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Abstract

Cookie Clicker1 is a popular online incremental game where the goal of the game is to gen-
erate as many cookies as possible. In the game you start with an initial cookie generation
rate, and you can use cookies as currency to purchase various items that increase your cookie
generation rate. In this paper, we analyze strategies for playing Cookie Clicker optimally.
While simple to state, the game gives rise to interesting analysis involving ideas from NP-
hardness, approximation algorithms, and dynamic programming.
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Chapter 1

Introduction

Figure 1-1: Screenshot of Cookie Clicker v.2.002.

In Cookie Clicker, your goal is

to generate as many cookies as

possible. You can click on a

big cookie icon to bake a cookie,

and you can also purchase items

that automatically generate cook-

ies for you over time. We model

the ability to click on the big

cookie icon as an initial cookie

generation rate. You can use

the cookies you have generated

as currency to purchase various

items that increase your cookie

generation rate. Items can be

purchased multiple times, but af-

ter each item purchase, the item’s cost will increase at an exponential rate, given by

𝐶𝑛 = 𝐶1 · 𝛼𝑛−1, where 𝐶1 is the cost of the first item and 𝐶𝑛 is the cost of item 𝑛. In

the actual game, 𝛼 = 1.15. The real game has no explicit end condition, but in this paper

we define two possible end conditions: reaching a certain number 𝑀 of cookies, or reaching

a certain cookie generation rate 𝑅.
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Cookie Clicker falls into a broader class of popular online games called incremental games

or idle games [Wik14], in which the primary mechanic of the game is acquiring income and

spending that income on income generators in order to acquire even more income. Some

other well-known games in this genre include Adventure Capitalist, Cow Clicker, Clicker

Heros, Shark Souls, Kittens Game, Egg Inc., and Sandcastle Builder (based on the xkcd

comic 1190, Time).

1.1 Models

In most of this paper, we will assume that you start with 0 cookies and that the initial

cookie generation rate from clicking on the big cookie icon is 1. We will describe each item

by a tuple (𝑥, 𝑦, 𝛼), where 𝑥 denotes how much the item will increase your cookie generation

rate, 𝑦 denotes the initial cost of the item, and 𝛼 denotes the multiplicative increase in item

cost after each purchase. The case where 𝛼 = 1 for every item is a special case called the

fixed-cost case. The goal of the game is to find the optimal sequence and timing of item

purchases that optimizes some objective.

There are multiple possible objectives that we could want to optimize for, but we focus

on the following two:

1. Reaching 𝑀 cookies in as little time as possible

2. Reaching a generation rate of 𝑅 in as little time as possible

We will usually begin by discussing the 𝑀 version of the problem and then explain how

to extend our results to the 𝑅 version. A third natural objective is to maximize the number

of cookies 𝑀 or the generation rate 𝑅 achieved given a total amount of time 𝑇 , and it can be

solved by any algorithm that solves the first two variants using binary search on the values

of 𝑀 and 𝑅.

1.2 Results

Our analysis of various versions of Cookie Clicker gives rise to interesting and varied results;

refer to Table 1.1. First, we present some general results, such as the fact that the optimal

10



strategy involves a Buying Phase where items are purchased in some sequence as quickly as

possible, and then a Waiting Phase where no items are purchased.

We begin our version-by-version analysis by examining the case where exactly 1 item

is available for purchase, and we present formulas describing how many copies of the item

should be purchased in both the fixed-cost case and increasing-cost case.

Next, we analyze cases involving 2 items. In the 2-item fixed-cost case, we prove that the

optimal solution always involves consecutively buying some number of copies of one item,

followed by consecutively buying some number of copies of the other item.

Then, we analyze the case involving 𝑘 items. In the 𝑘-item fixed-cost case, a weakly

polynomial time dynamic programming solution can be used to find the optimal sequence

of items to buy, and in the increasing-cost case, a strongly polynomial time dynamic pro-

gramming solution can be used. Additionally, a greedy algorithm can be devised with an

approximation ratio that approaches 1 for sufficiently large values of 𝑀 .

Afterwards, we present negative results, including proofs of weak NP-hardness of the

decision version of the problem of reaching a generation rate of R as quickly as possible, as

well as for a version of Cookie Clicker that allows you to start with a nonzero number of

cookies. Finally, we define a discretized version of Cookie Clicker where decisions regarding

whether or not to buy an item happen in discrete time steps and prove strong NP-hardness

for that version.

Python implementations of the dynamic programming solution and the greedy solutions

to the General Cookie Clicker problem, and the dynamic programming solution to the Fixed-

Cost Cookie Clicker problem, are available.1

1.3 Useful Tools

Before proceeding to our main results, we develop some useful tools for finding optimal

solutions for playing Cookie Clicker. We present these tools and show how they are applied

to the 1-Item Case, but these tools are applicable to all versions of the game.

First, we can define a game state as a tuple (𝑐, 𝑛1, 𝑛2, . . . , 𝑛𝑘) where 𝑐 is the number of

1https://github.com/kaixiao/Cookie-Clicker
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Problem Variant Result for 𝑀 version Result for 𝑅 version

1-Item Fixed-Cost with item
(𝑥, 𝑦, 1) [§2.1]

OPT takes ≈ 𝑦
𝑥
ln 𝑀

𝑦
time

𝑂(1) to compute OPT
OPT takes ≈ 𝑦

𝑥
ln 𝑅

𝑥
time

𝑂(1) to compute OPT

1-Item Increasing-Cost with
item (𝑥, 𝑦, 𝛼) [§2.1]

OPT will stop Buying Phase
after log𝛼

𝑀
𝑦

items
𝑂(1) to compute OPT

OPT will stop Buying Phase
after 𝑅

𝑥
items

𝑂(1) to compute OPT

2-Item Fixed-Cost with items
(𝑥𝑖, 𝑦𝑖, 1) where 𝑦2 > 𝑦1 [§2.2]

OPT is of the form
[1, 1, . . . , 1, 2, . . . , 2] for
large enough 𝑀
𝑢1 log𝜑 𝑢2+𝑂(𝑢1) to compute
OPT, where 𝑢𝑖 ≈ 𝑦𝑖

𝑥𝑖
log 𝑀

𝑦𝑖

OPT is of the form
[1, 1, . . . , 1, 2, . . . , 2, 1, 1]
for a small number of 1’s at
the end for large enough 𝑅.

𝑘-Item Fixed-Cost with items
(𝑥𝑖, 𝑦𝑖, 1) [§2.3]

𝑂(max𝑖(
𝑀𝑥𝑖𝑘
𝑦𝑖

)) to compute
OPT using Dynamic Pro-
gramming

𝑂(𝑘𝑅) to compute OPT us-
ing Dynamic Programming

𝑘-Item Increasing-Cost with
items (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) [§2.4]

𝑂(max𝑖(𝑘 log
𝑘
𝛼𝑖

𝑀
𝑦𝑖
)) to com-

pute OPT using Dynamic
Programming
Greedy Algorithm has Ap-
proximation Ratio of 1 +
𝑂( 1

log𝑀
)

𝑂(max𝑖(𝑘(
𝑅
𝑥𝑖
)𝑘)) to compute

OPT using Dynamic Pro-
gramming
Weakly NP-hard by reduc-
tion from Partition

𝑘-Item Increasing-Cost with
items (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) with Initial
Cookies [§3.3]

Weakly NP-hard by reduc-
tion from Partition

Weakly NP-hard by reduc-
tion from 𝑀 version

𝑘-Item Increasing-Cost with
items (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) and Discrete
Timesteps [§3.4]

Strongly NP-hard by reduc-
tion from 3-Partition

Strongly NP-hard by reduc-
tion from 𝑀 version

Table 1.1: Summary of results. Positive results are listed first, followed by negative results.
OPT in the table denotes the optimal solution, and runtimes listed correspond to how long
it takes to determine OPT.

cookies you have and 𝑛𝑖 is the quantity of item 𝑖 that you have. In the 1-Item case, the tuple

is just (𝑐, 𝑛1). Note that your current state in the game is entirely described by this tuple.

In general, the following claim is true.

Claim 1.3.1. If the next step of the optimal strategy involves buying an item at some point

in the future, you should buy the item as soon as you can afford it.

Proof. Suppose that from a given game state, a strategy involves buying the 𝑖th item 𝑡

seconds after you can afford it. Let 𝐺 denote the cookie generation rate at the game state.
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The net change in game state after these 𝑡 seconds is a gain of 1 copy of item 𝑖 and a change

in the amount of cookies by 𝐺𝑡− 𝑦′.

Then, consider the strategy that buys the 𝑖th item as soon as you can afford it and waits

𝑡 seconds afterwards. In this case, the net change in game state after these 𝑡 seconds is a

gain of 1 copy of item 𝑖 and a change in the amount of cookies by (𝐺+ 𝑥)𝑡− 𝑦′. Thus, this

new strategy results in the exact same result as the original strategy, except that it gains an

extra 𝑡𝑥 cookies, which is strictly better. Thus, an optimal strategy that intends to buy an

item as its next step must buy it as soon as it can be afforded.

This claim tells us that the optimal strategy will always wait until it can purchase an

item and purchase it immediately, or it will wait until the target number of cookies 𝑀 is

reached. Thus, the problem boils down to jumping between game states in which you have

0 cookies and need to decide between waiting to reach 𝑀 cookies or purchasing an item.

This means that the only thing we need to keep track of to determine our game state is

(𝑛1, 𝑛2, . . . , 𝑛𝑘), the number of each item we have purchased. For example, in the 1-Item

case, we only need to keep track of a single number 𝑛1. Thus, we can define 𝑓(𝑛) to be the

minimum amount of time needed to reach 𝑀 cookies from the game state (0, 𝑛).

From Claim 1.3.1, we can deduce that the optimal solution will have 2 phases. We will

call them the Buying Phase, where the solution tries to buy items, and the Waiting

Phase, where the solutions has bought all the items it needs and just waits until the items

generate 𝑀 cookies. Every optimal solution can be represented by the sequence of items

that should be bought in the Buying Phase.

Next, we define some general notation that will be useful in the future.

Definition 1.3.2. 𝐵([𝑖1, 𝑖2, . . . , 𝑖𝑛], 𝐺,𝑋, 𝑌,𝐴) is the amount of time needed to buy the items

𝑖1, 𝑖2, . . . , 𝑖𝑛 in order from an initial state with rate 𝐺 and rate gains, costs, and cost increases

described by the vectors 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑘), 𝑌 = (𝑦1, 𝑦2, . . . , 𝑦𝑘), and 𝐴 = (𝛼1, 𝛼2, . . . , 𝛼𝑘)

respectively.

In cases where 𝐴 = (1, 1, . . . , 1), we may leave out the 𝑋, 𝑌,𝐴 parameters in the notation,

as they are fixed throughout the problem. Sometimes, we also leave out 𝐺 if it is clear what

𝐺 is being referred to.

13



It is often helpful to bound the value of 𝐵. The following two results are true in general.

Lemma 1.3.3. The following inequalities hold:

𝐵([𝑖1, 𝑖2, . . . , 𝑖𝑛], 𝐺) ≤

(︃
𝑛∑︁

𝑘=1

𝑦𝑖𝑘

)︃
/𝐺

𝐵([𝑖1, 𝑖2, . . . , 𝑖𝑛], 𝐺) >

(︃
𝑛∑︁

𝑘=1

𝑦𝑖𝑘

)︃
/

(︃
𝐺+

𝑛∑︁
𝑘=1

𝑥𝑖𝑘

)︃

Proof. Let 𝐺𝑖𝑘 be the generation rate just before purchasing item 𝑖𝑘. Note that for all 𝑘,

𝐺 ≤ 𝐺𝑖𝑘 < 𝐺+
∑︀𝑛

𝑘=1 𝑥𝑖𝑘 . Additionally, we know that 𝐵([𝑖1, 𝑖2, . . . , 𝑖𝑛], 𝐺) =
∑︀𝑛

𝑘=1

𝑦𝑖𝑘
𝐺𝑖𝑘

. Then

we have that
𝑛∑︁

𝑘=1

𝑦𝑖𝑘
𝐺𝑖𝑘

≤
𝑛∑︁

𝑘=1

𝑦𝑖𝑘
𝐺

=

(︃
𝑛∑︁

𝑘=1

𝑦𝑖𝑘

)︃
/𝐺

and
𝑛∑︁

𝑘=1

𝑦𝑖𝑘
𝐺𝑖𝑘

>
𝑛∑︁

𝑘=1

𝑦𝑖𝑘
𝐺+

∑︀𝑛
𝑘=1 𝑥𝑖𝑘

=

(︃
𝑛∑︁

𝑘=1

𝑦𝑖𝑘

)︃
/

(︃
𝐺+

𝑛∑︁
𝑘=1

𝑥𝑖𝑘

)︃

Next, we determine conditions for when buying an item is optimal. In general, we can

determine an upper bound on the generation rate 𝐺 beyond which it will not be worth it to

purchase any more items.

Lemma 1.3.4. If your current cookie generation rate is 𝐺 and the items have rate increases

and costs (𝑥𝑖, 𝑦𝑖), you should stop buying items if and only if

𝐺 > max
𝑖

(︁𝑀𝑥𝑖

𝑦𝑖
− 𝑥𝑖

)︁
To prove the result, we begin by proving an alternate form of the result for the 1-Item

example.

Lemma 1.3.5. If your current cookie generation rate is 𝐺, you should buy an item with cost

𝑦 and rate increase 𝑥 if and only if

𝑀

𝑦
≥ 1 +

𝐺

𝑥
. (1.1)
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Proof. Suppose we are at a state where we have purchased 𝑛1 items. Then, the optimal

decision is either to purchase another item or to enter the Waiting Phase.

In the first case, the time taken is equal to

𝑦

𝐺
+ 𝑓(𝑛1 + 1) ≤ 𝑦

𝐺
+

𝑀

𝐺+ 𝑥
,

because a valid (but possibly not optimal) strategy from the state (0, 𝑛1 + 1) is to wait.

In the second case, the time taken is equal to 𝑀
𝐺

.

Thus, if it is the case that
𝑦

𝐺
+

𝑀

𝐺+ 𝑥
≤ 𝑀

𝐺
, (1.2)

then we should go with the first strategy and purchase an item. Rearranging (2) gives (1).

This means that if (1) is satisfied, purchasing the item is better.

Now we show that if (1) is not satisfied, then waiting is better. Suppose that (1) is not

satisfied, so 𝑀
𝑦
< 1 + 𝐺

𝑥
. Written in the form of (2), this inequality becomes 𝑦

𝐺
+ 𝑀

𝐺+𝑥
> 𝑀

𝐺
.

Note that for any rate 𝐺′ > 𝐺 and 𝑦′ ≥ 𝑦, the inequality 𝑀
𝑦′

< 1 + 𝐺′

𝑥
still holds. Now,

suppose that the optimal strategy from this point forward is to purchase 𝑘 items for some

𝑘 > 0 and then wait. Let 𝑦𝑖 and 𝐺𝑖 denote the price and cookie generation rate after 𝑖 item

purchases from this point forward, and note that 𝐺𝑚 = 𝐺𝑚−1 + 𝑥. Then the time taken to

achieve this equals 𝐵([1, . . . , 1⏟  ⏞  
𝑘

], 𝐺) + 𝑀
𝐺𝑘

. Note that for any 𝑘 > 0

𝐵([1, . . . , 1⏟  ⏞  
𝑘

], 𝐺) +
𝑀

𝐺𝑘

=
𝑦

𝐺
+

𝑦1
𝐺1

+ · · ·+ 𝑦𝑘−2

𝐺𝑘−2

+
𝑦𝑘−1

𝐺𝑘−1

+
𝑀

𝐺𝑘−1 + 𝑥

>
𝑦

𝐺
+

𝑦1
𝐺1

+ · · ·+ 𝑦𝑘−2

𝐺𝑘−2

+
𝑀

𝐺𝑘−1

= 𝐵([1, . . . , 1⏟  ⏞  
𝑘−1

], 𝐺) +
𝑀

𝐺𝑘−1

15



Thus, we have that

𝐵([1, . . . , 1⏟  ⏞  
𝑘

], 𝐺) +
𝑀

𝐺𝑘

> 𝐵([1, . . . , 1⏟  ⏞  
𝑘−1

], 𝐺) +
𝑀

𝐺𝑘−1

> 𝐵([1, . . . , 1⏟  ⏞  
𝑘−2

], 𝐺) +
𝑀

𝐺𝑘−2

· · ·

> 𝐵([1], 𝐺) +
𝑀

𝐺1

=
𝑦

𝐺
+

𝑀

𝐺+ 𝑥

>
𝑀

𝐺

Thus, if (1) is not satisfied, then the optimal strategy is to wait. This completes the

proof of the lemma.

Isolating 𝐺 from Lemma 1.3.5 and reversing the statement, the following corollary holds.

Corollary 1.3.6. If your current cookie generation rate is 𝐺, you should stop buying items

with cost 𝑦 and rate increase 𝑥 if and only if

𝐺 >
𝑀𝑥

𝑦
− 𝑥.

Applying Corollary 1.3.6 to every item in 𝑘-Item Cookie Clicker proves Lemma 1.3.4.
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Chapter 2

Positive Results

2.1 1-Item Cookie Clicker Solution

Armed with the tools we developed in the previous section, we solve the 1-Item Cookie

Clicker problem. Based on the results of the previous section, the optimal strategy is to

purchase 𝑘 items for some 𝑘 ≥ 0 as soon as each item becomes affordable and then wait until

we reach 𝑀 cookies. The total time that this takes is

𝐵([1, . . . , 1⏟  ⏞  
𝑘

], 1, 𝑥, 𝑦, 𝛼) +
𝑀

1 + 𝑘𝑥
=

𝑘−1∑︁
𝑛=0

𝑦 · 𝛼𝑛

1 + 𝑛𝑥
+

𝑀

1 + 𝑘𝑥
.

By Lemma 1.3.5, we know that if our current cookie generation rate is 𝐺′ and the current

cost of the item is 𝑦′, then we should stop buying the item when 𝑀
𝑦′

< 1 + 𝐺′

𝑥
. After buying

𝑘 items, we have that 𝐺′ = 1 + 𝑘𝑥 and 𝑦′ = 𝑦 · 𝛼𝑘.

In the special case of 𝛼 = 1, which we call the fixed-cost case, the inequality becomes

𝑀

𝑦
< 1 +

1 + 𝑘𝑥

𝑥
= 1 + 𝑘 +

1

𝑥

so 𝑘, the number of items we should buy before stopping, is the smallest integer larger than

17



𝑀
𝑦
− 1− 1

𝑥
. In this case, the total time the optimal solution takes is equal to

𝑘−1∑︁
𝑛=0

𝑦

1 + 𝑛𝑥
+

𝑀

1 + 𝑘𝑥
=

𝑦

𝑥

𝑘−1∑︁
𝑛=0

1

1/𝑥+ 𝑛
+

𝑀

1 + 𝑘𝑥

≈ 𝑦

𝑥

𝑘−1∑︁
𝑛=0

1

𝑛
+

𝑀

1 + 𝑘𝑥

≈ 𝑦

𝑥
ln 𝑘 +

𝑀

1 + 𝑘𝑥

≈ 𝑦

𝑥
ln

𝑀

𝑦
+

𝑀
𝑀𝑥
𝑦

=
𝑦

𝑥

(︂
ln

𝑀

𝑦
+ 1

)︂
.

If 𝛼 > 1, the inequality then becomes

𝑀

𝑦 · 𝛼𝑘
< 1 +

1 + 𝑘𝑥

𝑥
= 1 + 𝑘 +

1

𝑥

⇐⇒ 𝑀

𝑦(1 + 𝑘 + 1
𝑥
)
< 𝛼𝑘

⇐⇒ log𝛼
𝑀

𝑦
− log𝛼

(︂
1 + 𝑘 +

1

𝑥

)︂
< 𝑘.

In most reasonable cases, the log term on the left hand side of the inequality is fairly small,

so 𝑘 ≈ log𝛼
𝑀
𝑦

.

Now, we derive similar results for the rate-goal version of the problem, where the goal is

to reach a final rate of 𝑅 cookies. Note that in this version, there is no Waiting Phase, so

only the Buying Phase needs to be analyzed. The optimal strategy for the rate-goal version

is quite simple: buy the item whenever possible until the goal rate is reached. The goal rate

of 𝑅 is reached after 𝑘 = ⌈𝑅−1
𝑥

⌉ purchases of the item.

Then, for the fixed-cost case where 𝛼 = 1, the total time needed to reach the rate goal

18



will be

𝑘−1∑︁
𝑛=0

𝑦

1 + 𝑛𝑥
=

𝑦

𝑥

𝑘−1∑︁
𝑛=0

1

1/𝑥+ 𝑛

≈ 𝑦

𝑥

𝑘−1∑︁
𝑛=0

1

𝑛

≈ 𝑦

𝑥
ln 𝑘

=
𝑦

𝑥
ln
⌈︁𝑅− 1

𝑥

⌉︁
.

And for the increasing-cost case, the total time needed to reach the rate goal is

𝑘−1∑︁
𝑛=0

𝑦 · 𝛼𝑛

1 + 𝑛𝑥
.

2.2 Fixed-Cost Cookie Clicker for 2 Items

In this section and the next, we analyze the case where all the 𝛼’s are equal to 1, which

we call Fixed-Cost Cookie Clicker. This is a natural starting point, as it corresponds to the

economic situation in which items are fixed in price due to enough supply existing. You can

think of this game as modeling the problem of optimizing discrete investments.

In the 2 Item Cookie Clicker problem, our goal is to reach 𝑀 cookies as quickly as we can,

and the 2 items available are described by the tuples (𝑥1, 𝑦1) and (𝑥2, 𝑦2). These are defined

analogously to the 1 item case. Without loss of generality, we can assume that 𝑦2 > 𝑦1. In

this problem, we will also make the assumption that 𝑥2

𝑦2
> 𝑥1

𝑦1
. This is because if the reverse

inequality held, then buying 𝑦2
𝑦1

copies of item 1 gives a higher rate increase than buying a

single instance of item 2, which means that it will never be optimal to buy item 2 if 𝑀 is

large enough1.

We can apply the general claims from the 1 item analysis here, so we know from Claim 1.3.1

that the optimal strategy will jump between states where we have 0 cookies, and that there

is a Buying Phase and a Waiting Phase. As before, we can represent every optimal solution

by the sequence of items that should be bought in the Buying Phase.
1𝑀 must be large enough so that the effect of 𝑦2

𝑦1
not being an integer is irrelevant in the long run
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We now solve this problem. We will show that the sequence of items in the Buying Phase

must be [1, 1, . . . , 1, 2, 2, . . . , 2] when 𝑀 is large enough. Then, finding the optimal solution

simply involves figuring out when to stop buying item 1 and when to start buying item 2,

which can be determined in polynomial time.

To help us solve our problem, we will define the following.

Definition 2.2.1. The efficiency score of an item of cost 𝑦 and rate increase 𝑥 when you

have generation rate 𝐺 is 𝑦
𝑥
+ 𝑦

𝐺
.

Lemma 2.2.2. If you plan to buy both items consecutively, you should always buy the item

with the lower efficiency score. In particular, let 𝑇 = (𝑦2 − 𝑦1)/(
𝑦1
𝑥1

− 𝑦2
𝑥2
). Then, if 𝐺 < 𝑇 ,

you should purchase item 1 followed by item 2, and if 𝐺 > 𝑇 , you should purchase item 2

followed by item 1.

Proof. The efficiency score of an item dictates whether buying item 1 then item 2 is better

than buying item 2 then item 1.

Suppose we have generation rate 𝐺. Then the cost of buying item 1 then item 2 is equal

to 𝑦1
𝐺
+ 𝑦2

𝐺+𝑥1
and the cost of buying item 2 then item 1 is equal to 𝑦2

𝐺
+ 𝑦1

𝐺+𝑥2
. If 𝐺 < 𝑇 , we

can rearrange the inequality to get that

𝐺 <
𝑦2 − 𝑦1
( 𝑦1
𝑥1

− 𝑦2
𝑥2
)

⇐⇒ 𝑦1
𝐺

+
𝑦1
𝑥1

<
𝑦2
𝐺

+
𝑦2
𝑥2

⇐⇒ 𝑦1

(︁𝐺+ 𝑥1

𝑥1

)︁
< 𝑦2

(︁𝐺+ 𝑥2

𝑥2

)︁
⇐⇒ 𝑦1

(︁ 𝑥2

𝐺(𝐺+ 𝑥2)

)︁
< 𝑦2

(︁ 𝑥1

𝐺(𝐺+ 𝑥1)

)︁
⇐⇒ 𝑦1

(︁ 1

𝐺
− 1

𝐺+ 𝑥2

)︁
< 𝑦2

(︁ 1

𝐺
− 1

𝐺+ 𝑥1

)︁
⇐⇒ 𝑦1

𝐺
+

𝑦2
𝐺+ 𝑥1

<
𝑦2
𝐺

+
𝑦1

𝐺+ 𝑥2

.

On the other hand, if 𝐺 > 𝑇 , then the reverse is true.

Now, suppose that we have some optimal solution represented as a sequence of 1’s and

2’s. Now, we know that until the rate 𝐺 reaches 𝑇 , we will never have a 2 followed by a 1.
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Similarly, after the rate 𝐺 passes 𝑇 , we will never have a 1 followed by a 2. Thus, the final

sequence must be of the following form.

[1, 1, . . . 1, 1, 2, 2, . . . , 2, 2, 1, 1, . . . , 1, 1].

Somewhere in the middle of the sequence of 2’s, the generation rate reaches 𝑇 .

Now, we will show that for large enough 𝑀 , there will be no sequence of 1’s at the end

of the optimal solution.

Theorem 2.2.3. Let 𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) = max
(︁
2, 2

𝑥1
· 𝑦1+𝑦2

𝑦1
𝑥1

− 𝑦2
𝑥2

)︁
If 𝑀 ≥ (𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2)+2) ·𝑦1,

then the optimal solution will have no 1’s at the end.

Proof. Suppose for the sake of contradiction that there are 𝑘 1’s at the end of the sequence

representing the optimal solution for some 𝑘 > 0. We will show that replacing the final 1

with a 2 results in a better solution, which disproves the optimality of the original solution.

Denote that the rate before purchasing the final 1 in the optimal solution as 𝑅.

The time it takes to buy the final 1 and then wait until the goal 𝑀 is reached is equal

to 𝑦1
𝑅
+ 𝑀

𝑅+𝑥1
. The time it takes to buy a 2 instead of the final 1 and then wait until the goal

𝑀 is equal to 𝑦2
𝑅
+ 𝑀

𝑅+𝑥2
. We want to prove that

𝑦2
𝑅

+
𝑀

𝑅 + 𝑥2

<
𝑦1
𝑅

+
𝑀

𝑅 + 𝑥1

or equivalently that
𝑀

𝑅 + 𝑥2

− 𝑀

𝑅 + 𝑥1

<
𝑦1
𝑅

− 𝑦2
𝑅
. (2.1)

Now, we know from Lemma 1.3.5 and the fact that the optimal solution bought the final

1 that

1 +
𝑅

𝑥1

≤ 𝑀

𝑦1
⇐⇒ 𝑀

𝑅 + 𝑥1

≥ 𝑦1
𝑥1

.

Similarly, because the optimal solution can not buy another 2 after the final 1, we know that

1 +
𝑅 + 𝑥1

𝑥2

>
𝑀

𝑦2
⇐⇒ 𝑀

𝑅 + 𝑥1 + 𝑥2

<
𝑦2
𝑥2

.
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Combining the above two equations, we end up with

𝑀

𝑅 + 𝑥1 + 𝑥2

− 𝑀

𝑅 + 𝑥1

<
𝑦2
𝑥2

− 𝑦1
𝑥1

⇐⇒ 𝑀

𝑅 + 𝑥2

− 𝑀

𝑅 + 𝑥1

<
𝑦2
𝑥2

− 𝑦1
𝑥1

+
𝑀

𝑅 + 𝑥2

− 𝑀

𝑅 + 𝑥1 + 𝑥2

=
𝑦2
𝑥2

− 𝑦1
𝑥1

+
𝑀𝑥1

(𝑅 + 𝑥2)(𝑅 + 𝑥1 + 𝑥2)

<
𝑦2
𝑥2

− 𝑦1
𝑥1

+
𝑀𝑥1

𝑅2
.

Thus, to prove (3), we just have to prove that

𝑦2
𝑥2

− 𝑦1
𝑥1

+
𝑀𝑥1

𝑅2
<

𝑦1
𝑅

− 𝑦2
𝑅

or that
𝑀𝑥1

𝑅2
+

𝑦2 − 𝑦1
𝑅

<
𝑦1
𝑥1

− 𝑦2
𝑥2

Now note that because the optimal solution can not buy another 1 after the final 1,

1 +
𝑅 + 𝑥1

𝑥1

>
𝑀

𝑦1
⇐⇒ 𝑅 >

(︁𝑀
𝑦1

− 2
)︁
𝑥1.

Because 𝑀 ≥ (𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) + 2) · 𝑦1 and 𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) ≥ 2, we can deduce that

𝑀 ≥ 4𝑦1

⇐⇒ 𝑀/2 ≥ 2𝑦1

⇐⇒ 𝑀 − 2𝑦1 ≥ 𝑀/2,

and therefore

𝑅 >

(︂
𝑀

𝑦1
− 2

)︂
𝑥1 =

𝑥1

𝑦1
(𝑀 − 2𝑦1) ≥

𝑥1

𝑦1
· 𝑀
2

=
𝑀𝑥1

2𝑦1
.

Thus, 𝑀𝑥1

𝑅2 = 𝑀
𝑅

𝑥1

𝑅
< 2𝑦1

𝑥1

𝑥1

𝑅
= 2𝑦1

𝑅
. Using this, all we have to prove now is that

2𝑦1
𝑅

+
𝑦2 − 𝑦1

𝑅
=

𝑦1 + 𝑦2
𝑅

<
𝑦1
𝑥1

− 𝑦2
𝑥2
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or equivalently that
𝑦1 + 𝑦2
𝑦1
𝑥1

− 𝑦2
𝑥2

< 𝑅.

But this is true because

𝑅 >
𝑀𝑥1

2𝑦1
≥ (𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) + 2) · 𝑥1

2
>

𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) · 𝑥1

2
≥ 𝑦1 + 𝑦2

𝑦1
𝑥1

− 𝑦2
𝑥2

.

Thus, we have shown that for large enough 𝑀 , the optimal solution will be of the form

[1, 1, . . . 1, 1, 2, 2, . . . , 2, 2],

where the 1’s only appear if the total generation rate at that point is less than the threshold

𝑇 . We can experimentally verify that the point at which the optimal solution transitions

from 1’s to 2’s is not exactly 𝑇 , but is usually close to 𝑇
2
. An example of this is displayed

in Figure 2-1. For every integer 𝑖, we can consider the optimal strategy that starts off by

buying exactly 𝑖 copies of item 1 then transitioning to item 2. Figure 2-1 plots the amount

of time each optimal solution takes.

We then have the following corollary

Corollary 2.2.4. Fixed-Cost Cookie Clicker for 2 Items can be solved in 𝑢1 log𝜑 𝑢2 +𝑂(𝑢1)

time, where 𝑢1 = 𝑂( 𝑦1
𝑥1

log 𝑀
𝑦1
) and 𝑢2 = 𝑂( 𝑦2

𝑥2
log 𝑀

𝑦2
).

Proof. To solve Fixed-Cost Cookie Clicker for 2 Items, we just have to find the optimal

number of 1’s to buy before transitioning to 2’s and subsequently solving the 1-Item Cookie

Clicker game. Finding this optimal number involves maximizing a function of two bounded

discrete variables (the number of 1’s to buy and the number of 2’s to buy), which can be

done in polynomial time.

In particular, let us define

𝑛(𝑟, 𝑠) = 𝐵([1, . . . , 1⏟  ⏞  
𝑟

, 2, . . . , 2⏟  ⏞  
𝑠

]).
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Figure 2-1: Plot showing the amount of time the optimal solution takes as the number
of copies of item 1 it buys at the beginning varies. Here, 𝑀 = 60000, 𝑋 = [10, 100],
𝑌 = [72, 700], 𝑇 = 3140, and 𝐺 = 1611 at the minimum of the curve, which corresponds
to the correct number of item 1’s to purchase in the optimal solution. For most parameter
settings, there is exactly one local minimum. However, this is not always the case.

Then the function 𝑛 is unimodal in 𝑠, because for a fixed 𝑟, we are essentially solving

1-Item Cookie Clicker using the item 2. We can obtain rough upper bounds for each of 𝑟 and

𝑠, which we denote by 𝑢1 = 𝑂( 𝑦1
𝑥1

log 𝑀
𝑦1
) and 𝑢2 = 𝑂( 𝑦2

𝑥2
log 𝑀

𝑦2
), by considering an instance of

1-Item Cookie Clicker with just item 1 or just item 2. Then, we can find an optimal solution

in 𝑢1 log𝜑 𝑢2 +𝑂(𝑢1) [DL05].

Next, we analyze the rate-goal version of Fixed-Cost Cookie Clicker for 2 Items and

obtain a similar result about the structure of solutions.

Theorem 2.2.5. For large enough 𝑅, any optimal solution to the rate-goal version of Fixed-

Cost Cookie Clicker for 2 Items must be of the form

[1, 1, . . . 1, 1, 2, 2, . . . , 2, 2, 1, . . . , 1],

where the number of 1’s at the end is upper bounded by ⌈𝑥2/𝑥1⌉
(︁⌊︁

1/(𝑥2

𝑥1
− 𝑦2

𝑦1
)
⌋︁
+ 1
)︁
.

This theorem lets us restrict the space of possible solutions, and we can use brute force

on the number of 1’s at the end to obtain an algorithm that finds the optimal solution in
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the same amount of time as in the 𝑀 version, up to a multiplicative factor corresponding to

the brute force search.

Proof. First, we know using the same swapping argument as before that the solution must

be of the form

[1, 1, . . . 1, 1, 2, 2, . . . , 2, 2, 1, 1, . . . , 1, 1].

Thus, we only have to show that the number of 1’s at the end must be small. The primary

idea is that if item 2 is indeed more efficient, you should be able to replace
⌊︁
𝑥2

𝑥1

⌋︁
copies of

item 1 with a single copy of item 2, giving a greater rate increase in less time, which can only

improve your solution. This argument isn’t always easy to prove, depending on the costs

and rate increases of items 1 and 2. Thus, we will instead argue that buying 𝑛 copies of item

1 at the end is worse than buying 𝑚 copies of item of item 2 for some positive integers 𝑛

and 𝑚. In particular, the minimal 𝑛 such that the rational number 𝑛
𝑚

satisfies the equation

𝑥2

𝑥1

>
𝑛

𝑚
>

𝑦2
𝑦1

is sufficient for large enough 𝑅. It is difficult to find the minimal 𝑛, but we know that if we

choose an 𝑚 such that 1
𝑚

< 𝑥2

𝑥1
− 𝑦2

𝑦1
, then there must exist some 𝑛 that satisfies the inequality

and is less than ⌈𝑥2/𝑥1⌉𝑚. Thus, one valid choice of 𝑚 is
⌊︁
1/(𝑥2

𝑥1
− 𝑦2

𝑦1
)
⌋︁
+ 1, and 𝑛 is then

upper bounded by ⌈𝑥2/𝑥1⌉
(︁⌊︁

1/(𝑥2

𝑥1
− 𝑦2

𝑦1
)
⌋︁
+1
)︁
. This 𝑛 upper bounds the number of trailing

1’s we can have in any solution.

To prove the above claim, consider replacing 𝑛 trailing copies of item 1 in some solution

𝑆 with 𝑚 copies of item 2 to produce the new solution 𝑆 ′:

[1, . . . 1, 2, . . . , 2, 1, . . . , 1, 1, . . . , 1⏟  ⏞  
𝑛

] → [1, . . . 1, 2, . . . , 2, 1, . . . , 1, 2, . . . , 2⏟  ⏞  
𝑚

].

The rate increase from the 𝑛 trailing item 1’s in 𝑆 is 𝑛𝑥1, and the rate increase from the

trailing item 2’s in 𝑆 ′ is 𝑚𝑥2. Based on our definition of 𝑛 and 𝑚, we know that the rate

increase from the trailing item 2’s in 𝑆 ′ is higher, so 𝑆 ′ will also reach the goal rate of 𝑅.

Now, we just have to show that the solution 𝑆 ′ takes less time than the solution 𝑆.

Suppose that the generation rate before purchasing the 𝑛 copies of item 1 is 𝐺. The amount
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of time it takes to buy the 𝑛 copies of item 1 in 𝑆 is

𝐵([1, . . . , 1⏟  ⏞  
𝑛

], 𝐺) > 𝑛
𝑦1

𝐺+ 𝑛𝑥1

.

The amount of time it takes to buy the 𝑚 copies of item 2 in 𝑆 ′ is

𝐵([2, . . . , 2⏟  ⏞  
𝑚

], 𝐺) ≤ 𝑚
𝑦2
𝐺
,

where both inequalities are derived from Lemma 1.3.3.

Thus, we just have to show that

𝑛
𝑦1

𝐺+ 𝑛𝑥1

> 𝑚
𝑦2
𝐺

or equivalently, that

𝑛𝑦1𝐺 > 𝑚𝑦2𝐺+𝑚𝑛𝑥1𝑦2

or

𝐺 >
𝑚𝑛𝑥1𝑦2

𝑛𝑦1 −𝑚𝑦2
(2.2)

Let 𝑅′ be the fraction on the right hand side of (4). The denominator of 𝑅′ is positive from

the definition of 𝑛 and 𝑚, so as long as 𝐺 is large enough, buying 𝑚 copies of item 2 at the

end also takes less time than buying 𝑛 copies of item 1. Thus, as long as 𝑅 > 𝑅′ + 𝑛𝑥1, the

optimal solution will have at most 𝑛 trailing 1’s.

2.3 Fixed-Cost Cookie Clicker for 𝑘 Items

A natural follow-up is to extend this problem from 2 items to 𝑘 items. Here, we present a

weakly polynomial time dynamic programming solution and discuss an attempt using local

optimizations to achieve a faster runtime.
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2.3.1 Dynamic Programming Solution

In the fixed-cost case, the items do not change in price over time. Thus, the only thing

that determines the game state is the current generation rate. Using Lemma 1.3.4, the final

generation rate is bounded above by max𝑖
(︀
𝑀𝑥𝑖

𝑦𝑖

)︀
. Let DP[𝑛] denote the minimal amount of

time needed to reach a goal of 𝑀 from a state where you have 0 cookies and generation rate

𝑛. The dynamic program can be solved by the following recurrence:

𝐷𝑃 [𝑛] = min
(︁𝑀
𝑛
,min

𝑖

(︁𝑦𝑖
𝑛
+𝐷𝑃 [𝑛+ 𝑥𝑖]

)︁)︁
,

where the 𝑀
𝑛

term corresponds to entering the Waiting Phase after achieving a generation

rate of 𝑛. If there are 𝑘 items, then solving the original problem, which is equivalent to

finding the value of DP[1], takes 𝑂(max𝑖(
𝑀𝑥𝑖𝑘
𝑦𝑖

)).

For the rate-goal version of this problem, we can define the same subproblem DP[𝑛], and

the recurrence can be modified slightly to

𝐷𝑃 [𝑛] =

⎧⎪⎨⎪⎩min𝑖(
𝑦𝑖
𝑛
+𝐷𝑃 [𝑛+ 𝑥𝑖]) if 𝑛 < 𝑅,

0 otherwise.

Again, the final problem reduces to finding DP[1], and the total runtime is 𝑂(𝑅𝑘).

2.3.2 Local Optimizations

One idea for a faster algorithm is to use local optimizations on a given solution sequence to

try to obtain a better one.

As we saw from the analysis of Fixed-Cost Cookie Clicker for 2 Items, one example of

a local optimization is a “swap" that involves swapping consecutive elements in a solution

if doing so improves the solution. Another natural local optimization, which we saw in the

proof of Theorem 2.2.3, was the replacement of one item in a solution sequence with another.

Thus, to try to solve this problem, we tried using random local optimizations on a

randomly generated initial solution until it reached a point where local optimizations could

no longer improve the solution. The local optimizations we used included:

27



1. Adding an item to the solution at a specific index

2. Deleting an item from the solution at a specific index

3. Replacing one item with a different item at a specific index

4. Moving an item from one index to another. If an item is moved from index 𝑖+ 1 to 𝑖,

this is equivalent to a “swap".

5. Sorting the solution so that the cheapest items come first

In general, these local optimizations would improve the initial solution sequences. In some

cases these local optimizations would result in a final solution that matched the globally

optimal solution computed using dynamic programming. However, in other cases, these

local optimizations get stuck at a local optimum, which are points that are worse than the

global optimum, but can not be improved any further using any of these local optimization

operations. Thus, this leads us to the conclusion that our list of local optimizations is

insufficient for finding a global solution, and any proof that relies solely on these operations

will not be able to show global optimality of a solution.

2.4 Increasing-Cost Cookie Clicker for 𝑘 Items

From this point forward, we assume that the 𝛼’s, the cost increase rates, all satisfy 𝛼 > 1.

This is how the original Cookie Clicker game works, and is also a reasonable assumption. It

corresponds to the economic situation in which items increase in price due to limited supply.

2.4.1 Dynamic Programming Solution

In this section, we present a dynamic programming solution which finds optimal solutions

in 𝑂(𝑘 log𝑘𝛼(
𝑀
𝑦
)) time.

For simplicity, let us solve the problem for the case with 2 items first. Recall that

your state in the game is completely described by the tuple (𝑛1, 𝑛2), where 𝑛𝑖 denotes the

quantity of item 𝑖 you have purchased. Note that it will never be worth it to buy an item
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if the item costs more than the goal 𝑀 . This gives us upper bounds on 𝑛1 and 𝑛2, namely,

𝑛𝑖 < log𝛼𝑖

𝑀
𝑦𝑖

+ 1. This motivates us to define

𝐷𝑃 [𝑎][𝑏] := the minimum time it takes to reach 𝑀 from the state (a,b).

Let the cookie generation rate at state (𝑎, 𝑏) be represented by 𝑔𝑎𝑏 = 1+𝑎𝑥1+ 𝑏𝑥2. From the

state (𝑎, 𝑏), the optimal strategy is one of the following three choices: entering the Waiting

Phase, buying item 1, or buying item 2. We can then derive the recurrence

𝐷𝑃 [𝑎][𝑏] = min
(︁𝑀
𝑔𝑎𝑏

,
𝑦1 · 𝛼𝑎

1

𝑔𝑎𝑏
+𝐷𝑃 [𝑎+ 1, 𝑏],

𝑦2 · 𝛼𝑏
2

𝑔𝑎𝑏
+𝐷𝑃 [𝑎, 𝑏+ 1]

)︁
corresponding to each of those three choices. If 𝐴 and 𝐵 are the upper bounds for 𝑛1 and

𝑛2 respectively, then we can revise the recursive formulas for 𝐷𝑃 [𝐴][𝑏] and 𝐷𝑃 [𝑎][𝐵] for any

𝑎 and 𝑏 in the proper range to only correspond to two choices (e.g. for 𝐷𝑃 [𝐴][𝑏], you can

either buy item 2 or wait). We only need to initialize the value 𝐷𝑃 [𝐴][𝐵] = 𝑀
𝑔𝐴𝐵

and then

use the recurrence to fill out the rest of the dynamic programming table. Finally, our answer

is 𝐷𝑃 [0][0].

Initializing the single boundary value takes 𝑂(1) time. Then, filling out the rest of the

𝐴x𝐵 table takes 𝑂(𝐴𝐵) time, so the total runtime is 𝑂(𝐴𝐵).

This dynamic programming approach can easily be extended to the 𝑘-item problem. As

before, one can note that the game state of the 𝑘-item problem is described entirely by the

𝑘-tuple (𝑛1, 𝑛2, . . . , 𝑛𝑘), where 𝑛𝑖 is the quantity of item 𝑖 that you have purchased. We can

use the same upper bound 𝑛𝑖 < log𝛼𝑖
(𝑀
𝑦𝑖
) + 1. Let 𝑁𝑖 = log𝛼𝑖

(𝑀
𝑦𝑖
) + 1 denote the upper

bounds for each 𝑛𝑖.

We can similarly define 𝐷𝑃 [(𝑛1, 𝑛2, . . . , 𝑛𝑘)] to be the minimum time it takes to reach

M from the state (𝑛1, 𝑛2, . . . , 𝑛𝑘). Then, filling in any square in the grid involves check-

ing the solutions the adjacent squares and doing an 𝑂(1) computation for each adjacent

square. In total, this takes 𝑂(𝑘) time. The only square we need to initialize is the corner

𝐷𝑃 [(𝑁1, 𝑁2, . . . , 𝑁𝑘)]. Thus, the total time complexity of this program is 𝑂(𝑘
∏︀𝑘

𝑖=1𝑁𝑖) =

𝑂(𝑘𝑁𝑘
𝑚𝑎𝑥) = 𝑂

(︁
𝑘 log𝑘𝛼

(︁𝑀
𝑦

)︁)︁
.
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For the rate-goal version of the problem, we can also use dynamic programming to

compute the optimal solution, but the complexity is significantly worse. We also define

𝐷𝑃 [(𝑛1, 𝑛2, . . . , 𝑛𝑘)] to be the minimum time it takes to reach 𝑅 from the state (𝑛1, 𝑛2, . . . , 𝑛𝑘),

but we can only obtain a naive upper bound for each 𝑛𝑖 of 𝑁𝑖 =
𝑅
𝑥𝑖

. This upper bound does

not have a log like the upper bound for the 𝑀 version of the problem because we can not

take advantage of the fact that costs increase. No matter how costly the items get, we still

have to get to the final rate 𝑅. Using this upper bound, this dynamic programming approach

takes 𝑂(𝑘
∏︀𝑘

𝑖=1𝑁𝑖) = 𝑂(𝑘𝑁𝑘
𝑚𝑎𝑥) = 𝑂

(︁
𝑘
(︁𝑅
𝑥

)︁𝑘)︁
.

2.4.2 Greedy Solutions

Natural Greedy Solution: One greedy solution that arises naturally in normal game-

play involves buying the item that has the highest rate increase to cost ratio 𝑥𝑖

𝑦𝑖
. This is

the calculation that most human players do when playing the game unaided. For the 2

item case, given most reasonable setting of the parameters, this approach actually performs

fairly well. However, for certain settings of the parameters, this approach can be quite bad.

For example, take 𝑀 = 10000, (𝑥1, 𝑦1, 𝛼1) = (1, 10, 2), (𝑥2, 𝑦2, 𝛼2) = (10000, 9999, 2). In this

case, the second item has a much higher rate increase to cost ratio, which means that the

natural greedy solution would save up for a long time to purchase the second item. However,

it is much better to purchase the first item and increase your generation rate incrementally.

Efficiency Score Greedy Solution: As we saw in the analysis of the fixed-cost case,

the efficiency score was a helpful metric to determine which item to buy. Another idea for a

greedy algorithm is to compute the efficiency score of each item and always choose the item

with the lowest efficiency score. This approach is generally very close to optimal. In fact,

we can prove approximation guarantees for this greedy solution.

2.4.3 Approximation Ratio

Once again, we will begin with the 2 Item case. We derive an approximation ratio for the

Efficiency Score Greedy Solution that approaches 1 for sufficiently large 𝑀 . Specifically, we
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will prove the following theorem.

Theorem 2.4.1. The Efficiency Score Greedy Solution obtains an approximation ratio of

1 +𝑂
(︁

1
log𝑀

)︁
for sufficiently large 𝑀 .

Proof. The main idea is to use two propositions:

1. Proposition 1: Before you’re anywhere close to reaching the goal 𝑀 , you’ll want to

purchase at least one more copy of item 1 and at least one more copy of item 2

2. Proposition 2: When 𝐺 is “big enough", 𝛼 > 1 means that the most efficient item is

locally and globally optimal

Using these two propositions, the greedy solution can be compared to the optimal solution

in three phases.

∙ Phase 1: In this phase, the greedy algorithm reaches a certain generation rate 𝐺,

which corresponds to the “big enough" 𝐺 referred to in Proposition 2. “Big enough" is

quantified in Claim 2.4.2. The time taken is labeled as 𝑇1.

∙ Phase 2: The optimal algorithm will buy some amount of each of the 2 items, reaching

𝑐1 copies of item 1 and 𝑐2 of item 2 (the game state (𝑐1, 𝑐2)) near the tail end of the

Buying Phase. From this point onwards, the optimal algorithm will only purchase one

type of item — this is Phase 3.

We will show that the greedy algorithm also reaches the state (𝑐1, 𝑐2). The interval

between the end of Phase 1 and reaching the state (𝑐1, 𝑐2) is Phase 2. In this phase, the

greedy algorithm and optimal algorithm would be equivalent from the same starting

state2. If we let 𝑇2 denote the amount of time the greedy algorithm uses in Phase 2,

and we let 𝑂2 be the amount of time optimal algorithm takes to reach (𝑐1, 𝑐2) from

(0, 0), then 𝑇2 < 𝑂2.

∙ Phase 3: In this phase, Proposition 1 listed above is no longer true. Let 𝑤 denote the

number of consecutive copies of a single item that the optimal algorithm buys at the
2In the final analysis, we compare the time needed by the optimal algorithm starting from a worse state

than the greedy one, so the greedy solution actually takes less time in Phase 2.
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very end of the Buying Phase. If 𝑇3 is the amount of time the greedy algorithm takes

in this phase and 𝑂3 is the amount of time the optimal solution takes, we can show

that 𝑇3 < 𝑂3(𝛼1(𝑤 · 𝑥2

𝑥1
+ 1)) if the single item is item 2, and 𝑇3 < 𝑂3(𝛼2(𝑤 + 𝑥2

𝑥1
)) if

the single item is item 1. Furthermore, we can bound the value of 𝑤, so 𝑇3 < 𝑑2𝑂3 for

a constant 𝑑2 that depends only on the 𝑥’s and 𝛼’s.

Here is an example of the greedy solution compared to the optimal solution, with the

three phases labeled. Take 𝑀 = 100000, 𝑋 = {10, 90}, 𝑌 = {80, 800}, 𝛼 = {1.2, 1.1}.

Optimal Solution: [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1⏟  ⏞  
𝑂2

, 2⏟ ⏞ 
𝑂3

]

Greedy Solution: [1, 1, 1, 1, 1, 1, 2, 2⏟  ⏞  
𝑇1

, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1⏟  ⏞  
𝑇2

, 2⏟ ⏞ 
𝑇3

]

To begin, we will show that, when Proposition 1 is true and 𝐺 is sufficiently large, then

Proposition 2 is true.

Suppose without loss of generality that we are currently at a state where 𝐵([1, 2]) <

𝐵([2, 1]). We will say that this state has the 𝐸1 property, meaning that item 1 is currently

more efficient, and the locally optimal decision would be to buy item 1.

Due to Proposition 1, we know that any optimal solution from this current state will

purchase 𝑘 copies of item 2 followed by a copy of item 1 for some number 𝑘. We want to

show that given a solution where 𝑘 > 0, we can produce a better solution by choosing to

purchase item 1 first before purchasing any of the 𝑘 copies of item 2. That is, given that

𝐵([2, 1]) > 𝐵([1, 2]), then

𝐵([2, 2, . . . 2, 1]) > 𝐵([1, 2, 2, . . . 2])

which can be argued by sequentially showing that

𝐵([2, 2, . . . 2, 2, 1]) > 𝐵([2, 2 . . . 2, 1, 2])

> 𝐵([2, 2 . . . 1, 2, 2])

...

> 𝐵([1, 2, 2, . . . 2, 2]).
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This would be true if the 𝐸1 property still held after each purchase of item 2. Intuitively, it

should, because purchasing item 2 actually makes future purchases of item 2 more expensive.

However, the 𝐸1 property doesn’t necessarily hold after some number of purchases of item

2 because when the generation rate goes up, the more expensive item, which could be item

2, could become the more efficient item. Thus, we will rely on the following claim.

Claim 2.4.2. Let 𝑞2 = 𝐺
𝑥2

. Suppose that a state with generation rate 𝐺 satisfies the 𝐸1

property. Then the next item that should be purchased is item 1 if 𝑞22 + 2𝑞2 ≥ 1
𝛼2−1

.

Proof. Let 𝑦1 and 𝑦2 denote the current costs of item 1 and item 2 after factoring in the cost

increases. If item 1 has a lower efficiency score than item 2 at generation rate 𝐺, then

𝑦1
𝑥1

+
𝑦1
𝐺

≤ 𝑦2
𝑥2

+
𝑦2
𝐺
.

First, we find conditions when 𝐵([1, 2]) < 𝐵([2, 1]) =⇒ 𝐵([2, 1, 2]) < 𝐵([2, 2, 1]).

To show that 𝐵([2, 1, 2]) < 𝐵([2, 2, 1]), we need to prove that

𝑦1
𝑥1

+
𝑦1

𝐺+ 𝑥2

≤ 𝛼2

(︁𝑦2
𝑥2

+
𝑦2

𝐺+ 𝑥2

)︁
.

We know that
𝑦1
𝑥1

+
𝑦1

𝐺+ 𝑥2

<
𝑦1
𝑥1

+
𝑦1
𝐺

≤ 𝑦2
𝑥2

+
𝑦2
𝐺
,

so we just have to show that

𝑦2
𝑥2

+
𝑦2
𝐺

≤ 𝛼2

(︁𝑦2
𝑥2

+
𝑦2

𝐺+ 𝑥2

)︁
.
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Notice that

𝑎
𝑦2
𝑥2

+
𝑦2
𝐺

≤ 𝛼2

(︁𝑦2
𝑥2

+
𝑦2

𝐺+ 𝑥2

)︁
⇐⇒ 𝑦2

𝐺
≤ (𝛼2 − 1)

𝑦2
𝑥2

+
𝛼2𝑦2

𝐺+ 𝑥2

⇐⇒ 1

𝑥2𝑞2
≤ (𝛼2 − 1)

1

𝑥2

+
𝛼2

𝑥2𝑞2 + 𝑥2

⇐⇒ 𝑞2 + 1 ≤ (𝛼2 − 1)𝑞2(𝑞2 + 1) + 𝛼2𝑞2

⇐⇒ 1 ≤ (𝛼2 − 1)(𝑞22 + 2𝑞2)

⇐⇒ 1

𝛼2 − 1
≤ 𝑞22 + 2𝑞2.

This is the original assumption in Claim 2.4.2. Thus, we know that 𝐵([2, 1, 2]) <

𝐵([2, 2, 1]) if the original condition holds. We also know that 𝐵([1, 2, 2]) < 𝐵([2, 1, 2]), so

the optimal solution from our current state can not start with a [2, 1] sequence or a [2, 2, 1]

sequence.

Now, we claim that this holds for any string of 2’s in the beginning, that is, 𝐵([2, 2, . . . 2, 1, 2]) <

𝐵([2, 2, . . . 2, 2, 1]). This is true because at the point where [1, 2] needs to be compared to

[2, 1], the generation rate 𝐺′ satisfies 𝐺′ > 𝐺, so 𝑞′2 > 𝑞2. Then, the same argument holds

because
1

𝛼2 − 1
≤ 𝑞22 + 2𝑞2 < 𝑞′22 + 2𝑞′2.

Thus, if 𝐺 is large enough and we are in a state that satisfies the 𝐸1 property, then the next

item that should be purchased must be item 1.

Next, we will prove another claim that helps us analyze Phase 2 of the two solutions.

Claim 2.4.3. Let 𝑂𝑃𝑇 (𝑛1, 𝑛2) denote the minimum amount of time needed to reach the goal

𝑀 from a state where you have 0 cookies, 𝑛1 ≥ 0 copies of item 1 have been purchased, and

𝑛2 ≥ 0 copies of item 2 have been purchased. If 𝑛1+𝑛2 > 0, then 𝑂𝑃𝑇 (𝑛1, 𝑛2) < 𝑂𝑃𝑇 (0, 0).

The same statement holds if the final goal is not reaching 𝑀 cookies but to obtain 𝑐1 > 𝑛1

copies of item 1 and 𝑐2 > 𝑛2 copies of item 2.

Proof. Consider the strategy 𝑆(𝑛1, 𝑛2) that mirrors the strategy of 𝑂𝑃𝑇 (0, 0) except that it
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doesn’t purchase items when it has more items than 𝑂𝑃𝑇 (0, 0). Specifically, when 𝑂𝑃𝑇 (0, 0)

purchases its 𝑛th copy of item 1, 𝑆 will also choose to purchase the same item unless 𝑛 < 𝑛1,

in which case 𝑆 will do nothing. When 𝑂𝑃𝑇 (0, 0) enters the Waiting Phase, 𝑆 will as well.

Due to how 𝑆 is defined, when 𝑆 gets to the Waiting Phase, the generation rate of 𝑆 will be

at least that of 𝑂𝑃𝑇 (0, 0). On the other hand, anything that happens before that will take

𝑆 less time than 𝑂𝑃𝑇 (0, 0) takes because 𝑆 starts with more items and this gives 𝑆 a higher

generation rate and/or lets 𝑆 save time because 𝑆 may not have to purchase some items that

𝑂𝑃𝑇 (0, 0) does. Thus, it is clear that, 𝑂𝑃𝑇 (𝑛1, 𝑛2) ≤ 𝑆(𝑛1, 𝑛2) < 𝑂𝑃𝑇 (0, 0).

The following claim is also necessary in conjunction with Claim 2.4.3.

Claim 2.4.4. If the optimal strategies ends up at the state (𝑐1, 𝑐2) just before Phase 3, the

greedy algorithm will also reach the state (𝑐1, 𝑐2).

Proof. In fact, a stronger claim is true: the greedy and optimal algorithms end up converging

quite soon after Phase 1. To see why this is the case, consider a point in Phase 2 where the

greedy algorithm has reached the state (𝑎, 𝑏), where both 𝑎𝑥1 and 𝑏𝑥2 are both larger than

𝑞2𝑥2. This ensures that (𝑎, 0) and (0, 𝑏) are also points in Phase 2. Suppose without loss

of generality that it arrives at this state from the prior state (𝑎 − 1, 𝑏). Then, consider the

optimal solution. At some point, the optimal solution must reach either (𝑐, 𝑏) where 𝑐 < 𝑎 or

(𝑎, 𝑑) where 𝑑 < 𝑏. In the first case, we know that upon reaching (𝑐, 𝑏), the optimal solution

will be following a greedy solution from that point forward. We also know that from the

state (𝑎− 1, 𝑏), the greedy solution chose to purchase item 1, indicating that from the state

(𝑐, 𝑏), it is also more efficient to purchase item 1. This analysis holds true until the optimal

solution reaches (𝑎, 𝑏), which means that the optimal solution has converged to the greedy

solution. In the second case, we know that upon reaching (𝑎, 𝑑), the optimal solution will

also be following a greedy solution from that point forward. We also know that the greedy

solution must have purchased item 2 at some state (𝑒, 𝑑) where 𝑒 < 𝑎 (because the greedy

solution eventually reaches the state (𝑎− 1, 𝑏)). Thus, if it was more efficient to buy item 2

at the state (𝑒, 𝑑), the same will hold at the state (𝑎, 𝑑). This analysis applies until 𝑑 = 𝑏,

indicating that the optimal solution will also reach (𝑎, 𝑏).
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Thus, the optimal and greedy solutions will definitely converge soon after Phase 1, and

they will stay the same as long as Proposition 1 holds true, which is the entirety of Phase 2.

Thus, both solutions will reach the same state (𝑐1, 𝑐2) at end of Phase 2.

Finally, we need one last claim to analyze Phase 3 of the two solutions. As described

before, Phase 3 corresponds to the optimal solution only buying 𝑤 copies of the same item

and taking 𝑂3 time.

Claim 2.4.5. Let 𝑇3 and 𝑂3 denote the time taken by the greedy and the optimal solutions

in this section, respectively. If the optimal solution only buys item 2 at the end, then 𝑇3 <

𝑂3(𝛼1(𝑤 · 𝑥2

𝑥1
+1)). If the optimal solution only buys item 1 at the end, then 𝑇3 < 𝑂3(𝛼2(𝑤+

𝑥2

𝑥1
)).

Proof. We’ll begin by analyzing the case where the optimal solution buys 𝑤 copies of item

2 at the end. The greedy algorithm will buy 𝑚 copies of item 2 and 𝑛 copies of item 1.

We know that if we look at the last item the greedy algorithm buys, the generation rate

before buying that last item must be less than the optimal algorithm’s end generation rate.

Thus, either 𝑚𝑥2 + (𝑛− 1)𝑥1 < 𝑤𝑥2, so 𝑛 < (𝑤 −𝑚)𝑥2

𝑥1
+ 1, or (𝑚− 1)𝑥2 + 𝑛𝑥1 < 𝑤𝑥2, so

𝑛 < (𝑤 −𝑚+ 1)𝑥2

𝑥1
. The two cases are similar, so we will just analyze the first one.

First, we observe that the greedy algorithm will never buy item 1 if its cost is more than

item 2. Thus, at any point in time, item 1 can cost at most 𝛼1 times as much as item 2, or

𝑦1 < 𝛼1𝑦2.

The total time needed by the greedy algorithm is the total time need to buy the 𝑚 copies

of item 2 plus the total cost of the 𝑛 copies of item 1. Buying 𝑚 copies of item 2 takes at

most 𝑚
𝑤
𝑂3 (because the items get more expensive). Each copy of item 1 can’t take more

than 𝛼1 times the maximum time needed to buy a copy of item 2 in the greedy solution,

which must be less than the maximum time need to buy item 2 in the optimal solution,

which must be less than 𝑂3. Thus, buying 𝑛 copies of item 1 can’t take more than 𝑛𝛼1𝑂3.

Thus, we have that 𝑇3 < 𝑂3(
𝑚
𝑤
+ 𝑛𝛼1) < 𝑂3(

𝑚
𝑤
+ 𝛼1((𝑤 −𝑚)𝑥2

𝑥1
+ 1)). This approximation

ratio achieves its maximum when 𝑚 = 0, giving 𝑇3 < 𝑂3(𝛼1(𝑤 · 𝑥2

𝑥1
+1)). This completes the

proof.
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To prove the same result for the case where the optimal solution only buys item 1 at the

end, we can observe that the greedy algorithm will never buy item 2 if 𝑦2 > 𝑥2

𝑥1
𝑦1, so in the

worst case, 𝑦2 < 𝛼2
𝑥2

𝑥1
𝑦1 at any moment. The rest of the argument proceeds similarly.

Finally, we provide a bound on the 𝑤 defined above. We will derive an expression for the

case where the optimal solution only buys copies of item 2; the bound for the other case can

be derived similarly.

Claim 2.4.6. 𝑤 < 𝑗 log(𝑗𝛼1)
log(𝛼2)

+ 1, where 𝑗 =
⌈︀
𝑥2

𝑥1

⌉︀
.

Proof. If the optimal solution buys 𝑘 copies of item 2 at the end, 𝑘 can not be too big

because otherwise we could replace the purchase of the final 2 with 𝑗 purchases of item 1,

which would give a greater rate increase and also take less time.

If the optimal solution buys 𝑤 copies of item 2 at the end, it must have bought item 1 right

before that. Thus, at that moment, the optimal and greedy solutions match, and 𝑦1 < 𝑦2.

After 𝑤 − 1 purchase of item 2, purchasing another copy of item 2 would cost 𝑦2𝛼
𝑤−1
2 . On

the other hand, purchasing 𝑗 copies of item 1 would cost 𝛼1𝑦1(1 + 𝛼1 + · · ·+ 𝛼𝑗−1
1 ) < 𝑦1𝑗𝛼

𝑗
1.

Technically, the generation rates when each of these items is purchased is different, but we

can argue that the rates are all close enough to each other (say, within a small constant

factor), and the overall argument still holds.

Then, it must be the case that

𝑦1𝛼
𝑤−1
2 < 𝑦2𝛼

𝑤−1
2 < 𝑦1𝑗𝛼

𝑗
1

Taking logs of both sides and rearranging gives the desired result.

From Claim 2.4.2, Claim 2.4.3, Claim 2.4.4, Claim 2.4.5, and Claim 2.4.6, we can show

that the greedy algorithm that uses the efficiency score is an approximation algorithm whose

approximation ratio approaches 1 as 𝑀 → ∞.

Suppose we are given an instance of Cookie Clicker for 2 Items with sufficiently large 𝑀 .

Without loss of generality, suppose that 𝑥2 > 𝑥1. Let 𝑄2 be the larger positive solution to

𝑥2 + 2𝑥 = 1
𝛼2−1

.
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Consider the greedy algorithm on this instance of Cookie Clicker. We will let 𝐺(0, 0) be

the amount of time it takes to reach the goal 𝑀 . At the end of Phase 1, it will reach a rate of

𝐺 ≥ 𝑄2𝑥2. We denoted the amount of time taken in this phase by 𝑇1. The amount of time it

takes to reach this point is bounded above by the amount of time it takes to purchase ⌈𝑄2⌉

copies of item 2 while ignoring item 1, which is a function of the inputs 𝑥2, 𝑦2, 𝛼2. Thus,

𝑇1 < 𝑑1, where 𝑑1 = 𝑓(𝑥2, 𝑦2, 𝛼2).

Next, suppose that when the greedy algorithm passes the rate 𝑄2𝑥2, it has 𝑛1 copies

of item 1 and 𝑛2 copies of item 2. The greedy algorithm will continue to make locally

optimal decisions from that point forward, which, as Claim 2.4.2 shows, are globally optimal

decisions. Let 𝐺(𝑛1, 𝑛2, 𝑐1, 𝑐2) denote the amount of time it takes the greedy solution to reach

the end of the Phase 2. Now define 𝑂𝑃𝑇 (𝑛1, 𝑛2, 𝑐1, 𝑐2) similarly for the optimal algorithm.

Claim 2.4.4 tells us that we can use the same values of 𝑐1 and 𝑐2. Then we know that

𝐺(𝑛1, 𝑛2, 𝑐1, 𝑐2) = 𝑂𝑃𝑇 (𝑛1, 𝑛2, 𝑐1, 𝑐2). Finally, we let 𝑇3 denote the amount of time taken

in Phase 3 of greedy algorithm. Then, using Claim 2.4.3, Claim 2.4.4, Claim 2.4.5, and

Claim 2.4.6, we have that

𝐺(0, 0) = 𝑇1 + 𝑇2 + 𝑇3

= 𝑇1 +𝐺(𝑛1, 𝑛2, 𝑐1, 𝑐2) + 𝑇3

= 𝑇1 +𝑂𝑃𝑇 (𝑛1, 𝑛2, 𝑐1, 𝑐2) + 𝑇3

< 𝑑1 +𝑂𝑃𝑇 (0, 0, 𝑐1, 𝑐2) + 𝑑2𝑂3,

where 𝑑2, depending on whether the optimal solution buys item 2 or item 1 at the end, has

the form
(︁
𝛼1

(︁(︁⌈︀𝑥2
𝑥1

⌉︀
log
(︀⌈︀

𝑥2
𝑥1

⌉︀
𝛼1

)︀
log(𝛼2)

+ 1
)︁
· 𝑥2

𝑥1
+ 1
)︁)︁

= 𝑓(𝑥1, 𝑥2, 𝛼1, 𝛼2).

Finally, note that in the optimal solution, the maximum possible generation rate that the

solution will have before going into the Waiting Phase is 𝑥1 log𝛼1

𝑀
𝑦1
+𝑥2 log𝛼2

𝑀
𝑦2

, which grows

with 𝑂(log𝑀). Thus, the Waiting Phase will take at least 𝑀
𝑂(log𝑀)

time, so 𝑂𝑃𝑇 (0, 0) >

𝑐 · 𝑀
log𝑀

, where 𝑐 is a function of (𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝛼1, 𝛼2) but is independent of 𝑀 .

38



The approximation ratio of our greedy algorithm is 𝐺(0,0)
𝑂𝑃𝑇 (0,0)

, and we know that

𝐺(0, 0)

𝑂𝑃𝑇 (0, 0)
<

𝑑1 +𝑂𝑃𝑇 (0, 0, 𝑐1, 𝑐2) + 𝑑2𝑂3

𝑂𝑃𝑇 (0, 0, 𝑐1, 𝑐2) +𝑂3

=
𝑑1 + (𝑑2 − 1)𝑂3

𝑂𝑃𝑇 (0, 0)
+ 1

<
𝑑1
𝑐
· log𝑀

𝑀
+

(𝑑2 − 1)𝑂3

𝑐
· log𝑀

𝑀
+ 1

= 𝑂
(︁ log𝑀

𝑀

)︁
+𝑂(

𝑂3 log𝑀

𝑀
) + 1.

We can make 𝑀 large enough such that the generation rate 𝐺 after the Buying Phase

is as big as we want it to be. If we have purchased 𝑛1 copies of item 1 and 𝑛2 copies of

item 2, then 𝐺𝑛1,𝑛2 = 1 + 𝑛1𝑥1 + 𝑛2𝑥2. Using Lemma 1.3.5, the optimal algorithm will stop

purchasing additional copies of item 2 when 𝑀 < 𝑦2 · 𝛼𝑛2
2 (1 +

𝐺𝑛1,𝑛2

𝑥2
). However, because it

was worth it to purchase the 𝑛2th copy, we know that

𝑀 ≥ 𝑦2 · 𝛼𝑛2−1
2

(︁
1 +

𝐺𝑛1,𝑛2−1

𝑥2

)︁
> 𝑦2 · 𝛼𝑛2−1

2 · 𝑛2.

Thus log𝑀 = 𝑂(log 𝑛2 + 𝑛2) = 𝑂(𝑛2), so 𝑛2 = 𝑂(log𝑀). Note that the cost of the

last item purchased in this phase is 𝑂(𝑀𝑥2/𝐺𝑛1,𝑛2) = 𝑂(𝑀/𝑛2) = 𝑂(𝑀/ log𝑀). Because

each of the 𝑤 items bought in Phase 3 can cost at most the cost of the last item, we have

that the total cost of the last phase in the optimal solution is at most 𝑤 · 𝑂(𝑀/ log𝑀).

Recall from Claim 2.4.6 that 𝑤 does not depend on 𝑀 . The minimum rate in this phase is

𝐺−𝑤𝑥2 = 𝑂(log𝑀), so Lemma 1.3.3 tells us that the total time cost is 𝑂3 = 𝑂(𝑀/𝑙𝑜𝑔2𝑀).

Plugging this in for 𝑂3 in the final expression, we get that the approximation ratio is

𝑂
(︁ log𝑀

𝑀

)︁
+𝑂

(︁ 1

log𝑀

)︁
+ 1 = 1 +𝑂

(︁ 1

log𝑀

)︁
.

Thus, as 𝑀 → ∞, the 𝑂( 1
log𝑀

) term approaches 0, and so the approximation ratio can be

arbitrarily close to 1 for sufficiently large 𝑀 .

The above results can be extended to the case of 𝑘 items, as the local “swapping" argument

at the core of Claim 2.4.2 works for any pair of consecutive item purchases. Thus, once
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the generation rate 𝐺 exceeds max𝑖 𝑞𝑖𝑥𝑖, where each 𝑞𝑖 is the smallest integer satisfying

𝑞2𝑖 + 2𝑞𝑖 ≥ 1
𝛼𝑖−1

, Phase 1 will end. Phase 1 could take longer in the 𝑘 item case than in

the 2 item case, but the amount of time it takes is still independent of 𝑀 . Claim 2.4.3 and

Claim 2.4.4 also hold for more items. Finally, Claim 2.4.5 applies to any pair of items, so

the number of items in Phase 3 is upper bounded by the value of 𝑤 derived from every pair

of items, which is still a function of just the 𝑥’s and 𝛼’s, independent of 𝑀 . Thus, the same

analysis applies, and we can achieve the same approximation ratio for larger 𝑘.

For the rate-goal version of the problem, we believe that a similar approach could work,

but it does not follow as easily. This is because the Waiting Phase does not exist, which is

an essential part of proving the approximation ratio in the 𝑀 version. One approach that

could work is to show that Phase 3 of the optimal and greedy solutions match exactly. If

that can be proven, then we can prove an approximation ratio of 1 +𝑂
(︁

𝑅
𝑐𝑅

)︁
.
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Chapter 3

Negative Results

3.1 𝑅 version is at least as hard as 𝑀 version

We will begin by showing that the 𝑅 version of the problem is at least as hard as the 𝑀

version of the problem using a simple polynomial time reduction.

Theorem 3.1.1. The 𝑀 version of Cookie Clicker is polynomial time reducible to the 𝑅

version of Cookie Clicker

Proof. Suppose we are given an instance of the 𝑀 version of the problem with 𝑘 items having

the parameters (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) for 1 ≤ 𝑖 ≤ 𝑘.

Then, we can construct an instance of the 𝑅 version of the problem with 𝑘 + 1 items

having the parameters (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) for 1 ≤ 𝑖 ≤ 𝑘 and (𝑍,𝑀,−) for item 𝑘+1, where 𝑀 is the

target number of cookies in the simulated original problem, 𝑍 is the rate goal in the new

problem, and - is an arbitrary value. We let 𝑍 be sufficiently large such that it is faster to

purchase item 𝑘+ 1 to achieve the rate goal of 𝑍 than it is to achieve the same rate goal by

purchasing only the first 𝑘 items.

Then, the optimal solution must purchase item 𝑘+1. To do so, we would need 𝑀 cookies

as quickly as possible from the initial state by using just the first 𝑘 items. Thus, solving this

specific instance of the 𝑅 version is equivalent to solving the 𝑀 version for 𝑘 items. Thus,

the 𝑀 version is polynomial time reducible to the 𝑅 version and the 𝑅 version is at least as

hard as the 𝑀 version.
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3.2 Weak NP-hardness of 𝑅 version

We will now prove weak NP-hardness of the 𝑅 version of 𝑘-item increasing-cost Cookie

Clicker using a reduction from the weakly NP-hard problem Partition [GJ79].

The problem Partition is the following: Given a multiset 𝑆 of positive integers, can 𝑆

be partitioned into two subsets 𝑆1 and 𝑆2 such that the sum of the numbers in each subset

is equal?

Because we want to prove NP-hardness results, we will use a decision version of the rate-

goal Cookie Clicker problem rather than the original optimization version. The problem is

the following: Given 0 initial cookies, an initial cookie generation rate of 1, and 𝑘 items

described by tuples (𝑥𝑖, 𝑦𝑖, 𝛼𝑖), is there a strategy that can obtain a rate of 𝑅 by target time

𝑇?

Theorem 3.2.1. The 𝑅 version of Cookie Clicker is weakly NP-hard.

Proof. Suppose we are given an instance of Partition in the form of a set of positive

integers (𝑎1, 𝑎2 . . . 𝑎𝑘) such that
∑︀𝑘

𝑖=1 𝑎𝑖 = 2𝐵. We will construct an instance of rate-goal

Cookie Clicker such that solving this instance is equivalent to solving the input Partition

instance.

First, we choose 𝑊 = 𝐵2 + 𝐵 + 1 and let 𝐿 represent an extremely large number such

that it is never worth it to purchase two copies of any one item. Then, we construct the

following instance of rate-goal Cookie Clicker:

∙ (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) = (𝑎𝑖/𝑊, 𝑎𝑖, 𝐿) for 1 ≤ 𝑖 ≤ 𝑘

∙ 𝑅 = 1 +𝐵/𝑊

∙ 𝑇 = 𝐵

Our goal is to prove the following

Lemma 3.2.2. A partition exists for the Partition instance if and only if there exists a

solution for the corresponding rate-goal Cookie Clicker instance which takes at most 𝐵 time.
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Proof. First, note that a partition exists if and only if there exists a sequence of items whose

rate gains add up to 𝐵/𝑊 .

We’ll begin by assuming that a partition 𝑎𝑝1 , 𝑎𝑝2 , . . . , 𝑎𝑝𝑟 exists. Let 𝑆𝑝 denote the strategy

that purchases the sequence of items 𝑝1, 𝑝2, . . . , 𝑝𝑟. We will show that this strategy 𝑆𝑝 takes

at most 𝐵 time.

Because item costs and rate gains are proportional in this instance of Cookie Clicker, the

total cost (in cookies) of the items in strategy 𝑆𝑝 is 𝐵. Then, using Lemma 1.3.3, the total

amount of time needed for strategy 𝑆𝑝 is

𝐵([𝑝1, . . . , 𝑝𝑟], 1) ≤
𝑟∑︁

𝑖=1

𝑦𝑝𝑖 = 𝐵

which proves the desired result.

Next, we will show that if no partition exists, then any solution to the Cookie Clicker

instance will take more than 𝐵 time. If no partition exists, then no sequence of item purchases

will add a rate gain of exactly 𝐵/𝑊 . Thus, any solution to Cookie Clicker must end at a

rate of 1+(𝐵+𝑛)/𝑊 for some positive integer 𝑛. Consider any strategy 𝑆 that ends at such

a rate. Again, because item costs and rate gains are proportional, the total cost (in cookies)

of the items in strategy 𝑆 is 𝐵 + 𝑛. Suppose that the items purchased in 𝑆 have indices

𝑞1, 𝑞2, . . . , 𝑞𝑠. Again, using Lemma 1.3.3, the total amount of time needed for strategy 𝑆 is

𝐵([𝑞1, . . . , 𝑞𝑠], 1) >

∑︀𝑠
𝑗=1 𝑦𝑞𝑗

1 + (𝐵 + 𝑛)/𝑊
=

𝐵 + 𝑛

1 + (𝐵 + 𝑛)/𝑊
=

𝑊 (𝐵 + 𝑛)

𝑊 +𝐵 + 𝑛
.

We want to show that
𝑊 (𝐵 + 𝑛)

𝑊 +𝐵 + 𝑛
> 𝐵

or equivalently, that

𝑊 >
𝐵(𝐵 + 𝑛)

𝑛

The final inequality is true as long as 𝑊 > 𝐵(𝐵+1) because the right-hand side is maximized

when 𝑛 = 1, so 𝑊 = 𝐵2+𝐵+1 works. Thus, we have shown that if no partition exists, then

there does not exist a solution to Cookie Clicker that takes at most 𝐵 time. This completes
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the proof of the lemma.

Lemma 3.2.2 is a proof that the reduction from Partition holds, implying the statement

of Theorem 3.2.1 that the R version of Cookie Clicker is weakly NP-hard. As of now, we have

not been able to prove the same result for the M version of Cookie Clicker, so we provide

a weaker hardness result for a variant of the M version of Cookie Clicker in the following

section.

3.3 Cookie Clicker with Initial Cookies

We will now define a more general version of the Cookie Clicker problem where you start

with some initial cookies. We will provide a pseudo-polynomial time algorithm for solving

it and a weak NP-hardness proof. First, we define the inputs to this problem, which are

∙ 𝑛, the initial number of cookies you start out with;

∙ Vectors 𝑋, 𝑌 , and 𝐴, where each triple (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) represents the (generation rate gain,

initial cost, cost gain) of each item. The vectors are of length 𝑘;

∙ 𝑟, the initial generation rate; and

∙ 𝑀 , the target number of cookies.

The goal of this game is to find the optimal order of items to purchase to reach the goal 𝑀 as

quickly as possible. This game is the original cookie clicker game with the extra parameters

𝑛 and 𝑟.

3.3.1 Dynamic Programming Solution

This section is not a negative result, but it describes a weakly-polynomial time solution to

the Cookie Clicker with Initial Cookies problem.

The dynamic programming solution from Section 2.3.1 can be modified slightly to solve

this generalized problem. We will use the 2 Item case to illustrate our example.
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Just as before, we know that the optimal solutions is to buy items whenever they are

affordable or to enter the Waiting Phase" Thus, if we have cookies left over and an item is

affordable and beneficial, we will choose to buy that item right away. This means that right

when the game starts, the strategy will be to buy some set of items all at once, until items

are either not affordable or not beneficial, and then to wait until items become affordable

again. This implies that each game state in the optimal solution can still be described by 2

numbers (𝑛1, 𝑛2), corresponding to the number of item 1 that has been purchased and the

number of item 2 that has been purchased. It seems like the number of left over cookies

would be a third parameter, but the number of left over cookies is determined entirely by

(𝑛1, 𝑛2) based on this strategy.

Let 𝐶𝑛1,𝑛2 be the cost of purchasing 𝑛1 copies of item 1 and 𝑛2 copies of item 2 at the very

beginning of the game. If 𝐶𝑛1,𝑛2 < 𝑛, the number of left over cookies is just 𝑘 − 𝐶𝑛1,𝑛2 , and

if 𝐶𝑛1,𝑛2 > 𝑛 the number of left over cookies is exactly 0. Let 𝐿𝑛1,𝑛2 = max
(︁
𝑘 − 𝐶𝑛1,𝑛2 , 0

)︁
denote the number of leftover cookies.

Then, since each state can be described by 2 numbers, we can derive the recurrence:

𝐷𝑃 [𝑎][𝑏] = min
(︁𝑀 − 𝐿𝑎,𝑏

𝑔𝑎𝑏
,

max(𝑦1 · 𝛼𝑎
1 − 𝐿𝑎,𝑏, 0)

𝑔𝑎𝑏
+𝐷𝑃 [𝑎+ 1, 𝑏],

max(𝑦2 · 𝛼𝑏
2 − 𝐿𝑎,𝑏, 0)

𝑔𝑎𝑏
+𝐷𝑃 [𝑎, 𝑏+ 1]

)︁
Here, 𝑔𝑎𝑏 = 𝑟 + 𝑎𝑥1 + 𝑏𝑥2.

We can generalize this formula to 𝑘 items and it will still hold. Thus, dynamic program-

ming provides a weakly-polynomial time solution to the Cookie Clicker with Initial Cookies

problem.

3.3.2 Weak NP-hardness of Cookie Clicker with Initial Cookies

We will now prove that the Cookie Clicker with Initial Cookies problem is NP-hard.

Theorem 3.3.1. Cookie Clicker with Initial Cookies is NP-hard.
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Proof. As before, our strategy will be to use a reduction from Partition. Suppose we are

given an instance of Partition in the form of a set of positive integers (𝑎1, 𝑎2 . . . 𝑎𝑘) such

that
∑︀𝑘

𝑖=1 𝑎𝑖 = 2𝐵. We will construct an instance of Cookie Clicker with Initial Cookies

such that solving Cookie Clicker with Initial Cookies will solve Partition.

Let 𝐴 be some big number (for example, 𝐴 = 1000𝐵), and let 𝐿 be an extremely large

number such that an optimal strategy should only buy at most 1 of each item. We can

construct an instance of Cookie Clicker with Initial Cookies with the inputs set as follows:

∙ 𝑛 = 𝑘𝐴+𝐵

∙ (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) = (𝑎𝑖 + 𝐴, 𝑎𝑖 + 𝐴,𝐿) for 1 ≤ 𝑖 ≤ 𝑘

∙ (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) = (𝐴,𝐴,𝐿) for 𝑛+ 1 ≤ 𝑖 ≤ 2𝑘

∙ 𝑟 = 0

∙ 𝑀 = 𝑘𝐴+𝐵 + 1

We will now prove the following lemma.

Lemma 3.3.2. A partition exists for the Partition instance if and only if there exists

a solution to the corresponding Cookie Clicker with Initial Cookies instance which takes at

most 𝑀
𝑘𝐴+𝐵

time.

Proof. First, suppose that a Partition solution exists. That means we can choose some

set of the integers (𝑎1, 𝑎2 . . . 𝑎𝑘) such that they sum to 𝐵. Equivalently, this means we can

use our initial 𝑛 = 𝑘𝐴 + 𝐵 cookies to buy 𝑘 total items for a price of 𝑘𝐴 + 𝐵 at the very

beginning of the game. We then wait until we have 𝑀 cookies. The total amount of time it

takes to reach 𝑀 using this strategy is 𝑀
𝑘𝐴+𝐵

, which proves the first half of the lemma.

Now, suppose that there exists a solution to the Cookie Clicker with Initial Cookies

instance which takes at most 𝑀
𝑘𝐴+𝐵

time. Recall again the optimal strategy has a Buying

Phase and a Waiting Phase. We will analyze what rate the strategy ends up with at the end

of the Buying Phase with the goal of showing that a solution that takes at most 𝑀
𝑘𝐴+𝐵

time

must end at a final rate of 𝑘𝐴+𝐵. We will do so via contradiction.
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If the strategy doesn’t end up at a rate of 𝑘𝐴+𝐵, there are two possible cases. We will

assume that each case is true and derive a contradiction.

Case 1: The strategy ends at a rate less than 𝑘𝐴+𝐵

If the strategy ends at a rate of 𝑘𝐴+𝐵− 𝑗 for 𝑗 > 0, then it must have spent 𝑘𝐴+𝐵− 𝑗

purchasing items at 𝑡 = 0 and then waited from that point forward. The total time that this

strategy takes is 𝑀−𝑗
𝑘𝐴+𝐵−𝑗

, which we claim is always greater than 𝑀
𝑘𝐴+𝐵

. It’s easy enough to

verify that
𝑀

𝑘𝐴+𝐵
<

𝑀 − 𝑗

𝑘𝐴+𝐵 − 𝑗

or equivalently

−𝑗𝑀 < −𝑗(𝑘𝐴+𝐵)

which follows from 𝑘𝐴+𝐵 < 𝑀 . Thus, we have a contradiction, and this case is impossible.

Case 2: The strategy ends at a rate greater than 𝑘𝐴+𝐵.

First, note that after buying any 𝑘 items (or particular combinations of 𝑘 − 1 items)

at 𝑡 = 0, there will not be enough cookies left over to purchase the next item right away.

The Cookie Clicker with Initial Cookies problem then reduces to the original Cookie Clicker

problem where you have no cookies at the start. We can then recall from Corollary 1.3.6

that if you have generation rate 𝐺, it is only worth it to buy an item with rate increase 𝑥

and cost 𝑦 if

𝐺 ≤ 𝑀𝑥

𝑦
− 𝑥.

Because 𝑥𝑖 = 𝑦𝑖 for all 𝑖, this becomes

𝐺 ≤ 𝑀 − 𝑥𝑖. (3.1)

In the case where a solution buys 𝑘 items at 𝑡 = 0, 𝐺 ≥ 𝑘𝐴. Then 𝐺 + 𝑥𝑖 ≥ 𝐺 + 𝐴 ≥

(𝑘 + 1)𝐴 > 𝑀 , so it is no longer worth it to buy any items after purchasing 𝑘 items.

However, the 𝑘 items cannot have total cost greater than the initial amount of cookies,

which is 𝑘𝐴+ 𝐵, and we know that their total cost is not exactly 𝑘𝐴+ 𝐵, so the final rate

𝐺 is at most 𝑘𝐴 + 𝐵 − 1. This does not match the assumption in this case that the final

rate is greater than 𝑘𝐴+𝐵.
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Now, consider the case where the solution buys 𝑘 − 1 items at 𝑡 = 0. Then equation

(5) tells us that item 𝑖 is only worth purchasing if 𝑀 ≥ 𝐺 + 𝑥𝑖. Thus, the final rate after

purchasing the 𝑘th item, 𝐺 + 𝑥𝑖, is upper bounded by 𝑀 = 𝑘𝐴 + 𝐵 + 1. Because we are

currently considering the case where the final rate is greater than 𝑘𝐴+𝐵, the only possible

final rate for this case is then 𝑘𝐴+𝐵 + 1.

Thus, we have reduced this case to the specific scenario where 𝑘− 1 items are purchased

at time 𝑡 = 0, giving a rate of (𝑘−1)𝐴+𝑐 for some 0 ≤ 𝑐 ≤ 2𝐵. Then, the strategy purchases

another item as soon as it can, ending up at a rate of 𝑘𝐴+𝐵+1. After purchasing the first

𝑘 − 1 items, the strategy will have 𝐴 + 𝐵 − 𝑐 cookies left. The cost of the last item, which

will push the rate up to 𝑘𝐴 + 𝐵 + 1, will be 𝑘𝐴 + 𝐵 + 1 − (𝑘 − 1)𝐴 − 𝑐 = 𝐴 + 𝐵 − 𝑐 + 1.

Thus, this strategy needs exactly 1 more cookie to purchase this last item.

The amount of time this strategy takes is

1

(𝑘 − 1)𝐴+ 𝑐
+

𝑀

𝑘𝐴+𝐵 + 1
≥ 1

(𝑘 − 1)𝐴+ 2𝐵
+

𝑀

𝑘𝐴+𝐵 + 1
. (3.2)

We want to check that the quantity on the right-hand side of (6) is greater than 𝑀
𝑘𝐴+𝐵

.

Indeed,

1

(𝑘 − 1)𝐴+ 2𝐵
+

𝑀

𝑘𝐴+𝐵 + 1
>

𝑀

𝑘𝐴+𝐵

⇐⇒ 1

(𝑘 − 1)𝐴+ 2𝐵
>

𝑀

(𝑘𝐴+𝐵)(𝑘𝐴+𝐵 + 1)

⇐⇒ 1

(𝑘 − 1)𝐴+ 2𝐵
>

1

𝑘𝐴+𝐵

⇐⇒ 𝑘𝐴+𝐵 > (𝑘 − 1)𝐴+ 2𝐵

⇐⇒ 𝐴 > 𝐵,

which is true. Thus, any strategy that ends at a rate greater than 𝑘𝐴 + 𝐵 will also take

more than 𝑀
𝑘𝐴+𝐵

time. Again, we have a contradiction, and this case is impossible.

Therefore, if a solution exists that takes at most 𝑀
𝑘𝐴+𝐵

time, it must end at a rate of

𝑘𝐴 + 𝐵. Then, since the cost and rate gains are the same for each item, the solution must

have purchased a set of items that have a total cost (in cookies) of 𝑘𝐴 + 𝐵. Then, this
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set of items corresponds to a set of 𝑎𝑖’s that sum to 𝐵, which means that a solution to the

Partition instance exists. Thus, we have shown that if a solution takes at most 𝑀
𝑘𝐴+𝐵

time,

then a partition exists for the original Partition instance. This completes the proof of

Lemma 3.3.2.

We have shown that given an instance of Partition, which is NP-complete, we can

construct an instance of Cookie Clicker with Initial Cookies in polynomial time such that

being able to solve Cookie Clicker with Initial Cookies means being able to solve the instance

of Partition. Thus, Theorem 3.3.1 is proven and Cookie Clicker with Initial Cookies itself

is NP-hard.

As a note, this result was proven for the 𝑀 version of Cookie Clicker with Initial Cookies,

so it must hold for the 𝑅 version too because the 𝑅 version is at least as hard as the 𝑀

version.

3.4 Cookie Clicker with Discrete Timesteps is Strongly

NP-hard

Another variant of Cookie Clicker is Cookie Clicker with Initial Cookies in discrete time. In

all previous versions, we have been analyzing the game in continuous time. This model can

be shown to be NP-hard via a reduction from the strongly NP-hard problem 3-Partition

[GJ79].

The problem 3-Partition is the following: Given a multiset 𝑆 of 𝑛 = 3𝑚 integers, can

𝑆 be partitioned into triplets 𝑆1, 𝑆2, . . . , 𝑆𝑚 such that the sum of the numbers in each subset

is equal?

The Cookie Clicker with Discrete Timesteps problem is the following: Given 0 initial

cookies, an initial income 𝑟, and 𝑛 items described by tuples (𝑥𝑖, 𝑦𝑖, 𝛼𝑖), is there a strategy

that can obtain 𝑀 cookies by target time 𝑇?

Theorem 3.4.1. Cookie Clicker with Discrete Timesteps is strongly NP-hard
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Proof. We reduce from 3-Partition. Suppose we are given an instance of 3-Partition

(𝑎1, 𝑎2, . . . , 𝑎𝑛), such that
∑︀𝑛

𝑖=1 𝑎𝑖 = 𝐴.

We will encode 3-Partition as Cookie Clicker with Discrete Timesteps as follows.

Choose a number 𝐵 > 𝐴𝑛
3

. As before, let 𝐿 be a large enough number such that it is

never worth it to buy two of any one particular item. We then construct the following

Cookie Clicker with Discrete Timesteps instance:

1. (𝑥𝑖, 𝑦𝑖, 𝛼𝑖) = (𝑎𝑖, 𝐵 · 𝑎𝑖, 𝐿).

2. 𝑀 = 𝐴
2

(︀
𝑛
3
− 1
)︀
+ 2𝐵 ·

(︀
3𝐵𝐴
𝑛

+ 𝐴
)︀
.

3. 𝑟 = 3𝐵𝐴
𝑛

.

4. 𝑇 = 𝑛
3
+ 2𝐵

We will prove that there exists a solution to the 3-Partition instance if and only if there

exists a solution to the Cookie Clicker instance which reaches 𝑀 in time 𝑛
3
+ 2𝐵 or less.

Recall that the optimal solution must proceed in two distinct phases: the Buying Phase and

the Waiting Phase.

First, note that after time step 𝑛
3
, ignoring any extra income we get from buying items

in those time steps, we will have produced 𝐵𝐴 cookies just from our initial generation rate.

Thus, it will be possible to purchase every single item by the end of time step 𝑛
3
. Since it is

always better to purchase items earlier rather than later, this means that the Buying Phase

will last at most 𝑛
3

turns.

Next, note that buying every single item results in a final generation rate of 3𝐵𝐴
𝑛

+ 𝐴.

Thus, the generation rate is always upper bounded by 3𝐵𝐴
𝑛

+ 𝐴. At the end of time step 𝑛
3
,

the total amount of cookies generated will be at most 𝐵𝐴 + 𝐴𝑛
3

. Because 𝐴𝑛
3

< 𝐵 and all

item costs are multiples of 𝐵 (and thus at least 𝐵), we know that any cookies generated from

our items and not from the original income will not increase our ability to purchase items in

the Buying Phase. In other words, the cookies that our items generate will not improve our

buying power, and we essentially get 3𝐵𝐴
𝑛

to spend every turn. We can also conclude that

the Buying Phase will last exactly 𝑛
3

turns.
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Next, note that because the cost of every item scales linearly with the increase in gen-

eration rate, spending cookies on items will always produce the same increase in generation

rate per cookie. Thus, the best way to spend cookies is to spend them as early as possible,

because this maximizes the amount of time that the increase in generation rate is present.

Finally, 𝑇 is large enough that it is always worth it to purchase the first copy of each item

rather than foregoing the purchase. Thus, the optimal strategy is to spend as many of your

cookies as possible at every time step in the Buying Phase, and then to enter the Waiting

Phase. The fastest way to reach 𝑀 will be to spend all 3𝐵𝐴
𝑛

of your generated cookies on

every time step in the Buying Phase. This is only possible if the numbers (𝑎1, 𝑎2, . . . , 𝑎𝑛) can

be partitioned into subsets such that for each subset, the total sum is 3𝐴
𝑛

, which is exactly

the 3-Partition problem. The maximum attainable value of 𝑀 assuming a 3-Partition

exists is the value we chose for 𝑀 in the reduction.

Once again, note that this result also holds for the corresponding 𝑅 version of the Cookie

Clicker with Discrete Timesteps problem.
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Chapter 4

Conclusion

Cookie Clicker, while a seemingly simple game, gives rise to many interesting optimiza-

tion problems. We analyzed these problems through the context of dynamic programming,

approximation algorithms, and NP-hardness. For specific variants of Cookie Clicker, we

classified the structure of optimal solutions, thereby limiting our search space for such so-

lutions. This allowed us to devise polynomial time algorithms for solving the problem. For

more general variants of Cookie Clicker, we proved NP-hardness results via reductions from

Partition and 3-Partition. Although these problems are NP-hard, their solutions can be

approximated very well with a greedy algorithm based on a specific efficiency metric, and

we can prove an approximation ratio guarantee that approaches 1 when the input parameter

approaches infinity.

Here are a few conjectures which experimentally appear to be true, but have not been

proved.

∙ Fixed-Cost Case for 𝑘 items: In any solution, if there are two items such that

item 1 is cheaper and has a lower rate increase to cost ratio than item 2, then item

1 will never be bought after item 2. This conjecture would imply that any solution

to the fixed-cost case is in “sorted" order, where the cheaper and less efficient items

come first. This matches current experimental results. If this conjecture is true, then

it would lead to a polynomial-time solution for small values of 𝑘 that involves finding

the points of transition between buying one item as opposed to another. Analyzing
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a specific subset of local optimizations different from the ones analyzed in this paper

could lead to insight on this conjecture.

∙ Increasing-Cost Case for 𝑘 items: The problem of minimizing the amount of time

needed to reach 𝑀 cookies from a starting state of 0 initial cookies, an initial generation

rate of 1, and a set of 𝑘 items whose costs increase exponentially is weakly NP-hard.

This conjecture would be interesting because we would then have a very simple ap-

proximation algorithm whose approximation ratio approaches 1 for sufficiently large

𝑀 for an NP-hard problem.

Other interesting directions to explore include the following:

∙ Different Cost Increase Dynamics: Instead of having item costs increase exponen-

tially, have item costs increase additively or in some manner that matches economic

situations more closely.

∙ Relate the incremental game model to more real-world situations.
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