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ABSTRACT

Chandra and Stockmeyer’s influential 1979 work “Provably Difficult Combinatorial Games”
[1] introduced six EXPTIME-complete games, numbered G1 through G6, which are played by
setting Boolean variables in accordance with certain Boolean formulae. In this thesis, we
systematically define a class of games generalizing G1 . . . G6, and determine the computational
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complexity of several variants of the games G1 . . . G6 obtained by restricting the types of
CNF or DNF formulae used in their definitions.
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Chapter 1

Introduction

Unbounded Boolean formula games are a class of two-player perfect-information games. An
example of such a game is the game G4 defined by Chandra and Stockmeyer [1].

In G4, each of two players controls a finite set of Boolean variables, whose initial values
are specified. On each player’s turn they may change the value of any single one of their own
variables. The goal of the game is to cause a certain Boolean formula in 12-DNF form to
become satisfied: the first player to satisfy the formula wins.

A key property of G4 is that it is unbounded : There is, a priori, no limitation on the
number of turns which may take place. This distinguishes G4 from bounded games, such as
those studied by Schaefer [2] in 1978. A typical bounded game played with Boolean formulae
is QSAT, in which players take turns setting the values of Boolean variables in a set order,
and compete over whether a formula turns out true or false. In QSAT, each variable is set
only once, so the number of turns in the game is limited by the number of variables. Bounded
games are naturally contained in PSPACE, and indeed QSAT is a prototypical example of a
PSPACE-complete problem.

In contrast, unbounded games are naturally contained in EXPTIME. For instance, in [1],
the problem of deciding the outcome of a G4 game, given the Boolean formula and the initial
values of the variables, was shown to be EXPTIME-complete, showing that G4 is qualitatively
more complex than QSAT, assuming PSPACE ≠ EXPTIME. The same result was shown
for five other Boolean formula games (numbered G1, . . . , G6). These results on unbounded
Boolean formula games have been used to prove that many other types of unbounded games,
including Checkers [3], Chess [4], and Go [5], are also EXPTIME-hard. Boolean formula games
have the common feature that they are played by changing the values of Boolean variables,
and Boolean formulae are used to evaluate the winner. They vary on other aspects such
as the structure of a legal move, or whether the goal is to satisfy or avoid the formulae in
question.

This thesis sets out a systematic taxonomy of unbounded Boolean formula games which
includes the games G1, . . . , G6 as well as many others, and analyzes the computational
complexity of several such games. We show EXPTIME-completeness both of variations of
G1, . . . , G6 with various restrictions on the formulae, as well as several novel games. We
also exhibit a few unbounded games whose outcome can be computed in PSPACE for quite
nontrivial reasons. Our results are summarized in Table 1.1.
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Formula ownership Flip Outcome a.k.a. Results
Partizan Any Win ΣP

2 [Theorem 7]
Partizan > 0 Win PSPACE [Corollary 15]
Partizan Any Lose G1 3DNF EXPTIME-c [1]
Partizan > 0 Lose 3DNF EXPTIME-c [↑, Lemma 3]
Partizan Any Win/Lose ΣP

3 [Theorem 8]
Partizan > 0 Win/Lose

Partizan 0 or 1 Win G2

12DNF EXPTIME-c [1]
2DNF P [Theorem 9]

6DNF EXPTIME-c [Theorem 17]
Partizan 1 Win 6DNF EXPTIME-c [Theorem 17]

Partizan 0 or 1 Lose G̃3
5DNF EXPTIME-c [Theorem 16]

5DNF/Constant EXPTIME-c [Theorem 21]

Partizan 1 Lose G3

12DNF EXPTIME-c [1]
5DNF EXPTIME-c [Theorem 16]

5DNF/Constant EXPTIME-c [Theorem 21]
Partizan 0 or 1 Win/Lose 12DNF EXPTIME-c [Theorem 22]
Partizan 1 Win/Lose 12DNF EXPTIME-c [Theorem 22]
Impartial Any Win ΣP

2 [Theorem 7]
Impartial > 0 Win PSPACE [Corollary 15]
Impartial Any Lose NP [Theorem 6]
Impartial > 0 Lose
Impartial Any Win/Lose ΣP

3 [Theorem 8]
Impartial > 0 Win/Lose

Impartial 0 or 1 Win G4

13DNF EXPTIME-c [1]
2DNF P [Theorem 9]

6DNF EXPTIME-c [Theorem 17]
Impartial 1 Win 6DNF EXPTIME-c [Theorem 17]
Impartial 0 or 1 Lose NP [Theorem 6]
Impartial 1 Lose 5DNF EXPTIME-c [Theorem 18]
Impartial 0 or 1 Win/Lose
Impartial 1 Win/Lose

Single Any Win ΣP
3 [Theorem 8]

Single > 0 Win PSPACE [Corollary 15]
Single Any Lose ΣP

3 [Theorem 8]
Single > 0 Lose
Single 0 or 1 Win G5/G6 CNF EXPTIME-c [1]
Single 1 Win CNF EXPTIME-c [↑, Lemma 3]
Single 0 or 1 Lose 12DNF EXPTIME-c [Theorem 22]
Single 1 Lose 12DNF EXPTIME-c [Theorem 22]

Table 1.1: Table of results already known or obtained in this thesis. See Definition 1 for an
explanation of the terms used.

The remainder of this thesis is structured as follows. Chapter 2 will lay out the classification
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of Boolean formula games. Chapter 3 will prove algorithmic (upper-bound) results. Chapter 4
will prove hardness (lower-bound) results. Finally, Chapter 5 will discuss open problems and
future directions.

This thesis includes joint work with Josh Brunner, Erik D. Demaine, Jenny Diomidova,
and Hayashi Layers.
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Chapter 2

Classification of Boolean formula games

The games G1, . . . , G6 of [1] all follow the same basic structure, which we outline here. They
are two-player, perfect-information, turn-based games played with two disjoint sets of Boolean
variables X and Y , and two formulae over these variables, which we refer to as ϕ1 and ϕ2. We
consider the variables X and the formula ϕ1 as “belonging” to Player I; similarly the variables
Y and the formula ϕ2 belong to Player II. Each player’s turn consists of changing the values
of some or all of their own variables, followed by checking whether their own formula is true.
If it is then the game ends immediately; otherwise it becomes the other player’s turn.

We classify the variations in rules between the games as follows. This classification also
includes some rule variations not seen in G1 . . . G6, but which are useful for defining other
games to be discussed.
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Definition 1: Classification of unbounded formula games

Formula ownership.
In Partizan-formula games, each player has their own formula as described
above.
In Impartial-formula games, the two players’ formulae are required to be
identical, ϕ1 = ϕ2.
In Single-formula games, only Player I has an associated formula ϕ1. Player II’s
moves cannot end the game.

Turn structure.
In Flip-Any-Number games, a player may set the values of all their variables
on their turn, without restriction. The Flip-Nonzero designation is similar but
prohibits passing: at least one variable’s value must change.
In Flip-Zero-Or-One games, a player may flip the value of a single variable on
their turn, or pass. The Flip-Exactly-One designation is similar but prohibits
passing.

Outcome.
If a player’s formula is satisfied after their turn, they either Win or Lose according
to the designation.
The designation Win/Lose means that Player I will win if they satisfy their
formula, whereas Player II will lose if they satisfy their formula. In this case Player
II cannot hope to win the game but can instead aim to prolong it indefinitely.

Formula type.
The CNF or DNF designations indicate that the formulae are specified in
conjunctive or disjunctive normal forms. We can also set further restrictions on
the formulae, such as “k-CNF” or “k-DNF”.

The games G1 . . . G6 proved to be EXPTIME-complete in [1] can be seen to fit into the
above classification by minor manipulations of their definitions.

For instance, the game G1 is defined in [1] using a single formula F (X, Y, {τ}), where τ is
a turn variable which is defined to be 1 after Player I’s move and 0 after Player II’s move. A
player moves by setting all of their own variables and the turn variable, and they lose if F is
false after their move. In [1] this game is proved EXPTIME-complete when F is restricted to
be a 4CNF formula where each clause includes the turn variable τ or its negation.

Defining ϕ1(X, Y ) = ¬F (X, Y, 1) and ϕ2(X, Y ) = ¬F (X, Y, 0), we can fit this game into
the above classification as a “Lose 3DNF” game. The formulae ϕ1 and ϕ2 are in 3DNF
because substituting 1 or 0 for τ in F will either reduce each clause in size by 1 or eliminate
it altogether.

By this method, the games G1 . . . G6 proved EXPTIME-complete in [1] are classified as
follows:

G1: Partizan-formula Flip-Any-Number Lose 3DNF

G2: Partizan-formula Flip-Zero-Or-One Win 12DNF

G3: Partizan-formula Flip-Exactly-One Lose 12DNF
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G4: Impartial-formula Flip-Zero-Or-One Win 13DNF

G5: Single-formula Flip-Zero-Or-One Win

G6: Single-formula Flip-Zero-Or-One Win CNF

The games defined above are all Partizan-variable games, meaning that the sets of
variables X, Y were disjoint. In Impartial-variable games, there is instead just one set of
variables X = Y used by both players. The classification and analysis of Impartial-variable
games is made more complicated by the fact that in order to be nontrivial, a “ko” rule
forbidding players from simply undoing their opponent’s previous moves must be added.
In this thesis we will focus on games without ko rules, so all formula games discussed are
Partizan-variable.

Each game in the classification defines a corresponding decision problem: Given sets of
variables X, Y , initial values X0, Y0 for the variables, and formulae ϕ1, ϕ2, does perfect play
lead to a forced win for Player I? One detail is that perfect play might lead to a draw (i.e.,
infinite play) rather than a win for either player. In cases where it is relevant, we will specify
whether draws are counted as a win for Player I or Player II. For G1 . . . G4, the games can be
shown EXPTIME-complete via reductions which prevent draws from occurring; that is, one
player or the other always has a strategy which wins in finite time. For G5 and G6, draws
are counted as wins for Player II.

Now we write down a few standard observations about the games in Definition 1, which
will be used throughout.

First, a standard argument shows that these games are all contained in EXPTIME.

Lemma 2. The games of Definition 1 are all in EXPTIME.

Proof. For each of these games there are only exponentially many possible reachable positions.
The outcome of the game can be computed by recursively exploring the entire game tree,
which takes exponential time.

Second, games which allow passing can be seen as special cases of games which forbid
it. We will use the following lemma to prove results for both the passing-allowed and
passing-forbidden versions of games.

Lemma 3. For any Flip-Any-Number game defined in Definition 1, there is a reduction
to the Flip-Nonzero version. For any Flip-Zero-Or-One game, there is a reduction to the
Flip-Exactly-One version.

Proof. The reduction simply adds a new variable for each player which is not mentioned in
the formulae. Any time a player would like to pass, they may instead flip the new variable to
achieve the same effect.

Lastly, Impartial-formula and Single-formula games are special cases of Partizan-formula
games.

Lemma 4. For any Impartial-formula game defined in Definition 1, there is a reduction to
the Partizan-formula version.
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Proof. Set ϕ1 and ϕ2 equal.

Lemma 5. For any Single-formula Win game defined in Definition 1, there are reductions to
both the Partizan-formula Win version and the Partizan-formula Win/Lose version. For any
Single-formula Lose game, there are reductions to both the Partizan-formula Lose version
and to the complement of the Partizan-formula Win/Lose version.

Proof. For the first statement, set ϕ2 = ⊥. For the second statement, set ϕ1 = ⊥ and
interchange Players I and II.
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Chapter 3

Algorithmic results

In this chapter, we show that certain of the games in Definition 1 are “easy”, at least compared
to EXPTIME. Specifically, we show that several of them are contained in PSPACE and one of
them is contained in P.

Our first three algorithmic results observe that several games are easy to decide because
they will inevitably end in a draw unless one of the players can win within the first few turns.

Theorem 6. The games Impartial-formula Flip-Any-Number Lose and Impartial-formula
Flip-Zero-Or-One Lose are in NP.

Proof. If the formula is unsatisfied, then the game is a draw since both players can simply
pass to not lose. The only way a player can lose is if the formula is satisfied by the initial
assignment (X0, Y0), in which case Player I needs to find a way to unsatisfy it. So Player I
draws if and only if there exists an assignment X1 such that ϕ(X1, Y0) is false, which is a
SAT problem contained in NP.

Theorem 7. The games Partizan-formula Flip-Any-Number Win and Impartial-formula
Flip-Any-Number Win are in ΣP

2 .

Proof. By Lemma 4 it suffices to consider the Partizan-formula version.
If Player I can win immediately from the starting position (X0, Y0), they will do so.

Otherwise they must find an assignment X1 so that Player II cannot win immediately. If
Player I can do so, then the game ends in a draw since both players can pass to avoid losing
after that. Thus the game is won by Player I if the formula ∃X1 : ϕ1(X1, Y0) is satisfied; else
it is a draw if the formula ∃X1 : ∀Y1 : ¬ϕ2(X1, Y1) is satisfied; else Player II wins.

Thus the question of whether Player I wins is in ΣP
2 if we count draws as wins for Player

I; or it is in NP if we count draws as wins for Player II.

Theorem 8. The games Partizan-formula Flip-Any-Number Win/Lose and Impartial-formula
Flip-Any-Number Win/Lose are in ΣP

3 . Draws are counted as wins for Player II.
The game Single-formula Flip-Any-Number Win is in ΣP

3 . Draws are counted as wins for
Player II.

The game Single-formula Flip-Any-Number Lose is in ΠP
3 . Draws are counted as wins for

Player I.
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Proof. The Impartial-formula and Single-formula games are special cases of the Partizan-
formula one (Lemmas 4 and 5). Thus it suffices to show that Partizan-formula Win/Lose
Flip-Any-Number games are in ΣP

3 .
Consider an instance of a Partizan-formula Win/Lose Flip-Any-Number game, and suppose

Player I has a forced win. Suppose further that Player II plays in such a way as to maximize
the number of turns it takes before they lose. Then there are three possibilities for how
Player I wins:

• If Player I wins on the very first turn, it means they chose a variable setting X1 so that
together with the initial setting Y0 the formula ϕ1(X1, Y0) was satisfied.

• If Player I wins because Player II satisfies the formula ϕ2, it must be the case that on
the previous turn Player I set X1 so that every possible setting Y2 causes ϕ2(X1, Y2) to
be satisfied.

• If Player I wins by satisfying their own formula ϕ1, it must be the case that on their
previous turn Player I set X1 so that every possible setting Y2 not satisfying ϕ2(X1, Y2)
has a third assignment X3 which satisfies ϕ1(X3, Y2).

In other words, Player I wins because the quantified formula

∃X1 : [ϕ1(X1, Y0) ∨ ∀Y2 : [ϕ2(X1, Y2) ∨ ∃X3 : ϕ1(X3, Y2)]]

is true. Conversely if this formula is true then Player I has a winning strategy by starting
with X1, and then choosing X3 according to Player II’s choice of Y2. Thus Player I has a
forced win if and only if the above formula is true, which gives a reduction to ΣP

3 .

The third algorithmic result shows that G2 and G4 with very small clause widths are
decidable in polynomial time.

Theorem 9. The game G2 (Partizan-formula Flip-Zero-Or-One Win) with 2DNF formulae
is in P. The same holds for G4 (Impartial-formula Flip-Zero-Or-One Win) with 2DNF
formulae.

Proof. Since G4 is a special case of G2 (Lemma 4), the second statement follows from the
first.

Consider an instance (X, Y, ϕ1, ϕ2) of G2 2DNF and assume for now that min(|X|, |Y |) ≥ 3;
we can start to characterize optimal play as follows. First, if you can win the game immediately,
you should do so; otherwise, you should make a move that prevents your opponent from
winning immediately. Building a game tree according to the above rules to a depth of four
turns shows that computing the outcome of the game reduces to computing the outcome of
positions in which neither player could win immediately if it were their turn. This is because
after Player I’s first turn, if they are still threatening an immediate win it is because they
have a half-satisfied clause involving two variables in X, which guarantees the game will end
in two more turns.

Consider a position in which neither player could win immediately if it were their turn. By
inverting variables in the formulae we can assume without loss of generality that all variables
are initially set to 0.

Taking Player I’s perspective, we label the variables in X according to the following
categories:
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Unsafe variables: Variables x such that a clause of the form x ∧ y or x ∧ ¬y appears in ϕ2.

Matched variables: Pairs of variables x1, x2 such that one of x1∧x2 or ¬x1∧x2 or x1∧¬x2

appears in ϕ2.

Since passing is allowed, we can assume neither player will flip an unsafe variable unless
doing so wins the game. So the only way for Player I to force a win is by satisfying a clause
of the form xi ∧ xj in ϕ1, which requires flipping one of xi or xj without either flipping an
unsafe variable or giving the opponent a win when flipping a matched variable. We can
view matched variables as forming a dependency graph: for instance, if the clause ¬x1 ∧ x2

appears in ϕ2 then x1 must be flipped before x2; we say x2 depends on x1. If the clause
x1 ∧ x2 appears in ϕ2 we say x2 depends on ¬x1 and x1 depends on ¬x2.

Let D(xi) be the set of literals on which xi transitively depends; we say xi is viable if D(xi)
doesn’t include any unsafe variables (including xi itself), doesn’t include both a variable
and its negation, and doesn’t include any dependency cycles. Winning the game requires
identifying a clause of the form xi ∧ xj in ϕ1, choosing one of xi or xj which is viable, and
flipping all positive literals in D(xi) in order by dependency.

Since this is the case for both players, the winner can be computed as the player whose
winning formula has a clause containing a viable variable z, such that D(z) has the smallest
number of positive literals, with ties broken by whoever is to move. If neither player can
win in this way then the game is a draw. This allows computing the winner in polynomial
time.

Our last algorithmic result concerns a class of games where the “interesting” moves are
those which work only because the opponent cannot pass.

Theorem 10. Consider the following class of games. Player I has a finite set A and Player
II has a finite set B. A position in the game is an element of A×B. The winning positions
for I and II are subsets ϕ1, ϕ2 ⊂ A×B. A move for Player I consists of changing the position
(a, b) to some (a′, b) where a ≠ a′; then Player I wins if (a′, b) ∈ ϕ1. Similarly Player II
moves by changing (a, b) to (a, b′) where b ̸= b′, and wins if (a, b′) ∈ ϕ2.

Suppose that we are given an oracle which answers, given a position (a, b), the question
of whether (a, b) is in ϕ1 and/or ϕ2. Then the winner of the game can be determined in space
O(log |A|+ log |B|).

To prove Theorem 10, we introduce some definitions.

Definition 11. A move b ∈ B k-counters a ∈ A if Player II has a strategy which wins in
at most k turns after Player II moves to (a, b). In particular b 0-counters a if (a, b) ∈ ϕ2.

A move a ∈ A is uniquely k-countered by b ∈ B if b is the only move which k-counters
a.

A move a ∈ A is k-safe if there does not exist b which k-counters a.
A move a ∈ A is k-legal for b ∈ B if either (a, b) ∈ ϕ1 or a is k-safe or a is uniquely

k-countered by b.
The above definitions apply to both sides’ moves by interchanging the roles of Players I

and II.

Using these definitions we prove some basic facts:
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Lemma 12. Suppose b′ is k-illegal for a, and Player II moves from (a, b) to (a, b′). Then
Player I wins in at most k + 1 more moves.

Proof. By definition: Player II did not just win the game, b′ is not k-safe, and b′ is not
uniquely k-countered by a. Thus there exists some a′ ̸= a which k-counters b′. So after Player
I moves to (a′, b′), they win in k turns.

Lemma 13. Suppose a move b ∈ B is 1-safe. Then in fact b is ∞-safe.

Proof. Suppose Player I moves to (a, b); we give a strategy for Player II which never loses.
By the definition of 1-safety, there exists b′ ̸= b which either wins immediately (meaning
(a, b′) ∈ ϕ2) or (a, b′) is 0-safe; in either case Player II moves to b′. Then by 0-safety Player
I cannot win immediately, and then Player II moves back to b on the subsequent turn and
repeats the above process forever.

Lemma 14. Let k be a constant such that there exist no k-safe moves for Player II in B, and
suppose Player I has a winning strategy starting from (a0, b0) which always wins as quickly as
possible. Then this strategy does not make any 0-safe moves except possibly in the following
cases:

• When moving from a position of the form (a0, b).

• After Player II has played a k-illegal move.

Proof. Suppose for contradiction that this is not true. Then there exists (a, b) where a ≠ a0
reachable via the strategy such that b is k-legal for a, and the strategy moves from (a, b) to
(a′, b) where a′ is 0-safe. We claim that the strategy could have instead moved from (a0, b0)
to (a′, b0) as the very first move, and this would guarantee a faster win, contradicting the
definition of the strategy. Because b is k-legal and we only reach (a′, b) after at least 2 turns,
it takes Player I at least k + 3 turns to win overall.

After the hypothesized move to (a′, b0) there are two possibilities. If Player II moves to
(a′, b) then Player I can reply with a to win in k moves because b is k-legal for a but not
k-safe, hence uniquely k-countered by a. Overall the win takes at most k + 1 turns.

If Player II moves to some other (a′, b′) then Player I can reply using the original winning
strategy; this takes fewer turns to win since we reached (a′, b′) faster.

In both cases the win is faster than the original strategy.

Now we can give the algorithm.

Proof of Theorem 10. We give an algorithm deciding whether Player I can force a win starting
from (a0, b0); this suffices to compute the outcome of the game. The algorithm is as follows:

• Check if b0 is 1-illegal for a0; if so then Player I wins.

• Check if Player II has a 1-safe move; if so then Player II draws by Lemma 13.
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• By Lemma 12 we can restrict our attention to moves which are 1-legal for the other half
of the position. Since Player II has no 1-safe moves, then by Lemma 14 Player I will
not make any 0-safe moves except when moving from a position of the form (a0, b) or if
Player II makes a 1-illegal move. Thus we can safely ignore all moves other than those
which immediately win, those which move out of (a0, b) positions, and those which are
uniquely k-countered by the other half of the position.

• Consider the tree of moves rooted at (a0, b0) satisfying the above conditions. We claim
that we can recursively traverse this tree to determine whether Player I has a forced win
using only O(log |A|+ log |B|) space. First, moves which immediately win terminate
the recursion immediately. Second, we can terminate the recursion if there has been
more than one move to a0, since in this case Player II can draw by repeating. Third, for
moves which are uniquely k-countered by the other half of the position, we do not need
to keep track of the parent in the tree. This is because the parent can be recomputed by
searching for the unique k-counter. Finally, we can detect draws by noticing when more
than 2|A| · |B| turns have been played, guaranteeing that a repetition has occurred.

Thus, the recursive algorithm only needs to store the current position, a counter of how
many turns have been played, a counter of how many moves to a0 there have been, and
any moves out of (a0, b) positions (at most a constant number).

Each position and the turn counter takes O(log |A|+ log |B|) bits to store, and we only
need to store constantly many positions, so this uses O(log |A|+ log |B|) space overall.

Corollary 15. The games Partizan-formula Flip-Nonzero Win, Impartial-formula Flip-
Nonzero Win, and Single-formula Flip-Nonzero Win are in PSPACE.

Proof. By Theorem 10, where A and B are the sets of possible variable assignments.
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Chapter 4

Hardness results

In this chapter we analyze several games classified by Definition 1 and prove that they are
EXPTIME-complete. Many of these games are variants of G3 with restrictions on the types
of formulae used.

Recall that G3 is classified according to Definition 1 as the game Partizan-formula Flip-
Exactly-One Lose 12DNF. This means that Players I and II have separate variables X, Y
and separate 12DNF formulae ϕ1, ϕ2, and a player’s turn consists of flipping exactly one of
their own variables without satisfying their own formula.

It will be convenient for us to prove our hardness results for the game G̃3, which is G3

with the “Flip-Exactly-One” rule changed to “Flip-Zero-Or-One”. Lemma 3 gives a reduction
from G̃3 to G3, so all our hardness results carry over to the version without passing.

We start by showing that G̃3 remains EXPTIME-complete when the clause width is
restricted to 5.

x1

x′
1

w1

x2

x′
2

w2

x3

x′
3

w3 m1 m2 m3

y1

y′1

z1

y2

y′2

z2

y3

y′3

z3 m4 m5 m6

Figure 4.1: The list of expressions L used in the proof of Theorem 16. Blue variables are
controlled by Player I, and red ones by Player II. Variables in the same vertical column are
XOR’d together to form an entry of L.

Theorem 16. The games G3 (Partizan-formula Flip-Exactly-One Lose) and G̃3 (Partizan-
formula Flip-Zero-Or-One Lose) are EXPTIME-complete with 5DNF formulae. Draws are
impossible.

Proof. By Lemma 3 it suffices to consider G̃3.
We reduce from G1, considered as Partizan-formula Flip-Any-Number Lose 3DNF. Let

(X = {x1, . . . , xn}, Y = {y1, . . . , yn}, ϕ1, ϕ2) be an instance of G1. We can assume without
loss of generality that X and Y are the same size, that Player I moves first, and (by inverting
occurrences in the formulae) that the initial value of each variable is 0.
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We define a corresponding instance (X ′, Y ′, ϕ′
1, ϕ

′
2) of G̃3 as follows. The sets X ′ and Y ′

are defined as

X ′ = {xi, x
′
i, zi : 1 ≤ i ≤ n} ∪ {m1,m3,m5}

Y ′ = {yi, y′i, wi : 1 ≤ i ≤ n} ∪ {m2,m4,m6},

and the initial values of all these variables shall be 0.
To describe the formulae ϕ′

1 and ϕ′
2 it will be convenient to define the list L = [ℓ1, . . . , ℓ4n+6]

by

L =


[x1 ⊕ x′

1, w1, x2 ⊕ x′
2, w2, . . . , xn ⊕ x′

n, wn]

∥ [m1,m2,m3]

∥ [y1 ⊕ y′1, z1, y2 ⊕ y′2, z2, . . . , yn ⊕ y′n, zn]

∥ [m4,m5,m6]

 ,

where each entry ℓi of L is either a variable or the XOR of two variables. The entries of
L alternate between I-controlled and II-controlled expressions. Refer to Figure 4.1 for a
pictorial description.

We now define the formulae ϕ′
1 and ϕ′

2 as:

ϕ′
1 =

|L|−1∨
i=3
i odd

(ℓi ̸= ℓi−1)

 ∨ (m6 = x1 ⊕ x′
1) ∨ (m1 ̸= m2 ∧ ϕ1)

ϕ′
2 =

 |L|∨
i=2

i even

(ℓi ̸= ℓi−1)

 ∨ (m4 ̸= m5 ∧ ϕ2).

The idea behind these formulae is that on turn j, the player to move is forced to flip a
variable appearing in ℓi where i ≡ j (mod |L|). For instance, initially all the ℓi evaluate to
zero, and so Player I must flip either x1 or x′

1 in order to unsatisfy the clause m6 = x1 ⊕ x′
1.

Then, Player II must flip w1 to unsatisfy the clause (ℓ2 ̸= ℓ1). Following that, Player I must
flip either x2 or x′

2 to unsatisfy the clause ℓ3 ̸= ℓ2. This continues until every expression in L
evaluates to one, at which point the cycle repeats.

Over the course of this cycle, the players can be seen as taking turns setting all of their
own variables. Player I can freely choose the value of xi by choosing whether to flip xi or
x′
i at the appropriate time, and similarly for Player II. Finally, the clauses (m1 ≠ m2 ∧ ϕ1)

and (m4 ̸= m5 ∧ ϕ2) have the effect of causing each player to lose if their formula ϕ1 or ϕ2 is
satisfied after they set all of their variables. Thus each cycle corresponds exactly to a turn
for Player I followed by a turn for Player II in G1.

It is straightforward to check that the formulae ϕ′
1 and ϕ′

2 can be expanded into 5DNF form,
and that they can be computed in polynomial time. Since whoever has a winning strategy in
the G1 instance will also win in the G3 instance, we have defined a valid reduction.

Using this result, we can reduce the clause widths for G2 and G4.
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Theorem 17. The games G2 (Partizan-formula Flip-Zero-Or-One Win) and G4 (Impartial-
formula Flip-Zero-Or-One Win) are EXPTIME-complete with 6DNF formulae. The same is
true for the Flip-Exactly-One versions of both. Draws are impossible.

Proof. By Lemmas 3 and 4, it suffices to prove that G4 6DNF is EXPTIME-complete, which
we do via a reduction from G̃3.

Given an instance (X, Y, ϕ1, ϕ2) of G3, define the instance (X ′, Y ′, ϕ′) of G4 as follows:

X ′ = X ∪ {x}
Y ′ = Y ∪ {y}
ϕ′ = (x ∧ y) ∨ (x ∧ ϕ2) ∨ (y ∧ ϕ1),

where x and y are initially set to 0. Then play proceeds as in G̃3 since whoever flips x or y
first will lose immediately, unless the other player just satisfied their losing formula ϕ1 or
ϕ2, in which case the player who flips x or y wins. This reduction increases the width of the
DNF clauses by 1.

The reduction from the proof of Theorem 16 can also be used to prove EXPTIME-
completeness of the Impartial-formula game with passing forbidden.

Theorem 18. The game Impartial-formula Flip-Exactly-One Lose 5DNF is EXPTIME-
complete.

Proof. Follow the same reduction from G1 as in the proof of Theorem 16, but instead of two
separate formulae ϕ′

1, ϕ
′
2 we instead define the shared formula

ϕ′ =

|L|−1∨
i=1

(ℓi ̸= ℓi+1 ∧ ℓi = m6)

 ∨ (m1 ̸= m2 ∧ ϕ1) ∨ (m4 ̸= m5 ∧ ϕ2).

This formula, together with the fact that passing is forbidden, forces the players to flip
variables in the same order as before. The clauses checking ϕ1 and ϕ2 activate following
Player I and Player II’s turn respectively, which ensures that the loss from satisfying one of
the formulae is attributed to the correct player.

The next sequence of results starts with a new type of game in which only Player II has a
win condition.

Definition 19: Latch game

The latch game is a game played with a set of variables x1, . . . , xn, x̃1, . . . , x̃n, y and a
3DNF formula ϕ1 over all the variables. A turn for Player I consists of setting x̃i ← xi

for all i, then setting the xi however they choose. Player I loses if ϕ1 is satisfied after
their turn. A turn for Player II consists only of setting y.
Player I wins if the game goes on forever.

Theorem 20. The latch game is EXPTIME-complete.
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Proof. We reduce from the halting problem for linear-bounded alternating Turing machines.
Consider linear-bounded alternating Turing machines with the following properties:

• Each configuration has at most two successor configurations.

• Existential configurations and universal configurations alternate.

• Every universal configuration has at least one successor.

• The machine begins in a universal configuration with exactly one successor.

Then the question of whether such a machine rejects or fails to reject is EXPTIME-
complete.1

Let M be such a machine. We can encode the transition relation of M into a Boolean
formula Next(i, U, V ) which evaluates to true if U and V encode configurations of M and
either U has two successor configurations V0, V1 such that V = Vi, or V is the unique successor
configuration to U . Furthermore we can transform Next into a 3CNF formula Next3(i, U, V, Z)
such that Next(i, U, V ) ≡ ∃Z : Next3(i, U, V, Z).

Using this formula, we define an instance of the latch game as follows. Player I’s variables
consist of x, U1, U2, Z1, Z2, and the 3DNF formula ϕ1(x, U1, U2, Z1, Z2, x̃, Ũ1, Ũ2, Z̃1, Z̃2, y) is
defined by

ϕ1 = ¬Next3(y, Ũ1, U2, Z1) ∨ ¬Next3(x, U2, U1, Z2).

It’s always in Player I’s interest to set Z1 and Z2 to satisfy Next3 if possible, so this
formula is equivalent to ¬Next(y, Ũ1, U2) ∨ ¬Next(x, U2, U1). Each turn of Player I simulates
two steps of M , going from the universal configuration Ũ1 to U2 according to Player II’s choice
y, and then from the existential configuration U2 to U1 according to Player I’s own choice x.
If the machine ever halts, Player I loses because they can’t satisfy the Next formulae.

Using this result, we can show EXPTIME-hardness of G̃3 when one of the formulae is
constant.

m1 m2

v

v′

m3

x̃1

x̃′
1

w1

x̃2

x̃′
2

w2

x̃3

x̃′
3

w3 m4

x1

x′
1

z1

x2

x′
2

z2

x3

x′
3

z3 m4 m5 m6

Figure 4.2: The list of expressions L used in the proof of Theorem 21. All variables are
controlled by Player I. Variables in the same vertical column are XOR’d together to form an
entry of L.

Theorem 21. There exists a DNF formula ϕ2, consisting of one clause of width 2, nine
clauses of width 4, and four clauses of width 6, such that the games G3 (Partizan-formula

1An existential configuration of an alternating Turing machine rejects in k steps (where k ∈ N) if and
only if all successor configurations reject in at most k − 1 steps; and a universal configuration rejects in k
steps if and only if some successor configuration rejects in at most k − 1 steps.
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Flip-Exactly-One Lose) and G̃3 (Partizan-formula Flip-Zero-Or-One Lose) are EXPTIME-hard
when ϕ1 is a 5DNF formula and ϕ2 is the constant formula specified. Draws are counted as
wins for Player I.

Proof. By Lemma 3 it suffices to consider G̃3.
We reduce from the latch game (Definition 19). Let (x1, . . . , xn, x̃1, . . . , x̃n, y, ϕ1) be an

instance of the latch game. We can assume that the initial values of all variables are zero,
since this can be accomplished for x1 . . . xn and y by inverting their occurrences in the formula,
and because the initial values of x̃1 . . . x̃n don’t matter.

We will make use of a gadget called a “four-clock”. A four-clock is built from two
Boolean variables, which we interpret as an element of Z/4 according to the mapping
00 7→ 0, 01 7→ 1, 11 7→ 2, 10 7→ 3. A single variable flip increments or decrements the
four-clock by 1 (modulo 4).

The players’ variables are

X = {xi, x̃i, x
′
i, x̃

′
i, wi, zi : 1 ≤ i ≤ n} ∪ {m1,m2,m3,m4,m5,m6,m7, z, z

′, d}
Y = {y1, y2, c1, c2},

where c1, c2, d are four-clocks. The initial values are all zero except that c1, c2, d are initially
set to 1.

Similarly to the proof of Theorem 16, we define the list L = [ℓ1, . . . , ℓ4n+8] by

L =


[m1,m2, v ⊕ v′,m3]

∥ [x̃1 ⊕ x̃′
1, w1, x̃2 ⊕ x̃′

2, w2, . . . , x̃n ⊕ x̃′
n, wn]

∥ [m4]

∥ [x1 ⊕ x′
1, z1, x2 ⊕ x′

2, z2, . . . , xn ⊕ x′
n, zn]

∥ [m5,m6,m7]

 .

Refer to Figure 4.2 for a pictorial description.
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The formulae ϕ′
1 and ϕ′

2 are defined as:

ϕ′
1 =



|L|−1∨
i=1

(ℓi ̸= ℓi+1 ∧ ℓi = m7)

∨

|L|−1∨
i=1

(ℓi ̸= ℓi+1 ∧ c2 ̸≡ i mod 4)

 ∨ (m7 = m1 ∧ c2 ̸≡ |L| mod 4)

∨ (v ⊕ v′ ̸= m3 ∧ y1 ̸= v)

∨
n∨

i=1

(wn ̸= m4 ∧ x̃i ̸= xi)

∨ (m5 ̸= m6 ∧ ϕ1[v/y])

∨ (c1 = c2 ∧ c1 ̸= d)



ϕ′
2 =


(c1 − c2 ̸∈ {0, 1})
∨ (c1 ̸= c2 ∧ c1 = d)

∨ (y1 = 1 ∧ y2 = 0)

∨ (y1 = 0 ∧ y2 = 1 ∧ c2 = 3)

 .

It can be checked that these formulae can be expressed in the desired forms. We now explain
the reasoning for these formulae.

We start with the clocks. The purpose of the clocks is to let Player II force Player I to
progress across L from left to right, setting variables in order. This works as follows. Player
I’s losing clause

|L|−1∨
i=1

(ℓi ̸= ℓi+1 ∧ ℓi = m7)

means that the expressions in L must comprise a contiguous block of zeroes followed by a
contiguous block of ones; or vice versa. So at any time there are only two possible expressions
in L which Player I is free to change.

The losing clause|L|−1∨
i=1

(ℓi ̸= ℓi+1 ∧ c2 ̸≡ i mod 4)

 ∨ (m7 = m1 ∧ c2 ̸≡ |L| mod 4)

further restricts this choice: it ensures that the boundary between the zeroes and ones in
L stays in sync with the four-clock c2, which is controlled by Player II. (This mechanism
requires |L| to be a multiple of 4.) So by incrementing c2, Player II causes Player I to toggle
the expressions of L in order.

Player II is not free to manipulate c2 as they please, however. In particular they must
be prevented from running the clock backwards, which would force Player I to flip variables
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in the opposite order from intended. The formulae force the two players to play as follows,
assuming Player II wishes to advance the clocks at all.

Initially the clocks c1, c2, d are all equal, and Player II moves first. Due to their losing
clauses c1 − c2 ̸∈ {0, 1} and c1 ̸= c2 ∧ c1 = d, the only change they can make to the clocks
is to increment c1. Then Player I takes a turn. Next, Player II increments c2, and Player
I must toggle the next expression ℓi where i ≡ c2 mod 4. At this point Player I’s clause
c1 = c2 ∧ c1 ̸= d will cause them to lose unless their earlier turn was spent incrementing d.

In fact, after the first increment to c1, the following three moves are all forced since when
Player I increments d, Player II is forced to increment c2. The only opportunity to deviate is
at the very beginning, when Player II may choose to toggle y1 or y2 instead of incrementing
c1; they may only exercise this option when c2 ̸= 3. Whenever Player II does toggle y1 or y2
in this way, Player I is forced to pass.

Now the remaining clauses in the formula can be understood as forcing the following
behavior from the players:

• When it is time for Player I to toggle v ⊕ v′, they must set v = y1. Because v ⊕ v′ is
the third element of L, this occurs when c2 = 3, preventing Player II from toggling y1
or y2 immediately after Player I does this.

• When Player I toggles wn, they must have x̃i = xi for all i. This ensures Player I sets
the x̃i according to the rules of the latch game.

• When Player I toggles m5, they must satisfy ϕ1 with v substituted for y. Since v was
set to y1 earlier, the value of y was ultimately chosen by Player II. The purpose of v is
just to prevent Player II from changing their choice during or after Player I’s move.

Altogether, this simulates the latch game, and thus defines a reduction.

Using this result, we can prove EXPTIME-completeness for a new Single-formula game.

Theorem 22. The games Single-formula Flip-Zero-Or-One Lose 12DNF (where draws count
as wins for Player I) and Partizan-formula Flip-Zero-Or-One Win/Lose 12DNF (where draws
count as wins for Player II) are EXPTIME-complete. The same is true for the Flip-Exactly-One
versions.

Proof. By Lemmas 3 and 5 it suffices to show EXPTIME-completeness of Single-formula
Flip-Zero-Or-One Lose 12DNF.

We reduce from the G̃3 variant of Theorem 21. Let X, Y, ϕ1, ϕ2 be an instance of that
game. Let P = {P1, . . . , Pp} be a partition (to be determined later) of the clauses of ϕ2 into
p parts, and define

X ′ = X ∪ {w, x1, . . . , xp}
Y ′ = Y

ϕ′
1 =

(
(ϕ1 ∨ w) ∧

p∧
i=1

¬xi

)
∨

p∨
i=1

(
xi ∧ ¬w ∧

∧
c∈Pi

¬c

)
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The idea is that as long as ϕ2 remains false, Player I must play to avoid ϕ1 as usual, since they
cannot toggle any of the xi or w variables. However, if any clause of ϕ2 becomes true, Player
I can toggle the xi corresponding to the part Pi containing that clause, which deactivates
their requirement to avoid ϕ1. On the subsequent turn, Player I can then toggle w, which
immediately draws the game because Player I cannot lose while w and xi are both true. Thus,
Player I draws if and only if they can win or draw in the G̃3 game.

The formula ϕ′
1 can be expressed in k-DNF, where

k = max

{
5 + p,max

Pi∈P

(
2 +

∑
c∈Pi

|c|

)}
.

Recall that the formula ϕ2 in Theorem 21 consists of one clause of width 2, nine clauses of
width 4, and four clauses of width 6. These can be partitioned into four parts with widths
{4, 6}, two parts with widths {4, 4}, and one part with width {2, 4}, resulting in k = 12.
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Chapter 5

Future directions

We conclude this thesis with a discussion of directions for future work. First, there are
several games in Definition 1 whose complexity relative to EXPTIME is left open; these
include Impartial-formula Win/Lose games as well as the Flip-Nonzero versions of the games
discussed by Theorems 6 and 8. Is it possible to extend the results of those theorems to the
case where passing is forbidden? This would be analogous to how Corollary 15 can be viewed
as a passing-forbidden extension of Theorem 7, where the resulting containment is weakened
from ΣP

2 to PSPACE.
Another direction of interest concerns games with a “ko” rule, which forbids players from

undoing their opponent’s previous move, as featured in the board game Go. With such a rule
in place, Impartial-variable games in which both players must contend over a shared set of
variables become nontrivial. Some existing work in this direction includes the work of J.M.
Robson, who proved EXPTIME-completeness of some Boolean formula-type games with ko
rules [6,7], and applied these results to show that Go is EXPTIME-complete under the simple
ko rule [7]. Robson also showed that variants of G1, G2, and G3 become EXPSPACE-complete
when a “superko” rule is instituted, preventing not only the repetition of the immediately prior
position, but also the repetition of any previously-played position [8]. It would be interesting
to investigate the effects of ko and superko rules on many types of Boolean formula games.
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