
Games meet Concurrency:
Algorithms and Hardness

by

Michael Joseph Coulombe

S.B., University of California at Davis (2013)
S.M., Massachusetts Institute Of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Michael Joseph Coulombe. All rights reserved.
The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,

royalty-free license to exercise any and all rights under copyright,
including to reproduce, preserve, distribute and publicly display copies of

the thesis, or release the thesis under an open-access license.

Authored by: Michael Joesph Coulombe

Department of Electrical Engineering and Computer Science

May 19, 2023

Certified by: Erik D. Demaine

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by: Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students

2

Games meet Concurrency: Algorithms and Hardness

by

Michael Coulombe

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2023 in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Abstract

Since the turn of the 21st century, seeing the decline of Moore’s Law on the horizon, the pursuit of
continued software performance gains has led to the prominence of computer architectures with
high degrees of parallelism and memory cache hierarchies. However, there are still many challenges
to designing efficient algorithms and understanding the complexity of fundamental problems in
these new models of computation. Given the similarities of concurrent systems of multiple agents
and multiplayer games, this thesis analyzes a spectrum of models connecting these three fields and
bridges the gaps between them by building upon techniques from the growing literature studying
the complexity of games through gadget motion planning frameworks.

Thesis Supervisor: Erik D. Demaine
Title: Professor of Electrical Engineering and Computer Science

3

Acknowledgements

I first thank my advisor, Erik D. Demaine, for his mentorship over the last six years and cultivation
of a collaborative and open research environment. I also thank all my colleagues in Erik’s group
and beyond; their contributions were invaluable to the research presented in this thesis.

I thank all participants of course 6.892 Algorithmic Lower Bounds: Fun with Hardness Proofs
(Spring 2019), a flipped class hosted by Erik D. Demaine, Jeffrey Bosboom, and Jayson Lynch,
for useful discussions and fruitful collaborations which led to Chapter 1, Chapter 4, and more
works outside this thesis. In particular, I thank Lily Chung for contributing to the polynomial-time
algorithms in Chapter 1. I also thank Sophie Monahan for editing assistance in Chapter 4.

I thank all the contributors to Zelda Wiki [Zel21b] and Zelda Dungeon [Zel21a] for their
comprehensive information on the Legend of Zelda series, and to The Spriters Resource [Mis] and
VGMaps.com [roc] for serving as indispensable tools for providing easy and comprehensive access to
the sprites used in our figures in Chapter 1. I also thank the original artists and game designers
at Nintendo, Capcom, and other associated developers for bringing the timeless classics from the
Legend of Zelda series to the world.

I thank Erik D. Demaine, Ryan Williams, and Martin Farach-Colton for their helpful comments,
feedback, and assistance towards producing this work as members of my thesis committee.

I especially thank my family for everything they have done to support my journey through life
that has led me to where I am today, including my parents, Peter and Kelly; my sister Katie and
her husband Michael; my aunts, Trudy and Susan; and my grandparents who live on in our hearts,
Doris and Harold Coulombe and Ray and Gloria Rott.

4

Contents

I Games and Gadgets 15

1 Motion Planning and The Legend of Zelda 16
1.1 Introduction . 16
1.2 Zelda Game Model . 17

1.2.1 2D . 20
1.2.2 3D . 21

1.3 Polynomial-Time Zelda . 21
1.3.1 Hookshot and Switch Hook are in P . 21
1.3.2 Crystal Switches with Barriers and Unlimited Activators is in P 24

1.4 NP-Hard Zelda . 24
1.4.1 Collectible Objects . 25
1.4.2 Additional Hamiltonian Path Hardness . 27
1.4.3 Floor Puzzles are NP-Hard . 29
1.4.4 Fighting Monsters is NP-Hard . 30

1.5 PSPACE-Complete Zelda . 32
1.5.1 Statues and Pressure Plates are PSPACE-Complete 33
1.5.2 Magnetic Gloves is PSPACE-Complete . 34
1.5.3 Cane of Pacci is PSPACE-Complete . 35
1.5.4 Magnesis Rune is PSPACE-Complete . 37
1.5.5 Minecarts Navigation . 38

1.6 Open Problems . 41

2 Motion Planning of Arbitrarily Many Robots 44
2.1 Introduction . 44
2.2 The Gadget Model and Petri Nets . 45

2.2.1 Motion Planning Through Gadgets . 46
2.2.2 Multi Robot Motion Planning with Spawners and/or Destroyers 47
2.2.3 Petri Nets . 47

2.3 Equivalence between Petri Nets and Gadgets . 47
2.4 Complexity of Reachability . 51
2.5 Complexity of Reconfiguration . 51
2.6 Open Problems . 52

II Team Games and Communication 53

3 Undecidability of Team Multiplayer Games 54

5

3.1 Introduction . 54
3.2 Team Graph Game Components . 55

3.2.1 Delay Gate . 56
3.2.2 Red Team Choice Gadget . 57
3.2.3 State Transition Gadget . 57
3.2.4 Initialization . 57

3.3 Reductions . 59
3.4 Applications . 63

3.4.1 Team Fortress 2 and many other team FPS games 63
3.4.2 Super Smash Brothers . 64
3.4.3 Mario Kart . 65

3.5 Conclusion and Open Problems . 68

4 Decidability of Team Games with Communication 69
4.1 Introduction . 69

4.1.1 Team DFA Game . 71
4.1.2 Communication Model . 71

4.2 Undecidability of Simple Communication Games . 72
4.2.1 Mid-round Communication . 73
4.2.2 End-round Communication . 74

4.3 Undecidability of General Communication Games . 76
4.3.1 Properties of Rate-Limited Policies . 76
4.3.2 Construction Outline . 78
4.3.3 Build-up Phase . 79
4.3.4 Clogging Phase . 79
4.3.5 Tear-down Phase . 80
4.3.6 Proof of Undecidability . 81

4.4 Decidability . 82
4.5 Team Formula Games with Communication . 85
4.6 Open Problems . 87

III Concurrency and External Memory 89

5 Atomic Gadget Simulations for Asynchronous Motion Planning 90
5.1 Introduction . 90

5.1.1 Shared Memory Objects . 92
5.2 Bounded Shared Memory Simulation . 92
5.3 Atomic Registers . 93

5.3.1 SRSW Safe Boolean Register . 93
5.3.2 MRSW Safe Boolean Register . 94
5.3.3 MRSW Regular Boolean Register . 94
5.3.4 MRSW Regular Multivalued Register . 95
5.3.5 Multiplexers and Single- to Exclusive-Writer Registers 95
5.3.6 Timestamps and the MRMW Atomic Multivalued Register 97

5.4 Atomic Multivalued Concensus . 97
5.5 Mutex . 98
5.6 Demultiplexer . 101

6

5.7 Open Problems . 103

6 Complexity of Reconfiguration in Surface Chemical Reaction Networks 104
6.1 Introduction . 104

6.1.1 Motivation . 105
6.1.2 Previous Work . 105
6.1.3 Our Contributions . 105

6.2 Surface CRN model . 106
6.2.1 Restrictions . 107
6.2.2 Problems . 107

6.3 Swap Reactions . 107
6.3.1 Reconfiguration is PSPACE-complete . 108
6.3.2 Polynomial-Time Algorithm . 111

6.4 Single Reaction . 112
6.4.1 2 Species . 112
6.4.2 3 or more Species . 113

6.5 Conclusion . 115

7 Granular External Memory Model 116
7.1 Introduction . 116

7.1.1 Models . 117
7.1.2 Results . 118

7.2 Granular External Memory Model . 120
7.2.1 Simulating PRAM . 121
7.2.2 Maps and Arrays . 122
7.2.3 Joining Arrays . 123

7.3 Sorting . 125
7.3.1 Indivisible Sorting . 125
7.3.2 Permutation . 125
7.3.3 Integer Sorting . 126
7.3.4 Duplicate Removal . 128

7.4 Union-Find . 128
7.4.1 Offline . 129
7.4.2 Online Batched . 132
7.4.3 Online with Supersized Batches . 134

7.5 Hashing . 135
7.5.1 Open Addressing . 135
7.5.2 Chaining . 140
7.5.3 Dynamic Perfect Hashing . 141

7.6 List Ranking . 141
7.7 Graph Algorithms . 144

7.7.1 Maximal Independent Set and Small Dominating Sets 144
7.7.2 Dominating Set Clustering . 146
7.7.3 Connected Components . 147
7.7.4 Minimum Spanning Trees . 151
7.7.5 Shortest Paths . 154

7.8 Conclusion . 155

7

List of Figures

1.1 Example cases of Lemma 1.3.2: (left) If p holds the goal platform, Link can go directly
there along red edges. (right) If p isn’t the last platform, the last blue edge out of p
is already available from red edges when Link first visits p. 22

1.2 Example cases of Corollary 1.3.3, analogous to Figure 1.1. 23
1.3 Platforms and locked door finale gadgets in the construction of Theorem 1.4.1 from a

two-vertex graph. 25
1.4 Gadget for Theorem 1.4.12 . 30
1.5 Gadget for Theorem 1.4.13. 31
1.6 Gadget state diagram for the self-closing door (left) and the locking 2-toggle (right).

Each box represents the gadget in a different state, in this case labeled with the
numbers 1, 2, 3. Dots represent the four locations of the gadget. Arrows represent
transitions in the gadget and are labeled with the states to which those transitions
take the gadget. For example, in state 1 of the self-closing door, the bottom traversal
(the traverse tunnel) changes the state to 2, preventing further bottom traversal until
the top traversal resets the state back to 1. 33

1.7 Construction for Theorem 1.5.2, in Oracle of Ages. The floor buttons open the
corresponding shutter doors (signified with arrows) when the statue is pushed on them. 34

1.8 Construction of a door gadget using metal orbs, in the closed (left) and open (right)
configuration. The open, traverse, and close paths (implementing the gadget’s
tunnels/traversals) are marked with directions. Link can move through the small
gaps between the green quarter-tiles, but the orb cannot. 35

1.9 (left) Path lined with metal orbs to prevent Link from using the Magnetic Gloves
while facing perpendicular into the path. (right) Crossover using jump platforms. . . 36

1.10 Compact construction of a door for 15-tile-range Magnetic Gloves, in the closed state.
Hallways on the left and right are traversed at the end to reach the goal. 36

1.11 Gadgets in The Minish Cap: a self-closing door using holes for the Cane of Pacci
(top). The path of the bolt for the Cane of Pacci is shown by the yellow arrow. . . . 37

1.12 Construction of a door gadget using a large metal plate and platforms over pits,
shown in the open state. The open line is raised above the traverse line. The layout
was inspired by a puzzle in the Oman Au Shrine where the Magnesis rune is unlocked
in The Legend of Zelda: Breath of the Wild. 38

1.13 Gadgets for Oracle of Ages/Seasons: 1-Toggle while walking (left), 1-Toggle while
riding a minecart (center), Diode while walking (right) 39

1.14 Minecart 2-to-1 Toggle for Oracle of Ages/Seasons, simplified under the assumption
that minecarts bounce off of stationary minecarts. Adding minecart 1-toggles at each
stop would achieve the same bouncing effect. 39

8

1.15 Minecart-based Locking 2-Toggle gadget for Oracle of Ages/Seasons. The simplified
top figure assumes minecarts bounce off of stationary minecarts, while the bottom
adds minecart 1-toggles to get the same effect. Levers and the junctions they switch
are highlighted in yellow. Shown in the open state. The traversal lines go from
bottom to top on the left and on the right. 40

2.1 General Petri-net rule (u, v), where u’s nonzero dishes are shown on the left side and
v’s nonzero dishes are shown on the right side. 48

2.2 Petri-net rules which simulate a 2-tunnel toggle gadget 48
2.3 Left: Rule we include when a gadget can be traversed from the source. Right: Rule

we include when a traversal leads to the sink. 49
2.4 Symmetric self-closing door . 50
2.5 How to simulate a rule which decreases volume (Left) and a rule which increases

volume (Right). 50

3.1 Delay Gate, a gadget to delay the runner until a blue executor arrives to remove the
red attacker. 56

3.2 Red Choice Gadget, a gadget for a red player to force a blue player to take exit 0 or 1. 56
3.3 “State Gate” gadget schema for a blue executor to branch the blue runner. The core

of player interaction (top-left) is generalized first allowing two blue paths per input
(two possible constructions on bottom) then allowing multiple runner paths (top-right). 58

3.4 Initializer Gadget to separate players that must start together in team spawn rooms. 59
3.5 A diagram of how the gadgets are put together. 62
3.6 Grenade-only Attack Gadget (vertical 2D slice) . 64
3.7 Super Smash Bros Crossover Gadget using Barrel Cannons 66
3.8 Delay Gate constructed using Brawl’s Custom Stage Builder parts. A single player’s

screen is approximately 5 blocks tall, so the blue executor can never see the runner.
Each “P” is an example location of a Pikachu, “Ice” is a block with no edge to hang
onto, and “Fall” represents a Falling Block. Shaded blue figures are only relevant
during the blue victory phase. Example Thunder clouds and associated lightning
strikes are also shown. 66

3.9 The Mario Kart Delay Gate’s 3D Layout with Thwomps (opaque walls not shown). . 67

4.1 Information flow graph of one round of the Team DFA Game with Communication,
including from the previous round and into the next round. New to this game are the
mid-round transmissions, t0,mid and t1,mid, and the end-of-round transmissions, t0,end
and t1,end, which have sizes determined by Pmid and Pend applied to the policy state. 71

4.2 General form of a policy DFA: an initial chain followed by a cycle. 72
4.3 Mid-round 1-bit channel clogging technique. Values with the same color must be

equal, namely ti = bi = m1−i, or else the DFA permanently enters F∀. 73
4.4 End-round channel clogging technique when r ≥ 3, showing two rounds. The faded-

out edges represent messages (m0,m1, b
′
0, b

′
1), which are not used. D′ simulates D on

other rounds. 74
4.5 End-round channel clogging technique when r = 2, showing three rounds. Bits (b′0, b

′
1)

created in odd rounds get checked two rounds later, labeled as (b∗0, b
∗
1). D′ simulates

D in even rounds before ∃ players get a chance to exchange those bits. 74

9

4.6 Pattern for the end-round channel clogging gadget. Matching colors denote the flow
of clogging bits. The first round’s (m0,m1) and last round’s (b0, b1) are unused, and
the last round may or may not include an end-exchange. 75

4.7 Two examples of Lemma 4.3.4 with n = 10. The blue line shows two periods of the

partial sums B
(0)
j , separated by vertical green lines, the black line shows y = x/2,

which was shifted up to the red line to pass through the circled point (i, B
(0)
i) for

i = j∗ on the left and i = j′ on the right (with the orange line showing the odd j∗ we
couldn’t use). 78

5.1 The specification of a Diode gadget (left) and its compact notation (right). 92
5.2 Specification of a boolean register gadget, with reader and writer areas outlined. . . 94
5.3 MRSW safe boolean register from the single-reader version, with the writer and each

reader areas outlined. 94
5.4 MRSW regular boolean register from the safe version, with the writer and each reader

areas outlined. 95
5.5 MRSW regular multivalued register gadget from the boolean version, with the writer

and reader areas outlined. A four-valued register is chosen as an example. 96
5.6 Single-robot multiplexer gadget from a multivalued register gadget. Four-way multi-

plexing is chosen as an example. 96
5.7 Multi-reader, exclusive-writer regular multivalued register gadget from the single-

writer version and multiplexers, with the writer and reader areas outlined. Three
writing areas is chosen as an example. 96

5.8 Binary Consensus Gadget . 97
5.9 Mutex Output Gadget . 99
5.10 Mutex Input Gadget . 99
5.11 Construction of Mutex Input Gadget from a 3-toggle and 2-toggles. 99
5.12 Mutex Augmentation protecting a Critical Section (4-in, 4-out), initially unlocked. . 100
5.13 Example use of a Demultiplexer to combine the read lines of a MRSW Register. . . 102
5.14 Demultiplexer access point (1-to-m, for m = 4), connected to others through mutexes.102

6.1 Example sCRN system. 107
6.2 An initial, single step, and target configurations . 107
6.3 The Locking 2-Toggle (L2T) gadget and its states from the motion planning framework.

The numbers above indicate the state and when a traversal happens across the arrows,
the gadget changes to the indicated state. 108

6.4 Locking 2-toggle implemented by swap rules. (a) The swap rules and species names.
(b-d) The three states of the locking 2-toggle. 109
6.4a Swap rules/species . 109
6.4b State 1 . 109
6.4c State 2 . 109
6.4d State 3 . 109

6.5 Traversal of the robot species. 109
6.6 An example reduction from Hamiltonian Path. We are considering graphs on a grid,

so any two adjacent locations are connected in the graph. Left: an initial board with
the starting location in blue. Middle: One step of the reaction. Right: The target
configuration with the ending location in blue. Bottom: the single reaction rule. . . 113

10

7.1 Illustration of sf-uncluster from Algorithm 31. (a) First edge (u, v) found to
connect cluster u2 to parent cluster v2 = sf2[u2]. (b) Creating the path p→ u→ v
merges the two rooted trees into one, and u2 is “locked” to ensure (u, v) will be the
only outgoing edge from u2 to v2. 151

11

List of Tables

1.1 Summary of our complexity results for various game mechanics in Legend of Zelda
games, along with a list of specific games with those mechanics abbreviated according
to Table 1.3. 18

1.2 Previous complexity results for various game mechanics in Legend of Zelda games,
along with a list of specific games with those mechanics abbreviated according to
Table 1.3. 19

1.3 List of games studied in this chapter, with the abbreviations used and the number of
dimensions. To avoid repetition, we exclude the title prefix “The Legend of Zelda:”
present in all games beyond the first two. Game list and release year information
from Zelda Wiki [Zel21b]. 19

1.4 All Items and Mechanics (and associated known results) from across all the Zelda
games, as documented on [Zel21a] and [Zel21b], part 1 (continued in Table 1.5). . . . 42

1.5 All Items and Mechanics (and associated known results) from across all the Zelda
games, as documented on [Zel21a] and [Zel21b], part 2 (continuing from Table 1.4). . 43

1.6 Known results for some Obstacles from across all the Zelda games, as documented
on [Zel21a] and [Zel21b]. 43

4.1 Memory Requirements of D′ over the course of the TDGC. 82
4.2 Accounting of enq(Xi), deq(Xi), and Information Transfer between players in each

phase . 82

6.1 Summary of our and known complexity results for sCRN reconfiguration problems,
depending on the type of sCRN, number of species, and number of rules. Note that
all such problems are contained in PSPACE. 106

7.1 Summary of our results in the Granular External Memory (GEM) model, and
comparison to best known results in the External Memory (EM) model. Here O, Ω,
and Θ denote upper bounds, lower bounds, and matching upper and lower bounds
on the problems; and k denotes any batch size satisfying k ≤ B. 119

12

Introduction

Nearing the end of the Moore’s law era of “free” software performance improvements, there has
been a call for a focus on algorithms and alternatives to the traditional von Neumann architectures
as the source of speedups, in light of existing approaches from increasing parallelism with multicore
processors to reducing external memory latency with cache hierarchies [LTE+20]. Unlike before,
new algorithms must be designed in order to take full advantage of these new architectures and
shape the direction of future hardware development, but the theoretical models of computation that
underpin them are not as well understood.

One fruitful strategy for studying problems in one field has been looking for connections with
related fields, such as work reducing questions of property testing into communication problems
to obtain new bounds and a better understanding of known results [BBM11]. Considering aspects
of concurrent models of computation that could be the basis of such a relation, a core conceit
is the presence of multiple agents communicating and making decisions in a system to achieve
individual, shared, or possibly competing goals. On these grounds, we draw connections between
three seemingly-disparate areas of computer science: concurrent models, external memory models,
and the complexity of single-player and multiplayer games and puzzles.

The study of games with two or more players in complexity theory has a long history, with
classic results characterizing the hardness of board games like Chess [FL81], Go [Rob83], and
Checkers [Rob84], as well as abstract games modeled by variants of Turing Machines [Sch78,
PR79,PRA01]. The field of game and puzzle research has produced several powerful computational
frameworks, such as constraint logic [DH08] and motion-planning-through-gadgets [DGLR18,DHL20],
which have also found applications in more recent research on video games [DLL18,DGLR18], modular
robot reconfiguration [ADG+21], and global control and shape self-assembly [BMLC+19,CCG+20].
In this thesis, we show the utility of the motion-planning-through-gadgets framework in the study
of concurrent models such as surface chemical reaction networks, apply concurrent techniques in
understanding motion planning and gadget simulation problems, and advance the state-of-the-art of
single-player and multiplayer game analysis.

On the front of cache performance, this thesis introduces the granular external memory model
(GEM), generalizing the traditional external memory (EM) model by removing the restriction of
block-level access by I/O operations. GEM is inspired by newer solid-state drive (SSD) access
protocols that can support noncontiguous operations that would not be efficient on the hard disks
and older technology that inspired EM. It is also motivated by the theoretical goal of better
understanding barriers to solving open problems in EM by simplifying data layout problems to focus
on the challenges with efficient cache management. We develop algorithms and data structures in
the GEM model, expose new links to parallel and concurrent techniques, and make the case for full
hardware support for these operations in SSDs and elsewhere to surpass EM lower-bounds that can
only be broken with granularity.

13

Thesis Organization

This thesis is organized into three parts.
Part I introduces motion planning frameworks with Chapter 1, where we show their application

to single-player video games from across the Legend of Zelda franchise, analyzing many sets of
mechanics to prove whether they are polynomial-time solvable or up to PSPACE-complete. In
Chapter 2, we investigate the motion planning of multiple robots through gadgets, uncovering
connections to Petri nets that reveal ACKERMANN-completeness for reconfiguration problems.

Part II focuses on team multiplayer games. Chapter 3 introduces the Team DFA Game, an
undecidable, bounded-space, two-versus-one game, simplifying previous work and providing the first
application to real-world games: by using an intermediate motion planning framework, we prove
undecidability of Team Fortress 2, Super Smash Brothers, and Mario Kart. Chapter 4 generalizes
the Team DFA Game to include limited communication within the two-player team, shows matching
upper- and lower-bounds on the threshold of information transfer allowed before the game becomes
decidable, and gives similar results for a related Team Formula Game.

Part III explores more-constrained concurrent models of computation. It opens with an analysis of
an asynchronous multirobot gadget model in Chapter 5, finding size lower bounds and constructions
for gadget-analogues of multiprocessor shared memory objects. In Chapter 6, we look at Surface
Chemical Reaction Networks, an asynchronous model of molecular interactions, and prove the
hardness of various reconfiguration problems by reduction from motion-planning-through-gadgets
problems. Finally, Chapter 7 introduces the granular external memory model, leveraging parallel
and concurrent techniques to implement various fundamental and specialized algorithms and data
structures beyond the limits of ordinary external memory.

14

Part I

Games and Gadgets

15

Chapter 1

Motion Planning and The Legend of
Zelda

This chapter presents results from the paper titled “The Legend of Zelda: The Complexity of
Mechanics” that the thesis author coauthored with Jeffrey Bosboom, Josh Brunner, Erik D.
Demaine, Dylan H. Hendrickson, Jayson Lynch and Elle Najt. This paper appeared in The
Thailand-Japan Conference on Discrete and Computational Geometry, Graphs, and Games
(TJCDCG3), 2021 [BBC+22], and has been accepted into the Thai Journal of Mathematics.

Overview

We analyze some of the many game mechanics available to Link in the classic Legend of Zelda series
of video games. In each case, we prove that the generalized game with that mechanic is solvable in
polynomial time, NP-complete, NP-hard and in PSPACE, or PSPACE-complete. In the process
we give an overview of many of the hardness proof techniques developed for video games over the
past decade: the motion-planning-through-gadgets framework, the planar doors framework, the
doors-and-buttons framework, the “Nintendo” platform game SAT framework, and the collectible
tokens and toll roads Hamiltonicity framework.

1.1 Introduction

“It’s dangerous to go alone! Take this.”

The Legend of Zelda1 action–adventure video game series consists of 20 main games developed by
Nintendo (sometimes jointly with Capcom), starting with the famous 1986 original which sold over
6.5 million copies [Vid21], and most recently with Breath of the Wild, which was a launch title for
Nintendo Switch (and is arguably what made the Switch an early success), and its sequel, Tears of
the Kingdom, which was just released at time of writing. In each game, the elf protagonist Link
explores a world with enemies and obstacles that can be overcome only by specific collectible items
and abilities. Starting with nothing, Link must successively search for items that unlock new areas
with further items, until he reaches and defeats a final boss enemy Ganon.

Across the over 35-year history of the series, many different mechanics have been introduced,
leading to a varied landscape of computational complexity problems to study: what is the difficulty

1All products, company names, brand names, trademarks, and sprites are properties of their respective owners.
Sprites are used here under Fair Use for the educational purpose of illustrating mathematical theorems.

16

of completing a generalized Zelda game with specific sets of items, abilities, and obstacles? Reviewing
the two Zelda wikis [Zel21b, Zel21a] and playing the games ourselves, we have identified over 80
unique items with unique mechanics, listed in Tables 1.4 and 1.5, and various obstacles in Table 1.6,
throughout the first 19 games in the Zelda franchise. More mechanics could likely be identified from
the numerous enemy types and other game features.

In tribute to the fun and challenge of the Zelda series, we propose a long-term undertaking where
the video-game-complexity community thoroughly catalogs these mechanics and analyzes which
combinations lead to polynomial vs. NP-hard computational problems. Toward this goal, we analyze
in this chapter the complexity of several new combinations of various items, including Hookshot,
Switch Hook, Diamond Blocks, Crystal Switches, Roc’s Feather, Pegasus Seeds, Kodongos, Buzz
Blobs, Cane of Pacci, Magnetic Gloves, Magnesis, Bombs, Bow, Ice Arrows, Water, Fairies, Magic
Armor, Decayed Guardians, Statues, Ancient Orbs, and colored-tile floor puzzles.

Table 1.1 summarizes our results about the Legend of Zelda, and Table 1.2 lists previously known
results. The first paper to analyze Legend of Zelda games, from FUN 2014 [ADGV15], showed that
Zelda with push-only blocks is NP-hard; Zelda with Hookshot, push-and-pull blocks, chests, pits,
and tunnels is NP-hard; Zelda with Small Keys, doors, and ledges is NP-hard; Zelda with ice and
sliding push-only blocks is PSPACE-complete; and Zelda with buttons, doors, teleporter tiles, pits,
and Crystal Switches that activate raised barriers is PSPACE-complete. More recent work from
FUN 2018 [DGLR18] showed that Zelda with spinners is PSPACE-complete. Many more items and
mechanics remain to be analyzed; refer to Tables 1.4, 1.5, and 1.6 in Section 1.6.

Our new results also serve to highlight different techniques for proving polynomial-time and NP
algorithms, NP-hardness, and PSPACE-hardness of video games involving the control of a single
agent. For algorithms, we apply the powerful technique of shortcutting to enable simple searches
for solution paths through seemingly complex dungeons, and fixed-parameter tractability analysis
to achieve efficiency as dungeons get larger but the game mechanics stay constant. One major
category is reductions inspired by Hamiltonian Path, often simplified with Viglietta’s Metatheorem
2 [Vig14] concerning collectible items and toll roads. Next is the Nintendo-style SAT reduction
from [ADGV15] which later acted as inspiration for the Turrets Metatheorem from [DLL18] and the
door-opening gadgets in [DHL20]. For PSPACE-hardness, we use the door-and-button framework of
Forǐsek [For10] and Viglietta [Vig14]. Finally, we use the door gadget from [ADGV15] which, along
with the other previous work, inspired the gadgets framework for the complexity of motion-planning
problems [DGLR18,DHL20,ABD+20] which we also use here and in Chapters 2, 5, and 6. As a
secondary goal, we hope that this chapter offers a nice sampling of proof techniques showing the
hardness infrastructure that have been built up in recent years.

We describe our model of generalized Zelda in Section 1.2. The chapter is then organized
into sections roughly corresponding to the complexity classes of our results. Section 1.3 gives
polynomial-time algorithms for hookshot and pots; and switch hook and diamond blocks. Section 1.4
proves NP-hardness for Zelda with floor puzzles; and hookshots, pots, and keys; and a variety of
enemies. We show ways of replacing pots and keys with several other sets of items. Section 1.5
proves PSPACE-hardness for Magnetic Gloves; a more powerful Cane of Pacci (while the original
version is in P); the Magnesis rune; minecarts with switchable tracks; and Pedestals with Ancient
Orbs or Pressure Places with statures that control doors.

1.2 Zelda Game Model

Each game in the Legend of Zelda series implements a unique two- or three-dimensional variant
of a common base of gameplay mechanics, which we extract and model for the purpose of writing

17

Game Mechanics Games with Mechanics Result Thm

Hookshot, Pots, Pits ALttP, LA, PH, ALBW ∈ P 1.3.1

Hookshot, Pots, Pits, Keys ALttP, LA, PH, ALBW NP-hard 1.4.1

Hookshot, Unpushable Pots,
Pits, Keys

ALttP, LA, PH, ALBW NP-complete 1.4.3

Switch Hook, Diamond Blocks,
Pits

OoA ∈ P 1.3.3

Crystal Switches, Raised Barriers
ALttP, LA, OoA, PH,
ALBW

∈ P 1.3.4

Roc’s Feather, Pegasus Seeds OoA, OoS, MM NP-hard 1.4.5

Bombs, Renewing Cracked Walls
OoT, MM, OoA, OoS,
TWW, TMC, TP, ST, SS,
BotW

NP-hard 1.4.6

Ice Arrows, Water MM NP-hard 1.4.7

Healing Items, Unavoidable
Damage Region

ALttP, LA, OoT, MM,
OoA, OoS, FS, TWW,
FSA, TMC, TP, PH, ST,
SS, ALBW, BotW

NP-hard 1.4.8

Magic Armor, Unavoidable
Damage Region

ALttP, OoT, TWW, TP NP-hard 1.4.9

Bow or Bombs, and Crystal
Switches for Raised Barriers

ALttP, LA, OoA, TP, PH NP-hard 1.4.10

Colored-tile floor puzzles LA, OoA, TMC NP-complete 1.4.11

Kodongos, low walls, sword ALttP NP-hard 1.4.12

Buzz Blobs, Master Sword
ALttP, LA, OoA, OoS,
TMC, ALBW, TFH

NP-hard 1.4.13

Decayed Guardians, Bombs BotW NP-hard 1.4.14

Statues, Pressure Plates, Doors

ALttP, OoT, MM, OoA,
OoS, FS, TWW, FSA,
TMC, TP, PH, ST, SS,
ALBW

PSPACE-complete 1.5.2

Ancient Orbs, Pedestals, Doors BotW PSPACE-complete 1.5.3

Magnetic Gloves, metal orbs,
ledges, jump platforms

OoS PSPACE-complete
1.5.4
1.5.5

Cane of Pacci, ground holes,
ledges, tunnels

TMC
FPT in duration
PSPACE-complete

1.5.6
1.5.7

Magnesis Rune, metal platforms BotW PSPACE-complete 1.5.8

Minecarts OoA, OoS, TMC PSPACE-complete 1.5.9

Table 1.1: Summary of our complexity results for various game mechanics in Legend of Zelda games,
along with a list of specific games with those mechanics abbreviated according to Table 1.3.

18

Game Mechanics Games with Mechanics Result Prev

Pushable Blocks
Zelda I, LA, OoA, OoS,
TMC

NP-complete [ADGV15]

Pushable/pullable Blocks,
hookshot, chests, pits, tunnels

ALttP, LA, OoT, MM,
TWW, ALBW

NP-complete [ADGV15]

Keys, Doors, Ledges

AoL, ALttP, LA, OoT,
MM, OoA, OoS, FS,
TWW, TMC, TP, PH, ST,
SS, ALBW, BotW

NP-complete [ADGV15]

Pushable Blocks, Ice
OoT, MM, OoS, TMC, TP,
ST

PSPACE-complete [ADGV15]

Buttons, Doors, Teleporters,
Pits, Crystal Switches

ALttP, ALBW PSPACE-complete [ADGV15]

Spinners OoA, OoS PSPACE-complete [DGLR18]

Table 1.2: Previous complexity results for various game mechanics in Legend of Zelda games, along
with a list of specific games with those mechanics abbreviated according to Table 1.3.

Release Year Game Title or Subtitle Abbreviation Dimensions

1986 The Legend of Zelda LoZ 2

1987 Zelda II: The Adventure of Link AoL 2

1991 A Link to the Past ALttP 2

1993 Link’s Awakening LA 2

1998 Ocarina of Time OoT 3

2000 Majora’s Mask MM 3

2001 Oracle of Ages OoA 2

2001 Oracle of Seasons OoS 2

2002 Four Swords FS 2

2002 The Wind Waker TWW 3

2004 Four Swords Adventures FSA 2

2004 The Minish Cap TMC 2

2006 Twilight Princess TP 3

2007 Phantom Hourglass PH 2.5

2009 Spirit Tracks ST 2.5

2011 Skyward Sword SS 3

2013 A Link Between Worlds ALBW 2.5

2015 Tri Force Heroes TFH 2.5

2017 Breath of the Wild BotW 3

Table 1.3: List of games studied in this chapter, with the abbreviations used and the number of
dimensions. To avoid repetition, we exclude the title prefix “The Legend of Zelda:” present in all
games beyond the first two. Game list and release year information from Zelda Wiki [Zel21b].

19

widely applicable proofs in the remainder of this chapter. These models encompass the 19 Zelda
games studied in this chapter, listed in Table 1.3. For brevity, throughout this chapter we use
abbreviations for the titles of games in the series, which are listed in the table and are commonly
used among players. The table also includes the 2D or 3D classification for each game. Four games
are categorized as “2.5D” because, while they are each implemented and visualized as a 3D polygonal
world, the top-down gameplay style and item mechanics in many circumstances more closely fit the
2D model described below.

1.2.1 2D

Generalized 2D Zelda is a single-player game in which the player controls an avatar, Link, in
a two-dimensional world. (We also use this model for the 2.5D games in Table 1.3.) The world
contains dungeons, each consisting of a network of rooms, which are rectangular grids of square
tiles that set the stage for free-moving dynamic objects (enemies, pots, collectible items, etc.). The
goal of the player is to navigate Link from the designated initial room to the designated final room.
Each tile may contain an obstacle (a pit, solid wall, short fence, a door, a chest, grass, water, lava,
spikes, etc.) or be empty. Link can collect items which are recorded in the inventory and can
change the actions available to Link (such as being able to shoot arrows) or how other mechanics
affect Link (such as taking less damage).

In some cases, we will refer to categories of mechanics and give examples of specific instances
in various games. For example many games have pits such as water, lava, or holes in the ground
which cause Link to take damage and return to a prior location on the map. We may also have
unavoidable damage regions such as spiked floors or blade traps which Link can traverse but
will cause damage either on contact with each new tile or over time. For some results we will list
these categories or a prototypical example and then list specific instances found in specific games to
which it applies.

A collision mask is a 2D rectangular bitmap representing the space that an object or obstacle
occupies at its location, specified with pixel precision. A collision occurs when two collision
masks would overlap after updating an object’s position, often either preventing that movement,
causing damage, or triggering events. A sprite is the visual graphic representing an object or
obstacle.

Link’s position (as well as other dynamic objects’ positions) is represented as a fixed-point
number of pixels within the current room, although the position of the sprite and collision mask are
rounded to integer pixel coordinates, and the number of fractional bits in coordinates is taken to be
a constant. Time progresses in discrete frames, during which the player sets each input button as
pressed or released and then the room’s objects are updated. Four directional buttons allow the
player to move Link in eight directions at a speed of 1 pixel per frame (diagonal unit-speed motion
is approximately 1/

√
2 pixels in each dimension). Link will face in the cardinal direction he has

most recently moved in, which determines the direction of his actions. Link’s collision mask is a box
whose size is a quarter of a tile (half in each dimension), preventing movement through the collision
of solid obstacles or other objects.

The game takes place in one room at a time: the room containing Link. When Link leaves
a room, some of its objects and tiles may have their current state forgotten or saved globally
(temporarily or permanently) for the next time Link enters. Link himself has persistent state,
including a heart meter , measuring Link’s health in quarter hearts, and an inventory containing
equipment for attacking enemies and traversing obstacles.

Doors between rooms may be defined as checkpoints, and the game stores a record of the most
recent checkpoint that Link has passed through. If Link’s heart meter becomes empty, Link returns

20

there with his heart meter refilled to a small number of hearts. The player can also choose to save
the game at any point, which creates a record of the state of the game, but Link’s saved position is
set to the most recent checkpoint (and certain obstacles or objects may be saved differently as well
to accommodate this). If the player chooses to quit the game at any point, the game resets to the
saved state.

1.2.2 3D

In Generalized 3D Zelda , rooms are instead three-dimensional spaces bounded by solid polygons
with fixed-point coordinates, as well as dynamic objects with polygon-defined collision boundaries.
Link and other dynamic objects cannot pass through solid polygons, and are pulled downwards by
gravity , which means that they will fall if they are not on a polygonal surface and will slide down a
sufficiently steep surface. Long falls will cause Link to experience fall damage proportional to the
distance fallen beyond a safe threshold.

The player uses a joypad to control Link’s motion, allowing a choice of a fixed number of angles
and magnitudes for Link’s velocity in the horizontal plane during each frame. Link has limited
jump abilities: running off the top of a cliff, Link will jump rather than fall, and when at the
bottom of a short ledge, Link will do a jump to climb up the ledge. Some items are used by aiming
in Link’s first-person view, where the player uses the joypad to adjust the angle the camera points
with a fixed-point precision.

Notably, Generalized 2D Zelda reduces to Generalized 3D Zelda by converting the pixels of 2D
collision masks of tile obstacles and dynamic objects into polygonal prisms, using a joypad with
only four directions and binary magnitude, and aligning everything on top of one large polygon
to counter gravity and avoid jumpable ledges. Consequently, we describe our hardness results for
Generalized 2D Zelda unless the third dimension is necessary.

1.3 Polynomial-Time Zelda

This section details polynomial-time algorithms for exploring dungeons given certain restricted
sets of items and obstacles. The first pair of results are centered around a short-cutting argument
guaranteeing that a solution path through a solvable dungeon can be found that never needs to
repeatedly visit the same location, due to the locality of Link’s abilities. Next, we consider a
common mechanic across the series that has global effects on dungeon traversability, and show that
in isolation it is easy to overcome.

1.3.1 Hookshot and Switch Hook are in P

The Hookshot was first introduced in The Legend of Zelda: A Link to the Past, a 2D game. On use,
Link shoots a hook in the direction he is facing, which travels at a fixed velocity until it collides
with something (or reaches a maximum distance) and then retracts. If the hook hits a light-weight
object, the object will be carried back to Link, but if the hook hits certain heavy objects, Link will
be carried to the collision point.

The hookshot allows Link to collect items or move himself across pits, which are obstacles that
usually destroy items and damage Link while teleporting him to where he entered the current room.
A common heavy object to hookshot is a pot. Link can also push pots from one tile to an adjacent
empty tile, as well as lift a pot over his head and throw it, which destroys it and may damage
enemies it hits.

21

We consider a dungeon containing rooms with only pots and pits, where Link’s only item is the
hookshot. Starting from the dungeon entrance, Link must push pots, destroy pots, and hookshot
onto pots across pits on the path to the dungeon goal room.

Theorem 1.3.1. Generalized 2D Zelda with the hookshot, pots, and pits is in P.

Throughout this chapter, each theorem includes a list of games from Table 1.3 and the relevant
mechanics from that game to which the theorem applies:

Applicable Games Hookshot Pot Pit

ALttP, LA, ALBW Hookshot Pot Water

PH Grappling Hook Barrel Water

Proof. Given a dungeon, we can construct a directed graph G whose vertices are tiles and whose
colored edges indicate the ways Link can visit a tile for the first time: if two tiles are adjacent and
neither is a pit, then there are red edges going both directions between them, and if it is possible
at tile A to hookshot an existent pot to land on an empty tile B, then there is a blue edge from
A to B.

Let a platform be a connected component of vertices joined by red edges. Notice that Link can
always traverse a red edge (by means of lifting and destroying any pot in his way), but may only
traverse a blue edge from platform p1 to p2 if there exists a pot on a specific tile in p2. This leads
to the following observation:

Lemma 1.3.2. If there is a solution path, then there is a solution path in which Link visits each
platform at most once.

Figure 1.1: Example cases of Lemma 1.3.2: (left) If p holds the goal platform, Link can go directly
there along red edges. (right) If p isn’t the last platform, the last blue edge out of p is already
available from red edges when Link first visits p.

Proof. Refer to Figure 1.1. Consider the last platform p on a given solution path that Link visits
more than once (assuming that p exists, otherwise we are done). We can modify the solution path
by skipping from the first time Link visits p to the last visit to p.

If the goal tile is on p, then once Link enters p for the first time, he may traverse only red
edges directly to the goal. Otherwise, the path after the last visit to p involves visiting only
never-visited-before platforms, so any pots on them were not pushed or destroyed before Link visited
p. Thus, on Link’s first visit to p at tile t1, the blue edge (t2, t3) that Link traverses to leave p on
his last visit is immediately available, so we can replace the path from t1 to t2 with a path of only
red edges in p to get a valid solution that contains strictly fewer platform visits.

22

By well-ordering, we conclude that a shortest solution path cannot have any platforms that Link
visits more than once.

Using Lemma 1.3.2, we can derive a polynomial-time algorithm to solve the dungeon. First,
we construct the graph G, contract its red edges to form a graph G′ of platforms with edges
corresponding to at least one blue edge in G, then run a breadth-first search from the starting tile’s
platform to the goal tile’s platform to find a simple path q of platforms (or determine the dungeon
is unsolvable if q does not exist).

Next, we fill in the gaps between q’s blue edges to build a simple path q′ in G. For blue edges
(u, v) and (x, y), where tiles v and x are on platform p, we run breadth-first search from v to x
within the red edges of p and splice the resulting path into q′.

Finally, we translate q′ into a solution to the dungeon. For each edge (u, v) in q′, if the edge is
red then we command Link to lift and throw any pot on v then walk from u to v, and if the edge is
blue then we command Link to hookshot in the direction of v.

A variant of the hookshot was introduced in The Legend of Zelda: Oracle of Ages (also a 2D
game), called the Switch Hook. Instead of pulling Link towards a target heavy object, this item
swaps their locations, an action which can move unbreakable diamond block obstacles that are
otherwise fixed in place. A similar argument to Lemma 1.3.2 and Theorem 1.3.1 proves the following:

Corollary 1.3.3. Generalized 2D Zelda with the switch hook, diamond blocks, and pits is in P.

Applicable Games Switch Hook Diamond Block Pit

OoA Switch Hook Diamond Block Lava

Proof. We sketch a proof analogous to Theorem 1.3.1’s proof. Given a dungeon, we can construct a
directed graph G whose vertices are tiles and whose colored edges indicate the ways Link can visit a
tile for the first time: if two tiles are adjacent and neither is a pit, then there are red edges going
both directions between them, and if it is possible at tile A to switchhook to an existent diamond
block at tile B, where A and B are not adjacent tiles, then there is a blue edge from A to B. See
Figure 1.2 for an example.

Figure 1.2: Example cases of Corollary 1.3.3, analogous to Figure 1.1.

Like Lemma 1.3.2, here we also get that if there is a solution path, then there is a solution path
in which Link visits each platform at most once. Within a platform, Link can reach any tile along
red edges by walking through empty tiles and swapping with any adjacent diamond blocks that
otherwise block the path. Any unvisited platform must have its diamond blocks in their initial state,
since they can only be interacted with using the switchhook, which switches Link’s position onto

23

their platform. This means the same shortcutting argument applies to show platform revisits are
unnecessary.

Therefore, constructing the graph G′ with all red edges contracted and running a breadth-first
search like was described in Theorem 1.3.1’s proof will determine whether a solution path exists in
polynomial time.

1.3.2 Crystal Switches with Barriers and Unlimited Activators is in P

In many Zelda games there are raisable barriers controlled by crystal switches. The barriers can
either be lowered, allowed Link to freely pass over them, or raised, blocking entry to that tile. These
barriers are colored either red or blue. Crystal switches have both red and blue states and hitting
them with swords, boomerangs, bombs, or arrows will cause them to switch state. In the blue state,
blue blocks are lowered but red ones are raised, and in the red state the red blocks are lowered but
the blue ones are raised. Globally there are only two states for the switches to be in, and thus we
can search over the whole state space of the game. However, this will be contrasted in Section 1.4.2
where the addition of expendable items which can activate the switches will make the problem
NP-hard.

Theorem 1.3.4. Generalized 2D Zelda with one-ways, Crystal Switches, raised barriers, and an
inexhaustible way to activate such switches is in P.

Applicable Games One-way Crystal Switch Raised Barrier Activator

ALttP [Tower of Hera],
LA [Bottle Grotto], OoA
[Crown Dungeon], PH
[Temple of Ice], ALBW
[Tower of Hera]

Cliff Crystal Switch Raised Barrier
Sword or
Boomerang

Proof. First, construct a traversability graph for the level in each of the two states for the crystal
switches. Next, for each of these graphs examine which locations admit an interaction with a crystal
switch. For interactions with bounded range, such as the sword or boomerang, this is a constant
for each switch. For something of unbounded range this may be linear in the level size. For each
location from which an interaction with a crystal switch is possible, connect the corresponding
nodes in the traversability graphs. This new graph is at most quadratic in the level size and we can
determine reachability by running a standard graph-search algorithm.

1.4 NP-Hard Zelda

This section gives NP-hardness results for various mechanics in Zelda. The first set of results uses
limited resources needed for traversals to show hardness from Hamiltonian Path in grid graphs. This
essentially follows Viglietta’s Metatheorem 2 [Vig14], which states that games containing collectible
cumulative tokens and toll roads that consume these tokens in order to pass them are NP-hard.
In Zelda games, one can only carry up to a fixed number of these various items at any given time.
We will have to generalize this inventory size for these proofs to apply.

The second set of results details some explicit instances of Hamiltonian Path implemented by
the mechanics, and the third set of results, in Section 1.4.4, uses the “Nintendo” platform game
NP-hardness framework [ADGV15] to show various combinations of enemies and weapons in the
Zelda series are sufficient for NP-hardness.

24

1.4.1 Collectible Objects

In this section we prove the following theorem:

Theorem 1.4.1. Generalized 2D Zelda with the hookshot, pots, pits, and small keys is NP-hard, if
save-and-quit and dying are both prohibited.

Applicable Games Hookshot Pot Pit Small Key

ALttP, LA, ALBW Hookshot Pot Water Small Key

PH Grappling Hook Barrel Water Small Key

Proof. We reduce from the Hamiltonian s–t path in maximum-degree-3 grid graphs [PV84]. Let
G = (V,E) be a maximum-degree-3 plane grid graph, and s, t ∈ V be two vertices in that graph. The
construction in [PV84] can easily attain the additional property that s and t are on the boundary
face of G.2 We construct a dungeon in the following way; refer to Figure 1.3. In our construction,
we will describe distances such that the hookshot’s length is 10 units.

The setting of the dungeon will be platforms surrounded by deep water tiles, so Link starting
with only a quarter heart cannot step off of the platforms without dying. For each vertex v ∈ V
located at (x, y), place a plus shaped tetromino tile centered at (10x, 10y). Place a pot containing a
key in the center of block of each tetromino. Link enters the dungeon at s. Following t there is a
sequence of |V | doors with an exit at the end. If |V | keys have been collected, then all the doors
can be opened.

Link can only move from platform to platform by using the hookshot to move to a platform that
has a pot. Due to the hookshot’s length, Link can only move between platforms that are adjacent
in the grid graph G. Since the pot blocks the path from one end of the platform to the other, Link
cannot move off the platform unless the pot has been removed. This prevents Link from using
the hookshot to reach this platform a second time. This means that a successful traversal of the
dungeon is the same as a Hamiltonian s–t path in G.

Figure 1.3: Platforms and locked door finale gadgets in the construction of Theorem 1.4.1 from a
two-vertex graph.

One common game mechanic we prohibited above is the ability to save the game, quit to a
title screen, and reload the game. In most games in the Legend of Zelda series, Link’s inventory is
preserved but his location is set to the previous outdoor exit used, and many destructible obstacles

2The reduction is from Hamiltonian cycle, and vertices s and t (which in fact have degree 1) come from a common
vertex in a planar graph, so they belong to a common face, and the embedding can be chosen so that this face is the
outside face.

25

like pots are restored to their original state. If Link quits due to dying with zero hearts, then Link
may be reset to 3 hearts.

If we allow the player to die or save and quit, the above construction breaks because that action
relocates Link to the beginning of the dungeon and regenerates the pots without removing the
collected keys from Link’s inventory, which corresponds to allowing the path in the graph to jump
to s at any time and reuse edges, violating the Hamiltonian property.

Without prohibiting dying or save and quit, we can show NP-hardness if we can modify the
construction to put the game in an unwinnable state if the player uses these mechanics. This can
be done by augmenting the dungeon with a one-use door gadget placed at the entrance. One way
to achieve this is to place an unavoidable damage region (such as floor spikes or flamethrowers)
in which traversal of this region will do three hearts of damage to Link. Thus if Link starts the
dungeon with more than three hearts, the region will be passable, but upon dying the level will
restart with only three hearts and thus the unavoidable damage region will be impassable.

Corollary 1.4.2. Generalized 2D Zelda with the hookshot, pots, pits, and small keys is NP-hard, if
save-and-quit and/or dying are allowed.

We also prove membership in NP for the case when pots cannot be pushed, only destroyed.

Theorem 1.4.3. Generalized 2D Zelda with the hookshot, unpushable pots, pits, and small keys is
in NP, if save-and-quit and dying are both prohibited.

Proof. We give a nondeterministic algorithm that simulates a traversal of the dungeon.
In each phase of the traversal, we first guess Link’s next destination: a tile with either a pot to

destroy, a key to pick up, a door to unlock (if Link has at least one key), or the exit of the dungeon.
Given a destination tile, we next guess the path for Link to take to get there. This path will involve
walking and using the hookshot, but not destroying pots or opening doors, so the graph of reachable
tiles will be static and the path can be found with breadth-first search in polynomial time (as in
Theorem 1.3.1 but without including edges to pot tiles). If no path is found, then either we have
guessed incorrectly at some point or the dungeon is impossible to exit, so the algorithm rejects.

If Link can reach the destination, then we have Link perform the corresponding action: destroying
the pot (reducing the total number of pots), picking up the key (reducing the number of keys left to
find), unlocking the door (reducing the number of locked doors), or exiting the dungeon (ending
the traversal, so the algorithm accepts). Because each of these actions decreases the count of an
amount of items (pots, keys, doors, or exits) found in the input, the maximum number of phases
before the algorithm terminates is polynomially bounded by the input size.

In some Zelda games, pots can be pushed but only once. By expanding the previous algorithm
to remember which pots have been pushed so far and to include the action of pushing an unpushed
pot, we obtain membership in NP for this variant as well.

Corollary 1.4.4. Generalized 2D Zelda with the hookshot, once-pushable pots, pits, and small keys
is in NP, if save-and-quit and dying are both prohibited.

We leave open whether pushable pots (and many other combinations of mechanics in this section)
are in NP. Pushable pots in particular are related to Push-1F, which is PSPACE-complete [ACD+22],
but Push-1F does not allow destroying pushable objects.

26

1.4.2 Additional Hamiltonian Path Hardness

Viglietta’s Metatheorem 2 [Vig14] applies to a broad range of items beyond the hookshot, pots, and
keys. We present a collection of other item sets which fit the framework as well.

� The Roc’s Feather is an item that allows Link to jump a distance of one tile,3 and Pegasus
Seeds are consumable items which temporarily give Link the ability to run faster and jump a
distance of two tiles. We require Link to collect seeds to jump over two-tile-wide gaps of lava
separated by long-enough distances to wear out their effect.

Corollary 1.4.5. Generalized 2D Zelda with Roc’s Feather, Pegasus Seeds, and lava is
NP-hard.

Applicable Games Roc’s Feather Pegasus Seed Pits

OoA, OoS Roc’s Feather Pegasus Seed Lava

MM Goron Mask Magic jar
Pit with jump
ramps

TWW Deku Leaf Magic jar
Pit with high
watchtowers

� Explosives, such as bombs, bombchus, and bomb arrows, are consumable items which can
destroy certain obstacles, including cracked blocks that are regenerated when Link leaves the
current room, area, or screen (in the 2D games). We require Link to collect explosives to pass
through rooms blocked by cracked blocks.

Corollary 1.4.6. Generalized 2D Zelda with regenerating cracked blocks, explosives, and room
transitions is NP-hard.

Applicable Games
Regenerating
Cracked Blocks

Explosives Room

OoA [L3], OoS [L2],
TMC [under Hyrule

Town]

Cracked Blocks Bombs Screen

OoT [Goron City] Brown Boulders Bombs Area

MM [Mountain Village] Snow Boulders Bombs Area

TWW [Rock Spire Isle]
Large Cracked
Rocks

Bombs Area

TP [Snowpeak Ruins] Large Barrels Bombs Room

SS [Lanayru Desert] Rock Piles Bombs Area

BotW [Ja Baij Shrine]
Cracked Concrete
Cubes

Bomb Arrows
and Bow

Area

3If Roc’s Feather lands a player on a hole, the mechanics of holes allows the player to escape the hole and end up
traveling an additional tile of distance. Our reductions avoid this additional complexity by using lava or water and no
holes.

27

� In The Legend of Zelda: Majora’s Mask, Ice Arrows are consumable items that can create
temporary ice platforms when shot into water from a Bow with sufficient magic power. We
require Link collect arrows and Small Magic Refills to cross pools of water that he cannot
climb out of.

Corollary 1.4.7. Generalized 3D Zelda with the Bow, Ice Arrows, water pools, and Small
Magic Refills is NP-hard.

Applicable Games Ice Arrows Freezable Water Magic Refill

MM Ice arrows Deep Water Magic jar

� Fairies in bottles are automatic heart-refilling consumable items that refill Link’s heart meter
when it drops to zero, preventing death. Unavoidable damage regions, such as a hallway with
flamethrowers, laser-shooting eyes in the walls, a long fall, or a spiked floor, can be sufficiently
large to deal a lethal amount of damage, requiring Link to use one fairy to traverse. While
bottles usually occupy limited inventory slots, we consider the case with a number of bottles
linear in the dungeon size, so that all required fairies can be carried at once. In Breath of
the Wild fairies do not need to be contained in bottles and occupy the inventory like other
collectible items.

Corollary 1.4.8. Generalized 2D Zelda with fairies, a linear number of empty bottles, and
unavoidable damage regions is NP-hard.

Applicable Games Healing Item Unavoidable damage

ALttP, ALBW, TMC Fairy Bottles Floor spike trap

OoT, MM, TWW, TP,
SS

Fairy Bottles Long fall

LA Secret Medicine Floor spike trap

OoA, OoS Magic Potion Floor spike trap

PH, ST Purple/Yellow Potion Floor spike trap

FS [Hero’s Trial in

Anniversary Edition]
Rupees Blade trap

FSA [Tower of Flames] Fairies Fire bars

BotW Fairies Malice

� Multiple games in the series have magic invincibility items, including the Magic Cape, the
Cane of Byrna, Nayru’s Love, and the Magic Armor, which consume magic power (or rupees,
in The Legend of Zelda: Twilight Princess) to prevent all damage. Link can collect Small
Magic Refills to increase his magic meter and be required to drain it a specific amount to
cross unavoidable damage regions.

Corollary 1.4.9. Generalized 2D Zelda with a magic invincibility item, Small Magic Refills,
and unavoidable damage regions is NP-hard.

28

Applicable Games
Magic
Invincibility

Magic
refill

Unavoidable
damage region

ALttP Magic Cape or
Cane of Byrna

Magic jar Floor spike trap

OoT Nayru’s Love Magic jar Blade trap

TWW, TP Magic Armor
Magic jar
and rupees

Blade trap

� Crystal Switches can be activated by limited use ranged weapons such as bombs or bow and
arrows. We can construct a toll road by placing a pair of paths blocked by blocks of both
colors. From the center of these obstacles, there is a crystal switch which can be reached by
our ranged weapon allowing us to switch the color while in between the barriers and thus
traverse them.

Corollary 1.4.10. Generalized Zelda with Crystal Switches and the bow and arrows or bombs
is NP-hard.

Applicable Games Crystal Switch Barriers Activator

ALttP, LA, OoA, PH Crystal Switch Barriers Bombs

TP [Temple of Time] Crystal Switch Shifting Walls Arrows

1.4.3 Floor Puzzles are NP-Hard

In The Legend of Zelda: Link’s Awakening, originally a 2D game, the dungeon Turtle Rock contains
puzzles where a flashing block with the ability to replace pits with floor tiles is waiting next to a
large set of pits. Link must remotely navigate the block to fill in every pit, which makes a Treasure
Chest appear; the challenge being that the block can only traverse over pit tiles. A similar type of
2D puzzle appears in The Legend of Zelda: Oracle of Ages, where multiple dungeons have rooms
with blue floors and a single yellow tile that follows Link’s movements. If Link moves onto a blue
tile, the yellow tile replaces the blue tile and leaves behind a red tile, and the goal is to eliminate all
blue tiles.

Theorem 1.4.11. Generalized 2D Zelda with pits and flashing floor-generating blocks, and Gener-
alized 2D Zelda with colored-tile floor puzzles are both NP-complete.

Applicable Games Floor Puzzle

LA [Turtle Rock] Pits and floor-generating block

OoA [Skull Dungeon], TMC [Dark Hyrule Castle] Colored-tiles

Proof. Dungeons with either of these puzzle types are in NP, as a nondeterministic algorithm can
guess the buttons to press for Link to traverse the tiles (himself or controlling the flashing block) to
solve each room and reach the goal. Without leaving the room, each floor tile can only be filled once
by the flashing block and a colored tile can only change from blue to yellow and from yellow to red
at most once, therefore there need only be a polynomial number of required moves by monotonicity.

A room containing either of these puzzles is effectively an instance of the Hamiltonian Path
problem on a grid graph with pits from a fixed start vertex to any end vertex. We reduce from the
problem of Hamiltonian Circuit in grid graphs [IPS82] (with no specified endpoints) by laying out
the graph using pit tiles (or blue tiles) and replacing one tile on the exterior with the flashing block
(or the yellow tile) to specify the starting vertex.

29

1.4.4 Fighting Monsters is NP-Hard

The “Nintendo” platform game NP-hardness framework, established in [ADGV15], shows several
examples of how to use enemies which can be eliminated from one location, but otherwise block
another location to build variables and clauses for a SAT reduction. One-way and crossovers are
further needed to establish NP-hardness. In [DLL18] the notion of what enemies and environments
are appropriate is generalized. In particular, we need one pathway which is impossible to cross
if the enemy is present (likely because that enemy will kill Link) and another pathway which is
disjoint from the first, but allows Link to safely eliminate the enemy. Crossovers and one-ways are
prevalent in Zelda games. There are numerous pairing of items and enemies that could be used in
this construction; we give a few examples below. In this section we assume enemies do not respawn.
This is particularly relevant for The Legend of Zelda: Breath of the Wild where all enemies in the
game respawn periodically during the Blood Moon.

Theorem 1.4.12. Generalized 2D Zelda with Kodongos, low walls, and a sword is NP-hard.

Applicable Games Kodongos Low wall Sword

ALttP [Palace of Darkness] Kodongos Low wall Sword

Proof. Kodongos are enemies which periodically shoot fireballs in a line. For our blocked traversal
we will place a Kodongo behind a low wall at the end of a long hallway which is only one tile wide.
Low walls prevent Link and Kodongos from walking over them, but do allow Link’s sword swipes
and the Kodongo’s fireballs to pass over the wall. The hallway is long enough that the Kodongo will
shoot a fireball down it at least once if Link tries to traverse the hallway while the Kodongo is there.
If Link only has half a heart remaining (perhaps from an initial forced traversal of an unavoidable
damage region) then this single fireball will kill him.

For our open traversal, we have another long hallway parallel to our blocked traversal but
separated by another low wall. This will allow Link to move diagonally adjacent to the Kodongo
and safely dispatch it while preventing entry into the other traversal.

Figure 1.4: Gadget for Theorem 1.4.12

Theorem 1.4.13. Generalized 2D Zelda with Buzz Blobs and the Master Sword is NP-hard.

30

Applicable Games Buzz Blobs Sword beam ability

ALttP, OoA, OoS, ALBW Buzz Blob Master Sword

LA Buzz Blob Koholint Sword

TMC [Palace of Wind] Electric Chu Chu Sword Beam or Peril Beam technique

TFH Buzz Blob Sword Suit

Proof. Buzz Blobs are enemies which are not injured by sword swipes. If Link attempts to directly
hit a Buzz Blob with a sword, Link will take damage instead.4 The Master Sword allows Link to
shoot a ranged attack if he is at full hearts. This ranged attack is able to damage the Buzz Blobs as
long as Link is not adjacent to the Buzz Blob.

For our blocked traversal, we will place a Buzz Blob between two ledges. If Link is on top of the
first ledge, the ranged attack from the Master Sword will go over the Buzz Blob. If Link jumps
down while the Buzz Blob is present, he will take damage. At the very end of the dungeon, we will
construct a hallway which is single tile wide filled with Buzz Blobs. If Link is still at full health
when reaching this last hallway, Link will be able to dispatch the Buzz Blobs with ranged attacks
from the Master Sword. Otherwise it will be impassable.

For the open traversal, we provide a pathway at the same height as the Buzz Blob which is
separated by a pit. Link can safely blast the Buzz Blob from across the pit, but cannot cross the
pit himself.

Figure 1.5: Gadget for Theorem 1.4.13.

Theorem 1.4.14. Generalized 3D Zelda with Decayed Guardians and bombs is NP-hard.

Applicable Games Decayed Guardian Bombs

BotW Decayed Guardian Bomb Rune

Proof. A Decayed Guardian is an enemy from The Legend of Zelda: Breath of the Wild that has a
fixed location but has a laser which can rotate. If Link goes within range the Guardian will take a
few seconds to “lock on” to Link as a target and then shoot a powerful laser. If Link is unarmored,
this deals more than three hearts of damage, the starting maximum number of hearts in the game.
However, the Guardian must have a clear line of sight to use its laser.

For our blocked traversal we will have a long, narrow hallway with a Guardian at the end. This
hallway will be long enough so that Link will not be able to reach the Guardian before it fires.
Further, the hallway is narrow preventing Link from being able to dodge the laser, thus rendering it
impassible while the Guardian is there.

4This is not true of the Master Sword Lv.3, The Golden Sword, which can safely attack Buzz Blobs.

31

For our open traversal we will have another hallway which goes next to the Guardian but is
separated by a wall which is slightly taller than Link. This allows Link to safely throw bombs over
the wall while not being targeted by the Guardian and not being able to jump over the wall into
the blocked traversal. Link could potentially try to bomb-jump over this barrier; however, with only
three hearts and no armor attempting a bomb-jump would be lethal.

1.5 PSPACE-Complete Zelda

In this section we show various mechanics in Zelda are sufficient for PSPACE-hardness. To do
so, we make use of two common frameworks for proving the hardness of games involving motion
planning: the “doors-and-buttons” framework and the “gadgets” framework.

In the doors-and-buttons framework [Vig14, For10], an agent traverses an environment
consisting of “doors” and “buttons” connected by traversable pathways. A door can be open or
closed , and prevents passage when closed. Each button is connected to a set of doors. The agent
can press a button it visits, which potentially changes the state of the doors to which it is connected.
In particular, the result used in this chapter involves a button called a switch , which swaps the
state of all doors to which it is connected (from open to closed, or closed to open). A version of
this framework, which we call 1-switch-2-doors, in which each button is connected to two doors
and pressing the button swaps the openness of both doors, was shown to be PSPACE-complete
in [VDZB15]. Proofs using this framework can be found in Section 1.5.1.

In the motion-planning-through-gadgets framework [DGLR18,DHL20], an agent traverses
an environment consisting of “gadgets” connected by traversable pathways. Each gadget has
locations where the agent can enter/exit the gadget, traversals which describe pairs of locations
that can be traveled between in the current state (within the gadget), and states which describe
which traversals are currently possible. Doing a traversal may change the state of that gadget
in addition to changing the agent’s location. Navigating a planar system of connected gadgets
from one location to another is known to be PSPACE-complete when every gadget is a locking
2-toggle [DHL20], a door gadget [ABD+20], or a self-closing door [ABD+20]. These gadgets have
the additional property that the set of possible traversals over all states are always a subset of
tunnels, which are disjoint pairs of locations (a perfect matching on the locations).

Figure 1.6 gives state diagrams for two of these gadgets. The locking 2-toggle has two directed
tunnels where, after going down either one, the only allowed traversal is to return along the same
tunnel in the opposite direction, resetting the gadget to the prior state. A door gadget has three
tunnels: traverse, open, and close. The open and close tunnels are always traversable, which sets
the state of the gadget to “open” or “closed” respectively, while the traverse tunnel can be traversed
only when the gadget is in the open state. A self-closing door gadget is a modified door gadget
with two tunnels, open and traverse, where traversing the traverse tunnel also closes it.

Before discussing the various particular mechanics, we first show the following general claim
which applies to all our PSPACE-completeness results in this section.

Lemma 1.5.1. Generalized 2D and 3D Zelda are in PSPACE.

Proof. Savitch’s Theorem [Sav70] shows that PSPACE equals NPSPACE, so we give the following
simple algorithm to show containment within NPSPACE. As rooms are specified by a polynomial
number of tiles with pixel-resolution collision masks or by polygons with fixed-point coordinates,
the only varying quantities in the game are polynomially bounded states of Link, his items,
enemies, and obstacles (including fixed-point positions and velocities), therefore a polynomial-space
nondeterministic simulator could guess which player inputs to make to find a path to the goal, if a
path exists.

32

1

2

2
11

21 3
2 21 3

Figure 1.6: Gadget state diagram for the self-closing door (left) and the locking 2-toggle (right).
Each box represents the gadget in a different state, in this case labeled with the numbers 1, 2, 3.
Dots represent the four locations of the gadget. Arrows represent transitions in the gadget and
are labeled with the states to which those transitions take the gadget. For example, in state 1 of
the self-closing door, the bottom traversal (the traverse tunnel) changes the state to 2, preventing
further bottom traversal until the top traversal resets the state back to 1.

1.5.1 Statues and Pressure Plates are PSPACE-Complete

Many games in the Legend of Zelda series include dungeon puzzles where, for example, a statue
needs to be pushed onto a pressure plate that opens a nearby door as long as the it is pressed down,
but the statue can be pushed off of the pressure plate to be used for another use. More recently, in
The Legend of Zelda: Breath of the Wild, many shrines contain Ancient Orbs, which can be carried
around and placed in Ancient Pedestals to activate other nearby ancient technology.

These statues and orbs act as temporary, reusable keys that exists as objects in the world, as
opposed to a collected inventory item like a Small Key that is permanently consumed to open
a locked door. As long as we also have barriers to prevent the arbitrary transportation of these
objects, this type of puzzle mechanic is PSPACE-hard to solve.

Theorem 1.5.2. Generalized 2D Zelda with pushable heavy statues, pressure plates, doors, and
stairs is PSPACE-complete.

Applicable Games Pushable Statue Pressure Plate Stairs

ALttP, OoA, OoS, FS,
TWW, FSA, TMC, ALBW

Statue Floor Button Stairs

OoT, MM Wooden Box Small Pressure Plate Stairs

TP [Temple of Time] Pot Pressure Plate Stairs

PH, ST, SS [Pirate

Stronghold]
Metal Box Floor Button Stairs

BotW (see Corollary 1.5.3) Ancient Orb Ancient Pedestal Ladder

Proof. We reduce from motion planning with 1-switch-2-doors gadgets [VDZB15]. Shown in
Figure 1.7, the gadget consists of a tri-partitioned room, one part with one statue and two pressure
plates, each controlling a door in the other two parts. The statue partition’s entrance is raised up
from the floor by stairs, preventing Link from pushing the statue outside, and the other two parts
each have two entrances on opposite sides of their inner door. Link may choose to open either door
by pushing the statue onto the corresponding pressure plate, but with the one statue, at most one
door can be opened at a time.

Corollary 1.5.3. Generalized 3D Zelda with Ancient Orbs, Pedestals, and Doors, along with ladders,
is PSPACE-complete.

33

Proof. We use the same construction as Theorem 1.5.2, replacing statues with Ancient Orbs, pressure
plates with Ancient Pedestals, and short steps with ladders. Link is unable to carry an orb while
climbing up ladders.

Figure 1.7: Construction for Theorem 1.5.2, in Oracle of Ages. The floor buttons open the
corresponding shutter doors (signified with arrows) when the statue is pushed on them.

1.5.2 Magnetic Gloves is PSPACE-Complete

The Magnetic Gloves are an item introduced in The Legend of Zelda: Oracle of Seasons, a 2D game,
that projects a north or south magnetic force in any of the four cardinal directions. Among other
interactions, they allow Link to remotely attract or repel metal “N” orbs, which are polarized north.
Two important properties are the fact that multiple metal objects in range of the force are affected
simultaneously, and that metal orbs are affected at any distance, even when off-screen. Since there
are no rooms in the game larger than 15× 11 tiles or containing more than one metal orb, we make
the assumptions that the force would affect multiple metal orbs simultaneously and that orbs cannot
overlap other orbs, and consider the cases where it has an infinite range and when it has a finite
range of up to 15 tiles from Link.

Theorem 1.5.4. Generalized 2D Zelda with infinite-range Magnetic Gloves, metal orbs, ledges, and
jump platforms is PSPACE-complete.

Proof. We show PSPACE-hardness via reduction from motion planning with door gadgets [ADGV15].
Figure 1.8 shows our construction of a door gadget. In the center of the gadget is a metal orb that
always blocks the traverse path (when closed) or the close path (when open). To open the door
from the closed state, Link must be in the open path and repel the central metal orb with north
magnetic force while facing down. To use the close path while in the open state, Link must use
north magnetic force to repel the central metal orb while facing up. If Link tries to attract the
central metal orb with south magnetic force, then one of the two ledge orbs will fall and permanently
block the traverse path.

In an effort to embed the graph into a single room, we must prevent Link from using the
Magnetic Gloves to manipulate a metal orb inside a gadget from far away. This is solved by entirely
surrounding the room with a path with metal orbs on ledges leading to the goal, as in Figure 1.9. By
selectively removing orbs (that would otherwise be dropped to block this path) in rows or columns
which we intend the Magnetic Gloves to be used with a certain polarity, and placing our gadgets on
disjoint sets of rows and columns, any unintended magnetic manipulations will permanently block
the outer path and prevent the goal from being reached.

34

Theorem 1.5.5. Generalized 2D Zelda with at least 15-tile range Magnetic Gloves, metal orbs,
ledges, and jump platforms is PSPACE-complete.

Proof. Compared to infinite range, having a maximum force distance permits black-box gadget
constructions, as we prevent external interference by laying-out gadgets far apart in the dungeon.
However, the construction in Theorem 1.5.4 is not self-sufficient because we protected the central
metal orb from the left or right by using a single, distant hallway with orbs poised to block traversal
to the goal.

We bring these two aspects together by compacting the door gadget enough to run blocking
hallways on both sides, as shown in Figure 1.10. With this construction, the metal orbs above the
side hallways are within the 15-tile distance from anywhere in the gadget where horizontal magnetic
glove usage could affect the central metal orb. Rather than running the goal hallway around the
outside of the room, we thread it past every gadget on both sides, completing the reduction.

1.5.3 Cane of Pacci is PSPACE-Complete

The Cane of Pacci is an item introduced in The Legend of Zelda: The Minish Cap, a 2D game, that
shoots a bolt of magic that can enchant a circular hole tile, which will launch Link up an adjacent
ledge if he enters the hole. As a pseudo-3D effect, the bolt ignores hole tiles that are not “vertically
aligned” with Link’s feet: if the bolt travels down a ledge, then the bolt will remember that it is
now high above the floor. The bolt also ignores already-enchanted holes. In the game, the hole stays
enchanted for a significant but limited time, so we consider both the finite- and infinite-duration
generalizations.

Theorem 1.5.6. Generalized 2D Zelda with fixed-duration Cane of Pacci, ground holes, ledges, and
tunnels is fixed-parameter tractable with respect to cane duration.

Figure 1.8: Construction of a door gadget using metal orbs, in the closed (left) and open (right)
configuration. The open, traverse, and close paths (implementing the gadget’s tunnels/traversals)
are marked with directions. Link can move through the small gaps between the green quarter-tiles,
but the orb cannot.

35

Figure 1.9: (left) Path lined with metal orbs to prevent Link from using the Magnetic Gloves while
facing perpendicular into the path. (right) Crossover using jump platforms.

Figure 1.10: Compact construction of a door for 15-tile-range Magnetic Gloves, in the closed state.
Hallways on the left and right are traversed at the end to reach the goal.

Applicable
Games

Cane of Pacci (fixed-dur.) Ground holes Ledges Tunnels

TMC Cane of Pacci (fixed-dur.) Ground holes Ledges Tunnels

Proof. Let the Cane of Pacci enchant holes for t frames before they automatically unenchant, and
let Link’s running speed be at most v ≤ 1 tiles per frame, which is slower than the bolt’s travel
speed u.

For Link to use an enchanted hole, he must be within a circle of radius vt tiles centered at the
hole from the duration of the enchantment. Symmetrically, all holes that are beyond vt tiles from
his location cannot be enchanted and used, so without loss of generality no strategy for beating the
dungeon ever has more than h = O(v2t2) = O(t2) holes that are enchanted at any point.

Supposing that there are n square tiles in the world and Link moves at a speed of 1 pixel per
frame, he can be at O(n/v2) possible positions. Link can fire at most one bolt per frame, and
each bolt that enchants a reachable hole travels for at most vt/u < t frames. Under efficient play,
where bolts are only ever shot at reachable holes, the total number of game configurations would be

36

O(n/v2 × ht× (t + 1)h) = n (t + 1)O(t2).
Therefore, we can create a graph in linear time for fixed t, where each node is such a configuration

of enchanted holes and to-be-enchanted holes around Link’s location, connected by edges representing
the effects of possible player inputs on the next frame: Link moving, Link shooting a bolt at a hole
in view, or a bolt enchanting a hole. There will be a strategy to get to the end of the dungeon if
and only if this graph has a path from the starting configuration node and an ending configuration
node.

Theorem 1.5.7. Generalized 2D Zelda with infinite-duration Cane of Pacci, ground holes, ledges,
and tunnels is PSPACE-complete.

Applicable
Games

Cane of Pacci (∞-dur.) Ground holes Ledges Tunnels

TMC Cane of Pacci (∞-dur.) Ground holes Ledges Tunnels

Proof. To show PSPACE-hardness, we reduce from planar motion planning with self-closing
doors [ABD+20]. Figure 1.11 shows our design for a self-closing door gadget. Link opens the
door by entering the open path and firing the Cane of Pacci over the stone barrier at the hole below
the ledge. When open, Link can later traverse by hopping from hole to hole, and the last hole will
launch Link up the ledge, disabling the enchantment and thus closing the door behind him. The
walls surrounding the holes, and the fact that the cane’s bolt does not travel down to lower height
levels when shot from the top of a ledge, prevent Link from opening the door anywhere except the
open path. Because the enchantment does not have a finite duration, Link may be required to open
a door but not return to use the door for an arbitrarily long time.

To lay out the graph of self-closing door gadgets in the game, we can make use of the crossover
gadget, also shown in Figure 1.11, if the graph is not planar. Link can freely travel north or south
on the upper level, and another path may run left and right by going down stairs and using a tunnel
on the lower level.

1.5.4 Magnesis Rune is PSPACE-Complete

In The Legend of Zelda: Breath of the Wild, a 3D game, Link obtains the multi-purpose Sheikah
Slate, a tool that can be equipped with magical abilities called Runes. Among them is the Magnesis
rune, which grants Link telekinetic power over metallic objects within a fixed distance. Compared
to the Magnetic Gloves described in Section 1.5.2, Magnesis provides full 3D control of exactly

Figure 1.11: Gadgets in The Minish Cap: a self-closing door using holes for the Cane of Pacci (top).
The path of the bolt for the Cane of Pacci is shown by the yellow arrow.

37

one targeted metal object in a world with more-advanced simulated physics, although Link cannot
target objects that are out of his line-of-sight or that he is standing on.5

Theorem 1.5.8. Generalized 3D Zelda with the Magnesis rune and large metal plates is PSPACE-
complete.

Applicable Games Magnesis ability Large metal plates

BotW [Great Plateau] Magnesis Rune Large metal plates

Proof. We reduce from motion planning with self-closing doors [ABD+20], using the gadget illus-
trated in Figure 1.12. Within a closed room, we construct two paths of platforms over pits: the
traverse line, with two gaps that can only be crossed by placing a large metal plate as a bridge, and
the open line, raised above the first close enough to use Magnesis on the plate but too far to use it
as a bridge to cross paths. Both paths connect to the outside with small exit doors to keep the
large metal plate inside.

Magnesis RangeJump Range

Open

Traverse

Figure 1.12: Construction of a door gadget using a large metal plate and platforms over pits, shown
in the open state. The open line is raised above the traverse line. The layout was inspired by a
puzzle in the Oman Au Shrine where the Magnesis rune is unlocked in The Legend of Zelda: Breath
of the Wild.

The self-closing door starts closed, where the large metal plate is not within Magnesis reach
of the start of the traverse line. To open the door, Link must use Magnesis from the open line to
relocate the plate so that when Link later enters the traverse line, he can use the plate as a bridge
across both gaps. Carrying the plate from the first gap to the second gap puts it out of Magnesis
range of the entrance of the traverse line, which closes the door upon traversal.

1.5.5 Minecarts Navigation

Minecarts are an environmental feature appearing in a variety of Zelda games which pose unique
navigational challenges. In these games, Link can ride minecarts along paths of minecart tracks
fixed onto the ground (or raised in the air), ending at minecart stop pads. Tracks may also pass
through special doors which only open to let a minecart through. Levers can be used to change the
state of sections of track, which can open new paths or create dead-ends that reflect the minecart
backwards. We give PSPACE-completeness proofs that address the types of minecarts found in The
Minish Cap, Oracle of Ages, and Oracle of Seasons.

5This mechanic intends to prohibit using Magnesis to fly by riding the object being controlled, but there is a glitch
that involves stacking multiple specific metal objects to build a “flying machine” [Pup]. Our constructions place only
a single metal object in a room so that flight cannot be achieved.

38

In The Legend of Zelda: Oracle of Ages and Seasons, Link can ride on minecarts which
automatically transport him slowly along a track to a destination with no control during the ride
beyond the use of some items, such as the sword or bombs. There are also levers Link can switch
to rotate certain sections of track 90◦ to toggle the available path through a T-junction. In The
Legend of Zelda: The Minish Cap, the dungeon Cave of Flames has fast minecarts that act similarly,
although no items may be used during transport, and there are also four way junctions which can
be switched between connecting opposite pairs of tracks. Falling off the end of the track or crashing
into other minecarts is not a possible situation in the setups in any of these games, so we avoid
that situation in our proofs. However, an intermediary simplyfying step considers a model where
minecarts bounce off of each other when they collide.

Figure 1.13: Gadgets for Oracle of Ages/Seasons: 1-Toggle while walking (left), 1-Toggle while
riding a minecart (center), Diode while walking (right)

To introduce our minecart construction techniques, we describe the basic gadgets shown in
Figure 1.13. The left image shows a 1-toggle while walking, which consists of a single minecart
which can through a minecart-only door. When a minecart is present on Link’s side of the door, he
can ride it to the other side, and otherwise Link can’t do anything else. The 1-toggle while riding a
minecart consists of a single T-junction which leads to a minecart stop with a lever controlling the
junction. When Link is riding a minecart toward the junction, if it is rotated toward him, he will
end up in the minecart stop. At this point, he can flip the lever, and get back in the minecart to
continue out the other side. If he enters the junction when it is rotated away from him, he bounces
off and returns to where he came from.

Although the construction for a diode is not directly used in our proof, we present it here because
it may be useful in future constructions, it demonstrates the rules of exiting a minecart, and it
shows that Zelda with minecarts is not reversible, a fact that initially surprised us. When Link
enters the minecart from any direction, he is taken into the dead-end room, but riding back out
will force Link to exit onto the minecart stop pad on the left side. Thus, if Link entered from the
bottom, he must exit on the left, and there is no way to traverse from the left to the bottom.

Figure 1.14: Minecart 2-to-1 Toggle for Oracle of Ages/Seasons, simplified under the assumption
that minecarts bounce off of stationary minecarts. Adding minecart 1-toggles at each stop would
achieve the same bouncing effect.

39

Theorem 1.5.9. Generalized 2D Zelda with a sword, minecarts with tracks, levers to switch
T-junctions, and minecart-only doors is PSPACE-complete.

Applicable Games Minecarts Switches T-junction Minecart door

OoA, OoS, TMC Minecarts Levers T-junction tile Minecart door

Proof. We reduce from motion-planning with Locking 2-Toggles [DHL20].

Figure 1.15: Minecart-based Locking 2-Toggle gadget for Oracle of Ages/Seasons. The simplified
top figure assumes minecarts bounce off of stationary minecarts, while the bottom adds minecart
1-toggles to get the same effect. Levers and the junctions they switch are highlighted in yellow.
Shown in the open state. The traversal lines go from bottom to top on the left and on the right.

Figure 1.15 shows our construction of a locking 2-toggle. Without loss of generality, we assume
that if a moving minecart collides with a stationary minecart at a minecart stop, it will bounce
backwards in the same way that it will bounce off of the dead-end side of a junction. The top half of
Figure 1.15 depicts the simplified construction using this assumption. By adding minecart 1-toggles

40

in front of every minecart stop, as we also show in the bottom half of Figure 1.15, this simplifying
assumption can be dropped.

The construction is centered around the 2-to-1 toggle gadget displayed in Figure 1.14 under our
simplifying assumption that minecarts which collide simply bounce off of each other and return the
direction they came from. This initially allows Link to enter from the left or the right side and exit
from the bottom. Afterwards, Link is only able to go from the bottom to the side from which he
last came. Thus this looks like a locking 2-toggle with two of the locations merged.

Now consider the entire gadget which has four entrances made of 1-toggles in the four corners of
the gadget. To traverse from the bottom-left to the top-left, first Link uses the 1-toggle to enter the
left section. The corridor to the top-left exit is blocked by a minecart, and the only way to move it
is to ride it to the central minecart stop and return through the bottom 1-toggle. If the central
junction was set to turn right, then Link must first flip the lever, which is easily accessible from
both the left and right sections. Since Link can only exit a minecart onto a stop pad, this is the
only traversal that gets past the top-left minecart.

In the open state, the central minecart stop is unoccupied, so Link can successfully relocate the
cart blocking his path and proceed by using the 1-toggle at the top-left exit. If Link tries later to
use the right traversal line, he will not be able to relocate the minecart blocking the top-right exit
because the central minecart stop will be occupied. To undo this traversal and restore the open
state, Link just needs to retrace his steps, and because the minecart brought from the central area
blocks the bottom-left entrance (due to the stop pad location), that is Link’s only available choice.

By symmetry, the above arguments also apply to right-line traversals.

The above proof made clever use of the fact that minecarts can block Link’s path by carefully
placing the stop pads, forcing link to enter the minecart. It would be interesting to know whether
this is necessary for hardness.

Question 1. Can one show PSPACE-hardness for Zelda minecarts with T-junctions without using
the fact that minecarts can be used to block paths?

It may also be of interest, or enjoyable to find a simpler reduction for the four way junction. It
is tempting to say hardness should follow from the 1-switch-2-doors result of [VDZB15], however,
the minecarts create a 1-toggle like constraint on the pathways. This suggests a reduction from a
toggle-lock or locking 2-toggle will be more appropriate.

1.6 Open Problems

Tables 1.4, 1.5, and 1.6 list many of the items, mechanics, and obstacle types from across all of the
Zelda games, along with known complexity results. This table gives a sense of the significant work
left to complete the quest of Zelda complexity.

It appears the first two Zelda games, The Legend of Zelda and The Adventure of Link, are the
only Zelda games which have not been shown to be PSPACE-complete. Resolving the NP versus
PSPACE gap for these oldest examples is a remaining challenge.

In The Legend of Zelda: Oracle of Ages, the Crown Dungeon has a collection of block-pushing
puzzles with an interesting twist: all blocks with the same color move simultaneously (if there is an
empty tile to move into) when any one of them is pushed. This global manipulation is similar to a
discretization of the uniform global control for swarm robotics studied in [BHW+13].

The Iron Boots are a common item in 3D Zelda games, first introduced in The Legend of
Zelda: Ocarina of Time to allow Link to sink underwater further than he could swim, and was

41

expanded upon in The Legend of Zelda: The Wind Waker as a means to walk against strong winds
and activate springboards, and even further in The Legend of Zelda: Twilight Princess by adding
interactions with magnetic forces. While the Iron Boots are a nonconsumable inventory item with
no inherent motive force, the fact that Link must choose whether or not to wear them to traverse a
variety of hazardous terrain gives them the potential to be useful when combined with other items.

Items and Mechanics Known

Small Key 1.4.1

Sword 1.4.12

Bow, Slingshot, Seed Shooter 1.4.10

Shield, Mirror Shield

Bombs
1.4.6,
1.4.10,
1.4.14

Boomerang

Heart Container

Fairy, Secret Medicine 1.4.8

Health Refill Potion

Flippers, Zora Armor Set

Piece of Heart, Spirit Orbs

Hookshot, Grapple Hook,
Clawshot, Gripshot

1.3.1, 1.4.1,
[ADGV15]

Power Bracelet

Sword Beams 1.4.13

Warp Song, Warp Seeds,
Warp Bell

Blue Ring, Blue Mail

Hammer

Pegasus Boots, Pegasus Seeds 1.4.5

Shovel, Digging Mitts, Mole
Mitts

Magic Rod, Fire Rod, Fire
Gloves

Roc’s Feather, Roc’s Cape 1.4.5

Candle, Lamp

Fire Arrows, Ember Seeds

Items and Mechanics Known

Gust Jar, Deku Leaf,
Whirlwind, Gust Bellows

Magic Refill Potion

Bombchu

Four Sword, Dominion Rod,
Command Melody

Bombos, Ether, Quake, Din’s
Fire

Remote Boomerang

Deku Stick, Boku Stick

Fire Resist, Lava Resist, Heat
Resist

Ice Arrows 1.4.7

Cane of Byrna, Magic Cape,
Nayru’s Love, Magic Armor

1.4.9

Ember Seeds, Magic Powder,
Oil Lantern

Red Ring, Red Mail

Timed Expiring Items

Bomb Arrows

Bug Net

Ice Rod, Cryonis Rune

Magic Mirror, Harp of Ages,
Rod of Seasons

Magnetic Gloves, Magnesis
1.5.2,
1.5.8

Super Bomb, Powder Keg

Silver Scale, Golden Scale,
Zora Tunic, Zora Armor,
Mermaid Suit

Table 1.4: All Items and Mechanics (and associated known results) from across all the Zelda games,
as documented on [Zel21a] and [Zel21b], part 1 (continued in Table 1.5).

42

Items and Mechanics Known

Cane of Somaria

Chain Chomp

Deku Nuts

Farore’s Wind, Travel
Medallion

Hover Boots

Iron Boots

Moon Pearl, Portals, Stumps

Paraglider, Deku Leaf 1.4.5

Remote Bomb

Sand Wand, Sand Rod

Tornado Rod

Whip

Air Potion

Items and Mechanics Known

Axe

Ball and Chain

Beetle, Hook Beetle

Cane of Pacci 1.5.6

Lightning Rod

Minish Cap, Gnat Hat

Phantom Hourglass, Sand of
Hours

Ravio’s Bracelet

Song of Time 3-day reset

Spinner (item)

Stasis Rune

Switch Hook 1.3.3

Tingle Tuner

Water Rod

Table 1.5: All Items and Mechanics (and associated known results) from across all the Zelda games,
as documented on [Zel21a] and [Zel21b], part 2 (continuing from Table 1.4).

Obstacles Known

Raised red & blue barriers
1.3.4,
1.4.10,
[ADGV15]

Pots 1.3.1, 1.4.1

Pits, unswimmable water or
lava

1.3.1, 1.3.3,
1.4.5, 1.4.11,
1.4.13, 1.5.8

Obstacles Known

Minecarts 1.5.5

Floor tile puzzles 1.4.11

Spinners (obstacle) [DGLR18]

Metal 3D Physics Objects 1.5.8

Floor spikes, walkable lava or
fire, long falls

1.4.8, 1.4.9

Table 1.6: Known results for some Obstacles from across all the Zelda games, as documented
on [Zel21a] and [Zel21b].

43

Chapter 2

Motion Planning of Arbitrarily Many
Robots

This chapter presents results from the paper titled “Complexity of Motion Planning of Arbitrarily
Many Robots: Gadgets, Petri Nets, and Counter Machines” that the thesis author coauthored with
Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, Timothy Gomez, Dylan Hendrickson, and

Jayson Lynch. At time of writing, this paper has been accepted to the Symposium on Algorithmic
Foundations of Dynamic Networks (SAND), 2023 [ACD+23].

Overview

We extend the motion-planning-through-gadgets framework to several new scenarios involving
multiple robots, and analyze the complexity of the resulting motion-planning problems. While
past work considers just one robot or one robot per player, most of our models allow for one or
more locations to spawn new robots in each time step, leading to arbitrarily many robots. In this
one-player context, where the player can choose how to move the robots, we prove equivalence to
Petri nets, EXPSPACE-completeness for reaching a specified location, PSPACE-completeness for
reconfiguration, and ACKERMANN-completeness for reconfiguration when robots can be destroyed
in addition to spawned.

2.1 Introduction

In this chapter, we build upon the motion-planning-through-gadgets framework that we
used in Chapter 1. It has had significant study, primarily in the one-player setting, since its
introduction [DHL20,ABD+20,ADHL22,ADD+22,DHHL22,ACD+22,Lyn20,Hen21]. The goal in
that setting can be for the robot to traverse from one specified location to another (reachability)
or for the system of gadgets to reach a desired state (reconfiguration) [ADD+22]. Existing results
characterize in many settings which gadgets (in many cases, one extremely simple gadget) result in
NP-complete or PSPACE-complete motion-planning problems, and which gadgets are simple enough
to admit polynomial-time motion planning. This framework has already proved useful for analyzing
the computational complexity of motion-planning problems involving modular robots [ADG+21],
swarm robots [BMLC+19,CCG+20], and chemical reaction networks [AFG+22], the latter of which
we investigate further in Chapter 6. These applications all involve naturally multi-agent systems, so
it is natural to consider how the complexity of the gadgets framework changes with more than one
robot.

44

In Section 2.2.2, we consider a generalization of this one-player gadget model to an arbitrary
number of robots, and the player can move any one robot at a time. By itself, this extension does
not lead to additional computational complexity: such motion planning remains in PSPACE, or in
NP if each gadget can be traversed a limited number of times. To see the true effect of an arbitrary
number of robots, we add one or two additional features: a spawner gadget that can create new
robots, and optionally a destroyer gadget that can remove robots. For reachability, only the
spawning ability matters — it is equivalent to having one “source” location with infinitely many
robots — and we show that the complexity of motion planning grows to EXPTIME-complete with a
simple single gadget called the symmetric self-closing door (previously shown PSPACE-complete
without spawners [ABD+20]). For reconfiguration, we show that motion planning with a spawner
and symmetric self-closing door is just PSPACE-complete (just like without a spawner), but when
we add a destroyer, the complexity jumps to ACKERMANN-complete (in particular, the running
time is not elementary). These results follow from a general equivalence to Petri nets — a much
older and well-studied model of dynamic systems — whose complexity has very recently been
characterized [Ler22,CO22].

In the original paper this chapter is based on [ACD+23], we also studied other settings which
are beyond the scope of this thesis. A summary of those results are given below.

Zero-player with arbitrarily many robots. We considered the same concepts in a zero-player
setting, where every robot has a forced traversal during its turn, and spawners and robots take
turns in a round-robin schedule. zero-player motion planning in the gadget framework with one
robot was considered previously [ADHL22,DHHL22], with the complexity naturally maxing out
at PSPACE-completeness. With spawners and a handful of simple gadgets, we proved that the
computational complexity of motion planning increases all the way to RE-completeness. In particular,
the reachability problem becomes undecidable. This is a surprising contrast to the one-player setting
described above, where the problem is decidable.

Impartial two-player with a shared robot. We considerd changing the number of robots in
the downward direction. Past study of two-player motion planning in the gadget framework [DHL20]
considers one robot per player, with each player controlling their own robot. What happens if
there is instead only one robot, shared by the two players? This variant results in an impartial
game where the possible moves in a given state are the same no matter which player moves next.
To prevent one player from always undoing the other player’s moves, we introduce a ko rule,
which makes it illegal to perform two consecutive transitions in the same gadget. In this model, we
showed that two-player motion planning is EXPTIME-complete for a broad family of gadgets called
“reversible deterministic interacting k-tunnel gadget”, matching a previous result for two-player
motion planning with one robot per player [DHL20]. In other words, reducing the number of robots
in this way does not affect the complexity of the problem (at least for the gadgets understood so
far).

2.2 The Gadget Model and Petri Nets

This section begins with gives a more detailed definition of the gadget model of motion planning,
introduced in [DGLR18], generalizing the one-player setting used in Chapter 1, and defines another
model: Petri nets.

45

2.2.1 Motion Planning Through Gadgets

In general, a gadget consists of a finite number of locations (entrances/exits) and a finite number
of states. Each state S of the gadget defines a labeled directed graph on the locations, where a
directed edge (a, b) with label S′ means that a robot can enter the gadget at location a and exit at
location b, changing the state of the gadget from S to S′. Equivalently, a gadget is specified by its
transition graph , a directed graph whose vertices are state/location pairs, where a directed edge
from (S, a) to (S′, b) represents that the robot can traverse the gadget from a to b if it is in state S,
and that such traversal will change the gadget’s state to S′. Gadgets are local in the sense that
traversing a gadget does not change the state of any other gadgets.

A system of gadgets consists of gadgets, their initial states, and a connection graph on the
gadgets’ locations. If two locations a and b of two gadgets (possibly the same gadget) are connected
by a path in the connection graph, then a robot can traverse freely between a and b (outside the
gadgets). (Equivalently, we can think of locations a and b as being identified, effectively contracting
connected components of the connection graph.) These are all the ways that the robot can move:
exterior to gadgets using the connection graph, and traversing gadgets according to their current
states.

Previous work has focused on the robot reachability1 problem [DGLR18,DHL20]:

Definition 2.2.1. For a gadget G, robot reachability for G is the following decision problem.
Given a system of gadgets consisting of copies of G, the starting location(s), and a win location, is
there a path a robot can take from the starting location to the win location?

Gadget reconfiguration, which had target states for the gadgets to be in, was considered
in [ADD+22] and [Hen21]. We additionally investigate a problem where we have target states and
multiple locations which require specific numbers of robots.

Definition 2.2.2. For a gadget G, the multi-robot targeted reconfiguration problem for G is
the following decision problem. Given a system of gadgets consisting of copies of G, the starting
location(s), and a target configuration of gadgets and robots, is there a sequence of moves the robots
can take to reach the target configuration?

[DHL20] also defines two-player and team analogues of this problem. In this case, each player
has their own starting and win locations, and the players take turns making a single transition
across a gadget (and any movement in the connection graph). The winner is the player who reaches
their win location first. The decision problem is whether a particular player or team can force a win.
When there are multiple robots, we are asking whether any of them can reach the win location.

We will consider several specific classes of gadgets.

Definition 2.2.3. A k-tunnel gadget has 2k locations, which are partitioned into k pairs called
tunnels, such that every transition is between two locations in the same tunnel.

Most of the gadgets we consider are k-tunnel.

Definition 2.2.4. The state-transition graph of a gadget is the directed graph which has a
vertex for each state, and an edge S → S′ for each transition from state S to S′. A DAG gadget is
a gadget whose state-transition graph is acyclic.

1In [DGLR18,DHL20], “reachability” refers to whether an agent/robot can reach a target location. Here we refer
to it as robot reachability since for models such as Petri-nets the Reachability problem refers to whether a full
configuration is reachable.

46

DAG gadgets naturally lead to bounded problems, since they can be traversed a bounded number
of times. The complexity of the reachability problem for DAG k-tunnel gadgets, as well as the
two-player and team games, is characterized in [DHL20].

Definition 2.2.5. A gadget is deterministic if every traversal can put it in only one state and
every location has at most 1 traversal from it. More precisely, its transition graph has maximum
out-degree 1.

2.2.2 Multi Robot Motion Planning with Spawners and/or Destroyers

In this chapter, we investigate one-player motion planning with multiple robots, where a single
player controls a set of robots, with the ability to separately command each, moving any one robot
at a time. There is no limit to the number of robots that can be at a given location. We include a
spawner gadget which the player can use to produce a new robot at a specific location, providing
an unlimited source of robots at that location. We optionally also include a destroyer gadget,
which deletes any robot that reaches a specified sink location; such removal plays a role when we
consider the targeted reconfiguration problem where the goal is to achieve an exact pattern of
robots at the locations. If a system of gadgets only has a single spawner gadget we call that gadget
the source and if the system only has a single destroyer gadget we call that the sink .

We will show an equivalence between this one-player motion planning problem and corresponding
problems on Petri nets. Through these connections, we establish EXPSPACE-completeness for reach-
ability; PSPACE-completeness for reconfiguration with a spawner; and ACKERMANN-completeness
for reconfiguration with a spawner and a destroyer.

2.2.3 Petri Nets

Petri nets are used to model distributed systems using tokens divided into dishes, and rules which
define possible interactions between dishes. This is a natural model since many equivalent models
have been defined, including Vector Addition Systems as well as Chemical Reaction Networks, which
we discuss from a different perspective in Chapter 6.

Definition 2.2.6. A Petri net {D,R} consists of a set of dishes D and rules R. A configuration t
is a vector over the elements of D which represents the number of tokens in each dish. Each rule
(u, v) ∈ R is a pair of vectors over D. A rule can be applied to a configuration d0 if d0 − u contains
no negative integers to change the configuration to d1 = d0 − u + v. The volume of a configuration
denoted |d| is the sum of all its elements.

Definition 2.2.7. A reachable set for a Petri-net configuration, denoted REACHP ({D,R}, t), is
the set of configurations of a Petri net reachable starting in configuration t and applying rules from
R.

We can view a system of gadgets with multiple robots as a set of gadget states Γ and a vector
l indicating the counts of robots at each location. We can define the set of reachable targeted
configurations as REACH(Γ, l) similarity to Petri nets.

2.3 Equivalence between Petri Nets and Gadgets

We present transformations that turn Petri nets into gadgets, and gadgets into Petri nets. We use
these simulations to prove the complexity of robot reachability and reconfiguration with arbitrarily
many robots.

47

A

B

C

Figure 2.1: General Petri-net rule (u, v), where u’s nonzero dishes are shown on the left side and v’s
nonzero dishes are shown on the right side.

Gadgets to Petri Nets. We can transform a set of gadgets into a Petri net where each location,
besides the source and sink, is represented as a robot dish . Each gadget besides the spawner and
destroyer is given a number of state dishes equal to its states, and each transition of the gadget is
represented by a rule . The set of dishes D is DSTATE ∪DLOCT , the union of state and robot dish
sets, respectively.

A configuration of robots and gadgets is represented by a Petri-net configuration t satisfying the
following:

� Each k-state gadget is simulated by k unique dishes in DSTATE , one per state. The state of
the gadget is represented by a single token which is contained in the corresponding dish, and
the other k − 1 dishes are empty.

� Each location in the system of gadgets is simulated by a unique dish in DLOCT . The number
of tokens in that dish is equal to the number of robots at that location.

A Petri net {D,R} simulates a system of gadgets G if for any configuration {Γ, l} of G represented
by Petri-net configuration t, each configuration in REACHG(Γ, I) is represented by a configuration
REACHP ({D,R}, t) and each configuration in REACHP ({D,R}, t) represents a configuration in
REACHG(Γ, I).

A B

1 2

C D

1 2

A B

1 2

C D

1 2

2

2

1

A B

C D

A B

C D

2
1

1

Figure 2.2: Petri-net rules which simulate a 2-tunnel toggle gadget

Lemma 2.3.1. For any set of deterministic gadgets S, any system of multiple copies of gadgets in
S with a spawner (and optionally, a destroyer) can be simulated by a Petri net.

48

Proof. We first explain how to create the rules for gadgets that are not connected to the source
or sink locations. Each gadget transition will be represented by a unique rule. For example the
2-tunnel toggle gadget is shown in Figure 2.2 and has four transitions. It can be traversed:

� from A to B in state 1,

� from C to D in state 1,

� from B to A in state 2, and

� from D to C in state 2.

The four corresponding rules for the gadget are drawn in Figure 2.2 as well. Each rule takes in
one token from a robot dish and one from a state dish, and places one token in a robot dish and
one in a state dish. The token being moved between robot dishes models moving one robot across a
gadget, and the token being moved between state dishes models the state change of the gadget.

If a gadget is connected to the source, any transition from the source is represented by a rule
that only takes in a state token, producing two tokens. One token is output to a location dish and
one to a state dish. If a transition is connected to the sink then the rule takes in two tokens and
outputs only a state token. These special cases are shown in Figure 2.3. Note that we do not have
an actual dish for the source so the player may spawn multiple robots at the source but they do not
appear in the simulation until they traverse a gadget.

B

1 2

A

1 2

A B

C D

A B

C D

-+

Figure 2.3: Left: Rule we include when a gadget can be traversed from the source. Right: Rule we
include when a traversal leads to the sink.

For each configuration of a system of gadgets, there exists a configuration of the Petri net with
dishes that represent the gadgets and locations. Each rule of the Petri net acts as a traversal of a
robot changing the state of a gadget. The rules need the gadgets state token to be in the correct
dish, and a robot token in the location dish representing the start traversal.

Petri Nets to Gadgets. We simulate a Petri net with symmetric self-closing doors using a
location for each dish, where each rule is represented by multiple gadgets. We also have a single
control robot which starts in a location we call the control room . The other robots are token
robots which represent the tokens in each dish. At a high level, our simulation works by “consuming”
the input tokens to a rule to open a series of tunnels for the control robot to traverse. The control
robot then opens a gadget for each output to allow token robots to traverse into their new dishes.
We use the source and sink to increase and decrease rules as needed. Figure 2.5 gives an overview.

Symmetric self-closing door. The symmetric self-closing door is a deterministic 2-state
2-tunnel gadget shown in Figure 2.4. The states are {1, 2} and the traversals are

� in state 1 from A to B changing state to 2, and

49

2

1

A B

C D 1

2

A B

C D

Figure 2.4: Symmetric self-closing door

Control Room Control Room

A C

B D

E

A

B

D

C

E

Control Room

-

+

Control Room

A C

B

A

B

C

Figure 2.5: How to simulate a rule which decreases volume (Left) and a rule which increases volume
(Right).

� in state 2 from C to D changing state to 1.

Using this simulation we prove two problems in Petri-nets are polynomial time reducible to the
gadgets problems we are interested in. [Esp05] lists many problems including the ones we describe
here2. First is production, this problem asks given a Petri-net configuration and a target dish,
does there exist a reachable configuration which contains at least one token in the target dish.
Configuration reachability asks given an initial and target configuration, is the target reachable
from the initial configuration.

Lemma 2.3.2. Production in Petri nets is polynomial time reducible to robot reachability with the
symmetric self-closing door and a spawner. Configuration reachability in Petri nets is polynomial-
time reducible to multi-robot targeted reconfiguration with the symmetric self-closing door and a
spawner.

Proof. For a rule (a, b) we include |a|+ |b| copies of the gadgets. There is a gadget for each input
to the rule; these gadgets can be traversed from the location representing an input dish to an
intermediate location, opening another tunnel for the control robot to traverse. The control robot
must traverse all the input gadgets the goes through the tunnels of the output gadgets. The control
robot opens the doors of these gadgets allowing the robots moving from an intermediate wire to
traverse to a location representing the output dishes.

If a rule would increase the volume, the surplus output gadgets will allow traversal from the
spawn location instead of an input gadget. If a rule decreases the volume, then the surplus input
gadgets send robots to a “sink” location instead of an output gadget. We do not require a true sink
in this case because we can add an extra location which robots can be held instead of being deleted.
If we do not connect this location to any other gadget, then the robots can never leave and can be
thought of as having left the system.

2Problems names may differ.

50

Production reduces to robot reachability since a robot can reach a location if and only if a token
can reach the corresponding dish. If token is placed in a dish, it must have moved through a rule
gadget. The robot can only move through a rule gadget if the number of robots in the dishes are
at least the number of tokens of the left hand side of the rules to open the tunnels for the control
robot to move through.

Configuration reachability in Petri nets reduces to multi-robot targeted reconfiguration. The
target and initial states of the gadgets are the same. The only difference between the initial
configuration and the target is the number of robots at each location, equal to the counts in the
instance of Configuration reachability for Petri nets. The number of robots at each location is equal
to the number of tokens in each dish. The targets for each intermediate wire is 0 and in the control
room 1. Thus, it is never beneficial to partially traverse a rule gadget.

2.4 Complexity of Reachability

The reachability problem for a single robot is very similar to the well-studied problem in Petri nets
called coverage. The input to the coverage problem is a Petri net and a vector of required token
amounts in each dish, and the output is yes if and only if there exists a rule application sequence to
reach a configuration with at least the required number of tokens in each dish.

Definition 2.4.1 (Coverage Problem). Input: A Petri net {D,R}, and vectors d0 and dc.
Output: Does there exist a reachable configuration d ∈ REACH({D,R}, d0) such that d[k] ≥

dc[k] for all 0 ≤ k < |D|.

Theorem 2.4.1. Robot reachability is EXPSPACE-complete with symmetric self-closing doors, a
spawner, and optionally a destroyer.

Proof. We can solve robot reachability by converting the system of gadgets to a Petri net which
simulates it as in Lemma 2.3.1. In this simulation, a token can be placed in a location dish if and
only if a robot can reach that location represented by that dish. Determining if a single token can
be placed in a target dish, the production problem, is a special case of coverage problem where
the target dish is labeled with 1 and all others labeled with 0. We can use the exponential-space
algorithm for Petri-net coverage shown in [Rac78] to solve robot reachability. When simulating the
sink we require rules that decrease the volume of a Petri net. This algorithm works for general Petri
nets so it implies membership with a sink.

For hardness, we first reduce Petri-net coverage to Petri-net production by adding a target dish
T starting with 0 tokens and a new rule. This rule takes as input the number of tokens equal to the
goal of the coverage problem and produces one token to the t dish. This token can only produced if
the reach a configuration that has at least the target number of each species. We then use Lemma
2.3.2 to reduce production to robot reachability with the self-closing symmetric door and a spawner.
It is relevant to note the first reduction does not work when exactly the target numbers are required.
The reduction works even when not allowing the sink as described in Lemma 2.3.2.

2.5 Complexity of Reconfiguration

The reconfiguration problem has been studied in the single-robot case as the problem of moving
the robot through the system of gadgets so that each gadget is in a desired final state. Targeted
reconfiguration not only asked about the final states of the gadgets, but the location of the robot as

51

well. Here, we study multi-robot targeted reconfiguration which requires both that all gadgets are
in specified final states and that each location contains a target number of robots.

Definition 2.5.1. For a gadget G, the multi-robot targeted reconfiguration problem for G is
the following decision problem. Given a system of gadgets consisting of copies of G and the starting
location(s) a target configuration of gadgets and robots, is there a sequence of moves the robots can
take to reach the target configuration?

The complexity of multi-robot targeted reconfiguration depends on whether we allow a destroyer.
If we do not allow for a destroyer, the complexity is bounded by polynomial space since we can
never have more robots than the total target size. If we allow for the ability to destroy robots, then
the reconfiguration problem is the same as the configuration reachability problem in Petri nets from
our relations between the models above. This is a fundamental problem about Petri nets and was
only recently shown to be ACKERMANN-complete [Ler22,CO22].

Theorem 2.5.1. Multi-robot targeted reconfiguration is ACKERMANN-complete with symmetric
self-closing doors, a spawner, and a destroyer.

Proof. For membership we can solve multi-robot target reconfiguration by converting the gadgets
to the Petri net using Lemma 2.3.1. The target configuration is a state token for each gadget in the
dish of its target state, and a number of tokens in each location dish as the number of robots in the
target configuration. We can then call the ACKERMANN algorithm for configuration reachability
in Petri nets shown in [LS19].

For hardness we can reduce from configuration reachability. It was shown in [CO22] that
configuration reachability is ACKERMANN-hard.

The reduction presented in [CO22] vitally uses the ability of Petri nets to delete tokens, so we
must use a sink in our simulation. Without a sink, we have PSPACE-completeness for multi-robot
targeted reconfiguration.

Theorem 2.5.2. Multi-robot targeted reconfiguration for symmetric self-closing doors and a spawner
is PSPACE-complete.

Proof. Consider the input to the reconfiguration problem: two configurations of a system of gadgets.
Namely, the start and end state of all the gadgets, and a start and end integer for each location.
Since we can never destroy a robot once it is spawned, it always exists, so the player cannot spawn
more robots than the total number of robots in the target configuration. We can then solve this
problem in NPSPACE by nondeterministically selecting a robot to move, either from the source or
another location. If we ever increase the total number of robots above the target we may reject. If
we ever reach the configuration with the correct gadget states and robots at each location accept.
Since PSPACE = NPSPACE we get membership.

We inherit hardness from the one-player single-robot case by not including the source or
connecting it to an unreachable location.

2.6 Open Problems

For one-player multi-agent motion planning, we investigated robot reachability and multi-agent
targeted reconfiguration. The hardness for both these problems relies on simulating Petri nets with
a symmetric self-closing door. Do there exist reversible gadgets for which the problem is the same
complexity? How does this relate to reversible Petri nets?

52

Part II

Team Games and Communication

53

Chapter 3

Undecidability of Team Multiplayer
Games

This chapter presents results from the paper titled “Cooperating in Video Games? Impossible!
Undecidability of Team Multiplayer Games” that the thesis author coauthored with Jayson Lynch.
This paper appeared in the International Conference on Fun with Algorithms (FUN), 2018 [CL18],

and was published in Theoretical Computer Science (TCS), 2020 [CL20].

Overview

We show the undecidability of whether a team has a forced win in a number of well known video
games including: Team Fortress 2, Super Smash Brothers: Brawl, and Mario Kart.To do so, we
give a simplification of the Team Computation Game [HD09] and use that to give an undecidable
abstract game on graphs. This graph game framework better captures the geometry and common
constraints in many games and is thus a powerful tool for showing their computational complexity.

3.1 Introduction

Multiplayer videogames account for a large portion of the video game market and yet the additional
computational complexity added by coordinating different team members has not seen much study
from a theoretical standpoint. We finally bridge the gap between known theoretical models where
imperfect information team games are known to be much more computationally complex and
popular, commonly played video games.

In a series of papers [Rei79,PR79,Rei84,PRA01], Reif and Peterson explored the computational
complexity of games of imperfect information. One surprising result was a proof that unbounded
team multiplayer games with imperfect information can be undecidable, despite having a bounded
configuration space in the game itself. This work has been expanded to include formula and
constraint logic games [HD09]; however, to the best of our knowledge, no commonly played game
has been shown to be undecidable using this framework.

The computational complexity of video games has started becoming a popular topic of inquiry.
Past research includes the study of classic arcade games like Pac-Man [Vig14], classic Nintendo
games such as Mario and the Legend of Zelda [ADGV15], to more modern games like Candy
Crush [GLN14], Portal [DLL18], and Angry Birds [SRG17]. However, all of these papers considered
single-player, perfect information versions of the game. These are both aspects that, when altered
to team multiplayer and imperfect information, intuitively and theoretically should make the games

54

much more computationally challenging. The work in this chapter critically utilizes these properties
to show far stronger hardness results than usually appears. At the time of publishing the original
paper this chapter is based on [CL20], we were aware of only one other video game, Braid [Ham14],
which had been shown to be undecidable. However, it was shown by the construction of a counter
machine using enemy units and thus playing such a level will require unbounded computational
resources. The game Recursed has since been proven undecidable as well [DKL20] using a more
space-efficient – but still unbounded – construction based on the Post Correspondence Problem. The
ability for a bounded game state to be able to lead to an undecidable problem has been remarked
on by others are a fascinating feature of this type of problem [HD09].

In addition, much of the past work on video games has focused on environmental obstacles such
as toggles for moving platforms and locking doors, rather than more central mechanics of the game.
An aesthetic advantage of our proofs are that they focus on player vs player interaction and use the
central combat mechanics of the game as core elements in the reduction. This focus complements
our work on models such as motion-planning-through-gadgets in Chapters 1, 2, 5, and 6.

Organization This chapter is organized into two parts. The first half deals with abstract games
and builds a framework for later reductions. In particular, Section 3.2 details the kind of gadgets
involved in our team multiplayer graph game. Section 3.3 reduces the Team Computation Game to
the Team Graph Game using our simplification of the former, the Team DFA Game. The second
half, Section 3.4, applies this framework to show the undecidability of several popular multiplayer
games.

3.2 Team Graph Game Components

In this section we describe the different components of our undecidability framework which will be
instantiated in the Team Graph Game which we define and show to be undecidable in Section 3.3.
Roughly speaking, it is a multi-player game with two teams, which we will refer to as blue and red,
on a graph where each team wants to get one of their players to one of the win nodes. Players take
time moving from node to node and from a node other nodes may be visible, allowing the player to
determine if another player is there. In addition, some nodes will allow a player to guard an edge.
A player attempting to cross a guarded edge will be eliminated and no longer be able to perform
any useful actions. In our reduction we want to simulate a DFA which takes input from blue and
red players and changes state based on this input. The state of the DFA will be encoded in the
location of one player on the blue team, called the runner, and we call the other blue team members
executors. The DFA entering an accept state will correspond to the runner being on a path which
leads freely to a win node. The red team will supply their inputs by guarding some of the possible
paths of the executors, while the executors will provide the blue team’s inputs by choosing among
unguarded paths to take. Both teams’ inputs will force the runner to take a certain path through
the region representing the DFA transition function. This section of the chapter will describe these
gadgets and their function in detail and Section 3.3 will formalize and complete the proof.

We break this framework down into several important gadgets each given their own subsection.
We require a state transition gadget to manage the state of a deterministic finite automaton. This
is described in Subsection 3.2.3. Both teams need to set variables which are taken as input to the
DFA which is done with the choice gadgets described in Subsection 3.2.2. We need to synchronize
all of the players so that the variable choices and DFA execution all occur in the proper order. This
is done with a delay gadget described in Subsection 3.2.1. Finally, there is an optional initializer
gadget which forces players from initial locations to the pathways needed in the gadgets. This is

55

described in Subsection 3.2.4. These gadgets are put together in Section 3.3, as shown in Figure 3.5.
In this chapter we use the following diagram conventions. Edges and nodes in the graph

potentially containing red Team players are red and use square for nodes. Edges and nodes
potentially containing blue Team players except for the runner are blue with circles as nodes. Edges
and nodes potentially containing the runner are black with diamonds for nodes. The graph contains
both directed and undirected edges. Bold edges represent many different paths which serve similar
function but are only accessed by one player. They are often accompanied by a label of how many
edges are represented. Triple dots denote the continuation of a pattern, often many of the same type
of edge. In contrast to bold edges, a different player will generally occupy each of these. Combat
zones are pairs of nodes and edges and are denoted by a lightly colored red or blue triangle. The
color dictates which team is posing a threat in the combat and always involves a node guarding
an edge. If relevant, the combat zone is labeled with the length of time an enemy must spend
traversing a guarded edge to be eliminated. These zones also imply visibility; however, we do not
explicitly label visibility in all of our diagrams. Labeled boxes are used to refer to unrepresented
gadgets, and dotted boxes are used to delineate different gadgets whose internal details are in the
figure. An encircled W is a win node. Other labels and notation will hopefully be clear from context.
Some of these conventions are used more liberally in the diagrams in Section 3.4 along side more
representative pictures for the games.

3.2.1 Delay Gate

a

b

Figure 3.1: Delay Gate,
a gadget to delay the run-
ner until a blue executor
arrives to remove the red
attacker.

a
b

c

avbv0 v1

v'0 v'1
u0 c

u1

ur

d d

b

0 1
Figure 3.2: Red Choice Gadget, a gadget for a red player to force a blue
player to take exit 0 or 1.

The simplest gadget is the Delay Gate, as seen in Figure 3.1. The blue runner moves through
the maze and is frequently blocked from making progress by a red player guarding a combat zone
(edge) from an attack node. To progress, one of the blue executors must arrive at its own attack
node which threatens the red guard, who must escape outside the combat zone (and far from its
attack node) or be eliminated. As long as the red-beats-blue time κ < a and the blue-beats-red
time γ < b, the Delay Gate achieves this goal.

56

3.2.2 Red Team Choice Gadget

The Red Team Choice Gadget gives the red team the ability to influence the path of a blue team
player’s movement. Detailed in Figure 3.2, a blue team member starts at node vb and wants to exit
out of v′0 or v′1, and a red team chooser at ur (or its neighbors) will be able to force the outcome
without fully preventing progress.

The graph is symmetric, so suppose without loss of generality that the red chooser wants the
blue player to exit out of v′1. Given their choice of where to start among the subgraph {u0, ur, u1},
they can successfully block the v′0 exit by simply waiting at u0 and attacking if the blue player tries
to traverse edge (v0, v

′
0). If c > a + b, no starting location of the red chooser allows them to prevent

the blue player from reaching both exits: the red chooser must start at least d = a + b − κ time
units away from u0 to block v′0, which means starting c + (c− d) > a + b away from u1 which is too
far to block v′1 as well.

An optimal strategy for the blue player to guarantee progress is thus to immediately move
towards v′0. Either the red chooser is blocking v′1 and the blue player will leave through the preferred
exit, or red chooser is blocking v′0 and the blue player will have time to turn around and reach v′1
(the preferred exit) before the red chooser can reach u1.

3.2.3 State Transition Gadget

Whereas the Red Team Choice Gadget is used to allow red team to influence a blue executor’s path,
the State Gate gadget is used to allow blue team executors to influence the blue runner’s path. The
“core” of a State Gate is essentially two Delay Gates sharing the same red guard who, unlike the Red
Team Choice Gadget, is able to simultaneously block both exits for the blue runner. Depending on
which of the two paths the blue executor is on, it will be able to safely open one of two exit paths
for the blue runner.

Looking ahead to our undecidability proof for TGG, we generalize the core into a State Gate
by first allowing for two independent hallways per blue executor “input” and second to allow
for multiple independent hallways for the blue runner. Detailed in Figure 3.3, the first can be
constructed using two cores (each with one hallway of each “input” type) or with one core modified
such that the red guard’s edges are the target of two blue executor attack nodes at once. The second
generalization is simply constructed using multiple instances of the first in series along the blue
executor’s paths, one per required blue runner hallway.

The core works correctly as long as the red guard has visibility on the blue runner and executor
and γ < b < a− κ. When safe, the red guard can mimic the blue runner’s movement and always
reach the closer attack node fast enough to block the path, but when the blue executor arrives on
one side, the red guard must vacate the corresponding attack zone and can only safely block the
opposite path. Thus, the blue runner strategy of repeatedly attempting to go in either direction
until the red guard stops following to block will allow for guaranteed safe passage without visibility
between the two blue team players. As a side note, the core could also be implemented with two
separate, unmodified Delay Gates, thus using two red guards instead of one but having no additional
timing constraints.

3.2.4 Initialization

In many games we are modeling with TGG, all players on each team start in their team’s single
spawn room. In order to force the team members into separate hallways, they are coerced into
guarding a set of paths, one per player (besides the runner), which all lead to the victory node w.
Figure 3.4 shows the initializer gadget with spawn nodes sb or sr, where first blue must split into

57

a

a

b

1

0 0

1 State
Gate

State
Gate

x2

x4

0

0

0
1

1

1

0

1

0 1

0 1

State Gate

State
Gate

Figure 3.3: “State Gate” gadget schema for a blue executor to branch the blue runner. The core
of player interaction (top-left) is generalized first allowing two blue paths per input (two possible
constructions on bottom) then allowing multiple runner paths (top-right).

three hallways to block any red players from reaching w and force the red players to make progress
and split up in order to block the blue runner from reaching w.

Specifically, to incentivize the blue team to fully split up, two red team “win paths” are placed
and each guarded by a series of nr blue attack zones of length b2 > γ, so that even if the red team
sends all of its players down one win path, the defending blue player could eliminate all of them by
the end. If the blue team tries to send multiple players out the same hallway from sb, they will
either allow red team to win through the other win path in the initializer gadget, or have no player
in the blue runner path, which is designed in our undecidability construction to be the only path to
w.

If blue team does split up and guard the red team win paths, then red team must then prevent
the blue runner from reaching w by going down a third path that splits into nr branches, each
responsible for guarding a different path for the blue runner. This forces the red team to separate
and block every path until the blue runner gives up and exits the Initializer Gadget, at which point
all other now-separated players can safely exit as well.

58

sb sr

W

a1

b1

a1

b1

b2

d0

...

...

...
c0

...

b0

d1

d1

c1

c1
c2

c2

b2

a2 ...

...

b2

b2

Figure 3.4: Initializer Gadget to separate players that must start together in team spawn rooms.

The constraints on the Initializer Gadget are light beyond the need for visibility so each player
can learn when it is safe to stop guarding an attack zone and make progress. No information needs
to be private at this point so full visibility is allowed within the gadget, although a set of hallways at
the exit for the blue runner to pass within visibility range of every other player would be a sufficient
signal for games being modeled by TGG with occlusion or view distance constraints. For the blue
players to have time to block the red players, the attack nodes should be close enough together such
that ∀i ∈ [0, nr) : a1 + ia2 < b0 + b1 + (i+ 1)(b2− γ). So that the red players have time to block the
blue runner, it must be that b0 + d0 + d1 < c0 + c1 + c2 − κ.

3.3 Reductions

The Team Computation Game (TCG), as defined in [DH08], is a game about two teams (∃ and
∀) whose players alternate writing symbols onto certain cells of a finite-length tape of a Turing
machine, which takes a fixed number of steps during each round and if it halts then the game ends
and one team wins based on whether it accepts or rejects. A simplifying insight is that this Turing
machine is effectively a DFA that teams are alternatively feeding input symbols into until it ends
up in a final state that determines which team wins. The following modified definition will use this
terminology instead for the purposes of the later reduction. We also present reductions establishing
the equivalence of TDA with TCG and thus its undecidability.

59

Definition 3.3.1. The Team DFA Game (TDG) is a two-versus-one team game. An instance of
the game is a DFA D = (Σ = {0, 1}, Q, q0, δ, F = F∃∆F∀). The existential team {∃1, ∃2} competes
against the universal team {∀}. The game starts with D in state q0 and each round proceeds as
follows:

1. If D’s state q ∈ F∃ then team existential wins. If q ∈ F∀ then team universal wins.

2. ∀ learns the state q of D then inputs two bits b1, b2 into D.

3. ∃1 learns b1 then inputs one bit m1 into D. ∀ learns m1.

4. ∃2 learns b2 then inputs one bit m2 into D. ∀ learns m2.

Lemma 3.3.1. TDG is reducible from and to TCG. Namely, ∃f : ⟨D⟩ → ⟨I⟩ and ∃g : ⟨I⟩ → ⟨D⟩
which map between instances ⟨D⟩ of TDG and instances ⟨I⟩ of TCG which both preserve the predicate
of whether or not the existential team has a forced win.

Proof. We prove both directions separately.

⇐= Consider an instance I = ⟨S,O, k,Γ ⊃ O ∪ {A,B}⟩ of the TCG.

The TDG on the corresponding DFA D will directly simulate the TCG on I. The state space
Q(D) is the configurations of S as well as additional counters for input tracking. The first ∀
turn runs S without input from the existential team, thus q0(D) is the result of immediately
applying δS k times (or until termination) from its initial configuration. After that, both games
check for termination in the same way (accept states of S are win states of existential team,
reject for universal), then begin writing to S’s tape or feeding bits into D. The only significant
difference is that the existential moves O must be input to D in binary over 2⌊log2 |O|⌋ rounds
where the universal player’s moves are ignored by D. The transition function δD simply writes
the appropriate bits of the moves from ∀, ∃1,∃2 onto the tape of the current configuration,
and once everything is input then it updates the configuration by applying δS k times (or
until termination).

=⇒ Consider an instance D of the TEAM DFA COMPUTATION GAME.

The TCG on the corresponding instance I = ⟨S,O, k,Γ⟩ will similarly be a direct simulation
of the TDG. Using k = 6 and Γ = O = {0, 1}, the tape of S is just the cells for each input bit
b1, b2,m1,m2 plus unused space at the end. Its state space simply augments Q(D) with input
reading states. The first k steps, S will be in q0(D) and move nowhere, but each following
time S is simulated for k steps, starting at tape position 0, S will read each bit, applying δD
to update its DFA state for each read (unless it has entered a final state), then just return to
position 0.

At the start, TCG runs S for k steps, which does nothing. The termination check for each
game is the same, as before, then each player will input their move onto the appropriate cell
of the tape (in the same order in both games) then run S again, which will simulate the same
inputs being given to D and updating its state.

Theorem 3.3.2. The Team DFA Game is undecidable.

Proof. If TDG were decidable, then TCG would be decidable using f from Theorem 3.3.1 to get a
homomorphic instance, but since TCG is undecidable [DH08], TDG cannot be either.

We now go on to define the Team Graph Game and show it is undecidable by a reduction from
the Team DFA Game.

60

Definition 3.3.2. The Team Graph Game is a team multiplayer game. Let the TGG of red team
vs blue team consist of:

� Directed Graph G = (V,E) with edge weights ∈ N

� Designated team start nodes sr, sb ∈ V and win node w ∈ V

� Directed visibility relation S ⊆ V 2

� (Uni)Directed attack relation A ⊆ V 2

� Initial number of players per team nr, nb ∈ N

The execution of the Team Graph Game starts with nr red player tokens at node sr and nb blue
player tokens at node sb. Blue team wins if either every red token is eliminated or any blue token
reaches the node w. Red team wins similarly.

The game proceeds as a sequence of time steps, or frames. Each frame, all active players
simultaneously commit to their action and then all effects are triggered and handled before the
frame ends. The action of a player consists of a node n ∈ N [v] to move towards (or none to signify
not moving). Once players have performed their moves, each player whose token can “see” another
player’s token learns of said token’s position and team. Visibility zones are defined at nodes by S
and on edges by union of the visibilities of the endpoints; combat zones are defined similarly.

Theorem 3.3.3. TDG reduces to the Team Graph Game (TGG). Namely, ∃h : ⟨D⟩ ↦→ ⟨I⟩ which
maps instances ⟨D⟩ of TDG and instances ⟨I⟩ of TGG such that the existential team has a forced
win in the TDG on D iff the blue team has a forced win in TGG on I.

Proof. Figure 3.5 gives an overview of the structure of I = h(D). Once the initializer gadget
distributes each blue and red player into their proper hallways, each loop of the blue team in the
graph simulates one round of TDG. The universal team’s decisions b1, b2 are made (cooperatively)
by the two decision-making red team members in the red choice gadgets, and the existential team’s
decisions m1,m2 are made (independently of each-other) by the decision-making blue team members
directly after exiting the red choice gadgets. The blue runner’s location corresponds directly to the
state of the DFA, and their teammates open paths inside state gates which allows the runner to
implement the DFA transition function δ.

Each state q ∈ Q \ F∀ of the DFA has an “arena” with two sides: the right side with a series of
four state gates of increasing arity and a left side with a series of two Delay Gates. When the blue
runner enters the right side of the arena for q before the first state gate, the DFA is in state q. If
q ∈ F∃ then there will also be a hallway here leading directly to the win node. The four state gates
encode the tree of states reachable from q in up to 4 transitions, outputting the runner in one of 16
hallways each corresponding to a state q′ = foldl(δ, q, [b1, b2,m1,m2]) and leading to the left side of
the arena for q′. Once the runner passes through the Delay Gates, they enter the right side of the
arena for q′. Lastly, if q ∈ F∀, then all hallways entering its arena lead to a dead-end.

As we showed in Section 3.2.4, each team has a course of action which will prevent any players
on the other team from reaching the Win node. Further, this puts every player on a path whose
only way forward is out of the initializer gadget. At that point there is no incentive to stay in the
initializer gadget and we may as well assume they continue into the rest of the map.

=⇒ Suppose the existential team has a forced win in TDG on D. This means that there are
optimal strategy functions si : ([bi,1, bi,2, ..., bi,j−1], [mi,1, ...,mi,j−1], bi,j) ↦→ mi,j which produce

61

...
Initializer Gadget

Red Choice
Gadget #1

0 1 0 1
0 1

0 1 0 1
0 1

Red Choice
Gadget #2

...

Delay
Gate

Delay
Gate

in q0

W

State
Gate State

Gate

out q

x2
x4

x8

x16

in q(0000)...

in q(1111)

out q

in q

0 0 1 1
0 1 0 1

0 0 1 1
0 1 0 1

..

State
Gate State

Gate

xlQl

Figure 3.5: A diagram of how the gadgets are put together.

a win-preserving move for ∃i in round j given ∀’s move and what they learned in the past
j − 1 turns.

For decision-making blue player i, on the jth time they pass through red choice gate i,
let bi,j = 0 if they exit on the A side else let bi,j = 1 if they exit on the B side, and let
mi,j = si([bi,1, ..., bi,j−1], [mi,1, ...,mi,j−1], bi,j). At the upcoming branch, they take path mi,j .
The blue runner should follow the hallways and wait until combat zones are safe before passing
through, and the decision-making blue team members should open combat zones long enough
for the runner to pass through safely and to defeat the red team member there if necessary.
By the structure of the graph, the path of the runner will lead to a q ∈ F∃ no matter what
choices red team makes in the red choice gadgets, and every attack zone along the way will be
opened up for the blue runner by their teammates, thus blue team has a forced win in TGG
on I.

⇐= Now suppose blue team has a forced win in TGG on I. Since only the blue runner can reach

62

win node (outside the initializer gadget), any winning execution entails a path through the
graph that the runner took which starts by entering the right side of the q0 arena, passes
through n arena right sides and left sides (as described earlier), and ends at the entrance of
the right side of an arena for some qn ∈ F∃.

In order for the runner to pass through the combat zones in the gates along the path, the
decision-making blue teammates must have dealt with the attacking red team members. Since
blue team has a forced win, they still have a forced win even if red team attackers always
leave their attack zone before the decision-making blue team member has a chance to defeat
them, thus that strategy forces the blue runner at the entrance of the right side of an arena
to take a path through the state gates determined by the red and blue teams’ choices at the
start of the loop.

This implies the existence of functions si : ([bi,1, bi,2, ..., bi,j−1], [mi,1, ...,mi,j−1], bi,j) ↦→ mi,j

which produce a win-preserving branch for decision-making blue team member i to take on
the loop j after exiting red choice gate i from exit bi,j and what they learned in the past j − 1
loops. By the structure of the graph, si is also an optimal strategy function for ∃i in TDG on
D, thus the existential team has a forced win.

Corollary 3.3.4. The Team Graph Game is undecidable.

Proof. If Team Graph Game were decidable, then TDG would be decidable using h from Theorem
3.3.3 to get a homomorphic instance, but since TDG is undecidable by Theorem 3.3.2, Team Graph
Game cannot be either.

3.4 Applications

We now show how to apply the TEAM GRAPH game to generalized versions of several popular
video games. In particular we will show that it is undecidable to determine whether a team can
force a win in the following games: Team Fortress 2, Mario Kart, and Super Smash Bros. Brawl.
For all of these games we generalize the map size and number of players able to participate in a
single game. In addition, we assume that players on the same team have no way of communicating
with each other beyond their actions in the game. This means players are not co-located, there is
no screen-sharing, and any sort of team or global chat is disabled.

The following are the essential components needed in the game to fit the TGG framework.
1) The game needs a 3D map or crossover gadgets in 2D because the TGG graph used in our
reduction is non-planar. 2) One-way Doors. 3) Visibility zones such that we can have two players
communicate their location without being able to reach each others path, and ways of blocking
visibility so communication can only occur in specific regions. 4) Combat zones which allow the
attacker a guaranteed strategy to eliminate or disable the defender and which has no path between
the attacker and defender. 5) A win condition that can be activated by one player in a limited
location.

3.4.1 Team Fortress 2 and many other team FPS games

Like many others of its kind, Team Fortress 2 is a first person shooter with 3D environments (1),
one-way doorways (2), clear unbreakable glass/fences and opaque walls (3) made out of polygons,
grenades and sniper rifles (4), and a capture point where one team can win by standing on it (5).
These features allow TF2 and others to directly simulate TGG, leading to their undecidability. Note:
only the base TF2 game with default loadouts are considered.

63

Figure 3.6: Grenade-only At-
tack Gadget (vertical 2D slice)

The nodes and edges of the graph are generally represented as
hallways made of opaque walls connecting at intersections, possibly
lengthened or bent-out-of-shape to enforce a required minimum
traversal time. Visibility is limited by the first-person view, and
visibility zones are constructed by making walls out of glass that
gives a line-of-sight between desired locations and possibly additional
walls to block view elsewhere.

The combat zones are constructed based on which team the
attacker is on. A blue team member attacking a red team member
will be faced with a room with a wall that only Demomen grenades
can be shot over and succeed at damaging the defender. Figure 3.6
shows how to construct a hole which only physics-enabled grenades
can tumble through and sticky bombs and other weapons cannot
penetrate. A red team member attacking a blue team member will
be faced with a small hole in the wall at Sniper-eye-level which gives
a long-distance view of the defender’s head such that only a Sniper’s
sniper rifle can kill the defender before they can pass through the
attack zone at optimal speed.

In order to further enforce desired class choices, the red and blue
teams are incentivized to choose the Sniper and Demoman classes (respectively) by the map design.
The blue team spawn room is separated by a deadly chasm that can only be crossed using the
Demoman’s unique ability to sticky bomb jump long distances through the air without touching a
surface (as a Soldier requires). Health pack pick-ups and distance-based fall damage may be used to
force the health of players down so one sniper shot or grenade explosion will defeat any opponent.

By playing in a king-of-the-hill match with unlimited-time and with text and voice chat disabled,
this map structure will exactly simulate TGG.

3.4.2 Super Smash Brothers

Super Smash Brothers is a popular Nintendo fighting game series. Out of the series’ five releases,
the most recent three (Super Smash Bros. Brawl, Super Smash Bros. for 3DS, and Super Smash
Bros. for Wii U, henceforth referred to as Brawl, SSB4 3DS, and SSB4 Wii U, respectively) share a
number of gameplay elements which we will shortly show result in undecidability.

We consider a generalized Super Smash Bros. game, where an arbitrary number of players on red
or blue team control fighters (who are followed by the players’ personal, local cameras, as in SSB4
3DS Smash Run mode) which fight on a stage (a bounded 2D plane with gravity, solid polygonal
ground, and other obstacles) in Stamina mode (where each player starts with a given number
of hit points and dies when they are depleted). Fighters are selected among a set of characters,
each with unique traits, and can walk, run, jump off the ground and jump in the air finitely-many
times before landing, and fight using aerial and ground attacks (which may create hitboxes which
damage and knockback other characters, may move the attacker, and may provide defense), and
defensive maneuvers such as shielding (a bubble around character which blocks attacks at the
expense of temporary shrinkage), air and ground dodging (temporary invincibility at the cost of
short vulnerability before and afterwards) and rolling (a ground dodge with fixed motion left or
right). Due to close-quarters, we also consider obtrusive stage background music such that all
character sound effects are drowned-out.

Theorem 3.4.1. In generalized Super Smash Bros. match between two teams of Pikachus on some
stage, it is undecidable whether Player 1’s team has a forced win.

64

Proof. Reducing from TGG constrained to graphs constructed from DFA as in Theorem 3.3.3, we
consider only the character Pikachu due to its unique Thunder attack that temporarily spawns a
damaging cloud and lightning strike at a fixed position above Pikachu, even if there are obstacles in
between. Instead of 3D hallways, our construction of the stage simulating the graph only needs to
bound 2D areas with strings of solid blocks (as in Brawl’s and SSB4 Wii U’s stage builder) that
are thin enough in certain areas for Thunder to attack other characters through ceilings. We also
use thin floors, which allow for jumping upwards through but do not allow for falling through, to
construct one-way doors.

The most striking problem for this 2D fighting game is the need for a crossover gadget. We
make use of the barrel cannon stage obstacle, as seen in the Kongo Jungle stage from the first
Super Smash Bros. as well as all future titles in some form, which captures a player upon contact
and, when activated by the player inside, launches them along a fixed path without the player
having aerial control until the end. Notably, we consider the original design of the cannon where a
launched player does not hurt others via collision. By using two barrels and two one-way floors, a
section of the stage as in Figure 3.7 can allow for crossovers without player interaction, although it
does provide visibility. Because the constrained TGG graphs can be embedded in the plane where
all edge crossings are either outside of the main loop before the simulation begins, same-player
crossings, or between players who are allowed to know where the other’s token is located, visibility
does not transmit information that is useful for making red or blue team “choices.”

As mentioned, attack zones are built around Pikachu’s Thunder attack, which unconditionally
creates a hitbox at a fixed distance high above the character. For attack zones that guard the
traversal of an edge, the idea is to force the defending Pikachu to predictably position itself in a
vulnerable state above the attacker, so that the attacking Pikachu can always hit them with Thunder
if traversal is attempted. In Delay Gates, such as in Figure 3.8, where the red attacker of the blue
runner is under attack themselves, the blue attacker is able to Thunder the only location at which
the red attacker can use Thunder to hit the blue runner, so as to open the path safely. The Red
Team Choice Gadget can be implemented in Brawl similarly to the Delay Gate, and the State Gates
directly out of Delay Gates, thus the given TGG graph is fully representable.

When the blue runner reaches the win node, they can themselves open a path for the other blue
Pikachus and all go into a new series of pathways that lead underneath every red team player so
they can work together to eliminate them all, as properly-timed Thunders by multiple players can
break shields and hit for longer than dodge invincibility. and end the match with a blue victory.
This path-opening can be a Delay Gate or even compactly implemented using Brawl’s Falling Block
object, which is a solid obstacle that temporarily falls and disappears after a player (the blue runner,
in this case) stands on it, reappearing at its original position after a short period of time.

3.4.3 Mario Kart

In an earlier paper, two player, perfect information Mario Kart was shown to be PSPACE-complete
[BDH+15]. It also did not consider the commonly enjoyed Battle game type. Here we show that a
generalized version of Mario Kart in team Balloon Battle mode is undecidable by a reduction from
TGG.

Mario Kart takes place in a 3D environment where each player has a personal third-person
camera view of their character; when playing online or on local wireless, players cannot see other
players’ screens. In Balloon Battle, the players are placed in an enclosed, obstacle-filled Battle
Course with a small number of balloons that pop when the player is damaged, eliminating the
player if none remain. By searching the course for item boxes (in fixed, reusable spawn locations),

65

Figure 3.7: Super Smash Bros Crossover Gadget using Barrel Cannons

Ice

Ice

P

P

P

P

P

Th
un

de
r H

ei
gh

t

Fall

Figure 3.8: Delay Gate constructed using Brawl’s Custom Stage Builder parts. A single player’s
screen is approximately 5 blocks tall, so the blue executor can never see the runner. Each “P” is an
example location of a Pikachu, “Ice” is a block with no edge to hang onto, and “Fall” represents
a Falling Block. Shaded blue figures are only relevant during the blue victory phase. Example
Thunder clouds and associated lightning strikes are also shown.

66

players can get items from a given distribution to damage other players and avoid attacks against
themselves. There is a blue team and a red team, and if one team is completely eliminated, the
other team wins.

Theorem 3.4.2. In generalized Mario Kart Balloon Battle with the Bob-ombs Only item distribution,
it is undecidable whether or not the blue team has a forced win.

Proof. We reduce from TGG constrained to graphs constructed from DFA as in Theorem 3.3.3,
which involves building a Battle Course that simulates the graph. Mario Kart courses are polygonal
3D environments with a finite maximum movement speed, one-way jumps, clear glass, and opaque
walls, so the primary complexity is describing the attack zones and how to win.

A player using a Bob-omb item causes a Bob-omb to be thrown from the character’s kart in an
arc. It can bounce off walls and will explode into a large, temporary, damaging sphere on contact
with another player or after a short time interval. One common obstacle in Mario Kart is the
Thwomp, which are large spike-covered boxes which can move along fixed paths.

To construct an attack zone where the attacker is preventing the defending character from
traversing an edge, said edge is a short, thin hallway with exits guarded by Twomps that alternate
moving up and down between the ceiling and ground such that at least one is always on the ground
blocking the path and the space between is smaller than the diameter of a Bob-omb explosion. The
attacking character is spawned in a raised hallway with an item box and an uncrossable pit such
that a Bob-omb can be thrown by the attacker and create an explosion to eliminate any player
between the Thwomps but no Bob-omb can be thrown back high enough to reach the attacker. In
an attack zone where the defender is itself an attacker in a dead-end hallway, there need only be
one Thwomp guarding the single exit and trapping the defender for a period of time such that the
attacker in an even-more-raised hallway could safely throw down a Bob-omb to eliminate them.
Figure 3.9 gives an overview of this construction.

):<):<
):<

Figure 3.9: The Mario Kart Delay Gate’s 3D Layout with Thwomps (opaque walls not shown).

When the Mario Kart character simulating blue runner is supposed to reach the win node, they
are first able to open a path for their blue teammates (normally blocked by a red attack zone) to
join them into a set of hallways above the rest of the course which lead to attack zones spanning
each red team character’s small region of the graph. With plentiful item boxes, the blue team
characters can thus trap and eliminate each red team member using coordinated Bob-omb threats
and throws, winning them the game.

67

3.5 Conclusion and Open Problems

Our Team Graph Game framework has proven useful in showing the undecidability of more natural
team multi-player games, as shown in our application to various video games. We currently wonder
how far this framework can go. Can we capture other popular genera of video-games with teams
such as MMORPGs like World of Warcraft and Guild Wars, real time strategy games like Starcraft
or Age of Empires, MoBAs like DotA and Heroes of the Storm, or others? Each of these has their
own challenges in adapting to our framework, but given our success with Super Smash Brothers
which was a 2D game that lacked vision blockers and a location based victory condition, we believe
a lot can be done with a little work. We also pose the question of whether this framework can be
used to understand the complexity of any real world multi-agent coordination scenarios.

There are also a number of interesting questions about imperfect information team multi-player
games, many of which would be very useful in allowing broader application of this framework. For
example, is the Team Graph Game still undecidable when there are only a constant number of
players on each team? The Team DFA Game needs only three; however, we find it useful to assign
different players to many of our gadgets, leading to a linear scaling.

In the following Chapter 4, we will tackle another question this work raises. In Section 3.4, we
had to impose unrealistic isolation between players on the same team to prevent private information
sharing. Was this necessary? Are these team games, both the abstract games and video games like
those we studied in this chapter, still undecidable if we allow a limited amount of communication
between players on the same team?

68

Chapter 4

Decidability of Team Games with
Communication

This chapter presents results from the paper titled “Characterizing the Decidability of Finite State
Automata Team Games with Communication” that the thesis author coauthored with Jayson Lynch.

This paper appeared in Games, Automata, Logics, and Formal Verification (GandALF),
2022 [CL22]. This chapter also includes extended results under submission at the time of the

writing of this thesis.

Overview

In this chapter, we define a new model of limited communication for multiplayer team games of
imperfect information. We prove that the Team DFA Game and Team Formula Game, which have
bounded state, remain undecidable when players have a rate of communication which is less than
the rate at which they make moves in the game. We also show that meeting this communication
threshold causes these games to be decidable.

4.1 Introduction

Deciding optimal play in multiplayer games of incomplete information is known to be an undecidable
problem [PR79,PRA01]. This includes games where the state space is bounded, a surprising result
first shown of a collection of abstract computation games [DH08] that we extended in Chapter 3 to
generalized versions of real games, like Team Fortress 2 and Super Smash Bros. However, these
works have relied on the complete inability of teammates to communicate during the game, which is
often not a realistic assumption. In this chapter, we study deterministic models of communication
between players in two of these computation games, the Team DFA Game and the Team Formula
Game, and show a sharp change in computational complexity based on whether players are able to
eventually communicate all of their moves or only able to communicate a constant fraction.

One motivation for this model is a better understanding of real world games. Many team
games played in-person naturally permit free form communication between teammates to coordinate
their actions, and online multiplayer video games often provide communication channels such as
voice-chat, text, and emotes to simulate this in-person environment. These include many FPS games
such as Team Fortress and Left4Dead, MOBAs such as DOTA2 and League of Legends, and RTS
games such as Starcraft and Age of Empires. Some of these examples have drawn research interest
in AI/ML [VBC+19,BBC+19] as well as computational complexity [Vig14]. The real-time nature

69

of these games ensures that communication channels are bounded; however, modeling free form
communication, as well as efficiently implementing meaningful player choices in a real-time setting,
makes it difficult to analyze these games with these communication features enabled.

Outside of the team setting, communication is a central aspect of many other games. For
example, in the cooperative card game Hanabi players are unable to see their own hands of cards,
but this information is visible to everyone else. In addition, players are not allowed to communicate
except through actions in the game, one of which allows players to reveal partial information
about what is in another players hand. A perfect information version of Hanabi was shown to be
NP-complete [BCD+17]. The Crew: Quest for Planet Nine is a cooperative trick taking card game
which uses limited communication between players as a core mechanic. The complexity of this game
was also studied in the perfect information setting [Rei21]. Under the limited information setting,
containment in NP for both of these games is not obvious, and we see a need for models of player
communication in games. Other examples of cooperative boardgames with limited communication
channels between players include Mysterium, The Mind, and Magic Maze.

Other games may limit communication simply with time pressure in the game. Examples of
fully cooperative games with imperfect information that use time pressure to limit coordination and
communication include Space Alert, 5-Minute Dungeon, Keep Talking and Nobody Explodes, and
Spaceteam.

Multi-agent, imperfect information games are also a topic of interest in Reinforcement Learning.
In [CCBG19] algorithms are developed to address team extensive form games of imperfect information
where communication is allowed at certain points during gameplay, with Bridge and collusion among
some players between hands in poker being the motivating examples. Other work considers Sequential
Social Dilemmas, a type of iterated economic game where in any given instant a player is incentivized
towards non-cooperative behavior, but cooperative strategies can obtain higher payoff over the
game as a whole. Learning algorithms for these models both with and without explicit bounded
communication channels were studied in [JLH+19]. Purely cooperative settings have also been of
interest [FAdFW16].

One major achievement was human level performance on a limited version of DOTA2, a MOBA-
style video game [BBC+19]. These are real-time, team games with partially observable state.
Although both text and voice chat are typically allowed in professional play, the AI system did not
utilize these explicit communication mechanisms. The board game Diplomacy, while not explicitly a
team game, features coordination and temporary alliances between players as a core game dynamic.
This game has also seen interest as a new challenge in the AI community, but focusing on No-Press
Diplomacy which does not allow explicit communication between players [PLB+19,BWLB21].

These examples of both AI and computational complexity research which considers games with
cooperation and communication motivate, but frequently ignore the important role of communication
in these games, motivates our work in this chapter.

Chapter Organization. In Section 4.1.2 we formally define our model of communication for the
Team DFA Game. In Section 4.2 we prove undecidability for a few simple communication patterns
to help build intuition for the techniques used in the next section. In Section 4.3 we prove our main
undecidability result for Team DFA Games with Communication. In Section 4.4 we prove the game
becomes decidable when either both players can communicate all information about their moves, or
one player receives no information but can communicate all of their moves to their teammate. In
Section 4.5 we show that analogous algorithms and undecidability results hold for Team Formula
Games.

70

4.1.1 Team DFA Game

As in Chapter 3, the problem we consider in this chapter is: given an instance of the game, does
a particular team have a forced win? More formally, does there exist a strategy function si for
each player i on the team, specifying on each turn which move to make based on any information
they have learned so far, that when followed will guarantee that this team will win? We define the
complexity of a game as the complexity of whether a specified team has a forced win in the game.

We will continue studying the Team DFA Game defined in Chapter 3 and proven to be undecidable
in Theorem 3.3.2 in the case without communication. A number of variations of this game, all
undecidable in the general case, exist. These include Team Computation Game where players give
inputs to a Turing machine on a bounded tape [PR79], Team Constraint Logic Game where players
make moves in a partially observable constraint logic graph [DH08]; and Team Formula Game where
players flip the values of Boolean variables trying to satisfy different formulas [PRA01,DH08].

4.1.2 Communication Model

We model communication in the Team DFA Game with a policy that specifies the bandwidth of a
dynamic information channel, as one might have due to natural factors (e.g. playing a real-time
game with voice chat) or intentional game design (e.g. Hanabi’s card-revealing moves) allowing a
predictable but bounded amount of player-to-player communication between moves. Specifically, a
policy P is a DFA over a unary alphabet with functions Pmid, Pend over its states. In a round of the
game in policy state p, Pmid(p) is the number of bits which are exchanged simultaneously between
∃0 and ∃1 after (b0, b1) are revealed but before (m0,m1) must be determined, and similarly Pend(p)
is the number of bits to exchange after (m0,m1) are submitted but before the next round starts.

Definition 4.1.1. The Team DFA Game with Communication (TDGC) is a game of the existential
team {∃0,∃1} versus the universal team {∀}, extending the Team DFA Game. An instance of the
game is a pair of a game DFA D = ({0, 1}, Q, q0, δ, F∃ ∪ F∀) and a policy P , which consists of a
policy DFA ({1},Π, p0, π, ∅) and functions Pmid, Pend : Π→ N×N. The game starts with D in state
q0 and the policy DFA in state p0, and each round proceeds with added communication steps as
illustrated in Figure 4.1.

There are two beneficial aspects of studying policies as DFAs on unary alphabets: bounding
the state space allows for the policy to be computable by the mechanics of a bounded-state game
(such as the DFA in the Team DFA Game), and giving every state exactly one next state (for the

b0

b1

t0,MID

t1,MID

m0

m1
q

t0,END

t1,END

Figure 4.1: Information flow graph of one round of the Team DFA Game with Communication,
including from the previous round and into the next round. New to this game are the mid-round
transmissions, t0,mid and t1,mid, and the end-of-round transmissions, t0,end and t1,end, which have
sizes determined by Pmid and Pend applied to the policy state.

71

Algorithm 1 The execution of one round of TDGC, given D is in state q and P is in state p.

1: function team-dfa-game-communication-round(q, p)
2: If q ∈ F∃, then the existential team wins.
3: If q ∈ F∀, then the universal team wins.
4: ∀ learns q, then inputs two bits b0, b1 into D. ▷ q ← δ(δ(q, b0), b1)
5: ∃0 learns b0, and ∃1 learns b1.
6: exchange(Pmid(p))
7: ∃0 inputs one bit m0 into D. ▷ q ← δ(q,m0)
8: ∃1 inputs one bit m1 into D. ▷ q ← δ(q,m1)
9: ∀ learns m0 and m1.

10: exchange(Pend(p))
11: Advance the policy state. ▷ p← π(p, 1)

1: function exchange((n01, n10))
2: ∃0 privately defines message t0, consisting of n01 bits.
3: ∃1 privately defines message t1, consisting of n10 bits.
4: ∃0 and ∀ learn t1.
5: ∃1 and ∀ learn t0.

next round of the game) means the bandwidth every round will be known in advance when building
our constructions, rather than being dependent on player actions. As a result of this choice, it is
important to note that the shape of its state transition graph will always have the form: from the
start state, there is an initial chain of unique states (possibly of length zero) that leads to a cycle of
periodically-repeating states. Also shown in Figure 4.2.

...

...

Initial chain Periodic cycle

Figure 4.2: General form of a policy DFA: an initial chain followed by a cycle.

4.2 Undecidability of Simple Communication Games

In this section, we will explore some basic classes of policies that preserve the undecidability of
the Team DFA Game with Communication. Our proof technique is to reduce from the zero-
communication Team DFA Game, where we compensate for the message passing by “clogging the
channel” with the forced transmission of garbage bits that do not facilitate information sharing.
Section 4.3 builds upon these examples to obtain more general results, however proving the special
cases in this section allows us to introduce ideas needed in the full proof and discuss some of the
techniques more concretely.

For each class of policies P below, we will show that given any policy P ∈ P and DFA D for
playing TDG, we can produce a DFA D′ for playing TDGC under P such that the ∃ team has a

72

forced win on D with no channel iff they have a forced win on D′ given a channel following policy
P . As TDG is undecidable, so will be TDGC under any policy P ∈ P. For simplicity, we consider
policies with DFA Cr, a length-r cycle of states Π = {0, 1, . . . , r − 1} with no initial chain, for
arbitrary values of r.

4.2.1 Mid-round Communication

b0

b1

t0,MID

t1,MID

m0

m1
q

b0=m1
b1=m0 q

Figure 4.3: Mid-round 1-bit channel clogging technique. Values with the same color must be equal,
namely ti = bi = m1−i, or else the DFA permanently enters F∀.

Theorem 4.2.1. TDGC is undecidable with a 1 bit mid-round exchange every r ≥ 2 rounds: policies
P where Pmid(p) = (1, 1) if p ≡ 0 mod r, Pmid(p) = (0, 0) otherwise, and Pend(p) = (0, 0).

Proof. We construct a DFA D′ by first augmenting the state q of D with the state p of Cr. When
p ̸≡ 0 mod r, D′ simply simulates D for one round. However, when p ≡ 0 mod r, D′ instead takes
the inputs (b0, b1,m0,m1) and tests b0 = m1 ∧ b1 = m0. If the test fails, then D′ enters a final state
for ∀.

How D′ clogs the channel is diagrammed in Figure 4.3. By tracking the round number, it knows
exactly when ∃0 and ∃1 will exchange bits, and in that round D′ expects ∃0 to guess b1, a bit that
∃0 does not learn by the game procedure, and vice-versa. ∃0 and ∃1 are forced to spend their single
bit of communication on exchanging b0 and b1 to their teammate, in order to guarantee survival
against any ∀ strategy for choosing b0 and b1.

Since ∃0 and ∃1 do not learn anything from each other or alter the simulated D’s state in the
rounds with communication, they have a winning strategy on D′ playing TDGC under P if and
only if they have a strategy for the non-exchanging rounds (which happen infinitely-often since
r ≥ 2) that would give a winning strategy on D playing TDG.

Theorem 4.2.2. TDGC is undecidable with n rounds of 1-bit mid-round exchanges across r > n
rounds: policies P where Pmid(p) ∈ {(0, 0), (1, 1)} with pre-image size |P−1

mid((1, 1))| = n and
Pend(p) = (0, 0).

Proof. We generalize Theorem 4.2.1 by constructing a DFA D′ which clogs the channel on any round
p (mod r) in which Pmid(p) = (1, 1) and simulates D in the other r− n > 0 out of r rounds. By the
same argument, this prevents communication between ∃0 and ∃1 while playing TDGC beyond the
corresponding play of TDG taking place during non-exchanging rounds, and thus preserves forced
win-ability.

73

b1'

b0'

m1'

m0'

b1

b0

q

m0

m1
q

t0,END

t1,END

=
=m0'

m1'
b1

b0

Figure 4.4: End-round channel clogging technique when r ≥ 3, showing two rounds. The faded-out
edges represent messages (m0,m1, b

′
0, b

′
1), which are not used. D′ simulates D on other rounds.

b1''b1'

b0''b0'

m1' m1''

m0' m0''
t0,END

q'q'q
b1

b0

m1

m0

t1,END

t0,END''

t1,END''

q''m0'
m1'b0

*

b1
*
=
=

Figure 4.5: End-round channel clogging technique when r = 2, showing three rounds. Bits (b′0, b
′
1)

created in odd rounds get checked two rounds later, labeled as (b∗0, b
∗
1). D′ simulates D in even

rounds before ∃ players get a chance to exchange those bits.

4.2.2 End-round Communication

Theorem 4.2.3. TDGC is undecidable with a 1 bit end-round exchange every r ≥ 3 rounds: policies

P where Pmid(p) = (0, 0) and Pend(p) =

{︄
(1, 1), if p ≡ 0 mod r

(0, 0) otherwise
.

Proof. We construct a DFA D′ like before, by augmenting D with Cr’s state as well as two bits of
storage, initialized to (0, 0). When p ≡ 0 mod r, D′ stores the inputs (b0, b1) from ∀ and ignores ∃0
and ∃1 in that round. In the next round, when p ≡ 1 mod r, it will ignore ∀ in that round and use
those stored bits to test b0 = m1 ∧ b1 = m0. If the test fails, then D′ enters a final state for ∀. In
all other rounds {2, . . . , r − 1} mod r, D′ simply simulates D.

The exchange occurring between round 0 and 1 (mod r) requires this new clogging method,
shown in Figure 4.4. Compared to the constructions in Theorems 4.2.1 and 4.2.2, we separate the
bit choices of ∀ and the bit guesses of ∃0 and ∃1 into two rounds to leave time for communication of
the bits, without using up all messages that are otherwise used to simulate D (since r ≥ 3).

By similar arguments to previous theorems, D′ clogs all significant channels thus this reduction
preserves forced win-ability.

Theorem 4.2.4. TDGC is undecidable with a 1 bit end-round exchange every r = 2 rounds: policies

P where Pmid(p) = (0, 0) and Pend(p) =

{︄
(1, 1), if p ≡ 0 mod 2

(0, 0) if p ≡ 1 mod 2
.

Proof. The construction in Theorem 4.2.3 for r ≥ 3 fails when r = 2 because it requires two rounds

74

without D′ simulating D. To address this, we give the modified construction shown in Figure 4.5.
We augment D’s state with two pairs of bits, to remember the two most recent transmissions. In an
odd round, D′ stores (b0, b1) from ∀ as the most recent pair, and then expects the ∃ team to submit
bits equal to the least recent pair. In an even round, D′ simulates D. To deal with the first two
rounds, where there is no previous transmission to validate, we initializing all stored bits to 0 so the
∃ players can just submit 0 to pass the check.

Although this technique does have in-flight clogging bits during the simulation rounds, every
transmission occurs directly before a validation check for those bits, which guarantees that the
∃ players must exchange the clogging bits rather than attempt to communicate other information
to gain an advantage in the TDG on D. Therefore, as before, this reduction implies undecidability
for r = 2 as well.

...

...

...

...

...

...

b0
b1
m0
m1
t0
t1

b0
b1
m0
m1
t0
t1

...

...
m0
m1
...
...

b0
b1
...
...
t0
t1

b0
b1
m0
m1
t0
t1

...

...
m0
m1

b0
b1
...
...

b0
b1
m0
m1
t0
t1

b0
b1
m0
m1
??
??

...

...

...

...

b0
b1

m0
m1

b0
b1

t0
t1

t0
t1

m0
m1

b0
b1

m0
m1

b0
b1

t0
t1

t0
t1

m0
m1

b0
b1
m0
m1
t0
t1

b0
b1

m0
m1

Figure 4.6: Pattern for the end-round channel clogging gadget. Matching colors denote the flow of
clogging bits. The first round’s (m0,m1) and last round’s (b0, b1) are unused, and the last round
may or may not include an end-exchange.

Theorem 4.2.5. TDGC is undecidable with n bits worth of only end-round exchanges across r > n
rounds: where Pmid(p) = (0, 0), Pend(p) ∈ {(0, 0), (1, 1)}, and pre-image size |P−1

end((1, 1))| = n.

Proof. Again reducing from TDG, since r > n, we have at least one round per period with no
end-exchange, and assuming n ≥ 1 at least one round with an end-exchange (otherwise this is
equivalent to TDG). We combine the techniques from Theorems 4.2.3 and 4.2.4 to construct a D′

which handles each stretch of contiguous rounds with end-round exchanges and those without.
Our gadget which does this is described by the pattern in Figure 4.6. Leading up to a round with

no end-exchange, we repeat the technique from Figure 4.4 (possibly zero times), using the previously
“unused” bits to overlap. In the last round in the stretch of no-end-exchange rounds (which may be
the only such round), the pattern finishes with the technique from Figure 4.5, guaranteeing one
round is available to simulate D per period. Following this, another instance of the gadget begins,
repeating ad infinitum.

The clogging guarantees from Theorems 4.2.3 and 4.2.4 still hold of this combined gadget, since
the validation of each clogging bit still occurs directly after it can be first exchanged. Inductively
assuming the previous checks successfully clogged earlier transmissions, the ∃ players cannot
communicate any strategically beneficial information to each other, so whether or not they have a
winning strategy is undecidable.

75

4.3 Undecidability of General Communication Games

This section proves our main result: that a broad class of policies with sufficiently low communication
rate remain undecidable for the Team DFA game. We now define this more general notion.

Definition 4.3.1. A policy is (r, x0, x1, N)-rate-limited if, after a fixed number of rounds N , the
rate of transmission from player ∃i to ∃1−i is xi during every period of r rounds. Specifically, it

must satisfy xi =
k0+r−1∑︁
k=k0

Pmid(pk)[i] + Pend(pk)[i] for k0 = N + ℓr, where ℓ ∈ N and pk is the policy

state on round k.

This now allows us to state the main theorem.

Theorem 4.3.1. TDGC is undecidable under all (r, x0, x1, N)-rate-limited policies where x0 < r
and x1 < r.

4.3.1 Properties of Rate-Limited Policies

Before proceeding to the proof of Theorem 4.3.1, we will establish useful lemmas about rate-limited
policies. First, we have the following two simple observations:

Lemma 4.3.2. Any policy implemented as a unary-alphabet DFA with n > 1 states is (r, x0, x1, N)-
rate-limited for some 1 < r ≤ n and some initial segment of length N ≤ n.

Proof. Refer back to the diagram in Figure 4.2. Consider the unary-alphabet DFA as a directed
graph on states, each with exactly one outgoing edge representing the next transition. Any path
starting at the start state p0 cannot have length at least n without repeating some state pN , so all
sufficiently-long paths must first traverse an initial segment (p0, . . . , pN−1) of N ≤ n states then go
around the simple cycle (pN , . . . , pN+r, pN) of r ≤ n states forever after. If the simple cycle is a
self-loop, then instead use the non-simple cycle composed of going around the self-loop twice to
have r > 1.

Going around this cycle of r states once will permit transmission of a fixed number of bits

xi =
N+r∑︁
k=N

Pmid(pk)[i] + Pend(pk)[i] from player ∃i to ∃1−i, thus defining a period that makes the

policy (r, x0, x1, N)-rate-limited.

Lemma 4.3.3. Any (r, x0, x1, N)-rate-limited policy is also (2r, 2x0, 2x1, N)-rate-limited if r > 1.

Proof. Given a cycle of length r starting after N steps, repeating the cycle twice results in length
2r periods with 2x0 and 2x1 bits of transmissions also starting after N steps.

Next, we will need the following property bounding the partial sums of certain repeated finite
sequences for analyzing the transmission rates in each part of a round across a period.

Definition 4.3.2. Let a be any sequence of 2n natural numbers (a0, a1, . . . , a2n−1) with sum at
most n− 1, and let i be an index into a. rotate-bounded(a, i) is the predicate that holds when

the infinite sequence b
(i)
j = a(i+j mod 2n) with partial sums B

(i)
j =

j−1∑︁
k=0

b
(i)
k satisfies ∀j > 0. B

(i)
j < j

2 .

Lemma 4.3.4. For any such a, rotate-bounded(a, i) holds for some even index i.

76

Proof. Consider the procedure in Algorithm 2. If the procedure returns i, then b(i) satisfies the
given condition not just for j ∈ [1, 2n] but for all j > 0 because it is an infinitely-repeating sequence:

if B
(i)
j < j

2 then B
(i)
j+2n = B

(i)
j + B

(i)
2n < j

2 + n = j+2n
2 , where B

(i)
2n =

2n−1∑︁
k=0

ak < n is the sum of the

original sequence.

Algorithm 2 Procedure to find a satisfying b(i) for a sequence a (Lemma 4.3.4)

1: Initialize i← 0
2: loop

3: Find the minimum j ∈ [1, 2n] where B
(i)
j ≥

j
2 .

4: if no such j exists then return i.
5: i← the even number among {i + j, i + j + 1}.

To show the procedure halts, observe that there are only n even-indexed ai where b(i) can start,
thus an infinite loop must get stuck in a “cycle” (i0, i1, . . . , im) with i0 ≡ im mod 2n, finding
non-zero minimum lengths (j0, j1, . . . , jm−1), for some m ∈ [1, n]. Let w ∈ [1, n] be the number of
times the cycle wraps back around modulo 2n, meaning im − i0 = 2nw.

Suppose there were an infinite loop that finds m too-large sums B
(iℓ)
jℓ
≥ jℓ

2 of disjoint intervals(︂
b
(iℓ)
0 , . . . , b

(iℓ)
jℓ−1

)︂
=
(︂
b
(0)
iℓ

, . . . , b
(0)
iℓ+jℓ−1

)︂
of the sequence b(0). Since iℓ+1 = iℓ +jℓ +p, where p ∈ {0, 1}

makes iℓ+1 even, we have B
(iℓ)
jℓ
≥ jℓ

2 =
iℓ+1−iℓ−p

2 ≥ iℓ+1−iℓ
2 − 1

2 thus B
(iℓ)
jℓ
≥ iℓ+1−iℓ

2 since 1
2 < 1 is

the only non-integer term. This means the total sum of all intervals in the cycle is
m−1∑︁
ℓ=0

B
(iℓ)
jℓ
≥

m−1∑︁
ℓ=0

iℓ+1−iℓ
2 = im−i0

2 = nw. However, if we sum all 2nw natural numbers b
(0)
i0

+ . . . + b
(0)
im−1, not just

those covered by these intervals, then we cannot exceed (n− 1)w because the sum of the original
sequence is at most n− 1. With this contradiction, we conclude that the procedure must halt at
some i that satisfies the lemma.

We also developed another proof of Lemma 4.3.4, which is presented below to give another
perspective on this critical component of our main theorem.

Proof. Let C
(i)
j = B

(i)
j −

j
2 . Let us find an even index i such that C

(i)
j < 0 for all j > 0, and consider

the largest length j∗ < 2n which maximizes C
(0)
j∗ . If C

(0)
j∗ < 0 then i = 0 satisfies the claim, so

suppose C
(0)
j∗ ≥ 0.

Because the sum of a is at most n− 1, notice that for any j, j + 2n in the next period satisfies

C
(0)
j+2n = B

(i)
j+2n −

j+2n
2 <

(︂
B

(i)
j + n

)︂
−
(︂
j
2 + n

)︂
= C

(0)
j . Since j∗ is the largest maximizer in the

first period, for all j > j∗:

0 > C
(0)
j − C

(0)
j∗ =

(︃
B

(0)
j −

j

2

)︃
−
(︃
B

(0)
j∗ −

j∗

2

)︃
= B

(j∗)
j−j∗ −

j − j∗

2
= C

(j∗)
j−j∗

and therefore ∀j > 0. C
(j∗)
j < 0, thus i = j∗ is an index for which a is rotate bounded. If j∗ is

even we are done. If j∗ is odd, then we know that j∗ < 2n− 2 because we supposed that C
(0)
j∗ ≥ 0

whereas C
(0)
2n−1 < 0:

C
(0)
2n−1 = B

(0)
2n−1 −

2n− 1

2
≤ (n− 1− a2n−1)−

(︃
n− 1

2

)︃
= −a2n−1 −

1

2
< 0

77

Thus, consider the even j∗+1 and let j′ ∈ [j∗+1, 2n) be the maximum length such that C
(0)
j′ = C

(0)
j∗+1.

0 > C
(0)
j∗+1 − C

(0)
j∗ = C

(j∗)
1 = b

(j∗)
0 − 1

2 therefore b
(j∗)
0 = 0 and C

(0)
j′ = C

(0)
j∗+1 = C

(0)
j∗ −

1
2 . Since B

(0)
j∗ is

an integer and j∗ is odd, j′ must also be even, and by similar arguments ∀j > j′. C
(0)
j′ > C

(0)
j , thus

∀j > 0. C
(j′)
j < 0, so i = j′ satisfies the claim.

Plotted examples of the even and odd cases can be seen in Figure 4.7.

0 10 20 30 40

0
5

10
15

20

0 10 20 30 40

0
5

10
15

20

Figure 4.7: Two examples of Lemma 4.3.4 with n = 10. The blue line shows two periods of the

partial sums B
(0)
j , separated by vertical green lines, the black line shows y = x/2, which was shifted

up to the red line to pass through the circled point (i, B
(0)
i) for i = j∗ on the left and i = j′ on the

right (with the orange line showing the odd j∗ we couldn’t use).

Corollary 4.3.5. For any such a, rotate-bounded(a, i) holds for some odd index i.

Proof. Consider a′ = (a1, a2, . . . , a2n−1, a0). By Lemma 4.3.4, there is an even index i′ which satisfies
rotate-bounded(a′, i′). Thus i ≡ i′ + 1 is an odd index such that rotate-bounded(a, i).

4.3.2 Construction Outline

First, we introduce our reduction from the Team DFA Game to the Team DFA Game with
Communication. Given an (r, x0, x1, N)-rate-limited policy P and an underlying DFA D, we create
a DFA D′ for playing the TDGC under P which simulates playing the TDG on D while completely
clogging the communication between the ∃ team to nullify any advantage such communication could
bring. This lets us conclude that a winning strategy for TDGC on D′ exists exactly when a winning
strategy exists for TDG on D.

The reduction applies when each xi < r, meaning the communication rate defined by P is
eventually below an average of one bit per round. We also assume r > 1 and each xi > 0: if there is
no communication at all then TDGC is identical to TDG, and if communication only occurs in one
direction then the aspects of the construction that deal with the silent direction may be omitted.
Lastly, by Lemma 4.3.3, we take period length r to be even without loss of generality.

The code for D′ is fully shown in Algorithm 3. The behavior of D′ is designed around what we
call the honest strategy for the ∃ team. We will show that it is the only strategy that guarantees
the ∃ team will pass validation checks by D′, but also that it requires using all available transmission
bits, resulting in no information transfer between players for their additional benefit in the simulated
TDG.

Along with the current state of D in the TDG, D′ maintains two queues X0, X1 of clogging
bits that have been given to each ∃ player by the adversary ∀ in specific rounds. These bits are
expected to be submitted by the opposite ∃ player to D′ for validation in later rounds in order to
avoid losing the game, so the players are forced to use transmission bandwidth to exchange this

78

information. The honest ∃i player sends these bits directly and as soon as possible to ∃1−i, who
maintains a “knowledge” queue K1−i of all bits sent from ∃i but not yet validated by D′. We note
that Xi \K1−i is thus the set of yet-to-be-transmitted private bits known only to ∃i.

4.3.3 Build-up Phase

D′ begins the build-up phase after N rounds, once P has started to repeat its policy states. This
phase lasts for exactly r2 rounds, or r periods of P ’s cycle. D′ starts with empty X0 and X1, and
every round D′ simply enqueues b0 and b1 into the appropriate queues.

During these rounds, ∀ can send one bit per round to ∃i, who can transmit those bits to ∃1−i,
for each i ∈ {0, 1}. Because the rate of transmission can vary above or below one bit per round,
there is some maximum amount x′i ≤ xi out of r bits that can reach ∃1−i in the first r rounds. Each
subsequent r rounds, xi out of the r new bits can be sent (by the rate-limitedness of P), thus after
r2 rounds at most x′i + (r − 1)xi ≤ rxi < r(r − 1) bits in Xi can be sent to ∃1−i and thus at least
r are not known. By this argument, at the end of the build-up phase we can say that an honest
player’s knowledge queue has size |Ki| = x′1−i + (r − 1)x1−i ∈ [r − 1, r(r − 1)], since we assume
x1−i ≥ 1.

4.3.4 Clogging Phase

In the clogging phase, D′ simulates playing TDG on D while clogging the transmissions between
∃ players at a steady rate to keep |Xi| and |Ki| constant on period boundaries. In the last round of
every period of r rounds, D′ alternates between (1) having ∀,∃0, ∃1 play one round of TDG, and (2)
forcing ∀ to tell the ∃ team if they have won in the TDG yet and therefore if D′ is going to start
the next phase: the tear-down phase.

In the first r−1 rounds of each period in this phase, D′ clogs the transmissions between ∃ players
by requiring that bits given to ∃i by ∀ (placed into queue Xi) are sent to ∃1−i. This is done by
dequeuing the oldest bit b from Xi and checking for ∃1−i to submit m1−i = b, otherwise they will lose
the game. Specifically, to preserve the size of Xi and keep up with the rates at which the ∃ players
can transmit information to each other, D′ will do enq(Xi, bi) then validate deq(Xi) = m1−i for
the first xi rounds of each period.

Across the whole period, Ki will gain x1−i new bits transmitted from ∃1−i (by the rate-limitedness
of P). New available bits always exist because the number of private bits available to be sent
is |X1−i \ Ki| ≥ r > x1−i at the start of the period. Additionally, across the first x1−i rounds
of the period, Ki will lose x1−i bits submitted by ∃i to D′, which are always known because
|Ki| ≥ (r − 1)x1−i ≥ x1−i at the start. Overall, this means |Ki| is preserved on period boundaries
and honest players will always be able to submit the correct bit and pass the validation.

Labeling the first clogging period with index 0, at the end of every odd-indexed period, D′

will simulate TDG by forwarding the inputs of all players directly to D. However, at the end of
even-indexed periods, D′ will ignore ∃0,∃1 and expect both ∀ bits to state whether or not the ∃
team has won in TDG, specifically requiring that b0 = b1 = [q ∈ F∃]. If this validation fails, then D′

will halt with a ∃ team victory, so the ∀ player must give the correct information to both ∃ players
to avoid losing, which it is always able to do.

Assuming validation never fails, which is achieved by the honest strategy, the clogging phase
continues until the simulated Team DFA Game ends. If the ∃ players lose in the simulation, they
lose immediately, otherwise after the even-indexed period when the ∃ players learn they have won,
D′ moves onto the tear-down phase to perform the final validation checks.

79

4.3.5 Tear-down Phase

The tear-down phase starts at the beginning of a period, so by the previous arguments for queue
size preservation, it starts with |Xi| = r2 and |K1−i| = x′i + (r − 1)xi. In order to ensure the ∃
team’s transmissions have been completely clogged all the way until the simulated victory, D′ must
validate that the remaining bits in Ki have actually been sent by this point.

This phase is split into two parts, with a boosting sub-phase to adjust the size of Xi and K1−i

for the following draining sub-phase that empties them. Once each queue has been drained and
all validation checks have been passed, then D′ will halt with an ∃ team victory. We will need the
following fact:

Lemma 4.3.6. There exists a kend such that, in every round up to the kthend round of a period, the
cumulative number of bits ∃0 will transmit to ∃1 before ∃1 submits a bit to D′ in the kthend round
is always upper-bounded by the cumulative number of bits ∃1 will submit to D′ in that time (from
round N onwards).

Proof. Say the period begins in round m ≥ N , and recall that we can assume the period length r is
even. Consider the sequence ak of the number of bits transmitted from ∃0 to ∃1 in the k half-rounds
starting in round m, so ak = Pmid(pm+k/2)[0] when k is even and ak = Pend(pm+(k−1)/2)[0] when
k is odd. Since policy states repeat, ∀k ≥ 0. ak+r = ak, and a0 + . . . + ar−1 = x0 < r, so we
can apply Corollary 4.3.5 to the reversed sequence (ar−1, . . . , a0) to get an odd index i such that

∀j > 0. B
(i)
j < j

2 .

Since B
(i)
j is the cumulative number of bits transmitted from ∃0 to ∃1 across the j half-rounds

ending when ∃1 submits a bit to D′ in round m+ r−1−i
2 , and ⌈ j+1

2 ⌉ ≥
j
2 is the cumulative number of

bits ∃1 submits to D′ across the same set of j half-rounds, then round offset kend = r−i−1
2 satisfies

Lemma 4.3.6.

Draining Sub-Phase Given kend from Lemma 4.3.6 (by symmetry, the lemma applies in both
directions), let tend ≤ kend be the total number of bits transmitted from the beginning of a period
until the bit submission in the kthend round. If a period starts with |Xi| ≤ kend and |Xi \K1−i| = tend,
then we can have D′ validate bits in the |Xi| rounds before the kthend round and reach |Xi| = |K1−i| = 0
where each of the tend transmitted bits are clogging bits from Xi \K1−i with no room for extra
communication from ∃i to ∃1−i.

In order to ensure some period starts with |Xi| ≤ kend and |Xi \K1−i| = tend we use some ni

periods beforehand to drain each queue appropriately. Since in each period there are xi transmission
bits (fixed) and up to r validated bits (based on D′), it suffices to have |Xi| ≤ nir + kend and
|Xi \K1−i| = nixi + tend.

Boosting Sub-Phase The tear-down phase must start with |Xi\K1−i| = r2−(x′i+(r−1)xi) ≥ r−1,
but this may not be nixi + tend for any ni, so before ni + 1 draining periods, we will have additional
periods to increase the number of private bits by δi = (nixi + tend)− (r2 − (x′i + (r − 1)xi)). So for
δi ≥ 0, we can choose any sufficiently-large ni.

After one period where ∀ gives ci new clogging bits to ∃i and D′ validates v1−i bits from ∃1−i, we
would have ∆|Xi| = ci − v1−i and ∆|K1−i| = xi − v1−i (given that ∃i initially has |Xi \K1−i| ≥ xi
private bits to transmit to ∃1−i), thus ∆|Xi \K1−i| = ci − xi. Therefore, if we set ci = xi + 1 ≤ r
and v1−i = xi, then we get ∆|Xi| = +1, ∆|K1−i| = 0, and ∆|Xi \K1−i| = +1. If δi < δ1−i, then to
delay we also need “filler” rounds with no change to the sizes of any queues, which can be achieved
by setting ci = v1−i = xi.

80

To ensure δi is positive and |Xi| ≤ nir + kend at the end of this sub-phase, we need to choose an
ni that satisfies the following constraints at the start of the tear-down phase:

0 ≤ δi = (nixi + tend)− |Xi \K1−i|
ni ≥ (|Xi \K1−i| − tend) /xi

and
nir + kend ≥ r2 + δi

nir + kend ≥ |Xi|+ (nixi + tend)− |Xi \K1−i| = |K1−i|+ (nixi + tend)

ni ≥ (|K1−i|+ tend − kend) / (r − xi)

We pick ni to be the smallest natural number satisfying both lower bounds:

ni =

⌈︃
max

{︃
|Xi \K1−i| − tend

xi
,
|K1−i|+ tend − kend

r − xi

}︃⌉︃
=

⌈︃
max

{︃
r2 − (x′i + (r − 1)xi)− tend

xi
,

(x′i + (r − 1)xi) + tend − kend
r − xi

}︃⌉︃
Since 0 ≤ x′i ≤ xi < r and 0 ≤ tend ≤ kend < r, we can upper bound ni = O(r2).

Putting it all together At the beginning of the tear-down period, D′ will run a set of δi periods
where ∀ produces xi + 1 new bits and D′ validates xi bits, followed by max{δ0, δ1} − δi periods
of xi new and validated bits. After δmax = max{δ0, δ1} rounds, we will have |Xi| = r2 + δi and
|Xi \K1−i| = nixi + tend, preserving |K1−i| = x′i + (r − 1)xi. D′ will then run ni periods plus kend
rounds ignoring ∀ and validating the remainder of Xi (starting |Xi| rounds before the end).

4.3.6 Proof of Undecidability

Theorem 4.3.1. TDGC is undecidable under all (r, x0, x1, N)-rate-limited policies where x0 < r
and x1 < r.

Proof. We reduce from the Team DFA Game. For any (r, x0, x1, N)-rate-limited policy P where
x0, x1 < r, given an input DFA D for playing the TDG, we construct the DFA D′ described in the
previous sections (given in full detail in Algorithm 3) for playing the TDGC under policy P . Since
determining whether or not the ∃ team has a forced win in the TDG is undecidable, this reduction
will show that the same question of the TDGC under policy P is undecidable as well.

Given the analysis of D′ up to this point, we first note that D′ is indeed a finite automaton:
the waiting counter takes on N values; each queue Xi has maximum size r2 + δi bits, where
ni = O(r2) so δi = O(r3); the state q of D has |Q| possible values; and the various other coun-
ters require O(log r) bits each. From beginning to end, the maximum memory requirement is
O
(︁
max

{︁
logN, r2 + log |Q|, r3

}︁)︁
bits, summarizing Table 4.1.

If there is a winning strategy S for the ∃ team on D in the TDG, then the corresponding honest
strategy described above that plays the simulated TDG using S will be a winning strategy for the ∃
team on D′ in the TDGC under policy P .

If there is a winning strategy for the ∃ team on D′ in the TDGC under policy P , then consider
any winning execution γ. Since winning requires termination, let C be the number of periods in the
clogging phase.

If γ reaches halt(∃) in the clogging phase because ∀ did not correctly tell the ∃ team whether
or not q ∈ F∃, then ∀ did not play optimally. Since ∀ has perfect information and is allowed to give

81

State Category Space Needed (bits)

halt(winner) Θ(1)

waiting(w) Θ(logN)

build-up(X0, X1) Θ(r2)

clog(X0, X1, q, p, k, c01, c10) Θ(r2 + log |Q|)
boost(X0, X1, d01, d10, k, c01, c10) Θ(r2 + δmax)

drain(X0, X1, c01, c10) Θ(r2 + δmax)

Table 4.1: Memory Requirements of D′ over the course of the TDGC.

either 0 or 1 by the game rules, there is an alternate execution γ′ where ∀ gives the correct answer
instead and the game continues, so no ∃ team strategy can force a win in this way.

The only other way for the ∃ team to win is for γ to reach halt(∃) at the end of the draining
phase, which means they must pass all of the validation checks by D′.

Phase enq(Xi) Count deq(Xi) Count Information ∃i → ∃1−i

Build-up r2 0 x′i + (r − 1)× xi

Clogging C × xi C × xi C × xi

Boosting δmax × xi + δi δmax × xi δmax × xi

Draining 0 r2 + δi ni × xi + tendi

Table 4.2: Accounting of enq(Xi), deq(Xi), and Information Transfer between players in each
phase

Table 4.2 details the value of three quantities in each phase of the game: the number of bits
enqueued into Xi, the number of bits dequeued from Xi, and the amount of meaningful bits of
information that can be transmitted from ∃i to ∃1−i. By the definition of δi and some algebra, it
can be seen that each column has the same sum; let I be this total quantity of bits.

Because D′ validates the value of each dequeued bit, in order for ∃i to guarantee they pass all
validation checks, they must send I bits of information to ∃1−i. However, because I is the maximum
amount of information ∃i can send to ∃1−i, no further information can be sent, which means that in
every round in which D′ simulates the TDG on D′, ∃i has the same amount of information about
the state q of D as it would when actually playing TDG on D. Therefore, if the ∃ team has a
winning strategy for playing TDGC on D′ under policy P , within it is a winning sub-strategy for
them to play the TDG on D.

4.4 Decidability

We show that our general construction from the previous section is tight with respect to the
transmission rate between ∃ players.

For our precise bounds, we assume the straightforward encoding of the input DFA D with n
states as a table for δ containing 2n states, a state q0, and the states in F∃ and F∀, thus the input
size is Θ(|Q|).

82

Algorithm 3 Pseudocode for the D′ internal update function per round

1: q′ ← waiting(1) ▷ Initial state
2: function dfa-round-update(q′, b0, b1, m0, m1)
3: switch q′

4: case halt(winner) ▷ Game is over, with q′ ∈ F ′
winner

5: return halt(winner)
6: case waiting(w) ▷ Waiting Phase, delaying until policy starts repeating
7: if w < N then return waiting(w + 1)
8: return build-up([], [])
9: case build-up(X0, X1) ▷ Build-up Phase, filling up Xi queues

10: enq(X0, b0)
11: enq(X1, b1)
12: if length(X0) < r2 then return build-up(X0, X1)
13: return clog(X0, X1, q0, even, r, x0, x1)
14: case clog(X0, X1, q, p, k, c01, c10) given k > 1 ▷ Clogging Phase, boosting
15: for all i ∈ {0, 1}
16: if ci,1−i > 0 then
17: enq(Xi, bi)
18: if deq(Xi) ̸= m1−i then return halt(∀)
19: ci,1−i ← ci,1−i − 1
20: return clog(X0, X1, q, p, k − 1, c01, c10)
21: case clog(X0, X1, q, odd, 1, 0, 0) ▷ Clogging Phase, simulating D
22: q ← δ(δ(δ(δ(q, b0), b1),m0),m1)
23: return clog(X0, X1, q, even, r, x0, x1)
24: case clog(X0, X1, q, even, 1, 0, 0) ▷ Clogging Phase, testing for ∃ win
25: if ¬ (b0 = b1 = [q ∈ F∃]) then return halt(∃)
26: if q ∈ F∃ then return boost(X0, X1, δ0, δ1, r, x0, x1)
27: if q ∈ F∀ then return halt(∀)
28: return clog(X0, X1, q, odd, r, x0, x1)
29: case boost(X0, X1, d01, d10, k, c01, c10) given k > 1 ▷ Boost Phase, clogging
30: for all i ∈ {0, 1}
31: if ci,1−i > 0 then
32: enq(Xi, bi)
33: if deq(Xi) ̸= m1−i then return halt(∀) ▷ Return from caller
34: ci,1−i ← ci,1−i − 1
35: return boost(X0, X1, d01, d10, k − 1, c01, c10)
36: case boost(X0, X1, d01, d10, 1, 0, 0) ▷ Boost Phase, new boost bits
37: for all i ∈ {0, 1}
38: if di,1−i > 0 then
39: enq(Xi, bi)
40: di,1−i ← di,1−i − 1
41: if d01 + d10 > 0 then return boost(X0, X1, d01, d10, r, x0, x1)
42: return drain(X0, X1, r × n0 + kend0 , r × n1 + kend1)
43: case drain(X0, X1, c01, c10) given c01 + c10 > 0 ▷ Drain Phase, emptying queues
44: for all i ∈ {0, 1}
45: if ci,1−i1 > 0 then
46: if |Xi| = ci,1−i ∧ deq(Xi) ̸= m1−i then return halt(∀)
47: ci,1−i1 ← ci,1−i1 − 1
48: return drain(X0, X1, c01, c10)
49: case drain([], [], 0, 0) ▷ Drain Phase, finished!
50: return halt(∃)

83

First, we demonstrate (r, r, r, 0)-rate-limited policies under which the Team DFA Game with
Communication is not only decidable but in PSPACE. Later we will show more restrictive commu-
nication patterns are in EXPSPACE. Recall (r, r, r, 0)-rate-limited policies are the case where both
players are allowed to exchange r bits over the course of a period of length r.

Theorem 4.4.1. TDGC is decidable in PSPACE with a 1-bit, mid-round exchange in both directions
every round: policies P with Pmid(p) = (1, 1) and Pend(p) = (0, 0) for all p ∈ Π.

Proof. Under such a policy, TDGC becomes a perfect information game. In each round of the game,
the optimal play for ∃i is to send bi to ∃1−i immediately after receiving it, meaning ∃1−i will know
both b0 and b1 before it chooses m1−i. Since the ∃ team knows the initial state q0 of D, we can
consider strategy functions s : (q, b0, b1) ↦→ (m0,m1), which both players can use to decide their own
next move and know what move their teammate will perform as well, letting them use δ to learn
the state q of D in the next round and beyond.

Note that it suffices for the ∃ team to have a memoryless strategy because the policy P is
constant per round, DFA transitions do not depend on the history of the game, and the adversarial
∀ player’s choices are not bound by the history either. It also suffices to have a deterministic
strategy: if there exists a non-deterministic winning strategy s′, then we can fix s(q, b0, b0) to be
some (m0,m1) with Pr[s′(q, b0, b1) = (m0,m1)] > 0 because all game executions in which the ∃ team
plays with deterministic strategy s are possible executions when playing with strategy s′, thus must
also be winning.

We show that deciding whether or not the ∃ team has a forced win in TDGC under policy P is
in PSPACE by giving a brute-force search algorithm. For every strategy s among the 44|Q| possible
strategy functions, we construct a game graph Gs where each state q ∈ Q \ F∃ is a vertex and for
all b0, b1 ∈ {0, 1}, q has an edge to q′ = δ(δ(δ(δ(q, b0), b1),m0),m1) where (m0,m1) = s(q, b0, b1) as
long as q′ /∈ F∃. This means s is a winning strategy if and only if all q ∈ F∀ and all cycles are not
reachable from q0 in Gs, since otherwise the traversal corresponds to a losing execution or the start
of a potentially non-terminating execution of the game that the ∀ player can force to occur. We
can thus perform an exhaustive depth-first search from q0 for a counterexample (of length at most
|Q|) to decide whether or not s is a winning strategy. Since we only need Θ(|Q|) space to store the
current s, Gs, and depth-first search stack, this algorithm runs in PSPACE.

Since it is sufficient to send only one bit of useful information mid-round, we can extend
Theorem 4.4.1 to higher transmission rates.

Corollary 4.4.2. TDGC is decidable in PSPACE with at least a 1-bit, mid-round exchange in both
directions every round: policies P with Pmid(p)[i] ≥ 1 for all p ∈ Π and each i ∈ {0, 1}.

Next, we consider the decidability of TDGC under (r, r, 0, 0)-rate-limited policies, which is tight
given the undecidability of (r, r − 1, 0, 0)-rate-limited policies. This shows that only one member of
the team needs to have perfect information.

Theorem 4.4.3. TDGC is decidable in EXPSPACE with a 1-bit, mid-round exchange every round
from ∃0 to ∃1, but none from ∃1 to ∃0: policies P with Pmid(p) = (1, 0) and Pend(p) = (0, 0) for all
p ∈ Π.

Proof. As described in the proof of Theorem 4.4.1, ∃0 can and should send b0 to ∃1 each round to
give ∃1 perfect information, but ∃0 themself can learn nothing about b1. Using the terminology
from [PR79], this asymmetry makes TDGC under P a hierarchical team game. To decide the
existence of a winning strategy, we adapt ideas from the proof of Theorem 4 in the same paper

84

that shows DTIME

(︃
22

2cS(n)
)︃
⊇ MPA2-SPACE(S(n)), the languages decided by hierarchical 2-vs-1

private alternation Turing machines in S(n) space.
Consider the set of all possible mid-round configurations (q, b0, b1) of the game, which are

fully known to ∀ and ∃1. Define C be the set of possible configurations (b0, u) of ∃0’s mid-round
knowledge: the known b0 and the set u ∈ P(Q× {b0} × {0, 1}) of possible mid-round configurations
given the history of the game thus far. Since two game states with the same c ∈ C are strategically
equivalent from the perspective of ∃0 (and thus ∃1 too), a winning strategy only needs to account
for the |C| = 22|Q|+1 knowledge configurations in its decision-making.

Given this, we can do a brute-force search as in Theorem 4.4.1 over the space of deterministic
∃ team strategies s : c ∈ C ↦→ (m0,m1) of size 4|C|. For each s, we construct the game graph
Gs, where c ∈ C has an outgoing edge representing the outcome of each b0, b1 choice of ∀ after
the ∃ players use s to make their moves and ∃0 updates their knowledge, and then search for
counter-example game executions with length up to |C| to decide whether s is a winning strategy.
Therefore, TDGC under P is decidable in Θ(|C|) space, which is exponential in |Q|.

As before, Theorem 4.4.1 extends to higher transmission rates from ∃0 to ∃1 (or vice versa), as
long as the receiver stays silent.

Corollary 4.4.4. TDGC is decidable in PSPACE with at least a 1-bit, mid-round exchange in
one direction every round, but none in the other direction: policies P with Pmid(p)[i] ≥ 1 and
Pmid(p)[1− i] = Pend(p)[1− i] = 0 for all p ∈ Π and some i ∈ {0, 1}.

Given the results of Theorems 4.4.1 and 4.4.3 and their corollaries, we conjecture that r is a
tight bound in all other cases.

Conjecture 4.4.1. TDGC is decidable under all (r, x0, x1, N)-rate-limited policies where x0 ≥ r or
x1 ≥ r.

4.5 Team Formula Games with Communication

Formula games model many types of games. The Team Formula Game was defined and proven
undecidable in [DH08]. We define a communication version of this game and prove results analogous
to the ones for TDGC.

Definition 4.5.1. A Team Formula Game (TFG) instance consists of sets of Boolean variables
X, X ′, Y1, Y2 and their initial values; variables h0, h1 ∈ X; and Boolean formulas F (X,X ′, Y0, Y1),
F ′(X,X ′), and G(X) such that F implies ¬F ′. The TFG problem asks whether {W0,W1}, team
White, has a forced win against {B}, team Black, in the game that repeats the following steps in
order ad infinitum:

1. B sets X to any values. If F and G are true, then Black wins. If F is false, White wins.

2. B sets X ′ to any values. If F ′ is false, then White wins.

3. W0 sets Y1 to any values.

4. W1 sets Y2 to any values.

where B has perfect information but Wi can only see the values of Yi and hi.

85

Definition 4.5.2. Team Formula Game with Communication (TFGC) is TFG along with a
policy P which specifies a number of bits to be transmitted between W0 and W1 mid-round (before
each step 3) and at the end of the round (after each step 4)

Theorem 4.5.1. TFGC is undecidable under all (r, x0, x1, N)-rate-limited policies where x0, x1 < r.

Proof. For any such policy P , we reduce from the Team DFA Game with Communication under the
same policy P , adapting the reduction done in Theorem 8 of [DH08] from the Team Computation
Game to the Team Formula Game. In the reduction, the White team plays as the ∃ team and B
plays as ∀ while also facilitating the simulation of TDGC in TFGC.

Given a DFA D to play TDGC under P , we first augment D so it will be suitable for the
simulation. To each state, we add a 3-value counter to eliminate any four-edge cycles in the

transition graph (t
δ−→ (t + 1)

δ−→ (t + 2)
δ−→ t

δ−→ (t + 1) ̸= t). Also, we add four new states in a path

q0
δ−→ q

(1)
0

δ−→ q
(2)
0

δ−→ q
(3)
0

δ−→ q
(4)
0 from a new initial state q0 to the original initial state q

(4)
0 in order

to delay the first meaningful state transitions until the start of the second round, which is when the
first set of player inputs are available.

In the instance of TFGC, we will have (1) variables hi = bi ∈ X and b′i ∈ X ′, representing the
∀ player’s chosen bits in the current and previous round; (2) Yi = {mi}, containing the ∃i player’s
message bit each round; (3) sets of Θ(log |Q|) variables ⟨q′⟩ ⊂ X ′ and ⟨q⟩ ⊂ X that encode the
previous state q′ and current state q; (4) and two parity bits p ∈ X and p′ ∈ X ′ which B will be
required to flip each round. We also choose the initial value of q′ to be q0 so that in step 1 of the

first round B will be forced to set q to q
(4)
0 ; other initial values are arbitrary.

In step 1, formula F holds if B sets X so q = δ(δ(δ(δ(q′, b′0), b
′
1),m0),m1), q /∈ F∃, and p′ ̸= p.

Formula G will be true if the current state q ∈ F∀. Thus, when F and G are both true, then in the
TDGC the state transition function was correctly implemented and led to a final state where ∀ has
won, and thus Black wins the TFGC. On the other hand, if F is false, then either B violated the
simulation or the TDGC led to a final state where ∃ team has won, and thus White wins the TFGC.

In step 2, formula F ′ will be true if B sets X ′ such that q′ = q and p′ = p, updating the previous
state for the next round to the new state. If F ′ is false, then B violated the simulation, and thus
White wins the TFGC. Additionally, the parity bit checks guarantee that F implies ¬F ′.

Since this is a faithful simulation where each round of TFGC corresponds exactly to one round
of TDGC, and by Theorem 4.3.1 it is undecidable whether or not there exists a winning strategy
for the ∃ team playing TDGC under P , it is also undecidable whether or not there exists a winning
strategy for White playing TFGC under the same policy P .

The strategy for proving decidability results of Team DFA Game with Communication also be
used to give the following tight decidability results on the Team Formula Game with Communication.

Theorem 4.5.2. TFGC is decidable in 2-EXPSPACE with a 1-bit, mid-round exchange in both
directions every round: policies P with Pmid(p) = (1, 1) and Pend(p) = (0, 0) for all p ∈ Π.

Proof. Since player B gives one bit hi to player Wi each round, under such a policy P , hi can
be immediately transmitted to W1−i. Thus W0 and W1 always have the same information when
choosing to set Y0 and Y1. This effectively makes the TFGC a two-player game, but not a perfect
information game: the values of X ′ ∪X \ {h0, h1} are not visible to White, and between each move
of White, Black is allowed to set X and X ′ to any values. However, White does gain information
on their turns from knowing h0, h1 and that the game did not end, as it must have been that F was
true and G was false after step 1, and F ′ was true after step 2.

Therefore, as before, we can check over the entire space of strategies s : (c, h0, h1) ↦→ (Y0, Y1) for
White, where c ∈ C specifies the set of possible hidden values for X ′ ∪X \ {h0, h1}, by creating a

86

strategy graph Gs on C with degree 4 to search for counterexample paths of length at most |C| to s

being a winning strategy. Since |C| = 22
|X|+|X′|−2

, we only require space doubly-exponential in the
input size, which is Ω(|X|+ |X ′|).

Theorem 4.5.3. TFGC is decidable in 3-EXPSPACE with a 1-bit, mid-round exchange every round
from W0 to W1, but none from W1 to W0: policies P with Pmid(p) = (1, 0) and Pend(p) = (0, 0) for
all p ∈ Π.

Proof. By the same argument as in Theorem 4.4.3, we can extend Theorem 4.5.2 by adding the set
of possible knowledge states of W0 to the game configuration. If we take C = P (X ′ ∪X \ {h0, h1})
then we must consider triplets (h0, c0, c) for actual configurations c ∈ C the game can be in, and
c0 ∈ P(C) specifying what W0 thinks c could be.

This allows us to bound the space required to search (like before) for a winning strategy

s : (h0 ∈ {0, 1}, c0 ∈ P(C)) ↦→ (Y ∪ Y ′) to 22
2O(|X|+|X′|)

, triply-exponential in the input size, which
is Ω(|X|+ |X ′|).

As with TDGC, these results for TFGC suggest that r may be a tight bound in all other cases.

Conjecture 4.5.1. TFGC is decidable under all (r, x0, x1, N)-rate-limited policies where x0 ≥ r or
x1 ≥ r.

4.6 Open Problems

One exciting question is whether we can prove computational complexity results about real games
with communication. It seems plausible that TDGC may be sufficient for applications to games
with highly structured communication. We present a number of questions that we think may help
strengthen results to allow their application to more real world scenarios or questions we find
particularly interesting for their own sake.

One of the main technical questions left open by this work is the complexity for rate-limited
policies with x0 ≥ r and r > x1 > 0. We conjecture this case is decidable but our current arguments
rely on both players either having full information or no information.

Looking further, there are many interesting variations and extensions of this model to study. Our
arguments rely heavily on communication policies having some bounded period which is useful both
for algorithms to bound the uncertainty in the game and for undecidability to allow for constructions
that simulate a step in a zero information game after a bounded number of rounds. What happens
if our policy is described by something more general than a DFA, such as a sequence recognizable
by a pushdown automaton?

Similarly, some of our arguments rely on the fact that the game is played on something with
bounded state, such as a DFA or Boolean Formula. What happens with team games on more
general systems, such as a pushdown automaton or a bounded space Turing Machine?

Many realistic scenarios have noisy communication channels. How does the computational
complexity change under different models of noise? We conjecture that there will again be a cutoff
based on whether the information capacity of the channel is sufficiently high. However, it is also
possible that the small probability of error will compound over these games of unbounded length
resulting in different behavior. It would also be interesting to understand what happens when other
sources of inherent randomness are introduced to these games.

It is also often the case that one’s ability to communicate depends on the state of the environment
and potentially the actions of the people involved. Thus having communication policies that depend
on player actions or the game state would be another interesting generalization.

87

We also only consider two players on the Existential Team. We believe that when more players
are added, undecidability will emerge if at least two players have imperfect information. However,
this should be verified and the details around more complex communication patterns may lead to
richer behavior.

Finally, there is an issue when trying to apply these results to real games or real world problems.
Our characterization in some sense relies on communication being high or low compared to critical
or meaningful choices in the games. Many natural scenarios have a much larger action space than
communication rate, however many of those choices may be essentially equivalent or strategically
inadvisable. Our undecidability proofs in Chapter 3 based on the Team Graph Game have very
inefficient reductions and require significant numbers of in-game actions to simulate one move in
the DFA game. This makes a direct application of our results in this chapter difficult.

88

Part III

Concurrency and External Memory

89

Chapter 5

Atomic Gadget Simulations for
Asynchronous Motion Planning

This chapter presents results by the thesis author in collaboration with Erik D. Demaine.

Overview

We study the motion-planning-through-gadgets framework with multiple robots through the lens of
asynchronous concurrency and traditional shared memory algorithms. We give a universal simulation
of any bounded-memory shared memory algorithm by gadgets and a construction of MRMW atomic
multivalued register gadgets from SRSW safe boolean register gadgets, as well as an impossibility
result for simulating the task of consensus in gadgets. As robots are anonymous, we also develop
multiplexers and demultiplexers to temporarily merge single-robot paths or separate multi-robot
paths through the gadget system. Finally, along the way, we present a small set of gadgets that can
efficiently provide mutual exclusion of a shared region of the system for any number of robots.

5.1 Introduction

In this chapter, we describe an asynchronous multi-robot variant of the motion-planning-through-
gadgets model; see our other discussions of this model in Chapters 1, 2, and 6 for more details.
When possible, we borrow standard terminology from the asynchronous shared memory model for
parallel concepts.

A robot is an independent player-controlled agent that traverses a system of gadgets, which
are objects with finite internal states, connected at external ports at locations in the system. A
gadget is static over time except when acted upon via a transition by a robot; we call a sequence
of transitions through the system by one robot a traversal . A system is ultimately built from base
gadgets, which are black-box gadgets where all transitions are indivisible, occurring in one step, as
defined in other chapters. In this chapter, we give special attention to composite gadgets, which
are a subsystem of other gadgets intended to be a simulation of some base gadget. Simulations have
been a powerful tool for showing the power and hardness of single-robot motion planning from the
beginning [DGLR18,DHL20], but we will need to generalize the notion of a simulation from those
works due to new challenges that arise in the multirobot setting. In particular, we will need to
specify what correctness means during periods with concurrent traversals by multiple robots which
have no quiescent states to correspond to the state of some other gadget, and we will need to give
progress guarantees that robots performing a traversal can eventually succeed.

90

In our asynchronous model, an execution proceeds in a sequence of turns. On a robot’s turn,
it observes the state of the system and may choose to take a step by performing any available
transition from its location of any adjacent base gadget, or pass and do nothing. In most of this
chapter, we assume an adversarial scheduler , meaning that any robot may be chosen to take the
next turn in an execution, nondeterministically. This is in contrast with the multi-robot setting in
Chapter 2 where the single player controls both the turn order and actions of robots.

We define the correctness of a composite gadget’s simulation in terms of histories. A history
is a sequence of entrances and exits from gadgets occurring in a possible execution. A robot’s
traversal through a gadget thus represents an interval of the history between its entrance and exit;
any two traversals may be concurrent (if their intervals overlap) or sequential (if their intervals are
disjoint). A history is called linearizable [HW90] if the interval of every traversal in the history
contains a turn (its linearization point) such that if all traversals were performed sequentially in
the order of the linearization points, the outcome of every traversal would be the same. If every
history restricted to a gadget’s traversals are linearizable, then we call that gadget linearizable.
Note that all base gadgets are linearizable since each traversal is just a single transition taking place
in one turn; no two traversals of a base gadget are ever concurrent. The benefit of a linearizable
composite gadget is that its histories cannot be distinguished from the histories of a base gadget
whose transitions occur at the linearization points.

Linearizability alone does not suffice without progress guarantees for traversals. A gadget is
wait-free [Her88] if there is a deterministic strategy a robot can follow such that, in every execution
in which a robot attempts a traversal, there is a bounded number of turns it can be scheduled
before it will complete the traversal, independent of the scheduler and the other robots’ choices.
A gadget is called atomic if it is linearizable and wait-free. Again, note that all base gadgets are
wait-free and thus atomic by definition. An atomic composite gadget is equivalent to a base gadget
since all traversals eventually complete (given enough steps), so it is a correct simulation that can
function as a drop-in replacement for the base gadget for the purpose of motion planning, as defined
in previous work [DGLR18].

Before continuing, we offer some observations about our choice of definitions.

Lemma 5.1.1. A bound on the number of actions (i.e. turns that do not pass) before a robot exits
in a traversal strategy is not sufficient to obtain bound on the number of turns scheduled to the robot
before it exits.

Proof. For any composite gadget, consider the strategy “pass on every turn.” Any robot that follows
this strategy will take a bounded number of actions (zero), but will not succeed in completing a
traversal in any bounded number of turns.

Lemma 5.1.2. If there is a wait-free strategy that takes a bounded number of turns, there is also
one in which passing is never dictated.

Proof. Take any wait-free strategy s with bound B on the number of turns for a gadget g. Suppose
in some execution a robot r is inside g, scheduled in turn i, and s dictates that r must pass. If r is
scheduled repeatedly in turns i + 1, i + 2, . . . , i + B, then s cannot dictates that r passes on each
of these turns because it must exit g after at most B turns, so r must take a step on some turn
i + j ≤ i + B. Thus, there must have been a step available and an alternative wait-free strategy s′

that tells r to take that step on turn i. Since there are only a finite number of configurations of g
for s to account for, these “unnecessary” passes can be eliminated repeatedly to obtain a strategy
that always dictates to step.

91

Corollary 5.1.3. In a wait-free gadget, following the wait-free strategy can never put a robot into a
location from which it has no available transitions.

5.1.1 Shared Memory Objects

This section will review three common objects in the shared memory model that will be analyzed
through gadget-analogues in this chapter, as well as standard terminology surrounding them that
we will be using. See resources such as [HSLS20] for an in-depth introduction to the field.

A register is an object that stores an integer value, supporting methods read() to get the
value and write(v) to set the value to v. A register is safe if it behaves atomically except that a
read that overlaps a write may return any value. It is regular if it behaves atomically except that a
read that overlaps a write may return either the old value or the new value. A register may support
one (SR) or more (MR) concurrent readers and one (SW) or more (MW) concurrent writers, and
may be able to store values {0, 1} (boolean) or {0, 1, . . . , vmax − 1} (multivalued) for fixed vmax > 1.

A mutex (or lock) enables mutually-exclusive access to a resource, called the critical section ,
supporting methods lock() and unlock(). A thread can only access the critical section if it
is holding the lock, and at most one thread can hold the lock concurrently. A mutex provides
deadlock-freedom if a thread is unable to get a lock only if some other thread is holding the lock,
and any thread holding the lock can always unlock.

Consensus is a task in which m threads start with private input values V = {v1, ..., vm} and
must all output the same value v∗ ∈ V . An m-consensus object has one method decide(v) which
supports up to m threads calling it at most once and has the sequential specification of always
returning the input of the first call to decide(v). An execution state of decide(v) is univalent if
all possible executions after that point have the same output value, or bivalent if there are two
executions with different outputs, and a critical state is a bivalent state in which all successor
states are univalent.

5.2 Bounded Shared Memory Simulation

In this section, we give a universal simulation by gadgets of any shared memory algorithm on
concurrent objects with bounded total memory usage, assuming we have a diode gadget as shown
in Figure 5.1.

1

1
=

Figure 5.1: The specification of a Diode gadget (left) and its compact notation (right).

For simplicity, we take our concurrent objects to be in a canonical defunctionalized form. For
an object a, let there be a single method a.invoke(i, f, x) which takes the thread index i, a name
f from among a finite set of methods, and the list of arguments x for f of a fixed size, and
runs the algorithm a.f(x) as thread i, returning a value if necessary. For example, a stack data
structure would permit calls such as a.invoke(1, “push”, [5]) and a.invoke(4, “pop”, []), which can
be implemented as in Algorithm 4.

We specify the algorithm A for the invoke method of a bounded-space concurrent object using
the following components: the number of supported threads m, the finite set S of base shared
objects, the finite local state space of a thread Q, input states q0,(i,f,x) ∈ Q that a thread enters

92

Algorithm 4 Defunctionalization Example: a FIFO Stack

struct DefuncStack
Stack s;
struct invoke(i, f, x)

switch f
case “push” return s.pushi(x[0])
case “pop” return s.popi(i)

upon calling invoke(i, f, x), output states F ⊆ Q that threads may enter when returning from a
call to invoke, and a next-step function δ that specifies the next action of a thread in state q ∈ Q.

Theorem 5.2.1. Any bounded-space concurrent algorithm A on a set of base shared objects can be
simulated by a composite gadget G including diodes and gadget simulations of those base objects,
where the history of invoke(i, f, x) calls and responses of all objects used in A correspond to a history
of G with the same output behavior, and a traversal through G has the same progress guarantees as
the corresponding call to invoke(i, f, x).

Proof. We show how to convert A into G. As memory is bounded, each component or temporary
object a ∈ S will be represented by a gadget ga in G; if a is a base shared object, the design of ga is
provided, otherwise ga is recursively built by this conversion procedure. The local state q ∈ Q of a
thread will be represented by a location ℓq in G, and we use diodes to have “directed edges” from
one location to another. Thread i is represented by a robot that starts at location ℓq0,i .

When a thread in state q ∈ Q has its next step to call a.invoke(i, f, x) on some object a
with states Qa, we connect location ℓq through a unique diode to the location of the port of ga
representing its input state q0,(i,f,x) ∈ Qa. Simularly, when a thread returns from the call to object
a in output state qa ∈ Fa and enters state q ∈ Q, we connect the location of the port for qa through
a unique diode to the location for q. We do not connect an output state q ∈ F with any outgoing
edges; it may act as an output port.

It is clear from the direct one-to-one correspondence of every state and step of A with locations
and transitions of G that the input-output behavior and progress guarantees of all method calls will
be preserved as claimed.

5.3 Atomic Registers

In this section, we present a construction of a multi-reader, multi-writer atomic multivalued register
gadget by wait-free single-reader, single-writer safe boolean register gadgets. In line with the
requirements of the universal simulation from Section 5.2, and for wider applicability, each individual
reader and writer corresponds to a distinct subset of ports and transitions that only needs to
support use by at most one robot at a time. The construction is done through multiple layers of
simulation, adapting proofs presented in [HSLS20] to the gadget model as well as tackling the model
differences such as our exclusivity requirements for reader and writer areas with a solution found in
a multiplexer gadget construction.

5.3.1 SRSW Safe Boolean Register

Our starting gadget is the wait-free, single-reader, single-writer, safe boolean register gadget,
based on the SRSW boolean register object from the concurrent setting. The single-robot gadget

93

specification is shown in Figure 5.2, but our weaker requirements mean we only assume the gadget
follows the specification in the multi-robot model up to these exceptions:

� More than one robot performing a read traversal at a time results in undefined behavior.

� More than one robot performing a write traversal at a time results in undefined behavior.

� A read traversal concurrent with a write traversal results in the reading robot ending up in
either the 0 or 1 output location, nondeterministically.

write

read 0

0

1

0

1

0

1

1

Figure 5.2: Specification of a boolean register gadget, with reader and writer areas outlined.

5.3.2 MRSW Safe Boolean Register

The first layer of the construction is to add multi-reader support. Each reader gets its own SRSW
gadget, and a write traversal just involves writing to each individual SRSW. This is shown in
Figure 5.3.

...

read #1 read #2 read #mr

write

Figure 5.3: MRSW safe boolean register from the single-reader version, with the writer and each
reader areas outlined.

5.3.3 MRSW Regular Boolean Register

The second layer of the construction is to improve our correctness guarantee from safe to regular,
which means that a read that is concurrent to a redundant write, where the old and new value are
the same, will always output that unchanging value. We do this by adding two new reading areas
so the writer can branch on whether or not the old value is the same as the new value, allowing it
to skip the underlying write transition unless it actually wants to change the value. This is shown
in Figure 5.4.

94

0

1

0

1

...

write

read #1

read #2

Figure 5.4: MRSW regular boolean register from the safe version, with the writer and each reader
areas outlined.

5.3.4 MRSW Regular Multivalued Register

The third layer of the construction is to extend the register from boolean to any range of values.
This can be achieved by chaining the boolean gadgets into an “array of bits” where the value of the
register is determined by the first gadget from the beginning set to 1. A reader merely scans the
array and exits from the first 1 it finds, which will always succeed as long as the end of the array
is initialized a 1. A writer on the other hand will first write a 1 at the gadget at the new value’s
index, then writes 0 to all lower-indexed gadgets, before performing its own scan to exit out the
corresponding output. An example with four values is shown in Figure 5.5.

5.3.5 Multiplexers and Single- to Exclusive-Writer Registers

So far, “single-writer” has only meant that there is one location for the single writing robot to be
able to perform the write for each value, which differs from the concurrent object setting where a
register can be written to in various contexts by the same writer. We can now unify these differences
with a multiplexer. Analogous to the digital logic device of the same name, given multiple areas
that are collectively exclusive to a single robot, a multiplexer creates a single “multiplexed” area
accessible from each where the robot can eventually return to exactly the area it originated from. A
multiplexer gadget can be constructed with a rewiring of a multivalued register gadget, as shown in
Figure 5.6.

Using a multiplexer, we can have multiple writing locations that are still exclusive to the single
writing robot. This fifth layer of the construction, of a single-reader, exclusive-writer multivalued
register gadget, is shown in Figure 5.7. Each write tunnel of the MRSW gadget is placed within its
own multiplexer, so each can be accessed by the writing robot from multiple areas.

95

0123

0123

...

write

read

Figure 5.5: MRSW regular multivalued register gadget from the boolean version, with the writer
and reader areas outlined. A four-valued register is chosen as an example.

enter

exit

Figure 5.6: Single-robot multiplexer gadget from a multivalued register gadget. Four-way multiplex-
ing is chosen as an example.

...
.........

...

... ...
.........

...

...

......
...

...

write #1

write #2

write #3

read #1

Figure 5.7: Multi-reader, exclusive-writer regular multivalued register gadget from the single-writer
version and multiplexers, with the writer and reader areas outlined. Three writing areas is chosen
as an example.

96

5.3.6 Timestamps and the MRMW Atomic Multivalued Register

With the single-writer vs exclusive-writer discrepancy solved, we now have the power to use the
universal simulation from Theorem 5.2.1, which respects all properties such as single- or multi-reader,
exclusive- or multi-writer, safe, regular or atomic, and boolean or multivalued.

The remaining steps to a multi-reader, multi-writer, atomic multivalued register require one
final technique: a bounded timestamp system. Such a system maintains a fixed collection of
objects with timestamp labels, and supports operations labeling, which gives an object the “latest”
timestamp among all objects, and scan, which returns a snapshot of the order of objects by their
timestamps. To implement a timestamp system in the gadget model, we first apply Theorem 5.2.1 to
the result of [HV95] to obtain MREW atomic multivalued register gadgets using our MREW regular
multivalued register gadgets. Using these, we can apply the theorem again to the result of [DS97] to
obtain a bounded timestamp system gadget implemented from MREW atomic multivalued register
gadgets.

Given the existence of a bounded timestamp system, it is easy to see that all further layers
of simulation presented in [HSLS20] are also bounded state, so they can be directly implemented
through Theorem 5.2.1 to obtain multi-reader, multi-writer, atomic multivalued registers.

Theorem 5.3.1. Wait-free, single-reader, single-writer, safe boolean register gadgets can simulate
wait-free multi-reader, multi-writer, atomic multivalued register gadgets, where each reader and
writer area is single-robot exclusive.

5.4 Atomic Multivalued Concensus

In this section, we consider the task of consensus in the gadget model, which we can represent
as a gadget like in Figure 5.8. This gadget implements binary one-shot consensus: robots
may perform one of two exclusive transitions to input either 0 or 1, the first robot to perform any
transition fixes the state of the gadget to correspond to their input, and every robot exits the same
one of their two exclusive outputs based on the state.

...

0
1

0
1

...... ...

0
0

0
0

...... ...

1
1

1
1

X 0 1

Figure 5.8: Binary Consensus Gadget

First, we consider consensus that is obstruction-free [HS11], a concurrent progress condition
where a thread is guaranteed to complete a method call when given a bounded-length interval
during which no other threads are scheduled.

Theorem 5.4.1. There is a one-shot, obstruction-free implementation of a binary consensus gadget
for each number m of robots with exclusive input/output lines from a fixed set of finite-sized base
gadgets.

Proof. By [Bow11], obstruction-free consensus can be implemented in shared memory from MRMW
atomic registers, of bounded amount and magnitudes as a function of m. Therefore, by Theo-
rems 5.2.1 and 5.3.1, that implementation can be simulated with the fixed-sized SRSW safe boolean
registers for any m.

97

Second, we consider wait-free consensus. Concurrent objects can be classified by a consensus
number [Her91], which is the maximum number of threads for which it can simulate a wait-free
one-shot consensus object (under certain conditions; see [GKSW17]). In the gadget model, we
propose a similar analysis of gadgets and their ability to simulate wait-free one-shot consensus
gadgets. The following theorem takes the first step by giving a space lower-bound and impossibility
result for a restricted type of simulation. This is in contrast to single-player motion-planning, where
we have universal simulator gadgets such as doors [ABD+20].

Theorem 5.4.2. Any bounded-step (every execution has a finite number of gadget transitions),
one-shot, atomic implementation of a binary consensus gadget for m ≥ 2 robots with exclusive
input/output lines requires a base gadget with at least 2m ports.

Proof. Given an execution tree with vertices as states, edges as turns, and maximum height B from
its bivalent root down to its univalent leaves, there must exist a execution γ ending in critical state,
a bivalent state in which any step performed by any robot results in a univalent state.

In a critical state, there must exist a robot r0 whose next step ρ0 would lead to a 0-univalent
state and another robot r1 whose next step ρ1 would lead to a 1-univalent state. These steps must
be transitions through a single gadget g; otherwise γρ0ρ1 and γρ1ρ0 both would end in the same
state due to the lack of interaction, contradicting the different univalencies. Because every robot’s
next step leads to a univalent state, all robots must be adjacent to the same gadget g and have at
least one transition available through g. Finally, because the input/output lines are exclusive, we
see that (1) no two robots can be in the same port since it would allow them to switch places, and
(2) no two robots can have available transitions to the same ports or to the other’s ports for the
same reason, thus g must have at least 2m distinct ports.

Corollary 5.4.3. No finite-sized gadget can simulate atomic one-shot consensus gadgets for an
arbitrary number of robots without permitting an infinitely-long execution where robots deviate from
the wait-free strategy.

5.5 Mutex

In the asynchronous shared memory model, a mutex is a common synchronization primitive which
can be easily used to design linearizable data structures, but because a critical section of code is not
guaranteed to end in a finite number of steps, they offer little help in guaranteeing wait-freedom.
In this section and the following, we will be assuming a fair scheduler which gives turns to all
robots infinitely-often, allowing us to use this blocking technique to guarantee progress in larger
constructions.

The motion planning analogy of a shared memory mutex is an augmentation around a “critical
section” of the motion planning graph that guarantees mutual exclusion of robots throughout its
locations. For a section with k ports, this can be achieved using a single k-toggle: each port can
be guarded by one of the k tunnels, which point inwards in the initial unlocked state and all flip
outwards on any first traversal (locking), blocking other robots from entering until the first leaves
(unlocks).

In lieu of requiring arbitrarily-large base gadgets like the k-toggle, we consider a pair of fixed-size
gadgets: the input side uses the gadget shown in Figure 5.10, which can be simulated by toggles as
in Figure 5.11, and the output side uses the gadget in Figure 5.9. O(k) of these gadgets suffice to
implement the mutex augmentation design shown in Figure 5.12, with the analogous shared memory
mutex algorithms in Algorithm 5.

98

1
2
2

3

1 2

1
1

3

Figure 5.9: Mutex Output Gadget

1
4

1

5

4

2

3

1

1

1 2 3 4 5

Figure 5.10: Mutex Input Gadget

Figure 5.11: Construction of Mutex Input Gadget from a 3-toggle and 2-toggles.

We use an analogy of a lock() implementation where thread i repeatedly calls try-lock(i)
until it succeeds. A robot outside the mutex at some port i performs try-lock(i) in order to
attempt to enter the critical section, which follows the red paths starting at the top of Figure 5.12.
First, the robot must enter through the input gadget Ain[i] (state 1 → 2), which has the dual
purpose of blocking any robot entering through higher-index input gadgets as well as opening the
door to enter the critical section at the specific index i. If it gets in, to ensure no other robots can
enter concurrently, the robot must then block all lower index ports by passing through each gadget
Ain[0 : i] (state 1→ 4), which also completes the path from before Ain[0] to the opening at Ain[i]
into the critical section.

Before that path can be traversed, the robot must check that no robot is currently performing
unlock, preventing interference in the future when performing unlock itself. An invariant of an
execution of unlock(j) is that Aout[j] is always in state 3, so a robot performing try-lock(i)
which has prepared the input layer merely needs to visit each output layer gadget Aout[j] and
transition them from state 1→ 2 to guarantee that it is safe to enter the critical section.

99

Critical Section

Figure 5.12: Mutex Augmentation protecting a Critical Section (4-in, 4-out), initially unlocked.

Up to this point, any of those checks may fail: Ain[i] could be in state 2 or 4 due to another
robot performing try-lock(j) for i ≤ j, for some j < i it could be that Ain[j] is in state 2 because
another robot is performing try-lock(j) (or in state 3 because they have finished performing it),
and any Aout[j] could be in state 3 because of a concurrent unlock(j). If any of these gadgets fail
to be in the expected “unlocked” state, then the strategy is to reverse direction and undo every
previous transition until exiting from the original input port i, which will always be possible by
design.

The final passes of a successful try-lock(i) will put each Aout[j] back to state 1 then follow
the path it opened which leads to Ain[i] and transitions the gadgets Ain[0 : i] from states 4 → 5
and Ain[i] from 2 → 3. Switching to states 5 and 3 still prevents other robots from entering but
opens a reset path used in unlock which can reset the input layer for future locking.

As such, a robot performs unlock(j) by opening the output gadget Aout[j] (state 1 → 3),
following the aforementioned reset path from Ain[0] to the original input gadget Ain[i] to put them
back in state 1, then returning to exit through Aout[j] (state 3→ 1) to out-port j.

Both of these strategies only make O(k) transitions. A successful try-lock(i) takes 2(i + 1)
transitions through input gadgets and 2k through output gadgets, and a failed execution makes up
to 2(i + 1) + 2(k − 1) transitions. An unlock(j) will make i + 2 transitions, following a successful
try-lock(i). We can thus conclude that the mutex is deadlock-free, guaranteeing progress under
our fair scheduler assumption.

This augmentation can be shown to guarantee mutual exclusion, even in the presence of robots
following alternative, adversarial strategies, by considering two types of intervals in executions: first
when Ain[0] is not in state 1 and second when some Aout[j] is in state 3. Because all paths from the
outside must transition Ain[0] out of state 1 to enter, and all exit paths must transition it back to

100

state 1 to leave, the first interval contains at most one robot with access to the inside of the design.
As foreshadowed earlier, the second type of interval is the interval of a robot on an unlock path,
which starts during the first type of interval for that robot and must end before any robot’s can
enter the inside again, ensuring that any unlocking is linearized before the next successful locking
and thus mutual exclusion of the critical section.

Algorithm 5 Gadget Mutex’s Analogous Shared Memory Algorithm

1: Ain = [i ↦→ 1 | 0 ≤ i < k]
2: Aout = [i ↦→ 1 | 0 ≤ i < k]
3: function try-lock(i)
4: if ¬ cas(&Ain[i], 1, 2) then ▷ Reserve desired index
5: return
6: for i from i− 1 to 0 do ▷ Block lower indices
7: if ¬ cas(&Ain[i], 1, 4) then goto undo-block
8: for i from 0 to k − 1 do ▷ Ensure no unlock
9: if ¬ cas(&Aout[i], 1, 2) then goto undo-check

10: for i from k − 1 to 0 do
11: Aout[i] = 1
12: while Ain[i] = 4 ▷ Mark lower-indices for unlocking
13: Ain[i]← 5
14: i← i + 1
15: Ain[i]← 3 ▷ Mark desired index for unlocking
16: return i
17: label undo-check:
18: for i from i− 1 to 0 do ▷ Reset modified Aout

19: Aout[i]← 1
20: label undo-block:
21: for i← i + 1; Ain[i] = 4; i← i + 1 ▷ Reset modified Ain

22: Ain[i]← 1
23: Ain[i]← 1 ▷ Exit from original index
24: return i
25: function unlock(i)
26: Aout[i]← 3 ▷ Mark desired exit
27: for i← 0; Ain[i] = 5; i← i + 1 ▷ Unblock lower indices
28: Ain[i]← 1
29: Ain[i]← 1 ▷ Unblock original index
30: for i from 0 to k − 1 do ▷ Find desired exit
31: if Aout[i] = 3 then
32: Aout[i]← 1
33: return i

5.6 Demultiplexer

One of the major differences between the motion planning model and the shared memory model is
that gadgets are not able to distinguish between robots at the same location. Many distributed
and shared memory algorithms assume that threads have identifiers which can be used to uniquely

101

branch into different behaviors based on who is performing the action and to track the source
of information. Models of anonymous processes have been studied, such as those operating on
private inputs [AGM02] and those with access to randomization [FHS98], but the motion planning
framework is unique because while robots with different knowledge, random bits, or team affiliations
may choose different paths at the same location, they cannot be forced to make a choice based on
those private differentiating factors as are threads follow a prescribed program.

As such, all of the constructions so far have ensured that robots never share locations, which
lowers both the requirements on base gadgets and the complexity of the designs. In pursuit of
building a self-contained simulation of a gadget, which may have robots share locations, we construct
a lock-based demultiplexer augmentation. Analogous to the circuit component of the same name, a
demultiplexer has k external locations that may contain a maximum of n robots, and has m ≥ n
internal “critical sections” with guaranteed mutual exclusion. This is like giving a temporary “name”
to the otherwise anonymous robot entering the gadget simulation, allowing gadgets to uniquely
distinguish between robots, such as in Figure 5.13.

Figure 5.13: Example use of a Demultiplexer to combine the read lines of a MRSW Register.

Figure 5.14: Demultiplexer access point (1-to-m, for m = 4), connected to others through mutexes.

What follows is a design for a demultiplexer based on toggle switch gadgets and a mutex with
try-lock(i), as in Section 5.5. We will show it is linearizable and that it guarantees progress under

102

a round-robin scheduler , a fair scheduler that allocates turns to every robot one after another in
a cyclical order.

We design an access point of a demultiplexer in three parts, shown in Figure 5.14. A robot at
access point i begins by entering a tree of directed toggle switches, which branches it to one of m
locations, taking at least logm turns. A robot at branch j may now choose to enter in-port i of the
mutex for critical section j, or choose to backtrack through a diode to leave or try another branch.

This construction strengthens the mutex, whose try-lock(i) does not guarantee success, by
having a wait-free strategy demux(i) which guarantees that a robot at access point i will pass
through and enter one of the m critical sections. We prove that the strategy, which is simply to
travel through the tree to some branch j, perform try-lock(i) on mutex j, and either succeed
at entering or backtracking and repeating, will always terminate given sufficiently-large m as a
function of n and the worst-case runtime T (try-lock) for a k-way mutex.

Suppose a robot performs n− 1 iterations of this loop, so try-lock failed for n− 1 different
mutexes. Because try-lock is guaranteed to succeed if a robot is alone, each of those mutexes
contained another robot at the time. Because a toggle switch at depth d ≤ logm in the tree will only
be visited once out of every 2d traversals, the maximum rate robots can branch out of a particular
leaf is once per about (m/n)(logm + 1) turns. Thus, on the nth iteration of demux(i), the robot is
guaranteed to be alone in the mutex as long as:

(m/n)(logm + 1) ≥ n(logm + T (try-lock) + 1)

> (n− 1)(logm + Tfail(try-lock) + 1) + logm + Tsuccess(try-lock)

which is satisfied by choosing m = n2 × T (try-lock).

5.7 Open Problems

In previous work such as [DGLR18,DHL20], gadget-to-gadget simulations are used in reductions
to prove the hardness of motion planning through various gadgets, but they were not designed to
be atomic. Additionally, we also showed a lower-bound for finite-length simulations of consensus
gadgets, and we conjecture that the lower-bound should hold without the restriction. Given the
power and apparent limitations in this model, often similar to those of shared memory, which of
these simulation hardness results still hold?

Our register constructions were done with weakened requirements, promising that no base gadget
will have a reader or writer area accessed by more than one robot at the same time. While this
relaxation is sufficient for our universal simulation of bounded shared memory objects and generally
allows for wider applicability of these results, our final constructed register gadget is only atomic
under the same requirements. Our demultiplexer gadget was designed to allow for multiple robots to
share ports while preserving exclusion of the inner gadget, with the trade-off that it is not wait-free.
Is it possible to simulate fully-general atomic register gadgets, and what is the weakest base gadget
requirements necessary?

For some applications, there are also other desirable properties for simulations that do not have
traditional programming analogues, such as requiring a planar layout. Which existing planar results
still hold, and which atomic planar simulations are impossible?

103

Chapter 6

Complexity of Reconfiguration in
Surface Chemical Reaction Networks

This chapter presents results from the paper titled “Complexity of Reconfiguration in Surface
Chemical Reaction Networks” that the thesis author coauthored with Robert M. Alaniz, Josh

Brunner, Erik D. Demaine, Yevhenii Diomidov, Timothy Gomez, Elise Grizzell, Ryan Knobel,
Jayson Lynch, Robert Schweller, and Tim Wylie. This paper is under submission at the time of the

writing of this thesis [ABC+23].

Overview

We analyze the computational complexity of basic reconfiguration problems for the recently in-
troduced surface Chemical Reaction Networks (sCRNs), where ordered pairs of adjacent species
nondeterministically transform into a different ordered pair of species according to a predefined set
of allowed transition rules (chemical reactions). In particular, two questions that are fundamental
to the simulation of sCRNs are whether a given configuration of molecules can ever transform into
another given configuration, and whether a given cell can ever contain a given species, given a set of
transition rules. We show that these problems can be solved in polynomial time, are NP-complete,
or are PSPACE-complete in a variety of different settings, including when adjacent species just
swap instead of arbitrary transformation (swap sCRNs). Most problems turn out to be at least
NP-hard except with very few distinct species (2 or 3).

6.1 Introduction

The ability to engineer molecules to perform complex tasks is an essential goal of molecular
programming. A popular theoretical model for investigating molecular systems and distributed
systems is Chemical Reaction Networks (CRNs) [CDS14,SCWB08]. The model abstracts chemical
reactions to independent rule-based interactions that creates a mathematical framework equivalent
[CSWB09] to other well-studied models such as Vector Addition Systems [KM69] and Petri nets
[Pet62]. CRNs are also interesting for experimental molecular programmers, as examples have been
built using DNA strand displacement (DSD) [SSW10].

Abstract Surface Chemical Reaction Networks (sCRNs) were introduced in [QW14] as a way to
model chemical reactions that take place on a surface, where the geometry of the surface is used to
assist with computation. In this work, the authors gave a possible implementation of the model
similar to ideas of spatially organized DNA circuits [MSCS13]. This strategy involves DNA strands

104

being anchored to a DNA origami surface. These strands allow for “species” to be attached. Fuel
complexes are pumped into the system, which perform the reactions. While these reactions are
more complex than what has been implemented in current lab work, it shows a route to building
these types of networks.

6.1.1 Motivation

Feed-Forward circuits using DNA hairpins anchored to a DNA origami surface were implemented
in [CDM+17]. This experiment used a single type of fuel strand. The copies of the fuel strand
attached to the hairpins and were able to drive forward the computation.

A similar model was proposed in [DKTT15], which modeled DNA walkers moving along tracks.
These tracks have guards that can be opened or closed at the start of computation by including or
omitting specific DNA species at the start. DNA walkers have provided interesting implementations
such as robots that sort cargo on a surface [TLJ+17].

6.1.2 Previous Work

The initial paper on sCRNs [QW14] gave a 1D reversible Turing machine as an example of the
computational power of the model. They also provided other interesting constructions such as
building dynamic patterns, simulating continuously active Boolean logic circuits, and cellular
automata. Later work in [CQW20] gave a simulator of the model, improved some results of [QW14],
and gave many open problems- some of which we answer here.

In [BGYW19], the authors introduce the concept of swap reactions. These are reversible reactions
that only “swap” the positions of the two species. The authors of [BGYW19] gave a way to build
feed-forward circuits using only a constant number of species and reactions. These swap reactions
may have a simpler implementation and also have the advantage of the reverse reaction being the
same as the forward reaction, which makes it possible to reuse fuel species.

A similar idea for swap reactions on a surface that has been studied theoretically are friends-and-
strangers graphs [DK21]. This model was originally introduced to generalize problems such as the
15 Puzzle and Token Swapping. In the model, there is a location graph containing uniquely labeled
tokens and a friends graph with a vertex for every token, and an edge if they are allowed to swap
locations when adjacent in the location graph. The token swapping problem can be represented
with a complete friends graph, and the 15 puzzle has a grid graph as the location graph and a star
as the friends graph (the ‘empty square’ can swap with any other square). Swap sCRNs can be
described as multiplicities friends-and-strangers graph [Mil22], which relax the unique restriction,
with the surface grid (in our case the square grid) as the location graph and the allowed reactions
forming the edges of the friends graph.

6.1.3 Our Contributions

In this work, we focus on two main problems related to sCRNs. The first is the reconfiguration
problem, which asks given two configurations and a set of reactions, can the first configuration be
transformed to the second using the set of reactions. The second is the 1-reconfiguration problem,
which asks whether a given cell can ever contain a given species. Our results are summarized in
Table 6.1. The first row of the table comes from the Turing machine simulation in [QW14] although
it is not explicitly stated. The size comes from the smallest known universal reversible Turing
machine [MY07] (see [WN09] for a survey on small universal Turing machines.)

105

Problem Type Graph Species Rules Result Ref

Reconfiguration sCRN 1D 17 67 PSPACE-complete [QW14]

1-Reconfiguration Swap sCRN Grid 4 3 PSPACE-complete Thm. 6.3.3

1-Reconfiguration Swap sCRN Any ≤ 3 Any P Thm. 6.3.6

1-Reconfiguration Swap sCRN Any Any ≤ 2 P Thm. 6.3.6

Reconfiguration Swap sCRN Grid 4 3 PSPACE-complete Thm. 6.3.4

Reconfiguration Swap sCRN Any ≤ 3 Any P Thm. 6.3.5

Reconfiguration Swap sCRN Any Any ≤ 2 P Thm. 6.3.5

Reconfiguration sCRN Grid 3 1 NP-complete Thm. 6.4.4

Reconfiguration sCRN Grid ≥ 3 1 NP-complete Cor. 6.4.8

Reconfiguration sCRN Any ≤ 2 1 P Thm. 6.4.3

Table 6.1: Summary of our and known complexity results for sCRN reconfiguration problems,
depending on the type of sCRN, number of species, and number of rules. Note that all such
problems are contained in PSPACE.

We first investigate swap reactions in Section 6.3. We prove both problems are PSPACE-complete
using only four species and three swap reactions. For reconfiguration, we show this complexity is
tight by showing with three or less species and only swap reactions the problem is in P.

In Section 6.4, we analyze reconfiguration for all sCRNs that have a reaction set of size one.
For the case of only two species, we show for every possible reaction, the problem is solvable in
polynomial time. With three species or greater, we show that reconfiguration is NP-complete.

Finally, in Section 6.5, we conclude the chapter by discussing the results as well as many open
questions and other possible directions for future research related to surface CRNs.

In the original paper this chapter is based on [ABC+23], we also studied a setting which is
beyond the scope of this thesis, a restriction on surface CRNs called k-burnout where each species
is guaranteed to only transition k times. This is similar to the freezing restriction from Cellular
Automata [GMMRW21,GOT15,TO22] and Tile Automata [CLM+18]. For 1-reconfiguration, we
showed the problem is NP-complete in 1-burnout sCRNs, only using a constant number of species.

6.2 Surface CRN model

A chemical reaction network (CRN) is a pair Γ = (S,R) where S is a set of species and R is
a set of reactions, each of the form A1 + · · ·+ Aj → B1 + · · ·+ Bk where Ai, Bi ∈ S. (We do not
define the dynamics of general CRNs, as we do not need them here.)

A surface for a CRN Γ is an (infinite) undirected graph G. The vertices of the surface are
called cells. A configuration is a mapping from each cell to a species from the set S. While our
algorithmic results apply to general surfaces, our hardness constructions assume the practical case
where G is a grid graph, i.e., an induced subgraph of the infinite square grid (where omitted vertices
naturally correspond to cells without any species). When G is an infinite graph, we assume there
is some periodic pattern of cells that is repeated on the edges of the surface. Figure 6.1 shows an
example set of species and reactions and a configuration of a surface.

A surface Chemical Reaction Network (sCRN) consists of a surface and a CRN, where
every reaction is of the form A + B → C + D denoting that, when A and B are in neighboring
cells, they can be replaced with C and D. A is replaced with C and B with D.

106

{
SurfaceReac on Rules

x

z y zx

z x xx

z yx

Species

x

y

z

Figure 6.1: Example sCRN system.

Initial
Configuration

z

x

z

xy

y

One Move

z

x

z

xy

y

Target
Configuration

x

z

x

y

y

Figure 6.2: An initial, single step, and target configurations

For two configurations I, T , we write I →1
Γ T if there exists a r ∈ R such that performing

reaction r on a pair of species in I yields the configuration T . Let I →Γ T be the transitive closure
of I →1

Γ T , including loops from each configuration to itself, meaning that T is reachable from I.
Let Π(Γ, I) be the set of all configurations T for which I →Γ T is true.

6.2.1 Restrictions

A set of reactions R is reversible if, for every rule A+B → C+D in R, the reaction C+D → A+B
is also in R. We may also denote this as a single reversible reaction A + B ⇌ C + D.

A reaction of the form A + B ⇌ B + A is called a swap reaction .

6.2.2 Problems

Reconfiguration Problem. Given a sCRN Γ and two configurations I and T , is T ∈ Π(Γ, S)?

1-Reconfiguration Problem. Given a sCRN Γ, a configuration I, a vertex v, and a species s,
does there exist a T ∈ Π(Γ, S) such that T has species s at vertex v?

6.3 Swap Reactions

In this section, we will show 1-reconfiguration and reconfiguration with swap reactions is PSPACE-
complete with only 4 species and 3 swaps in Theorems 6.3.3 and 6.3.4. We continue by showing
that this complexity is tight, that is, reconfiguration with 3 species and swap reactions is tractable
in Theorems 6.3.5 and 6.3.6.

107

3

2

21 3

1

1

Figure 6.3: The Locking 2-Toggle (L2T) gadget and its states from the motion planning framework.
The numbers above indicate the state and when a traversal happens across the arrows, the gadget
changes to the indicated state.

6.3.1 Reconfiguration is PSPACE-complete

We prove PSPACE-completeness by reducing from the motion-planning-through-gadgets framework;
see Chapters 1, 2, and 5 for details on this model. Important for this chapter is that the problem
of changing the state of the entire system to a desired state has been shown to be PSPACE-
complete [ADD+22]. This reduction treats the model as a game where the player must perform
reactions moving a robot species through the surface.

There are many sets of motion planning models and gadgets to build our reduction. We select
1-player over 0-player since in the sCRN model there are many reactions that may occur and we are
asking whether there exists a sequence of reactions which reaches some target configuration; in the
same way 1-player motion planning asks if there exists a sequence of moves which takes the robot
to the target location. The existential query of possible moves/swaps remains the same regardless
of whether a player is making decisions vs them occurring by natural processes. The complexity of
the gadgets used here are considered in the 0-player setting in [DHHL22].

As a reminder, the Locking 2-toggle (L2T) is a 4 location, 3 state gadget. The states of
the gadget are shown in Figure 6.3. The L2T has advantages because it universal for reversible
deterministic gadgets. Reversibility was important to picking a gadget since swap reactions are
naturally reversible.

Constructing the L2T

We will show how to simulate the L2T in a swap sCRN system. Planar 1-player motion planning
with the L2T was shown to be PSPACE-complete [DGLR18]. We now describe this construction.

Species. We utilize 4 species types in this reduction and we name each of them according to
their role. First we have the wire . The wire is used to create the connection graph between gadgets
and can only swap with the robot species. The robot species is what moves between gadgets by
swapping with the wire and represents the robot in the framework. Each gadget initially contains 2
robot species, and there is one species that starts at the initial location of the robot in the system.
The robot can also swap with the key species. Each gadget has exactly 1 key species. The key
species is what performs the traversal of the gadget by swapping with the lock species. The lock
species can only swap with the key. There are 4 locks in each gadget. The locks ensure that only
legal traversals are possible by the robot species.

These species are arranged into gadgets consisting of two length-5 horizontal tunnels. The two
tunnels are connected by a length-3 central vertical tunnel at their 3rd cell. At the 4th cell of both
tunnels there is an additional degree 1 cell connected we will call the holding cell.

States and Traversals. The states of the gadget we build are represented by the location
of the key species in each gadget. If the key is in the central tunnel of the gadget then we are in

108

Robot Key

LockWire

(a) Swap rules/species (b) State 1 (c) State 2 (d) State 3

Figure 6.4: Locking 2-toggle implemented by swap rules. (a) The swap rules and species names.
(b-d) The three states of the locking 2-toggle.

Figure 6.5: Traversal of the robot species.

state 1 as shown in Figure 6.4b. Note that in this state the key may swap with the adjacent locks,
however we consider these configurations to also be in state 1 and take advantage of this later. The
horizontal tunnels of the gadget in this state contain a single lock with an adjacent robot species.

States 2 and 3 are reflections of each other (Figures 6.4c and 6.4d). This state has a robot in
the central tunnel and the key in the respective holding cell. The gadget in this state can only be
traversed from right to left in one of the tunnels.

Figure 6.5 shows the process of a robot species traversing through the gadget. Notice when a
robot species “traverse” a gadget, it actually traps itself to free another robot at the exit. We prove
two lemmas to help verify the correctness of our construction. The lemmas prove the gadgets we
design correctly implement the allowed traversals of a locking 2-toggle.

Lemma 6.3.1. A robot may perform a rightward traversal of a gadget through the north/south
tunnel if and only if the key is moved from the central tunnel to the north/south holding cell.

Proof. The horizontal tunnels in state 1 allow for a rightward traversal. The robot swaps with wires
until it reaches the third cell where it is adjacent to two locks. However the key in the central tunnel
may swap with the locks to reach the robot. The key and robot then swap. The key is then in the
horizontal tunnel and can swap to the right with the lock there. It may then swap with the robot
in the holding cell. This robot then may continue forward to the right and the key is stuck in the
holding cell.

Notice when entering from the left the robot will always reach a cell adjacent to lock species.
The robot may not swap with locks so it cannot traverse unless the key is in the central tunnel.

Lemma 6.3.2. A robot may perform a leftward traversal of a gadget through the north/south tunnel
if and only if the key is moved from the north/south holding cell to the central tunnel.

Proof. In state 2 the upper tunnel can be traversed and in state 3 the lower tunnel can be traversed.
The swap sequence for a leftward traversal is the reverse of the rightward traversal, meaning we are

109

undoing the swaps to return to state 1. The robot enters the gadget and swaps with the key, which
swaps with the locks to move adjacent to the central tunnel. The key then returns to the central
tunnel by swapping with the robot. The robot species can then leave the gadget to the left.

A robot entering from the right will not be able to swap to the position adjacent to the holding
cell if it contains a lock. This is true in both tunnels in state 1 and in the non-traversable tunnels
in states 2 and 3.

We use these lemmas to first prove PSPACE-completeness of 1-reconfiguration. We reduce from
the planar 1-player motion planning reachability problem.

Theorem 6.3.3. 1-reconfiguration is PSPACE-complete with 4 species and 3 swap reactions or
greater even when the surface is a subset of the grid graph.

Proof. Given a system of gadgets create a surface encoding the connection graph between the
locations. Each gadget is built as described above in a state representing the initial state of the
system. Ports are connected using multiple cells containing wire species. When more than two ports
are connected we use degree-3 cells with wire species. The target cell for 1-reconfiguration is a cell
containing a wire located at the target location in the system of gadgets.

If there exists a solution to the robot reachability problem then we can convert the sequence of
gadget traversals to a sequence of swaps. The swaps relocate a robot species to the location as in
the system of gadgets.

If there exists a swap sequence to place a robot species in the target cell there exists a solution to
the robot reachability problem. Any swap sequence either moves an robot along a wire, or traverses
it through a gadget. From Lemmas 6.3.1 and 6.3.2 we know the only way to traverse a gadget is to
change its state (the location of its key) and a gadget can only be traversed in the correct state.

Now we show Reconfiguration in sCRNs is hard with the same set of swaps is PSPACE-complete
as well. We do so by reducing from the Targeted Reconfiguration problem which asks, given an
initial and target configuration of a system of gadgets, does there exist sequence of gadget traversals
to change the state of the system from the initial to the target and has the robot reach a target
location. Note prior work only shows reconfiguration (without specifying the robot location) is
PSPACE-complete [ADD+22] however a quick inspection of the proof of Theorem 4.1 shows the
robot ends up at the initial location so requiring a target location does not change the computational
complexity for the locking 2-toggle. One may also find it useful to note that the technique used
in [ADD+22] for gadgets and in [HD09] for Nondeterministic Constraint Logic can be applied to
reversible deterministic systems more generally. This means the method described in those could be
used to give an alternate reduction directly from 1-reconfiguration of swap sCRNs to reconfiguration
of swap sCRNs.

Theorem 6.3.4. Reconfiguration is PSPACE-complete with 4 species and 3 swap reactions or
greater.

Proof. Our initial and target configurations of the surface are built with the robot species at the
robots location in the system of gadget, and each key is placed according to the starting configuration
of the gadget.

Again as in the previous theorem we know from Lemmas 6.3.1 and 6.3.2 the robot species
traversal corresponds to the traversals of the robot in the system of gadgets. The target surface can
be reached if and only the target configuration in the system of gadgets is reachable.

110

6.3.2 Polynomial-Time Algorithm

Here we show that the previous two hardness results are tight: when restricting to a smaller cases,
both problems become solvable in polynomial time. We prove this by utilizing previously known
algorithms for pebble games, where labeled pebbles are placed on a subset of nodes of a graph
(with at most one pebble per node). A move consists of moving a pebble from its current node to
an adjacent empty node. These pebble games are again a type of multiplicity friends-and-strangers
graph.

Theorem 6.3.5. Reconfiguration is in P with 3 or fewer species and only swap reactions. Reconfig-
uration is also in P with 2 or fewer swap reactions and any number of species.

Proof. First we will cover the case of only two swap reactions. There are two possibilities: the two
reactions share a common species or they do not. If they do not, we can partition the problem into
two disjoint problems, one with only the species involved in the first reaction and the other with
only the species from the second reaction. Each of these subproblems has only one reaction, and
is solvable if and only if each connected component of the surface has the same number of each
species in the initial and target configurations.

The only other case is where we have three species, A, B, and C, where A and C can swap,
B and C can swap, but A and B cannot swap. In this case, we can model it as a pebble motion
problem on a graph. Consider the graph of the surface where we put a white pebble on each A
species vertex, a black pebble on each B species vertex, and leave each C species vertex empty. A
legal swap in the surface CRN corresponds to sliding a pebble to an adjacent empty vertex. Goraly
et al. [GH10] gives a linear-time algorithm for determining whether there is a feasible solution to this
pebble motion problem. Since the pebble motion problem is exactly equivalent to the surface CRN
reconfiguration problem, the solution given by their algorithm directly says whether our surface
CRN problem is feasible.

Theorem 6.3.6. 1-reconfiguration is in P with 3 or fewer species and only swap reactions. 1-
reconfiguration is also in P with 2 or fewer swap reactions.

Proof. If there are only two swap reactions, we again have two cases depending on whether they
share a common species. If they do not share a common species, then we only need to consider the
rule involving the target species. The problem is solvable if and only if the connected component of
the surface of species involved in this reaction containing the target cell also has at least one copy
of the target species. Equivalently, if the target species is A, and A and B can swap, then there
must either be A at the target location or a path of B species from the target location to the initial
location of an A species.

The remaining case is when we again have three species, A, B, and C, where A and C can swap,
B and C can swap, but A and B cannot swap. If C is the target species, then the problem is always
solvable as long as there is any C in the initial configuration. Otherwise, suppose without loss of
generality that the target species is A. Some initial A must reach the target location. For each
initial A, consider the modified problem which has only that single A and replaces all of the other
copies of A with B. A sequence of swaps is legal in this modified problem if and only if it was legal
in the original problem. The original problem has a solution if and only if any of the modified ones
do. We then convert each of these problems to a robot motion planning problem on a graph: place
the robot at the vertex with a single copy of A, and place a moveable obstacle at each vertex with a
B. A legal move is either sliding the robot to an adjacent empty vertex or sliding an obstacle to an
adjacent empty vertex. Papadimitriou et al. [PRST94] give a simple polynomial time algorithm
for determining whether it is possible to get the robot to a given target location. By applying

111

their algorithm to each of these modified problems (one for each cell that has an initial A), we can
determine whether any of them have a solution in polynomial time (since there are only linearly
many such problems), and thus determine whether the original 1-reconfiguration problem has a
solution in polynomial time.

6.4 Single Reaction

When limited to a single reaction, we show a complete characterization of the reconfiguration
problem. There exists a reaction using 3 species for which the problem is NP-complete. For all
other cases of 1 reaction, the problem is solvable in polynomial time.

6.4.1 2 Species

We start with proving reconfiguration is in P when we only have 2 species and a single reaction.

Lemma 6.4.1. Reconfiguration with species {A,B} and reaction A+A→ A+B OR A+B → A+A
is solvable in polynomial time on any surface.

Proof. The reaction A + B → A + A is the reverse of the first case. By flipping the target and
initial configurations, we can reduce from reconfiguration with A + B → A + A to reconfiguration
A + A→ A + B.

We now solve the case where we have the reaction A + A→ A + B.
All cells that start and end with species B can be ignored as they do not need to be changed,

and can not participate in any reactions. If there is a cell that contains B in the initial configuration
but A in the target, the instance is ‘no’ as B may never become A.

Let any cell that starts in species A but ends in species B be called a flip cell, and any species
that starts in A and stays in A a catalyst cell.

An instance of reconfiguration with these reactions is solvable if and only if there exists a set of
spanning trees, each rooted at a catalyst cell, that contain all the flip cells. Using these trees, we
can construct a reaction sequence from post-order traversals of each spanning tree, where we have
each non-root node react with its parent to change itself to a B. In the other direction, given a
reaction sequence, we can construct the spanning trees by pointing each flip cell to the neighbor it
reacts with.

Lemma 6.4.2. Reconfiguration with species {A,B} and reaction A + A → B + B is solvable in
polynomial time on any surface.

Proof. Reconfiguration in this case can be reduced to perfect matching. Create a graph M including
a node for each cell in S containing the A species initially and containing B in the target, with edges
between nodes of neighboring cells. If M has a perfect matching, then each edge in the matching
corresponds to a reaction that changes A to B. If the target configuration is reachable, then the
reactions form a perfect matching since they include each cell exactly once.

Theorem 6.4.3. Reconfiguration with 2 species and 1 reaction is in P on any surface.

Proof. As we only have two species and a single reaction, we can analyze each of the four cases to
show membership in P. We divide into two cases:

A + A: When a species reacts with itself, it can either change both species, which is shown to
be in P by Lemma 6.4.2; or it changes only one of the species, which is in P by Lemma 6.4.1.

112

Figure 6.6: An example reduction from Hamiltonian Path. We are considering graphs on a grid,
so any two adjacent locations are connected in the graph. Left: an initial board with the starting
location in blue. Middle: One step of the reaction. Right: The target configuration with the ending
location in blue. Bottom: the single reaction rule.

A+B: When two different species react, they can either change to the same species, which is in
P by Lemma 6.4.1; or they can both change, which is a swap and thus is in P by Theorem 6.3.5.

6.4.2 3 or more Species

Moving up to 3 species and 1 reaction, we first show that there exists a reaction for which
reconfiguration is NP-complete. We then give reactions for which reconfiguration between 3 species
is in P, and in Corollary 6.4.8 we prove that all remaining reactions are isomorphic to one of the
reactions we’ve analyzed.

Theorem 6.4.4. Reconfiguration in sCRNs with species (A,B,C) and reaction A + B → C + A is
NP-complete even when the surface is a subset of the grid graph.

Proof. Let Γ = {(A,B,C), (A + B → C + A)}. Given an instance of the Hamiltonian path problem
on a grid graph H with a specified start and target vertex vs and vt, respectively, create a surface
G where each cell in G is a node from H. Each cell contains the species B except for the cell
representing vs which contains species A. The target surface has species C in every cell except for
the final node containing A, vt.

The species A can be thought of as an agent moving through the graph. The species B represents
a vertex that hasn’t been visited yet, while the species C represents one that has been. Each reaction
moves the agent along the graph, marking the previous vertex as visited.

(⇒) If there exists a Hamiltonian path, then the target configuration is reachable. The sequence
of edges in the path can be used as a reaction sequence moving the agent through the graph,
changing each cell to species C finishing at the cell representing vt.

(⇐) If the target configuration is reachable, there exists a Hamiltonian path. The sequence of
reactions can be used to construct the path that visits each of the vertices exactly once, ending at
vt.

We also see that this CRN has the property of 2-burnout, meaning that each cell can switch
states at most 2 times before being stuck in its final state: the only possible individual cell state
changes are B → A and A → C. This bounds the maximum sequence length for reaching any
reachable surface, putting the reconfiguration problem in NP.

Lemma 6.4.5. Reconfiguration with species (A,B,C) and reaction A + B → C + C is solvable in
polynomial time on any surface.

Proof. At a high level, we create a new graph of all the cells that must change to species C, and
add an edge when the two cells can react with each other. Since a reaction changes both cells to

113

C we can think of the reaction as “covering” the two reacting cells. Finding a perfect matching
in this new graph will give a set of edges along which to perform the reactions to reach the target
configuration.

Consider a surface G and a subgraph G′ ⊆ G where we include a vertex v′ in G′ for each cell
that contain A or B in the initial configuration and C in the target configuration. We include an
edge (u′, v′) between any vertices in G′ that contain different initial species, i.e. any pair of cell
which one initially contains A and the other initially B.

Reconfiguration is possible if and only if there is a perfect matching in G′. If there is a perfect
matching then there exists a set of edges which cover each cell once. Since G′ represents the cells
that must change states, and the edges between them are reactions, the covering can be used as
a sequence of pairs of cells to react. If there is a sequence of reactions then there exists a perfect
matching in G′: each cell only reacts once so the matching must be perfect, and the cells that react
have edges between them in G′.

Lemma 6.4.6. Reconfiguration with species (A,B,C) and reaction A + B → A + C is solvable in
polynomial time on any surface.

Proof. The instance of reconfiguration is solvable if and only if any cell that ends with species C
either contained C in the initial configuration, or started with species B and have an A adjacent
to perform the reaction. Additionally, since a reaction cannot cause a cell to change to A or B,
each cell with an A or B in the target configuration must contain the same species in the initial
configuration.

The final case we study is 4 species 1 reaction. Any sCRN with 5 or more species and 1 reaction
has a species which is not included in the reaction.

Lemma 6.4.7. Reconfiguration with species (A,B,C,D) and the reaction A + B → C + D is in P
on any surface.

Proof. We can reduce Reconfiguration with A + B → C + D to perfect matching similar to Lemma
6.4.5. Create a new graph with each vertex representing a cell in the surface that must change
species. Add an edge between each pair of neighboring cells that can react (between one containing
A and the other B). A perfect matching then corresponds to a sequence of reactions that changes
each of the species in each cell to C or D.

Corollary 6.4.8. Reconfiguration with 3 or greater species and 1 reaction is NP-complete on any
surface.

Proof. First, Theorem 6.4.4 shows that there exists a case of reconfiguration with 3 species that is
NP-hard.

For membership in NP, we analyze each possible reaction. We note that we only need to consider
two cases for the left hand side of the rule, A + A and A + B. Any other reaction is isomorphic to
one of this form as we can relabel the species. For example, rule B +C → A+A can be relabeled as
A + B → C + C. Also, we know that C must appear somewhere in the right hand side of the rule.
If it does not then the reaction only takes place between two species, which is always polynomial
time as shown above, or it involves a species we can relabel as C.

Here are the cases for A + B and our analysis results:
When we have A+A on the left side of the rule, the only case we must consider is A+A→ B+C

(since all 3 species must be included in the rule). We have already solved this reaction: first swap
the labels of A and C giving rule C + C → B + A, then reverse the rule to B + A→ C + C and

114

A + B → A + C P in Lemma 6.4.6

A + B → C + B P in Lemma 6.4.6 under isomorphism

A + B → C + A NP in Theorem 6.4.4

A + B → B + C NP in Theorem 6.4.4 under isomorphism

A + B → C + C P in Lemma 6.4.5

A + B → C + D P in Lemma 6.4.7

swap the initial and target configuration. Finally since rules do not care about orientation this is
equivalent to the rule A + B → C + C in Lemma 6.4.5.

Finally, for 4 species and greater, the only new case is A+B → C +D, which is proven to be in
P in Lemma 6.4.7. Any other case would have species that are not used since a rule can only have 4
different species in it.

Thus, all cases are either in NP, or in P which is a subset of NP, therefore, the problem is in NP.
Also, since our results for each case apply for any surface, the same is true in general.

6.5 Conclusion

In this chapter, we explored the complexity of the configuration problem within natural variations
of the surface CRN model. While general reconfiguration is known to be PSPACE-complete, we
showed that it is still PSPACE-complete even with several extreme constraints. We first considered
the case where only swap reactions are allowed, and showed reconfiguration is PSPACE-complete
with only four species and three distinct reaction types. We further showed that this is the smallest
possible number of species for which the problem is hard by providing a polynomial-time solution
for three or fewer species when only using swap reactions.

We next considered surface CRNs with rules other than just swap reactions. We showed
reconfiguration is NP-complete for three species and one reaction type, leading to a general proof
that that three species, one reaction type is NP-complete while showing that dropping the species
count down to two yields a polynomial-time solution.

This work introduced new concepts that leaves open a number of directions for future work.
While we have fully characterized the complexity of reconfiguration for the swap-only version of the
model, the complexity of reconfiguration with general rule types for three species systems remains
open if the system uses more than one rule. All of hardness results also use a square grid graph,
while our algorithms work on general surfaces. We would like to know if the threshold for hardness
can be lowered on more general graphs.

115

Chapter 7

Granular External Memory Model

This chapter presents results from an unpublished paper titled “Granular External Memory Model:
Breaking the Shackles of Contiguity for Faster Algorithms” that the thesis author coauthored with
Josh Brunner, Lily Chung, Erik D. Demaine, Yevhenii Diomidov, Markus Hecher, Siddhartha

Jayanti, and Jayson Lynch [BCC+23].

Overview

We study a variation on the well-studied external-memory model: reads from and writes to external
memory are still done in bulk (B words at once), but are no longer required to be in a contiguous
block, refining the “granularity” of memory transfers. This granular model is motivated by RAM and
SSD hardware being theoretically capable of bulk random access roughly as fast as bulk sequential
access, if we use protocols to allow specifying multiple addresses in one operation (which many
SSDs already provide). Like the standard external-memory model, this granular model is a special
case of the I/O model of Aggarwal and Vitter from 1988, but the granular parameter settings have
barely been studied beyond that original paper. We develop efficient data structures for dictionaries
and union-find, and efficient algorithms for integer sorting, list ranking, dominating set, connected
components, and minimum spanning forest, most of which beat the best known (or even the best
possible) results for the external-memory model with analogous setting of parameters.

7.1 Introduction

Real-world computer systems are fundamentally limited by memory access latency : as the
memory system gets bigger, it necessarily gets farther away from the CPU, requiring a longer
round-trip time for each memory transfer. To amortize away this latency cost, modern computer
architectures increase the size of each memory transfer, transferring a block of B contiguous words
containing the desired word instead of just a single desired word. The idea that a block transfer
can cost only slightly more than a single word. More precisely, in a simple but reasonable model,
transferring B words in a system with latency ℓ and bandwidth b takes ℓ + B/b time. For example,
if we set B = ℓ · b, then a block transfer takes only twice as much time as a single word transfer —
B words for roughly the price of one. The amortized perspective is that each word costs only a
1/B fraction of the transfer time, for a cost of (ℓ + B/b)/B = ℓ/B + 1/b per word; when B = ℓ · b,
this amortized cost is 2/b per word, which is independent of the latency ℓ. By increasing the
architecture’s bandwidth b (and the corresponding block size B), we can reduce the amortized

116

memory transfer time, effectively eliminating the latency — if the algorithm running on the CPU
can actually use all B words of a memory transfer.

This setup has a counterintuitive asymmetry though: for a memory read, the request from the
CPU still consists of a single word, specifying the memory address of the block to read, while the
response from memory consists of B words. (For a memory write, the request is long while the
response is short/empty.) What if we balanced the request and response to roughly the same length?
The transfer time would remain roughly the same (up to constant factors). What could we do with
a memory read where the request consists of B words instead of just one?

In this chapter, we explore a natural extension to the standard memory protocols: every memory
transfer can specify B different memory addresses instead of just one. Specifically, a memory read
fetches B different words potentially dispersed throughout memory, instead of being required to
form a contiguous block. Similarly, a memory write specifies B words of content as well as B
different addresses to write to, and executes those B writes in parallel. In other words, our extension
refines the granularity of memory transfers, from the coarse grain of contiguous blocks to the
fine grain of individual words, while preserving the number of words in each memory transfer. In
a latency-limited system, these bulk memory transfers should be roughly as fast as the standard
block memory transfers.

Indeed, we argue that our granular model should be practical in hardware architectures that are
already fundamentally random-access. SDRAM [Wik22a] — the primary memory in most computers
and mobile devices since the 1990s — already decomposes a block memory transfer into a pipelined
sequence of individual column transfers (with column size varying from 4 to 16 bits), so the memory
controller and bus protocol alone could be modified to support noncontiguous bulk transfers while
using the same pipelining architecture.1 SSD (Solid-State Drive) [Wik22b] — an increasingly popular
secondary storage used exclusively on mobile devices and which for computers became the most
purchased in 2020 [Kni21] — already “stripes” logically contiguous data across physical chips to
parallelize block transfers, so the same approach should be equally efficient for any (well-distributed)
random pattern of accesses.2 Indeed, the modern NVMe protocol for SSDs [NVM21] (since version
1.1) provides a protocol called Scatter Gather List (SGL) for specifying noncontiguous portions of
memory for parallel reads and writes, though currently they limit to unions of contiguous regions
each at least 512 bytes long. Practical experiments show negligible if any difference in performance
between logical blocks of 512 bytes and 4,096 bytes [Fel22], so we expect similar behavior for even
smaller logical blocks. Spinning hard disk drives are the obvious exception where granular bulk
accesses are slower than contiguous block accesses, because the time required to move the seek head
is a fundamental bottleneck to random access.

7.1.1 Models

The original I/O model of Aggarwal and Vitter [AV88] actually defined memory transfers with
both block access (required to be contiguous) and bulk access (with no contiguity requirement).
It defines a system with a cache and an external memory (larger cache, RAM, or disk) by three
parameters: the number M of words in the cache, the number B of words in a block (essentially,
granularity), and the number P of blocks that can be transferred in parallel at once. Their

1SDRAM decomposes memory into banks, rows, and columns, and can more quickly access multiple columns
within a single row of a bank, as switching rows within a bank incurs an extra “recharge” cost. But the row switching
cost can be mitigated by ensuring that the memory addresses are well distributed across the banks.

2Writing a word usually requires flashing the entire containing physical block, so random patterns of writes reduce
the longevity of the disk, but this issue does not impact speed, and in practice disk controllers delay writes to combine
them as much as possible.

117

motivation at the time was the (still popular) system of P spinning hard disk drives, which (via
data striping) enables P parallel accesses roughly as fast as a single access, but where each drive
still needs to be accessed in a large contiguous block in order to amortize away the seek latency. To
evaluate an algorithm in this model, we count the number of parallel block memory transfers or
I/Os (each reading or writing B · P words at once); we ignore the usually insignificant time spent
computing on data in cache.

This model is extremely well-studied in theoretical computer science, with hundreds of algorithms
and data structures; see the surveys [Arg01,Vit01,Dem02,AM09] and more recent papers [BBF+10,
CFCS18,JL19,MN19]. It has also been shown to be extremely useful in practice [APSV02,CM99,
DSSS04]. But essentially all work beyond the original paper [AV88] simplifies the model to just
consist of two parameters, cache size M and block size B, assuming for simplicity that P = 1. We
call this simplified model the external-memory (EM) model (following terminology from many
papers that use this model). While the P = 1 assumption makes sense for a single spinning disk
drive and with current SDRAM protocols, we have just argued that it is not consistent with the
hardware capabilities of SDRAM and it already does not make sense for modern SSD protocols.

In this chapter, we make a different simplifying assumption of the I/O model, that B = 1. We
call this model the granular external-memory (GEM) model , as it is very similar to the
external-memory model, with the key difference that bulk memory transfer has been refined in
granularity from a single contiguous block of B words to an arbitrary pattern of P words. To ease
comparison between granular and standard external-memory models with the same product B · P ,
we relabel parameter P to B in the granular model. Thus both external-memory models transfer B
words in each memory transfer, and all that differs is whether these words must be contiguous.

7.1.2 Results

The granular external-memory model is at least as powerful as the external-memory model, as
it can in particular choose to arrange each bulk memory transfer of B words contiguously into a
block. Our results show that the granular model is in fact strictly more powerful, by giving better
GEM algorithms and data structures that beat the known lower bounds or best known EM results.
Table 7.1 gives precise bounds for these GEM and EM results, which we summarize now:

1. We prove that the classic PRAM model for parallel algorithms can be efficiently simulated
by the GEM model. This result improves the known EM simulation of the PRAM by a
logarithmic factor, essentially because GEM enables random access while EM needs to sort.
We use this PRAM technique to design our algorithms, which effectively provides parallel-for
loops.

2. While dynamic arrays are easy to build in the EM model, in the GEM model arrays support
random access in the sense that a batch of B read(s) or B write(s) (all known upfront)
can be done in one I/O. We call these operations B-batch read/write. By contrast, EM
needs one I/O per read/write, and thus Θ(B) I/Os for B-batch read/write, unless the
B accessed elements happen to be contiguous.

Furthermore, we show that (nonconsecutive) arrays of varying lengths can be concatenated
with optimal factor-B speedup in the GEM, even if many of them are shorter than B elements.
By contrast, EM needs to pay at least one I/O for every array.

3. We give several faster GEM sorting algorithms that beat the EM lower bound for sorting
indivisible elements [AV88] or sorting arbitrary elements assuming a well-known network
coding conjecture [FHLS20]. For indivisible elements, [AV88] already showed that comparison

118

Problem GEM Result (number of I/Os) Best EM Result (number of I/Os)

Basics (§7.2)

p-processor PRAM
Simulation (per round)

Θ
(︁

p
B

)︁
[Thm 7.2.1] O(sort(p)) if O(p) space [CGG+95]

[Sorting results below define sort(n)]

Dynamic Array Θ(1) for B-batch read/write,
Θ
(︁

1
B

)︁
am. push/pop [Thm 7.2.2]

Θ(1) for single read/write,
Θ
(︁

1
B

)︁
am. push/pop

Joining n Arrays of m
Total Items

Θ
(︁
n+m
B

)︁
[Thm 7.2.3] Θ

(︁
n+ m

B

)︁
Sorting (§7.3)

Sorting Indivisible Items O
(︁

n
B
logM n

)︁
[AV88] sort(n) = Θ

(︁
n
B
logM/B

n
B

)︁
[AV88]

Permutation Θ
(︁

n
B

)︁
[Thm 7.3.2] perm(n) = Θ(min{n, sort(n)}) [AV88]

Counting Sort O
(︁
n+u
B

)︁
[Thm 7.3.3] O(sort(n)) [AV88]

Radix Sort O
(︁

n
B
logn u

)︁
[Thm 7.3.4] O(sort(n)) [AV88]

Union-Find (§7.4)

Offline Union-Find O
(︁

n
B

+ m
B
log m

M

)︁
[Thm 7.4.2] Ω(perm(m)),

O
(︁
sort(m) logmin{logB, m

M
}
)︁
[AAY10]

Online Union-Find O(logn) B-batch union/find
[Thm 7.4.3], O(α(n)/B) am. at least
(B log(n)/α(n))-batch find [Thm 7.4.4]

O(α(n)) am. (O(logn) worst case)
single union/find [TvL84]

Hashing (§7.5)

Open Addressing 1 + Θ

(︃
ln k

W(B
kx

ln k)

)︃
exp. k-batch find,

given load factor 1− 1/Θ(x) [Thm 7.5.9]

1 +O
(︁

x
B

)︁
exp. single find, given the

same assumption [BKK21]

Dynamic Perfect Hashing Θ(1) B-batch find,
Θ(1) exp. am. B-batch insert/delete
[Thm 7.5.11]

Ω(logλ n) exp. single find
if O

(︁
λ
B

)︁
am. single insert [IP12];

matching upper bounds for λ =
Ω(log logM + logM N) [IP12,CFCS18]

List Ranking (§7.6)

List Ranking Θ
(︁

n
B

)︁
[Thm 7.6.1] Ω(perm(n)), O(sort(n)) [CGG+95]

Graph Algorithms (§7.7)

Maximal Independent
Set

Θ
(︁
n+m
B

)︁
[Thm 7.7.1] Open

Connected Components O
(︁
n+m
B

logB
)︁
[Thm 7.7.7] O

(︁
min{sort(n2), sort(m) log n

M
}
)︁

[CGG+95];
Θ(sort(n)) if sparse [CGG+95]

Connected Components
on Forest

Θ
(︁

n
B

)︁
[Thm 7.7.8] Θ(sort(n)) [CGG+95]

Minimum Spanning
Forest

O
(︁
sort(m) + m

B
log m

M

)︁
[Thm 7.7.10] O(sort(m) log logB) [ABT04];

O
(︁
min{sort(n2), sort(m) log n

M
}
)︁

[CGG+95]

Table 7.1: Summary of our results in the Granular External Memory (GEM) model, and comparison
to best known results in the External Memory (EM) model. Here O, Ω, and Θ denote upper bounds,
lower bounds, and matching upper and lower bounds on the problems; and k denotes any batch size
satisfying k ≤ B.

sorting can be improved on the GEM by roughly a factor of Θ(logB). Furthermore, we show
that the GEM can execute a given array permutation as fast as scanning an array, beating the
known EM lower bound. Leaving the indivisible model, we prove that GEM enables integer
sorting faster than comparison sorting, specifically linear-time radix sort.

119

4. We develop GEM algorithms for offline union-find that improve the best EM algorithm by
logarithmic factors. We develop GEM data structures for online union-find that improve
the best EM data structure by a nearby factor of B in the worst case, assuming again that
operations come in batches of B.

5. We develop a dynamic dictionary data structure supporting B-batch insert, delete, and
find operations in O(1) expected amortized time, beating known EM lower bounds [IP12].
While this data structure is based on dynamic perfect hashing, we also analyze simpler
open-addressing hash tables, which turn out to be quite intricate (and slightly suboptimal).

6. We develop an optimal GEM algorithm for list ranking, which runs as fast as scanning an
array, and is roughly a logarithmic factor faster than the best possible EM algorithm.

7. We develop efficient GEM graph algorithms for finding a maximal independent set, finding
a dominating set of at most half the vertices, decomposing a graph or forest into connected
components, and computing a minimum spanning forest. All of these results improve upon
the best known EM algorithms for these problems.

We give detailed pseudocode for many of our algorithms to aid understanding and precision for
our proofs. We borrow notation for pointers and types from C/C++ style languages, along with
built-in functions and loop notation similar to Python.

7.2 Granular External Memory Model

We define the Granular External Memory (GEM) model to consist of a cache of M words
connected to an external memory or disk of arbitrarily many words, where both cache and disk are
random-access memories. A batch I/O operation is defined by a sequence d of B disk addresses
and a sequence c of B corresponding cache addresses; a batch read copies data from d to c, while a
batch write copies from c to d, in order.3 The algorithm can do arbitrary computation on the data
in cache, but cannot directly manipulate data on disk. The goal is to solve an algorithmic problem
whose input is on disk, and whose output should generally be on disk, using the fewest possible
batch I/O operations.

The GEM model is equivalent to the I/O model of [AV88] with the same M parameter, the
GEM’s B parameter plugged into the EM’s P parameter, and the EM’s B = 1. On the other hand,
we define the External Memory (EM) model to be the I/O model with P = 1.

We concisely express batch I/O operations in GEM pseudocode as vector operations. For
example, suppose A is an array stored on disk and i and a are arrays of length B in cache. The
semantics of “a ← A[i]” is to locally add A[0] to each index in i into a temporary array i′ in cache
then perform a batch read from i′ to a. If i were length n > B, then this process could be performed
for each contiguous block of i and a of length B, thus taking Θ(n/B) I/O operations and O(B)
extra cache space.

For breaking up more complex operations into explicit block-by-block loops, we use the notation
“for batch i, b in A” for code operating on each contiguous block b (of length B, except possibly
the final block) of elements at increasing indices i of an array A. Algorithm 6 shows the desugaring.
We sometimes omit the index vector i, and just write “for b in A”.

3Throughout this chapter, we use fraktur font to denote vector variables.

120

Algorithm 6 The “foreach batch” loop syntactic sugar.

1: for batch i, b in A
2: alg(i, b)

1: for i in 0 . . . ⌊length(A)/B⌋
2: i ← [j | B · i ≤ j < min(B · (i + 1), length(A))]
3: b ← A[i]
4: alg(i, b)

7.2.1 Simulating PRAM

The PRAM model [FW78] extends the RAM model with parallelism in the form of synchronized
threads. A PRAM algorithm runs p threads in lockstep in rounds of the form: (1) read from one
location in memory into a register, (2) perform one RAM operation in registers, then (3) write a
register value to a location in memory. We show that GEM can achieve optimal speedup of PRAM
simulation over sequential RAM simulation.

Theorem 7.2.1. If a problem is solved by a PRAM algorithm that runs in T (p) rounds given p
threads, then it is solved by a GEM algorithm that uses O

(︁ p
B · T (p)

)︁
I/Os given a cache of size

M = Ω(B).

Proof. An explicit simulation of PRAM in GEM is shown in Algorithm 8. In each round, if all
accumulator register values are stored in cache (if M = Ω(p)) or saved in external memory (if
M = Ω(B)), we avoid problems where a simulated thread writes to a location before we had a
chance to simulate another thread reading from that location. This can be adapted to work for
any flavor of PRAM from EREW (exclusive-reader, exclusive writer) to CRCW (concurrent read
concurrent write) with semantics for write conflicts that can be computed in O(1) I/Os, which
includes priority, arbitrary, and common submodels.

A high-level translation from PRAM to GEM is shown in Algorithm 7.

The “parallel for e in v” statement takes a contiguous block v and runs a |v|-thread PRAM
simulation of the body of the loop, where the values e in v are distributed among the threads.

The “parallel for batch i, e in v” statement is syntactic sugar for a “for batch” loop that
performs a “parallel for” on each block.

Algorithm 8 Pseudocode for an Explicit GEM simulation of PRAM

1: function run-pram(reg: Reg*[], stop: int*): void
2: while ¬ *stop ▷ Loop until told to stop
3: ips ← ip(*reg) ▷ Read thread instruction pointers
4: op-codes ← *ips ▷ Read current op codes
5: vals ← *read-addr(op-codes) ▷ (1) Read values from specified locations
6: acc(*reg) ← vals ▷ Put values into accumulator registers
7: ops ← op(op-codes) ▷ Read RAM operations to perform
8: for f in ops
9: do-ram-instruction(f , reg) ▷ (2) Locally execute ops

10: write ← write-addr(op-codes) ▷ Get addresses to write to
11: vals ← acc(*reg) ▷ Get values to write
12: *write ← vals ▷ (3) Write values to memory

121

Algorithm 7 Recursive reduction of parallel loop syntactic sugar (left) to GEM code (right).

1: parallel for i, x in b
2: v[i] ← A[x]

1: v ← A[b] ▷ Read I/O operation

1: parallel for i, x in b
2: A[x] ← v[i]

1: A[b] ← v ▷ Write I/O operation

1: parallel for i, x in b
2: g(i, x)
3: h(i, x)

1: parallel for i, x in b ▷ Sequence
2: g(i, x)
3: parallel for i, x in b
4: h(i, x)

1: parallel for i, x in b
2: if p[i] then
3: g(i, x)
4: else
5: h(i, x)

1: t ← { i ↦→ b[i] | p[i] } ▷ Conditional
2: parallel for j, y in t
3: g(j, y)
4: f ← { i ↦→ b[i] | ¬p[i] }
5: parallel for i, x in f
6: h(i, x)

1: parallel for i, x in b
2: while p[i]
3: g(i, x)

1: j ← { i ↦→ b[i] | p[i] } ▷ Iteration
2: while length(j) > 0
3: parallel for i, x in j
4: g(i, x)
5: j ← j \ { i | ¬p[i] }

7.2.2 Maps and Arrays

Sets, maps, and dynamic arrays are useful basic building blocks for the algorithms presented in this
chapter, so in this section we briefly explain the interface and implementations of sets, maps, and
dynamic arrays that support efficient batch operations in the GEM model.

Given a universe of integer keys from {0, 1, . . . , u}, the batch-map stores an array of u + 1
items. After the initial O(u/B) I/Os to initialize an empty map, this map can support batch-find
to search for up to B items by key, batch-insert to insert up to B items by key (reporting which
were successful), and batch-remove to remove up to B items (and report which were present) in
O(1) I/Os using parallel for each loops, as described in the previous section.

The batch-set stores a set of keys from the universe as a batch-map with boolean values,
supporting similar operations without item parameters to give a set interface with the same
performance characteristics.

We also implement an efficient dynamic array, batch-array, that can provide push and pop
in amortized O(1/B) I/Os. To do this, a batch-array contains a standard dynamic array (in
external memory) plus up to B items in a separate buffer, logically at the end of the array. Usually,
push and pop can act only upon the buffer, costing zero I/Os as long as the it is cached in internal
memory, until it becomes full or empty. At that point, the buffer is flushed to or refilled from the
external array to contain B/2 items using O(1) I/Os, whose cost amortizes to O(1/B) I/Os per
operation. This can also trigger a resize of the external array every Ω(m) operations, where m is its
capacity, which takes Θ(m/B) I/Os to reallocate and move items, thus also amortizing to O(1/B)
I/Os per operation. For convenience, we also provide batch-push to push multiple items at once.
Full details can be found in Algorithm 9.

122

Theorem 7.2.2. Dynamic arrays can support push and pop in Θ
(︁
1
B

)︁
amortized I/Os alongside

Θ(1) batch read and write operations on up to B locations.

Algorithm 9 The batch-array Buffered Dynamic Array Data Structure
1: struct batch-array
2: data : int[] ▷ Items to stay in external memory
3: buffer : int[] ▷ Items to keep in cache
4: function new-batch-array(): batch-array
5: return batch-array([], empty-array-with-fixed-capacity(B))
6: function length(a: batch-array): int
7: return length(data(a)) + length(buffer(a))
8: function buffer-reset(a: batch-array): ()
9: m ← ⌊B/2⌋ ▷ Ideal number of items in the buffer for amortization

10: if length(buffer(a)) > m then
11: d ← length(buffer(a)) − m
12: extend(data(a), take(buffer(a), d)) ▷ Push d items out of buffer into data
13: pop-front-n(buffer(a), d) ▷ Remove those d items from buffer
14: else
15: d ← min(m − length(buffer(a)), length(data(a)))
16: extend-front(buffer(a), take-last(data(a), d)) ▷ Pull d items from data into buffer
17: pop-back-n(data(a), d) ▷ Remove those d items from data
18: function push(a: batch-array, x: int): ()
19: if length(buffer(a)) = B then buffer-reset(a) ▷ Make room in buffer
20: push(buffer(a), x) ▷ Add x to the end of buffer
21: function batch-push(a: batch-array, xs: int[]): ()
22: for x in xs
23: push(a, x) ▷ Push each item, mostly will only touch buffer
24: function pop(a: batch-array): int
25: if length(buffer(a)) = 0 then buffer-reset(a) ▷ Bring items into buffer
26: return pop(buffer(a)) ▷ Add x to the end of buffer
27: function pop(a: batch-array): int
28: if length(buffer(a)) = 0 then buffer-reset(a) ▷ Bring items into buffer
29: return pop(buffer(a)) ▷ Add x to the end of buffer
30: function data(a: batch-array): int[]
31: extend(data(a), buffer(a)) ▷ Flush whole buffer into data
32: length(buffer(a)) ← 0 ▷ Clear buffer
33: return data(a)

7.2.3 Joining Arrays

In GEM, we show how to scan a jagged 2D array, n arrays with m items total, in O((n+m)/B) I/Os.
Implementations are provided in Algorithm 10 and 11 of batch-joiner, which produces batches of B
items at a time as if each subarray were concatenated in order, as well as batch-enumerate-joiner,
which concurrently outputs which subarray each item originated from. We assume that subarrays
are given as “fat pointers”: a slice of some underlying data specified by a front pointer and a length.

This improves upon the EM model, which has a worst-case where the subarrays are non-
empty and not contiguous in external memory, thus necessarily requiring at least n I/Os to scan.

123

The straightforward EM algorithm of scanning each subarray in order thus achieves the optimal
Θ(n + m/B) I/Os total to scan, which is worse than our result when m = o(n · B). This is a
fundamental bottleneck in many EM algorithms, including graph algorithms on sparse graphs
represented as adjacency lists.

batch-joiner overcomes this bottleneck by exploiting parallelism to read multiple subarrays in
one I/O. The algorithm scans the primary array in order, maintaining a working set in cache of at
most 2B non-empty subarray slices of not-yet-output items. While this working set contains less
than B slices, one I/O is used to read the next B/2 subarrays from the primary array and add the
non-empty ones to the working set. Only when this working set collectively references at least B
items (or the end of the primary array has been reached) will the items in those subarrays actually
be read, and exactly which items to read next can be computed in internal memory using the front
pointers and lengths of the slices in the working set. This strategy results in batch-joiner taking
a total of O(n/B) I/Os to scan the primary array and O(m/B) I/Os to scan the subarrays, giving
the optimal speedup of Θ((n + m)/B) I/Os total.

Theorem 7.2.3. We can join together n arrays into an array of m total items in O((n + m)/B)
I/Os.

Algorithm 10 Scans an array of n arrays containing m items in O((n + m)/B) I/Os

1: function batch-joiner(array: int[][]): ()
2: curr ← [] ▷ Cached set of ≤ 2B non-empty subarrays
3: curr-items ← 0 ▷ Total number of items in curr
4: while curr-items > 0 ∨ length(array) > 0
5: if curr-items < B ∧ length(array) > 0 then
6: next ← take(array, B/2) ▷ Read next block of slices
7: pop-front-n(array, B/2) ▷ Advance front pointer into array by B/2
8: for a in next
9: if length(a) = 0 then continue

10: push(curr, a) ▷ Add up to B/2 non-empty subarrays
11: curr-items ← curr-items + length(a) ▷ Each contributes at least 1 item
12: else
13: output ← produce-block-from(curr, min(B, curr-items))
14: curr-items ← curr-items − length(output)
15: yield output ▷ Generate a block of items for caller

16: function produce-block-from(curr: ref int[][], N : int): int[]
17: k ← count-until(s ⇒ s > N , cumulative-sum([length(a) | a ∈ cur])) ▷ Slices to take
18: p ← joiner([[ptr(a) + i | 0 ≤ i < length(a)] | a ∈ take(curr, k)]) ▷ Compute pointers
19: output ← *p ▷ Can read all in a single I/O
20: pop-front-n(curr, k) ▷ Advance front pointer by k
21: if length(output) < N then ▷ Remaining items are at the start of the next slice
22: r ← N − length(output) ▷ curr[0] must hold > r items
23: extend(output, take(curr[0], r))
24: pop-front-n(curr[0], r)
25: return output

124

Algorithm 11 Scan with batch-joiner also including the indices of the items.

1: function batch-enumerate-joiner(array: int[][]): () ▷ Adds subarray indices of items
2: joined ← batch-joiner(array)
3: indices ← array(expand-frequencies([length(a) | a ∈ array]))
4: for i, b in zip(chunks(indices, B), joined)
5: yield (i, b) ▷ Generate pair of blocks (indices, items) for caller

7.3 Sorting

7.3.1 Indivisible Sorting

The classic result of [AV88] proved that sorting n indivisible items in the I/O model takes sort(n) =

Θ
(︂

n log(1+n/B)
PB log(1+M/B)

)︂
I/Os, achieved using a variant of merge sort. The standard algorithm is improved

to take advantage of parallelism while managing the contiguity of blocks; in particular, we observe
that fixing the total bandwidth P · B, the performance decreases when using fewer but larger
contiguous blocks (larger B and smaller P). Consider the following trade-off:

Lemma 7.3.1. If an algorithm in the I/O model runs in f(P,B) I/Os, then for any integer
k ∈ [1, P] it can also be run in f(⌊P/k⌋, B · k) I/Os.

Proof. We can simulate running the algorithm on an I/O machine capable of P ′ = ⌊P/k⌋ parallel
I/Os of blocks with size B′ = B · k. To do this, we read or write a simulated block of size B′ by
reading or writing a corresponding contiguous set of k actual blocks. Since our bandwidth is P
actual blocks per actual I/O, we can thus read or write P ′ simulated blocks in parallel, thus perform
one simulated I/O in one actual I/O, totaling in f(P ′, B′) I/Os.

Assuming that B < M < n, so 0 < log(1 + n/B) = Θ(log(n/B)) and 0 < log(1 + M/B) =

Θ(log(M/B)), Lemma 7.3.1 gives us a sorting algorithm that takes O
(︂

n log(n/(Bk))
PB log(M/(Bk))

)︂
I/Os for any

k ∈ [1, P], which we show is an increasing function of k:

M < n and k′ < k,

log(M/B) log(k/k′) < log(n/B) log(k/k′),

− log(n/B) log k − log(M/B) log k′ < − log(M/B) log k − log(n/B) log k′,

(log(n/B)− log k′) · (log(M/B)− log k) < (log(M/B)− log k′) · (log(n/B)− log k),

log(n/(Bk′)) · log(M/(Bk)) < log(M/(Bk′)) · log(n/(Bk))

n log(n/(Bk′))

PB log(M/(Bk′))
<

n log(n/(Bk))

PB log(M/(Bk))
.

We see that the GEM regime of block size B = 1 gives the best trade-off by maximizing parallelism.

In the GEM model, this sorting algorithm can be run in O
(︂

n log(1+n)
B log(1+M)

)︂
= O

(︁
n
B logM n

)︁
I/Os,

avoiding the cost of contiguity to get a base-M logarithmic factor.

7.3.2 Permutation

In the permutation problem, we are given n indivisible items with keys a permutation of {1, 2, . . . , n},
and we must rearrange the items into sorted order. In GEM, this task is as easy as in the RAM
model: we can create an output array of length n, and then scan the input in batches of B items

125

and writing them to their keyed output locations. Using a permutation to rearrange a second array
of items is similarly easy; see Algorithm 12 for example implementations.

This gives a bound of Θ(n/B) I/Os to permute, which may appear to violate the bound expected
from the I/O model, which is perm(n) = Ω(min{n/P, sort(n)}) by [AV88]. The difference comes
from the fact that EM considers both P and B as asymptotically growing parameters, so the case
that [AV88] shows requires Ω(sort(n)) I/Os, when log n < B log(M/B), can occur even if n ≥M .
If we fix the granularity so B = 1, the GEM regime, then this case implies that n < M , thus we
could achieve O(n/P) I/Os here by simply permuting the input in internal memory.

Theorem 7.3.2. In GEM, the permutation problem is solvable in Θ(n/B) I/Os.

Algorithm 12 Permute an array of n items in Θ(n/B) I/Os

1: function permute(array: T[]): T[]
2: output ← [⊥ | 0 ≤ i < length(array)]
3: for batch b in array
4: i ← [key(x) | x ∈ b]
5: output[i] ← b
6: return output

7: function inverse-permute(array: T[], π: int[]): T[]
8: output ← [⊥ | 0 ≤ i < length(array)]
9: for batch i, j in enumerate(π)

10: output[i] ← array[j]
11: return output

7.3.3 Integer Sorting

In the case of integer sorting, the merge sort algorithm from the previous section is the best known,
and when P = 1 it has been shown that, conditional on a well-known network coding conjecture, it
remains optimal [FHLS20].

However, in GEM, these integer sorting lower bounds can be broken. First, we implement Count-
ing Sort using only O((n+u)/B) I/Os, where u is the maximum value in the input, presented in Algo-
rithm 13. counting-sort is a standard sorting algorithm, whereas counting-sort-permutation
produces an index permutation for key-based sorting. The latter gives us an implementation of
Radix Sort, Algorithm 14, that uses Θ((n/B) logn u) I/Os, achieving optimal speedup over the
RAM model.

Theorem 7.3.3. In GEM, counting sort can be performed in O((n + u)/B) I/Os.

Theorem 7.3.4. In GEM, radix sort can be performed in optimal Θ((n/B) logn u) I/Os.

126

Algorithm 13 Sorts an array of n elements in the range [0, u] using O((n + u)/B) I/Os

1: function counting-sort(array: int[]): int[]
2: compute-frequencies(array)
3: return array(expand-frequencies(freq))
4: function counting-sort-permutation(array: int[]): int[]
5: compute-frequencies(array)
6: return frequencies-to-permutation(freq)

7: function compute-frequencies(array: int[]): int[]
8: (n, u) ← (length(array), max(array))
9: freq ← [0 | 0 ≤ i ≤ u]

10: for batch b in array ▷ Loop using O(n/B) I/Os
11: v ← unique-sort(b) ▷ Locally gather unique items from block
12: f ← [count(b, x) | x ∈ v] ▷ Compute their frequencies within the block
13: freq[v] ← freq[v] + f ▷ Add each to freq in bulk
14: return freq

15: function expand-frequencies(range: R): () ▷ Loop using O(u/B) I/Os
16: for batch i, f in range
17: for i, f in zip(i, f)
18: for in 0 . . . f
19: yield i

20: function frequencies-to-permutation(array: int[], freq: int[]): int[]
21: start ← cumulative-sum(chain([0],freq)) ▷ Start indices for each value’s range
22: π ← [0 | 0 ≤ i < length(array)] ▷ π[i] = j will designate sort(array)[i] ← array[j]
23: for batch i, b in array ▷ Loop using O(u/B) I/Os
24: (v, s, p) ← (unique-sort(b), start[v], []) ▷ Get unique items and current start indices
25: for x in b
26: j ← count-until(v, x) ▷ Find x’s index in v
27: push(p, s[j]) ▷ Assign this occurence x to its current start index
28: s[j] ← s[j] + 1 ▷ Advance x’s start index
29: π[p] ← i ▷ Map sorted indices to input value indices
30: start[v] ← s ▷ Write back the advanced start indices
31: return π

127

Algorithm 14 Sorts an array of n elements in the range [0, u] using O((n/B) logn u) I/Os

1: function radix-sort(array: int[]): int[]
2: if length(array) = 0 then return
3: (n, u) ← (length(array), max(array))
4: for (m ← 1 ; m < u ; m ← m · n)
5: column ← [⌊x/m⌋ mod n | x ∈ array]
6: π ← counting-sort-permutation(column)
7: array ← inverse-permute(array, π)

8: function radix-sort-presplit(array: int[d][]): int[d][]
9: for i in 0, . . . , d

10: column ← [x[i] | x ∈ array]
11: π ← counting-sort-permutation(column)
12: array ← inverse-permute(array, π)
13: return array

7.3.4 Duplicate Removal

An application of integer sorting is the ability to quickly remove duplicate elements from an array.
Given a sorted array of n elements, we can copy its elements into a new duplicate-free array by
pushing each element only if it differs from the last element. Given an array of n integers in the
range [0, u], we can thus use radix sort to remove duplicates in O((n/B) logn u) I/Os. If we need
to preserve the original order of items, we can attach the original index to each item, and at the
end, counting sort the duplicate-free array by that index in O(n) I/Os. This algorithm is called
duplicate-removal, detailed in Algorithm 15.

Corollary 7.3.5. We can remove duplicates from an array as quickly as we can sort them, in
particular in O((n/B) logn u) for n integers in the range [0, u].

Another form of duplicate removal we will need in the context of graph algorithms is to remove
the duplicates from each of n different arrays with a total of m elements. An efficient algorithm
for this problem follows from combining batch-joiner from Algorithm 10 with the single-array
duplicate removal algorithm above. We label each element with the array it came from, join the
n arrays together in O((n + m)/B) I/Os by Theorem 7.2.3, and remove the duplicates from the
joined array, where we view two elements as equal if their values are equal and they came from the
same array. The elements will already be ordered by which array they came from; if we furthermore
want to maintain the order within each array, we can use that variant of the single-array duplicate
removal algorithm. We can then split up the resulting array into n subarrays if desired. This
algorithm is called duplicate-removal-many, detailed in Algorithm 16.

Corollary 7.3.6. We can remove duplicates from n arrays with a total of m elements in O(n/B)
time plus the time to sort m elements, in particular in O(n+m

B logn u) for integers in the range [0, u].

7.4 Union-Find

In GEM, we give two solutions to the union-find problem, where we must maintain a set of disjoint
sets among n items and provide two operations: union(u, v), which unions the two sets that u
and v are members of, and find(u), which returns a representative member of u’s set. These

128

Algorithm 15 Duplicate removal on a non-negative integer array in O((n + u)/B) I/Os

1: function batch-unique(array: int[]): int[]
2: if length(array) = 0 then return array
3: seen ← batch-set(max(array) + 1)
4: unique ← new batch-array
5: for batch b in array
6: b ← unique-sort(b) ▷ Remove duplicates in the block in cache
7: s ← batch-insert(seen, b) ▷ Try to insert each value into the seen set
8: for i, v in b
9: if s[i] then ▷ v was seen for the first time

10: push(unique, v)
11: return data(unique)

solutions tackle the online data structure problem as well as the offline algorithmic problem where
the sequence of operations is known in advance. In RAM, both problems were solved by [TvL84],
giving a lower bound of Ω(n + mα(m + n, n)) time to perform m operations and matching data
structures that support each operation in O(α(n)) amortized time, with worst-case O(log n) time
each, where α is the inverse Ackermann function defined as follows:

A(1, j) = 2j ,

A(i, 1) = A(i− 1, 2),

A(i, j) = A(i− 1, A(i, j − 1)),

α(n,m) = min{i ≥ 1 | A(i, ⌊m/n⌋) ≥ log2 n},
α(n) = α(n, n).

7.4.1 Offline

In the offline union-find problem, we are given the sequence of m union(i, j) operations to perform,
where all elements {1, . . . , n} are initially in singleton sets, and must output:

� for each operation union(i, j), whether or not it was redundant, i.e. whether i and j were
already merged into the same set by previous operations; and

� for each element i, the unique representative r = find(i) after all operations.

In EM, this problem was studied by [AAY10], who showed an Ω(perm(m)) I/O lower bound, a
O(sort(m)) I/O algorithm for a restricted variant (where the input contains no “redundant” union
operations between two members of the same set), a general O(sort(m) log logB) I/O algorithm,
and a simple O(sort(m) log(m/M)) I/O algorithm that performed well in practice.

We show how to implement their simpler algorithm in GEM taking O(n/B + (m/B) log(m/M))
I/Os total, described in Algorithm 17. The strategy is divide-and-conquer on the sequence of opera-
tions, where each subproblem is a slice of the sequence and the goal is to output the representatives
for each item referenced in that slice. To solve a subproblem that doesn’t fit in internal memory, we
first recurse on the first half of the slice, update the arguments in the second half of the slice so
every item is a representative, recurse on the second half, then combine the two outputs into one
map of items to their representatives; in EM, this takes O(sort(m)) I/Os per subproblem due to the
limitations of contiguity.

In GEM, we can rename items before recursing to ensure that the item labels are always linearly
bounded by the subproblem size m, making it space- and I/O-efficient to use arrays for storing the
representative map and performing updates in batches, resulting in O(m/B) I/Os per subproblem.

129

Algorithm 16 Duplicate removal of n arrays with m items total in O((n + m + u)/B) I/Os

1: function duplicate-removal-many(array: int[]): int[]
2: if ∀a ∈ array. length(a) = 0 then return array ▷ Trivial if entirely empty input
3: u ← max([max(a) | a ∈ batch-joiner(array)])
4: seen ← new batch-set(u + 1) ▷ Remember items already seen in unfinished subarray
5: rem ← 0 ▷ Tracks number of items remaining in unfinished subarray
6: (output-lengths, output-values) ← ([0 | 0 ≤ i < n], new batch-array)
7: for i, b in batch-enumerate-joiner(array)
8: orig-gs ← group-by-key(zip(i, b)) ▷ Group items by origin subarray
9: uniq-gs ← [unique-sort(x) | (, x) ∈ orig-gs] ▷ Uniq each group

10: insert-0 ← batch-insert(seen, uniq-gs[0]) ▷ Mark first group (may be partial)
11: uniq-gs[0] ← [x | (x, s) ∈ zip(uniq-gs[0], insert-0), s = true] ▷ Remove already seen
12: for uc in uniq-cs
13: batch-push(output-values, uc) ▷ Output new unique items
14: (j, l) ← ([front(g)[0] | g ∈ orig-gs], [length(x) | x ∈ uniq-gs])
15: output-lengths[j] ← output-lengths[j] + l ▷ Count number of unique items seen
16: if length(uniq-gs) > 1 then ▷ Block overlaps multiple subarrays
17: clear(seen) ▷ Finished the first subarray
18: rem ← length(array[back(j)]) ▷ Get length of last subarray
19: rem ← rem − length(back(orig-gs)) ▷ Subtract items seen in this block
20: if rem > 0 then ▷ Last subarray isn’t finished
21: batch-insert(seen, back(uniq-gs)) ▷ Remember items for next iteration
22: else ▷ Block is within one subarray
23: if rem = 0 then rem ← length(array[back(j)]) ▷ If new subarray, get its length
24: rem ← rem − length(back(org-gs)) ▷ Subtract items seen in this block
25: if rem = 0 then clear(seen) ▷ Clear if finished the subarray
26: return convert-data-length-to-slices(data(output-values), output-lengths)

27: function convert-data-length-to-slices(data: int[], lengths: int[]): int[][]
28: array ← new batch-array
29: pos ← 0
30: for batch l in lengths
31: for ℓ in l
32: push(array, data[pos . . . pos + ℓ]) ▷ Create “fat pointer” without copying
33: pos ← pos + ℓ
34: return data(array)

At the top-level, we also incur O(n/B) I/Os to perform an initial renaming in case n > m. Both of
these renamings are done using union-ops-compress, which efficiently scans its input in batches
and numbers the unique items it finds in the order they appear.

Lemma 7.4.1. Offline Union-Find can be solved in O((m/B) log(m/M)) I/Os given that n = O(m).

Theorem 7.4.2. Offline Union-Find can be solved in O(n/B + (m/B) log(m/M)) I/Os.

130

Algorithm 17 Offline Union-Find in O((m/B) log(m/M)) I/Os, given that n = O(m).

1: function offline-union-find(operations: int[2][], size: int): (int[],bool[])
2: redundant ← new batch-array
3: function rec(ops: int[2][], n: int): int[]
4: if problem fits into internal memory, i.e. n/2 ≤ length(ops) = O(M) then
5: ds ← disjoint-set(n) ▷ Create a disjoint set in cache
6: for (i, j) in ops
7: success ← union(ds, i, j)
8: push(redundant, ¬ success)
9: return [find(ds, i) | 0 ≤ i < n]

10: else
11: (left-ops, right-ops) ← (take(ops, length(ops)/2), drop(ops, length(ops)/2))
12: (loc-ops, loc-index, loc-orig, loc-size) ← union-ops-compress(left-ops, n)
13: loc-next ← rec(loc-ops, loc-size)
14: for batch r in right-ops
15: parallel for ref i in joiner(r)
16: if mi ← loc-index[i] is not ⊥ then i ← loc-orig[loc-next[mi]]
17: (roc-ops, roc-index, roc-orig, roc-size) ← union-ops-compress(right-ops, n)
18: roc-next ← rec(roc-ops, roc-size)
19: next ← [i | 0 ≤ i < n]
20: parallel for (mi, i) in roc-orig
21: next[i] ← roc-orig[roc-next[mi]]
22: parallel for (mi, i) in loc-orig
23: if roc-index[i] is not ⊥ then continue
24: r ← loc-orig[loc-next[mi]]
25: next[i] ← next[r]
26: return next
27: reps ← rec(operations, size)
28: return (reps, data(redundant))

29: function union-ops-compress(operations: int[2][], n: int): (int[2][],int[],int[],int)
30: (flat-ops, index, orig) ← (new batch-array, [⊥ | 0 ≤ i < n], new batch-array)
31: for batch v in joiner(operations) ▷ Iterate over batches of flattened pairs
32: m ← index[v]
33: h ← {i ↦→ mi | (i,mi) ∈ zip(v, m),mi ̸= ⊥} ▷ Quick lookup of mappings
34: for (i, ref mi) in zip(v, m) ▷ Iterate over both batches in lockstep
35: if i ∈ h then
36: mi ← h[i]
37: else
38: mi ← length(orig)
39: push(orig, i)
40: h[x] ← mi

41: index[v] ← m
42: batch-push(flat-ops, m)
43: return (chunks(flat-ops, 2), index, orig, length(orig)) ▷ Return unflattened edge list and

decompression information

131

7.4.2 Online Batched

For the online union-find problem in the EM model, there is no known improvement over the
RAM data structures of [TvL84]. However, in PRAM, [STTW16] studied this problem in the
“discretized streams” input model, where we replace individual operations with batch-union or
batch-find, and give a work-efficient algorithm with total work O((m+ q)α(m+ q, n)), where m is
the total number of union calls, q is the total number of find calls, and each call takes worst-case
O(polylog(m,n)) rounds.

In GEM, we adopt the model of [STTW16] and present batch-disjoint-set in Algorithms 18
and 19, which supports batches of up to B operations in O(log n) I/Os. This data structure optimizes
the RAM strategy of maintaining a tree over items, each with a single next pointer and subtree size,
to take advantage of parallelism and internal memory. batch-find can simply run each individual
find in lockstep, where we can have the additional capability to jump ahead between I/Os whenever
our current working set of items in internal memory contains both an item and its next item, using
the batch-find-read-compressed function.

On the other hand, batch-union cannot just independently perform union in parallel since
these operations mutate the tree and may not take effect in an order consistent with a one-at-
a-time execution. To overcome this, after using batch-find to identify the at-most-B pairs of
representatives to be physically linked, we can solve the problem of what unions to perform in
internal memory then actually write the new next pointers and size values using just 2 I/Os before
returning which union calls were successful and which were redundant.

By using the union-by-size strategy, it is known that the longest path in such a tree is O(log n)

Algorithm 18 batch-disjoint-set Data Structure: new and find methods
1: struct batch-disjoint-set
2: next, size : int[]

3: function new-batch-disjoint-set(n: int): batch-disjoint-set
4: return batch-disjoint-set([i | 0 ≤ i < n], [1 | 0 ≤ i < n])

5: function batch-find((next,): batch-disjoint-set, b: int[]): int[]
6: n ← batch-find-read-compressed(next, b)
7: while b ̸= n
8: n2 ← batch-find-read-compressed(next, n)
9: next[b] ← n2 ▷ Path compression via splitting (plus the local compression)

10: (b, n) ← (n, n2)
11: return b

12: function batch-find-read-compressed(next: int[], b: int[]): int[]
13: n ← next[b] ▷ Read b’s next pointers (the only I/O)
14: h ← {x ↦→ n | next[x] = n} ▷ Convert pointer data into a local map
15: for b in keys(h) ▷ For each unique b ∈ b
16: (x, n) ← (b, h[b]) ▷ Sequentially run find(b) as far as possible within h
17: while x ̸= n ∧ n2 ← h[n]
18: (x, n) ← (n, n2)
19: h[b] ← n ▷ Save result (an actual root or item outside h)
20: return h[b] ▷ Return compressed next pointers as an array

132

steps, which gives us a worst-case bound of O(log n) I/Os for both batch-find and batch-union for
batch sizes up to B operations. While batch-disjoint-set uses path compression, the techniques
of [TvL84] which showed O(α(n)) amortized time in the RAM model do not directly apply to
give a tighter upper bound. If ℓ(v) is the length of the path from v to its representative find(v),
a batch-find(b) operation will take O(max{ℓ(v) | v ∈ b}) I/Os, so when path lengths are not
proportional, the throughput is penalized compared to the optimal speedup of B over to the total
work. It remains open how this penalty affects the amortized performance of batch-disjoint-set.

Theorem 7.4.3. On a batch-disjoint-set with n items, batch-find or batch-union of batch
size at most B takes O(log(n)) I/Os.

Algorithm 19 batch-disjoint-set Data Structure: union methods

1: function batch-union(ds: batch-disjoint-set, u: int[], v: int[]): bool[]
2: (u, v) ← (batch-find(ds, u), batch-find(ds, v)) ▷ Advance items to representatives
3: r ← unique-sort(chain(u, v)) ▷ Create a local disjoint set over all representatives
4: n2 ← {u ↦→ u | u ∈ r} ▷ Initial next pointers: each rep is a singleton
5: s2 ← {u ↦→ su | (u, su) ∈ zip(r, size(ds)[r])} ▷ Initial sizes are of the original sets
6: b ← []
7: for u, v in zip(u, v) ▷ Iterate in lockstep over pairs to run union-find in cache
8: push(b, disjoint-set-union(n2, s2, u, v))
9: next[r] ← [disjoint-set-find(n2, x) | x ∈ r] ▷ Write new nexts to external memory

10: size[r] ← s2[r] ▷ Write new sizes to external memory
11: return b

12: function disjoint-set-union(next: int[int], size: int[int], u: int, v: int): bool
13: (u, v) ← (disjoint-set-find(next, u), disjoint-set-find(next, v)) ▷ Find representatives
14: if u = v then return false ▷ Fail if already in the same set
15: if size[u] < size[v] then (u, v) ← (v, u) ▷ Let u represent the larger set
16: next[v] ← u ▷ Point u to u
17: size[u] ← size[u] + size[v] ▷ Add v’s set’s size to u’s
18: return true

19: function disjoint-set-find(next: int[int], x: int): int[]
20: n ← next[x]
21: while x ̸= n
22: n2 ← next[n]
23: next[x] ← n2 ▷ Path compression via splitting
24: (x, n) ← (n, n2)
25: return x

133

7.4.3 Online with Supersized Batches

In this section, we consider how a union-find data structure can handle batch sizes larger than B.
We show that we can improve upon the O(log n) I/O bound from the previous section.

Theorem 7.4.4. On a batch-disjoint-set with n items, find operations in batches of size
k ≥ B(log n)/α(n) can be served in O(kα(n)/B) I/Os, thus in amortized O(α(n)/B) I/Os per item.

Proof. We simulate a PRAM-like algorithm, imagining B processors that each take a find oper-
ation out of the batch to perform, including compression. However, if multiple processors ever
simultaneously reach the same item, which we can detect in internal memory while simulating, then
to avoid duplicating the work going forward, all but one of them is stopped and given the next find
operation in the batch to start instead. Once a processor reaches a representative, it also moves
onto the next operation in the batch. While processors are traversing the tree, they add the items
they visit in order to a log (a batch-array, giving O(1/B) I/Os per append).

At the point where all searches in the batch have been completed, the algorithm will play the
log backwards to propagate the representative identities down from each item’s parent, eventually
reaching the queried items in the batch. This is done in batches: we pop the last B logged items,
read their parents from memory and their next pointers, internally propagate the next pointer values
down the tree among the items just popped, and then write the updated next pointers of the items
we popped back to memory. Assuming by induction that each item in earlier popped batches have
their next pointer as their representative, since we appended to the log in topological order, this
will correctly propagate in reverse topological order, and thus at the end, every item in the query
batch will now point to their representative, which we can now read and return in O(k/B) I/Os.

Next, we prove the claimed I/O bound. During the first phase of the algorithm, as long as the
query batch has not been exhausted, the B processes will take steps of O(1) I/Os to in parallel
either traverse an edge or skip from a representative or collision partway up the tree to the next
item in the query batch. Each of these units of work is done perfectly in parallel, and consists of
either work done by the sequential algorithm, so O(kα(n)) work, or work that happens once per
query item, so O(k) additional work. Once the query batch is exhausted but until the remaining
at-most-B searches are completed, the worst case number of I/Os is O(log n), the maximum height
of a tree. The second phase of the algorithm takes O(1) I/Os per B items popped from the log,
so the first phase dominates. Overall, we see that the perfectly parallel work dominates when
k = Ω(B(log n)/α(n)), as we can bound the total number of I/Os by:

O

(︃
kα(n) + k

B
+ log n

)︃
= O

(︃
kα(n)

B

)︃

Theorem 7.4.5. On a batch-disjoint-set with n items, a mix of union and find operations in
batches of size k ≥ B log n can be served in O(kα(n)/B) I/Os, thus in amortized O(α(n)/B) I/Os
per item, for an internal memory size M which is Ω(k).

Proof. First, we treat each union(i, j) as the pair find(i) and find(j) and run the algorithm of
the previous Theorem 7.4.4 to find the representatives of every item present in the query, which
takes O(kα(n)/B) I/Os since there are at most 2k items.

Next, we can take the query items plus their representatives, up to 4k unique items, and their
sizes, and simulate the batch of operations within internal memory like in batch-union. Once all
the responses are collected, we can write back the changes to next pointers and sizes back to the

134

external memory data structure and return the responses. Given that M is large enough to store
and operate on the internal data structure over up to 4k items, this step will only require O(k)
I/Os, thus the first step dominates.

7.5 Hashing

In this section, we analyze GEM hash tables as a ubiquitous and performant class of data structures
for implementing unordered dictionaries with insert, delete, and find operations. In EM,
there are strong lower bounds [IP12]: for any EM dictionary that supports insert in O(λ/B)
amortized I/Os, find requires O(Ω(logλ n)) expected I/Os. There are also practical EM upper
bounds that match these lower bounds for λ = Ω(log logM + logM N), even in the cache-oblivious
model [CFCS18].

7.5.1 Open Addressing

Open addressing is a widely used hash-table strategy in which items are stored directly in a table
without indirection. To find an item, we hash its key to determine the beginning of a probe
sequence, indices of the table to scan in order until successfully finding the item or reaching a
“terminator” slot that is empty or otherwise signals that the item is not present. Recent EM results
give a linear-probing open addressed dictionary that supports individual operations in 1 + O(x/B)
amortized expected I/Os when the load factor is maintained at 1− 1/Θ(x) for some x ≤ B [BKK21].

In the GEM model, we consider the potential benefits of batched operations, such as batch-find
to query up to B items at once. If we exploring each individual probe in parallel, we would have
the same penalty as in the previous section on union-find where the performance is bounded by the
longest probe sequence rather than the total number of slots to scan. However, unlike when chasing
pointers, in one I/O we can both read from multiple probe sequences in parallel and read multiple
slots in the same probe sequence. Without any knowledge of the length of each probe sequence up
to its terminator, a natural strategy arises:

Definition 7.5.1. Given k ≤ B probe sequences of unknown length to scan, the Balanced Parallel
Search strategy does the following:

1. Read ⌊B/k⌋ words from each probe sequence, using one I/O.

2. Identify the k′ probe sequences where the terminator was not read.

3. If k′ > 0, recursively continue Balanced Parallel Search on the rest of those k′ probe sequences.

Unfortunately, in the pursuit of implementing an efficient GEM open-addressed hash table,
we will prove that this strategy does not give optimal speedup over the work of performing the
equivalent sequential searches in the RAM model. Specifically, we will do this by measuring the
worst-case throughput : the number of required words (words in a probe sequence up to and
including the terminator) read per I/O during the search as a function of the distribution of words
(the multiset of the lengths of each probe sequence).

First, we relate the throughput with the following function RN : N× N+ → N.

Definition 7.5.2. For integers k ≥ 1, j ≥ 0, let

RN(j, k) =

⎧⎨⎩min
k≥k′

(︂
k′

k + RN(j − 1, k′)
)︂

if j > 0,

0 if j = 0.

135

Lemma 7.5.1. Given k ∈ [1, B] probe sequences, a minimum throughput distribution where Balanced
Parallel Search take h I/Os must scan L required words such that

L− k

B
= Θ (RN(h− 1, k)) .

Proof. For an execution of Balanced Parallel Search, let ki be the number of probe sequences
remaining in iteration i ∈ [1, h + 1], meaning B ≥ k = k1 ≥ k2 ≥ · · · ≥ kh > kh+1 = 0.

In any iteration i where a probe sequence ends, the throughput is minimized when its terminator
was the only required word read from that probe sequence, thus the remaining ⌊B/ki⌋ − 1 words
were wasted reads past the end. This tell us a minimum throughput distribution must satisfy

L =
h∑︂

i=1

(ki + ki+1 · (⌊B/ki⌋ − 1)) = k1 +
h∑︂

i=1

(ki+1⌊B/ki⌋) = k + B ·Θ

(︄
h∑︂

i=1

ki+1

ki

)︄
.

For any fixed h, we can thus characterize the minimum throughput distribution that takes h
I/Os satisfying these constraints by minimizing L over all values of ki. By a rearrangement of the
above formula for L and a simple inductive argument, we get the desired result:

L− k

B
= Θ

(︄
min

k=k1≥k2≥···≥kh>0

h∑︂
i=1

ki+1

ki

)︄
= Θ (RN(h− 1, k)) .

To understand RN(j, k), we define the following function RR : N × R≥1 → N that generalizes
the k parameter to the reals. We will then derive an exact formula for RR(j, k) and show that
RN(j, k) = Θ(RR(j, k)).

Definition 7.5.3. For real k ≥ 1 and integer j ≥ 0, let

RR(j, k) =

⎧⎨⎩min
k≥k′

(︂
k′

k + RR(j − 1, k′)
)︂

if j > 0,

0 if j = 0.

Lemma 7.5.2. For all integers k ≥ 1, j ≥ 0, we have RR(j, k) ≤ RN(j, k).

Lemma 7.5.3. RR(j, k) = j/k1/j for j, k ≥ 1.

Proof. By induction on j:

� RR(1, k) = min
k≥k′

(︂
k′

k + RR(0, k′)
)︂

= min
k≥k′≥1

k′

k = 1
k .

� RR(2, k) = min
k≥k′

(︂
k′

k + RR(1, k′)
)︂

= min
k≥k′≥1

(︂
k′

k + 1
k′

)︂
.

This is minimized when 0 = d
dk′

(︂
k′

k + 1
k′

)︂
= 1

k −
1
k′2 , so when k′ =

√
k, thus we have

RR(2, k) =
√
k
k + 1√

k
= 2√

k
.

� RR(3, k) = min
k>k′≥1

(︂
k′

k + RR(2, k′)
)︂

= min
k>k′≥1

(︂
k′

k + 2√
k′

)︂
.

This is minimized when 0 = d
dk′

(︂
k′

k + 2√
k

)︂
= 1

k −
1

k′3/2
so when k′ = k2/3, thus we see that

RR(3, k) = k2/3

k + 2√
k2/3

= 3
k1/3

.

136

� Assume for induction that RR(j, k′) = j/(k′)1/j for some j ≥ 3 and all k′ ≥ 1. Then

RR(j + 1, k) = min
k≥k′

(︃
k′

k
+ RR(j, k′)

)︃
= min

k≥k′≥1

(︃
k′

k
+

j

(k′)1/j

)︃
which is minimized when

0 =
d

dk′

(︃
k′

k
+

j

(k′)1/j

)︃
=

d

dk′
k′

k
+

d

dk′
j

(k′)1/j
=

1

k
− 1

(k′)1+1/j
=⇒ k′ = kj/(j+1).

Thus we get

RR(j + 1, k) =
kj/(j+1)

k
+

j(︁
kj/(j+1)

)︁1/j =
1

k1/(j+1)
+

j

k1/(j+1)
=

j + 1

k1/(j+1)
.

Lemma 7.5.4. RN(j, k) ≤ 2 · j/k1/j for integers k, j ≥ 1.

Proof. For k = 1, we have RN(j, 1) = 1 + RN(j − 1, 1), thus by a simple inductive argument this
collapses to RN(j, 1) = j ≤ 2 · j/11/j .

For k = 2, we now have two possibilities, k′ = 1 (the previous case) and k′ = 2, so we get
RN(j, 2) = min

(︁
1
2 + RN(j − 1, 1), 1 + RN(j − 1, 2)

)︁
. Again, by induction we see that the terms

produced in the recursion will be j − 1 ones and one 1/2, thus RN(j, 2) = j − 1/2 < j ≤ 2 · j/21/j .
For k ≥ 3, we proceed by induction on j:

� RN(1, k) = min
k≥k′

(︂
k′

k + RN(0, k′)
)︂

= min
k≥k′≥1

k′

k = 1
k ≤

2
k .

� RN(2, k) = min
k≥k′

(︂
k′

k + RN(1, k′)
)︂

= min
k≥k′≥1

(︂
k′

k + 1
k′

)︂
.

If k = 3 > 2, then the minimum is achieved when k′ = 2 since 7
6 = 2

3 + 1
2 < 1

3 + 1
1 = 4

3 , so we

get that RN(2, 3) = 7
6 ≤ 2 · 2/31/2.

If k ≥ 4, it is minimized when d
dk′

(︂
k′

k + 1
k′

)︂
= 1

k −
1
k′2 is closest to zero, so when k′ = ⌈

√
k⌉ or

k′ = ⌊
√
k⌋. If we express k′ = ε +

√
k for some offset ε ∈ (−1, 1) such that k′ ∈ N, we find the

following constraints: k′ ≥ 2, k′ < 1 +
√
k < 2

√
k, and ε/

√
k ≤ ε/2 < 1/2.

Substituting, we get RN(2, k) = ε+
√
k

k + 1
ε+

√
k

= (ε+
√
k)2+k

k(ε+
√
k)

= ε2+2ε
√
k+2k

ε
√
k+k

· 1√
k
. and we can

bound the left factor using our constraints as follows:

ε2 + 2ε
√
k + 2k

ε
√
k + k

=
ε2

ε
√
k + k

+ 2 ≤ 1

k −
√
k

+ 2 ≤ 1

2
+ 2 ≤ 2 · 2.

Therefore RN(2, k) ≤ 2 · 2/k1/2.

� Assume for induction that RN(j, k′) = 2 · j/(k′)1/j for some j ≥ 2 and all k′ ≥ 1. Then

RN(j + 1, k) = min
k≥k′

(︃
k′

k
+ RN(j, k′)

)︃
= min

k≥k′≥1

(︃
k′

k
+

2 · j
(k′)1/j

)︃

137

We will show that this upper-bound is minimized where the derivative of the expression is
nearest zero, thus when

0 ≈ d

dk′

(︃
k′

k
+

2 · j
(k′)1/j

)︃
=

d

dk′
k′

k
+

d

dk′
2 · j

(k′)1/j
=

1

k
− 2

(k′)1+1/j
=⇒ k′ ≈ (2k)j/(j+1).

Since k ≥ 3 and j ≥ 2, we have k′ ≥
⌊︁
(2k)j/(j+1)

⌋︁
≥
⌊︂
(2 · 3)2/3

⌋︂
≥ 1, as required.

Next, like before, we express integer k′ = ε + (2k)j/(j+1) for some offset ε ∈ (−1, 1) and
substitute it into our upper bound:

RN(j + 1, k) ≤ ε + (2k)j/(j+1)

k
+

2 · j
(ε + (2k)j/(j+1))1/j

=
2

k1/(j+1)

(︄
k1/(j+1)

2
· ε + (2k)j/(j+1)

k
+

k1/(j+1)

2
· 2 · j

(ε + (2k)j/(j+1))1/j

)︄

=
2

k1/(j+1)

(︄
ε

2 · kj/(j+1)
+

1

21/(j+1)
+

k1/(j+1)

(ε + (2k)j/(j+1))1/j
· j

)︄
.

Again using k ≥ 3 and j ≥ 2, we can bound each term in the parentheses as follows:

ε

2 · kj/(j+1)
≤ 1

2 · 32/3
<

1

4

1

21/(j+1)
<

1

2

1 ≤ −1/3 + 22/3 ≤ −1/kj/(j+1) + 2j/(j+1)

kj/(j+1) ≤ −1 + (2k)j/(j+1) ≤ ε + (2k)j/(j+1)

k1/(j+1)

(ε + (2k)j/(j+1))1/j
≤ 1

Therefore we can successfully conclude that

RN(j + 1, k) ≤ 2

k1/(j+1)

(︃
1

4
+

1

2
+ 1 · j

)︃
≤ 2 · (j + 1)/k1/(j+1).

Combining Lemma 7.5.2 and Lemma 7.5.4, we get a tight bound:

Corollary 7.5.5. RN(j, k) = Θ(j/k1/j).

For the final result of this section, we will need the Lambert W function, whose definition and
useful asymptotic properties are presented below.

Definition 7.5.4. Let W : R≥0 → R≥0 be the principle branch of the Lambert W function,
satisfying

W (x) = w ⇐⇒ wew = x.

Lemma 7.5.6. For a ≥ 1, W (x) ≤W (ax) ≤ aW (x) and thus W (x)/a ≤W (x/a) ≤W (x).

138

Proof. W (x) is a monotonically increasing function, so W (x/a) ≤W (x) ≤W (ax). Define x′ such
that

W (ax) = w =⇒ wew = ax =⇒ x =
w

a
ew ≥ w

a
ew/a = x′.

Plugging x′ into W , we have

W (x′) = w/a =⇒ W (ax) = w = aW (x′) ≤ aW (x),

from which the remaining inequalities follow.

Lemma 7.5.7. If f(x) = Θ(g(x)) and h(x) = Θ(W (f(x)) then h(x) = Θ(W (g(x))).

Proof. Take any x such that a · g(x) ≤ f(x) ≤ b · g(x) and c ·W (f(x)) ≤ h(x) ≤ d ·W (f(x)) for
constants a, b, c, d > 0. We analyze the following cases using Lemma 7.5.6 and monotonicity:

� If a ≥ 1 then h(x) ≥ c ·W (f(x)) ≥ c ·W (f(x)/a) ≥ c ·W (g(x)).

� If a < 1 then h(x) ≥ c ·W (f(x)) ≥ c ·W (a · g(x)) ≥ (ac) ·W (g(c)).

� If b ≥ 1 then h(x) ≤ d ·W (f(x)) ≤ d ·W (b · g(x)) ≤ (bd) ·W (g(x)).

� If b < 1 then h(x) ≤ d ·W (f(x)) ≤ d ·W (f(x)/b) ≤ d ·W (g(x)).

Thus, with constant factors [c ·min(1, a), d ·max(1, b)], we get that h(x) = Θ(W (g(x))).

We now have everything we need to bound the number of I/Os that Balanced Parallel Search
takes to scan more than one probe sequence, as a function of the number of required words to scan.

Lemma 7.5.8. Given k ∈ [2, B] probe sequences containing L required words to scan, including the
k terminators, the maximum number of I/Os that Balanced Parallel Search will perform is

1 + Θ

⎛⎝ ln k

W
(︂
B ln k
L−k

)︂
⎞⎠ .

Proof. By Lemmas 7.5.3 and 7.5.4, we find that RN(h− 1, k) = Θ((h− 1)/k1/(h−1)), thus by the
result of Lemma 7.5.1, we have

L− k1
B

= Θ

(︃
h− 1

k1/(h−1)

)︃
= Θ

(︃
1

λkλ

)︃
where λ =

1

h− 1
, so λkλ = Θ

(︃
B

L− k

)︃
.

Since k > 1, we can use the following base-changing identity about W to solve for λ:

W (λkλ ln k)

ln k
= w ⇐⇒ (w ln k)e(w ln k) = λkλ ln k ⇐⇒ wkw = λkλ ⇐⇒ w = λ.

Therefore, by Lemma 7.5.7, we have

1

h− 1
= λ = Θ

⎛⎝W
(︂
B ln k
L−k

)︂
ln k

⎞⎠ .

By re-arranging this bound to solve for h, we obtain the desired constraint.

139

This worst case upper bound directly leads to a matching upper bound on the expected number
of I/Os for open addressed hash table operations:

Theorem 7.5.9. On an open addressing hash table with an expected probe sequence length of L items
plus a terminator, performing a batch find of k ∈ [2, B] items using Balanced Parallel Search takes

O

(︃
1 + ln k

W(B
k·L ln k)

)︃
expected I/Os. Similarly, batch insert and remove take O

(︃
1 + ln k

W(B
k·L ln k)

)︃
expected amortized I/Os.

Proof. By Lemma 7.5.8, k probe sequences take up to 1 + Θ

(︃
ln k

W(B ln k
L−k)

)︃
I/Os to search, which is an

increasing, concave-down function of L. By linearity of expectation, these sequences are expected
to contain E[L− k] = k · L items, so by Jensen’s Inequality we get

ln k

W
(︁
B ln k
k·L

)︁ =
ln k

W
(︂

B ln k
E[L−k]

)︂ ≥ E

⎡⎣ ln k

W
(︂
B ln k
L−k

)︂
⎤⎦

Therefore using Balanced Parallel Search performs O

(︃
1 + ln k

W(B
k·L ln k)

)︃
I/Os in expectation,

including the work of finding, inserting, or removing items scanned during the search in each
operation, respectively.

As a corollary, we see that an open addressing hash table can perform k-batch find more efficiently
using Balanced Parallel Search compared to doing k individual operations of Θ(1 + L/B) I/Os,
breaking below the Ω(1) I/O lower bound per query. However, because ln k

W(B ln k
L−k)

= ω((L− k)/B),

our analysis suggests it is not sufficient to obtain the ideal of O(1) expected I/Os for implementing
k-batched find in GEM.

7.5.2 Chaining

Due to the current suboptimal upper-bound of Balanced Parallel Search, we now consider another
common hash table strategy: chaining, a form of closed addressing. Here, we use a chain data
structure, such as a dynamic array that supports random access and knows its length, to store each
item that hashes to a given slot. In this way, finding a set of items can be done in parallel without
ever reading non-required words beyond a terminator using a more-sophisticated strategy:

Definition 7.5.5. Given k ≤ B chains of known lengths to scan, the Length-Aware Parallel
Search strategy does the following:

1. If all chains fit into one block (i.e.
∑︁

ℓ∈lengths
ℓ ≤ B), then scan them completely in one I/O,

otherwise we calculate the minimum t ∈ [1, B] such that B ≤
∑︁

ℓ∈lengths
min(t, ℓ) < 2B then

scan at most t remaining words from each chain in at most two I/Os.

2. Identify the k′ chains that were not been fully scanned yet.

3. If k′ > 0, recursively do Length-Aware Parallel Search on the remaining words of those k′

chains.

We show that this strategy gives optimal speedup on the problem of scanning every word of
every given chain.

140

Lemma 7.5.10. The Length-Aware Parallel Search strategy takes Θ(1 +L/B) I/Os, where L is the
sum of lengths of each chain.

Proof. To start the scan, one I/O is necessary to read the lengths of each probe run. Each iteration,
if L =

∑︁
ℓ∈lengths

ℓ > B, then at most two I/Os are performed to read the next between B and 2B

words, and once L ∈ [1, B], then exactly one last I/O is performed to finish the scan.

Unfortunately again, in the pursuit of implementing an efficient GEM chaining hash table,
Lemma 7.5.10 does not imply optimal speedup if a problem requires terminating an individual
search immediately once it is found, such as performing a batch-find where every item is present.
Since the termination occurs at an unknown position within each chain, the search is no longer
“length-aware” and thus is equivalent to Balanced Parallel Search.

7.5.3 Dynamic Perfect Hashing

To overcome the apparent limitations of Balanced Parallel Search, we turn to dynamic perfect
hashing. The Dynamic FKS approach uses a table of collision-free hash tables of items, giving
worst-case Θ(1) time for find and O(1) expected amortized time for insert and remove in the RAM
model [DKM+94]. We can take this approach into the GEM model to achieve optimal speedup on
batch operations with the batch-fks-map data structure.

The primary change needed to support O(1) expected amortized I/O batch insertions and
removals is the memory allocation strategy. As originally described, inserting an item that collides
with an existing item in an inner hash table results in immediately rebuilding that table with a
new size and hash function. During a batched insert, if many small inner tables need to be rebuilt,
then for I/O efficiency we must allocate their backing memory in bulk, assuming that allocating x
contiguous words takes Θ(⌈x/B⌉) I/Os. Bulk allocations must also be done when resizing the entire
table, at least for inner tables requiring o(B) space. Because resizing the table occurs every O(n)
insertions or removals, fragmentation does not cause more than a constant factor overhead in space
usage.

Theorem 7.5.11. The batch-fks-map performs batch-find of k ≤ B items in Θ(1) I/Os, and
batch-insert and batch-remove of k ≤ B items in O(1) expected amortized I/Os.

7.6 List Ranking

In the list ranking problem, studied in the EM model in [CGG+95], we are given an n-node linked
list, represented as an unordered array of nodes each with the index of their successor, and must
label each node with its distance from the head of the linked list (its “rank”).

Theorem 7.6.1. Ranking a list of n nodes is solvable in Θ(n
B) I/Os.

Proof. We give an O(n
B) I/O algorithm called list-rank in Algorithm 20 based on the approach

of [CGG+95]. Specifically, list-rank is a recursive algorithm for the more general problem of
weighted list ranking, where each edge is given a weight and the rank of a node is the cumulative
weight along the path to it from the head. To solve unweighted list ranking, we can simply set all
edge weights to 1.

Assuming the problem does not fit into internal memory, given an array of n successor indices
and weights, we first compute a predecessor-indices array. Then we construct a maximal independent
set (MIS) of nodes, which can be done in O(1 + n/B) I/Os by scanning the nodes in batches and

141

maintaining a table of which items have been added to the MIS for O(1) I/O batch lookup and
updates. Since the nodes form a linked list, the size of this MIS is n′ ∈ [n/3, ⌈n/2⌉], since there can
be at most two nodes in a row not present in the MIS but never two in a row that are.

Second, we form a compressed list that only contains the nodes in the MIS by contracting all
non-MIS vertices, obtaining new successor and weight arrays of size n′. We do this by in parallel
walking at most two edges down the list from every node in the MIS to find the next MIS node,
adding the weights of traversed edge to determine the compressed edge’s weight, and relabeling the
nodes to fit in the range [0, n′ − 1]. Batching this parallel work can all be done in O(1 + n/B) I/Os.

This gives us a size-n′ subproblem that we can solve recursively to get the ranks of every MIS
node in the compressed list, which by construction are the ranks in the original list. Therefore, we
can lastly compute the ranks of the non-MIS nodes in the original list by in parallel walking at most
two edges down the list from every node in the MIS and propagating the path weight, again taking
only O(1 + n/B) I/Os.

The I/O cost T (n) of list-rank satisfies, for n ≥M/3, the recurrence T (n) = T (n′)+O(n/B) ≤
T (⌈n/2⌉)+O(1+n/B) (where the inequality is because n′ ≤ ⌈n/2⌉ and T (n) is monotonic increasing).
Once n < M/3, the problem fits in cache so T (n) = O(n/B) as a base case. The recurrence thus
expands to a sum of n/M+O(1) terms, each of which consists of O(1) plus a geometrically decreasing
term. Therefore T (n) = O(max(n

B , log n
M)). The n/B dominates because B ≤M , so T (n) = Θ(n

B),
meeting the trivial lower bound.

Algorithm 20 Computes the rank of every node in a linked list in O(n/B) I/Os

1: function list-rank(succ: int[], w: int[]): int[]
2: if length(succ) < M/3 then return list-rank-in-cache(succ, w)
3: predecessors ← invert-list(succ)
4: (mis, mis-set) ← list-mis(succ, pred)
5: mis-inv ← invert-mis(mis-set)
6: (succ2, w2) ← compress-list(mis, mis-set, mis-inv, succ, w)
7: d2 ← list-rank-rec(succ2, w2)
8: return decompress-ranks(mis, succ, w, succ2, d2)

Algorithm 21 Compute inverse list or inverse map in O(n/B) I/Os

1: function invert-list(succ: int[]): int[]
2: pred ← [i | 0 ≤ i < length(succ)] ▷ Initialized so head node will have no inverse
3: for batch i, s in succ
4: parallel for i, s in zip(i, s) ▷ Iterate over nodes and their successors in lockstep
5: if i = s then continue
6: pred[s] ← i ▷ Invert map for all but tail node
7: return pred

8: function invert-mis(mis: int[]): batch-map
9: mis-inv ← batch-map(1+max(mis))

10: for batch i, m in mis
11: batch-insert(mis-inv, m, i)
12: return mis-inv

142

Algorithm 22 Computes a maximal independent set of a list in O(n/B) I/Os

1: function list-mis(succ: int[], pred: int[]): (int[], batch-set)
2: mis ← [fixed-point(pred), fixed-point(succ)] ▷ Start with beginning and end of list
3: mis-set ← batch-set(length(succ))
4: batch-insert(mis-set, mis) ▷ Initialize set
5: for batch i, s, p in zip(succ, pred)
6: elim ← (s ∪ p) ∩ mis-set ▷ Lookup neighbors that are already in mis
7: buf ← [] ▷ Buffer of to-be-inserted nodes
8: for i, s, p in zip(i, s, p)
9: if i ∈ elim ∨ p ∈ buf ∨ s ∈ buf then continue ▷ Check whether i can be added

10: push(buf, i) ▷ Note i as being inserted into mis
11: batch-push(mis, buf) ▷ Flush buffer of inserted nodes
12: batch-insert(mis-set, buf)
13: return (mis, mis-set)

14: function fixed-point(array: int[]): int[] ▷ Returns an index i such that array[i] = i
15: for batch i, b in array
16: for i, x in zip(i, b) ▷ Iterate over index and value in lockstep
17: if i = x then
18: return i
19: return ⊥

Algorithm 23 Builds a list connecting the nodes in an MIS in O(n/B) I/Os

1: function compress-list(
mis: int[], mis-set: batch-set,

mis-inv: batch-map, succ: int[], w: int[]
): (int[], int[])

2: n2 ← length(mis)
3: (succ2, w2) ← ([⊥ | 0 ≤ i < n2], [0 | 0 ≤ i < n2])
4: parallel for batch i,m in mis
5: next ← m
6: repeat
7: w2[i] ← w2[i] + w[next]
8: next ← succ[next]
9: until next /∈ mis-inv

10: succ2[i] ← mis-inv[next]
11: return (succ2, w2)

143

Algorithm 24 Computes ranks of all nodes from ranks of MIS nodes in O(n/B) I/Os

1: function decompress-ranks(
mis: int[], succ: int[],

w: int[], succ2: int[], d2: int[]
): (int[], int[])

2: d ← [⊥ | 0 ≤ i < length(mis)]
3: parallel for batch i,m in mis
4: d[m] ← d2[i]
5: last ← mis[succ2[i]]
6: s ← succ[m]
7: while s ̸= last
8: d[s] ← d[m] + w[m]
9: (m, s) ← (succ[s],m)

10: return d

Algorithm 25 Compute list ranks fully within cache (requires n no more than M/3)

1: function list-rank-in-cache(succ: int[], w: int[]): int[]
2: d ← [0 | 0 ≤ i < length(mis)]
3: Read succ, w, and d into cache
4: for (cur ← fixed-point(succ) ; cur ̸= succ[cur] ; cur ← succ[cur])
5: d[succ[cur]] ← d[cur] + w[cur]
6: return d

7.7 Graph Algorithms

Graph algorithms are well-studied in EM, but many important problems lack known optimal
algorithms [AM09]. We begin exploring the advantages of GEM in this field by giving improved
algorithms for four problems: computing maximal independent sets and small dominating sets,
graph clustering, connected components, and minimum spanning forests.

For our results in this section, we assume that every graph G = (V,E) with n vertices and m
edges is given in adjacency list representation, where V = {0, 1, . . . , n− 1} and adj[u] is an array of
the neighbors of u ∈ V , and that there are no self-loops or parallel edges.

7.7.1 Maximal Independent Set and Small Dominating Sets

First, we will define our terms and make some observations relating maximal independent sets and
dominating sets of undirected graphs.

Definition 7.7.1. An independent set of an undirected graph G = (V,E) is a set I ⊆ V such
that no pair u, v ∈ I is adjacent. An independent set is maximal if, for all x ∈ V \ I, I ∪ {x} is
not independent.

Theorem 7.7.1. A maximal independent set of an undirected graph can be computed in Θ((n+m)/B)
I/Os.

Proof. Our algorithm giving optimal speedup is maximal-independent-set, described in Algo-
rithms 26 and 27. The algorithm processes the vertices in batches, maintaining a table specifying
which nodes have been added to the MIS so far (and which have been rejected) and an output
list. For each batch of B vertices, we can ignore those already marked as rejected and then use

144

batch-enumerate-joiner to efficiently scan each of their neighbors for other nodes already added
to the MIS to determine which of them can be added. This takes only O((n+m)/B) I/Os, matching
the trivial lower bound.

Definition 7.7.2. A dominating set of an undirected graph G = (V,E) is a subset D ⊆ V such
that for all u ∈ V \D, u is adjacent to some v ∈ D (we say that v dominates u).

Lemma 7.7.2. An independent set is maximal if and only if it is also a dominating set.

Lemma 7.7.3. If I is an independent set of G = (V,E), and G has no isolated vertices, then its
complement V \ I is a dominating set of G.

Proof. Consider any u ∈ I = V \ (V \ I). Because u is not isolated, it is adjacent to some other
vertex v. Because I is an independent set, we must have v ∈ V \ I. Thus u is dominated by v.

Lemma 7.7.4. Any undirected graph G = (V,E) with no isolated vertices has a dominating set D
of size at most n/2.

Proof. Consider any maximal independent set I of G. Both I and V \ I are dominating sets (by
Lemmas 7.7.2 and 7.7.3). Let D be the smaller of these two dominating sets, which must have at
most (|I|+ |V \ I|)/2 = n/2 vertices.

Thus, by Theorem 7.7.1 we get the following:

Theorem 7.7.5. A dominating set with size at most n/2 exists in any undirected graph with no
isolated vertices and can be computed in Θ((n + m)/B) I/Os.

Algorithm 26 Computes a maximal independent set of a graph using O((n + m)/B) I/Os

1: function maximal-independent-set(adj: int[][]): int[]
2: mis ← new batch-array
3: mis-map ← batch-map(n) ▷ Stores whether u ∈ V is in the mis
4: for batch b in 0 . . . n
5: inserted ← batch-find(mis-map, b)
6: proposed ← [b[i] | inserted[i] == false]
7: to-add ← maximal-independent-set-block(adj, proposed)
8: batch-insert(mis-map, to-add, [true | 0 ≤ i < length(to-add)])
9: batch-push(mis, to-add)

10: to-add-adj ← [adj[u] | u ∈ to-add]
11: for batch n in batch-joiner(to-add-adj)
12: batch-insert(mis-map, n, [false | 0 ≤ i < length(to-add)])
13: return data(mis)

145

Algorithm 27 Find MIS of n′ ≤ B nodes with m′ edges in O((n′ + m′)/B) I/Os

1: function maximal-independent-set-block(adj: int[][], proposed: int[]): int[]
2: (mis, elim) ← (∅, ∅) ▷ Block-sized sets of vertices in/out of MIS
3: prev ← proposed[0]
4: p-adj ← [adj[u] | u ∈ proposed]
5: for batch i, v in batch-enumerate-joiner(p-adj)
6: for i, v in zip(i, v) ▷ Iterate over edges in lockstep
7: u ← proposed[i]
8: if prev ̸= u ∧ prev /∈ elim then
9: mis ← mis ∪ {prev}

10: prev ← u
11: if v ∈ mis then
12: elim ← elim ∪ {u}
13: if prev /∈ elim then
14: mis ← mis ∪ {prev}
15: return array(mis)

7.7.2 Dominating Set Clustering

Our algorithms for connected components and minimum spanning forest in the following sections
are based on what we call a dominating set clustering of a graph.

Definition 7.7.3. Given an undirected graph G = (V,E) and a dominating set D of G, let a
dominating set clustering of G about D be a graph G′ = (V ′, E′) such that

1. V ′ is a partition of V into |D| disjoint subsets,

2. each X ∈ V ′ consists of exactly one v ∈ D and a subset of its neighbors, and

3. there is an edge (X,Y) ∈ E′ if and only if (x, y) ∈ E for some x ∈ X and y ∈ Y .

We provide dominating-set-cluster in Algorithm 28 to find for a graph G = (V,E) a dominat-
ing set D with at most |V |/2 vertices (as described in Lemma 7.7.5) and compute a clustering about
D in O((n+m)/B) I/Os. Like the maximal independent set algorithm, dominating-set-cluster
scans the graph and its dominating set in batches and greedily adds the neighbors of each root node
v ∈ D to v’s subset in the clustering. As a subroutine in later algorithms, it also represents the
output cluster graph as an adjacency list with integer labels along with a mapping from V to V ′

and V ′ to D.

Theorem 7.7.6. A dominating set clustering of a graph can be computed in Θ((n + m)/B) I/Os.

146

Algorithm 28 Cluster a graph around a Dominating Set using O((n + m)/B) I/Os

1: struct dom-set-cluster
2: adj: int[][]
3: roots: int[]
4: parent, new-root-index: batch-map
5: function dominating-set-cluster(adj: int[][]): dom-set-cluster
6: n ← length(adj)
7: c ← new dom-set-cluster(⊥, ⊥, new batch-map(n), new batch-map(n))
8: roots(c) ← maximal-independent-set(adj) ▷ Get a MIS
9: if length(roots(c)) > n/2 then ▷ Replace MIS with its complement if too big

10: roots(c) ← set-difference([i | 0 ≤ i < n], counting-sort(roots(c)))
11: for batch i, u in roots(c) ▷ A root is its own parent
12: batch-insert(parent(c), u, u)
13: batch-insert(new-root-index(c), u, i)
14: for batch u in roots(c) ▷ A nonroot is a child of some root neighbor
15: nbrs ← [adj[u] | u ∈ u]
16: for i, v in batch-enumerate-joiner(nbrs)
17: batch-insert(parent(c), v, u[i])
18: adj(c) ← [[] | 0 ≤ i < length(roots(c))]
19: for u, v in batch-enumerate-joiner(adj) ▷ Add edges to contracted graph
20: up ← batch-value(parent(c), u) ▷ Look up parents of each endpoint
21: vp ← batch-value(parent(c), v)
22: ur ← batch-value(new-root-index(c), up) ▷ Look up cluster indices
23: vr ← batch-value(new-root-index(c), vp)
24: parallel for batch u′, v′ in zip(ur, vr)
25: if u′ ̸= v′ then ▷ Eliminate edges within cluster
26: push(adj(c)[u′], v′)
27: push(adj(c)[v′], u′)
28: adj(c) ← duplicate-removal-many(adj(c)) ▷ Remove parallel edges
29: return c

7.7.3 Connected Components

Definition 7.7.4. A connected component (CC) of an undirected graph G = (V,E) is a subset
S ⊆ V such that, for every edge {u, v} ∈ E, u ∈ S if and only if v ∈ S. A connected component
labeling is an integer map c : V → [0, k) such that the k connected components of G are the sets
Sℓ = {u | c(u) = ℓ} for ℓ ∈ {0, 1, . . . , k − 1}.

We show how to compute a connected component labeling of an undirected graph using
O((n + m)/B) I/Os in Algorithm 30. connected-components is a recursive algorithm with two
steps per call to reduce the size of the graph and two base cases. We initiate the recursion with
some graph G1 with n1 vertices. If the current graph becomes empty, we return an empty labeling;
otherwise we perform the following steps.

Step 1 is to reduce to a graph with no isolated vertices, which are trivial connected components.
We start by using remove-singletons from Algorithm 29 to create a copy of the graph without
the isolated vertices (if any). After finding its connected components in Step 2, we use the stored
vertex mapping to apply the labels back onto the original vertices and produce new labels for the
removed isolated vertices.

147

In Step 2, connected-components-no-singletons accepts a graph G with no isolated
vertices and branches based on its density. If density measure ∆ = m/n is at least B, or the number
of vertices is less than n1/B, then we can afford to spend one I/O per vertex. In this case, we use
the PRAM depth-first search algorithm developed by Träff et al. [Trä13]: we can apply it directly
find the labeling of G and end the recursion early using O(n+m/B) I/Os by our PRAM simulation
Theorem 7.2.1.

On the other hand, if the graph is sparse and large, then we use dominating-set-cluster to
reduce G to a cluster graph G2 with at most half as many vertices. Since G2 may contain isolated
vertices, we recursively call connected-components to find connected component labels for the
dominating set vertices, which we can apply back onto the original graph and propagate within
each cluster.

Theorem 7.7.7. connected-components on a graph G = (V,E) with n vertices and m edges
uses O((n + m)/B · logB) I/Os

Proof. Step 1 calls remove-singletons and later applies the results of Step 2 to the original graph,
both using O((n + m)/B) I/Os. Step 2 calls Träff-connected-components in the case that
m/B ≥ n, thus using O(n+m/B) = O((n+m)/B) I/Os. While the graph stays sparse (m/B < n),
it takes O((n + m)/B) I/Os to reduce to a graph G2 with at most half as many vertices and later
apply the results to the original graph.

Consider the series of graphs (G1, G2, G3, . . . , Gk) produced by the recursion and the correspond-
ing size si = ni + mi of the adjacency list representation of Gi, where G1 = G, n1 = n, m1 = m,
and Gk is a base case. Since for each graph Gi the algorithm uses O(si/B) I/Os, it remains to
upper bound the size progression si and recursion depth k.

In each level i < k, because we only recurse when mi < B · ni, we can upper bound si <
(1 + B) · ni = s∗i . Since clustering reduces the number of vertices by at least half, we have the
relation ni ≥ 2ni+1 and thus for i + 1 < k we get s∗i ≥ 2s∗i+1. Lastly, by construction, every edge
in Gi+1 represents at least one edge in Gi and at least ni/2 edges are removed, so we can see that
mi − ni/2 ≥ mi − (ni − ni+1) ≥ mi+1.

The maximum possible size of Gi+1 is thus when ni = 2ni+1 and mi − ni/2 = mi+1. In terms

of G1, this can be expressed as ni = n1/2i−1 and mi = m1 −
i−1∑︁
j=1

nj/2 = m1 − n1

i−1∑︁
j=1

(12)j , thus for

i > 1 we get si = ni + mi = m1 − n1

i−2∑︁
j=1

(12)j ∈ [m1 + n1/2,m1 − n1].

Thus if m1 = ω(n1) then the worst shrinkage would result in si = Θ(s1). Given density measure
∆i = mi/ni, we can solve for the maximum depth k that this minimum shrinkage can persist before
crossing over the base case threshold of ∆k = B:

mk = m1 − n1

k−1∑︂
j=1

(1/2)j = B · n1/2k−1 = B · nk

2k−1m1 − n1(2
k−1 − 1) = B · n1

k = 1 + log2
B · n1 − n1

m1 − n1
= 1 + log2

B − 1

∆1 − 1
= O(logB)

Thus, assuming minimum shrinkage in the clustering step from Gi to Gi+1, after k = O(logB)
recursive calls, Gk must be dense enough to run Träff-connected-components, which uses
O(nk + mk/B) = O(sk/B) I/Os. However, without minimum shrinkage, it is possible for Gk to be
below the density threshold, but if we recall that the number of vertices always decreases by at least

148

half, we see that nk ≤ n1/2k−1 = n1/B, meaning the graph has been sufficiently contracted such
that we can bound Träff-connected-components to use O(nk + mk/B) = O(n1/B + mk/B)
I/Os, thus end the recursion in the same way.

In total, the base case use at most O((n + m)/B) I/Os, which is dominated by the recursive

cases, which use up to O

(︄
logB∑︁
i=1

si/B

)︄
= O (s1/B · logB) I/Os, as claimed.

Algorithm 29 Removes singleton nodes from an undirected graph using O((n + m)/B) I/Os

1: struct mapped-graph
2: adj: int[][] ▷ Adjacency list of mapped subgraph G2 of G
3: index-map: batch-map ▷ Maps u→ u2 for vertices u that aren’t deleted from G
4: inv-map: int[] ▷ Maps u2 → u for all vertices u2 in G2

5: function remove-singletons(adj: int[][]): mapped-graph
6: indices ← [i | length(adj[i]) > 0] ▷ Compute (sorted) list of non-singletons
7: index-map ← new batch-map(length(adj))
8: (output-values, output-lengths) ← (new batch-array, new batch-array)
9: for batch i2, i in indices

10: batch-insert(index-map, i, i2) ▷ Assign new node indices
11: s ← adj[i]
12: l ← [length(s) | s ∈ s]
13: batch-push(output-lengths, l) ▷ Assign node degrees
14: for v in batch-joiner(adj)
15: v2 ← batch-value(index-map, v) ▷ Get new indices of each edge endpoint
16: batch-push(output-values, v2) ▷ Store endpoint (flattened) for adj2
17: adj2 ← convert-data-length-to-slices(data(output-values), data(output-lengths))
18: return new mapped-graph(adj2, index-map, indices)

149

Algorithm 30 Compute connected components of a graph using O((n + m)/B · logB) I/Os

1: function connected-components(adj: int[][], n1: int): int[]
2: if length(adj) = 0 then return []
3: G2 ← remove-singletons(adj)
4: cc2 ← connected-components-no-singletons(adj(G2), n1)
5: return cc-add-back-singletons(G2, cc2)

6: function connected-components-no-singletons(adj: int[][], n1: int): int[]
7: if length(adj) = 0 then return []
8: (n,m) ← (length(adj), sum([length(x) | x ∈ adj])) ▷ Count the number of nodes and edges
9: if min(m,n1) ≥ B · n then ▷ Few enough vertices to use Träff’s O(n + m/B) technique

10: return Träff-connected-components(adj)
11: else ▷ Sparse enough to cluster and recurse
12: cluster ← dominating-set-cluster(adj) ▷ Cluster to reduce number of nodes by half
13: cc2 ← connected-components(adj(cluster), n1) ▷ Find CC labels of clustered graph
14: cc ← new batch-array
15: for batch u in 0 . . . length(adj)
16: p ← batch-value(parent(cluster), u) ▷ Get the parent node in cluster
17: p2 ← batch-value(new-root-index(cluster), p) ▷ Get parents’ cluster indices
18: c ← cc2[p2] ▷ Gets parent’s CC labels
19: batch-push(cc, c) ▷ Output parent label as the child’s label
20: return data(cc)

21: function cc-add-back-singletons(G2: mapped-graph, cc2: int[]): int[]
22: cc ← new batch-array
23: next ← max(cc2) + 1 ▷ Fresh CC label to give a singleton
24: for batch u in 0 . . . length(index-map(G2))
25: nbr ← batch-find(index-map(G2), u) ▷ Identify singletons not present in G2

26: u2 ← batch-value(index-map(G2), u) ▷ For the rest, lookup the node in G2

27: c ← cc2[u2] ▷ Copy CC labels for non-singletons
28: for i, has-neighbor, u in zip(nbr, u)
29: if ¬ has-neighbor then
30: c[i] ← next ▷ Give each singleton a new CC label
31: next ← next + 1
32: batch-push(cc, c)
33: return data(cc)

Theorem 7.7.8. connected-components on a forest graph G = (V,E) with n vertices uses
O(n/B) I/Os.

Proof. In the special case that G is a forest, we can improve the analysis from Theorem 7.7.7. Notice
that a dominating set clustering of an tree T must be a tree T2: each edge of T2 represents at least
one edge of T , and T has no cycles, thus no cycle can exist in T2 either. Given that each connected
component of G is a tree, we can conclude that each graph Gi in recursive level i is a forest and thus
we can bound mi < ni ≤ n1/2i−1, which gives a geometric decrease bounding the total recursive

cases as using O

(︃
k∑︁

i=1
si/B

)︃
= O

(︃
n1/B

∞∑︁
i=1

1/2i−1

)︃
= O(n1/B) I/Os.

150

7.7.4 Minimum Spanning Trees

Definition 7.7.5. A minimum spanning tree (MST) of an connected undirected weighted graph
G = (V,E,w) is a subgraph (V,E′) whose edges E′ ⊆ E form a tree that minimizes

∑︁
e∈T

w(e). More

generally, a minimum spanning forest (MSF) consists of an MST for each connected component
of a graph.

Theorem 7.7.9. An undirected MSF on a weighted graph G = (V,E,w) with n vertices and m
edges can be found using O(sort(m) + (m/B) log(m/M)) I/Os.

Proof. We implement Kruskal’s MSF algorithm [Kru56] using the offline union-find algorithm of
Lemma 7.4.1.

After using O(sort(m)) I/Os to sort the edges from lightest to heaviest weight, we apply the
algorithm of Lemma 7.4.1 where the sequence of operations is union(u, v) for each edge (u, v) in the
sorted order. This uses uses O((m/B) log(m/M)) I/O’s and tells us the non-redundant operations,
which correspond to the edges in an MSF.

Because this only produces undirected edges, we also provide a recursive dominating set clustering
algorithm to direct the edges to produce rooted MST’s with Algorithm 31 using an additional
O(n + m)/B) I/Os.

For the remainder of this section, we will restrict our attention to the case where the edges are
given in sorted order.

We show how to compute a minimum spanning forest of an undirected weighted graph using
O(sort(m) + α(n) · (n + m)/B) I/Os, where α(n) is the slow-growing inverse Ackermann function.
Our Algorithm 32 implements Kruskal’s algorithm [Kru56] efficiently using the batch-disjoint-set
data structure.

Because this only produces undirected edges, we also provide a recursive dominating set clustering
algorithm to direct the edges to produce rooted MST’s with Algorithm 31 using an additional
O(n + m)/B) I/Os.

(a)

up v

u2 v2

sf2 (b)

p v

u2 v2

sf2

u

Figure 7.1: Illustration of sf-uncluster from Algorithm 31. (a) First edge (u, v) found to connect
cluster u2 to parent cluster v2 = sf2[u2]. (b) Creating the path p→ u→ v merges the two rooted
trees into one, and u2 is “locked” to ensure (u, v) will be the only outgoing edge from u2 to v2.

Theorem 7.7.10. minimum-spanning-forest on a weighted graph G = (V,E,w) with n vertices
and m edges uses O(sort(m) + log(n) · (n + m)/B) I/Os.

Proof. We first look at each line at the top level. remove-singletons uses O((n + m)/B) I/Os,
and filtering w and spanning-forest-add-back-singletons uses O(n/B) I/Os.

Inside minimum-spanning-forest-no-singletons, we perform Kruskal’s algorithm by first
using O((n + m)/B) I/Os in adj-to-weighted-edges to get a list of m edges, sort the list

151

using O(sort(m)) I/Os, and finish with union-find-edges using O(n/B + (m/B) log(m/M)) I/Os
by Theorem 7.4.2. Finally, we can direct the edges of the spanning forest using only O((n +
m)/B) I/Os with forest-edges-to-parents, which reconstructs an adjacency list and recursively
constructs parent pointers with the dominating set clustering strategy of connected-components
(Algorithm 30).

The primary difference with clustering here is sf-uncluster, which translates cluster parents
to vertex parents using just O((n + m)/B) I/Os. Figure 7.1 details this key operation in producing
a full spanning tree given a spanning tree of the cluster graph, taking advantage of the property
that each cluster is constructed to be a star graph to efficiently merge them into a single rooted tree.
As we are operating on a forest, we appeal to the argument for Theorem 7.7.8 of Theorem 7.7.7

Algorithm 31 Computes a directed-edge spanning forest of a graph

1: function spanning-forest(adj: int[][], n1: int): int[]
2: if length(adj) = 0 then return []
3: G2 ← remove-singletons(adj)
4: sf2 ← spanning-forest-no-singletons(adj(G2), n1)
5: return spanning-forest-add-back-singletons(G2, sf2)

6: function spanning-forest-no-singletons(adj: int[][], n1: int): int[]
7: if length(adj) = 0 then return []
8: (n,m) ← (length(adj), sum([length(a) | a ∈ adj]))
9: if minm,n1 ≥ B · n then ▷ Few enough vertices to use Träff’s O(n + m/B) technique

10: return Träff-spanning-forest(adj)
11: else ▷ Sparse enough to cluster and recurse
12: cluster ← dominating-set-cluster(adj) ▷ Cluster to reduce number of nodes by half
13: sf2 ← spanning-forest(adj(cluster), n1) ▷ Find parent pointers of clusters
14: return sf-uncluster(adj, cluster, st2) ▷ Translate to parent pointers for G

15: function sf-uncluster(adj: int[][], cluster: dom-set-cluster, sf2: int[]): int[]
16: sf ← batch-value(parent(cluster), [i | 0 ≤ i < length(adj)]) ▷ Direct edges towards par-

ents
17: locked ← [u2 = p2 | (u2, p2) ∈ enumerate(sf2)] ▷ Track processed clusters
18: for batch u, v in batch-enumerate-joiner(adj)
19: pu ← batch-value(parent(cluster), u) ▷ Get parent vertices in G
20: pv ← batch-value(parent(cluster), v)
21: u2 ← batch-value(new-root-index(cluster), pu) ▷ Get clusters of each endpoint
22: v2 ← batch-value(new-root-index(cluster), pv)
23: p2 ← sf2[u2] ▷ Get parents in cluster MSF
24: l ← locked[u2] ▷ Read which u2’s need to be processed
25: h ← {} ▷ Local map to cache ≤ 2B writes to sf
26: for u, v, pu, u2, v2, p2, ref ℓ in zip(u, v, pu, u2, v2, p2, l)
27: if ¬ℓ ∧ p2 = v2 then ▷ If u→ v will connect u2 → p2 (for the first time)
28: h[u] ← v ▷ Connect clusters by directing edge u→ v
29: if u ̸= pu then h[pu] ← u ▷ If u isn’t the root of its cluster, direct pu → u
30: ℓ ← true ▷ Lock u2 to mark it as processed, freeze parent pointers
31: sf[keys(h)] ← values(h) ▷ Write new parent pointers to external memory
32: return sf

152

that this recursion uses O((n + m)/B) I/Os in total as well.
Thus, the dominant steps of this algorithm are sorting the edges by weight and performing

union-find on the edges, using a combined O(sort(m)+n/B+(m/B) log(m/M)) I/Os as claimed.

Algorithm 32 Computes MSF using O(sort(m) + α(n) · (n + m)/B) I/Os

1: function minimum-spanning-forest(adj: int[][], w: int[][]): int[]
2: G2 ← remove-singletons(adj)
3: w2 ← [a | a ∈ w, length(a) > 0]
4: msf2 ← minimum-spanning-forest-no-singletons(adj(G2), w2)
5: return spanning-forest-add-back-singletons(G2, mst2)

6: struct edge
7: weight, src, dest: int
8: function minimum-spanning-forest-no-singletons(adj: int[][], w: int[][]): int[]
9: edges ← adj-to-weighted-edges(adj, w) ▷ Convert graph into a flat edge list

10: sort-by(weight, edges) ▷ Sort edges by weight, from lightest to heaviest
11: msf-edges ← union-find-edges(edges, length(adj)) ▷ Compute tree edges
12: return forest-edges-to-parents(msf-edges, length(adj)) ▷ Direct tree edges

13: function adj-to-weighted-edges(adj: int[][], w: int[][]): edge[]
14: edges ← new batch-array
15: for batch (u, v), w in zip(batch-enumerate-joiner(adj), batch-joiner(w))
16: for u, v, w in zip(u, v, w) ▷ Iterate over edges and their weights in lockstep
17: push(edges, new edge(w, u, v))
18: return data(edges)

19: function union-find-edges(edges: edge[], n: int): int[2][]
20: msf-edges ← new batch-array
21: ds ← new batch-disjoint-set(n)
22: for batch b in edges
23: (u, v) ← ([src(e) | e ∈ b], [dest(e) | e ∈ b])
24: l ← batch-union(ds, u, v) ▷ Union along every edge, prioritizing lighter edges
25: for u, v, ℓ in zip(u, v, l) ▷ Iterate over edges and success flags in lockstep
26: if ¬ℓ then continue ▷ Union failed
27: batch-push(msf-edges, [[u, v], [v, u]]) ▷ Add edges where union succeeded to MSF
28: return data(msf-edges)

29: function forest-edges-to-parents(edges: int[2][], n: int): int[]
30: sorted-edges ← radix-sort-presplit(edges) ▷ Sort edges (v, u) by v then by u
31: data ← [u | (u,) ∈ sorted-edges] ▷ Extract list of v’s
32: lengths ← [length(g) | g ∈ group(((, v1), (, v2)) ⇒ v1 = v2, sorted-edges)]
33: adj ← convert-data-length-to-slices(data, lengths) ▷ Build adjacency list
34: return spanning-forest(adj) ▷ Use recursive algorithm to direct the edges

153

Algorithm 33 Adds singletons back to a spanning forest using O(n/B) I/Os

1: function spanning-forest-add-back-singletons(G2: mapped-graph, sf2: int[]): int[]
2: n ← capacity(index-map(G2))
3: if length(sf2) = 0 then return [i | 0 ≤ i < n] ▷ All singletons, so all self-pointers
4: x ← inv-map(G2)[0] ▷ Pick some non-singleton for avoiding missing key errors below
5: sf ← new batch-array
6: for batch u in 0 . . . n ▷ For each batch of original vertices
7: s ← [¬b | b ∈ batch-find(index-map(G2), u)] ▷ Identify which are singletons
8: u′ ← [if s then x else u | (s, u) ∈ zip(s, u)] ▷ Eliminate singletons for next line
9: u2 ← batch-values(inv-map(G2), u

′) ▷ Get mapped vertices of non-singletons
10: v ← index-map(G2)[sf2[u2]] ▷ Get non-singletons’ parents in original graph
11: for u, v, s in zip(u, v, s) ▷ Iterate over edges and singleton flag in lockstep
12: push(sf, if s then u else v) ▷ Point to self (singleton) or parent (non-singleton)
13: return data(sf)

7.7.5 Shortest Paths

Theorem 7.7.11. SSSP with positive integer weights can be found in O(n + (m + D)/B) I/Os,
where D is the maximum distance of any vertex.

Proof. We show how to implement Dial’s Algorithm, a bucketing approach to Dijkstra’s Algorithm
where the queue Q is an array where bucket Q[i] is a list of vertices v with d[v] = i.

To back the memory of these lists, stored as unordered dynamic arrays, we first create a simple
bump allocator A on top of an dynamic array. The maximum capacity of A is O(m) since each
vertex insertion into a bucket is caused by visiting an edge for the first time and each vertex will be
reallocated O(1) times on average. Next, we initialize Q in Θ(D/B) I/Os to an array of D empty
buckets, which are just null slices into A. If D is unknown, we can use a dynamic array or even a
circular buffer of size Θ(maxew(e)) instead. Lastly, we also create a table T where we will maintain
a mapping from each vertex to its position in the bucket structure (its current distance estimate
and index into the bucket), and insert s into the distance zero bucket.

The algorithm proceeds by scanning Q from closest to furthest distance, and maintaining the
most-recently-scanned block of B buckets in internal memory. When we scan a new block, we start
with its first non-empty bucket Q[i] and pop a vertex v to visit in Θ(1) I/Os. Once the visit is
complete, we find the next non-empty bucket in the block of Q and repeat until all are empty, then
continue the scan until all vertices have been visited.

To visit v, we scan adj[v] and w[v], using Θ(1 + deg(v)/B) I/Os, and for each block of neighbors
identify those that need their distance estimates decreased. We can delete each of these neighbors
from their current buckets and push them onto the lower-distance bucket lists using Θ(1) amortized
I/Os. Since neighbors may be anywhere in their old buckets, we fill the gaps with the last vertices
when necessary. Since some of their new buckets may be at capacity, we resize those before inserting
by performing one bulk bump allocation onto A then batch-joiner to scan and copy the data,
using Θ(1 +

∑︁
j |Q[j]|/B) I/Os that are subsumed in amortization.

Overall, this algorithm uses Θ(D/B) I/Os to scan Q, Θ(n) I/Os to visit the vertices, and
Θ(m/B) I/Os to scan all edges, thus a total of Θ(n + (m + D)/B) I/Os.

Breadth-First Search (as well as Depth-First Search) can be performed in O(n + m/B) I/Os by
using the Arc Elimination techniques of [Trä13] from the PRAM model, which only gives optimal

154

speedup when m/B = Ω(n). However, when D = O((n + m)/B), we can give a more direct
implementation of the ordinary BFS algorithm that does gives optimal speedup.

Theorem 7.7.12. A Breadth-First Search can be performed in O((n + m)/B + D), where D is the
maximum distance of any vertex.

Proof. We tweak the ordinary BFS algorithm to take advantage of the GEM model during the
processing of each frontier of vertices Lℓ at distance ℓ from the source. Given array Lℓ, we first use
batch-joiner to collect all neighbors of vertices in Lℓ into an array Nℓ, taking Θ(1

B

∑︁
j(1+degLℓ[j]))

I/Os. Next, we process Nℓ in batches of size B to filter out vertices that have already been marked
as seen, with the remainder becoming Lℓ+1, taking O(|Nℓ|/B) I/Os. Lastly, we mark the vertices of
Lℓ+1 as seen at level ℓ + 1 and set them as the next frontier, taking O(|Lℓ+1|/B) I/Os.

Overall, each frontier Lℓ is processed in O(1 + |Lℓ|/B + |Nℓ|/B) I/Os. Since there are D
non-empty frontiers, and

∑︁
ℓ |Lℓ| ≤ n and

∑︁
ℓ |Nℓ| ≤ 2m, we get the claimed I/O bound.

7.8 Conclusion

We have shown that refining the granularity of bulk accesses to external memory can result in
significantly faster algorithms for classic problems. On the theoretical side, our results give a sense of
where restricting to contiguous accesses holds back performance in the EM model. On the practical
side, these algorithms motivate the development of hardware protocols to support granular access.
In the case of SSD NVMe [NVM21], for example, it would suffice to simply remove the 512-byte
lower bound on SGL regions.

In the meantime, real-world external-memory systems involving SDRAM and/or SSD already
behave closer to the general I/O model than the extreme cases of EM or GEM. It would thus be
interesting to combine the GEM algorithms from this chapter with the existing EM algorithms to
obtain hybrid algorithms that optimize for both B and P (with better speedup from P).

GEM algorithms currently need to explicitly manage the movement of data between external
and internal memory. While this is a common way to interact with secondary memory such as SSD,
interaction between cache and primary memory such as SDRAM is normally handled implicitly by
the machine architecture. This idea has been formalized for the EM model by the cache-oblivious
model [FLPR99, Dem02], which defines how to automatically convert individual memory-word
accesses into block memory transfers, in particular via competitive cache block replacement strategies.
Is a similar programming abstraction possible for GEM algorithms? And is it possible to design
GEM algorithms that are efficient despite not knowing the machine model parameters B and M , as
there are for the cache-oblivious/EM model?

Some of our algorithms and data structures leave room for further improvement.
On Breadth-First Search, it is not obvious that one can do better than EM or PRAM algorithms

when the maximum distance D is large. The structure of BFS as well as Depth-First Search do
not seem to give rise to simple graph-contraction-based recursive formulations, unlike connected
components and minimum spanning forest.

For the Online Union-Find problem, the simple worst-case O(log n) bound is sufficient for our
algorithms, but we do not have a better amortized bound such as O(α(n)/B) for queries with
o(B log n) query operations and internal memory available. The problem of performing amortized
analysis of batched or parallel operations is worth exploring further in other data structures as well.

155

Bibliography

[AAY10] Pankaj K. Agarwal, Lars Arge, and Ke Yi. I/O-efficient batched union-find and
its applications to terrain analysis. ACM Transactions on Algorithms, 7(1):1–21,
November 2010.

[ABC+23] Robert M. Alaniz, Josh Brunner, Michael Coulombe, Erik D. Demaine, Yevhenii
Diomidov, Ryan Knobel, Timothy Gomez, Elise Grizzell, Jayson Lynch, Andrew
Rodriguez, Robert Schweller, and Tim Wylie. Complexity of reconfiguration in
surface chemical reaction networks, 2023.

[ABD+20] Joshua Ani, Jeffrey Bosboom, Erik D. Demaine, Yevhenii Diomidov, Dylan Hen-
drickson, and Jayson Lynch. Walking through doors is hard, even without staircases:
Proving PSPACE-hardness via planar assemblies of door gadgets. In Proceedings
of the 10th International Conference on Fun with Algorithms (FUN 2020), pages
3:1–3:23, La Maddalena, Italy, September 2020.

[ABT04] Lars Arge, Gerth Stølting Brodal, and Laura Toma. On external-memory MST, SSSP
and multi-way planar graph separation. Journal of Algorithms, 53(2):186–206, 2004.
Publisher: Elsevier.

[ACD+22] Joshua Ani, Lily Chung, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson,
and Jayson Lynch. Pushing blocks via checkable gadgets: PSPACE-completeness of
Push-1F and Block/Box Dude. In Proceedings of the 11th International Conference
on Fun with Algorithms, pages 2:1–2:30, Island of Favignana, Sicily, Italy, May–June
2022.

[ACD+23] Joshua Ani, Michael Coulombe, Erik D. Demaine, Yevhenii Diomidov, Timothy
Gomez, Dylan Hendrickson, and Jayson Lynch. Complexity of motion planning of
arbitrarily many robots: Gadgets, Petri nets, and counter machines, 2023.

[ADD+22] Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, Dylan H. Hendrickson, and Jayson
Lynch. Traversability, reconfiguration, and reachability in the gadget framework.
In Petra Mutzel, Md. Saidur Rahman, and Slamin, editors, Proceedings of the 16th
International Conference and Workshops on Algorithms and Computation, volume
13174 of Lecture Notes in Computer Science, pages 47–58, Jember, Indonesia, March
2022.

[ADG+21] Hugo A. Akitaya, Erik D. Demaine, Andrei Gonczi, Dyl an H. Hendrickson, Adam
Hesterberg, Matias Korman, Oliver Korten, Ja yson Lynch, Irene Parada, and Vera
Sacristán. Characterizing universal reconfigurability of modular pivoting robots. In
Kevin Buchin and Éric Colin de Verdière, editors, Proceedings of the 37th International
Symposium on Computational Geometry, LIPIcs, pages 10:1–10:20, 2021.

156

[ADGV15] Greg Aloupis, Erik D. Demaine, Alan Guo, and Giovanni Viglietta. Classic Nintendo
games are (computationally) hard. Theoretical Computer Science, 586:135–160, 2015.
Originally at FUN 2014.

[ADHL22] Joshua Ani, Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch. Trains, games,
and complexity: 0/1/2-player motion planning through input/output gadgets. In
Petra Mutzel, Md. Saidur Rahman, and Slamin, editors, Proceedings of the 16th
International Conference and Workshops on Algorithms and Computation, volume
13174 of Lecture Notes in Computer Science, pages 187–198, Jember, Indonesia,
March 2022.

[AFG+22] Robert M. Alaniz, Bin Fu, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert
Schweller, and Tim Wylie. Reachability in restricted chemical reaction networks.
arXiv preprint arXiv:2211.12603, 2022.

[AGM02] Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally anonymous
asynchronous shared memory systems. Information and Computation, 173(2):162 –
183, 2002.

[AM09] Deepak Ajwani and Ulrich Meyer. Design and engineering of external memory
traversal algorithms for general graphs. In Jürgen Lerner, Dorothea Wagner, and
Katharina A. Zweig, editors, Algorithmics of Large and Complex Networks: Design,
Analysis, and Simulation, pages 1–33. Springer, 2009.

[APSV02] Lars Arge, Octavian Procopiuc, and Jeffrey Scott Vitter. Implementing I/O-efficient
data structures using TPIE. In Rolf Möhring and Rajeev Raman, editors, Proceedings
of the 10th Annual European Symposium on Algorithms, pages 88–100, 2002.

[Arg01] Lars Arge. External memory data structures. In Friedhelm Meyer auf der Heide,
editor, Proceedings of the 9th Annual European Symposium on Algorithms, pages
1–29, 2001.

[AV88] Alok Aggarwal and Jeffrey Vitter. The input/output complexity of sorting and
related problems. Communications of the ACM, 31(9):1116–1127, 1988.

[BBC+19] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Dȩbiak,
Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.
Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680,
2019.

[BBC+22] Jeffrey Bosboom, Josh Brunner, Michael Coulombe, Erik D. Demaine, Dylan H.
Hendrickson, Jayson Lynch, and Elle Najt. The Legend of Zelda: The Complexity of
Mechanics, March 2022. arXiv:2203.17167 [cs].

[BBF+10] Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg, Riko Jacob, and Elias
Vicari. Optimal sparse matrix dense vector multiplication in the I/O-model. Theory
of Computing Systems, 47:934–962, 2010.

[BBM11] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via
communication complexity. In 2011 IEEE 26th Annual Conference on Computational
Complexity, pages 210–220, San Jose, CA, USA, June 2011. IEEE.

157

[BCC+23] Josh Brunner, Lily Chung, Michael Coulombe, Erik D. Demaine, Yevhenii Diomidov,
Markus Hecher, Siddhartha Jayanti, and Jayson Lynch. Granular external memory
model: Breaking the shackles of contiguity for faster algorithms, 2023.

[BCD+17] Jean-François Baffier, Man-Kwun Chiu, Yago Diez, Matias Korman, Valia Mitsou,
André van Renssen, Marcel Roeloffzen, and Yushi Uno. Hanabi is NP-hard, even for
cheaters who look at their cards. Theor. Comput. Sci., 675:43–55, 2017.

[BDH+15] Jeffrey Bosboom, Erik D Demaine, Adam Hesterberg, Jayson Lynch, and Erik Wain-
garten. Mario Kart is hard. In Japanese Conference on Discrete and Computational
Geometry and Graphs, pages 49–59. Springer, 2015.

[BGYW19] Tatiana Brailovskaya, Gokul Gowri, Sean Yu, and Erik Winfree. Reversible com-
putation using swap reactions on a surface. In International Conference on DNA
Computing and Molecular Programming, pages 174–196. Springer, 2019.

[BHW+13] Aaron Becker, Golnaz Habibi, Justin Werfel, Michael Rubenstein, and James
McLurkin. Massive uniform manipulation: Controlling large populations of sim-
ple robots with a common input signal. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 520–527. IEEE, 2013.

[BKK21] Michael A. Bender, Bradley C. Kuszmaul, and William Kuszmaul. Linear probing
revisited: Tombstones mark the demise of primary clustering. In Proceedings of
the 62nd IEEE Annual Symposium on Foundations of Computer Science, pages
1171–1182, 2021.

[BMLC+19] Jose Balanza-Martinez, Austin Luchsinger, David Caballero, Rene Reyes, Angel A
Cantu, Robert Schweller, Luis Angel Garcia, and Tim Wylie. Full tilt: Universal
constructors for general shapes with uniform external forces. In Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2689–2708. SIAM,
2019.

[Bow11] Jack R. Bowman. Obstruction-free Snapshot, Obstruction-free Consensus, and Fetch-
and-add Modulo k. Undergraduate Thesis, Dartmouth College, June 2011.

[BWLB21] Anton Bakhtin, David J. Wu, Adam Lerer, and Noam Brown. No-press diplomacy from
scratch. Advances in Neural Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 18063–18074, 2021.

[CCBG19] Andrea Celli, Marco Ciccone, Raffaele Bongo, and Nicola Gatti. Coordination in
adversarial sequential team games via multi-agent deep reinforcement learning. arXiv
preprint arXiv:1912.07712, 2019.

[CCG+20] David Caballero, Angel A. Cantu, Timothy Gomez, Austin Luchsinger, Robert
Schweller, and Tim Wylie. Relocating units in robot swarms with uniform control
signals is PSPACE-complete. CCCG 2020, 2020.

[CDM+17] Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg
Seelig. A spatially localized architecture for fast and modular DNA computing.
Nature nanotechnology, 12(9):920–927, 2017.

158

[CDS14] Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation
with chemical reaction networks. Natural computing, 13:517–534, 2014.

[CFCS18] Alex Conway, Mart́ın Farach-Colton, and Philip Shilane. Optimal hashing in external
memory. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, Proceedings of the 45th International Colloquium on Automata,
Languages, and Programming, volume 107 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 39:1–39:14, 2018.

[CGG+95] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar-
ren Erik Vengroff, and Jeffrey Scott Vitter. External-memory graph algorithms. In
Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
139–149, 1995.

[CL18] Michael J. Coulombe and Jayson Lynch. Cooperating in Video Games? Impossible!
Undecidability of Team Multiplayer Games. 9th International Conference on Fun
with Algorithms (FUN 2018), 100, 2018.

[CL20] Michael J. Coulombe and Jayson Lynch. Cooperating in video games? impossible!
undecidability of team multiplayer games. Theoretical Computer Science, 839:30–40,
2020.

[CL22] Michael Coulombe and Jayson Lynch. Characterizing the decidability of finite state
automata team games with communication. In Pierre Ganty and Dario Della Monica,
editors, Proceedings of the 13th International Symposium on Games, Automata,
Logics and Formal Verification, Madrid, Spain, September 21-23, 2022, volume 370
of Electronic Proceedings in Theoretical Computer Science, pages 213–228. Open
Publishing Association, 2022.

[CLM+18] Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew
Winslow, and Tim Wylie. Freezing simulates non-freezing tile automata. In DNA
Computing and Molecular Programming: 24th International Conference, DNA 24,
Jinan, China, October 8–12, 2018, Proceedings 24, pages 155–172. Springer, 2018.

[CM99] Andreas Crauser and Kurt Mehlhorn. LEDA-SM: Extending LEDA to secondary
memory. In Jeffrey S. Vitter and Christos D. Zaroliagis, editors, Proceedings of the
3rd International Workshop on Algorithm Engineering, pages 228–242, 1999.

[CO22] Wojciech Czerwiński and Lukasz Orlikowski. Reachability in vector addition systems
is Ackermann-complete. In Proceedings of the 62nd Annual IEEE Symposium on
Foundations of Computer Science, pages 1229–1240, 2022.

[CQW20] Samuel Clamons, Lulu Qian, and Erik Winfree. Programming and simulating
chemical reaction networks on a surface. Journal of the Royal Society Interface,
17(166):20190790, 2020.

[CSWB09] Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programma-
bility of chemical reaction networks. In Algorithmic bioprocesses, pages 543–584.
Springer, 2009.

[Dem02] Erik D. Demaine. Cache-oblivious algorithms and data structures. Lecture Notes
from the EEF Summer School on Massive Data Sets, 8(4):1–249, 2002.

159

[DGLR18] Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational
Complexity of Motion Planning of a Robot through Simple Gadgets. In Proceedings
of the 9th International Conference on Fun with Algorithms (FUN 2018), pages
18:1–18:21, La Maddalena, Italy, June 2018.

[DH08] Erik D. Demaine and Robert A. Hearn. Constraint Logic: A Uniform Framework
for Modeling Computation as Games. In 2008 23rd Annual IEEE Conference on
Computational Complexity, pages 149–162, College Park, MD, USA, June 2008. IEEE.

[DHHL22] Erik D. Demaine, Robert A. Hearn, Dylan Hendrickson, and Jayson Lynch. PSPACE-
completeness of reversible deterministic systems. In Proceedings of the 9th Conference
on Machines, Computations and Universality, pages 91–108, Debrecen, Hungary,
August–September 2022.

[DHL20] Erik D. Demaine, Dylan Hendrickson, and Jayson Lynch. Toward a general theory
of motion planning complexity: Characterizing which gadgets make games hard. In
Proceedings of the 11th Conference on Innovations in Theoretical Computer Science,
pages 62:1–62:42, Seattle, Washington, January 2020.

[DK21] Colin Defant and Noah Kravitz. Friends and strangers walking on graphs. Combina-
torial Theory, 1, 2021.

[DKL20] Erik D. Demaine, Justin Kopinsky, and Jayson Lynch. Recursed is not recursive:
A jarring result. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, 31st
International Symposium on Algorithms and Computation (ISAAC 2020), volume
181 of Leibniz International Proceedings in Informatics (LIPIcs), pages 50:1–50:15,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[DKM+94] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide,
Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and lower
bounds. SIAM Journal on Computing, 23(4):738–761, August 1994.

[DKTT15] Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, and Andrew J Turberfield.
DNA walker circuits: computational potential, design, and verification. Natural
Computing, 14(2):195–211, 2015.

[DLL18] Erik D. Demaine, Joshua Lockhart, and Jayson Lynch. The computational complexity
of Portal and other 3D video games. In Proceedings of the 9th International Conference
on Fun with Algorithms (FUN 2018), pages 19:1–19:22, La Maddalena, Italy, June
13–15 2018.

[DS97] Danny Dolev and Nir Shavit. Bounded concurrent time-stamping. SIAM Journal on
Computing, 26(2):418–455, March 1997.

[DSSS04] Roman Dementiev, Peter Sanders, Dominik Schultes, and Jop Sibeyn. Engineering an
external memory minimum spanning tree algorithm. In Jean-Jacques Levy, Ernst W.
Mayr, and John C. Mitchell, editors, Proceedings of the IFIP 18th World Computer
Congress on Exploring New Frontiers of Theoretical Informatics, pages 195–208, 2004.

[Esp05] Javier Esparza. Decidability and complexity of Petri net problems – an introduction.
Lectures on Petri Nets I: Basic Models: Advances in Petri Nets, pages 374–428, 2005.

160

[FAdFW16] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson.
Learning to communicate with deep multi-agent reinforcement learning. Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 2137–2145,
2016.

[Fel22] Carlos Felicio. 512E vs 4KN NVME performance. Technology Blog post, January
2022. https://carlosfelic.io/misc/512e-vs-4kn-nvme-performance/.

[FHLS20] Alireza Farhadi, MohammadTaghi Hajiaghayi, Kasper Green Larsen, and Elaine Shi.
Lower bounds for external memory integer sorting via network coding. SIAM Journal
on Computing, pages 97–105, October 2020.

[FHS98] Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized
synchronization. J. ACM, 45(5):843–862, September 1998.

[FL81] Aviezri S. Fraenkel and David Lichtenstein. Computing a perfect strategy for n x
n chess requires time exponential in n. In Shimon Even and Oded Kariv, editors,
Automata, Languages and Programming, pages 278–293, Berlin, Heidelberg, 1981.
Springer Berlin Heidelberg.

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, pages 285–297, 1999.

[For10] Michal Forǐsek. Computational complexity of two-dimensional platform games. In
Proceedings of the 5th International Conference on Fun with Algorithms (FUN 2010),
pages 214–227, 2010.

[FW78] Steven Fortune and James Wyllie. Parallelism in random access machines. In
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pages
114–118, 1978.

[GH10] Gilad Goraly and Refael Hassin. Multi-color pebble motion on graphs. Algorithmica,
58:610–636, 2010.

[GKSW17] Rati Gelashvili, Idit Keidar, Alexander Spiegelman, and Roger Wattenhofer. Brief
announcement: Towards reduced instruction sets for synchronization. In 31st Inter-
national Symposium on Distributed Computing (DISC 2017), volume 91, page 53.
Schloss Dagstuhl, Leibniz-Zentrum für Informatik, 2017.

[GLN14] Luciano Guala, Stefano Leucci, and Emanuele Natale. Bejeweled, Candy Crush and
other match-three games are (NP-) hard. In IEEE Conference on Computational
Intelligence and Games, pages 1–8. IEEE, 2014.

[GMMRW21] Eric Goles, Diego Maldonado, Pedro Montealegre, and Mart́ın Ŕıos-Wilson. On the
complexity of asynchronous freezing cellular automata. Information and Computation,
281:104764, 2021.

[GOT15] Eric Goles, Nicolas Ollinger, and Guillaume Theyssier. Introducing freezing cellular
automata. In Cellular Automata and Discrete Complex Systems, 21st International
Workshop (AUTOMATA 2015), volume 24, pages 65–73, 2015.

161

https://carlosfelic.io/misc/512e-vs-4kn-nvme-performance/

[Ham14] Linus Hamilton. Braid is undecidable. arXiv preprint arXiv:1412.0784, 2014.

[HD09] Robert A. Hearn and Erik D. Demaine. Games, Puzzles, and Computation. A. K.
Peters, Ltd., Natick, MA, USA, 2009.

[Hen21] Dylan Hendrickson. Gadgets and gizmos: A formal model of simulation in the
gadget framework for motion planning. Master’s thesis, Massachusetts Institute of
Technology, 2021.

[Her88] Maurice P. Herlihy. Impossibility and universality results for wait-free synchronization.
In Proceedings of the seventh annual ACM Symposium on Principles of distributed
computing - PODC ’88, pages 276–290, Toronto, Ontario, Canada, 1988. ACM Press.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13:26, January 1991.

[HS11] Maurice Herlihy and Nir Shavit. On the nature of progress. In Principles of Distributed
Systems, pages 313–328. Springer, 2011.

[HSLS20] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. The art of
multiprocessor programming. Newnes, 2020.

[HV95] S. Haldar and K. Vidyasankar. Constructing 1-writer multireader multivalued atomic
variables from regular variables. Journal of the ACM, 42(1):186–203, January 1995.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[IP12] John Iacono and Mihai Pătraşcu. Using hashing to solve the dictionary problem (in
external memory). In Proceedings of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 570–582, January 2012.

[IPS82] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths
in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[JL19] Shunhua Jiang and Kasper Green Larsen. A faster external memory priority queue
with DecreaseKeys. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1331–1343. Society for Industrial and Applied Mathematics, 2019.

[JLH+19] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega,
DJ Strouse, Joel Z. Leibo, and Nando De Freitas. Social influence as intrinsic
motivation for multi-agent deep reinforcement learning. Proceedings of the 36th
International Conference on Machine Learning, 97:3040–3049, 09–15 Jun 2019.

[KM69] Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of
Computer and System Sciences, 3(2):147–195, 1969.

[Kni21] Shawn Knight. SSD shipments outpaced HDDs in 2020, but capacity still favors
mechanical drives. TechSpot, February 2021. https://www.techspot.com/news/
88645-ssd-shipments-outpaced-hdds-2020-but-capacity-favors.html.

[Kru56] Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7(1):48–50,
1956.

162

https://www.techspot.com/news/88645-ssd-shipments-outpaced-hdds-2020-but-capacity-favors.html
https://www.techspot.com/news/88645-ssd-shipments-outpaced-hdds-2020-but-capacity-favors.html

[Ler22] Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 1241–1252. IEEE, 2022.

[LS19] Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is
primitive-recursive in fixed dimension. In Proceedings of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 1–13. IEEE, 2019.

[LTE+20] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul, But-
ler W. Lampson, Daniel Sanchez, and Tao B. Schardl. There’s plenty of room at the
Top: What will drive computer performance after Moore’s law? Science, 368(6495),
June 2020.

[Lyn20] Jayson Lynch. A framework for proving the computational intractability of motion
planning problems. PhD thesis, Massachusetts Institute of Technology, 2020.

[Mil22] Aleksa Milojevic. Connectivity of old and new models of friends-and-strangers graphs.
arXiv preprint arXiv:2210.03864, 2022.

[Mis] MisterMike. https://www.spriters-resource.com/submitter/MisterMike/.

[MN19] J. Ian Munro and Yakov Nekrich. Dynamic planar point location in external memory.
In Gill Barequet and Yusu Wang, editors, Proceedings of the 35th International Sym-
posium on Computational Geometry, volume 129 of Leibniz International Proceedings
in Informatics, pages 52:1–52:15, 2019.

[MSCS13] Richard A. Muscat, Karin Strauss, Luis Ceze, and Georg Seelig. DNA-based molec-
ular architecture with spatially localized components. ACM SIGARCH Computer
Architecture News, 41(3):177–188, 2013.

[MY07] Kenichi Morita and Yoshikazu Yamaguchi. A universal reversible turing machine.
In Machines, Computations, and Universality: 5th International Conference, MCU
2007, Orléans, France, September 10-13, 2007. Proceedings 5, pages 90–98. Springer,
2007.

[NVM21] NVM Express, Inc. NVM Express base specification, versions 1.0–2.0a, 2011–2021.
https://nvmexpress.org/specification/nvm-express-base-specification/.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-
Westfälischen Institutes für Instrumentelle Mathematik an der Universität Bonn,
1962.

[PLB+19] Philip Paquette, Yuchen Lu, Steven Bocco, Max O. Smith, Satya Ortiz-Gagne,
Jonathan K. Kummerfeld, Joelle Pineau, Satinder Singh, and Aaron C. Courville.
No-press diplomacy: Modeling multi-agent gameplay. Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 4476–4487,
2019.

[PR79] Gary L. Peterson and John H. Reif. Multiple-person alternation. In 20th Annual
Symposium on Foundations of Computer Science (sfcs 1979), pages 348–363, San
Juan, Puerto Rico, October 1979. IEEE.

163

https://www.spriters-resource.com/submitter/MisterMike/
https://nvmexpress.org/specification/nvm-express-base-specification/

[PRA01] Gary Peterson, John Reif, and Salman Azhar. Lower bounds for multiplayer noncoop-
erative games of incomplete information. Computers & Mathematics with Applications,
41(7-8):957–992, April 2001.

[PRST94] Christos H Papadimitriou, Prabhakar Raghavan, Madhu Sudan, and Hisao Tamaki.
Motion planning on a graph. In Proceedings 35th Annual Symposium on Foundations
of Computer Science, pages 511–520. IEEE, 1994.

[Pup] PuppetMaster9. Flying machine. https://www.zeldaspeedruns.com/botw/techniques/
flying-machine.

[PV84] Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems
related to the travelling salesman problem. Journal of Algorithms, 5(2):231–246, June
1984.

[QW14] Lulu Qian and Erik Winfree. Parallel and scalable computation and spatial dynamics
with DNA-based chemical reaction networks on a surface. In DNA Computing and
Molecular Programming: 20th International Conference, DNA 20, Kyoto, Japan,
September 22-26, 2014. Proceedings, volume 8727, page 114. Springer, 2014.

[Rac78] Charles Rackoff. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6(2):223–231, 1978.

[Rei79] John H Reif. Universal games of incomplete information. In Proceedings of the
eleventh annual ACM symposium on Theory of computing, pages 288–308. ACM,
1979.

[Rei84] John H Reif. The complexity of two-player games of incomplete information. Journal
of computer and system sciences, 29(2):274–301, 1984.

[Rei21] Frederick Reiber. The crew: The quest for planet nine is np-complete. CoRR, 2021.

[Rob83] J. M. Robson. The complexity of Go. Proc. 9th World Computer Congress on
Information Processing, 1983, pages 413–417, 1983.

[Rob84] J. M. Robson. N by N Checkers is Exptime Complete. SIAM Journal on Computing,
13(2):252–267, May 1984.

[roc] rocktyt. Cave of flames. https://www.vgmaps.com/Atlas/GBA/index.htm#
LegendOfZeldaMinishCap.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape
complexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.

[Sch78] Thomas J. Schaefer. On the complexity of some two-person perfect-information
games. Journal of Computer and System Sciences, 16(2):185–225, April 1978.

[SCWB08] David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation
with finite stochastic chemical reaction networks. natural computing, 7:615–633, 2008.

[SRG17] Matthew Stephenson, Jochen Renz, and Xiaoyu Ge. The computational complexity
of angry birds and similar physics-simulation games. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, volume 13,
pages 241–247, 2017.

164

https://www.zeldaspeedruns.com/botw/techniques/flying-machine
https://www.zeldaspeedruns.com/botw/techniques/flying-machine
https://www.vgmaps.com/Atlas/GBA/index.htm#LegendOfZeldaMinishCap
https://www.vgmaps.com/Atlas/GBA/index.htm#LegendOfZeldaMinishCap

[SSW10] David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for
chemical kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–
5398, 2010.

[STTW16] Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Work-
efficient parallel union-find with applications to incremental graph connectivity.
In Pierre-François Dutot and Denis Trystram, editors, Euro-Par 2016: Parallel
Processing, volume 9833 of Lecture Notes in Computer Science, pages 561–573.
Springer International Publishing, Cham, 2016.

[TLJ+17] Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan Doroudi,
Yae Lim Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, et al.
A cargo-sorting DNA robot. Science, 357(6356):eaan6558, 2017.

[TO22] Guillaume Theyssier and Nicolas Ollinger. Freezing, bounded-change and convergent
cellular automata. Discrete Mathematics & Theoretical Computer Science, 24, 2022.

[Trä13] Jesper Larsson Träff. A note on (parallel) Depth- and Breadth-First Search by arc
elimination. arXiv:1305.1222, November 2013. http://arXiv.org/abs/1305.1222.

[TvL84] Robert E. Tarjan and Jan van Leeuwen. Worst-case Analysis of Set Union Algorithms.
Journal of the ACM, 31(2):245–281, March 1984.

[VBC+19] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg, Wojtek Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard
Powell, Timo Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John Aga-
piou, Junhyuk Oh, Valentin Dalibard, David Choi, Laurent Sifre, Yury Sulsky,
Sasha Vezhnevets, James Molloy, Trevor Cai, David Budden, Tom Paine, Caglar
Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Dani Yogatama, Julia Co-
hen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Chris
Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. AlphaStar: Mas-
tering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/, 2019.

[VDZB15] Tom C Van Der Zanden and Hans L Bodlaender. PSPACE-completeness of Blox-
orz and of games with 2-buttons. In International Conference on Algorithms and
Complexity, pages 403–415. Springer, 2015.

[Vid21] Video Game Sales Wiki. The Legend of Zelda. https://vgsales.fandom.com/wiki/
The Legend of Zelda, 2021.

[Vig14] Giovanni Viglietta. Gaming is a hard job, but someone has to do it! Theory of
Computing Systems, 54(4):595–621, 2014.

[Vit01] Jeffrey Scott Vitter. External memory algorithms and data structures: Dealing with
massive data. ACM Computing Surveys, 33(2):209–271, June 2001.

[Wik22a] Wikipedia. Synchronous dynamic random-access memory, 2003–2022. https://en.
wikipedia.org/wiki/Synchronous dynamic random-access memory.

[Wik22b] Wikipedia. Solid-state drive, 2006–2022. https://en.wikipedia.org/wiki/Solid-state
drive.

165

http://arXiv.org/abs/1305.1222
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://vgsales.fandom.com/wiki/The_Legend_of_Zelda
https://vgsales.fandom.com/wiki/The_Legend_of_Zelda
https://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
https://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive

[WN09] Damien Woods and Turlough Neary. The complexity of small universal turing
machines: A survey. Theoretical Computer Science, 410(4-5):443–450, 2009.

[Zel21a] Zelda Dungeon. Category:items. https://www.zeldadungeon.net/wiki/Category:
Items, 2021.

[Zel21b] Zelda Wiki. Category:items. https://zelda.fandom.com/wiki/Category:Items, 2021.

166

https://www.zeldadungeon.net/wiki/Category:Items
https://www.zeldadungeon.net/wiki/Category:Items
https://zelda.fandom.com/wiki/Category:Items

	I Games and Gadgets
	Motion Planning and The Legend of Zelda
	Introduction
	Zelda Game Model
	2D
	3D

	Polynomial-Time Zelda
	Hookshot and Switch Hook are in P
	Crystal Switches with Barriers and Unlimited Activators is in P

	NP-Hard Zelda
	Collectible Objects
	Additional Hamiltonian Path Hardness
	Floor Puzzles are NP-Hard
	Fighting Monsters is NP-Hard

	PSPACE-Complete Zelda
	Statues and Pressure Plates are PSPACE-Complete
	Magnetic Gloves is PSPACE-Complete
	Cane of Pacci is PSPACE-Complete
	Magnesis Rune is PSPACE-Complete
	Minecarts Navigation

	Open Problems

	Motion Planning of Arbitrarily Many Robots
	Introduction
	The Gadget Model and Petri Nets
	Motion Planning Through Gadgets
	Multi Robot Motion Planning with Spawners and/or Destroyers
	Petri Nets

	Equivalence between Petri Nets and Gadgets
	Complexity of Reachability
	Complexity of Reconfiguration
	Open Problems

	II Team Games and Communication
	Undecidability of Team Multiplayer Games
	Introduction
	Team Graph Game Components
	Delay Gate
	Red Team Choice Gadget
	State Transition Gadget
	Initialization

	Reductions
	Applications
	Team Fortress 2 and many other team FPS games
	Super Smash Brothers
	Mario Kart

	Conclusion and Open Problems

	Decidability of Team Games with Communication
	Introduction
	Team DFA Game
	Communication Model

	Undecidability of Simple Communication Games
	Mid-round Communication
	End-round Communication

	Undecidability of General Communication Games
	Properties of Rate-Limited Policies
	Construction Outline
	Build-up Phase
	Clogging Phase
	Tear-down Phase
	Proof of Undecidability

	Decidability
	Team Formula Games with Communication
	Open Problems

	III Concurrency and External Memory
	Atomic Gadget Simulations for Asynchronous Motion Planning
	Introduction
	Shared Memory Objects

	Bounded Shared Memory Simulation
	Atomic Registers
	SRSW Safe Boolean Register
	MRSW Safe Boolean Register
	MRSW Regular Boolean Register
	MRSW Regular Multivalued Register
	Multiplexers and Single- to Exclusive-Writer Registers
	Timestamps and the MRMW Atomic Multivalued Register

	Atomic Multivalued Concensus
	Mutex
	Demultiplexer
	Open Problems

	Complexity of Reconfiguration in Surface Chemical Reaction Networks
	Introduction
	Motivation
	Previous Work
	Our Contributions

	Surface CRN model
	Restrictions
	Problems

	Swap Reactions
	Reconfiguration is PSPACE-complete
	Polynomial-Time Algorithm

	Single Reaction
	2 Species
	3 or more Species

	Conclusion

	Granular External Memory Model
	Introduction
	Models
	Results

	Granular External Memory Model
	Simulating PRAM
	Maps and Arrays
	Joining Arrays

	Sorting
	Indivisible Sorting
	Permutation
	Integer Sorting
	Duplicate Removal

	Union-Find
	Offline
	Online Batched
	Online with Supersized Batches

	Hashing
	Open Addressing
	Chaining
	Dynamic Perfect Hashing

	List Ranking
	Graph Algorithms
	Maximal Independent Set and Small Dominating Sets
	Dominating Set Clustering
	Connected Components
	Minimum Spanning Trees
	Shortest Paths

	Conclusion

