝐴

transition and the uncrossed non-undoable edge on the other side has no 𝐵 to 𝐴 transition.
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Figure 2-41: The variable gadget for distant door opening gadgets, Case 1. The agent is shown
as a red dot; the top diagram shows the initial state; the lower diagram shows the state after the
agent has traversed the lower branch of the variable gadget.

Case 2: There is a traversal 𝐵 to 𝐴 in state 𝑠 but all 𝑠′ do not have an 𝐴 to 𝐵 traversal.

This case implies that after making the 𝐴 to 𝐵 traversal there is neither an 𝐴 to 𝐵 nor a 𝐵

to 𝐴 traversal, closing the tunnel. However, we do not know what behavior we will have if

the gadget is first traversed from 𝐵 to 𝐴 as this will put us in some state which may not be

one of our 𝑠′. For this case we put a pair of non-undoable tunnels at the start and end of

each variable branch, one with location 𝐴 first along the path and the other with location 𝐵

first along the path as shown in Figure 2-42. When the agent goes through one branch the

forward tunnels will close, preventing further use. Although the backward tunnels may be

in some unknown state, the agent is unable to return along that branch. If the agent tries to

enter the other branch, the backward non-undoable tunnel will undergo an 𝐴 to 𝐵 traversal,

closing behind the agent; then the agent will be unable to progress past the variable gadget

since both branches will have a gadget that has closed.

Case 3: There is a traversal 𝐵 to 𝐴 in state 𝑠 and some 𝑠′ (resulting from the 𝐵 to 𝐴

traversal from state 𝑠) has an 𝐴 to 𝐵 traversal. In this case we put two gadgets in a row at
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Figure 2-42: The variable gadget for distant door opening gadgets, Case 2. The agent is shown
as a red dot; the top diagram shows the initial state; the lower diagram shows the state after the
agent has traversed the lower branch of the variable gadget.

the start and end of each branch with a forward gadget in state 𝑠 and a forward gadget in

state 𝑠′ as shown in Figure 2-43. After going through a branch we have the forward gadgets

in state 𝑠′ preventing backtracking. If the agent attempts to go backward through the other

branch, we know the gadget already in state 𝑠′ does not have a 𝐵 to 𝐴 traversal.

We now note that all DAG gadgets have a non-undoable tunnel, noteably a single-use

tunnel. This means a DAG gadget containing a distant opening is NP-hard.

Lemma 35. All DAG gadgets contain a single-use transition unless they are a transitionless

gadget.

Proof. Call states which are sinks in the state graph of the gadget terminal states. We

now wish to find a state 𝑠 which only has transitions to terminal states. This can be done

by removing all terminal states from the state graph and locating a sink (which exists so

long as there is at least one transition between states in the gadget). Terminal states in a

DAG gadget have no transitions by definition. Thus 𝑠 has at least one transition which is

possible and then goes to a state which has no transitions, generating a single-use transition
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Figure 2-43: The variable gadget for distant door opening gadgets, Case 3. The agent is shown
as a red dot; the top diagram shows the initial state; the lower diagram shows the state after the
agent has traversed the lower branch of the variable gadget.

as desired.

Corollary 36. 1-player motion planning with any 𝑘-tunnel DAG gadget which contain a

distant opening is NP-hard.

2.3.4 Forced distant closing is NP-hard

When a transition across a tunnel closes another tunnel, the situation is more complicated,

since the agent may be able to cross the same tunnel through a different transition, choosing

not to close the other tunnel. Thus, for NP-hardness we will need the agent to be “forced”

to close the tunnel; however, defining this correctly is somewhat delicate. A tunnel is closed

if a transition has taken it from a state where the tunnel was traversable in some direction to

a state where it is no longer traversable in that direction. We will now consider only distant

monotonically closing DAG gadgets, which are DAG gadgets with no distant openings,

since we know distant openings suffice for hardness from the prior section and because the

ability to re-open the tunnel that was closed would cause significant complication.
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For NP-completeness one might suggest there exists a traversal such that all of its tran-

sitions close some other traversal. However, this property fails to give hardness in a simple

two-tunnel case where one transition closes one direction of the other tunnel and the other

transition closes the other direction of the tunnel. This leads us to a more complex defini-

tion. An orientation of a set of tunnels in a state contains, for each tunnel in the set, a

single traversal of the tunnel in the state. A forced distant closing in a state of a gadget

is a traversal across a tunnel in that state and an orientation of some other tunnels in the

state such that, for each transition corresponding to the traversal the transition closes some

traversal in the orientation. The size of a forced distant closing is the number of traversals

in the orientation. Note that for deterministic gadgets, any distant closing is a forced distant

closing of size one.

Lemma 37. 1-player motion planning with any distantly monotonically closing 𝑘-tunnel

LDAG gadget with a forced distant closing is NP-hard.

Proof. Consider all states which have forced distant closings, and let 𝑠 be such a state that

is minimal in the state-transition graph, so that after making a (non-self-loop) transition

from state 𝑠 there are no forced distant closings. Consider a forced distant closing in 𝑠 with

smallest size; say this forced distant closing traverses tunnel 𝑡 and has size 𝑖. We chain the

𝑖 tunnels in the orientation for the forced distant closing, in the directions specified by the

orientation, to make what is effectively a single long tunnel 𝑟. We will use the tunnels 𝑡 and

𝑟 in a reduction from 3SAT, and they have two important properties:

∙ If the agent traverses 𝑡, it cannot later traverse 𝑟: since we are using a forced distant

closing, after traversing 𝑡 at least one (oriented) tunnel in 𝑟 is not traversable. Since

there are no distant openings, this tunnel cannot become traversable again.

∙ The agent can traverse 𝑟 from state 𝑠: in state 𝑠, each tunnel in 𝑟 is open. The agent

begins by traversing the first tunnel in 𝑟. This cannot be a forced distant closing for

the remaining 𝑖 − 1 tunnels, since we assume the smallest forced distant closing has

size 𝑖. So the agent can choose a transition which leaves the remaining tunnels in 𝑟
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open. After this first traversal, there are no more forced distant closings, so the robot

can always choose a transition which leaves the remaining tunnels in 𝑟 open.

We can now describe the reduction, which is similar to the reduction in the proof of

Lemma 34. Each literal in a 3-CNF formula is represented by a gadget in state 𝑠, with

the tunnels in 𝑟 chained together. Each variable 𝑥𝑖 is represented by a connection to two

different paths, one which goes through 𝑡 for the 𝑥𝑖 literals, and one for the ¬𝑥𝑖 literals.

Since traversing both sides will only decrease the traversability of the system of gadgets, the

agent will never want to set both sides to false. We could also use single-use gadgets which

can be constructed by attaching the path which closes to the path that is closed.

When the agent goes through the 𝑥𝑖 (respectively ¬𝑥𝑖) path of a variable, it closes 𝑟 in

the gadget for each literal 𝑥𝑖 (respectively ¬𝑥𝑖), which corresponds to assigning 𝑥𝑖 to false

(true). This behavior is the revers from the reduction in Lemma 34.

Each clause contains connections between the 𝑟 tunnels for each of its literals. All variable

gadgets are laid out in series followed by the clause gadgets, with the goal location at

the end of the clause gadgets. Each clause gadget can only be traversed if at least one

of its corresponding variable gadgets has not been traversed, leaving at least one set of

tunnels open. The agent can reach the goal location exactly when it has a path through

the variable gadgets which leaves each clause gadget traversable, which corresponds to a

satisfying assignment of the 3-CNF formula.

2.3.5 Putting together distant opening and closing and finishing

the DAG dichotomy

We now combine the results of the prior two sections into a stronger lemma.

Lemma 38. 1-player motion planning with any 𝑘-tunnel LDAG gadget with a forced distant

closing or a non-undoable tunnel and a forced distant opening is NP-hard.

Proof. If we have a forced distant closing and no distant opening, then the gadget is NP-hard

by Lemma 37. Otherwise we have a distant opening. If we additionally have a forced distant
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closing, we can use it to construct a single-use (and thus a non-undoable) tunnel. This is

then NP-hard by Lemma 34. If we do not have a forced distant closing, then we have both

a non-undoable tunnel and a distant opening which is once again the case in Lemma 34.

We now improve upon our lemma for non-interacting tunnels being in NL by showing a

lack of distant opening or forced distant closing is sufficient to put the gadget in NL.

Lemma 39. 1-player motion planning with any 𝑘-tunnel gadget with no distant openings or

forced distant closing is in NL.

Proof. The proof follows that of Theorem 2, though we must be more careful to account for

optional distant closings. As in Theorem 2, if a system of gadgets has a solution, then a

solution of minimal length does not intersect itself. This only requires that the gadget has

no distant openings, since then making transitions can never increase traversability, and the

shortcutting argument applies.

We locally convert the system of gadgets into a directed graph, and show a path in the

graph from the start location to the goal location corresponds to a solution to the system of

gadgets which does not intersect itself. Given a (not self-intersecting) path in the graph, we

follow the corresponding path through the system of gadgets. When we make a traversal,

we must pick a transition to avoid closing tunnels we will need later. This is always possible

because there are no forced distant closings; we can always choose a transition which does

not close any traversal in the orientation consisting of the traversals the path will later

take. Although this seems to require looking ahead and constructing a path, we can non-

deterministically check all traversals; some of which will result in closing a needed pathway,

but some of which will avoid the unwanted distant closing. By doing this, we ensure that

every traversal we need is available when we get to it, so the system of gadgets is solvable.

Suppose there is a solution to the system of gadgets that does not intersect itself. Since

it uses each tunnel at most once, and the gadget has no distant openings, the traversability

of each tunnel does not change before the solution uses it. Thus the solution is also a path

in the directed graph.
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So the system of gadgets has a solution iff there is a path from the start location to the

end location in the directed graph. Since we can locally convert the system of gadgets to

the graph in logarithmic space and solve reachability in NL, the motion planning problem

is in NL.

Combining Lemmas 35, 33, 38, and 39, we have a dichotomy for DAG gadgets:

Theorem 40. 1-player motion planning with a 𝑘-tunnel DAG gadget is NP-complete if the

gadget has a distant opening or forced distant closing, and otherwise is in NL.

We will investigate the question of whether this condition can be tested in polynomial

time in Section 2.3.9. But next we continue to explore distant opening gadgets first showing

they suffice for hardness under the shortest-path victory condition in Section 2.3.6 and then

reach a dichotomy for deterministic eventually static gadgets in Section 2.3.7.

2.3.6 LDAG Dichotomy for Shortest Paths

Here we consider the shortest-path alternate victory condition which asks whether the agent

is able to reach the goal location in 𝑘 moves. Under this victory condition, we are able to

give a dichotomy for LDAG gadgets and find that it is the same characterization as DAG

gadgets for reachability. In essence, the strict time limit is playing the role of a non-undoable

edge in the reduction.

Lemma 41. 1-player shortest-path motion planning with any 𝑘-tunnel gadget with no distant

openings or forced distant closing is in P.

Proof. Recall the proof for Lemma 39. It argues that there is no need to ever revisit a tunnel

for this class of gadget and thus the problem is equivalent to reachability in a static graph.

The properties of these gadgets do not change under the shortest-path victory condition.

Thus we can search for the shortest-path in the static graph with vertices represented con-

nected components of gadget locations and edges formed by the traversability of the gadgets

in the system of gadgets. Since edges taken directly correspond to transitions taken in the
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system of gadgets, a shortest-path here will also be a shortest-path through the system of

gadgets.

For forced distant closing, NP-hardness remains by simply making the target number

of moves much larger than the number of moves needed to solve the bounded system of

gadgets. Forced distant opening is a more interesting case, and we will show it suffices for

NP-completenss by a reduction from Hamiltonian Path. This is comparable to Forišek’s

Meta-theorem 2 [35].

Lemma 42. 1-player shortest-path motion planning with any 𝑘-tunnel gadget with distant

openings is NP-hard.

Proof. We reduce from Hamiltonian Cycle. We use the directed or undirected version as

needed by the traversability of the gadget. Say the Hamiltonian Cycle has 𝑛 vertices and

𝑚 edges. The door opening property will be used to check that locations have been visited.

From the start location we construct a path of length 𝑛 which goes through the openable

traversals of 𝑛 different gadgets. We will now use the opening traversals of those gadgets as

our vertices. For each edge, add a gadget and use a traversable tunnel. We connect both

locations of our openable vertex to one side of each tunnel representing an edge. We set

the target time to be 3𝑛. The agent must go through all of the door opening tunnels to

be able to reach the goal. This will require at least 2𝑛 traversals from going through the

edge gadgets and the opening tunnels, and another 𝑛 traversals to go through the openable

tunnels. If a Hamiltonian cycle exists, the agent can use this solution to guide a pathway

to open all the tunnels in 2𝑛 moves and win within the time limit. If no such cycle exists

then visiting all of the opening tunnels will take more than 2𝑛 moves making it impossible

to reach the goal in the allotted time.

Combining Lemmas 41, 37, and 42 we have our dichotomy. Interestingly the classes of

gadgets which are hard for LDAGs under shortest-path become the same as those for DAG

gadgets.
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Theorem 43. 1-player shortest-path motion planning with a 𝑘-tunnel LDAG gadget is NP-

complete if the gadget has a distant opening or forced distant closing, and otherwise is in

P.

2.3.7 Deterministic Eventually Static Dichotomy

An eventually static gadget is a gadget whose state graph forms a DAG plus self-loops

at the sinks. A special case of LDAG gadgets, these continue to change state until they

reach some final form, but unlike DAG gadgets that final form may have traversable tunnels.

Between Theorem 38 and Lemma 39 we are left with the case of having a distant opening

but no forced distant closing or non-undoable edge.

If we restrict to the deterministic case, then any distant closing must be a forced distant

closing as the traversal that permits the tunnel closing must have only one transition and

thus taking that transition closes the tunnel. Since any given transition can increase the

traversability of other tunnels but never decrease it, traversing tunnels appears to be a good

idea. Since we have no non-undoable tunnels, wherever the agent makes a traversal they

can always immediately go back across that tunnel. Thus, if an agent is ever able to make a

single traversal in a gadget, the agent can make arbitrarily many traversals in that gadget.

Since we are looking at eventually static gadgets, after some number of traversals the gadget

will eventually end up in a terminal state.

Now the crux for eventually static gadgets will be what their terminal states look like. If

a gadget has at least two different terminal states which can each be reached by a series of

traversals from some common state, and those two terminal states have different traversabil-

ity, we say the gadget has distinguishable terminal states. Otherwise the gadget has

indistinguishable terminal states.

Lemma 44. 1-player motion planning with any 𝑘-tunnel deterministic eventually static

gadget with no forced distant closings or non-undoable tunnel and indistinguishable terminal

states is in P.

Proof. First, we will make several observations about eventually static gadgets with no forced
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distant closings or non-undoable tunnels. Since no tunnel is non-undoable, if the agent is

ever able to make a traversal in a gadget, that agent can continue making traversals along

that tunnel. By continuing to do so, the agent is able to bring the gadget into a terminal

state. Since the gadget is deterministic and has no forced distant closings, the gadget has

no distant closings. If an eventually static has no non-undoable tunnels, then all tunnels

in terminal states are undirected. Thus, bringing a gadget from any state to a terminal

state will never decrease its traversability and can be done if the agent is ever able to make

any traversal in that gadget. Finally, since all terminal states are indistinguishable, the

traversability of a gadget in any of its terminal states which were reachable by the agent will

be the same.

To solve this problem, the agent first performs a breath-first search looking for the goal

location and gadgets in non-terminal states. If the agent finds the goal location, we are

done. If an agent finds a traversal of a gadget in a non-terminal state, we have the agent

move back and forth along that tunnel until the gadget is in a terminal state. Based on the

prior observations, this state change will only help the agent traverse the system of gadgets.

We repeat this process until either the goal is found or the agent is unable to reach any

state-changing traversals.

Lemma 45. 1-player motion planning with any 𝑘-tunnel LDAG gadget with a distant open-

ing is P-hard.

Proof. This follows almost directly from Viglietta’s Metatheorem 5(a) [60]. We create a loop

including the traversal which opens to simulate a button and use the traversal which opens

as a door.

Lemma 46. 1-player motion planning with any 𝑘-tunnel deterministic eventually static

gadget with no forced distant closings or non-undoable tunnel and distinguishable terminal

states is NP-hard.

Proof. First, observe that all tunnels in a terminal state of a eventually static without non-

undoable tunnels must be undirected. In addition, if a tunnel is traversable in any direction
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from some state 𝑠, then all terminal states reachable from 𝑠 must have that tunnel traversable

in both directions. Thus, if the eventually static has distinguished states, there must be a

tunnel, call it 𝑡, which is closed in one terminal state and open in another terminal state.

Now we find states from which there is a series of traversals to both of the distinguishable

terminal states. Of these, we want to choose one which does not have a series of transitions

to another such state. This state has some transition, call it 𝑟, which will force the gadget

into a subset of states in which 𝑟 is not traversable. We now use this transition from 𝑠

exactly as we would the forced closing path in the proof of NP-hardness for gadgets with

distant forced closings, Lemma 37.

Variables are comprised of two pathways, one for setting the variable false and the other

for setting the negation of the variable false. These pathways are comprised of a series of

gadgets in state 𝑠 with the 𝑟 transition oriented forward. Thus the agent must take the 𝑟

transitions for at least one branch of each variable, ensuring that the corresponding gadgets

do not have their tunnels 𝑡 traversable. Clauses are constructed from the 𝑡 tunnels of the

associated variable gadgets set in parallel. If a gadget was not traversed, it is considered to

be set true, and has the possibility of being opened.

Now the last issue is to make sure that 𝑡 can be opened. Since 𝑠 admits a series of

traversals to both distinguishable states and does not admit a series of traversals to any

other state with this property, then there must exist some transition, call it 𝑟′ from 𝑠 after

which taking enough of any other transition in the gadget will make 𝑡 traversable. If the

tunnel containing 𝑟 also contains 𝑟′ in the opposite direction, then we are done. The agent

can go forward down one branch of a variable gadget, setting it false, then backtrack down

the other, traversing the tunnel until 𝑡 is open. If 𝑟′ resides on another tunnel, then we simply

put that tunnel immediately before 𝑡 in our construction of the clause. Since 𝑡 cannot be

traversable in either direction in state 𝑠, we know 𝑟′ cannot reside in 𝑡. This covers all of the

cases and completes our proof.

Getting rid of determinism or generalizing to LDAGs make critical parts of the above

proof fall apart. However, generally if one can cause the agent to be forced to not open a
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traversal or to choose between two different traversals to open, then one can construct a

situation akin to a distant closing and prove NP-hardness.

Combining Theorems and Lemmas 38, 39, 44, 45, and 46 we have our dichotomy.

Theorem 47. 1-player motion planning with a 𝑘-tunnel deterministic eventually static gad-

get is NP-complete if it has:

1. forced distant closing;

2. distant opening and non-undoable tunnel; or

3. distant opening and distinguishable terminal states.

Otherwise it is P-complete if it has a distant opening.

Otherwise it is in NL.

2.3.8 Planar Hardness for Crossing NAND

We now show a very simple type of LDAG gadget with a distant door closing is still hard

in the planar case. A NAND gadget is a directed 2-tunnel gadget where traversing either

tunnel closes both tunnels (preventing all future traversals). A crossing door closing

gadget is a directed 2-tunnel gadget where traversing either tunnel closes the other tunnel.

We prove NP-completeness for the NAND gadget below, and the exact same constructions

and arguments also work for the crossing door closing gadget.

There are three planar types of NAND gadgets, named by analogy with 2-toggles [25]:

one crossing type (where the two tunnels cross); and two noncrossing types, parallel

(where the directions are the same) and antiparallel (where the directions are opposite).

The notion of NAND gadgets was introduced in [20], which proved NP-hardness using a

combination of parallel and antiparallel NAND gadgets, “one-way” gadgets, “fork” gadgets,

and “XOR” gadgets. We prove that NAND gadgets alone suffice:

Lemma 48. 1-player planar motion planning is NP-hard with either antiparallel NAND

gadgets, or crossing NAND gadgets.
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Figure 2-44: Simulation of
crossing NAND gadget by an-
tiparallel NAND gadgets.

Figure 2-45: Simulation of
antiparallel NAND gadget by
crossing NAND gadgets.

Figure 2-46: Simulation of par-
allel NAND gadget by crossing
NAND gadgets.

Proof. Figures 2-44 and 2-45 show that antiparallel NAND gadgets can simulate crossing

NAND gadgets and vice versa. Figure 2-46 shows how crossing NAND gadgets can simulate

parallel NAND gadgets. Therefore we can assume the availability of all three planar types

of NAND gadgets.

We follow the NP-hardness reduction from Planar 3-Coloring to Push-1-X in [20]. This

reduction requires four types of gadgets. Their “NAND gadget” is our parallel and antiparal-

lel (noncrossing) NAND gadgets, which we have. Their “XOR-crossing gadget” is a crossing

2-tunnel gadget that breaks down (in a particular way) if both tunnels get traversed. The

reduction guarantees that at most one tunnel in an XOR-crossing gadget will be traversed

(because they correspond to different color assignments), so we can replace this gadget with

a crossing NAND gadget (which even prevents both tunnels from being traversed). Their

“fork gadget” is a one-entrance two-exit gadget such that either traversal closes the other

traversal; we can simulate this gadget with a parallel NAND gadget by connecting together

the two entrances. Their “one-way gadget” is a gadget that prevents traversal in one direc-

tion, but provides no constraint after being traversed in the other direction. Because this

gadget is required only to block certain traversals, and each gadget gets visited only once (in

particular because the reduction is to Push-1-X where the robot is not permitted to revisit a

square), we can replace this gadget with a NAND gadget where one tunnel is not connected

to anything. Therefore we have established NP-hardness using only NAND gadgets.

Since gadgets with a forced distant closing and no distant opening can simulate a single-

use gadget, it is simple to construct a NAND gadget from it. If both the construction of
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the forced distant closing is planar and connecting it to form the single-use gadget is planar

than that gadget will also be hard in the planar case.

Lemma 49. 1-player planar motion planning is NP-hard with either antiparallel door clos-

ing gadgets or crossing door closing gadgets.

2.3.9 Deciding DAG Gadget Hardness

It is natural to wonder whether this condition for hardness can be checked in polynomial

time. That is, is there a polynomial-time algorithm which determines whether 1-player

motion planning with a given DAG gadget is NP-complete? For all of our other dichotomies,

the question of whether a gadget of the appropriate type satisfies the condition for hardness

is clearly in P; in fact, in L. But a forced distant closing involves an orientation of the tunnels

in the gadget, so there may be exponentially many potential forced distant closings to check.

We will show that whenever it is necessary to search through each potential forced distant

closing, the number of states of the gadget is exponential in the number of tunnels, so the

search takes time polynomial in the number of states.

First, it is easy to determine whether a DAG gadget has a distant opening in polynomial

time, since we can iterate through the transitions and see whether each one opens another

tunnel. So we consider gadgets with no distant openings, and wish to determine whether

they have a forced distant closing.

Lemma 50. Suppose a monotonic 𝑘-tunnel DAG gadget has a state 𝑠 with 𝑘 open tunnels,

and there are no forced distant closings from states reachable from 𝑠. Then the gadget has

at least 2𝑘 states reachable from 𝑠.

Proof. For each subset of the open tunnels in 𝑠, we will find a state that has exactly those

tunnels open. Since there are 2𝑘 such subsets, this implies there are at least 2𝑘 states.

Assume without loss of generality that each tunnel is traversable from left to right in state

𝑠.

Given a subset 𝑋 of the open tunnels, we perform transitions starting from 𝑠 as follows.

For each tunnel not in 𝑋, traverse the tunnel repeatedly until it is closed in both directions;
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this must happen eventually because the gadget is a DAG. At each traversal, choose a

transition which does not close any other tunnel from left to right. If there were no such

choice of transition, that traversal with all other tunnels oriented from left to right would be

a forced distant closing, which does not exist by assumption.

After making these transitions, we have closed each tunnel not in 𝑋 without closing any

tunnels in 𝑋. Since the gadget is monotonic, we have not reopened any tunnel. So the final

state has exactly the tunnels in 𝑋 open.

Theorem 51. Deciding whether a 1-player motion planning with a 𝑘-tunnel DAG gadget is

NP-complete can be done in polynomial time.

Proof. The following algorithm checks in polynomial time whether 1-player motion planning

with a given a DAG gadget is NP-complete.

∙ For each transition, see whether it is a distant opening. If it is, accept.

∙ Iterate through the states of the gadget in reverse order; i.e. check each state reachable

from 𝑠 before checking 𝑠. For each state, and for each traversal from that state:

– Suppose the state has 𝑘 open tunnels other than the tunnel of the traversal. If

every transition corresponding to the traversal leaves fewer than 𝑘 of these tunnels

open, accept.

– Enumerate the 2𝑘 orientations of these 𝑘 open tunnels, and check for each orien-

tation whether it is a forced distant closing with the traversal. If it is, accept.

∙ Reject.

If the gadget has a distant opening, the algorithm notices it in the first step. Otherwise,

we check for each state and traversal whether it has a forced distant closing. If every

transition for a traversal reduces the number of other open tunnels, than any orientation of

the other tunnels gives a forced distant closing. Otherwise, we check for each orientation

whether it gives a forced distant closing. So the algorithm accepts exactly when the gadget
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has a distant opening or a forced distant closing, which is when 1-player motion planning

with the gadget is NP-complete by Theorem 43.

The only step of the algorithm which does not obviously take polynomial time is running

through all 2𝑘 orientations of tunnels. Suppose the algorithm reaches this step for some

state and traversal. Then there are no forced distant closings after making a transition from

this state, since we would have accept already if there were. Also, there is some transition

corresponding to the traversal which leaves all 𝑘 other open tunnels open. By Lemma 50,

there are at least 2𝑘 states reachable after making this transition. In particular, the gadget

has more than 2𝑘 states, so enumerating the 2𝑘 orientations takes time polynomial in the

number of states. Thus the algorithm runs in polynomial time.

2.4 Reconfiguration and “bounded” gadgets

Reconfiguration can also teach us about reachability problems. In this section we show

that LDAG gadgets are actually a special case of a larger class of gadgets whose 1-player

reachability problem is in NP. However, this class is defined in part by other gadgets whose

reconfiguration problem is also in NP. We also show that two natural classes of gadgets that

seem like they might make a problem bounded, monotonically opening and monotonically

closing gadgets, actually contain examples which are PSPACE-complete. This is surprising

since the change in the traversability of the gadgets is polynomially bounded. The intuition

for this construction is closely linked to another result in this section showing there are

gadgets which never change traversability and yet their 1-player reconfiguration problem is

PSPACE-complete.

2.4.1 Generalized DAG Structure

One might wonder whether LDAG gadgets can be further generalized, leading to a larger

class of gadgets naturally in NP. In this section, we consider a much wider generalization

which we call DAG-like gadgets and find an interesting relationship with reconfiguration
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problems.

We call a gadget 𝐹 -DAG-like if its state graph can be decomposed into disjoint subgraphs

for which those subgraphs are from some family of gadgets 𝐹 and all transitions between

these subgraphs form a DAG. We call these transitions between the subgraphs DAG-like

transitions. In this case LDAG gadgets are 𝐹 -DAG-like with some family of single state

gadgets.

With this notion, one may wonder what gadgets can be used in an 𝐹 -DAG-like gadget

and have the resulting gadget still be in NP. We initially believed this would be true for

gadgets with non-interacting tunnels, however, below we give an example of such a gadget

where the reachability question is PSPACE-complete. We then show that if 𝐹 is a family

of gadgets for which the reconfiguration problem is in NP, then the reconfiguration and

reachability problems for 𝐹 and for 𝐹 -DAG-like gadgets are also in NP. We will call these

NPReDAG gadgets. Since the reconfiguration problem for single state gadgets is trivial, this

gives a more general description of gadgets for which the motion planning problem is in NP.

Theorem 52. 1-player reconfiguration motion planning with NPReDAG gadgets is in NP.

Proof. We give the following certificate for 1-player motion planning with an NPReDAG

gadget. We list all of the DAG-like transitions taken in the solution and the states of all

of the gadgets before and after the transition. Further, for each pair of adjacent DAG-like

transitions we imagine the reconfiguration problem on the system of gadgets which is only

comprised by the reconfigurable super-node gadgets and takes this system from the state

after the last DAG-like transition to the state before the next DAG-like transition. This

problem is solvable in NP by definition, so we provide each of these certificates. The verifier

can now check in polynomial time that the final state is the target state, that the polynomial

many DAG-like transitions are valid transitions and take the given pre-transition state to

the post-transition state, and that the (polynomially many) portions of the path between

the DAG-like transitions have some valid path performing that reconfiguration.

Theorem 53. 1-player reachability motion planning is in NP for gadgets where 1-player

reconfiguration motion planning is in NP.
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Proof. We now essentially want to “guess” the final configuration that the system will be

in when the agent solves the reconfiguration problem and then solve the reconfiguration

problem. However, this strategy also needs to verify that the agent actually reaches the

target location. To do this first we take the 1-player reachability instance and add at the

target location a loop with a gadget that has access to a transition with a state change.

If there is none, then both the reconfiguration and reachability problems are trivially in

NL. To be able to change the state of the added gadget, an agent must have reached the

location of the loop. Thus we will take as a certificate a final configuration of the system

of gadgets which has the added gadget in a different state, as well as the certificate for the

reconfiguration problem from the initial state to this new target state.

Corollary 54. 1-player reachability motion planning with NPReDAG gadgets is in NP.

2.4.2 Verified Gadgets and Shadow Gadgets

In this section we will discuss a technique for generating hard gadgets. The main idea is

constructing a gadget which behaves well when used like a hard gadget, but might also have

other transitions which are allowed but put the gadget into some undesirable state.

First, we will pick some base gadget which we want to modify. Next we will add additional

shadow states to the gadget and additional transitions with the restriction that all newly

added transitions must take the gadget to a shadow state. We call such a construction a

shadow gadget of the base gadget. This has the nice property that if the agent takes any

transition that would not be allowed in the base gadget, then the gadget will always stay in

a shadow state after that point.

Theorem 55. 1-player reconfiguration motion planning with a shadow gadget is at least as

hard as 1-player reconfiguration motion planning with the base gadget.

Proof. We simply take the hard instance for the problem with the base gadget and replace

it with a shadow gadget. If a solution exists in the initial instance, it will still be a solution

with the shadow gadgets. If the agent ever tries to take a transition in a shadow gadget that
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would not have been allowed in the original instance, that gadget will now be in a shadow

state. Since no target state is a shadow state and all transitions from shadow states lead to

shadow states such a path cannot be a solution.

Corollary 56. 1-player reconfiguration motion planning is PSPACE-complete for some

unchanging gadgets.

Proof. Recall an unchanging gadget is one in which the gadget’s traversability never changes.

Now, take a gadget for which 1-player reconfiguration motion planning is PSPACE-complete,

such as the 2-toggle. Now construct a shadow gadget with one shadow state that has transi-

tions between all of the locations. Add transitions starting from every state and location and

going to every other location and the shadow state. The resulting gadget always has available

traversals from every location to every other location and thus never changes traversability.

However, the reconfiguration problem is hard by Theorem 55.

A verified gadget is a shadow gadget with some additional structure. From a shadow

gadget we add two or more locations, the verifying locations to the gadget. We addi-

tionally may add verified states which can only be reached by transitions from the added

locations while the gadget is in normal states. We now add transitions among the verifying

locations such that these locations can be connected in a series so there is always a traversal

from the first to the last location if the gadget is in a normal state, and there is no such

traversal if the gadget is in a shadow state. We call this added traversal the verification

traversal.

Theorem 57. 1-player reachability motion planning with a verified gadget is at least as hard

as 1-player reachability motion planning with the base gadget.

Proof. We simply take the hard instance for the problem with the base gadget and replace

it with a verified gadget and then make a path from the original target location through the

verification traversals of all of the gadgets to a new target location. If a solution exists in

the initial instance, then performing that solution will bring the agent to the start of the

verification traversals and all of those traversals will be possible since the gadgets are all in
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normal states. If the agent ever tries to take a transition in a verifiable gadget that would

not have been allowed in the original instance, that gadget will now be in a shadow state

and at least one of the necessary verifiable traversals will now be possible.

Monotonically Opening and Closing Gadgets. A monotonically opening gadget

is one in which the traversability of the gadget never decreases. That is to say for all states 𝑡

reachable from a a given state 𝑠, and for all pairs of locations 𝑎 and 𝑏, if there is a transition

from 𝑎 to 𝑏 in 𝑠 then there is a transition from 𝑎 to 𝑏 in 𝑡. A monotonically closing

gadget is one in which the traversability of the gadget never increases. That is to say for all

states 𝑡 reachable from a a given state 𝑠, and for all pairs of locations 𝑎 and 𝑏, if there is not

a transition from 𝑎 to 𝑏 in 𝑠 then there is not a transition from 𝑎 to 𝑏 in 𝑡.

We now use verified gadgets to show that there are both monotonically opening and

monotonically closing gadgets for which reachability is PSPACE-complete. This is surpris-

ing because the number of changes of traversability in such a system of gadgets is bounded,

so one might suspect such a class to fall in NP.

Corollary 58. 1-player reachability motion planning is PSPACE-complete even for mono-

tonically closing gadgets.

Proof. Take a gadget for which 1-player reconfiguration motion planning is PSPACE-

complete, such as the 2-toggle. Now construct a shadow gadget with one shadow state

that has transitions between all of the locations. Add transitions starting from every state

and location and going to every other location and the shadow state. The resulting gadget

always has available traversals from every location to every other location and thus never

changes traversability. Next, we convert it into a verified gadget by adding a pair of loca-

tions 𝐴 and 𝐵 where there is a traversal between them if the gadget is in a normal state

and no traversal if it is in a shadow state. This gadget now only removes traversals, but by

Theorem 57 its reachability problem is PSPACE-complete.

Corollary 59. 1-player reachability motion planning is PSPACE-complete even for mono-

tonically opening gadgets.
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Figure 2-47: The Labeled Two-Tunnel Single-Use gadget.

Proof. Take a gadget for which 1-player reconfiguration motion planning is PSPACE-

complete, such as the 2-toggle. Now construct a shadow gadget with one shadow state

that has transitions between all of the locations. Add transitions starting from every state

and location and going to every other location and the shadow state. The resulting gadget

always has available traversals from every location to every other location and thus never

changes traversability. Next, we convert it into a verified gadget by adding two pairs of

locations 𝐴,𝐵 and 𝐶,𝐷. There is a transition between 𝐶 and 𝐷 only if the gadget is in the

verified state. There is additionally a transition between 𝐴 and 𝐵 from all normal states to

the verified state, and also transitions between them from shadow states to shadow states.

This gadget now only adds the traversal between 𝐶 and 𝐷 and never removes traversals, but

by Theorem 57 its reachability problem is PSPACE-complete.

2.4.3 Reconfiguration Can Be Easier

In this section we introduce the Labeled Two-Tunnel Single-Use gadget for which the reach-

ability question is harder than the reconfiguration problem. Figure 2-47 shows the Labeled

Two-Tunnel Single-Use gadget. It is a DAG gadget where going through either tunnel closes

both of them; however, the states are distinguished based on which tunnel was traversed.

This is a DAG gadget with a forced distant door closing, so it is NP-complete by Theorem 22

in [29]. We now give a polynomial time algorithm for the reconfiguration problem.

Theorem 60. 1-player reconfiguration motion planning with the Labeled Two-Tunnel Single-

Use gadget is in P.

Proof. We will call states 2 and 3 terminal states. Now let us consider what the initial and
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final configurations of the gadgets can look like. If the initial state is terminal, the gadget

cannot be traversed. Similarly, if the initial and final configuration are both state 1, then

the gadget cannot have been traversed since there is no way to return the gadget to state

1 after traversal. Thus the only case we need to consider is starting in state 1 and ending

in a terminal state. In this case, the labeling of the target configuration tells us which of

the two tunnels must have been traversed to reach that state. We can thus construct the

graph which uses only those tunnels and ask whether there is a path which traverses them

all exactly once. Since this is exactly checking for the existence of an Eulerian path in a

graph, we can solve it in polynomial time..

It remains an interesting open question to exhibit a gadget for which reachability is

PSPACE-complete but reconfiguration is in P. It would also be interesting to have an

example of a gadget which has a different traversability in every state so that the easiness of

such a reconfiguration problem would not be using a degeneracy which is indistinguishable

in the reachability problem.

2.5 One-Player Input Output

In this section, we consider one-player motion planning with input/output gadgets. This is

a generalization of zero-player motion planning, where we no longer require each connected

component of the connection graph to have only one input location. We also now allow

nondeterministic gadgets. This section is taken primarily from [9], done in collaboration

with Joshua Ani, Erik Demaine, and Dylan Hendrickson.

A simple nondeterministic input/output gadget is the directed branching hallway,

which has one input location, two output locations, and one state; the player may choose

which output location to take. One-player motion planning (with input/output gadgets) can

be equivalently defined by introducing the branching hallway to zero-player motion planning,

instead of removing the constraint that the system is branchless.

We can characterize the complexity of one-player motion planning with an output-disjoint
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deterministic 2-state input/output gadget: if the gadget is unchanging, one-player motion

planning is just reachability in a directed graph which is NL-complete. If the gadget is

bounded, one-player motion planning is in NP, and we will prove it is NP-complete as a

corollary to Theorem 67 which investigates single-input gadgets. If the gadget is unbounded,

one-player motion planning is PSPACE-complete because it is a generalization of zero-player

motion planning. See Section 4.3 for that proof. Note, it is not generally the case that 1-

player motion planning has a trivial reduction from 0-player motion planning, because even

in a branchless system of deterministic gadgets the agent might decide to reverse direction

and enter the location it just exited. However, input/output gadgets never have transitions

starting in their output nodes and thus any 0-player construction using them will never give

the agent a different option of what to do.

Section 2.5.1 gives a classification of 2-state input/output output-disjoint gadgets; how-

ever this section mostly focuses on single-input input/output gadgets.

One-player reachability switching games, studied in [34], are equivalent to one-player

motion planning with deterministic single-input input/output gadgets. It is shown in [34]

that this problem is NP-complete when the gadgets are described as part of the instance.

In this section, we improve this result in two ways. First, we show in Theorem 62 that

the problem remains in NP even when we allow nondeterministic single-input input/output

gadgets, which can not all obviously be simulated by deterministic gadgets. Our proof is

similar to the proof of containment in NP in [34].

Second, we show in Section 2.5.3 that the problem remains NP-hard with a specific gadget

instead of instance-specified gadgets. In particular, we show that 1-player motion planning

with the toggle switch or the set switch is NP-complete. Our reduction is simpler than

the one in [34], and the technique can easily be used to prove NP-hardness for many other

single-input input/output gadgets.
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Set-Up Line A tunnel that can always be traversed in one direction
and sets the state of the gadget to a specific state.

Toggle Line A tunnel that can always be traversed in one direction
and toggles the state with each crossing.

Switch A three-location gadget with one input which transi-
tions to one of two outputs depending on the state,
without changing the state.

Set-Up Switch A switch which also sets the state of the gadget to a
specific state.

Toggle Switch A switch which also toggles the state of the gadget with
each crossing.

2.5.1 Classifying Output-Disjoint Deterministic 2-State Input/Output

Gadgets

In this Section, we are primarily interested in output-disjoint deterministic 2-state input/output

gadgets. In this section, we omit the adjectives and refer to them simply as “gadgets”, and

give a categorization of these gadgets, into “trivial,” “bounded,” and “unbounded” gadgets.

For each category, we will show that every gadget in the category can simulate at least one

of a finite set of gadgets. The behavior of an input location to a gadget is described by how

it changes the state and which output location it sends the agent to in each state. If the

input location does not change the state and always uses the same output location, it can be

ignored (the path can be “shortcut” to skip that transition). Otherwise, the input location

corresponds to one of the following five nontrivial subunits, and the gadget is a disjoint union

of some of these subunits (which interact by sharing state):

The ARRIVAL problem [33] is equivalent to zero-player motion planning with the toggle

switch: we replace each vertex in their switch graph with a toggle switch, or vice versa.

More generally, zero-player motion planning with an arbitrary set of deterministic single-
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input input/output gadgets (with gadgets specified as part of the instance) is equivalent to

explicit zero-player reachability switching games, as defined in [34].

We call the states of any such two state gadget up and down, and assume that each

switch transitions to the top output in the up state and the bottom output in the down

state; because we are not concerned with planarity, this assumption is fully general by

possible reflection of each subunit. There are two versions of the set line and set switch: one

to set the gadget to each state. For example, any gadget with a set-up line and set-down

switch is meaningfully different from a set-up line and set-up switch. We draw the set-down

line and switch as the reflections of the set-up version above. To represent the current state

of a gadget, we make one of the lines in each switch dashed, so that the next transition

would be made along a solid line.

We categorize gadgets into three families:

1. Trivial gadgets have either no state change or no state-dependent behavior; they are

composed entirely of either switches or toggle and set lines. They are equivalent to

collections of simple tunnels, and zero-player motion planning with them is in L by

straightforwardly simulating the robot.

2. Bounded gadgets have state-dependent behavior (i.e., some kind of switch) and one-

way state change, either only to the up state or only to the down state. They naturally

give rise to bounded games, because each gadget can change its state at most once.

3. Unbounded gadgets have state-dependent behavior and can change state in both

directions. They naturally give rise to unbounded games.

We will find that the complexity of a gadget also depends on whether it is single-input,

meaning it has only one input location, or multiple nontrivial inputs. The only nontrivial

single-input gadgets are the set switch and toggle switch, which are bounded and unbounded,

respectively.

To characterize all non-trivial, multi-input gadgets we show that they all simulate at

least one of the eight gadgets listed in Lemma 61 and shown in Figures 2-48 (bounded) and
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(a) Switch/set-up line. (b) Set-up switch/set-up line.

Figure 2-48: A “basis” for the bounded multi-input gadgets

(a) Switch/toggle line. (b) Switch/set-up line/set-down line (c) Set-up switch/toggle line.

(d) Set-up switch/set-down line. (e) Toggle switch/toggle line. (f) Toggle switch/set-up line.

Figure 2-49: A “basis” for the unbounded multi-input gadgets

2-49 (unbounded), and thus it will suffice to show hardness for these eight cases.

Lemma 61. Let 𝐺 be an output-disjoint deterministic 2-state input/output gadget with mul-

tiple nontrivial inputs.

∙ If 𝐺 is bounded, then it simulates either a switch/set-up line or a set-up switch/set-up

line.

∙ If 𝐺 is unbounded, then it simulates one of the following gadgets:

1. switch/toggle line,

2. switch/set-up line/set-down line,

3. set-up switch/toggle line,

4. set-up switch/set-down line,
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Figure 2-50: Joining the outputs of a set-up switch yields a set-up line.

5. toggle switch/toggle line, or

6. toggle switch/set-up line.

Proof. We first merge the two outputs of (compress) every switch, set switch, and toggle

switch, except for one. This replaces set switches with set lines, toggle switches with toggle

lines, and ordinary switches with trivial lines. For an example, see Figure 2-50. If the gadget

has any ordinary switches, we use one of them as the switch that does not get compressed.

The resulting gadget has the same boundedness as the original gadget, has a single switch of

some type, and still has multiple nontrivial inputs: if it had only one nontrivial input, then

the other inputs must have all been ordinary switches which got compressed, so the remaining

uncompressed input is also an ordinary switch, and thus the original gadget contained only

ordinary switches and was trivial.

For multi-input bounded gadgets, we now have either a switch or a set switch (any sort

of toggle would make the gadget unbounded), and at least one set line. Each set switch and

line must set the gadget to the same state (which we can assume is the up state), and we

can ignore all but one set line. In particular, without loss of generality the resulting gadget

contains exactly a set-up line and either a switch (2-48a) or a set-up switch (2-48b).

For multi-input unbounded gadgets, there are multiple cases to consider based on the

type of the single switch which was not compressed. First, if the switch is an ordinary switch,

there must be lines that can set the state in both directions, which must include either a

toggle line (2-49a) or two set lines in different directions (2-49b). If the switch is a set switch,

there must be a line that can set the state in the opposite direction, which can be either a

toggle line (2-49c) or a set line opposite the set switch (2-49d). Finally, if the switch is a

toggle switch, there must be some nontrivial line: either a toggle line (2-49e) or a set line

(2-49f). We have made arbitrary choices for the directions of set lines and set switches; these
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are without loss of generality because we can reflect the gadget (or rename the “up” and

“down” states).

2.5.2 Containment in NP

We first show that one-player motion planning with any single-input input/output gadget

is in NP, generalizing a result from [34]. Our proof is similar, but requires more care to

account for nondeterministic gadgets.

Theorem 62. One-player motion planning with any single-input input/output gadget is in

NP.

Proof. A single-input input/output gadget 𝐺 is described by a directed graph with states

as vertices and transitions as edges, where each edge is labeled with an output location. An

edge labeled ℓ from 𝑠 to 𝑠′ indicates that when the robot enters the unique input location in

state 𝑠, it can exit at ℓ and change the state to 𝑠′. This can equivalently be thought of as a

NFA on the alphabet of locations.

We will adapt the certificates used in [34], controlled switching flows, to work for non-

deterministic gadgets. The number of times each output location (or edge in the equivalent

reachability switching game) is used is no longer enough information, since it may in general

be hard to determine whether a nondeterministic gadget has a legal sequence of transitions

which uses each location a specified number of times.1 Instead, we will have the certificate

include the number of times each traversal in each gadget is used, which will be enough

information to be checked quickly. We modify the definition of controlled switching flows as

follows.

Definition 63. A controlled switching flow in a system of 𝐺 is a function 𝑓 from the

set of transitions in copies of 𝐺 to the natural numbers (including zero) which is “locally

consistent” in the following sense:

1In fact, this is NP-hard by a reduction from the existence of a Hamiltonian path in a directed graph:
given a graph with 𝑛 vertices, construct a gadget with 𝑛 states and 𝑛 output locations whose transition
graph is the input graph, and ask for a sequence of transitions which uses each output location exactly once.
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∙ For a connected component 𝐻 of the connection graph, let 𝐻𝑖 and 𝐻𝑜 be the sets of

traversals from input locations and to output locations in 𝐻, respectively. That is, 𝐻𝑖

contains all transitions in gadgets whose input location is in 𝐻, and 𝐻𝑜 contains the

transitions which leave the robot in 𝐻. Then

∑︁
𝑡∈𝐻𝑖

𝑓(𝑡) −
∑︁

𝑡∈𝐻𝑜

𝑓(𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 𝐻 contains the start location

−1 𝐻 contains the goal location

0 otherwise.

∙ For each gadget, there is a legal sequence of transitions from its starting state 𝑠 which

uses each transition 𝑡 in the gadget exactly 𝑓(𝑡) times.

That is, thinking of 𝑓(𝑡) as the number of times the robot uses the transition 𝑡, the robot

enters and exits each connected component the same number of times, except that it exits the

start location and enters the goal location once, and the robot uses the transitions of each

gadget a consistent number of times.

To prove containment in NP, our certificate that it is possible to reach the goal location

is a controlled switching flow. We need the following three lemmas:

Lemma 64. If there is a controlled switching flow, then it is possible to reach the goal

location.

Lemma 65. If it is possible to reach the goal location, then there is a polynomial-length

controlled switching flow, i.e., one where 𝑓(𝑡) is at most exponential in the size of the system.

Lemma 66. There is a polynomial-time algorithm which determines whether a function 𝑓

is a controlled switching flow.

Together these imply that controlled switching flows can actually be used as certificates,

and thus the one-player problem is in NP.
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Proof of Lemma 64. Let 𝑓 be a controlled switching flow. For each copy 𝑔 of 𝐺, pick a

sequence of transitions of length ℓ𝑔 = ∑︀
𝑡∈𝑔
𝑓(𝑡) in that copy which uses each transition 𝑡

exactly 𝑓(𝑡) times; this exists by the definition of a controlled switching flow. We play

the one-player motion planning game in the system. Our strategy is based on the chosen

sequences: whenever we arrive at a gadget, take the next transition in the sequence. If we

find ourselves in a connected component with the input locations of multiple gadgets, we

can enter any gadget 𝑔 which we have previously used fewer than ℓ𝑔 times. We stop when

we reach the connected component of the goal location, or when we have no moves obeying

this strategy, meaning every gadget 𝑔 whose input location is currently reachable has already

been used ℓ𝑔 times.

We claim this strategy must reach the goal location. If it does not, we must eventually

get stuck with no moves (specifically, within ∑︀
𝑡
𝑓(𝑡) steps), and we will show this can not

happen because 𝑓 is a controlled switching flow. For the sake of contradiction, let 𝐻 be the

connected component of the connection graph we are stuck in. To be stuck, we must have

previously exited 𝐻 at least ∑︀
𝑡∈𝐻𝑖

times. So we must have entered 𝐻 at least ∑︀
𝑡∈𝐻𝑖

𝑓(𝑡)+1 times

(or one fewer, if the start location is in 𝐻). However, we have entered 𝐻 at most ∑︀
𝑡∈𝐻𝑜

𝑓(𝑡)

times, so ∑︀
𝑡∈𝐻𝑜

𝑓(𝑡) ≥ ∑︀
𝑡∈𝐻𝑖

𝑓(𝑡) + 1, which violates the assumption that 𝑓 is a controlled

switching flow.

Proof of Lemma 65. For some path which reaches the goal location, let 𝑓(𝑡) be the number

of times the path uses the traversal 𝑡. Then 𝑓 is clearly a controlled switching flow. The

number of traversals in the shortest solution path is at most the number of configurations

of the system of gadgets, which is at most 𝑛𝑘𝑛 if 𝐺 has 𝑘 states and there are 𝑛 copies

of 𝐺. Thus using the shortest solution path, we have a controlled switching flow 𝑓 where

𝑓(𝑡) ≤ 𝑛𝑘𝑛 and thus 𝑓 has polynomial length.

Proof of Lemma 66. Think of 𝐺 as a directed graph with locations as vertices and transitions

as edges. The first condition on controlled switching flows says that there is a path through

this graph starting at 𝑠 which uses each edge 𝑡 a specified number 𝑓(𝑡) of times. This is

equivalent to an Euler path in the (possible exponentially large) graph with 𝑓(𝑡) copies of
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the edge 𝑡. To verify that such a path exists, we only need to check that the total in- and

out-degrees match at each vertex (except possibly off by one at 𝑠 and one other vertex) and

that the set of used transitions, i.e., those 𝑡 where 𝑓(𝑡) > 0, is connected. This can all be

checked in polynomial time.

The second condition can also be easily checked in polynomial time by computing the

relevant sums.

2.5.3 NP-hardness

In this section, we prove NP-hardness of one-player motion planning with each nontrivial

single-input 2-state deterministic gadget (the set switch and toggle switch). The proofs

used can be easily adapted to prove NP-hardness of the corresponding problem for many

input/output gadgets, but we leave open the problem of providing a characterization.

Recall the set switch, shown in Figure 2-51, is a bounded, deterministic, 2-state, 3-

location, single-input, input/output gadget. In state 1 the agent goes to one output and

flips the state, where-after the agent will continue to to to the other location. The toggle

switch, shown in Figure 2-52, is an bounded, deterministic, 2-state, 3-location, single-input,

input/output gadget. Each state has a transition to each of the outputs, and those transitions

also flip the state.

Figure 2-51: The set switch gadget. Figure 2-52: The toggle switch gadget

Our reduction is simpler than that in [34], and we show hardness for specific gadgets

instead of general reachability switching games, which are equivalent to instance-specified
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gadgets.

Theorem 67. One-player motion planning with each of the toggle switch and the set switch

is NP-hard.

Proof. We provide essentially identical reductions from 3SAT to the two motion-planning

problems. In the reduction, the player will never be able to traverse a gadget more than

two times, so the difference between the toggle switch and the set switch is irrelevant. Each

gadget will begin in the state which sends the robot to the “top” exit, and after a single

traversal moves to the state which sends the robot to the “bottom” exit. We will describe

the reduction in terms of the set-down switch, but it is equivalent for the toggle switch.

First, we build a single-use tunnel, which is a set-down switch where the bottom exit

leads nowhere. The robot can pass through the single-use tunnel once and exit at the top,

but traversing it again makes the robot stuck.

For each variable in a 3SAT instance, there is a fork where the player may choose one

of two paths. Each path passes through a series of set-down switches, exiting each from

the top and setting them to the down state. The paths then merge and then go through a

single-use tunnel to arrive at the fork corresponding to the next variable. The robot starts

at the first fork, so the beginning of the motion-planning game has the player pick a branch

on each fork to traverse, corresponding to an assignment to the 3SAT instance. The number

of gadgets in each branch depends on the number of instances of each literal in the formula.

For each clause, there is a 3-way fork, where the player must choose to go through one

of the gadgets corresponding to a literal in the clause. If the chosen gadget was already

traversed, the robot exits the bottom and proceeds to the next clause. Otherwise, the robot

follows the path which goes through that gadget corresponding to a variable choice. At the

end of this path, the robot gets stuck, since the only way forward is a single-use path which

was traversed during the variable-setting phase. The clauses are connected in series so that

in order to reach the goal location, the robot must pass through each variable and then each

clause. In order to get through a clause without getting stuck, at least one gadget in the

clause must have already been traversed; equivalently, at least one literal in the clause must
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be true under the assignment corresponding to the path taken during variable setting. Thus

the robot can reach the goal location if and only if the formula has a satisfying assignment.
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2.6 1-player Door Gadgets

These results come primarily from [7] written in collaboration with Joshua Ani, Jeffrey

Bosboom, Erik D. Demaine, Yevhenii Diomidov, and Dylan Hendrickson.

In this section, we develop analyze a special case of gadgets called door gadgets. This

can be seen as a formalization of the “door gadget” proof technique used in [5,16,32]. In all

cases, a door gadget has two states and three disjoint traversal paths: “traverse”, “close”,

and “open”. Each path may be individually directed (traversable in one direction) or

undirected (traversable in both directions). In addition, the open traversal path may have

identical entrance and exit locations, meaning that its traversal changes the door’s state but

does not move the agent (breaking the 𝑘-tunnel assumption). In this way, we can require

that traversing the open and close traversal paths force the door’s state to open and closed,

respectively, but still effectively allow the player to make a choice of whether to open the

door (by skipping or including the open traversal, which leaves the agent in the same location

either way).

In Section 2.7, we prove that every such door gadget is universal, meaning that any

one of them can simulate all gadgets in the motion-planning-through-gadgets framework

of [25,29]. This is comparable to the results in Section 4.3.3 which show certain input/output

gadgets can simulate any other input/output gadget in the 0-player model. This result pro-

vides the first examples of fully universal gadgets. Further, whenever we prove a gadget

is able to simulate a door gadget, we get a self-simulation result similar to the one in Sec-

tion 2.2.6 for 2-state 2-tunnel reversible deterministic gadgets.

As a consequence of universal simulation, we obtain that 1-player motion planning with

any door gadget is PSPACE-hard, but because the simulation is nonplanar, it does not

tell us anything about planar motion planning where the gadgets are connected in a planar

graph.

In Section 2.8, we introduce two more families of door gadgets. A self-closing door

has two states but only two traversal paths: “open” and “self-close”. The self-close traversal

is possible only in the open state, and it forcibly changes the state to closed. As before, each
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traversal path can be either directed or undirected; and the open traversal forces the state to

open, but we allow the open traversal path to have identical start and end locations, which

effectively allows optional opening. A symmetric self-closing door has two states and

two traversal paths: “self-open” and “self-close”. The self-open/close traversal is possibly

only in the closed/open state, respectively, and it forcibly changes the state to open/closed,

respectively. (This definition is fully symmetric between “open” and “close”.) Each traversal

path can be either directed or undirected, but we no longer allow optional traversal.

In Section 2.9, we prove that planar 1-player motion planning is PSPACE-complete

for every door gadget, for every local combinatorial planar embedding of every type door

gadget except for one (which we only prove NP-hard). Thus, all that is needed to prove a

new game PSPACE-hard is to construct any single supported door gadget, and to show how

to connect the door entrances/exits together in a planar graph. In particular, the crossover

gadgets previously constructed for Lemmings [16, Figure 2(e)], Legend of Zelda: Link to

the Past and Donkey Kong Country 1, 2, and 3 [5, Figures 28 and 20], and Super Mario

Bros. [5, Figure 5] are no longer necessary for those PSPACE-hardness proofs: they can

now be omitted. (See Section 5 for details.) Our result should therefore make it easier in the

future to prove 2D games PSPACE-hard. Because of their reduced conceptual complexity

— only two traversal paths, which behave essentially identically for symmetric self-closing

doors — we have found it even easier to prove games PSPACE-hard by building self-closing

door gadgets.

2.7 Doors

In this section, we adapt the door framework of [5, Section 2.2] (a cleaner presentation of

the framework from [16]) into the motion-planning-through-gadgets framework.
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Closed Open Closed Open

Closed Open

Figure 2-53: Left: A directed open-required door. Right: An undirected open-required door.
Bottom: A mixed open-optional door.

2.7.1 Terminology

We define a door to be a gadget with an opening port or tunnel, a traverse tunnel, and

a closing tunnel, and each of the tunnels may be directed or undirected. The opening

port/tunnel opens the traverse tunnel, and the closing tunnel closes the traverse tunnel.

Throughout this Section, the opening port/tunnel will be colored green, the traverse tunnel

will be colored blue, and the closing tunnel will be colored red. In addition, a solid traverse

tunnel represents an open door, and a dotted traverse tunnel represents a closed door. A

directed door is a door where all tunnels are directed. An undirected door is a door where

all tunnels are undirected. A door that is neither undirected nor directed is a mixed door .

An open-required door is a door with an opening tunnel, and an open-optional door

is one with an opening port. A directed open-required door, an undirected open-required

door, and a mixed open-optional door are shown in Figure 2-53.

2.7.2 Hardness

In this section we give a series of simple reductions to show all versions of open-optional,

directed, and mixed directed doors can simulate a fully directed door.

Theorem 68. In 1-player motion planning, any door can simulate its corresponding open-

optional door.
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Figure 2-54: An open-required door simulates its corre-
sponding open-optional door. Outlined arrows indicate op-
tionally allowed traversals.

Figure 2-55: Simulation of a
diode with an undirected door.

Proof. In case of a door that is not already open-optional, we wire one end of the open tunnel

to the other end and wire some point on this loop externally as shown in Figure 2-54. This

turns the open tunnel into an open port.

Theorem 69. 1-player motion planning with any directed door is PSPACE-hard.

Proof. The directed open-optional door trivially simulates the door of [5], and by Theo-

rem 68, the directed open-required door simulates the directed open-optional door. This

covers all cases.

Theorem 70. 1-player motion planning with any mixed door is PSPACE-hard.

Proof. Let 𝐷 be a mixed door. Then 𝐷 has a directed tunnel. No tunnel changes its own

traversability when crossed, so this tunnel simulates a diode2. We wire each tunnel of 𝐷

through a diode at each end, simulating a directed door, which 1-player motion planning is

PSPACE-hard for.

Theorem 71. 1-player motion planning with any undirected door is PSPACE-hard.

Proof. Let 𝐷 be an undirected door. To simulate a diode, we wire a path through the

opening port/tunnel, then through the traverse tunnel, then through the closing tunnel, as

in Figure 2-55. The player can open the traverse tunnel, traverse the traverse tunnel, then

close the traverse tunnel. However, if the player tries to go the other way, they will close the

traverse tunnel and be unable to continue. Thus, this simulates a diode. As in the proof for
2A diode is a 1-tunnel 1-state gadget that consists of just a directed tunnel.
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Theorem 70, we wire each tunnel of 𝐷 through a diode at each end, simulating a directed

door.

2.7.3 Universality

Here, we state and prove an interesting theorem regarding gadget simulations. We show

that any gadget can be simulated by door gadgets. At a high level, the reduction does the

following:

∙ Creates a door for each location, each state/location pair, and each transition in the

simulated gadget.

∙ When not inside the gadget, the state/location doors corresponding to the current

state of the gadget will be open, the others will be closed.

∙ When not inside the gadget, the doors corresponding to the transitions and the doors

corresponding to the locations are always closed. These gadgets have their traverse

tunnel directly connected to their close tunnel, making them self-closing doors.

∙ The traverse tunnel of the state/location doors gives access to the open tunnels of the

transition doors which are accessible from that state/location pair. Each of these leads

to the open tunnel of the corresponding location door.

∙ After traversing the open tunnel of any location door one must cross the close tunnels

of all state/location doors.

∙ The traverse and close tunnel of the transition door gives access to the open tunnels

of the state/location doors of the state being transitioned to.

∙ Finally, the transition and close tunnel of the location door can be traversed, ending

at the target location.

Theorem 72. The open-required directed door can simulate any gadget.
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Proof. Consider an arbitrary gadget 𝐺, with a set 𝑃 of ports, a set 𝑆 of states, and a set

of allowed traversals between the ports and states. For each port 𝑝 and state 𝑠, we add an

open-required directed door 𝐷𝑠,𝑝. For each port 𝑝, we add an open-required directed door

𝐷𝑝. For each traversal (𝑠0, 𝑝0) → (𝑠1, 𝑝1), we add an open-required directed door 𝐷𝑠0,𝑝0→𝑠1,𝑝1 .

Finally, for each port 𝑝, let 𝐸𝑝 be an external port of the simulation. We map each state 𝑠

to the state in the simulation where for all ports 𝑝, all 𝐷𝑠,𝑝 are open and all other doors are

closed.

For each directed door 𝐷, let 𝑂0(𝐷), 𝑂1(𝐷), 𝑇0(𝐷), 𝑇1(𝐷), 𝐶0(𝐷), and 𝐶1(𝐷) be the

opening tunnel input, opening tunnel output, traverse tunnel input, traverse tunnel output,

closing tunnel input, and closing tunnel output of 𝐷 respectively. For each port 𝑝 and

state 𝑠, connect 𝐸𝑝 to 𝑇0(𝐷𝑠,𝑝). For each traversal (𝑠0, 𝑝0) → (𝑠1, 𝑝1), connect 𝑇1(𝐷𝑠0,𝑝0) to

𝑂0(𝐷𝑠0,𝑝0→𝑠1,𝑝1), and connect 𝑂1(𝐷𝑠0,𝑝0→𝑠1,𝑝1) to 𝑂0(𝐷𝑝1). Order 𝑆 × 𝑃 . Let (𝑠𝑓 , 𝑝𝑓 ) be the

first element of 𝑆×𝑃 , (𝑠𝑙, 𝑝𝑙) be the last element, and next(𝑠, 𝑝) be the element directly after

(𝑠, 𝑝). Also order 𝑃 , so that 𝑝𝑓 is the first element of 𝑃 , 𝑝𝑙 is the last element, and next(𝑝)

is the element directly after 𝑝. Then for each port 𝑝, connect 𝑂1(𝐷𝑝) to 𝐶0(𝐷𝑠𝑓 ,𝑝𝑓
). For

each port 𝑝 and state 𝑠 where (𝑠, 𝑝) ̸= (𝑠𝑙, 𝑝𝑙), connect 𝐶1(𝐷𝑠,𝑝) to 𝐶0(𝐷next(𝑠,𝑝)). For each

traversal (𝑠0, 𝑝0) → (𝑠1, 𝑝1), connect 𝐶1(𝐷𝑠𝑙,𝑝𝑙
) to 𝑇0(𝐷𝑠0,𝑝0→𝑠1,𝑝1), connect 𝑇1(𝐷𝑠0,𝑝0→𝑠1,𝑝1)

to 𝐶0(𝐷𝑠0,𝑝0→𝑠1,𝑝1), and connect 𝐶1(𝐷𝑠0,𝑝0→𝑠1,𝑝1) to 𝑂0(𝐷𝑠1,𝑝𝑓
). For each state 𝑠 and port

𝑝 ̸= 𝑝𝑙, connect 𝑂1(𝐷𝑠,𝑝) to 𝑂0(𝐷𝑠,next(𝑝)). For each state 𝑠𝑖 and port 𝑝, connect 𝑂1(𝐷𝑠,𝑝𝑙
)

to 𝑇0(𝐷𝑝). Finally, for each port 𝑝, connect 𝑇1(𝐷𝑝) to 𝐶0(𝐷𝑝) and connect 𝐶1(𝐷𝑝) to 𝐸𝑝.

Figure 2-56 shows an example.

Assume the contraption is in the state mapped to by some state 𝑠 ∈ 𝑆 and the agent tries

to enter in port 𝐸𝑝 for some 𝑝 ∈ 𝑃 . The agent must traverse 𝐷𝑠,𝑝. Consider an arbitrary pair

of state-location tuples ((𝑠, 𝑝), (𝑠′, 𝑝′)) in 𝐺. If (𝑠, 𝑝) → (𝑠′, 𝑝′) is allowed in the transitive

closure3 of 𝐺, then the agent can open 𝐷𝑠,𝑝→𝑠′,𝑝′ , and then must open 𝐷𝑝′ , then close 𝐷𝑖,𝑗

for all 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑃 , then traverse and close 𝐷𝑠,𝑝→𝑠′,𝑝′ , then open 𝐷𝑠′,𝑗 for all 𝑗 ∈ 𝑃 , then

3The transitive closure of a gadget is a new gadget with transitions for every state/location pair that can
be reached from any other state/location pair. One can think of this as the gadget defined by the transitive
closure of the state-location graph of the gadget.
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traverse and close 𝐷𝑝′ . The end result is that 𝐷𝑠′,𝑗 is open for all 𝑗 ∈ 𝑃 , all other doors are

closed, and the agent is at port 𝐸𝑝′ . So this simulates the traversal (𝑠, 𝑝) → (𝑠′, 𝑝′). Note

that this means the contraption will be in a state that maps to a state of 𝐺 if the agent is

outside the contraption or at an external port.

If the agent can traverse from 𝐸𝑝 to 𝐸𝑝′ for some 𝑝, 𝑝′ ∈ 𝑃 . The contraption must start

in a state that 𝑠 maps to and end in a state that 𝑠′ maps to, for some 𝑠, 𝑠′ ∈ 𝑆. The

only ways to make this transition traverse doors 𝐷𝑠,𝑝→𝑠1,𝑝1 , · · · , 𝐷𝑠𝑘,𝑝𝑘→𝑠′,𝑝′ in order, where

((𝑠, 𝑝) → (𝑠1, 𝑝1)), · · · , ((𝑠𝑘, 𝑝𝑘) → (𝑠′, 𝑝′)) is a sequence of allowed traversals in 𝐺. Then

there is a sequence of allowed traversals that leads from (𝑠, 𝑝) to (𝑠′, 𝑝′), so in the transitive

closure of 𝐺, (𝑠, 𝑝) → (𝑠′, 𝑝′) is a traversal. Therefore a traversal between external ports

is allowed in the contraption if and only if the corresponding traversal is allowed in the

transitive closure of 𝐺.

Using the prior simulations we are able to show all door gadgets are universal.

Corollary 73. Door gadgets can simulate any gadget.

Proof. Theorems 68, 70, and 71 show that any door gadget can simulate a directed, open-

optional door. The traverse tunnel of such a door can simulate a diode. By adding two

diodes around the open port of the open-optional door, we can make it a directed open

tunnel. We now have shown all types of door gadget can simulate the open-required directed

door gadget which can simulate any other gadget by Theorem 72.
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Figure 2-56: Example of a simulation of a gadget with the open-required directed door, as
constructed in the proof. The state diagram of the gadget that is simulated is shown on top. This
simulation starts in state 1.
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2.8 Self-Closing Doors

In this section, we introduce different kinds of self-closing doors and show that 1-player mo-

tion planning is PSPACE-hard for them. We then prove certain self-closing doors universal.

2.8.1 Terminology

A self-closing door is a 2-state gadget that has a tunnel that closes itself when tra-

versed (the self-closing tunnel), a tunnel/port that reopens said tunnel (the opening

tunnel/port), and no other ports. We will talk about two major kinds of self-closing door. A

normal self-closing door is a self-closing door where the open path/tunnel is always open.

A symmetric self-closing door is a self-closing door where the open path/tunnel is a tun-

nel and also closes itself when traversed. As with doors, these can be directed, undirected,

or mixed, and a normal self-closing door can also be open-required or open-optional.

An “X” on a tunnel indicates that the tunnel closes itself when traversed. A dotted line

indicates a closed tunnel and a solid line indicates an open tunnel. For normal self-closing

doors, the open path/tunnel will be colored green. Figure 2-57 shows some self-closing doors.

2.8.2 PSPACE-hardness of Self-Closing Doors

In this section we show PSPACE-hardness for 1-player motion planning with any of the

self-closing doors. We do so by showing undirected self-closing doors can simulate diodes,

Figure 2-57: Left: An undirected open-required normal self-closing door. Right: A directed
open-optional normal self-closing door. Bottom: A mixed symmetric self-closing door.
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and self-closing doors without open-optional tunnels can simulate ones with open-optional

tunnels. We then prove the main Theorem 76 which gives PSPACE-hardness of the directed,

open-optional, normal self-closing door by simulating a directed, open-optional door gadget

discussed in Section 2.7.

Lemma 74. In 1-player motion planning, any normal or symmetric self-closing door can

simulate an open-optional self-closing door.

Proof. In the case of an open-optional normal self-closing door, we are done. In the case

of an open-required normal self-closing door, we do the same thing we did for the proof for

Theorem 68. In the case of a symmetric self-closing door, we pick a tunnel to be the opening

tunnel and do what we did for Theorem 68. This simulates an open-optional self-closing

door.

Lemma 75. 1-player motion planning with the undirected open-optional normal self-closing

door can simulate a directed open-optional normal self-closing door.

Proof. We can simulate a diode by wiring 2 undirected open-optional normal self-closing

doors as shown in Figure 2-60. The player can enter from the left, open the left self-closing

door, traverse it, and do the same for the right self-closing door. The player cannot enter

from the right. If the player tries to open the left self-closing door and then leave, the player

still cannot enter from the right. If the player tries to open the right self-closing door and

then leave, they will not be able to leave. So this simulates a diode. We can wire a diode to

each side the self-closing tunnel to get a directed self-closing tunnel which can be applied to

make the undirected self-closing door directed.

Theorem 76. 1-player motion planning with the directed open-optional normal self-closing

door is PSPACE-hard.

Proof. We can simulate a diode by wiring the opening port to the input end of the self-

closing tunnel. The player can open the self-closing tunnel then traverse it, but cannot go

the other way because the self-closing tunnel is directed. Then we show that we can duplicate
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Figure 2-58: The directed open-optional normal self-closing door can simulate a version of itself
with the opening port and the self-closing tunnel duplicated. Note that the opening port duplicator
is planar.

the open port and the self-closing tunnel as in Figure 2-58. We then actually triplicate the

open port and duplicate the self-closing tunnel, and wire them up to simulate the directed

open-optional door as shown in Figure 2-59, for which PSPACE-hardness is known.

Chaining the simulations in Lemmas 74 and 75 with Theorem 76 we obtain PSPACE-

hardness for all variations.

Corollary 77. 1-player motion planning with any normal, symmetric, or open-optional

normal self-closing door is PSPACE-hard.

Since we show PSPACE-completeness of self-closing doors by simulating a door gadget

which is shown to be universal in Theorem 73, universality follows for self-closing doors.
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Figure 2-59: Simulation of the directed open-
optional door. Green wires correspond to the opening
port; blue wires correspond to the traverse tunnel; and
red wires correspond to the closing tunnel. Note that
the player has no reason to not open the gadget after
traversing the blue wire.

Figure 2-60: Undirected open-
optional normal self-closing door
simulating a diode

Corollary 78. Any self-closing door (directed or undirected, open-optional or open-required,

normal or symmetric) can simulate any gadget.

2.9 Planar Doors

In this section, we show that 1-player planar motion planning with any normal or symmetric

self-closing door is PSPACE-hard. In addition, we show that it is PSPACE-hard for all

but one door and NP-hard for the remaining case.

2.9.1 Terminology

In 2D, we care about the arrangement of ports in a gadget. For planar motion planning

problems we want a planar system of gadgets, where the gadgets and connections are drawn

in the plane without crossings. Planar gadgets also specify a clockwise ordering of their ports,

although we consider rotations and reflections of a gadget to be the same. A single gadget

type thus corresponds to multiple planar gadget types, depending on the choice of the order

of locations. For a planar system of gadgets, the gadgets are drawn as small diagrams with

points on their exterior corresponding to their ports and connections are drawn as paths

connecting the points corresponding to the ports without crossing gadget interiors or other
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connections.

2.9.2 PSPACE-hardness for Planar Self-Closing Doors

For completeness, we give a proof that the planar directed open-optional normal self-closing

door is PSPACE-hard. This result was also given in [6].

Theorem 79. 1-player planar motion planning with the directed open-optional normal self-

closing door is PSPACE-hard.

Proof. Since Theorem 76 shows PSPACE-completeness in the non-planar case, it will suffice

to build a crossover gadget. First, we wish to duplicate the opening ports as in the prior

proof. We show how to do so in Figure 2-58. Note that this time we cannot directly duplicate

the self-closing tunnel as the construction from Theorem 76 uses crossovers. We can also

simulate a diode as proven in Theorem 76 since the construction is planar. We use these

to simulate a pair of self-closing doors where the opening ports alternate which door they

open, shown in Figure 2-61. If the agent enters from port 1 or 4, they will open door E or F,

respectively, and then leave. If the agent enters from port 2, they can open doors A, B, and

C. Assume they then traverse door B. If they then open door E, they would have to traverse

door C, maybe open F, and get stuck. So instead of opening door E, the agent traverses

door A, ending up back at port 2 with no change except that door C is open. Entering port

2 or 3 gives the opportunity to open door C without being forced to take a different path,

so leaving door C open does not help. So instead of traversing door B, the agent traverses

door C. The agent is then forced to go right and can open door F. Then they are forced to

traverse door B. If the agent opens door E, they will be stuck, so the agent traverses door A

instead and returns to port 2, leaving door F open. Similarly, if the agent enters from port

3, the only useful thing they can do is open port E and return to port 3.

Using this, we then simulate a directed crossover as in Figure 2-62 and simulate an

undirected crossover as in Figure 2-63, removing the planar restriction and reducing this

problem to Theorem 76. In the simulation of a directed crossover, the agent must open the
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Figure 2-61: Directed open-optional normal self-closing door simulating the gadget on the right,
where solid opening ports control the top self-closing tunnel and dotted opening ports control the
bottom self-closing tunnel. The gadgets and external ports are labelled to help with the proof.

left tunnel of a gadget and then open both tunnels of the other one, forcing them to cross

over, since the only path forward goes through the left tunnels of both gadgets.

Theorem 80. 1-player planar motion planning with any normal or symmetric self-closing

door is PSPACE-hard.

Proof. Any normal or symmetric self-closing door can simulate a diode as shown in Figure 2-

64(a–f). Then we can simulate the directed open-optional normal self-closing door as shown

in Figure 2-65(a–d). Finally we apply Theorem 79 to show PSPACE-hardness.

2.9.3 PSPACE-hardness for Planar Doors

We will show that 1-player planar motion planning with almost any door is PSPACE-hard

by showing that 1-player planar motion planning with almost any fully directed door is
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Figure 2-62: Directed open-optional normal self-closing door simulating a crossover.

PSPACE-hard and that mixed and undirected doors can planarly simulate at least one of

the PSPACE-hard fully directed doors.

We first note that the diode construction in Theorem 71 is planar. This is examined in

more detail in Lemmas 81 and 82. Since undirected and partially directed doors can planarly

simulate at least one fully directed door, it suffices to prove hardness for all fully directed

doors.

Next, we show hardness for all fully directed doors with at least one pair of crossing

tunnels. If we collapse adjacent opening ports to optional opening ports as in Theorem 68,

this leaves 12 fully directed doors with no crossing tunnels, shown and named in Figure 2-66.

The 12 cases can be enumerated by first considering placing the traverse and close tunnels in

either a parallel and anti-parallel orientation, then noting that there are four regions made

by these two tunnels in which to place the open tunnel, leading to 4 · 2 cases with the open

optional port and 2 · 2 cases with a directed open tunnel. Theorem 85 proves PSPACE-

completeness for 11 of the 12 of these cases, while Theorem 87 proves NP-hardness for the

remaining Case 8: OTtocC door.

Proofs for 11 of the 12 of these cases are given in Theorem 85. Finally, we show NP-

hardness for the remaining Case 8: OTtocC door in Theorem 87.
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Figure 2-63: Directed crossover simulating an undirected crossover.

Next, we show hardness for all fully directed doors with at least one pair of crossing

tunnels. If we collapse adjacent opening ports to optional opening ports as in Theorem 68,

this leaves 12 fully directed doors with no crossing tunnels, shown and named in Figure 2-66.

The 12 cases can be enumerated by first considering placing the traverse and close tunnels in

either a parallel and anti-parallel orientation, then noting that there are four regions made

by these two tunnels in which to place the open tunnel, leading to 4 · 2 cases with the open

optional port and 2 · 2 cases with a directed open tunnel. Theorem 85 proves PSPACE-

completeness for 11 of the 12 of these cases, while Theorem 87 proves NP-hardness for the

remaining Case 8: OTtocC door.

Lemma 81. Any mixed door can planarly simulate some fully directed door which is not the

Case 8: OTtocC door.

Proof. Consider an arbitrary mixed door 𝑀 . Since 𝑀 is mixed, it has a directed tunnel.

No tunnel changes its own traversability when crossed, so this tunnel simulates a diode. We

wire each undirected tunnel of 𝑀 through diodes at each end pointing in the same direction.

This simulates a directed door. If 𝑀 is not the door in Case 8: OTtocC, we are done.

Otherwise, flip one set of diodes wired through an undirected tunnel of 𝑀 , simulating a

different directed door.
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(f)

Figure 2-64: Six types of self-closing doors
simulating diodes. Filled-in arrows indicate
directions that are required to exist, and
outlined arrows indicate optional directions.
Case (a) is the same as Figure 2-60.

(a) (c)

(b) (d)

Figure 2-65: Four types of directed self-
closing doors simulating the directed open-
optional normal self-closing door. Filled-in
arrows indicate directions that are required
to exist, and exactly one of the outlined di-
rections must exist.

Lemma 82. An undirected door can planarly simulate a fully directed door which is not the

Case 8: OTtocC door.

Proof. Consider an arbitrary undirected door 𝑈 . We wire an external wire to a port of the

opening port/tunnel. The player can visit the port, or if it is a tunnel, cross the tunnel both

ways, to open the gadget. If the opening port/tunnel was a tunnel, this turns it into a port,

making the gadget 𝑈 ′. Consider the order of the ports of the opening port 𝑂, the traverse

tunnel {𝑇0, 𝑇1}, and the closing tunnel {𝐶0, 𝐶1} around the edge of 𝑈 ′, and label the ports

𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4. We want to show that a traverse tunnel port is adjacent to a closing tunnel

port. Assume not. Without loss of generality, let 𝑝0 = 𝑇0. Then {𝑝1, 𝑝4} = {𝑇1, 𝑂}. But
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Case 1: OcCTt Case 2: OTtCc Case 3: OCcTt Case 4: OTtcC

Case 5: OcCoTt Case 6: OTtoCc Case 7: OCcoTt Case 8: OTtocC

Case 10: OtCcTCase 9: OtcCT Case 11: OCTtc Case 12: OcTtC

Figure 2-66: The twelve cases of a planar directed door without internal crossings. Opening
tunnels with adjacent ports are merged into opening ports.

then {𝑝2, 𝑝3} = {𝐶0, 𝐶1}, and one of {𝑝2, 𝑝3} must be adjacent to a traverse tunnel port, a

contradiction. Since one of the traverse tunnel ports, say 𝑇1, is adjacent to one of the closing

tunnel ports, say 𝐶0, we wire 𝑇1 to 𝐶0 without blocking an opening port or opening tunnel

port. This simulates a directed open-optional normal self-closing door: The player can open

the gadget by going to the opening port (or if it is a tunnel, by going through the tunnel

and back). If the gadget is open, the player can go through the traverse tunnel and then the

closing tunnel, but cannot go the other way. If the gadget is closed, the player cannot go

either way through the traverse-tunnel-closing-tunnel path.

Theorem 83. 1-player planar motion planning with any directed door with an internal

crossing is PSPACE-hard.

Proof. If the opening tunnel crosses the closing tunnel, then we have a crossover because

these tunnels are always open. If the opening tunnel crosses the traverse tunnel, then we

start the door open and have a crossover because neither tunnel closes itself or the other.
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Case 1 Case 2 Case 3 Case 4

Figure 2-67: The four cases where the traverse tunnel crosses the closing tunnel but the opening
port/tunnel does not cross either and can thus simulate a port.

Case 1 Case 2 Case 4Case 3

Figure 2-68: All four cases of the traverse tunnel crossing the closing tunnel can each simulate a
crossover.

Otherwise, the traverse tunnel crosses the closing tunnel and the opening port/tunnel can

simulate an opening port. Then we have four cases, as shown in Figure 2-67. In cases 1, 2,

and 4, we can simulate a crossover by connecting the opening port to either the input of the

traverse tunnel or the output of the closing tunnel to ensure that the traverse tunnel is open

when we need to use it. (Figure 2-68).

Case 3, however, is more tricky, as both of these ports are separated from the opening

port by other ports. We use 2 copies to provide a path from the input of the traverse tunnel

to the opening port without giving access to the close tunnel. The horizontal path of the

crossover involves crossing from the left door to the right door, which is allowed as long as

the left door is open. To take the vertical path, the player opens the middle door, goes down

closing the left door, opens the right door, traverses the middle door, opens the left door (to

keep the horizontal path open), and traverses the right door. The player can leave partway

through this traversal, but this does nothing useful. So all doors with internal crossings can

simulate crossovers, removing the planarity constraint.

Before continuing, we prove another gadget, the directed tripwire lock, is PSPACE-

complete. Recall that a tripwire lock is a 2-state 2-tunnel gadget with an undirected tunnel
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that is traversable in exactly 1 state and an undirected tunnel that toggles the state of the

gadget [25]. The directed tripwire lock is similar except that its tunnels are directed.

Lemma 84. 1-player planar motion planning with the parallel directed tripwire-lock is

PSPACE-hard.

Proof. The parallel directed tripwire lock can simulate the antiparallel directed tripwire lock,

as in Figure 2-69. Crossing the tripwire in gadget 2 forces the agent to cross the tripwire in

gadget 1, so exactly 1 of the locks of gadgets 1 and 2 are locked. Similarly, exactly 1 of the

locks of gadgets 3 and 5 are locked. Crossing the tripwire in gadget 4 forces the agent to exit

the simulation (or be stuck), and is also the only way to exit when the agent comes from

the top left port, so the lock in gadget 4 is unlocked after an even number of crossings of

the top path and locked after an odd number of crossings. Since the locks of gadgets 1 and

2 are anti-correlated, if the agent wants to unlock the lock in gadget 1, it must afterward

cross the lock in gadget 3. But said lock must be unlocked by going in a loop through the

lock in gadget 4, which is unlocked only after an even number of crossings of the top path.

So during an even-indexed (second, fourth, etc.) crossing of the top path, the lock in gadget

1 must be locked before the agent can leave. During an odd-indexed crossing, the agent can

take the loop through the lock in gadget 4, unlock the lock in gadget 1, take the loop again

to unlock the exit, and exit. So the top path behaves like a directed tripwire for the lock in

gadget 1, which is the bottom path.

The parallel and antiparallel directed tripwire locks together simulate a directed tripwire-

lock-tripwire with antiparallel tripwires (Figure 2-70). In this gadget going through the top

or bottom pairs of tripwires flips which of the middle locks is closed. If the top and bottom

set of locked tunnels are paired, then it blocks the middle pathway; however, if they are

opposite, the connection in the middle can be used to traverse them.

This gadget in turn simulates a crossover (Figure 2-71), removing the planarity constraint.

Here both pathways lock two of the gadgets before reaching the center preventing the agent

from exiting via a disallowed path, and then they route through those gadgets again opening

them back up and restoring the directed crossover to its original state.
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Figure 2-69: Simulation of an antiparallel directed tripwire lock with a parallel directed tripwire
lock. Gadgets are labelled to aid explanation.

sim

Figure 2-70: Simulation of a directed tripwire-lock-tripwire with antiparallel tripwires using both
parallel and antiparallel directed tripwire locks.

For directed doors, there are only the cases without internal crossings left. If the opening

port/tunnel is a tunnel and its ports are adjacent, we easily simulate an opening port,

reducing the number of cases to consider. There are twelve cases, shown in Figure 2-66. We

name these cases based on the cyclic order of ports, with exits-only having lowercase letters.

Theorem 85. 1-player planar motion planning with any directed door without internal cross-

ings except the Case 8: OTtocC door is PSPACE-hard.

Proof. We divide into multiple cases. Note the cases are numbered according to Figure 2-66,

not in the order they are addressed in this proof.

Case 2: OTtCc, Case 10: OTcCt, and Case 12: OcTtC doors. In all these doors

the opening port/tunnel is a port, and the traverse tunnel output is adjacent to the closing
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Figure 2-71: Simulation of a crossover using a directed tripwire-lock-tripwire with antiparallel
tripwires.

tunnel input. Thus, we can simulate a directed open-optional self-closing door by wiring the

traverse tunnel output to the closing tunnel input and by attaching a wire to the open port,

and these wires do not cross each other. Then this reduces to Theorem 80.

Case 1: OcCTt door. can simulate the directed version of the tripwire lock, as shown

in Figure 2-72. We will refer to the gadgets numbered left to right. The lock is simply the

traverse tunnel on door 1. In the two simulated states we will either have doors 1 and 3 open

or door 2 open. If door 2 is open, when traversing the tripwire tunnel we can go through

the traverse tunnel allowing us to open doors 1 and 4. With door 4 now open, we can go

through its traverse tunnel opening door 3, and then closing door 4 on the way out. This

leaves us with doors 1 and 3 open. Going through the tripwire tunnel again closes door 1

but allows us to go through the traverse tunnel of door 3, allowing us to open door 2. Doors

3 and 4 are then closed on the way out. There are states where we could fail to open all

of these doors while traversing the close tunnel, but this will leave the gadget with strictly

less traversability and thus the agent will never want to take such a path. Thus the Case 1:
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Figure 2-72: The Case 1: OcCTt door simulates the parallel directed tripwire lock. In addition,
the state diagram of the directed tripwire lock. Arrows are drawn directly on wires to represent
diodes.

OcCTt door is PSPACE-complete by Lemma 84.

Case 3: OCcTt door. This door can simulate a directed open-optional normal self-closing

door (Figure 2-73). If the agent enters from port 𝑂 (the opening port), they can open doors

2 and 3. If they then leave, they have accomplished nothing because door 2 was already

open, and door 3 can be opened from port 𝑂 anyway and cannot be traversed from port 𝑇0

or 𝑇1 as we will see later. So they close door 2 instead. Then they can open door 1 and

they are forced to traverse door 3. The agent can then reopen door 2 and return to port 𝑂.

Now all the doors are open. If the agent then enters from port 𝑇0, then they are forced to

close door 3. They can then open door 1 (useless), and then they are forced to traverse door

2 and close door 1, leading to port 𝑇1. The agent could not have taken this path initially

because door 1 was closed, and they cannot take it again without visiting port 𝑂 because

they just closed door 1.

Case 4: OTtcC door. This door can simulate a directed open-optional normal self-closing

door (Figure 2-74). If the agent enters from port 𝑂, they can open door 1, and then they are

forced to close door 2. Continuing this loop does nothing, so the agent then returns to port

𝑂. Now door 1 is open and door 2 is closed. If the agent then enters from 𝑇0, then they are
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Figure 2-73: Simulation of a self-closing door with the Case 3: OCcTt door. The simulation
starts in the closed state. Ports and gadgets are labelled.
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Figure 2-74: Simulation of a self-closing door with the Case 4: OTtcC door. The simulation
starts in the closed state. Ports and gadgets are labelled.

forced to traverse door 1. They can then open door 2 and then they are forced to close door

1. Continuing the loop does nothing, so the agent has no other option but to traverse door

2 to port 𝑇1. The agent could not have taken this path initially since door 1 was closed, and

they cannot take it again without visiting port O because they closed door 1.

Case 6: OTtoCc door. This door can simulate a directed open-optional normal self-

closing door (Figure 2-75). If the agent enters from port 𝑂, they are forced to close door

3. If the agent then traverses door 2, they are forced to open door 3 and return to port

𝑂, accomplishing nothing. So the agent has no other option but to close door 1. If the

agent tries to open door 2, they get stuck, so they instead open door 1. Continuing the loop
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Figure 2-75: Simulation of a self-closing door with the Case 6: OTtoCc door. The simulation
starts in the closed state. Ports and gadgets are labelled.

involving door 1 does nothing, so the agent then traverses door 2, opens door 3, and returns

to port 𝑂. Now door 1 is open. If the agent enters from port 𝑇0, then they are forced to

close door 2, traverse door 1, and close door 1. Reopening door 1 puts the agent back into

the situation of being forced to close door 1, so the agent instead opens door 2 and traverses

door 3 to port 𝑇1. The agent could not have taken this path initially since door 1 was closed,

and they cannot take it again without visiting port 𝑂 because they closed door 1.

Case 5: OtToCc door. This door can simulate the Case 6: OTtoCc door, which has

been covered, by effectively flipping the traverse tunnel. (Figure 2-76). Door 1 is the gadget

that we flip the traverse tunnel of. If the agent enters from port 𝑇0, they must open door

2, the close door 2. If door 1 is open and the agent then traverses it, they are back to a

previous position with nothing changed. Instead, the agent opens door 3. If the agent then

closes door 3, they get stuck because door 2 is closed. So they must close door 2 (again) or

traverse door 3. These actions lead to the same situation. If the agent opens door 3 (again),

they are back to the same situation that occurred after opening door 3 the first time. If door

1 is open, the agent then traverses door 1. Then they must open door 2. Closing door 2 leads

to a previous situation, so the agent then traverses door 3. If the agent then traverses door

1 (again), they must open door 2 (again), leading to a previous situation. So they instead

open door 3. Closing door 2 and traversing door 3 lead to different previous situations, so

the agent then closes door 3, and then is forced to traverse door 2 to port 𝑇1, leaving all the

doors unchanged. If door 1 is not open, then the agent is unable to leave.
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Figure 2-76: Simulation of the Case 6: OTtoCc with the Case 5: OcCoTt door. The traverse
tunnel of the leftmost gadget is effectively flipped.

Case 7: OtTocC door. This door can simulate a directed open-optional normal self-

closing door (Figure 2-77). If the agent enters from port 𝑂, they must open door 1, then

close door 2. If the agent then closes door 3, they get stuck because door 2 is closed. The

agent can traverse door 1 and leave via port 𝑂, but they can also open and then traverse

door 3 and then do the same thing, which is advantageous. So the agent opens and traverses

door 3, then traverses door 1 to port 𝑂. Now door 1 is open, door 2 is closed, and door 3

is open. If the agent enters from port 𝑇0, they must close door 1, then open door 2, then

traverse door 3. Opening door 3 and then traversing it is a no-op, and door 1 is closed, so

the agent closes door 3 and then must traverse door 2 to port 𝑇1. This leaves door 1 closed,

door 2 open, and door 3 closed. The agent could not have taken this path initially because

door 3 was closed, and cannot take it again without visiting port 𝑂 first for the same reason.

Case 9: OtcCT door. This door can simulate a directed open-optional normal self-closing

door (Figure 2-78). If the agent enters from port 𝑂, they can open door 1 and must close

door 2. If the agent later enters from port 𝑇0, then they must traverse door 1. They then

can open door 2 (and must, since that is the only way out) and must close door 1. Then the

agent traverses door 2 to port 𝑇1. The agent could not have taken this path initially because

door 1 was closed, and cannot take the path again without visiting port 𝑂 first for the same
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Figure 2-77: Simulation of a self-closing door with the Case 7: OCcoTt door.
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Figure 2-78: Simulation of a self-closing door with the Case 9: OtcCT door.

reason.

Case 11: OCTtc door. This door can simulate the Case 12: OcTtC door, which has

been covered, by effectively flipping the traverse tunnel. (Figure 2-79). Door 1 is the gadget

that we flip the traverse tunnel of. If the agent enters from port 𝑇0, then they must traverse

the bottom-left diode. The agent can then open doors 2 and 3 but must pick one to close.

If they close door 2, they get stuck. So the agent closes door 3. Going to open doors 2 and

3 again leads to a previous situation, so the agent instead traverses door 2. Traversing door

1 (if it is open) leads to a previous situation, and traversing door 5 leads to being stuck.

The agent traverse the right diode, and can open doors 4 and 5 but must pick one to close.

Closing door 4 leads to a previous situation, so the agent then closes door 5, then must

traverse door 4. Going to open doors 4 and 5 again leads to a previous situation. If door 1 is
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Figure 2-79: Simulation of the Case 12: OcTtC with the Case 11: OCTtc door. The traverse
tunnel of the topmost gadget is effectively flipped.

open, then the agent traverses door 1. Traversing door 2 leads to a previous situation, so the

agent then opens doors 2 and 3. Closing door 3 leads to a previous situation, so the agent

closes door 2, then must traverse door 4. Traversing door 1 leads to a previous situation,

so the agent instead opens doors 4 and 5. Closing door 5 leads to a previous situation, so

the agent then closes door 4. Traversing door 1 or going to open doors 4 and 5 both lead

to previous situations, so the agent then traverses door 5 and must traverse door 4, leaving

via port 𝑇1 and leaving all the doors unchanged. If door 1 is not open, however, then the

agent cannot leave because door 3 is closed and the only way to open it is through door 1’s

traverse tunnel.

This covers all the planar directed doors without internal crossings except the OTtocC

door, finishing the proof.

Theorem 86. 1-player planar motion planning with any door except the door in Case 8:

OTtocC is PSPACE-hard.

Proof. This follows from Theorems 83, 85, 81, and 82, as those cover all the cases.
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Figure 2-80: Simulation
of parallel double-close door
with the Case 8: OTtocC
door. Figure 2-81: Simulation of

an antiparallel NAND gadget
with a parallel double-close
door.

Theorem 87. 1-player planar motion planning with the door in Case 8: OTtocC is NP-

hard.

Proof. We show how to simulate antiparallel NAND gadgets, which is NP-hard by Lemma 48.

First, Figure 2-80 shows how to combine two Case 8: OTtocC doors to build a door-like

gadget with an open tunnel and two traverse–close tunnels, where traversing the open tun-

nel opens both traverse–close tunnels, and traversing either traverse–close tunnel closes the

other traverse–close tunnel. Next, Figure 2-81 shows how to combine two of these gadgets

to build an antiparallel NAND gadget. The top tunnel in the top gadget is initially closed,

forcing the agent to open it and thus close the bottom tunnel of the bottom gadget, which is

possibly only if the bottom tunnel of the bottom gadget was not already traversed. Because

the open tunnel of the bottom gadget is not connected to anything, both tunnels of the

bottom gadget will remain closed once closed.
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Chapter 3

Multi-Player

In this chapter we explore results related to the 2-player and team imperfect information

models. We give a partial characterization for 𝑘-tunnel reversible deterministic gadgets,

showing that gadgets with interacting tunnels are EXPTIME-complete for the 2-player

model, shown in Section 3.2.1, and RE-complete for the team imperfect information model,

shown in Section 3.2.2. However, it is unclear if motion planning with non-interacting tunnels

remain easy in the 2-player or team models, and in fact we suspect the 1-toggle to be at

least PSPACE-hard. For the polynomially bounded case, we show that single-use gadgets

suffice for PSPACE-completeness for the 2-player model, shown in Section 3.3.1, and the

single use gadget suffices for NEXPTIME-hardness for team imperfect information, whon

in Section 3.2.2. This gives a full classification for DAG gadgets and a partial classification

for LDAG gadgets.

These results come primarily from [29], coauthored with Dylan Hendrickson and Erik

Demaine. Many of the proofs and ideas in this section, especially for reversible, deterministic

gadgets come from Dylan Hendrickson.
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3.1 Simple Relations Between Models

The 2-player model is strictly stronger than the 1-player model, as the opponents can be

disconnected from their goal giving a trivial reduction to the 1-player case. In addition,

so long as the gadgets have at least one transition, one may use the opponent to create

a polynomial size counter, effectively simulating the shortest path victory condition for 1-

player. This is relevant for cases like the optional door-opening gadget in Section 2.3.6

where it is in P for the 1-player reachability game, but NP-complete for the 1-player shortest

path version. Since we do not currently have a PSPACE-completeness proof for the model

with optional door opening (and some reason to suspect it may not be PSPACE-hard) this

simple timing reduction gives us the currently best known bound of NP-hardness for 2-player

reachability motion planning with the optional door opening gadget.

This also shows another case where the visibility model for the Team Imperfect Infor-

mation problem is relevant. If we chose a stronger visibility model, one in which we could

freely assign gadgets which can be monitored by players or one in which locations gave an

arbitrary visibility mapping to other gadgets, then there would be a trivial reduction from

Team Imperfect Information to 2-player motion planning by giving the players perfect in-

formation. However, when we restrict visibility to be along location connectivity, as in the

case we explore, giving the players perfect information would require connecting all gadgets

together. Although this modification seems unlikely to reduce the computational complex-

ity of the problem, it certainly seems like an obstacle in motion planning cases like those

involving the 1-toggle, where verifying an unknown state of the gadget will give the player

the ability to change the gadget (depending on the state).

3.2 Multi-Player Reversible Deterministic Gadgets

Here we revisit 𝑘-tunnel reversible deterministic gadgets in the 2-player and team imperfect

information models. We reduce from 2-player Constraint Logic and Team Private Constraint

Logic which are natural multi-player versions of Non-deterministic Constraint Logic which
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was the target problem for 1-player motion planning with 𝑘-tunnel reversible deterministic

gadgets. Since these proofs essentially take that reduction and modify it to deal with the

new complications which arise in these models, it is recommended that the reader review the

reduction in Section 2.2 before reading this section in depth. Section 3.2.1 will show EX-

PTIME-completeness for 2-player motion planning with 𝑘-tunnel reversible deterministic

gadgets that contain interacting tunnels. Section 3.2.2 will show RE-completeness for Team

Multiplayer Imperfect Information motion planning with 𝑘-tunnel reversible deterministic

gadgets that contain interacting tunnels.

3.2.1 2-Player Unbounded Motion Planning

In this section, we analyze 2-player motion planning games with 𝑘-tunnel reversible determin-

istic gadgets. We show that any such game which includes a gadget with interacting-tunnels

is EXPTIME-complete. We do so by a reduction from 2-player unbounded constraint logic,

allowing us to reuse some of the work in the prior section. In addition to building the single

player AND and OR vertices, we show how to adapt the gadgets to allow different players to

have control of different edges. We also build up the needed infrastructure to enforce turn

taking in the simulated game.

The construction of crossovers using interacting-𝑘-tunnel reversible deterministic gadgets

with two states should allow one to show hardness for the planar version of this problem

with those gadgets and any others that simulate them. Care must be taken with the layout,

timing, and interaction between crossovers so we do not go on to prove such a result in

this thesis. Unfortunately, the crossover created by the locking 2-toggle in Section 2.2.4

does not suffice and thus leaves the question partially open. In addition, the question of

noninteracting-𝑘-tunnels reversible deterministic gadgets has not been resolved. We are not

able to show problems with such gadgets are easy, and Section 3.3.1 suggests they should be

at leastPSPACE-hard.

Lemma 88. 2-player motion planning with any set of gadgets is in EXPTIME.

Proof. A configuration of the maze consists of the state of each gadget and the location
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A

B
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D

Figure 3-1: The timer gadget used in the 2CL reduction, made of PL2Ts and 1-toggles. In order
to travel between A and B, a player must travel between C and D three times. The timer can be
extended to the right; two iterations are shown.

of the robot, and has polynomial length. There is a polynomial-space alternating Turing

machine which nondeterministically guesses moves for each player and keeps track of the

configuration, using existential quantifiers for player 1 and universal quantifiers for player 2.

This Turing machine accepts exactly when player 1 has a forced win. Thus the problem is

in APSPACE = EXPTIME.

Theorem 89. 2-player motion planning with the locking 2-toggle gadget is EXPTIME-

complete.

Proof. This game is in EXPTIME by Lemma 88. We use a reduction from 2-player Con-

straint Logic (2CL) to show EXPTIME-completeness. See Section 1.4.1 for a definition of

2CL.

We begin by describing a timer gadget, shown in Figure 3-1. Suppose one player has

access to the bottom line. They can enter the gadget at A, and begin going through the

timer, eventually reaching a victory gadget at B. The timer has two key properties:
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1. Reaching B takes a number of transitions exponential in the size of the timer. In order

to get from A to B, the player goes though the top PL2T to C, recursively travels

from C to D, goes around the loop through the top two PL2Ts, goes back from D to

C, traverses the bottom loop, once again goes from C to D, and finally proceeds to

B. If traveling between C and D takes 𝑚 transitions, then traveling between A and B

takes 3𝑚 + 6 transitions. If the timer gadget is repeated 𝑘 times, it takes at least 3𝑘

transition to get from A to B.

2. A player in the timer has an opportunity to exit the timer at least every 2 turns, and

exiting takes 1 turn; in particular, they can always exit within 3 turns while progressing

the timer. The player uses a 1-toggle to exit to the bottom line. They can then later

reenter using the same 1-toggle, resuming their work on the timer where they left off.

If the player is in the timer, the next step in progressing the timer is either traversing

a loop between to PL2Ts, which takes 2 transitions, or moving horizontally between

timer segments, which takes 1 transition. Thus in 3 transition, the player can complete

the current or next step and exit to the bottom line.

The constraint logic gadgets are similar to those used in Theorem 8 for the 1-player game,

with the modification shown in Figure 3-2. We have added 1-toggles allowing a player at

an edge to visit and configure the incident vertices, without allowing the player to travel to

other edges. Each player’s goal location is inside the gadget corresponding to their target

edge, so that they can reach it if they can flip the edge.

Unlike the 1-player version, we need gadgets to enforce the turn order. The overall

construction is shown in Figure 3-3. The maze consists of three main regions: the Existential

area, the Universal area, and the constraint logic. Each player will spend most of their time

in their own area, occasionally entering the constraint logic to flip an edge. The players’

areas are designed to enforce turn order and progression of the game. A player can never

enter the other player’s area.

There is a single L2T separating the constraint logic area from each player’s area. This

prevents both players from being in the constraint logic at the same time.
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Each player’s area contains an edge selection gadget, which consist of a locking 2-toggle

for each edge they can control. The other line in the L2T is accessible by entering the

constraint logic area and passing through a delay line composed of four 1-toggles, and is

connected to the corresponding edge gadget. In order to access an edge gadget, the player

must activate the appropriate L2T, which requires deactivating the previously activated L2T.

This ensures that only one edge gadget is accessible by each player at any time. There is

a 1-toggle separating the edge selection gadget from the rest of the player’s area, so that

switching the selected edge requires at least 4 turns (we use one tunnel of a L2T for a

1-toggle).

Each player’s area has a timer, of length 𝑡𝐸 for Existential and 𝑡𝑈 for Universal. If a

player finishes their timer, they win.

Each player begins inside their edge selection gadget, and Existential goes first. The

game begins with Existential picking an edge and going to the constraint logic area, while

Universal goes to their timer.

A round of normal play proceeds as follows:

∙ Existential moves from edge selection to the constraint logic area. Universal is currently

in their timer.

∙ Existential enters the constraint logic, walks to their selected edge, and flips it. Uni-

versal continues working on their timer.

∙ Existential returns through their constraint logic delay line. Once they pass the first

1-toggle, Universal finishes their current step in the timer and exits, moving towards

edge selection.

∙ Existential begins working on their timer. Universal selects an edge, enters the con-

straint logic, and flips the edge.

∙ Universal returns through their constraint logic delay line. Once they pass the first

1-toggle, Existential exits their timer and moves to edge selection.
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∙ Existential selects an edge as Universal enters their timer.

Suppose Universal has just flipped an edge gadget; they have nothing to do but return

through the delay line of length 4. When Universal is past the first 1-toggle, Existential

will leave their timer to flip an edge. Universal might try turning around to go back to

the constraint logic area. It takes Universal at least 6 turns to flip the edge back, during

which Existential has enough time to select an edge and reenter their timer. The game is

now in the same situation as before, except that Existential has progressed their timer; thus

Universal does not want to do this.

Universal might instead try waiting at the central L2T after Existential has selected

an edge. Existential will then go to their timer, forcing Universal to exit eventually. When

Universal is not next to the central L2T, Existential exits their timer and moves to constraint

logic. Because of the 1-toggle separating edge selection from the central L2T, for Universal

to change their selected edge, they must spend multiple turns away from the L2T, allowing

Existential to enter constraint logic; similarly if Universal works on their timer, Existential

can enter constraint logic. So Universal has no choice but to pass the turn to Existential.

Since Existential can always exit their timer within 3 turns, and Universal has three

more 1-toggles to get through when Existential begins looking to exit, Existential will reach

edge selection before Universal can reach edge selection, so Existential will be the first player

ready to enter constraint logic again. Nothing Universal can do will prevent Existential from

taking the next turn in the 2CL game. Similarly after Existential flips an edge, Universal

will be able to take a turn next. So either player can force the alternation of constraint logic

turns.

The sizes of the timers are chosen to satisfy the following. First, if Existential cannot

win the constraint logic game, Universal should win, so Universal’s timer is shorter: 𝑡𝑈 < 𝑡𝐸.

Second, if Existential can win the constraint logic game, Existential should win first, even if

Universal ignores the constraint logic game and just works on their timer. If the constraint

logic graph has 𝑛 edges, it takes at most 2𝑛 constraint logic turns for Existential to win.

Each constraint logic turn for Existential takes 6 turns to select an edge and return to the
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Figure 3-2: A modified edge gadget for the 2CL reduction. A player can visit the vertex gadgets
attached to the edge gadget, and then return to the edge gadget.

constraint logic, 8 turns to cross the constraint logic delay line twice, 4 turns to access and

flip an edge, and up to 5 turns to access and configure an incident vertex, so 25 turns in

total during which Universal can work on their timer. Both players might be in their timers

simultaneously at most 4 times each cycle, and each time for at most 4 turns, so Universal

spends at most 41 turns in their timer for each constraint logic turn. Thus, since it takes

Universal at least 3𝑡𝑈 turns to win through the timer, we need 41 · 2𝑛 < 3𝑡𝑈 ; 𝑡𝑈 = 𝑛 + 6

suffices, and we can set 𝑡𝐸 = 2𝑛+ 12.

Using these timer sizes, it is clear that the constraint logic game will resolve before

either timer if the players follow normal play. We need the timers so that Universal cannot

force a draw by sitting in the constraint logic forever, preventing Existential from winning;

Existential will progress on their timer if Universal attempts this.

Hence Existential has a forced win in the motion planning game if and only if they have

a forced win in the constraint logic game. Since 2CL is EXPTIME-complete, the 2-player

game on systems of locking 2-toggles is EXPTIME-hard. The maze used in the reduction

has only 𝑂(𝑛) L2Ts.

Theorem 90. 2-player motion planning with any interacting-𝑘-tunnel reversible determin-

istic gadget is EXPTIME-complete.
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To edge gadgetsConstraint Logic

Figure 3-3: The overall structure and turn enforcement gadget. Each player’s edge selection area
has a L2T for each edge that player can flip; four are shown for each player. The bottom line from
each such L2T connects to the corresponding edge gadget. The timers are as shown in Figure 3-1,
with 𝑡𝐸 and 𝑡𝑈 repetitions. The inside connection to each timer is connected to its access line, and
the outside connection (to a win gadget) is at 𝑈 in Figure 3-1. The goal location past each timer
is for the player whose side it is on.

Proof. This game is in EXPTIME by Lemma 88. We adapt the 2CL reduction in the proof

of Theorem 89. Replace each locking 2-toggle in that 2CL reduction with the simulation of

a locking 2-toggle from the arbitrary gadget in Theorem 5. In the new maze, each tunnel in

a simulated L2T takes 6 transitions to traverse, so the game goes 6 times slower.

The simulation still works with two players, as long as both players do not have access

to the gadget at the same time. Each L2T in the turn enforcement area is accessible only

by one player, and only one player can be in the constraint logic area at any time. The only

L2T both players have simultaneous access to is the central gadget which gives access to the

constraint logic area, so we look more carefully at that gadget.

The state with both edges traversable is shown in Figure 2-5 (the 1-toggle simulation

still works). Note that the simulation is of an APL2T, but the gadget in the 2CL reduction

is a PL2T; this is not a problem because we are not concerned with planarity. Suppose both

players approach the gadget, one from the right on the top line and one from the left on

the bottom line. Whoever reaches the gadget first should “win the race,” and lock out the
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Figure 3-4: Another state of the construction shown in Figure 2-5. The leftmost gadget is in
state 1, and the rightmost gadget is in state 3.

other player. The simulation implements this correctly, provided that the player who arrives

first is a full turn ahead in the L2T maze, or 6 turns ahead in the new maze. The only time

the players might be within 6 turns of each other is at the very beginning of the game, so

we put a delay of 6 turns for Universal to get from their start location to edge selection to

ensure Existential wins the race by 6 turns. If a player would arrive less than 6 turn before

the other player, they should go to their timer instead; since this is a zero-sum game and

the players would have to collaborate to break the simulation, one player will choose not to.

The other way players can interact at this gadget is when one player is exiting the

constraint logic area, and the other player is waiting just outside and enters as soon as

they can. The state of the simulation is shown in Figure 3-4 (the other possible state is

symmetric). One player, say Existential, has traversed the top edge to enter the constraint

logic area, and is about to exit by traversing the top line to the right. Universal is waiting

at the left end of the bottom line, ready to enter the constraint logic area. The leftmost

gadget prevents Universal from making any transitions until Existential begins exiting. Once

Existential begins exiting, the leftmost gadget switches to state 2, so Universal can follow

parallel to Existential and one turn behind. As long as Existential continues through the

construction at full speed, Universal interacts with the construction as though Existential

has already finished their traversal, so it correctly simulates a L2T. Again breaking the

simulation would require the players to cooperate, and the game is zero-sum, so at least one

player will ensure the simulation works.
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3.2.2 Team Unbounded Reversible Deterministic

In this section, we show that team imperfect information games with interacting-𝑘-tunnel

reversible deterministic gadgets is RE-complete, implying the problem is Undecidable. The

reduction is from Team Private Constraint Logic (TPCL); see Section 1.4.1 for a definition.

We use many of the ideas and constructions from Section 3.2.1, but various modifications

are needed to deal with the additional player and the model of player knowledge. Recall

in this model we have three players on two different teams, each controlling a single robot.

All players start knowing the configuration of the entire game; however, after that point

players can only observe the states of the gadgets that their robots can reach via the con-

nection graph. Adaptations for the planar version and the complexity of such games with

noninteracting-tunnel gadgets remains open as in Section 3.2.1.

Lemma 91. Team motion planning with any set of gadgets is in RE (recursively enumer-

able).

Proof. Suppose the Existential team has a forced win on some system of gadgets, and con-

sider the tree of possible positions when Existential follows their winning strategy. The

branches in the tree correspond to choices the Universal team might make. Since Existential

forces a win, every branch of the tree is finite. Since Universal has finitely many choices at

each turn, the tree is finitely branching. Since our tree does not contain an infinite degree

vertex or an infinite length path, then by Kőnig’s infinity lemma [48] the tree is finite. In

particular, there is a finite bound on the number of turns it takes for Existential to win, so

the winning strategy can be described in a finite amount of space. So there are countably

many potential winning strategies, and we can sort them lexicographically.

Given a potential winning strategy, the problem of determining whether it is actually a

winning strategy is decidable: an algorithm can explore every choice Universal might make,

and see whether Existential always wins. There are only finitely many choices to check

because the strategy only describes a finite number of turns.

We use the following algorithm to determine whether Existential has a forced win. For

each potential winning strategy in lexicographic order, check whether it is a winning strategy.
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If it is, accept. This algorithm accepts whenever Existential has a forced win, and runs forever

otherwise, so it recognizes the games in which Existential has a forced win.

Although [27] only mentions undecidability and notRE-completeness, it follows that

TPCL isRE-complete. Containment in RE is given by an argument nearly identical to the

proof of Lemma 91. The proof of undecidability is ultimately by a reduction from acceptance

of a Turing machine on an empty input, which isRE-complete, implying that TPCL isRE-

hard.

Theorem 92. Team motion planning with the locking 2-toggle gadget isRE-complete (and

thus undecidable).

Proof. Containment in RE is given by Lemma 91. ForRE-hardness, we use a reduction from

TPCL, with a similar construction as in the proof of Theorem 89. The overall construction

is shown in Figure 3-5. Capital letters label L2Ts, and lowercase letters label lengths of delay

lines. The two tunnels in the same L2T are labelled the same, instead of being positioned

next to each other. The three players 𝑈 , 𝐸1, and 𝐸2 each have their own region. Each region

contains an edge selection area with 𝑘 edges initially active, access to the constraint logic,

and some additional gadgets. We need to ensure the following:

1. Turn order is enforced. That is, the players take turns in the order 𝑈 , 𝐸1, 𝐸2, and

neither team can gain anything by deviating from this. We use 𝐿1 and 𝐿2 to prevent 𝑈

from being in the constraint logic area at the same time as 𝐸1 or 𝐸2, and appropriate

delays to ensure each player is ready for their turn. The timer in 𝐸2’s region forces 𝑈

to eventually pass the turn to 𝐸1.

2. Each player can flip up to 𝑘 edges each turn. If 𝑘 edges are initially accessible for each

player, the edge selection area allows them to select any 𝑘 of their edges, and a player

must end their turn in order to change their selection.

3. The Existential players have the correct information about the state of the game. Each

of them has a visibility area, which allows them to see the orientation of the appropriate
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constraint logic edges. We must not allow 𝐸1 and 𝐸2 to both access the same L2T, as

they could then use it to communicate. So we need a more complicated mechanism to

prevent both Existential players from being to the constraint logic area at the same

time.

For visibility, we modify the edge gadget as shown in Figure 3-6. The appropriate line is

connected to each Existential player’s visibility area if they should be able to see that edge.

A round of normal play proceeds as follows:

∙ 𝑈 begins their turn by passing down through 𝐿1 and 𝐿2. 𝐸1 waits next to 𝑉 , and 𝐸2

walks through their timer.

∙ 𝑈 flips some edges, and returns, passing 𝑉 . When 𝐸1 sees this happen, they go to

their visibility area, and then select 𝑘 edges. 𝐸2 continues in the timer.

∙ 𝑈 finishes exiting through the delay 𝑏. Once 𝑈 has passed 𝐿1, 𝐸1 enters the constraint

logic area. 𝐸2 reaches the end of the timer, finds 𝑆 to be closed, and comes back.

∙ 𝑈 is stuck on the side of 𝐿1 away from the constraint logic area, and can select edges.

𝐸1 flips edges and returns to just below 𝐿1. 𝐸2 goes to their visibility area, and then

selects edges.

∙ After a number of turns large enough that both Existential players are definitely ready,

𝐸1 exits 𝐿1. The same round, 𝐸2 enters 𝐿2, passing the turns from 𝐸1 to 𝐸2.

∙ 𝐸2 takes their turn. 𝑈 waits just to the right of 𝐿2, and 𝐸1 waits above 𝑋.

∙ 𝐸2 exits 𝐿2 and goes to the timer. 𝑈 passes through 𝐿2 to take their turn, and 𝐸1

waits.

We place each player’s starting location to be at the end of a chain of 1-toggles leading

to their region, so they arrive after an appropriate delay. We can set 𝑈 to have no delay

and 𝐸1 and 𝐸2 to have 2𝑘 delay, so 𝑈 has time to select edges before the Existential players
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arrive. The first turn has slightly strange timing since 𝐸2 starts the timer later than normal,

but this is not important.

We consider ways in which player might deviate from normal play, and see that in each

case they do not gain anything by deviating.

𝑈 enters the constraint logic through 𝐿2 as soon as 𝐸2 passes 𝐿2 on their way out, at

which point 𝐸2 enters the timer. 𝑈 need to be able to take a full turn and go back through

𝑆 before 𝐸2 reaches the end of the timer; this takes up to 2(𝑏+ 𝑐+ 2) + 2 + 11𝑘 turns, since

flipping each edge now takes up to 11 turns. So we need 𝑡 > 2(𝑏 + 𝑐 + 2) + 2 + 11𝑘. The

timer forces 𝑈 to return through 𝑆 within 𝑡+ 2 turns, since otherwise 𝐸2 wins.

The gadget 𝑉 lets 𝐸1 know when 𝑈 is done, since 𝐸1 can see whether 𝑈 is past 𝑉 while

waiting at 𝐿1. Specifically, 𝐸1 waits until they see 𝑈 stay past 𝑉 for 2𝑐 turns, and then

return. For 𝑈 to be unable to flip edges after this, we need 4𝑐 > 𝑡. Then 𝐸1 goes to visibility

and sees the current configuration, selects 𝑘 edges for their next turn, and waits at 𝐿1 again.

For 𝐸1 to have time to do this before 𝑈 gets out, we need 𝑏 > 2𝑘 + 2.

Once 𝑈 exits 𝐿1, 𝐸1 goes in and flips edges. The delay 𝑑 ensures that if 𝐸1 (or 𝐸2)

flips any edges, then 𝑈 will be ready for their next turn; we need 2𝑑 > 2𝑘 + 4. 𝐸2 returns

through the timer, checks visibility, and selects edges. If 𝐸2 enters constraint logic before 𝐸1

leaves, 𝑈 can win through 𝑋 and 𝑌 , so 𝐸2 must wait until 𝐸1 leaves. The Existential players

coordinate using the fact that the length of an entire round is bounded, so they can wait

long enough to ensure that they are both ready, and then 𝐸1 exits 𝑋 immediately before 𝐸2

enters 𝑌 . Since 𝐸1 was past 𝐿1, 𝑈 is locked outside of 𝐿1, so 𝐸2 can get past 𝐿2; the 𝐸1 can

safely pass the turn to 𝐸2.

While 𝐸1 is past 𝑋, 𝑈 might try going through 𝑍 and 𝑋, trapping 𝐸1. In this case, 𝐸2

can win through 𝑍, so 𝑈 will only go through 𝑍 if both 𝑋 and 𝑌 are traversable.

During 𝐸2’s turn in the constraint logic, 𝐸1 must not be past 𝑋 to prevent 𝑈 from

winning through 𝑋 and 𝑌 . So 𝑈 can go through 𝐿1, and go through 𝐿2 as soon as 𝐸2 exits.

That is, 𝐸2 cannot pass the turn back to 𝐸1.

𝐸2 might try to stay in the timer, forcing 𝑈 to stay out of the constraint logic to prevent
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𝐸2 from winning through 𝑆. Then 𝐸1 might be able to take extra turns in the constraint

logic. If the Existential team attempts this, 𝑈 will win through 𝑃 and 𝑄. If 𝑈 goes through

𝑅 and 𝑃 when 𝑄 is not traversable in order to trap 𝐸1, 𝐸2 will win through 𝑅; these three

L2Ts are analogous to 𝑋, 𝑌 , and 𝑍.

Assuming the constraints mentioned are satisfied, no player or team can usefully deviate

from normal play, and normal play simulates the TPCL game. Thus Existential has a forced

win in the team motion planning game if and only if they have a forced win in the TPCL

game.

We can satisfy all the constraints, e.g by 𝑏 = 2𝑘+3, 𝑐 = 8𝑘+7, 𝑑 = 𝑘+3, and 𝑡 = 31𝑘+27

(the constraints are not tight, but they suffice). The number of L2Ts in the resulting system

of gadgets is only linear in the number of edges in the constraint logic graph.

Theorem 93. Team motion planning with any interacting-𝑘-tunnel reversible deterministic

gadget isRE-complete.

Proof. Containment in RE is given by Lemma 91. ForRE-hardness, we adapt the TPCL

reduction in Theorem 92 to work for the arbitrary gadget. As in the 2-player case of Theo-

rem 3.2.1, it is almost sufficient to replace each L2T with the simulation in Theorem 5. We

examine the L2Ts that are shared between two players.

First, 𝐿1 and 𝐿2 are analogous to the central L2T in Theorem 3.2.1: if two player are

racing to enter, the player who should win is at least 6 turns ahead, and if one player exits

and another enters, is works correctly.

For 𝑆, 𝑃 , 𝑄, 𝑅, 𝑋, 𝑌 , and 𝑍, we use a single copy of the arbitrary gadget with 5 extra

gadgets for delay, instead of the simulation. Considering the gadget as in Figure 2-2, we use

state 1, and put the bottom edge in the position next to a win gadget. For 𝑆, 𝑄, 𝑌 , 𝑅, and

𝑍, if the bottom edge is traversed from state 2, the game is over, so the gadget is never in a

state other than 1 or 2 while the game is going. For 𝑃 and 𝑋, we know that 𝑈 cannot safely

wait past those gadgets, so the game must be about to end in Universal victory if they ever

reach state 3.
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Figure 3-5: The turn enforcement gadget for the team game. Each player has their own region
which contains an edge selection area, a path to the edge gadgets they can control, and some other
constructions. Each Existential player has a visibility area which allows them to see the state of
some edge gadgets in constant time. There is no good layout for the whole gadget, so we use
pairs of 1-toggles that share a (capital) label to represent L2T. Long boxes with lowercase labels
represent chains of 1-toggles with length given by the label. The win gadgets are for the obvious
players, and the tunnels currently not traversable (𝑃 , 𝑄, 𝑅, 𝑆, 𝑋, 𝑌 , and 𝑍) will directed toward
the win gadget when they become traversable.
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Figure 3-6: An edge gadget for the TPCL reduction. This is the same as a 2CL edge gadget,
except two L2Ts have been added that allow 𝐸1 or 𝐸2 to see the state of the edge if it is connected
to their visibility area, but they cannot make any transitions.

For 𝑉 and the visibility gadgets on edges, we use the construction in Figure 3-7. 𝑈 has

three paths to choose from in the process of crossing the bottommost 1-toggle, and always

two of them are align with that 1-toggle, so 𝑈 has two options. The Existential player, say

𝐸1 can see the state of a gadget in all three paths, and thus determine the orientation. If 𝐸1

goes through one of these gadgets, 𝑈 will use the other path. If there were only one path,

𝐸1 could go through the gadget, forcing 𝑈 to either not flip that edge or get a gadget into

an unknown state (for L2Ts, we used the fact that 𝐸1 could never traverse that tunnel in

one direction). This visibility gadget allows 𝐸1 to see the orientation of a constraint logic

edge or 𝑉 without being able to interfere.

Once we make these replacements, the new maze with the arbitrary gadget has a forced

win by Existential if and only if the maze with L2Ts did.
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Figure 3-7: A visibility gadget for the TPCL reduction. The Universal player can travel between
the top and bottom, and a Existential player can enter the side to see which direction was traversed
most recently.

3.3 Multiplayer Polynomially Bounded Gadgets

In this section we give a full classification for DAG gadgets in the 2-player model, Sec-

tion 3.3.1, and the team imperfect information model, Section 3.3.2, by showing the single

use gadget (and thus all non-trivial DAG gadgets) are hard in those models. The reductions

resemble a partisan variation on Generalized Geography. These results also provide lower

bounds for many LDAG gadgets, however, a characterization there seems much more difficult

to achieve. The upper bounds are no longer obvious as the number of moves in these games

is no longer bounded. Further, examples like optional door opening gadgets seem unlikely

be to hard as the players have no incentive to open traversals for their opponent unless they

themselves will need to traverse that tunnel to win.

3.3.1 2-Player Bounded Motion Planning

In this section, we show that it is PSPACE-complete to decide who wins in a 2-player

race with any nontrivial DAG gadget (having at least one transition). To do so we give a
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construction that shows hardness for single-use paths and single-use one-way gadgets by a

reduction from QBF. A simpler construction is possible, but this construction is more easily

adapted to the team game in Section 3.3.2. This gives us a nice example of the 2-player local

motion planning problem fitting into the canonical complexity class for two-player bounded

games. It is also of interest because of how incredibly simple this gadget is. Two-location

gadgets trivially do not have interacting tunnels (there is no other tunnel to interact with)

and thus the 1-player version of these problems are contained in NL by Theorem 2.

Lemma 94. 2-player motion planning with any set of DAG gadgets is in PSPACE.

Proof. Since each gadget can undergo only a polynomial number of transitions, the length

of the game is polynomially bounded. An alternating Turing machine which uses ∀ states

to pick Universal’s moves and ∃ state to pick Existential’s moves can simulate the game in

polynomial time, so the motion planning problem is in AP = PSPACE.

Lemma 95. 2-player motion planning with the single-use bidirectional gadget isPSPACE-

complete.

Proof. Containment inPSPACE follows from Lemma 94. ForPSPACE-hardness, we reduce

from quantified boolean formulas (QBF). See Section 1.4.2 for a definition of QBF.

We begin by describing the gadgets used in the reduction. The variable gadget is shown

in Figure 3-8. Most of the gadget consists of two branches, corresponding to a variable and

its negation. Each branch has a series of forks separated by single-use paths. There will be

a number of forks depending on the number of occurrences of a literal in the formula; two

forks are shown. Each side of each fork has two single-use paths in series. The game will be

constructed so that Existential always prefers the top side of a fork to be traversable, and

Universal prefers them to be not traversable; the top of a fork will be used later in evaluating

the formula.

During the game, both players will pass through each variable gadget, with one player

taking each of the two branches. Existential will take the bottom side of each fork on their

branch, and Universal will take the top side. Afterwards, only the branch which Existential
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took will have forks whose top sides are traversable. Thus we consider the assignment of the

variable to be the literal corresponding to the branch Existential takes.

Suppose both players are at the left end of a variable gadget, and it is Player 1’s (who

may be Existential or Universal) turn. Player 1 picks a branch, and Player 2 must walk

down the other branch. Player 1 arrives at the right end of the branches immediately before

Player 2. If Player 1 proceeds along the bottom path, Player 2 wins, so Player 1 must take

the top path, which takes one turn longer. After traversing the variable gadget, both players

are at the right end, and it is Player 2’s turn, so the other player gets to choose a branch in

the next variable gadget.

The clause gadget is shown in Figure 3-9. There are three paths from the left end to

the right end, corresponding to the literals in a clause. Each path goes through a fork in a

variable gadget. After variables are assigned, the single-use paths on each end of the fork are

used, as are either those on the top or those on the bottom of each fork. If the top single-use

paths are used, that path through the clause gadget is blocked, and if the bottom paths are

used, that path is open. Existential will ultimately win by traversing each clause gadget, so

Existential prefers to use the bottom side of a fork, and Universal prefers to use the top side.

Each path has a large amount of delay (gadgets in series) before and after the fork, so that

trying to use the clause gadget during variable assignment results in losing before reaching

the end of the delay.

The race gadget is shown in Figure 3-10. It ensures both players proceed though variable

gadgets as fast as possible. Let Player 1 be the player who reaches the race gadget first in

this situation, immediately before Player 2; they are also the player who did not pick the

assignment of the last variable. If Player 1 takes the bottom path, Player 2 will win, so

Player 1 takes the top path. Then Player 2 takes the bottom path, and now the two players

have been separated.

If Player 1 arrives more than a turn ahead of Player 2, they can take the bottom path.

The next turn, before Player two can do anything at the race gadget, Player 1 wins. If Player

2 reaches the race gadget first, they can take the top path and win.
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Given a quantified boolean formula with 𝑉 variables and 𝐶 clauses, we construct a

system of gadgets as follows. We assume the QBF has alternating quantifiers beginning with

∃. There is a series of variable gadgets connected end-to-end corresponding to the variables

of the formula, in the order of quantification. The goal location inside each variable gadget is

a win for alternating players, beginning with Universal. The branches of the variable gadget

corresponding to 𝑥 correspond to the literals 𝑥 and ¬𝑥. Each branch of that variable gadget

has enough forks that each instance of a 𝑥 or ¬𝑥 in the formula corresponds to a fork, and

the two branches have the same number of forks.

There is a clause gadget for each clause in the formula, connected in series. The three

branches of a clause gadget correspond to the three literals in the clause. Each branch goes

through the fork in the appropriate variable gadget corresponding to that instance of the

literal. The delay before and after each fork consists of 9𝐶 + 3𝑉 single-use paths. The right

end of the last clause is connected to a Existential goal location.

A race gadget is connected to the right end of the last variable gadget, with the goal

locations such that Player 1 is the player with a win gadget inside the last variable gadget.

The path with a Existential win gadget, which Universal will walk down, is followed by

𝐶(18𝐶 + 6𝑉 + 1) + 2 of single-use paths in series leading to a Universal win gadget. The

other path, which Existential will walk down, is connected to the first clause gadget.

Both players begin at the left end of the first variable gadget, and Existential goes first.

The game begins with Existential choosing a branch of the first variable gadget, cor-

responding to a choice of variable, and Universal taking the other branch. Then Universal

chooses a branch of the second variable gadget, choosing the assignment of the variable based

on the path Existential is forced to take. The players continue to take turns assigning vari-

ables. If either player deviates from this, such as by going into the delay in a clause gadget

or by going backwards along another path, the other player will reach the race gadget first

and win; the delay in clause gadgets is long enough to ensure that they do not have time

to get through the clause gadget before losing. Otherwise both players arrive at the race

gadget, and are sent down different branches.
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P2 win

Figure 3-8: A variable gadget. The players arrive at the left, each take one path across, and exit
at the right.

Existential then proceed through each clause in series. Each branch of a clause is

traversable if and only if the corresponding literal is true (since Existential took the bottom

side and Universal took the top side of each clause). The single-use paths between forks

ensure that Existential cannot do anything other than progress through each clause gad-

get. If the formula is satisfied, Existential has a path through the clauses, and wins after

𝐶(18𝐶 + 6𝑉 + 1) turns. If the formula is not satisfied, Universal, who is walking down their

long path, wins after slightly longer. Thus Existential has a forced win if and only if the

quantified formula is true.

Lemma 96. 2-player motion planning with the single-use one-way gadget isPSPACE-

complete.

Proof. We again reduce from QBF. In the reduction in Lemma 95, neither player ever has

to move through a single-use gadget to the left. Thus we can replace each bidirectional

single-use gadget with a one-way single-use gadget pointing to the right, and the reduction

still works.

Corollary 97. 2-player motion planning with any nontrivial DAG gadget isPSPACE-

complete.

Proof. As noted in Section 2.3 all DAG gadgets contain a single-use transition. This can be

bidirectional or one-way, which are both shown to bePSPACE-hard in Lemmas 95 and 96.

Containment inPSPACE is given by Lemma 94.
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Figure 3-9: A clause gadget. Each literal is also part of a variable gadget. Each branch has a
long series of gadgets so that it takes a large amount of time to traverse.

P2 win

P1 win 

Figure 3-10: A race gadget. If Player 1 arrives at the left immediately before Player 2, each
player ends up on one of the right exits. Otherwise, the player who arrives first wins.
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3.3.2 Team Bounded Motion Planning

In this section we characterize the complexity of team imperfect information motion planning

games with DAG gadgets. Since DAG gadgets are inherently bounded, the problem is in

NEXPTIME, shown in Lemma 98. We go on to show in Lemma 99 that any nontrivial

DAG gadget is NEXPTIME-complete by first giving a reduction from dependency quantified

boolean formula (DQBF) for the single-use gadget. We then show that this proof adapts for

single-use one-way gadgets. Since all DAG gadgets with at least one transition contain at

least one of these, we achieve hardness for all such DAG gadgets.

Lemma 98. Team motion planning with any set of DAG gadgets is in NEXPTIME.

Proof. A partial history for a player is the sequence of visible gadget states and moves

made by that player, up to some point in the game. A strategy is a family of functions, one

for each Existential player, that assign to each possible partial history a legal move from the

position at the end of the partial history.

Since the gadget is a DAG, the game lasts a polynomial number of turns. Each player

has polynomially many choices for each move, so there are only exponentially many possible

sequences of moves, and only exponentially many possible partial histories for each player.

Thus a strategy can be written in an exponential amount of space.

To determine whether Existential has a forced win in the team game, first nondeterminis-

tically pick a strategy. Then, for each possible sequence of moves the Universal players could

make, simulate the game with the Existential players following the strategy. If Universal

ever wins, reject; if Existential always wins, accept. This nondeterministic algorithm accepts

if and only if there is some strategy Existential can use to force a win. The algorithm runs

in exponential time because there are exponentially many sequences of moves the Universal

players might make, and the game for each such sequence takes a polynomial amount of

time to simulate. Thus the algorithm decides the team game on systems of the gadget in

NEXPTIME.

Lemma 99. Team motion planning with the single-use bidirectional gadget is NEXPTIME-

complete.
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Proof. Containment in NEXPTIME follows from Lemma 98. For NEXPTIME-completeness,

we reduce from dependency quantified boolean formulas (DQBF). See Appendix 1.4.2 for

a definition of DQBF. In this reduction Existential represents the existential variables and

Universal represents the universal variables.

The reduction uses the same gadgets as that in Lemma 95, except that the clause gadget

is modified as in Figure 3-11. This allows the Existential player checking the formula to

try each literal, and return to the start of the clause gadget if the literal is false. This is

necessary because the Existential player cannot see the state of the literals until arriving

at them. For variable gadgets, we do not include the portion with a win gadget for Player

2 (the rightmost quarter or so in Figure 3-8), since we no longer want players to alternate

choosing variables.

We construct the system of gadgets as follows. The overall structure is shown in Figure 3-

12. For each set of variables 𝑥⃗1, 𝑥⃗1, 𝑦⃗1, and 𝑦⃗2, there is a corresponding set of variable

gadgets (without the win gadget component) connected in series, followed by a race gadget.

For simplicity, we will put 𝐶 forks in each branch of each variable, where the formula has

𝐶 clauses, though usually we need far fewer. Then each variable gadget takes 𝑘 = 3𝐶 + 1

turns to traverse. We call the top path of a race gadget the fast exit and the bottom path

the slow exit, since (in normal play) the first (second) player to arrive leaves through the

fast (slow) exit. It will become clear which player each win gadget in a race gadget is for.

The turn order will be 𝑈 , then 𝐸1, then 𝐸2. Both 𝑈 and 𝐸1 start at the beginning of the

variable gadgets for 𝑥⃗1. 𝐸2 starts next to a delay line of length 𝑑1. The fast exit of the race

gadget for 𝑥⃗1 and the end of this delay line both connect to the beginning of the 𝑥⃗2 variable

gadgets. The slow exit connects to a delay line of length 𝑑2. The end of this delay line and

the fast exit of the 𝑥⃗2 race gadget connect to the beginning of the 𝑦⃗1 variable gadgets, and

the slow exit connects to a delay line of length 𝑑3. The end of this delay line is connected

to the slow exit of the 𝑦⃗1 race gadget and the beginning of the 𝑦⃗2 variable gadgets. The fast

exit of the 𝑦⃗1 race gadget is connected to yet another delay line of length 𝑑4. The slow exit

of the 𝑦⃗2 race gadget is connected to a long delay line of length 𝑑5 followed by a win gadget
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for 𝑈 , and the fast exit is connected to a longer delay line of length 𝑑5 + 3.

This all serves to accomplish the following. First, 𝑈 chooses the assignment for 𝑥⃗1

accompanied by 𝐸1, so 𝐸1 learns the assignment. Then 𝑈 and 𝐸1 are separated, and 𝑈

assigns 𝑥⃗2 accompanied by 𝐸2. Next, 𝐸1 chooses 𝑦⃗1 accompanied by 𝑈 , and finally 𝐸2

chooses 𝑦⃗2 accompanied by 𝑈 . The delays 𝑑1 through 𝑑4 are chosen so that the Existential

players arrive at exactly the right time; we have 𝑑1 = |𝑥⃗1|𝑘 + 1, 𝑑2 = |𝑥⃗2|𝑘 − 1, 𝑑3 = |𝑦⃗1|𝑘,

and 𝑑4 = |𝑦⃗2|. If a player deviates during variable assignment, they will arrive at their next

race gadget too late, and lose.

The end of the final delay line for 𝐸1, of length 𝑑4, is connected to the first clause gadget,

and the clause gadgets are connected in series corresponding to the clauses of the formula.

The delay lines in each branch of each clause gadget have length 𝑉 𝑘, where 𝑉 is the number

of variables; this ensures that if a player enters one of the delay lines during variable selection,

an opponent will reach a race gadget and win before they accomplish anything. The end of

the last clause gadget is connected to a win gadget for 𝐸1. When 𝐸1 reaches each clause

gadget, they try the literals one at a time. When they cross the delay line to the fork, if

the fork is traversable, they move on to the next clause. Otherwise they return through the

other delay line and try the next literal. Each clause takes up to 6𝑉 𝑘 + 1 turns to cross.

If the formula is satisfied, 𝐸1 eventually gets through all the clauses and wins. Otherwise,

𝑈 wins after walking through their delay line of length 𝑑5, which we can set to 𝐶(6𝑉 𝑘+1)+1.

We have seen that no player or team can benefit by deviating from normal play, and

normal play is equivalent to the game corresponding to the DQBF. Thus Existential has a

forced win if and only if the DQBF is true.

Lemma 100. Team motion planning with the single-use one-way gadget is NEXPTIME-

complete.

Proof. The reduction in Lemma 99 still works when we replace each single-use bidirectional

gadget with a one-way bidirectional gadget. We have to be a bit more careful than in

Lemma 96: of the two paths in a clause gadget from the beginning to a fork, we need one
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Figure 3-11: A clause gadget for team games. There are now two paths from the entrance of the
clause to each fork, so the Existential player traversing the clause can return if they discover the
fork is not traversable.

E1 start

U start x1 race
E2 start

delay

x2 race

delay

y1 race

delay

y2 race

delay clauses win

delay win

delay

Figure 3-12: The high-level structure of the DQBF reduction.
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path to point to the right and the other to point to the left, allowing 𝐸1 to return from that

fork. All other gadgets point to the right.

Corollary 101. Team motion planning with any nontrivial DAG gadget is NEXPTIME-

complete.

Proof. Every DAG gadget has a single-use transition, which may be either bidirectional or

one-way. Both cases are shown to be NEXPTIME-hard in Lemmas 99 and 100. Containment

in NEXPTIME is Lemma 98.
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Chapter 4

Zero Player

In this chapter, we study the complexity of zero-player motion planning with deterministic

gadgets from several classes. In Section 4.1, we consider input/output gadgets with a single

input. In Section 4.2, we consider bounded gadgets and show P-completeness for some

classes of 𝑘-tunnel LDAG gadgets and input/output gadgets. Finally, in Section 4.3, we

consider unbounded 2-state input/output gadgets with multiple inputs, which are naturally

PSPACE-complete.

Work in this chapter on input/output gadgets is taken primarily from [9], done in collab-

oration with Joshua Ani, Erik Demaine, and Dylan Hendrickson. Work on 0-player LDAG

gadgets was done in collaboration with the 6.892 Open Problem Session.

In addition to the primary gadget under consideration in this section, we further allow the

merge gadget which is a 1-state, 3-location input-output gadget that has two transitions,

one from each of its two inputs to its single output. We often denote this gadget by simply

having two edges in the connection graph come together. Note that this gadget is not output-

disjoint or reversible. However, having some non-output-disjoint gadget is needed to allow

output disjoint gadgets to allow locations to be involved in more than a single cycle. The

merge gadget is also implicit in the switching graphs model of [34] which allows in-degree

greater than one.

A very simple, but useful gadget which can be constructed with the merge gadget is the
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dead-end gadget. This can be constructed by connecting an exit to a merge gadget which

then loops back to its other input. This will trap the agent indefinitely if the agent ever

reaches that exit.

For deterministic gadgets on tunnels, considered in Section 4.2, to have any hope of

hardness we need some way to have an out-degree greater than one. Thus we allow the

rotate gadget which is a 1-state, 3-location gadget with traversals from each location to the

next in a clockwise (or counterclockwise) order. This gadget is chosen for its simplicity and its

use in various other deterministic models which care about reversibility, such as asynchronous

ballistic reversible circuits [36] and time-reversible generalized Landon’s Ants [57]. For our

𝑘-tunnel gadgets we use the “bounce” model based on [36] for which agents will reverse

direction if they encounter an exit with no location in the connection graph or a location

with no available transition.1 For our results on input-output gadgets, we avoid ever having

this situation and thus the hardness constructions work regardless of how behavior in these

cases is defined.

We conclude this introduction with the simple lemma that will be used several times

which shows containment in PSPACE.

Lemma 102. Zero-player motion planning with any set of gadgets is in PSPACE.

Proof. In polynomial space, we can keep track of the current configuration of a system of

gadgets and current location of the robot. Thus we can simply simulate the zero-player

motion planning problem until either the robot reaches the goal location, the robot reaches

a dead-end, or it makes more transitions than there are configurations, and thus is stuck in

a cycle.

4.1 Zero-Player Single-Input Gadgets

In this section, we consider zero-player motion planning with deterministic single-input in-

put/output gadgets. If the gadgets are described (for concreteness, using transition graphs)
1It seems likely this was chosen to make the computation model conservative in addition to being re-

versible.
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as part of the instance, this is equivalent to the explicit zero-player reachability switching

games of [34]. In our language, [34] shows that zero-player motion planning with instance-

specified deterministic single-input input/output gadgets is NL-hard. As pointed out in [34],

the proofs in [41], which only considered ARRIVAL, also apply to explicit zero-player reach-

ability switching games. In our language, they show that zero-player motion planning with

instance-specified deterministic single-input input/output gadgets is in UP ∩ coUP (which

is contained in NP ∩ coNP).

We strengthen the NL-hardness result of [34] by showing that zero-player motion planning

with just the toggle switch is NL-hard. This is a straightforward modification of the proof of

NL-hardness in [34]; we present the full argument for completeness and to translate it to our

terminology. There is still a large gap between the lower bound of NL-hard and the upper

bound of UP ∩ coUP.

Theorem 103. Zero-player motion planning with the toggle switch is NL-hard.

Proof. We reduce from reachability in directed graphs, which is NL-complete. We first

replace every vertex 𝑣 with out-degree 𝑘 > 2 with a sequence of 𝑘 vertices each with out-

degree at most 2: if 𝑣 has edges to 𝑢1, . . . , 𝑢𝑘, we replace 𝑣 with 𝑣1, . . . , 𝑣𝑘 with edges 𝑣𝑖 → 𝑣𝑖+1

and 𝑣𝑖 → 𝑢𝑖, and edges to 𝑣 now go to 𝑣1. Next, remove any vertices with out-degree 1 by

setting their incoming edges to instead go to the target of their unique outgoing edge. Every

vertex now has out-degree exactly 2. This can be done in logarithmic space and does not

affect reachability.

Now we use a construction based on that in [34]. Let 𝑉 be the set of vertices in the

modified graph 𝐺, where we are interested in a path from 𝑠 to 𝑡. Our system of gadgets has

|𝑉 | toggle switches, named (𝑣, 𝑖) for 𝑣 ∈ 𝑉 and 1 ≤ 𝑖 ≤ |𝑉 |. For a vertex 𝑣 ̸= 𝑡 with edges

to 𝑢1 and 𝑢2 and 𝑖 < |𝑉 |, the outputs of (𝑣, 𝑖) are connected to the inputs to (𝑢1, 𝑖+ 1) and

(𝑢2, 𝑖 + 1). For 𝑣 ̸= 𝑡, both outputs of (𝑣, |𝑉 |) are connected to the input to (𝑠, 1). Finally,

for each 𝑖 both outputs of (𝑡, 𝑖) are connected to the goal location, which then leads back to

(𝑠, 1). The start location is the input to (𝑠, 1).

When it moves through this system, the robot follows paths 𝐺 starting from 𝑠 and counts
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the number of steps taken, resetting after |𝑉 | steps. If it reaches the goal location, it must

have entered (𝑡, 𝑖) for some 𝑖, and thus there is a path (of length 𝑖− 1) from 𝑠 to 𝑡.

The robot must enter (𝑠, 1) infinitely many times, so it must use each output of (𝑠, 1)

infinitely many times. By induction, it uses every toggle switch reachable from (𝑠, 1) infinitely

many times. If there is a path from 𝑠 to 𝑡 with length 𝑖 < |𝑉 |, then (𝑡, 𝑖 + 1) is reachable

from (𝑠, 1), so the robot reaches the goal location.

4.2 Zero-Player Bounded Gadgets

In this section we give a series of proofs showing the P-completeness of bounded deterministic

2-state input/output gadgets, as well as deterministic LDAG gadgets with distant-opening

or distant-closing tunnels and the rotate gadget. The reductions will all be from circuit

simulation and will primarily differ in the universal circuit we simulate.

Theorem 104. Zero-player motion planning with any bounded deterministic gadget is in P.

Proof. Let 𝑘 be the maximum number of state changes the gadget can make, and suppose we

have a system with 𝑛 copies of the gadget. Then gadget states can change at most 𝑘𝑛 times.

Between consecutive state-changes, the robot can visit each gadget at most once without

being in a loop, so consecutive state-changes are separated by at most 𝑛 traversals. Hence

after 𝑘𝑛2 traversals, the robot must be in a cycle which involves no state-changes. So we

can solve the problem in polynomial time by simulating the robot for 𝑘𝑛2 steps and seeing

whether it reaches the goal location by then.

Theorem 105. Zero-player motion planning with the switch/set-up line or the set-up switch/set-

up line is P-hard.

Proof. We provide a reduction to each of these problems from the problem of evaluating a

circuit with only NOR gates and fanout, which is P-complete [42]. The two reductions are

nearly identical: we present the reduction for the switch/set-up line, and the reduction for

the set-up switch/set-up line is the same with each gadget replaced. We shall see that the
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x y x NOR y x NOR y

Figure 4-1: A NOR gate for P-hardness of zero-player motion planning with the switch/set-up
line. If neither 𝑥 nor 𝑦 is set to true (up), the robot sets each 𝑥 NOR 𝑦 gadget to true.

robot never goes over a switch multiple times, so these two systems of gadgets behave the

same.

Our reduction builds a system of switch/set-up lines which has one gadget for each input

to a NOR gate; this gadget indicates whether the input is true or false, and is initially set

to false. The robot will evaluate each NOR gate in order by depth, setting the gadgets

for outputs of that gate to true if appropriate. This is accomplished with the gadget in

Figure 4-1. For each NOR gate, we build one of these gadgets, where 𝑥 and 𝑦 are the inputs,

and the gadgets labeled 𝑥 NOR 𝑦 are the outputs (and inputs of other NOR gates). There

are as many output gadgets as the fanout of this NOR gate. The entrance and exit to the

NOR-gate gadgets are connected in series, in order by depth.

To complete the construction, we place the start location at the entrance to the first

NOR gate. The exit of the last NOR gate enters a switch which holds the output of the final

NOR gate, and the goal location is the top output of that switch. Every switch/set-up line

starts in the down state except for those that correspond to true inputs to the circuit.

When the robot moves through this system of gadgets, in goes through each NOR gate

in order. If either 𝑥 or 𝑦 is set to true (i.e., in the up state), the robot leaves 𝑥 NOR 𝑦

false, but if 𝑥 and 𝑦 are both false, it goes through the set-up lines to set 𝑥 NOR 𝑦 true.

This correctly computes 𝑥 NOR 𝑦, and by induction it computes the value of the circuit. At

the end, the robot reaches the goal location if the value is true and gets stuck in a nearby

dead-end if the value is false.

Corollary 106. Zero-player motion planning with any bounded output-disjoint deterministic

2-state input/output gadget with multiple nontrivial inputs is P-complete.
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Proof. Lemma 61 tells us that every output-disjoint deterministic 2-state input/output gad-

get with multiple nontrivial inputs simulates either the switch/set-up line or the set-up

switch/set-up line. Combined with Theorem 107 we have our theorem.

Theorem 107. Zero-player bouncing motion planning with the rotate gadget, the merge

gadget, and a gadget containing either a door opening or a door closing is P-hard.

Proof. We provide a reduction to each of these problems from the problem of evaluating a

circuit. For door closing gadgets we will simulate NOR and fanout, and for door opening

gadgets we will simulate NOT, AND, and fanout [42].

Similar to the prior proof, we will use use whether the agent has crossed certain tunnels

and thus opened or closed doors as our circuit values. Figure 4-2 shows the construction of

a NOR gate from undirected door closing gadgets. If the agent has passed through either

the gadgets labeled 𝑥 or 𝑦 the corresponding top tunnel will be closed and the agent will

bounce off the closed tunnel continuing on without crossing the gadget labeled 𝑥 NOR 𝑦.

Figure 4-3 shows the construction of an AND gate from undirected door opening gadgets.

If the agent has passed through both the gadgets labeled 𝑥 and 𝑦 the corresponding top

tunnels will be opened and the agent will go through crossing the gadget labeled 𝑥 AND 𝑦.

Figure 4-4 shows the construction of a NOT gate from undirected door opening gadgets. If

the gadget labeled 𝑥 has been traversed, the agent will take the upper loop never crossing

NOT 𝑥. If it has not been traversed, the agent will bounce back then taking the lower loop

before taking the upper loop bouncing again and continuing to the out location.

Figure 4-5 shows how to adjust the construction if the door opening gadgets are directed.

The door closing gadgets can be adjusted in the same manner, and the NOT gadget works

in both the directed and undirected case.

As in the prior proof, we take an ordering of the gadgets which respects the topological

ordering of the gates in the circuit problem. We connect the IN and OUT lines in sequence

according to this ordering, and attach the start location to the first input and the goal

location after the opening/closing tunnel of the final circuit output. We also use another

rotate and a dead-end right before the final gadget, so if the agent bounces off this final
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IN x y
x AND y

OUT

Figure 4-2: A NOR gate for zero-player motion planning with an undirected door closing.

IN x y
x AND y

OUT

Figure 4-3: An AND gate for zero-player motion planning with an undirected door opening.

gadget (meaning the circuit evaluated to false) the agent will go into the dead end rather

than bouncing back to the start and potentially interacting with different gadgets on its

continued path.

Unfortunately, it is not clear whether gadgets with non-interacting tunnels are still in

NL in the zero-player model. Thus we do not have a full dichotomy for LDAG gadgets.
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X

NOT X

IN

OUT

Figure 4-4: A NOT gate for zero-player motion planning with an undirected door opening.

x y
x NOR y

IN

OUT

Figure 4-5: An AND gate for P-hardness of zero-player motion planning with an directed door
opening.

182



4.3 Unbounded Input/Output Gadgets

In this section, we consider zero-player motion planning with an unbounded output-disjoint

deterministic 2-state input/output gadget which has multiple nontrivial inputs. We show

that this problem is PSPACE-complete for every such gadget through a reduction from

Quantified Boolean Formula (QBF), to zero-player motion planning with the switch/set-

up line/set-down line, and by showing that every such gadget simulates the switch/set-up

line/set-down line. We also show that the switch/set-up line/set-down line (and thus every

unbounded output-disjoint deterministic 2-state input/output gadget with multiple non-

trivial inputs) can simulate every deterministic input/output gadget in zero-player motion

planning.

4.3.1 Edge Duplicators

Many of our simulations involve building an edge duplicator , shown in Figure 4-6. An

edge duplicator is a construction with two inputs 𝐴 and 𝐵 and two outputs 𝐴′ and 𝐵′, such

that the location the robot leaves corresponds to the location the robot enters, and these

two paths intersect. This allows us to place a set line or toggle line along the intersection,

making 𝐴 → 𝐴′ and 𝐵 → 𝐵′ both set lines or toggle lines which control the same gadget.

If we have access to an edge duplicator, we can duplicate tunnels in gadgets. Note that

this is not enough to duplicate switches, since we would have to account for both exits getting

duplicated.

A A'

B B'

Figure 4-6: The schematic of an edge duplicator. A robot entering at 𝐴 or 𝐵 exits at 𝐴′ or 𝐵′,
respectively, having gone over the central path. This duplicates the edge in the center.
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Figure 4-7: An edge duplicator for the switch/set-up line/set-down line. A robot entering on the
left sets the state of the switch, goes across the duplicated tunnel, and exits based on the state it
set the switch to.

4.3.2 PSPACE-hardness of the switch/set-up line/set-down line

In this section, we show that zero-player motion planning with the switch/set-up line/set-

down line is PSPACE-hard through a reduction from QBF. The switch/set-up line/set-down

line is a 2-state input/output gadget with three inputs: one sets the state to up, one sets it

to down, and one sends the robot to one of two outputs based on the current state.

Theorem 108. Zero-player motion planning with the switch/set-up line/set-down line is

PSPACE-hard.

Proof. We first build an edge duplicator, shown in Figure 4-7. This allows us to use gadgets

with multiple set-up or set-down lines.

Now we present a reduction from QBF. Given a quantified boolean formula where the

unquantified formula is 3-CNF, we construct a system of gadgets which evaluates the formula,

ultimately sending the robot to one of two locations based on its truth value. The system

consists of a sequence of quantifier gadgets, which set the values of variables, followed

by the CNF evaluation, which checks whether the formula is satisfied by a particular

assignment and reports this to the quantifier gadgets.

Each quantifier gadget has three inputs, called In, True-In, and False-In, and three out-

puts, called Out, True-Out, and False-Out. The robot will always first arrive at In. This

sets the variable controlled by that quantifier to true, and the robot leaves at Out, which
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sends it to the next quantifier gadget. Eventually the robot will return to either True-In or

False-In, depending on the truth value of the rest of the quantified formula with the variable

set to true. Depending on the result, the quantifier gadget either sends the robot to True-

Out or False-Out to pass this message to the previous quantifier gadget, or the quantifier

gadget sets its variable to false, and again sends the robot to the next quantifier. When it

gets a truth value in response the second time, it sends the appropriate truth value to the

previous quantifier. The last quantifier communicates with the CNF evaluation instead of

with another quantifier.

The universal quantifier gadget is shown in Figure 4-8. The chain of gadgets at the top

encode the state of the variable controlled by this quantifier, as has as many gadgets as there

are instances of the variable in the formula. The variable is true when they are set to the

“left” state and false when they are set to the “right” state.

When the robot enters In, it sets the variable to true and exits Out. If it then returns to

True-In, the first time it takes the bottom branch of the switch, sets that gadget to the up

state, sets the variable to false, and exits Out again. If it returns to True-In a second time,

that means the rest of the formula was true for both settings of the universally quantified

variable: it takes the top branch, resets that gadget to down, and exits True-Out. If after

either trial the robot enters at False-In, it resets the bottom gadget to the down state and

exits False-Out. This is the intended behavior of the universal quantifier: it reports true if

the result was true for both settings of the variable, and false otherwise.

The existential quantifier is identical except that True-Out and False-Out are swapped,

and True-In and False-In are swapped. It reports false if the result was false for both settings,

and true otherwise.

For CNF evaluation, we use the switches controlled by each quantifier to read the value

of a variable. For each clause, the robot passes through a switch corresponding to each of

the literals in the clause. If all three literals are false, it exits False-Out. Otherwise, it moves

on to the next clause, eventually exiting True-Out if all clauses are satisfied. This is shown,

for 3 clauses, in Figure 4-9. Ultimately, the robot exits True-Out or False-Out depending on
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Out

True-Out

False-Out

In

True-In

False-In

Figure 4-8: The universal quantifier for the switch/set-up line/set-down line. An edge duplicator
(Figure 4-7) is used to give the bottom gadget two set-down lines.

whether the formula is satisfied by the current assignment.

It follows by induction that for each quantifier, when the robot arrives at In, it will

eventually leave either True-Out or False-Out depending on the truth value of the portion

of the formula beginning with that quantifier under the assignment of the earlier quantifiers.

Thus, if the robot starts in the first quantifier at In, it reaches True-Out on the first quantifier

if and only if the formula is true.

4.3.3 Other gadgets simulate the switch/set-up line/set-down line

In this section, we show that every unbounded output-disjoint deterministic 2-state in-

put/output gadget with multiple nontrivial inputs simulates the switch/set-up/set-down.

We only need to show that the five other gadgets from Lemma 61 simulate the switch/set-
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True-Out

False-Out

In

Figure 4-9: Three clauses of CNF evaluation for the switch/set-up line/set-down line; each clause
is a row of three switches. The switches are part of gadgets in the quantifiers. We assume the top
exit of each switch corresponds to that literal being true; all literals are set to false in this image.

up/set-down. It follows that zero-player motion planning with any such gadget is PSPACE-

complete, since we can replace each gadget in a system of switch/set-up/set-down with a

simulation of it.

Toggle Switch/Toggle Switch. We begin with the toggle switch/toggle switch, which

will be a useful intermediate. It builds an edge duplicator, shown in Figure 4-10. We can

merge the two outputs of one of the toggle switches to simulate a toggle switch/toggle line,

and then duplicate the toggle line to make a gadget with one toggle switch and any number

of toggle lines.

By putting such gadgets in series, we can simulate a gadget with any number of toggle

lines and any number of toggle switches. Figure 4-11 shows this for three toggle lines and

three toggle switches, which is as large as we need. This simulated gadget can finally simulate

the switch/set-up line/set-down line, shown in Figure 4-12.
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Figure 4-10: An edge duplicator for the toggle switch/toggle switch. The tunnel on the left is
duplicated.

Figure 4-11: A simulation of three toggle lines and three toggle switches from gadgets with one
toggle switch and 5, 6, and 7 toggle lines. The red tunnels are toggle lines and the blue tunnels are
toggle switches.

Figure 4-12: A simulation of a switch/set-up line/set-down line from the gadget built in Figure 4-
11. Each component of the switch/set-up line/set-down line is made from one toggle line and one
toggle switch; the switch, set-up line, and set-down line are red, green, and blue, respectively.
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Toggle Switch/Toggle Line. We simulate the toggle switch/toggle switch using toggle

switch/ toggle lines, shown in Figure 4-13.

Figure 4-13: A simulation of a toggle switch/toggle switch from the toggle switch/toggle line.
Each color corresponds to one of the toggle switches.

Switch/Toggle Line. We first build an edge duplicator, shown in Figure 4-14. We can

then duplicate the toggle line and put one copy in series with the switch, constructing a

toggle switch/toggle line.

Figure 4-14: An edge duplicator for the switch/toggle line. The leftmost tunnel is duplicated.

Set-Up Switch/Toggle Line. We first build an edge duplicator, shown in Figure 4-15.

We then simulate the switch/toggle line, shown in Figure 4-16

Set-Up Switch/Set-Down Line. We simulate a set-down switch/toggle line (equivalent

to a set-up switch/toggle line) using the set-up switch/set-down line, as shown in Figure 4-17.
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Figure 4-15: An edge duplicator for the set-up switch/toggle line. The leftmost tunnel is dupli-
cated.

Figure 4-16: A simulation of the switch/toggle line using the set-up switch/toggle line. Red
corresponds to the switch and blue corresponds to the toggle line.

Toggle Switch/Set-Up Line. We simulate a set-up line/set-down switch using the toggle

switch/ set-up line, as shown in Figure 4-18; this is equivalent to a set-up switch/set-down

line.

These simulations, together with Lemma 61, give the following theorem.

Theorem 109. Every unbounded output-disjoint deterministic 2-state input/output gadget

with multiple nontrivial inputs simulates the switch/set-up line/set-down line.

Corollary 110. Let 𝐺 by an unbounded output-disjoint deterministic 2-state input/output

gadget with multiple nontrivial inputs. Then zero-player motion planning with 𝐺 is PSPACE-

complete.

Proof. Containment in PSPACE is given by Lemma 102. All of our simulations preserve

PSPACE-hardness: we can reduce from zero-player motion planning with the switch/set-up

line/set-down line (shown PSPACE-hard in Theorem 4.3.2) to zero-player motion planning

with 𝐺 by replacing each gadget in a system of switch/set-up line/set-down lines with a

simulation built from 𝐺. The resulting system of 𝐺 has the same behavior as the system of

switch/set-up line/set-down lines.
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Figure 4-17: A simulation of a set-down switch/toggle line using the set-up switch/set-down line.
When the agent is not inside the simulation, rightmost gadget is in the down state and the other
two gadgets are in opposite states encode the state of the simulated gadget. Red lines indicate the
toggle line: when the agent enters the bottom entrance, it takes one of the internal paths depending
on the state and exits the top exit, reversing the state of the left and middle gadgets. When it
enters the top entrance, it exits one of the bottom two exits and resets the state to down.

Figure 4-18: A simulation of a set-up line/set-down switch from the set-up line/toggle switch.
The state of the simulated gadget is the same as the state of the center gadget. The red path
corresponds to the set-up line. When it enters the set-down switch, the robot goes along the blue
lines if the state is down, the green lines if the state is up, and the black lines in both cases.

Universality of the switch/set-up line/set-down line

In this section, we show how to simulate an arbitrary deterministic input/output gadget using

the switch/set-up line/set-down line, and mention some corollaries of this result. Of particu-

lar note is Corollary 114 that in one-player motion planning, the switch/set-up line/set-down

line simulates every gadget.

Theorem 111. The switch/set-up line/set-down line simulates every deterministic input/output

gadget in zero-player motion planning.

Proof. We present simulations of gradually more powerful gadgets. First, the edge duplicator

191



Figure 4-19: A simulation of a 4-switch using the switch/set-up line/set-down line. Colors indicate
the outputs corresponding to set lines.

(Figure 4-7) lets us have any number of copies of the set-up and set-down lines.

Next, we simulate a generalization of the switch/set-up line/set-down line which call the

𝑘-switch. This gadget has 𝑘 states, 𝑘 lines which each set the gadget to a particular state,

and an input which does not change the state and sends the robot to one of 𝑘 locations

depending on the state. The switch/set-up line/set-down line is a 2-switch. The simulation

for 𝑘 = 4 is shown in Figure 4-19, and generalizes easily to arbitrary 𝑘: we need 𝑘−1 gadgets

connected in series, where the 𝑖th gadget has 𝑖 set-up lines and 𝑘 − 1 − 𝑖 set-down lines.

We now duplicate the large switch in a 𝑘-switch using the construction in Figure 4-20.

Thus the switch/set-up line/set-down line can simulate a gadget with any number of states,

any number of lines which set it to a particular state, and any number of inputs which send

the robot to different outputs depending on the state but do not change the state.

Finally, let 𝐺 be an arbitrary deterministic input/output gadget. If 𝐺 has 𝑘 states and

𝑚 input locations, we use a 𝑘-switch with 𝑚 copies of the switch to simulate 𝐺. The 𝑚

inputs lead directly to the 𝑚 switches. For each transition (ℓ, 𝑠) → (ℓ′, 𝑠′) of 𝐺, meaning

that when the robot enters at ℓ in state 𝑠, it exits and ℓ′ and changes the state to 𝑠′, we

connect the output taken in 𝑠 of the switch corresponding to ℓ to a line which sets the state

to 𝑠′, and connect the output of that line to ℓ′. This encodes the correct behavior for that

transition. Since 𝐺 is deterministic, there is only one such transition for each pair (ℓ, 𝑠),

so only connect each output of a switch to one input location, as required for zero-player

motion planning.

Corollary 112. Every unbounded output-disjoint deterministic 2-state input/output gadget
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Figure 4-20: Simulating a 4-switch which has three copies of the switch.

with multiple nontrivial inputs simulates every deterministic input/output gadget in zero-

player motion planning.

We can make very simple adaptations to these constructions to also show universality

for 1-player motion planning.

Corollary 113. The switch/set-up line/set-down line simulates every input/output gadget in

one-player motion planning (that is, we allow multiple input locations in the same connected

component of the connection graph, or equivalently allow branching hallways as described in

Section 2.5).

Proof. We use the same construction as in the proof of Theorem 111. If𝐺 is nondeterministic—

say it has multiple transitions when entering ℓ in state 𝑠—we will connect the output taken

in 𝑠 of the switch corresponding to ℓ to multiple input locations.

Corollary 114. In one-player motion planning, the switch/set-up line/set-down line simu-

lates every gadget.

Proof. Let 𝐺 be an arbitrary gadget. We construct a gadget 𝐺′ with the same states as

𝐺, locations ℓ𝑖𝑛 and ℓ𝑜𝑢𝑡 for each location ℓ of 𝐺, and a transition (ℓ𝑖𝑛, 𝑠) → (ℓ′
𝑜𝑢𝑡, 𝑠

′) for

each transition (ℓ, 𝑠) → (ℓ′, 𝑠′) of 𝐺. Clearly 𝐺′ is input/output: ℓ𝑖𝑛 and ℓ𝑜𝑢𝑡 are input and
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output locations, respectively. Thus by Corollary 113, the switch/set-up line/set-down line

simulates 𝐺′ in one-player motion planning. But 𝐺′ simulates 𝐺 simply by connecting both

ℓ𝑖𝑛 and ℓ𝑜𝑢𝑡 to ℓ.

Corollary 115. In one-player motion planning, every unbounded output-disjoint determin-

istic 2-state input/output gadget with multiple nontrivial inputs simulates every gadget.
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Chapter 5

Applications

In this chapter we show several applications of our framework. In Section 5.1 we show new re-

sults about variants of block pulling puzzles with gravity, ones with merging, and a simplified

proof that push-pull block puzzles are PSPACE-complete. In Section 5.2 we give PSPACE-

hardness proofs for eight 3D Mario games. In Section 5.3 we give PSPACE-completeness

proofs for more recent Zelda games. In Section 5.3.5 we give a PSPACE-completeness proof

for the puzzle game Trainyard which uses fewer features than prior work. In Section 5.4 we

show examples where this framework is able to simplify past proofs, including prior results

on SNES games and 2-player Mario Kart.

This framework has also been applied by other researchers to reconfiguring robotic swarms

with uniform global control. In this model, there are robots which exist in a 2D grid world

with obstacles and can simultaneously be given the same movement command which they

all execute. Global uniform control could show up in cases like manipulating ferromagnetic

particles using a strong uniform magnetic field. In [11] PSPACE-completeness is shown

when robots move maximally in a given direction, reducing from 1-player motion planning

with a 2-toggle. In [15] PSPACE-completeness is shown when robots move a single step in

a given direction, reducing from 1-player motion planning with a crossing toggle-lock. See

Section 2.2.6 for details on those gadgets.

Work in this section comes from [6,7,9,12,29] and was written in collaboration with Joshua
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Ani, Sualeh Asif, Jeffrey Bosboom, Michael Coulombe, Erik Demaine, Yevhenii Diomidov,

Isaac Grosof, Dylan Hendrickson, Lorenzo Najt, Mikhail Rudoy, Sarah Scheffler, and Adam

Suhl.

5.1 Block Pushing Puzzles

One interesting and well-studied case of motion planning problems, arising in warehouse

maintenance, is when a single robot with 𝑂(1) degrees of freedom navigates an environment

with obstacles, some of which can be moved by the robot (but which cannot move on their

own). Research in this direction was initiated in 1988 [63].

A series of problems in this space arise from computer puzzle games, where the robot is

the agent controlled by the player, and the movable obstacles are blocks. The earliest and

most famous such puzzle game is Sokoban, first released in 1982 [62]. Much later, this game

was proved PSPACE-complete [18,45]. In Sokoban, the agent can push movable 1×1 blocks

on a square grid, and the goal is to bring those blocks to target locations. Later research in

pushing-block puzzles considered the simpler goal of simply getting the robot to a target

location, proving various versions NP-hard, NP-complete, or PSPACE-complete [20,28,30].

In Sections 5.1.2 and 5.1.3, we study the Pull series of motion-planning problems [50,53],

where the agent can pull (instead of push) movable 1 × 1 blocks on a square grid. In

Section 5.1.1 we show an alternate proof of the PSPACE-completeness with push-pull

where the agent can both push and pull the movable blocks. Figure 5-1 shows a simple

example. This type of block-pulling mechanic (sometimes together with a block-pushing

mechanic) appears in many real-world video games, such as Legend of Zelda, Tomb Raider,

Portal, and Baba Is You. In Section 5.1.4 we show PSPACE-completeness for the puzzle

game Sokobond which is a block pushing puzzle game where blocks are able to bond into

larger polyominoes.

The work in this section comes from [29] and [6] written in collaboration with Joshua

Ani, Sualeh Asif, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, Scheffler, Sarah

and Adam Suhl.
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(a) Initial state (b) A strength-1 move

Figure 5-1: A pulling-block problem. The robot is the agent, the flag is the goal square, the
light gray blocks can be moved, and the bricks are fixed in place. Robot and flag icons from Font
Awesome under CC BY 4.0 License.

We study several different variants of Pull, which can be combined in arbitrary combi-

nation:

1. Optional/forced pulls: In Pull!, every agent motion that can also pull blocks

must pull as many as possible (as in many video games where the player input is just

a direction). In Pull?, the agent can choose whether and how many blocks to pull.

Only the latter has been studied in the literature, where it is traditionally called Pull;

we use the explicit “?” to indicate optionality and distinguish from Pull!.

2. Strength: In Pull-𝑘, the agent can pull an unbroken horizontal or vertical line of up

to 𝑘 pullable blocks at once. In Pull-*, the agent can pull any number of blocks at

once. Similarly with Push-𝑘 the agent is able to push up to 𝑘 blocks in a row.

3. Fixed blocks/walls: In Pull-F, the board may have fixed 1 × 1 blocks that cannot

be traversed or pulled. In the Pull-W, the board may have fixed thin (1 × 0) walls;

this is more general because a square of thin walls is equivalent to a fixed block. Thin

walls were introduced in [23].

4. Gravity: In Pull-G, all movable blocks fall downward after each agent move. Gravity

does not affect the agent’s movement.

Table 5.1 summarizes our results for block pulling with gravity: for all variants that in-

clude fixed blocks or walls, we prove PSPACE-completeness for any strength, with optional

or forced pulls, and with or without gravity, with the exception of Pull?-1FG for which we

only show NP-hardness.
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Problem Forced Strength Features Our result
Pull?-1WG no 𝑘 = 1 thin walls PSPACE-complete [§5.1.2]
Pull?-𝑘FG no 𝑘 ≥ 2 fixed blocks PSPACE-complete [§5.1.2]
Pull?-*FG no ∞ fixed blocks PSPACE-complete [§5.1.2]
Pull!-𝑘FG yes 𝑘 ≥ 1 fixed blocks PSPACE-complete [§5.1.3]
Pull!-*FG yes ∞ fixed blocks PSPACE-complete [§5.1.3]

Table 5.1: Summary of results on pulling blocks with gravity.

The only previously known hardness result for this family of problems is NP-hardness

for both Pull?-𝑘F and Pull?-*F [53]. In some cases, our results are stronger than the best

known results for the corresponding Push (pushing-block) problem; see [50]. More complex

variants PullPull (where pulled blocks slide maximally), PushPull (where blocks can

be pushed and pulled), and Storage Pull (where the goal is to place multiple blocks into

desired locations) are also known to be PSPACE-complete [23,50].

In Section 5.1.2, we prove PSPACE-completeness of most variants with gravity, including

all variants with forced pulling and variants with optional pulling and either thin walls or

fixed blocks with 𝑘 ≥ 2. These reductions are from 1-player planar motion planning with

the nondeterministic locking 2-toggle, from Section 2.2.5 and the 3-port self-closing

door , Section 2.9.2. In Section 5.1.3, we prove NP-hardness for the one remaining case of

Pull?-1FG, using the NAND gadget, Section 2.3.8.

Lemma 116. Every block-pushing puzzles are in PSPACE.

Proof. The entire configuration while playing on instance of a block-pushing problem can

be stored in polynomial space (e.g., as a matrix recording whether each cell is empty, a

fixed block, a movable block, the agent’s location, or the finish tile). There is a simple

nondeterministic algorithm which guesses each move and keeps track of the configuration

using only polynomial space, accepting if the agent reaches the goal square. Thus the problem

is in NPSPACE, so by Savitch’s Theorem [54] it is also in PSPACE.
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5.1.1 Push-Pull Block Puzzles

In this section, we use the results in thesis to provide a simple proof that a Sokoban variant

called PushPull-1F is PSPACE-hard, by reducing from motion planning in planar systems of

locking 2-toggles (Section 2.2.4). This problem, and many related problems, were considered

in [23] and were shown to be PSPACE-complete in [50] by a reduction from nondeterministic

constraint logic; our reduction is much more straightforward using the infrastructure of the

gadget framework.

Definition 117. In PushPull-1F, there is a square grid containing movable blocks, fixed

blocks, an agent, and a goal location. The agent can freely move through empty squares, but

ca not move through blocks. The agent can push or pull one movable block at a time. The

agent wins by reaching the goal location. The corresponding decision problem is whether a

given instance of PushPull-1F is winnable.

In the notation “PushPull-1F,” “PushPull” indicates that the agent can both push and

pull, “1” indicates the number of blocks which can be moved at a time, and “F” indicates

the existence of fixed blocks [24].

Theorem 118 ( [50]). PushPull-𝑘F is PSPACE-hard for 𝑘 ≥ 1.

Proof. We reduce from 1-player planar motion planning with locking 2-toggles, shown PSPACE-

complete in Theorem 12. The (planar) connection graph is implemented using tunnels built

with fixed blocks, and the agent and target location are placed appropriately. It suffices to

build a gadget which behaves as a locking 2-toggle.

Such a gadget is shown in Figure 5-2. The two tunnels, currently both traversable, go

from top to left and right to bottom. They interact in the center, where traversing either

tunnel requires pushing a block into the middle square, which blocks the other tunnel. This

is surrounded by four 1-toggles, which prevent additional traversals which are not possible

in a locking 2-toggle. Each 1-toggle is a room with 3 blocks, which can only be entered on

one side. Upon entry, the agent can move the blocks to reveal the other exit, but doing so

requires blocking the entrance taken, which flips the 1-toggle.

199



Figure 5-2: A locking 2-toggle in PushPull-1F.

5.1.2 Pulling Block with Gravity

In this section, we show PSPACE-completeness results for most of the pulling-block vari-

ants with gravity. In Section 2, we introduce and prove results about 1-player motion

planning from the motion-planning-through-gadgets framework introduced in [26], which

will be the basis for the later proofs. In Section 5.1.2, we show PSPACE-completeness for

Pull?-𝑘FG with 𝑘 ≥ 2, for Pull?-*FG, for Pull?-𝑘WG with 𝑘 ≥ 1, and for Pull?-*WG.

In Section 5.1.3, we show PSPACE-completeness for Pull!-𝑘FG with 𝑘 ≥ 1, and for
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Figure 5-3: 1-toggle in Pull?-2FG.

Pull!-*FG. The one case missing from this collection is Pull?-1FG, which we prove NP-

hard later in Section 5.1.3.

Pull?-𝑘FG

In this section, we show that several versions of pulling-block problems with optional pulling

and gravity are PSPACE-complete by a reduction from 1-player motion planning with

nondeterministic locking 2-toggles, shown PSPACE-hard in Section 2.2.5.

We begin with a construction of a 1-toggle, and then use those and an intermediate

construction to build a nondeterministic 2 toggle.

1-toggle. A 1-toggle is a gadget with a single tunnel, traversable in one direction. When

the agent traverses it, the direction that it can be traversed is flipped, meaning that the

agent must backtrack and return the way it came in order to be able to traverse it the first

way again.

Our 1-toggle construction in Pull?-𝑘FG for 𝑘 ≥ 2 is shown in Figure 5-3. In the state

shown, it can only be traversed from left to right by pulling both blocks to the left. This

traversal flips the direction that the gadget can be traversed—it can now only be traversed

from right to left.

Nondeterministic Locking 2-toggle. Our construction of a nondeterministic locking

2-toggle, shown in Figure 5-4, uses two 1-toggles plus a connecting section at the top.
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Figure 5-4: Locking 2-toggle in Pull?-2FG.
Figure 5-5: Locking 2-toggle in
Pull?-1WG.

The configuration shown in Figure 5-4 is a leaf state. The right tunnel is traversable

from to right to bottom right. If the agent traverses that tunnel, it can choose whether to

pull the top pair of blocks to the right (because pulling is optional), corresponding to the

nondeterministic choice in the nondeterministic locking 2-toggle. Both 1-toggles will be in

the state where they can be traversed from bottom (outside) to top (inside). One of these

paths will be blocked by the top pair of blocks and the other will be traversable, depending

on whether the agent chose to pull those blocks. Traversing the traversable path then puts

the gadget in a leaf state, either the one shown or its reflection.

It is possible for the agent to pull only one block instead of two, but this can only prevent

future traversals, so never benefits the agent.

Theorem 119. Pull?-𝑘FG is PSPACE-complete for 𝑘 ≥ 2 and 𝑘 = *.

Proof. Lemma 116 gives containment in PSPACE. For hardness, we reduce from 1-player

planar motion planning with the nondeterministic locking 2-toggle, shown PSPACE-hard

in Theorem 13. We embed any planar network of gadgets in a grid, and replace each

nondeterministic locking 2-toggle with the construction described above in the appropriate

state. The resulting pulling-block problem is solvable if and only if the motion planning

problem is.

This reduction works for Pull?-𝑘FG for any 𝑘 ≥ 2 including 𝑘 = *, because the player

only ever has the opportunity to pull 2 blocks at a time. This proof requires optional pulling
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because the player must choose whether to pull blocks while traversing a nondeterministic

locking 2-toggle.

Corollary 120. Pull?-𝑘WG is PSPACE-complete for 𝑘 ≥ 1 and 𝑘 = *.

Proof. With thin walls, the tunnels can be separated by a thin wall instead of a fixed block,

which means that only one block is required in each of the toggles. This is shown in Figure 5-

5. The rest of the proof follows in the same manner, demonstrating PSPACE-completeness

of Pull?-𝑘WG for 𝑘 ≥ 1.

5.1.3 Pull!-𝑘FG

In this section, we show PSPACE-completeness for pulling-block problems with forced

pulling and gravity, using a reduction from 1-player planar motion planning with the 3-

port self-closing door, shown PSPACE-hard in Theorem 80.

Theorem 121. Pull!-𝑘FG is PSPACE-complete for 𝑘 ≥ 1 and 𝑘 = *.

Proof. Lemma 116 gives containment in PSPACE. We show PSPACE-hardness by a re-

duction from 1-player planar motion planning with the 3-port self-closing door. It suffices

to construct a 3-port self-closing door in Pull!-𝑘FG.

First, we construct a diode, shown in Figure 5-6. The agent cannot enter from the right.

If the agent enters from the left, it must pull the left block to the left to advance. If it pulls

the left block left and then exits, they still cannot enter from the right, so doing so is useless.

The agent then advances and is forced to pull the left block back to its original position.

The agent then must pull the right block left to advance, and must actually advance because

the way back is blocked. As the agent exits the gadget, it is forced to pull the right block

back to its original position. Therefore, the agent can always cross the gadget from left to

right and never from right to left, simulating a diode.

Using this diode, we then construct a 3-port self-closing door, shown in Figure 5-7; the

diode icons indicate the diode shown in Figure 5-6. The bottom is exit-only. In the closed

state, the agent should not enter from the top because it would become trapped between a
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Figure 5-6: A diode in Pull!-𝑘FG.

(a) Closed (b) Open

Figure 5-7: A 3-port self-closing door in Pull!-𝑘FG.

block and the wrong end of a diode. The agent can enter from the right, pull the block 1

tile right, and leave, opening the gadget. In the open state, the agent can enter from the top

and exit out the bottom, and is forced to pull the block back to its original position, closing

the gadget. So this construction simulates a 3-port self-closing door.

Because the player never has the opportunity to pull multiple blocks, this reduction works

for all 𝑘 ≥ 1 including 𝑘 = *.

Pull?-1FG is NP-hard

In this section, we show NP-hardness for Pull?-1FG by reducing from 1-player planar

motion planning with the crossing NAND gadget from [7]. A crossing NAND gadget is

a three-state gadget with two crossing tunnels, where traversing either tunnel permanently

closes the other tunnel. 1-player planar motion planning with the crossing NAND gadget

is NP-hard in [7, Lemma 4.9] based on the constructions in [20, 37] which originally reduce

from Planar 3-Coloring.

Theorem 122. Pull?-1FG is NP-hard.
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≡

Figure 5-8: Single-use one-way gadget that initially allows traversal from left-to-right and then
prevents traversal in both directions.

Proof. We reduce from 1-player planar motion planning with the crossing NAND gadget [7,

Lemma 4.9]. First we first construct a “single-use” one-way gadget, shown in Figure 5-8.

This gadget can initially can be crossed in one way, but then becomes impassable in both

directions.

Figure 5-9 shows our construction of the crossing NAND gadget. Single-use one-way

gadgets enforce that the agent must enter through one of the top paths. The agent must

pull two blocks to enter the gadget; these blocks end up stacked in the vertical tunnel on

top of the block below. The agent cannot exit via the bottom tunnel underneath its entry

tunnel: the agent can pull one block into the slot on the bottom, and then can pull one block

one square, but that still leaves the third block of the stack blocking off the exit path. The

agent cannot exit via the other top path, because it is blocked by the single-use one-way

gadget. The only path remaining is for the agent to cross diagonally by pulling the single

block in the lower layer into the slot, revealing a path to the exit opposite where the agent

entered. After leaving, both the entry tunnel and exit tunnel are impassable because the

single-use one-way gadgets have become impassable. If the agent later enters via the other

entry tunnel, the agent will be trapped, because it will not be able to leave via the tunnel

that was “collapsed” in the initial entry.

5.1.4 Sokobond

Sokobond [43] is a 2D block pushing game where the blocks are atoms/molecules. Movement

is discrete along a square grid. The player starts as a single atom. Each atom except He has
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Figure 5-9: Crossing NAND gadget allowing traversal either from the top-left to the bottom-right,
or from the top-right to the bottom-left. After being traversed once, the entire gadget becomes
impassable in any direction.

some number of free electrons (H has 1, O has 2, N has 3, C has 4). When two atoms that

both have free electrons are adjacent, they both lose a free electron and bond into a molecule.

Molecules are rigid, so pushing an atom in a molecule results in the entire molecule moving.

Atoms/molecules can also push each other.

Sokobond with He atoms is trivially NP-hard as it includes Push-* [20]. We show

PSPACE-hardness even without He atoms:

Theorem 123. Completing a level in Sokobond with H and O atoms is PSPACE-hard.

Proof. We reduce from 1-player planar motion planning with a door that is not the Case 8:

OTtocC door and use Theorem 86.

Let the player start as an H atom trying to reach another H atom. We can simulate a

door that is not the Case 8: OTtocC door as shown in Figure 5-10. To open the door, the

player pulls down on the big molecule. The player can go through the traverse tunnel if and

only if the molecule is down. When going through the closing tunnel, the player is forced to

push up on the molecule, closing the traverse tunnel. The molecule used to simulate a door

has no free electrons, so the level can be completed if and only if the player can reach the

other H atom.
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Figure 5-10: Simulation of a door in Sokobond. The opening port is at the bottom left. The
traverse tunnel is undirected and runs between the top left and the top right. The closing tunnel
is undirected and runs between the middle right and the bottom right.

5.2 3D Mario Games

Super Mario Bros. is one of the most famous games of all time and its computational

complexity has been studied in [5] and [32], culminating in a proof of PSPACE-hardness.

We continue this line of inquery moving from the classic SNES games of previous papers

to more recent 3D Mario games. The reductions give examples of simple proofs using the

symmetric self-closing door from Section 2.8. These results come from [7] coauthored with

Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yevhenii Diomidov, and Dylan Hendrickson.

The proofs come primarily from work by Joshua Ani.

5.2.1 Super Mario 64/Super Mario 64 DS

Super Mario 64 is a 3D Mario game for the Nintendo 64 where Mario collects Stars from

courses inside paintings to save the princess, who is trapped behind a painting. Super Mario

64 DS is a remake of Super Mario 64 for the Nintendo DS (still in 3D), featuring the same

courses as in Super Mario 64 plus new courses, as well as the ability to play as characters

other than Mario. In this reduction, we will primarily make use of quicksand, which will

defeat Mario if he lands in it, and the ghost enemy Boo.
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The Boo is an enemy that (with normal parameters) chases Mario if he is looking away

from it and is less than a certain distance away. Once Mario gets too far, the Boo moves

back to its original position. Unlike most enemies, jumping on a Boo does not kill it, but

instead sends it a short distance forward or backward, which we will use to help Mario cross

the quicksand. Some walls stop the Boo but it can go through certain walls that normal

Mario cannot go through, we call these Boo-only walls. The Boo is also unable to go through

doors. We also make use of one-way walls which Mario and the Boo can go through in one

direction but not the other.

For the setup, we use one Boo in Super Mario 64 DS and two Boos in Super Mario 64.

Performing a kick while in the air sends Mario a short distance up and can normally only

be performed once per jump. But Mario can kick after jumping on a Boo in Super Mario

64 DS even if he already kicked, allowing him to jump on the same Boo. This is not true in

Super Mario 64, so jumping on a second Boo is necessary to stall long enough to jump on

the first Boo again.

Theorem 124. Collecting a Star in a Super Mario 64/Super Mario 64 DS course is PSPACE-

hard assuming no course size limits.

Proof. We reduce from 1-player motion planning with the symmetric self-closing door (The-

orem 77), where the target to reach is a Star. The simulation is shown in Figure 5-11.

In the setup below, Mario goes from port 1 to port 2 and opens the port 3 to port 4

traversal by going through the door on the bottom-left and hopping on the Boo(s) to the

top-left. Then Mario lets the Boo(s) chase him a little to turn the Boo(s), and hops on the

Boo(s) to push it into the top-right. Finally, Mario goes through the top-left door. Mario

cannot just jump to the other side because the distance is too far. He also cannot go into

the traverse path because of the Boo-only wall. The Boo(s) will try to go back to its home,

but cannot because it is stuck behind a 1-way wall and a regular wall. If Mario does not

move the Boo(s) to the top-right, it still cannot get back to its home because of a different

1-way wall, so Mario cannot leave the port 1 to port 2 traversal open.

Mario goes from port 3 to port 4 by going through the top-right door and hopping on

208



Ground

Quicksand

Door

1-Way Wall

Boo-Only Wall

Path

Boo

1

2 3

4

Wall

Figure 5-11: Simulation of a symmetric self-closing door in Super Mario 64 DS. In Super Mario
64, there are 2 Boos instead of 1. The ground and quicksand are on the same vertical level. The
room is covered by a ceiling. The hallways are too wide to wall jump across.

the Boo(s) to the bottom-right, then going through the bottom-right door. The Boo(s) will

go back to its original position at the bottom left on its own.

Mario cannot lure the Boo(s) away from the gadget because it is completely walled in

except for the doors, which the Boo(s) cannot go through.
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5.2.2 Super Mario Sunshine

Super Mario Sunshine is a 3D Mario game for the GameCube where Mario is falsely accused

of spreading graffiti and is forced to clean it up before he can leave. Like Super Mario 64,

this game includes one-way walls. This game features a new device, F.L.U.D.D., attached

to Mario’s back that allows him to spray water. Lily Pads float on water; the player can

ride a Lily Pad and cause it to move by spraying water in the opposite direction. Sludge is

an environmental hazard which kills Mario if he touches it. The general goal of a level is to

collect Shrine Sprites.

Theorem 125. Collecting a Shine Sprite in a Super Mario Sunshine level is PSPACE-hard

assuming no level size limits.

Proof. We reduce from 1-player motion planning with the symmetric self-closing door (The-

orem 77), where the target to collect is a Shine Sprite. The simulation of a symmetric

self-closing door is shown in Figure 5-12.

The thin water above the sludge prevents the Lily Pad from disintegrating, while pre-

venting Mario from crossing without using the Lily Pad. Mario goes from port 1 to port 2

and opens the port 3 to port 4 traversal by crossing the 1-way wall and riding the Lily Pad

across, then moves the Lily Pad partially across the slit so it can be accessed from the other

side. He cannot leak to the section between port 3 and port 4 because the slits are too thin.

The sludge is too long to simply jump to the other side, so the Lily Pad is needed. Mario

cannot do anything from port 2 because the 1-way wall blocks him from going to port 1.

Mario goes from port 3 to port 4 in a similar manner.

5.2.3 Super Mario Galaxy

Super Mario Galaxy is a 3D Mario game for the Wii where Mario goes to space. He en-

counters alien creatures along the way and collects Power Stars to restore the power of a

spaceship. The game features downward gravity, upward gravity, sideways gravity, spherical
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Figure 5-12: Simulation of a symmetric self-closing door in Super Mario Sunshine. The slits allow
the Lily Pad to cross without allowing bulky Mario to do so. The hallways are too wide to wall
jump across.

gravity, cubical gravity, tubular gravity, cylindrical gravity that allows infinite freefall, W-

shaped gravity, gravity that cannot make up its mind, and most importantly, controllable

gravity.

Dark matter disintegrates Mario when he touches it, resulting in death. The Gravity

Switch changes the direction of gravity when spun and can be spun multiple times.

Theorem 126. Collecting a Power Star in a Super Mario Galaxy galaxy is PSPACE-hard

assuming no galaxy size limits.
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Figure 5-13: Simulation of a symmetric self-closing door in Super Mario Galaxy. This is a side
view and is essentially 2-dimensional.

Proof. We reduce from 1-player motion planning with the symmetric self-closing door (The-

orem 77), where the target to collect is a Star. The simulation of a symmetric self-closing

door is shown in Figure 5-13.

The Gravity Switch in this construction switches gravity between down and up. Mario

goes from port 1 to port 2 by crossing the 1-way wall and hitting the Gravity Switch on his

way to the right. This is forced because of a pit of dark matter, and closes the port 1 to port

2 traversal because when gravity points up, attempting the traversal would land Mario on

dark matter. At the same time, it opens the port 3 to port 4 traversal. Mario cannot enter

port 2 and do anything useful because flipping the Gravity Switch means falling in the pit

of dark matter. Mario goes from port 3 to port 4 in a similar manner.

5.2.4 Super Mario Galaxy 2

Super Mario Galaxy 2 is the sequel of Super Mario Galaxy (also for the Wii) which features

new galaxies. Although similar in gameplay, each game has some objects which do not

appear in the other. This reduction is very similar to that in Section 5.2.2 with the Lily Pad

and sludge.

The Leaf Raft is a raft that floats on water and that can be moved by standing on its

edge. Lava is an environmental hazard which damages Mario. Unrealistically, we can have a

thin layer of water on top of a layer of lava. Finally, an electric fence is another environmental

hazard which damages Mario but will allow the Leaf Raft to pass through it.

212



Theorem 127. Collecting a Power Star in a Super Mario Galaxy 2 galaxy is PSPACE-hard

assuming no galaxy size limits.

Proof. We reduce from 1-player motion planning with the symmetric self-closing door (The-

orem 77), where the target to collect is a Star. The simulation of a symmetric self-closing

door is shown in Figure 5-14. The Star is under a Daredevil Comet, making Mario have only

1 HP, so he cannot afford to bounce in the lava or shock-boost through an electric fence.

Mario goes from port 1 to port 2 and opens the port 3 to port 4 traversal by crossing the

1-way wall and riding the Leaf Raft across, then carefully making the Leaf Raft partially

cross the electric fence. He cannot move to the section between port 3 and port 4 because of

the electric fences. The lava is too long to simply jump to the other side, so the Leaf Raft

is needed. Mario cannot do anything from port 2 because the 1-way wall blocks him from

going to port 1. Mario goes from port 3 to port 4 in a similar manner.

5.2.5 Super Mario 3D Land and Super Mario 3D World

Super Mario 3D Land and Super Mario 3D World are 3D Mario games for the 3DS and

Wii U, respectively, that are based on the New Super Mario Bros. series instead of earlier

3D Mario games. Instead of collecting Shine Sprites or Stars, the player traverses a level to

reach the flagpole at the end. In addition, the player does not have a health bar but loses

their powerup or dies when taking damage. Levels have time limits.

The Switchboard is a platform that rides on tracks and contains two arrows. If Mario

steps on an arrow, the Switchboard goes in the direction of said arrow. Otherwise, the

Switchboard does not move. In Super Mario 3D World, the Switchboard can be controlled

by using the Wii U gamepad, but only if the Switchboard is visible. We also make use of a

pit deep enough that Mario cannot jump out.

Theorem 128. Reaching the flagpole at the end of a Super Mario 3D Land/World level is

PSPACE-hard assuming no level size limits and no time limit.
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Proof. We reduce from 1-player motion planning with the symmetric self-closing door (Theo-

rem 77), where the target to reach is the flagpole. The simulation of a symmetric self-closing

door is shown in Figures 5-15 and 5-16.

In the setup below, Mario goes from port 1 to port 2 and opens the port 3 to port 4

traversal by going through the tunnel, then riding the Switchboard to the other side making

sure it goes through the wall, then going through the tunnel on the other side. Mario cannot

move the Switchboard to the other side and then leave via port 1 because the pit is too wide

and the Switchboard cannot be moved without going through the (1-way) tunnel because

it is blocked by a wall. If the Switchboard is on the wrong side, it cannot be moved either

backward (because the path stops) or forward (because a wall then blocks the way). This

ensures that Mario can go from port 1 to port 2 if and only if the Switchboard is already

at port 1, and then the Switchboard must stay at port 2/port 3. Mario goes from port 3 to

port 4 in a similar manner.

5.2.6 Super Mario Odyssey

Super Mario Odyssey is a 3D Mario game for the Switch where Mario travels to different

kingdoms collecting Power Moons and eventually goes to the Moon. Mario has the ability

(via his hat Cappy) to capture certain enemies and objects to use their powers, but such

objects tend to reset position after being uncaptured, so we will not be using them here.

We make use of a Jaxi, poison, and timed platforms. A Jaxi is a statue lion that can be

ridden safely across poison, which is a hazard that kills Mario.

A timed switch makes some event happen for a specific amount of time. In our reduction,

timed switch X makes platform X appear for just long enough for Mario to make a traversal.

Theorem 129. Collecting a Power Moon in a Super Mario Odyssey kingdom is PSPACE-

hard assuming no kingdom size limit.

Proof. We reduce from 1-player motion planning with the symmetric self-closing door (The-

orem 77), where the target to reach is a Power Moon. The simulation of a symmetric
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self-closing door is shown in Figure 5-17.

Mario goes from port 1 to port 2 by pressing timed switch A, riding the Jaxi to the right,

and traversing platform A. This opens the port 3 to port 4 traversal while closing the port 1

to port 2 traversal. Mario cannot go to port 3 because of the wide gap, or to port 4 because

platform B is gone. The Jaxi is required because the poison it is on is very wide. Mario

cannot do anything useful if he tries to enter from port 2 or port 4 because the platforms

would be gone. Mario goes from port 3 to port 4 in a similar manner.

5.2.7 Captain Toad: Treasure Tracker

Captain Toad: Treasure Tracker is a 3D puzzle platformer in the Mario universe, originally

appearing as a type of level in Super Mario 3D World, and then released as a stand-alone

game on the Wii U and ported to the 3DS and Switch. Notably, Toad can fall but not

jump. The game contains rotating platforms controlled by a wheel which Toad must be

adjacent to to move. The platforms move in 90∘ increments. We show PSPACE-hardness

by constructing an antiparallel symmetric self-closing door (Theorem 77).

Theorem 130. Collecting Stars in a Captain Toad: Treasure Tracker is PSPACE-hard

assuming no level size limit.

Proof. Figure 5-18 gives a top-down view of the construction. There is a U-shaped rotating

platform at a height slightly below the high ground and far above the low ground. The U-

shaped platform rotates counterclockwise and can be reached from the nearby high ground;

however, the gap between the back of the U and the other side is too far for Toad to jump.

Further, the dividing wall sits slightly above the rotating platform, preventing Toad from

crossing. Toad is able to go onto the U platform from the high ground, activate the gear

twice, and jump off of the U platform onto the low ground across the gap. The U platform

is now facing the other way, allowing Toad to enter from the high ground on the other side,

but preventing other traversals.
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Figure 5-14: Simulation of a symmetric self-closing door in Super Mario Galaxy 2. The thin
water above the lava allows the Leaf Raft to float but does not allow Mario to swim in it without
getting his butt fire-hot. The walls cannot be wall jumped on (Super Mario Galaxy 2 allows vertical
walls that cannot be wall jumped on).
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Figure 5-15: Top view of the simulation of a symmetric self-closing door in Super Mario 3D
Land/World. The pit is long enough for the player to not be able to jump from the ground to
anywhere near the center of the pit. The wider sides of the tunnels are wide enough to not allow
wall jumping, making the tunnels 1-way. The hallways are also too wide to wall jump across.
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Figure 5-16: Side view of the simulation of a symmetric self-closing door in Super Mario 3D
Land/World
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Figure 5-17: Simulation of a symmetric self-closing door in Super Mario Odyssey. This is a side
view and is essentially 2-dimensional. All strips of poison are way too wide for Mario to cross with
his various aerial skills, and the platforms with timed switches are too high to get to from below.
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Figure 5-18: Top view of a simulation of a symmetric self-closing door.
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5.3 Zelda

Zelda is a hugely popular series of action/adventure video games starting in 1986 with The

Legend of Zelda which has sold over 6.5 million copies and currently consisting of 19 games,

with the most recent, Zelda: Breadth of the Wild, selling more than 19 million copies [59]. A

large number of game mechanics have been introduced over its history and the computational

complexity of several of these was studied in [5] which showed that Zelda with push-only

blocks is NP-hard; Zelda with hookshot, push-and-pull blocks, chests, pits, and tunnels is

NP-hard; Zelda with Small Keys, doors, and ledges is NP-hard; Zelda with ice and sliding

push-only blocks is PSPACE-complete; and Zelda with buttons, doors, teleporter tiles, pits,

and Crystal Switches that activate raised barriers is PSPACE-complete. This section adds

several results to that list, showing they also suffice for PSPACE-hardness. We use the

planar Door result of Section 2.9.3, the planar self-closing door result of Section 2.8, and the

2-toggle of [25].

This work comes from [12] and [25] written in collaboration with Jeffrey Bosboom,

Michael Coulombe, Erik D. Demaine, Isaac Grossof, Dylan Hendrickson, Lorenzo Najt, and

Mikhail Rudoy.

5.3.1 Spinners

In The Legend of Zelda: Oracle of Seasons Link encounters a device with four entrances

which, when entered, rotates in one direction and changes color. If entered again, it rotates

in the other direction and changes color back. A picture is shown in Figure 5-19. This

behavor fits perfectly into the 1-player motion planning framework. Define a 𝑘-spinner to

be a two state deterministic reversible gadget on 𝑘 locations. In one state, each location is

connected to its neighbor by a directed edge in a clockwise direction. In the other state, all

locations are likewise connected in a counterclockwise direction. We show that for any 𝑘 ≥ 4,

path-planning problems with 𝑘-spinners and branching hallways is PSPACE-complete.

First, we can take a 𝑘 spinner and have all but three consecutive locations lead to dead

ends. The remaining three locations form a gadget that we call a deterministic fork. A
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Figure 5-19: Example of a 4-spinner in The
Legend of Zelda: Oracle of Seasons.

Figure 5-20: 4-spinners simulate deterministic
forks which simulate crossing 2-toggles

deterministic fork is a reversible, deterministic gadget on three locations. In one state, it

allows the robot to go from the center to the right location and return from the left to

the center location. In the other state these directions are reversed. Figure 5-20 shows

the construction of a crossing 2-toggle from two 4-spinners or equivalently two deterministic

forks.

Theorem 131. For any 𝑘 ≥ 4, the path-planning problem with 𝑘-spinners and branching

hallways is PSPACE-complete.

Proof. We construct a deterministic fork by ignoring 𝑘 − 3 of the edges in the spinner.

Two deterministic forks together simulate a crossing 2-toggle as shown in Figure 5-20. By

Corollary 9, the motion planning problem with crossing 2-toggles is PSPACE-complete.

Corollary 132. Determining if a player can beat a level in generalized The Legend of Zelda:

Oracle of Seasons is PSPACE-complete.

Proof. The Legend of Zelda: Oracle of Seasons contains 4-spinners and requires the player

to navigate from one location to a target location in a grid. Since planar graphs can be laid

out in a grid with only quadratic blowup [19], we can reduce from motion planning problems

with 4-spinners which are PSPACE-complete by Theorem 5.3.1.

Corollary 133. The Legend of Zelda: Oracle of Seasons is PSPACE-hard.
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5.3.2 Magnetic Gloves is PSPACE-hard

The Magnetic Gloves are an item introduced in The Legend of Zelda: Oracle of Seasons, a 2D

game, that projects a north or south magnetic force in any of the four cardinal directions.

Among other interactions, they allow Link to remotely attract or repel metal “N” orbs,

which are polarized north. Two important properties are the fact that multiple metal objects

in range of the force are affected simultaneously, and that metal orbs are affected at any

distance, even when off-screen. Since there are no rooms in the game larger than 15×11 tiles

or containing more than one metal orb, we make the assumptions that the force would affect

multiple metal orbs simultaneously and that orbs cannot overlap other orbs, and consider

the cases where it has an infinite range and when it has a finite range of at least 15 tiles.

Theorem 134. Generalized 2D Zelda with infinite-range magnetic gloves, metal orbs, ledges,

and jump platforms is PSPACE-hard.

Proof. We show PSPACE-hardness via reduction from motion planning with door gadgets

[5]. Figure 5-21 shows our construction of a door gadget. In the center of the gadget is a

metal orb that always blocks the traverse path (when closed) or the close path (when open).

To open the door from the closed state, Link must be in the open path and repel the central

metal orb with north magnetic force while facing down. To use the close path while in the

open state, Link must use north magnetic force to repel the central metal orb while facing

up. If Link tries to attract the central metal orb with south magnetic force, then one of the

two ledge orbs will fall and permanently block the traverse path.

In an effort to embed the graph into a single room, we must prevent Link from using the

magnetic gloves to manipulate a metal orb inside a gadget from far away. This is solved by

entirely surrounding the room with a path with metal orbs on ledges leading to the goal,

as in Figure 5-22. By selectively removing orbs (that would otherwise be dropped to block

this path) in rows or columns which we intend the magnetic gloves to be used with a certain

polarity, and placing our gadgets on disjoint sets of rows and columns, any unintended

magnetic manipulations will permanently block the outer path and prevent the goal from

being reached.
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Figure 5-21: Construction of a door gadget using metal orbs, in the closed (left) and open (right)
configuration. The open, traverse, and close paths are marked with directions.

Figure 5-22: (left) Path lined with metal orbs to prevent Link from using the magnetic gloves
while facing perpendicular into the path. (right) Crossover using jump platforms.

Theorem 135. Generalized 2D Zelda with at least 15-tile range magnetic gloves, metal orbs,

ledges, and jump platforms is PSPACE-hard.

Proof. Compared to infinite range, having a maximum force distance permits black-box

gadget constructions, as we prevent external interference by laying-out gadgets far apart in

the dungeon. However, the construction in Theorem 134 is not self-sufficient because we

protected the central metal orb from the left or right by using a single, distant hallway with

orbs poised to block traversal to the goal.

We bring these two aspects together by compacting the door gadget enough to run

blocking hallways on both sides, as shown in Figure 5-23. With this 11-tile-wide construction,

the metal orbs above the hallways can be placed within the 15-tile limit to protect against
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horizontal magnetic glove usage on the central metal orb. Rather than running the goal

hallway around the outside of the room, we thread it past every gadget on both sides,

completing the reduction.

Figure 5-23: Compact construction of a door for 15-tile range magnetic gloves. Hallways on the
left and right are traversed at the end to reach the goal.

5.3.3 Cane of Pacci is PSPACE-hard

The Cane of Pacci is an item introduced in The Legend of Zelda: The Minish Cap, a 2D

game, that shoots a bolt of magic that can enchant a circular hole tile, which will launch

Link up an adjacent ledge if he enters the hole. As a pseudo-3D effect, the bolt ignores hole

tiles that are not “vertically aligned” with Link’s feet: if the bolt travels down a ledge, then

the bolt will remember that it is now high above the floor. The bolt also ignores already-

enchanted holes. In the game, the hole stays enchanted for a significant but limited time, so

we consider both the finite- and infinite-duration generalizations.

Theorem 136. Generalized 2D Zelda with fixed-duration Cane of Pacci, ground holes,

ledges, and tunnels is fixed-parameter tractable with respect to cane duration.
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Proof. Let the Cane of Pacci enchant holes for 𝑡 frames before they automatically unenchant,

and let Link’s running speed be at most 𝑣 ≤ 1 tiles per frame, which is slower than the bolt’s

travel speed 𝑢.

For Link to use an enchanted hole, he must be within a circle of radius 𝑣𝑡 tiles centered

at the hole from the duration of the enchantment. Symmetrically, all holes that are beyond

𝑣𝑡 tiles from his location cannot be enchanted and used, so without loss of generality no

strategy for beating the dungeon ever has more than ℎ = 𝑂(𝑣2𝑡2) = 𝑂(𝑡2) holes that are

enchanted at any point.

Supposing that there are 𝑛 square tiles in the world and Link moves at a speed of 1 pixel

per frame, he can be at 𝑂(𝑛/𝑣2) possible positions. Link can fire at most one bolt per frame,

and each bolt that enchants a reachable hole travels for at most 𝑣𝑡/𝑢 < 𝑡 frames. Under

efficient play, where bolts are only ever shot at reachable holes, the total number of game

configurations would be 𝑂(𝑛/𝑣2 × ℎ𝑡× (𝑡+ 1)ℎ) = 𝑛 (𝑡+ 1)𝑂(𝑡2).

Therefore, we can create a graph in linear time for fixed 𝑡, where each node is such a

configuration of enchanted holes and to-be-enchanted holes around Link’s location, connected

by edges representing the effects of possible player inputs on the next frame: Link moving,

Link shooting a bolt at a hole in view, or a bolt enchanting a hole. There will be a strategy

to get to the end of the dungeon if and only if this graph has a path from the starting

configuration node and an ending configuration node.

Theorem 137. Generalized 2D Zelda with infinite-duration Cane of Pacci, ground holes,

ledges, and tunnels is PSPACE-hard.

Proof. To show PSPACE-hardness, we reduce from motion planning with self-closing doors

[7]. Figure 5-24 shows our design for a self-closing door gadget. Link opens the door by

entering the open path and firing the Cane of Pacci over the stone barrier at the hole below

the ledge. When open, Link can later traverse by hopping from hole to hole, and the last hole

will launch Link up the ledge, disabling the enchantment and thus closing the door behind

him. The walls surrounding the holes, and the fact that the cane’s bolt does not travel down

to lower height levels when shot from the top of a ledge, prevent Link from opening the door
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anywhere except the open path. Because the enchantment does not have a finite duration,

Link may be required to open a door but not return to use the door for an arbitrarily long

time.

To lay out the graph of self-closing door gadgets in the game, we can make use of the

crossover gadget, also shown in Figure 5-24, if the graph is not planar. Link can freely travel

north or south on the upper level, and another path may run left and right by going down

stairs and using a tunnel on the lower level.

Figure 5-24: Gadgets in The Minish Cap: a self-closing door using holes for the Cane of Pacci
(top) and a crossover using tunnels (bottom).

5.3.4 Magnesis Rune is PSPACE-Hard

In The Legend of Zelda: Breath of the Wild, a 3D game, Link obtains the multi-purpose

Sheikah Slate, a tool that can be equipped with magical abilities called Runes. Among them

is the Magnesis rune, which grants Link telekinetic power over metallic objects within a fixed

distance. Compared to the magnetic gloves described in Section 5.3.2, Magnesis provides full

3D control of exactly one targeted metal object in a world with more-advanced simulated
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physics, although Link cannot target objects that are out of his line-of-sight or that he is

standing on.

Theorem 138. Generalized 3D Zelda with the Magnesis rune and large metal plates is

PSPACE-hard.

Proof. We reduce from motion planning with self-closing doors [7], using the gadget illus-

trated in Figure 5-25. Within a closed room, we construct two paths of platforms over pits:

the traverse line, with two gaps that can only be crossed by placing a large metal plate as a

bridge, and the open line, raised above the first close enough to use Magnesis on the plate

but too far to use it as a bridge to cross paths. Both paths connect to the outside with small

exit doors to keep the large metal plate inside.

The self-closing door starts closed, where the large metal plate is not within Magnesis

reach of the start of the traverse line. To open the door, Link must use Magnesis from the

open line to relocate the plate so that when Link later enters the traverse line, he can use

the plate as a bridge across both gaps. Carrying the plate from the first gap to the second

gap puts it out of Magnesis range of the entrance of the traverse line, which closes the door

upon traversal.

Magnesis RangeJump Range

Open

Traverse

Figure 5-25: Construction of a door gadget using a large metal plate and platforms over pits,
shown in the open state. The open line is raised above the traverse line. The layout was inspired
by a puzzle in the Oman Au Shrine where the Magnesis rune is unlocked in The Legend of Zelda:
Breath of the Wild.
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Figure 5-26: The Trainyard gadget.

5.3.5 Trainyard

The study of the complexity of Trainyard began with [3], which showed that finding a

solution to a Trainyard level is NP-hard. Later, [2] showed that checking a solution to a

Trainyard level is PSPACE-complete—verifying solutions may be harder than finding them.

We improve on this result by showing that Trainyard is PSPACE-hard even with only one

train, and with no color changes.

Trainyard is a puzzle game in which the goal is to build a system of rails so that trains

of the correct colors reach certain stations. We consider one-train colorless Trainyard, where

solutions consist of only rails, crossings, and switches. There is a single train which moves

forwards along the rails; it succeeds if it reaches a designated location, and crashes and fails

if it the track it is on ends. Rails can be traversed in both directions.

The only nontrivial behavior comes from switches, which have two states. A switch

changes state every time the train moves through it. It has three locations: two of them

always route the train to the third, and the third routes the train to one of the first two

depending on the state. We can model this as a toggle line/toggle line/toggle switch with

some locations identified; we call this the Trainyard gadget, which is shown in Figure 5-26.

Since tracks can bend and cross each other, the planarity of a system of Trainyard gadgets

does not matter. Now one-train colorless Trainyard is equivalent to one-player motion plan-

ning with the Trainyard gadget—except that the Trainyard gadget is not input/output, so

we have not defined one-player motion planning with it.

Definition 139. One-player motion planning with the Trainyard gadget takes place

in a system of Trainyard gadgets where the connection graph is a partial matching. That is,
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each location is either paired with one other location or a dead end.

A robot moves through the system similarly to with input/output gadgets. When it enters

a Trainyard gadget, it takes the unique available transition. When it exits a Trainyard gadget,

it moves to the unique paired location, or stops if it is at a dead end.

Theorem 140. One-player motion planning with the Trainyard gadget, or equivalently one-

train colorless Trainyard, is PSPACE-hard.

Proof. We will reduce from one-player motion planning with the toggle switch/toggle line.

We can not quite directly simulate a toggle switch/toggle line, for a few reasons:

∙ The Trainyard gadget, and thus any gadget simulated by it, can be entered at any

location, not just input locations. To account for this, we will denote some vertices

in the simulation as input and output, and the arrangement of gadgets will ensure

that the robot always enters simulated gadgets at input-denoted locations and exits

and output-denoted locations. In particular, output-denoted locations always lead to

input-denoted locations.

∙ One-player motion planning with the Trainyard gadget does not include fan-ins. How-

ever, we can easily simulate fan-in in the above sense by denoting two locations as

input and one as output on the Trainyard gadget—the Trainyard gadget is a fan-in

provided the robot never enters at one location.

∙ Even with the above caveats, we have not been able to simulate the toggle switch/toggle

line (or any unbounded output-disjoint deterministic 2-state input/output gadget with

multiple nontrivial inputs) with the Trainyard gadget. Instead, we simulate a tog-

gle switch/toggle line for exponentially long. Formally, we describe a network of

Trainyard gadgets for each natural number 𝑘 such that the 𝑘th network has the same

behavior as the toggle switch/toggle line for at least 2𝑘 transitions, and contains a num-

ber of Trainyard gadgets polynomial in 𝑘. Consider a system of 𝑛 toggle switch/toggle

lines from the reduction showing they are hard. The system has at most 2𝑛 configu-

rations and 5𝑛 locations for the robot; thus after at most 5𝑛2𝑛 transitions the robot
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Figure 5-27: The reverse branch gadget.

reaches either the goal location or the dead end at False-Out on the first quantifier.

If we pick polynomial 𝑘 such that 2𝑘 > 5𝑛2𝑛 (e.g., 𝑘 = 2𝑛 + 3 suffices), then the

network of Trainyard gadgets we obtain by replacing each toggle switch/toggle line

with the 𝑘th simulation has the same behavior long enough for the robot to either

reach the goal location or crash. Hence these exponentially long simulations suffice for

PSPACE-hardness.

Thus it suffices to find an exponentially long simulation of the toggle switch/toggle line.

Before describing this simulation, we present an exponentially long simulation of an inter-

mediate gadget called the reverse branch, shown in Figure 5-27. This has one state and

three locations, of which we assume is never entered, one will never be exited, and one is

both exited and entered.

Our exponentially long simulation of a reverse branch is shown in Figure 5-28. The 𝑘

gadgets in the bottom row serve as fan-ins, since we assume the robot never enters at the

bottom right. Consider the states of the top row of 𝑘 + 1 gadgets as describing a number

in binary: up (state 1) is 0, down (state 2) is 1, and the bits are read right to left. When

the robot enters at the left, it increments this number (mod 2𝑘+1) and exits at the bottom

right, unless the states are all up so the number is 0, in which case it exits the top right.

When the robot enters at the top right, it flips the state of every gadget in the top row and

exits at the left; this changes the number by 𝑥 ↦→ −𝑥 − 1. In particular, the distance from

0 changes by at most 1 with each transition. By starting at 2𝑘 as in Figure 5-28, it takes at

least 2𝑘 transitions to reach 0, so the simulation is correct for 2𝑘 transitions.

Now we simulate a toggle switch/toggle line using a Trainyard gadget and two reverse

branches, as shown in Figure 5-29. When the robot enters the top, it exits the top right,
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Figure 5-28: An exponentially long simulation of a reverse branch using Trainyard gadgets.

Figure 5-29: A simulation of a toggle switch/toggle line using a Trainyard gadget and reverse
branches.

flipping the state of the Trainyard gadget (in the middle); this is the toggle line. When the

robot enters the bottom right, it exits at the top left or bottom left depending on the state of

the Trainyard gadget, and flips the state; this is the toggle switch. Each transition through

the simulated gadget makes at most one transition through each reverse branch, so if the

reverse branches are correct for 2𝑘 transitions, so is the toggle switch/toggle line.

5.4 Simplifying Prior Proofs

In this section we give examples where our motion planning problems can be used to simplify

proofs of already known results. Using results from Section 3.3.1 the proof of PSPACE-
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hardness for Mario Kart can be reduced to a single simple construction. Most applications of

the Doors Framework required the construction of crossovers, which can now be eliminated.

Many of the gadgets from past block pushing proofs can also be eliminated. Finally, as noted

earlier, proofs using the Mario/Portal framework can be simplified by using door opening

gadgets.

5.4.1 Two Player Mario Kart

Mario Kart is a popular Nintendo racing game whose computational complexity was consid-

ered in [13] which showed NP-completeness for 1 player races and PSPACE-completeness

for 2 player races with reductions from 3SAT and QSAT respectively. Using results from

this thesis, the 2 player proof now only needs a single, simple gadget, reducing a several page

proof to a paragraph.

This section comes from [29] written in collaboration with Erik Demaine and Dylan

Hendrickson.

Theorem 141. Deciding if a player can force a win in two player Mario Kart is PSPACE-

hard.

Proof. A single-use one-way gadget can be constructed from a ramp and Dash Mushroom

in Mario Kart. We place a ramp before a gap in the track long enough that a racer going

at the normal maximum speed will not be able to make the jump and will fall onto another

track that will take a long time to reach the finish line, ensuring they lose. However, this

gap is small enough that, if the player uses a Dash Mushroom before, the increase in speed

will allow them to make the jump. We put a single Dash Mushroom power-up before each

ramp, ensuring the first racer to arrive can pick up the item and use it to cross the gap.

To ensure a racer does not pick up the item and then keep it for later use, we precede the

mushroom and ramp with a one-way gadget implemented by a long-fall. Along with the

trivial existence of crossovers and the finish line as a location based win condition, Mario

Kart is PSPACE-hard by Theorem 96.
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5.4.2 Planar NAND

Some prior results use forced distant closings as part of their reduction from 3SAT. Here

we observe that several of those construct NAND or door closing gadgets and under our

new framework those parts of the past constructions alone would be sufficient for proving

hardness. In each case this would significantly simplify the proofs needed.

In [22] Push-1 block pushing puzzles are shown to be NP-hard. Inspecting the reduction

from 3SAT we see the construction of an “H-gadget” and a “no-reverse” gadget. We would

now call the no-reverse gadget a diode and the H-gadget a parallel undirected door closing

gadget. From Lemma 49 we now know that these two gadgets would suffice for NP-hardness.

Similarly, to deal with planarity they give the “XOR Crossover” which we would call a

crossing undirected door closing gadget, and once again we now know this gadget with the

no-reverse gadget suffices for NP-hardness. This eliminates the need for the “one-way” and

“fork” gadgets, as well as the most complicated construction, the “Locked Door” gadget.

Similarly, in [37] we can now eliminate the need to construct three of the four gadgets

given in that proof, as the crossing NAND is now known to be the only one needed. In fairness

[37] and other prior more complicated constructions provided the ideas and techniques that

allowed us to prove our results.

Finally, examining the proof that Pokemon is NP-hard from [5], it is clear that their

clause gadget is constructed from three undirected door closing gadgets. By combining that

with their single-use path gadget, an anti-parallel NAND gadget can be constructed yielding

NP-hardness by Lemma 48. This avoids the need for a crossover gadget, which is by far the

most complicated part of that reduction.

5.4.3 Planar Doors

Our planar door results simplify prior uses of a door framework for 2D applications that

previously needed to use crossover gadgets. Here is a list of prior uses of the door framework

which could benefit from this result:

∙ The Lemmings door [16, Figure 4] has an internal crossing, so Theorem 83 applies.

233



∙ The Donkey Kong Country 1, 2, and 3 doors [5, Figures 21–23] are the Case 10: OtCcT

door, Case 4: OTtcC door, and internal crossing door, respectively, so Theorems 85

and 83 applies.

∙ The Legend of Zelda: A Link to the Past door [5, Figure 30] has an internal crossing,

so Theorem 83 applies.

∙ The Super Mario Bros. door [32, Figure 6] is the Case 4: OTtcC door, so Theorem 85

applies.

∙ The Witness door [1, Figure 50] is undirected with an optional open port, so Theo-

rem 85 applies.

∙ The Fire Emblem door [39, Figure 5] is the Case 3: OCcTt door so Theorem 85 applies.

are not in fact needed to prove PSPACE-hardness of these games.

234



Bibliography

[1] Zachary Abel, Jeffrey Bosboom, Michael Coulombe, Erik D Demaine, Linus Hamil-
ton, Adam Hesterberg, Justin Kopinsky, Jayson Lynch, Mikhail Rudoy, and Clemens
Thielen. Who witnesses The Witness? Finding witnesses in The Witness is hard and
sometimes impossible. Theoretical Computer Science, 2020.

[2] Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Tracks from hell – when
finding a proof may be easier than checking it. In Hiro Ito, Stefano Leonardi, Linda Pagli,
and Giuseppe Prencipe, editors, Proceedings of the 9th International Conference on Fun
with Algorithms (FUN 2018), volume 100 of LIPIcs, pages 4:1–4:13, La Maddalena,
Italy, June 2018.

[3] Matteo Almanza, Stefano Leucci, and Alessandro Panconesi. Trainyard is NP-hard.
Theoretical Computer Science, 748:66–76, 2018.

[4] Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo
games are (NP-)hard. In Proceedings of the 7th International Conference on Fun with
Algorithms (FUN 2014), Lipari Island, Italy, July 2014.

[5] Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo
games are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015.

[6] Joshua Ani, Sualeh Asif, Erik D Demaine, Yevhenii Diomidov, Dylan Hendrickson,
Jayson Lynch, Sarah Scheffler, and Adam Suhl. PSPACE-completeness of pulling blocks
to reach a goal. arXiv preprint arXiv:2006.04337, 2020.

[7] Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrick-
son, and Jayson Lynch. Walking through doors is hard, even without staircases: Prov-
ing PSPACE-hardness via planar assemblies of door gadgets. In Proceedings of the
10th International Conference on Fun with Algorithms (FUN 2020), Favignana, Italy,
September 2020.

[8] Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, Dylan H. Hendrickson, and Jayson
Lynch. Traversability, reconfiguration, and reachability in the gadget framework. pre-
print, 2020.

235



[9] Joshua Ani, Erik D. Demaine, Dylan H. Hendrickson, and Jayson Lynch. Trains, games,
and complexity: 0/1/2-player motion planning through input/output gadgets. CoRR,
abs/2005.03192, 2020.

[10] Jose Balanza-Martinez, Timothy Gomez, David Caballero, Austin Luchsinger, Angel A
Cantu, Rene Reyes, Mauricio Flores, Robert Schweller, and Tim Wylie. Hierarchical
shape construction and complexity for slidable polyominoes under uniform external
forces. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2625–2641. SIAM, 2020.

[11] Jose Balanza-Martinez, Austin Luchsinger, David Caballero, Rene Reyes, Angel A
Cantu, Robert Schweller, Luis Angel Garcia, and Tim Wylie. Full tilt: Universal con-
structors for general shapes with uniform external forces. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2689–2708. SIAM, 2019.

[12] Jeffrey Bosboom, Michael Coulombe, Erik D Demaine, Dylan Hendrickson, Jayson
Lynch, and Lorenzo Najt. The Legend of Zelda: The Complexity of Mechanics. In
preparation, 2020.

[13] Jeffrey Bosboom, Erik D Demaine, Adam Hesterberg, Jayson Lynch, and Erik Wain-
garten. Mario Kart is hard. In Japanese Conference on Discrete and Computational
Geometry and Graphs, pages 49–59. Springer, 2015.

[14] Kevin Buchin and Dirk HP Gerrits. Dynamic point labeling is strongly PSPACE-
complete. International Journal of Computational Geometry & Applications,
24(04):373–395, 2014.

[15] David Caballero, Angel A. Cantu, Timothy Gomez, Austin Luchsinger, Robert
Schweller, and Tim Wylie. Relocating units in robot swarms with uniform control
signals is pspace-complete. In Proceedings of the 32th Canadian Conference on Compu-
tational Geometry, 2020, 2020.

[16] G. Cormode. The hardness of the Lemmings game, or oh no, more NP-completeness
proofs. In Proceedings of Third International Conference on Fun with Algorithms, pages
65–76, 2004.

[17] Diogo M Costa. Computational complexity of games and puzzles. arXiv preprint
arXiv:1807.04724, 2018.

[18] Joseph Culberson. Sokoban is PSPACE-complete. In Proceedings of the International
Conference on Fun with Algorithms, pages 65–76, Elba, Italy, June 1998.

[19] H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10(1):41–51, Mar 1990.

236



[20] Erik D. Demaine, Martin L. Demaine, Michael Hoffmann, and Joseph O’Rourke. Push-
ing blocks is hard. Computational Geometry: Theory and Applications, 26(1):21–36,
August 2003.

[21] Erik D. Demaine, Martin L. Demaine, and Joseph O’Rourke. PushPush and Push-1
are NP-hard in 2D. In Proceedings of the 12th Canadian Conference on Computational
Geometry, Fredericton, New Brunswick, Canada, August 16-19, 2000, 2000.

[22] Erik D. Demaine, Martin L. Demaine, and Joseph O’Rourke. PushPush and Push-
1 are NP-hard in 2D. In Proceedings of the 12th Annual Canadian Conference on
Computational Geometry (CCCG 2000), pages 211–219, Fredericton, New Brunswick,
Canada, August 2000.

[23] Erik D. Demaine, Isaac Grosof, and Jayson Lynch. Push-pull block puzzles are hard. In
Proceedings of the 10th International Conference on Algorithms and Complexity, volume
10236 of Lecture Notes in Computer Science, pages 177–195, Athens, Greece, May 2017.

[24] Erik D. Demaine, Isaac Grosof, and Jayson Lynch. Push-pull block puzzles are hard. In
Proceedings of the 10th International Conference on Algorithms and Complexity, pages
177–195, Athens, Greece, May 2017.

[25] Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational
complexity of motion planning of a robot through simple gadgets. In Proceedings of
the 9th International Conference on Fun with Algorithms (FUN 2018), volume 100 of
LIPIcs, pages 18:1–18:21, La Maddalena, Italy, June 2018.

[26] Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational
complexity of motion planning of a robot through simple gadgets. In Proceedings of the
9th International Conference on Fun with Algorithms (FUN 2018), pages 18:1–18:21,
La Maddalena, Italy, June 2018.

[27] Erik D. Demaine and Robert A. Hearn. Constraint Logic: A uniform framework for
modeling computation as games. In Proceedings of the 23rd Annual IEEE Conference
on Computational Complexity, pages 149–162, June 2008.

[28] Erik D. Demaine, Robert A. Hearn, and Michael Hoffmann. Push-2-F is PSPACE-
complete. In Proceedings of the 14th Canadian Conference on Computational Geometry,
pages 31–35, Lethbridge, Canada, August 2002.

[29] Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch. Toward a general theory
of motion planning complexity: Characterizing which gadgets make games hard. In
Proceedings of the 11th Conference on Innovations in Theoretical Computer Science
(ITCS 2020), pages 62:1–62:42, Seattle, Washington, January 2020.

[30] Erik D. Demaine, Michael Hoffmann, and Markus Holzer. PushPush-𝑘 is PSPACE-
complete. In Proceedings of the 3rd International Conference on Fun with Algorithms
(FUN 2004), pages 159–170, Isola d’Elba, Italy, May 2004.

237



[31] Erik D Demaine, Joshua Lockhart, and Jayson Lynch. The computational complexity
of portal and other 3d video games. In 9th International Conference on Fun with
Algorithms (FUN 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[32] Erik D. Demaine, Giovanni Viglietta, and Aaron Williams. Super Mario Bros. is
harder/easier than we thought. In Proceedings of the 8th International Conference
on Fun with Algorithms, pages 13:1–13:14, La Maddalena, Italy, June 8–10 2016.

[33] Jérôme Dohrau, Bernd Gärtner, Manuel Kohler, Jiří Matoušek, and Emo Welzl. Arrival:
A zero-player graph game in NP ∩ coNP. In A Journey Through Discrete Mathematics,
pages 367–374. Springer, 2017.

[34] John Fearnley, Martin Gairing, Matthias Mnich, and Rahul Savani. Reachability switch-
ing games. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, Proceedings of the 45th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2018), volume 107 of LIPIcs, pages 124:1–124:14,
Prague, Czech Republic, July 2018.

[35] Michal Forišek. Computational complexity of two-dimensional platform games. In
Proceedings International Conference on Fun with Algorithms (FUN 2010), pages 214–
227, 2010.

[36] Michael P. Frank. Asynchronous ballistic reversible computing. In Proceedings of the
IEEE International Conference on Rebooting Computing (ICRC), pages 1–8, Washing-
ton, DC, November 2017.

[37] Erich Friedman. Pushing blocks in gravity is NP-hard. Unpublished manuscript, March
2002. https://www2.stetson.edu/~efriedma/papers/gravity.pdf.

[38] Jonathan Gabor and Aaron Williams. Switches are pspace-complete. In CCCG, pages
42–48, 2018.

[39] Jiawei Gao. The computational complexity of fire emblem series and similar tactical
role-playing games. arXiv preprint arXiv:1909.07816, 2019.

[40] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[41] Bernd Gärtner, Thomas Dueholm Hansen, Pavel Hubáček, Karel Král, Hagar Mosaad,
and Veronika Slívová. ARRIVAL: next stop in CLS. In Ioannis Chatzigiannakis, Chris-
tos Kaklamanis, Dániel Marx, and Donald Sannella, editors, Proceedings of the 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107 of LIPIcs, pages 60:1–60:13, Prague, Czech Republic, July 2018.

[42] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to parallel compu-
tation: P-completeness theory, 1995.

238

https://www2.stetson.edu/~efriedma/papers/gravity.pdf


[43] Alan Hazelden, Lee Shang Lun, and Allison Walker. Sokobond. https://www.sokobond.
com/, 2014.

[44] Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A. K.
Peters, Ltd., Natick, MA, USA, 2009.

[45] Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A K
Peters/CRC Press, 2009.

[46] Robert A Hearn, Erik D Demaine, and Greg N Frederickson. Hinged dissection of
polygons is hard. In CCCG, pages 98–102, 2003.

[47] Markus Holzer and Sebastian Jakobi. On the complexity of rolling block and alice
mazes. In International Conference on Fun with Algorithms, pages 210–222. Springer,
2012.

[48] Dénes Kőnig. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Sci.
Math. (Szeged), 3(2–3):121–130, 1927.

[49] Max Lindblad. How hard is Wings of Vi?: An analysis of the computational complexity
of the game Wings of Vi, 2015.

[50] André G. Pereira, Marcus Ritt, and Luciana S. Buriol. Pull and PushPull are PSPACE-
complete. Theoretical Computer Science, 628:50–61, 2016.

[51] Gary Peterson, John Reif, and Salman Azhar. Lower bounds for multiplayer noncoop-
erative games of incomplete information. Computers & Mathematics with Applications,
41(7-8):957–992, 2001.

[52] Gary L Peterson and John H Reif. Multiple-person alternation. In 20th Annual Sym-
posium on Foundations of Computer Science, pages 348–363. IEEE, 1979.

[53] Marcus Ritt. Motion planning with pull moves. arXiv:1008.2952, 2010. https://arXiv.
org/abs/1008.2952.

[54] Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[55] Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, STOC 1978, pages 216–226,
New York, NY, USA, 1978. Association for Computing Machinery.

[56] Tommy Thompson. “With fate guiding my every move”: The challenge of Spelunky. In
FDG, 2015.

[57] Tatsuie Tsukiji and Takeo Hagiwara. Recognizing the repeatable configurations of time-
reversible generalized langton’s ant is pspace-hard. Algorithms, 4(1):1–15, 2011.

239

https://www.sokobond.com/
https://www.sokobond.com/
https://arXiv.org/abs/1008.2952
https://arXiv.org/abs/1008.2952


[58] Tom C Van Der Zanden and Hans L Bodlaender. Pspace-completeness of bloxorz and
of games with 2-buttons. In International Conference on Algorithms and Complexity,
pages 403–415. Springer, 2015.

[59] Video Game Sales Wiki. The Legend of Zelda. https://vgsales.fandom.com/wiki/The_
Legend_of_Zelda, 2020.

[60] Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of
Computing Systems, 54(4):595–621, 2014.

[61] Giovanni Viglietta. Lemmings is PSPACE-complete. Theoretical Computer Science,
586:120–134, 2015.

[62] Wikipedia. Sokoban. https://en.wikipedia.org/wiki/Sokoban.

[63] Gordon Wilfong. Motion planning in the presence of movable obstacles. Annals of
Mathematics and Artificial Intelligence, 3(1):131–150, 1991. Originally appeared at
SoCG 1988.

[64] Zhujun Zhang. A Note on Computational Complexity of Dou Shou Qi. arXiv preprint
arXiv:1904.13205, 2019.

[65] Zhujun Zhang. A note on hardness frameworks and computational complexity of Xiangqi
and Janggi. arXiv preprint arXiv:1904.00200, 2019.

240

https://vgsales.fandom.com/wiki/The_Legend_of_Zelda
https://vgsales.fandom.com/wiki/The_Legend_of_Zelda
https://en.wikipedia.org/wiki/Sokoban

	Introduction
	Model
	Diagrammatic Representations
	Planarity
	Victory Conditions
	Number of Players
	Classes of Gadgets

	Related Work
	Constraint Logic
	Doors-and-Buttons Model
	Mario/Portal Framework
	Door-Gadget Framework

	Extended Doors and Buttons Model
	Related Problems for Reductions
	Constraint Logic
	Formula Games


	Single Player
	General Upper Bounds
	1-Player Reversible Deterministic Gadgets
	Closure Properties
	Reducing to Locking 2-Toggles
	PSPACE-hardness
	Planarity
	Restricted Starting States and the Nondeterministic Locking 2-toggle
	Self-simulation of 2-State Reversible Deterministic Gadgets
	Reconfiguring Reversible Gadgets

	1-Player Bounded Motion Planning
	Upper Bounds
	Characterization Overview
	Distant opening and non-undoable tunnel is NP-hard
	Forced distant closing is NP-hard
	Putting together distant opening and closing and finishing the DAG dichotomy
	LDAG Dichotomy for Shortest Paths
	Deterministic Eventually Static Dichotomy
	Planar Hardness for Crossing NAND
	Deciding DAG Gadget Hardness

	Reconfiguration and ``bounded'' gadgets
	Generalized DAG Structure
	Verified Gadgets and Shadow Gadgets
	Reconfiguration Can Be Easier

	One-Player Input Output
	Classifying Output-Disjoint Deterministic 2-State Input/Output Gadgets
	Containment in NP
	NP-hardness

	1-player Door Gadgets
	Doors
	Terminology
	Hardness
	Universality

	Self-Closing Doors
	Terminology
	PSPACE-hardness of Self-Closing Doors

	Planar Doors
	Terminology
	PSPACE-hardness for Planar Self-Closing Doors
	PSPACE-hardness for Planar Doors


	Multi-Player
	Simple Relations Between Models
	Multi-Player Reversible Deterministic Gadgets
	2-Player Unbounded Motion Planning
	Team Unbounded Reversible Deterministic

	Multiplayer Polynomially Bounded Gadgets
	2-Player Bounded Motion Planning
	Team Bounded Motion Planning


	Zero Player
	Zero-Player Single-Input Gadgets
	Zero-Player Bounded Gadgets
	Unbounded Input/Output Gadgets
	Edge Duplicators
	PSPACE-hardness of the switch/set-up line/set-down line
	Other gadgets simulate the switch/set-up line/set-down line


	Applications
	Block Pushing Puzzles
	Push-Pull Block Puzzles
	Pulling Block with Gravity
	Pull!-kFG
	Sokobond

	3D Mario Games
	Super Mario 64/Super Mario 64 DS
	Super Mario Sunshine
	Super Mario Galaxy
	Super Mario Galaxy 2
	Super Mario 3D Land and Super Mario 3D World
	Super Mario Odyssey
	Captain Toad: Treasure Tracker

	Zelda
	Spinners
	Magnetic Gloves is PSPACE-hard
	Cane of Pacci is PSPACE-hard
	Magnesis Rune is PSPACE-Hard
	Trainyard

	Simplifying Prior Proofs
	Two Player Mario Kart
	Planar NAND
	Planar Doors



