
Hamiltonian Cycle and Related Problems:
Vertex-Breaking, Grid Graphs, and Rubik’s Cubes

by

Mikhail Rudoy
Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2017

c○ Mikhail Rudoy, MMXVII. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any medium

now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 26, 2017

Certified by. .
Erik Demaine

Professor
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

THIS PAGE INTENTIONALLY LEFT BLANK

2

Hamiltonian Cycle and Related Problems:
Vertex-Breaking, Grid Graphs, and Rubik’s Cubes

by
Mikhail Rudoy

Submitted to the Department of Electrical Engineering and Computer Science
on May 26, 2017, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, we analyze the computational complexity of several problems related to the
Hamiltonian Cycle problem.

We begin by introducing a new problem, which we call Tree-Residue Vertex-Breaking
(TRVB). Given a multigraph 𝐺 some of whose vertices are marked “breakable,” TRVB asks
whether it is possible to convert 𝐺 into a tree via a sequence of applications of the vertex-
breaking operation: disconnecting the edges at a degree-𝑘 breakable vertex by replacing that
vertex with 𝑘 degree-1 vertices. We consider the special cases of TRVB with any combination
of the following additional constraints: 𝐺 must be planar, 𝐺 must be a simple graph, the
degree of every breakable vertex must belong to an allowed list 𝐵, and the degree of every
unbreakable vertex must belong to an allowed list 𝑈 . We fully characterize these variants
of TRVB as polynomially solvable or NP-complete. The TRVB problem is useful when
analyzing the complexity of what could be called single-traversal problems, where some space
(i.e., a configuration graph or a grid) must be traversed in a single path or cycle subject to
local constraints. When proving such a problem NP-hard, a reduction from TRVB can often
be used as a simpler alternative to reducing from a hard variant of Hamiltonian Cycle.

Next, we analyze several variants of the Hamiltonian Cycle problem whose complexity
was left open in a 2007 paper by Arkin et al [3]. That paper is a systematic study of
the complexity of the Hamiltonian Cycle problem on square, triangular, or hexagonal grid
graphs, restricted to polygonal, thin, superthin, degree-bounded, or solid grid graphs. The
authors solved many combinations of these problems, proving them either polynomially
solvable or NP-complete, but left three combinations open. We prove two of these unsolved
combinations to be NP-complete: Hamiltonian Cycle in Square Polygonal Grid Graphs and
Hamiltonian Cycle in Hexagonal Thin Grid Graphs. We also consider a new restriction,
where the grid graph is both thin and polygonal, and prove that the Hamiltonian Cycle
problem then becomes polynomially solvable for square, triangular, and hexagonal grid
graphs. Several of these results are shown by application of the TRVB results, demonstrating
the usefulness of that problem.

Finally, we apply the Square Grid Graph Hamiltonian Cycle problem to close a long-
standing open problem: we prove that optimally solving an 𝑛 × 𝑛 × 𝑛 Rubik’s Cube is
NP-complete. This improves the previous result that optimally solving an 𝑛 × 𝑛 × 𝑛 Rubik’s
Cube with missing stickers is NP-complete. We prove this result first for the simpler case of
the Rubik’s Square—an 𝑛 × 𝑛 × 1 generalization of the Rubik’s Cube—and then proceed
with a similar but more complicated proof for the Rubik’s Cube case.

Thesis Supervisor: Erik Demaine
Title: Professor

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

Acknowledgments

I would like to thank my thesis advisor Prof. Erik Demaine for his knowledgeable and
enthusiastic introduction to the world of hardness proofs and for his guidance and encour-
agement throughout my research. It was a pleasure working with you and learning from
you. On a similar note, I would like to thank the participants of the open problem session
held starting in Fall 2014 in association with MIT’s class 6.890: Algorithmic Lower Bounds.
I really enjoyed meeting and collaborating with you all. I would also like to acknowledge the
contributions that Erik Demaine and Jayson Lynch made to this thesis by helping me with
my editing.

Finally, a huge thanks to my friends and family. Your support and encouragement have
put me where I am today.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 9
1.1 Tree-Residue Vertex-Breaking . 9
1.2 How to use TRVB: Hamiltonicity in max-degree-3 square grid graphs 10
1.3 Hamiltonian Cycle in grid graphs . 13
1.4 Solving the Rubik’s Cube optimally . 14

2 Tree-Residue Vertex-Breaking 15
2.1 Introduction . 15
2.2 Problem variants . 17

2.2.1 Problem variant definitions . 17
2.2.2 Diagram conventions . 18
2.2.3 Trivial reductions . 18
2.2.4 Membership in NP . 19

2.3 TRVB is polynomial-time solvable without high-degree breakable vertices . 19
2.3.1 ({3}, ∅)-TRVB is polynomial-time solvable 19
2.3.2 Nonseparating Independent Tag Set is polynomial-time solvable 21
2.3.3 ({1, 2, 3},N)-TRVB is polynomial-time solvable 27

2.4 Planar Graph TRVB is polynomial-time solvable without small vertex degrees 29
2.4.1 Proof idea . 29
2.4.2 Proof . 31

2.5 Planar ({𝑘}, {4})-TRVB is NP-hard for any 𝑘 ≥ 4 38
2.5.1 Planar Hamiltonicity in Directed Graphs with all in- and out-degrees

2 is NP-hard . 38
2.5.2 Reduction to Planar ({𝑘}, {4})-TRVB for any 𝑘 ≥ 4 40

2.6 Planar TRVB and TRVB are NP-complete with high-degree breakable vertices 46
2.7 Graph TRVB is NP-complete with high-degree breakable vertices 48
2.8 Planar Graph TRVB is NP-hard with both low-degree vertices and high-degree

breakable vertices . 50

3 Hamiltonian Cycle in Grid Graphs 57
3.1 Introduction . 57
3.2 Grid graph terminology . 58
3.3 Polygonal Thin Grid Graph Hamiltonian Cycle is easy 59

3.3.1 Triangular grids . 59
3.3.2 Square grids . 59
3.3.3 Hexagonal grids . 61

3.4 Hamiltonian Cycle in Hexagonal Thin Grid Graphs is NP-complete 67

7

3.4.1 Reduction . 68
3.4.2 Degree-6 breakable vertex gadget . 70

3.5 Hamiltonian Cycle in Square Polygonal Grid Graphs is NP-complete 72
3.5.1 Simple gadgets . 74
3.5.2 Variable gadget . 75
3.5.3 Clause gadget . 77
3.5.4 Overall reduction . 79

3.6 Conclusion and further work . 81

4 Solving the Rubik’s Cube Optimally is NP-complete 83
4.1 Introduction . 83
4.2 Rubik’s Cube and Rubik’s Square problems 83

4.2.1 Rubik’s Square . 83
4.2.2 Rubik’s Cube . 84
4.2.3 Notation . 85
4.2.4 Group-theoretic approach . 86
4.2.5 Membership in NP . 88

4.3 Hamiltonicity variants . 88
4.3.1 Promise Grid Graph Hamiltonian Path is NP-hard 89
4.3.2 Promise Cubical Hamiltonian Path is NP-hard 90

4.4 (Group) Rubik’s Square is NP-complete . 91
4.4.1 Reductions . 91
4.4.2 Intuition . 91
4.4.3 Promise Cubical Hamiltonian Path solution → (Group) Rubik’s Square

solution . 92
4.4.4 Coloring of 𝐶𝑡 . 93
4.4.5 (Group) Rubik’s Square solution → Promise Cubical Hamiltonian

Path solution . 96
4.4.6 Conclusion . 99

4.5 (Group) STM/SQTM Rubik’s Cube is NP-complete 99
4.5.1 Reductions . 99
4.5.2 Promise Cubical Hamiltonian Path solution → (Group) STM/SQTM

Rubik’s Cube solution . 100
4.5.3 Coloring of 𝐶𝑡 . 102
4.5.4 (Group) STM/SQTM Rubik’s Cube solution → Promise Cubical

Hamiltonian Path solution: proof outline 108
4.5.5 Step 1: restricting the set of possible index-(𝑚 + 𝑖) moves 111
4.5.6 Step 2: exploring properties of paired stickers 115
4.5.7 Step 3: classifying possible moves with a counting argument 116
4.5.8 Step 4: further restricting possible move types 118
4.5.9 Step 5: showing 𝑇 is empty . 119
4.5.10 Conclusion . 121

4.6 Future work . 121

8

Chapter 1

Introduction

The Hamiltonian Cycle problem is one of the prototype NP-complete problems from Karp’s
1972 paper [14]. Since then, many special cases of Hamiltonian Cycle have been classified
as either polynomial-time solvable or NP-complete. For example, the Hamiltonian Cycle
problem is known to be NP-complete in planar directed max-degree-3 graphs [19], circle
graphs [8], bipartite chordal graphs [17], and square grid graphs [13, 18]. For a more
comprehensive list of results about the complexity of the Hamiltonian Cycle problem
restricted to various graph classes, see [9].

The many NP-hard variants of the Hamiltonian Cycle problem (restricted to various
graph classes) have been the basis for many NP-hardness reductions to geometric and
graph problems. In other words, these NP-hard variants of Hamiltonian Cycle form a
powerful toolkit for proving NP-hardness (see [10]). In Chapter 2, we extend this toolkit
by introducing a new problem, called the Tree-Residue Vertex-Breaking (TRVB) problem,
which we prove NP-hard by reduction from Hamiltonian Cycle. Reducing from TRVB is
often a simpler alternative to reducing from a Hamiltonian Cycle variant, so TRVB can be a
powerful tool. In Chapter 3, we analyze the complexity of the Hamiltonian Cycle problem
when restricted to several types of grid graphs. Some of the results in this chapter follow
from the results about TRVB. Finally, in Chapter 4, we demonstrate an application for
Hamiltonian Cycle. In particular, we prove that solving a given 𝑛 × 𝑛 × 𝑛 Rubik’s Cube
optimally (i.e., within a given number of moves) is NP-hard. The particular results from
these chapters are described in more detail below.

1.1 Tree-Residue Vertex-Breaking

In Chapter 2, we introduce the Tree-Residue Vertex-Breaking (TRVB) problem. Given
a multigraph 𝐺 some of whose vertices are marked “breakable,” TRVB asks whether it
is possible to convert 𝐺 into a tree via a sequence of applications of the vertex-breaking
operation: disconnecting the edges at a degree-𝑘 breakable vertex by replacing that vertex
with 𝑘 degree-1 vertices (as shown in Figure 1-1). We analyze the special cases of TRVB
in which the input multigraph 𝐺 is restricted with any subset of the following additional
constraints:

1. every breakable vertex of 𝐺 must have degree from a list 𝐵 of allowed degrees;

2. every unbreakable vertex of 𝐺 must have degree from a list 𝑈 of allowed degrees;

3. 𝐺 is planar;

9

→

Figure 1-1: The operation of breaking a vertex. The vertex (left) is replaced by a set of
degree-1 vertices with the same edges (right).

All breakable
vertices have
small degree
(𝐵 ⊆ {1, 2, 3})

Restricted
to planar

simple
graphs

All vertices have
large degree

(𝐵 ∩ {1, 2, 3, 4} = ∅
and

𝑈 ∩ {1, 2, 3, 4, 5} = ∅)

TRVB
variant

complexity
Section

Yes * * Polynomial
Time Section 2.3

No No * NP-complete Sections 2.5,
2.6, 2.7

No Yes No NP-complete Section 2.8

No Yes Yes

Polynomial
Time (every
instance is a

“no” instance)

Section 2.4

Table 1.1: A summary of results from Chapter 2 (where 𝐵 and 𝑈 are the allowed breakable
and unbreakable vertex degrees).

4. 𝐺 is a simple graph (rather than a multigraph).

In Chapter 2, we fully classify these variants of TRVB into polynomial-time solvable and
NP-complete. Table 1.1 summarizes our results.

1.2 How to use TRVB: Hamiltonicity in max-degree-3 square
grid graphs

The TRVB problem is useful when analyzing the complexity of what could be called single-
traversal problems: problems in which some space (i.e., a configuration graph or a grid) must
be traversed in a single path or cycle subject to local constraints. Notice that variants of
the Hamiltonian Cycle problem fall under the category of single-traversal problems. In this
section, we show one example of using TRVB to prove hardness of a single-traversal problem.
Namely, the result that Hamiltonian Cycle in max-degree-3 square grid graphs is NP-hard
[18] can be reproduced with the following much simpler reduction.

The reduction is from the variant of TRVB in which the input multigraph is restricted
to be planar and to have only degree-4 breakable vertices, which is shown NP-complete in

10

Chapter 2. Given a planar multigraph 𝐺 with only degree-4 breakable vertices, we output a
max-degree-3 square grid graph by appropriately placing breakable degree-4 vertex gadgets
(shown in Figure 1-2) and routing edge gadgets (shown in Figure 1-3) to connect them.
Each edge gadget consists of two parallel paths of edges a distance of two apart, and as
shown in the figure, these paths can turn, allowing the edge to be routed as necessary
(without parity constraints). Each breakable degree-4 vertex gadget joins four edge gadgets
in the configuration shown. Note that, as desired, the maximum degree of any vertex in the
resulting grid graph is 3.

Figure 1-2: A degree-4 breakable vertex gadget.

Figure 1-3: An example edge gadget consisting of two parallel paths of edges a distance of
two apart.

Consider any candidate set of edges 𝐶 that could be a Hamiltonian cycle in the resulting
grid graph. In order for 𝐶 to be a Hamiltonian cycle, 𝐶 must satisfy both the local constraint
that every vertex is incident to exactly two edges in 𝐶 and the global constraint that 𝐶 is
a cycle (rather than a set of disjoint cycles). It is easy to see tha,t in order to satisfy the
local constraint, every edge in every edge gadget must be in 𝐶. Similarly, there are only two
possibilities within each breakable degree-4 vertex gadget which satisfy the local constraint.
These possibilities are shown in Figure 1-4.

We can identify the choice of local solution at each breakable degree-4 vertex gadget with
the choice of whether to break the corresponding vertex. Under this bijection, every candidate
solution 𝐶 satisfying local constraints corresponds with a possible residual multigraph 𝐺′

formed from 𝐺 by breaking vertices. The key insight is that the shape of the region 𝑅
inside 𝐶 is exactly the shape of 𝐺′. This is shown for an example graph-piece in Figure 1-5.
The boundary of 𝑅, also known as 𝐶, is exactly one cycle if and only if 𝑅 is connected
and hole-free. Since the shape of region 𝑅 is the same as the shape of multigraph 𝐺′, this
corresponds to the condition that 𝐺′ is connected and acyclic, or in other words that 𝐺′ is

11

Figure 1-4: The two possible solutions to the vertex gadget from Figure 1-2 which satisfy
the local constraints imposed by the Hamiltonian Cycle problem.

a tree. Thus, there exists a candidate solution 𝐶 to the Hamiltonian Cycle instance that
is an actual solution (satisfying both the global and local constraints) if and only if 𝐺 is a
“yes” instance of TRVB. Therefore, Hamiltonian Cycle in max-degree-3 square grid graphs is
NP-hard.

Figure 1-5: Given a multigraph including the piece shown in the top left, the output grid
graph might include the section shown in the bottom left (depending on graph layout). If
the top vertex in this piece of the multigraph is broken, resulting in the piece of multigraph
𝐺′ shown in the top right, then the resulting candidate solution 𝐶 (shown in bold) in the
bottom right contains region 𝑅 (shown in grey) whose shape resembles the shape of 𝐺′.

This same proof idea can apply to any single-traversal problem as long as we demonstrate
both an edge gadget and a breakable degree-𝑘 vertex gadget for some 𝑘 ≥ 4. In order for
the proof to go through, the edge gadget must contain two parallel paths, both of which
must be traversed due to the local constraints of the single-traversal problem. In addition,

12

the vertex gadget must have exactly two possible solutions satisfying the local constraints of
the problem: one solution will disconnect the regions inside all the adjoining edge gadgets,
while the other will connect these regions inside the vertex gadget.

1.3 Hamiltonian Cycle in grid graphs

An important NP-complete special case of the Hamiltonian Cycle problem is its restriction
to (square) grid graphs [13], where vertices lie on the 2D integer square grid and edges
connect all unit-distance vertex pairs. Hamiltonian Cycle in grid graphs has been used
as the source problem for NP-hardness reductions to many geometric and planar-graph
problems, such as Euclidean TSP [13], Euclidean degree-bounded minimum spanning tree
[18], 2D platform games with item collection and time limits [12], the Slither Link puzzle
[26], the Hashiwokakero puzzle [1], lawn mowing and milling (e.g., 3D printing) [4], and
minimum-turn milling [2]; see [10].

Given all these applications, it is natural to wonder how special we can make the grid
graphs, and whether we can change the grid to triangular or hexagonal, and still keep
Hamiltonian Cycle NP-complete. Two notable examples are NP-completeness in maximum-
degree-3 square grid graphs [18] and a polynomial-time algorithm for solid square grid graphs
[22]. In 2007, Arkin et al. [3] initiated a systematic study of the complexity of Hamiltonian
Cycle in square, triangular, or hexagonal grid graphs, restricted to several special cases:
polygonal, thin, superthin, degree-bounded, or solid grid graphs. See [3] or Section 3.2
for definitions. Table 1.2 (nonbold) summarizes the many results they obtained, including
several NP-completeness results and a few polynomial-time algorithms.

Arkin et al. [3] left unsolved three of the combinations between grid shape and special
property: Hamiltonian Cycle in Square Polygonal Grid Graphs, Hamiltonian Cycle in
Hexagonal Thin Grid Graphs, and Hamiltonian Cycle in Hexagonal Solid Grid Graphs.
We prove that the first two of these, Hamiltonian Cycle in Square Polygonal Grid Graphs
and Hamiltonian Cycle in Hexagonal Thin Grid Graphs, are NP-complete. In addition,
we consider another case not considered in that paper, namely, thin polygonal grid graphs
(the fusion of two special cases). We show that Hamiltonian Cycle becomes polynomially
solvable in this case, for all three shapes of grid graph. Table 1.2 (bold) summarizes our
new results. Among these results, the ones pertaining to hexagonal grid graphs are obtained
by reductions to and from variants of TRVB.

Grid Triangular Square Hexagonal
General NP-complete NP-complete NP-complete
Degree- deg ≤ 3 deg ≤ 3 deg ≤ 2
bounded NP-complete NP-complete Polynomial
Thin NP-complete NP-complete NP-complete
Superthin NP-complete Polynomial Polynomial
Polygonal Polynomial NP-complete NP-complete
Solid Polynomial Polynomial Open
Thin Polygonal Polynomial Polynomial Polynomial

Table 1.2: Complexity of Hamiltonian Cycle in grid graph variants; bold entries correspond
to new results in Chapter 3 (see [3] or Section 3.2 for definitions).

13

1.4 Solving the Rubik’s Cube optimally

The Rubik’s Cube is an iconic puzzle in which the goal is to rearrange the stickers on the
outside of a 3 × 3 × 3 cube so as to make each face monochromatic by rotating 1 × 3 × 3 (or
3 × 1 × 3 or 3 × 3 × 1) slices. The 3 × 3 × 3 Rubik’s Cube can be generalized to an 𝑛 × 𝑛 × 𝑛
cube in which a single move is a rotation of a 1 × 𝑛 × 𝑛 slice. We can also consider the
generalization to a 𝑛 × 𝑛 × 1 figure. In this simpler puzzle, called the Rubik’s Square, the
allowed moves are flips of 𝑛 × 1 × 1 rows or 1 × 𝑛 × 1 columns. These two generalizations
were introduced in [11].

The question of whether optimally solving the 𝑛 × 𝑛 × 𝑛 Rubik’s Cube (i.e., solving it in
the fewest moves) is NP-complete has been repeatedly posed as far back as 1984 [6, 20, 23]
and has until now remained open [15]. A previous result (see [11]) showed that optimally
solving the Rubik’s Square is NP-complete with “wildcard” stickers which are allowed on
any face of the solved puzzle. In Chapter 4, we first prove that optimally solving the Rubik’s
Square is NP-hard by reduction from a variant of Hamiltonian Cycle, and then proceed to
apply the same ideas to a more complicated proof of NP-hardness for optimally solving the
Rubik’s Cube.

14

Chapter 2

Tree-Residue Vertex-Breaking

2.1 Introduction

The multigraph operation of breaking vertex 𝑣 in undirected multigraph 𝐺 results in a new
multigraph 𝐺′ by removing 𝑣, adding a number of new vertices equal to the degree of 𝑣 in
𝐺, and connecting these new vertices to the neighbors of 𝑣 in 𝐺 in a one-to-one manner, as
shown in Figure 2-1.

Figure 2-1: The operation of breaking a vertex. The vertex (left) is replaced by a set of
degree-1 vertices with the same edges (right).

Using this definition, we pose the following computational problem:

Problem 2.1. The Tree-Residue Vertex-Breaking Problem (TRVB) takes as input a multi-
graph 𝐺 whose vertices are partitioned into two sets 𝑉𝐵 and 𝑉𝑈 (called the breakable and
unbreakable vertices respectively), and asks to decide whether there exists a set 𝑆 ⊆ 𝑉𝐵 such
that after breaking every vertex of 𝑆 in 𝐺, the resulting multigraph is a tree.

In order to avoid trivial cases, we consider only input graphs that have no degree-0
vertices.

In this chapter, we analyze this problem as well as several variants (special cases) where
𝐺 is restricted with any subset of the following additional constraints:

1. every breakable vertex of 𝐺 must have degree from a list 𝐵 of allowed degrees;

2. every unbreakable vertex of 𝐺 must have degree from a list 𝑈 of allowed degrees;

3. 𝐺 is planar;

4. 𝐺 is a simple graph (rather than a multigraph).

15

All breakable
vertices have
small degree
(𝐵 ⊆ {1, 2, 3})

Restricted
to planar

simple
graphs

All vertices have
large degree

(𝐵 ∩ {1, 2, 3, 4} = ∅
and

𝑈 ∩ {1, 2, 3, 4, 5} = ∅)

TRVB
variant

complexity
Section

Yes * * Polynomial
Time Section 2.3

No No * NP-complete Sections 2.5,
2.6, 2.7

No Yes No NP-complete Section 2.8

No Yes Yes

Polynomial
Time (every
instance is a

“no” instance)

Section 2.4

Table 2.1: A summary of this chapter’s results (where 𝐵 and 𝑈 are the allowed breakable
and unbreakable vertex degrees).

Modifying TRVB to include these constraints makes it easier to reduce from the TRVB
problem to some other. For example, having a restricted list of possible breakable vertex
degrees 𝐵 allows a reduction to include gadgets only for simulating breakable vertices of those
degrees, whereas without that constraint, the reduction would have to support simulation of
breakable vertices of any degree.

We prove the following results (summarized in Table 2.1), which together fully classify
the variants of TRVB into polynomial-time solvable and NP-complete problems:

1. Every TRVB variant whose breakable vertices are only allowed to have degrees of at
most 3 is solvable in polynomial time.

2. Every planar graph TRVB variant whose breakable vertices are only allowed to have
degrees of at least 6 and whose unbreakable vertices are only allowed to have degrees
of at least 5 is solvable in polynomial time (and in fact the correct output is always
“no”).

3. In all other cases, the TRVB variant is NP-complete. In particular, the TRVB variant
is NP-complete if the variant allows breakable vertices of some degree 𝑘 > 3 and in the
planar graph case also allows either breakable vertices of degree 𝑏 < 6 or unbreakable
vertices of degree 𝑢 < 5.

In Section 2.2, we begin by formally defining these variants of TRVB. We also prove
membership in NP for all the variants and provide the obvious reductions between them.

In Section 2.3, we prove that, if every breakable vertex is restricted to have degree
at most 3, then the TRVB variant in question is solvable in polynomial time. Next, in
Section 2.4, we prove that if the multigraph is restricted to be a planar graph, the breakable
vertices are restricted to have degree at least 6, and the unbreakable vertices are restricted
to have degree at least 5, then it is impossible to break a set of breakable vertices and get a
tree. Therefore, in these cases, the TRVB variant is solvable in polynomial time.

16

Next we prove our NP-hardness results. In Section 2.5, we reduce from an NP-hard
problem to show that Planar TRVB with only degree-𝑘 breakable vertices and unbreakable
degree-4 vertices is NP-hard for any 𝑘 ≥ 4. All the other hardness results in this chapter are
derived directly or indirectly from this one. In Section 2.6, we prove the NP-completeness of
the variants of TRVB and of Planar TRVB in which breakable vertices of some degree 𝑘 ≥ 4
are allowed. Similarly, we show in Section 2.7 that Graph TRVB is also NP-complete in the
presence of breakable vertices of degree 𝑘 ≥ 4. Finally, in Section 2.8, we show that Planar
Graph TRVB is NP-complete provided (1) breakable vertices of some degree 𝑘 ≥ 4 are
allowed and (2) either breakable vertices of degree 𝑏 ≤ 5 or unbreakable vertices of degree
𝑢 ≤ 4 are allowed.

All together, these results completely classify the variants of TRVB into NP-complete
and polynomially solvable.

The research in this chapter is joint work with Erik Demaine. We would also like to
thank Zachary Abel and Jayson Lynch for contributing to the research.

2.2 Problem variants

2.2.1 Problem variant definitions

In this section, we will formally define the variants of TRVB under consideration.
To begin, suppose 𝐵 and 𝑈 are both sets of positive integers. Then we can constrain

the breakable vertices of the input to have degrees in 𝐵 and constrain the unbreakable
vertices of the input to have degrees in 𝑈 . The resulting constrained version of the problem
is defined below:

Definition 2.2. The (𝐵, 𝑈)-variant of the TRVB problem, denoted (𝐵, 𝑈)-TRVB, is the
special case of TRVB where the input multigraph is restricted so that every breakable vertex
in 𝐺 has degree in 𝐵 and every unbreakable vertex in 𝐺 has degree in 𝑈 .

Throughout this chapter we consider only sets 𝐵 and 𝑈 for which membership can be
computed in pseudopolynomial time (i.e., membership of 𝑛 in 𝐵 or 𝑈 can be computed in
time polynomial in 𝑛). As a result, verifying that the vertex degrees of a given multigraph
are allowed can be done in polynomial time. This means that the classification of a particular
(𝐵, 𝑈)-variant of the TRVB problem into polynomially solvable or NP-complete is a statement
about the hardness of checking TRVB (while constrained by the other conditions) rather
than a statement about the hardness of checking membership in 𝐵 or 𝑈 for the degrees in
the multigraph. In fact, all the results in this chapter will also apply even in the cases that
membership in 𝐵 or 𝑈 cannot be computed in pseudo-polynomial time if we consider the
promise problems in which the given multigraph’s vertex degrees are guaranteed to comply
with the sets 𝐵 and 𝑈 .

We can also define three further variants of the problem depending on whether 𝐺 is
constrained to be planar, a graph, or both: the Planar (𝐵, 𝑈)-variant of the TRVB problem
(denoted Planar (𝐵, 𝑈)-TRVB), the Graph (𝐵, 𝑈)-variant of the TRVB (denoted Graph
(𝐵, 𝑈)-TRVB), and the Planar Graph (𝐵, 𝑈)-variant of the TRVB problem (denoted Planar
Graph (𝐵, 𝑈)-TRVB).

Since both being planar and being a graph are properties of a multigraph that can be
verified in polynomial time, the classification of these variants into polynomially solvable or
NP-complete is again a statement about the hardness of TRVB.

17

2.2.2 Diagram conventions

Throughout this chapter, when drawing diagrams, we will use filled circles to represent
unbreakable vertices and unfilled circles to represent breakable vertices. See Figure 2-2.

breakable unbreakable

Figure 2-2: An example diagram, showing the depictions of vertex types used in this chapter.

2.2.3 Trivial reductions

As mentioned above, except for the constraint that the TRVB problem outputs “yes” on
the given input, every other constraint in the definition of each of the above variants can
be tested in polynomial time. Therefore, if for some two variants 𝑋 and 𝑌 the non-TRVB
conditions of 𝑋 are strictly stronger (more constraining) than the non-TRVB conditions of
𝑌 , then we can reduce from 𝑋 to 𝑌 in polynomial time. In particular, we can convert an
input 𝐺 for variant 𝑋 into an input 𝐺′ for 𝑌 as follows:

First test all the non-TRVB conditions of variant 𝑋 on the input 𝐺. If any condition
is not satisfied, then 𝑋 rejects 𝐺, so output any 𝐺′ rejected by 𝑌 . If all the non-TRVB
conditions of variant 𝑋 are satisfied, then by assumption all the non-TRVB conditions of
variant 𝑌 on input 𝐺 are also satisfied. Therefore 𝐺 is a “yes” instance of both 𝑋 and 𝑌 if
and only if 𝐺 is a “yes” instance of TRVB. Therefore 𝑋 and 𝑌 have the same answer on 𝐺,
so outputting 𝐺′ = 𝐺 completes the reduction.

Using the above reduction scheme, we conclude that:

Lemma 2.3. For any (𝐵, 𝑈), there are reductions

∙ from Planar (𝐵, 𝑈)-TRVB to (𝐵, 𝑈)-TRVB,

∙ from Graph (𝐵, 𝑈)-TRVB to (𝐵, 𝑈)-TRVB,

∙ from Planar Graph (𝐵, 𝑈)-TRVB to Planar (𝐵, 𝑈)-TRVB, and

∙ from Planar Graph (𝐵, 𝑈)-TRVB to Graph (𝐵, 𝑈)-TRVB.

For any (𝐵, 𝑈) and (𝐵′, 𝑈 ′) with 𝐵 ⊆ 𝐵′ and 𝑈 ⊆ 𝑈 ′, there are reductions

∙ from (𝐵, 𝑈)-TRVB to (𝐵′, 𝑈 ′)-TRVB,

∙ from Planar (𝐵, 𝑈)-TRVB to Planar (𝐵′, 𝑈 ′)-TRVB,

∙ from Graph (𝐵, 𝑈)-TRVB to Graph (𝐵′, 𝑈 ′)-TRVB, and

∙ from Planar Graph (𝐵, 𝑈)-TRVB to Planar Graph (𝐵′, 𝑈 ′)-TRVB.

18

2.2.4 Membership in NP

Theorem 2.4. The TRVB problem is in NP.

Proof. We describe a nondeterministic algorithm to solve TRVB: First nondeterministically
guess a set of breakable vertices in 𝐺. Break that set of vertices and accept if and only if
the resulting multigraph is a tree.

This algorithm accepts an input 𝐺 on at least one nondeterministic branch if and only
if it is possible to break some of the breakable vertices so that the residual multigraph is
a tree. In other words, this algorithm solves TRVB. Furthermore, the algorithm runs in
polynomial time since both breaking vertices and checking whether a multigraph is a tree
are polynomial-time operations. As desired, TRVB is in NP.

Another name for TRVB is (N,N)-TRVB, so we can apply the reductions from Lemma 2.3
to conclude that:

Corollary 2.5. For any (𝐵, 𝑈), the (𝐵, 𝑈)-TRVB, Planar (𝐵, 𝑈)-TRVB, Graph (𝐵, 𝑈)-
TRVB, and Planar Graph (𝐵, 𝑈)-TRVB are in NP.

2.3 TRVB is polynomial-time solvable without high-degree
breakable vertices

The overall goal of this section is to show that the variants of TRVB without breakable
vertices of degree 𝑘 > 3 are polynomial-time solvable. In particular, (𝐵, 𝑈)-TRVB is
polynomial-time solvable if 𝐵 ⊆ {1, 2, 3} (and thus so are Planar (𝐵, 𝑈)-TRVB, Graph
(𝐵, 𝑈)-TRVB, and Planar Graph (𝐵, 𝑈)-TRVB).

We begin by proving that ({3}, ∅)-TRVB is polynomial-time solvable in Section 2.3.1 as a
warmup. We prove this by reducing ({3}, ∅)-TRVB to the Cubic Nonseparating Independent
Set problem, which was shown to be polynomial-time solvable in [21]. This warmup is useful
because it introduces the Cubic Nonseparating Independent Set problem, points out the
connection between this problem and Tree-Residue Vertex-Breaking, and proves a few useful
lemmas; the actual proof that ({3}, ∅)-TRVB is polynomial-time solvable (the main part of
Section 2.3.1), however, is purely a warmup and can be safely skipped.

Next, in Section 2.3.2, we introduce the Nonseperating Independent Tag Set problem
and prove that it is polynomial-time solvable. The Nonseperating Independent Tag Set
problem is a generalization of the Cubic Nonseparating Independent Set problem, and the
proof that Nonseperating Independent Tag Set is polynomial-time solvable follows the same
approach as was used in [21] for the Cubic Nonseparating Independent Set problem.

Finally, in Section 2.3.3, we reduce from ({1, 2, 3},N)-TRVB to Nonseperating Indepen-
dent Tag Set, thereby concluding via Lemma 2.3 that (𝐵, 𝑈)-TRVB, Planar (𝐵, 𝑈)-TRVB,
Graph (𝐵, 𝑈)-TRVB, and Planar Graph (𝐵, 𝑈)-TRVB with 𝐵 ⊆ {1, 2, 3} can be solved in
polynomial time.

2.3.1 ({3}, ∅)-TRVB is polynomial-time solvable

We show that ({3}, ∅)-TRVB (the Tree-Residue Vertex-Breaking problem with all vertices
breakable and degree-3) is polynomial-time solvable by reduction to the Cubic Nonseparating
Independent Set problem, which was shown to be solvable in polynomial time in [21]. We
define the problem and related terms below:

19

Definition 2.6. A set of vertices 𝑋 of multigraph 𝐺 is a separating set if the number of
connected components of 𝐺 − 𝑋 is more than that of 𝐺.

Definition 2.7. A set of vertices 𝑆 in a multigraph is an independent set if no two vertices
in the set are adjacent and is a nonseparating set if every 𝑋 ⊆ 𝑆 is not a separating set.

Problem 2.8. The Cubic Nonseparating Independent Set problem asks, for a given cubic
multigraph 𝐺 and a given number 𝑠, whether these exists a nonseparating independent set 𝑆
in 𝐺 with |𝑆| = 𝑠.

The following lemma is an important connection between vertex breaking and nonseper-
ating independent sets.

Lemma 2.9. Suppose that 𝐺 is a connected multigraph and 𝑆 is a subset of the vertices in
𝐺. Let 𝐺′ be the graph formed by breaking all the vertices of 𝑆 in 𝐺. Then 𝐺′ is connected
if and only if 𝑆 is a nonseparating independent set.

Proof. First suppose that 𝐺′ is connected.
Let 𝐴 be any subset of 𝑆. Let 𝐺′

𝐴 be the multigraph formed by breaking all the vertices
of 𝐴 in 𝐺. We know that 𝐺′ can be formed from 𝐺′

𝐴 by breaking the vertices in 𝑆 −𝐴. Since
the reverse operation of vertex breaking is a merging of several degree-1 vertices, we conclude
that we can construct 𝐺′

𝐴 from 𝐺′ by merging vertices. Then since merging vertices only
increases connectivity and 𝐺′ is connected, we can conclude that 𝐺′

𝐴 is connected as well.
Let 𝐺′′

𝐴 be the multigraph formed by removing the vertices of 𝐴 from 𝐺. Vertex breaking is
equivalent to vertex removal followed by an addition of a new degree-1 vertex (also adding
that vertex’s sole edge). Therefore, it is possible to transform 𝐺′′

𝐴 into 𝐺′
𝐴 by inserting

new degree-1 vertices. Alternatively, this means we can transform 𝐺′
𝐴 into 𝐺′′

𝐴 by removing
degree-1 vertices. Removing a degree-1 vertex never disconnects a multigraph, so since 𝐺′

𝐴

is connected, we conclude that 𝐺′′
𝐴 is connected. We have shown that removing the vertices

of 𝐴 from 𝐺 (which yields 𝐺′′
𝐴) does not disconnect the multigraph. Therefore 𝐴 is not a

separating set of 𝐺. Since this is true for every 𝐴 ⊆ 𝑆, we conclude that by definition, 𝑆 is
a nonseparating set.

Furthermore, no two vertices in 𝑆 can be adjacent because that would lead to a separation
of the edge between them from the rest of the multigraph (in 𝐺′), so 𝑆 is an independent set.
Thus, we have shown that if 𝐺′ is connected, then 𝑆 is a nonseparating independent set.

On the other hand, suppose 𝑆 is a nonseparating independent set. Let 𝐺′′ be the
multigraph formed by removing the vertices of 𝑆 from 𝐺.

Let 𝑇 be the set of vertices in 𝐺 but not 𝑆. The set of vertices of 𝐺′′ is exactly 𝑇 . The
set of vertices of 𝐺′ contains 𝑇 . The only vertices in 𝐺′ that are not in 𝑇 are the degree-1
vertices that are added to 𝐺 during the vertex breaking operation. Note that by construction,
if 𝑡1 and 𝑡2 are in 𝑇 , then the edge (𝑡1, 𝑡2) is either in all three graphs 𝐺, 𝐺′, and 𝐺′′, or
in none of them. Since 𝑆 is nonseparating, 𝐺′′ has the same number of components as 𝐺:
precisely one. Then since 𝑇 is the vertex set of 𝐺′′ and 𝐺′′ is connected, there is a path in
𝐺′′ between any two vertices in 𝑇 (using only vertices in 𝑇). Every such path must also
exist in 𝐺′, and so all of 𝑇 is in the same connected component of 𝐺′.

Consider any vertex 𝑣′ in 𝐺′ that is not in 𝑇 . This vertex 𝑣′ was added to 𝐺′ while
breaking some vertex 𝑣 ∈ 𝑆. At the time of the breaking operation, some neighbor 𝑢 of 𝑣
instead became the sole neighbor of 𝑣′. Since 𝑣 ∈ 𝑆 and 𝑆 is an independent set in 𝐺, we
know that 𝑢, which is a neighbor of 𝑣 in 𝐺 cannot also be in 𝑆. Thus 𝑢 ̸∈ 𝑆 and therefore
𝑢 ∈ 𝑇 . Then the edge (𝑢, 𝑣′) in 𝐺′ connects 𝑣′ to the connected component of 𝐺′ containing

20

all of 𝑇 . Since this applies to every 𝑣′ ̸∈ 𝑇 , we can conclude that all of 𝐺′ is in the same
connected component. In other words, we have shown that 𝐺′ is connected whenever 𝑆 is a
nonseparating independent set.

As desired, we have shown both directions. We conclude that 𝐺′ is connected if and only
if 𝑆 is a nonseparating independent set.

Next, we prove the main theorem of this section, which as previously mentioned will
serve as a warmup for the further results.

Theorem 2.10. ({3}, ∅)-TRVB is polynomial-time solvable.

Proof. Suppose that 𝐺 is a multigraph in which every vertex is breakable and degree-3.
Then if 𝐺 contains 𝑛 vertices, we know that 𝐺 must contain 3𝑛

2 edges. Breaking a degree-3
vertex leaves the number of edges unchanged and increases the number of vertices by 2.
Therefore if a solution to the Tree-Residue Vertex-Breaking problem on 𝐺 breaks 𝑏 vertices,
the final multigraph will have 𝑛 + 2𝑏 vertices and 3𝑛

2 edges.
In order for a solution to the Tree-Residue Vertex-Breaking problem on 𝐺 to be valid,

the resulting multigraph must be a tree. Therefor the number of vertices is one more than
the number of edges, or in other words (𝑛 + 2𝑏) = (3𝑛

2) + 1. Thus 𝑏 = 𝑛+2
4 .

We see that any valid solution to the Tree-Residue Vertex-Breaking problem on 𝐺 will
break exactly 𝑛+2

4 vertices.
In combination with Lemma 2.9, this tells us that any valid solution to the Tree-Residue

Vertex-Breaking problem on 𝐺 breaks a set of vertices 𝑆 where 𝑆 is a nonseparating
independent set and |𝑆| = 𝑛+2

4 .
On the other hand, suppose 𝑆 is a nonseparating independent set of size 𝑛+2

4 . By
Lemma 2.9, the multigraph 𝐺′ formed by breaking the vertices of 𝑆 in 𝐺 is connected. Since
every vertex has degree 3, the breaking of each element of 𝑆 in 𝐺 increases the number of
vertices by 2 and leaves the number of edges the same. Thus the number of vertices in 𝐺′ is
𝑛 + 2(𝑛+2

4) = 3𝑛
2 + 1 and the number of edges in 𝐺′ is 3𝑛

2 . Since 𝐺′ is a connected multigraph
which has one more vertex than it has edges, we can conclude that 𝐺′ is a tree. In other
words, breaking the vertices of 𝑆 is a valid solution to the Tree-Residue Vertex-Breaking
problem on 𝐺.

We conclude that the nonseparating independent sets of 𝐺 of size 𝑛+2
4 are exactly the

sets of broken vertices from the valid solutions of the Tree-Residue Vertex-Breaking problem
on 𝐺. Since the Cubic Nonseparating Independent Set problem can be solved in polynomial
time, this allows us to also solve ({3}, ∅)-TRVB in polynomial time.

2.3.2 Nonseparating Independent Tag Set is polynomial-time solvable

The purpose of this section is to introduce the following problem and prove that it is
polynomial-time solvable:

Problem 2.11. Define a tagged graph to be a graph together with a partial labeling of the
vertices such that (1) every vertex is labeled with either zero or one tags and (2) every tag
either labels one degree-3 vertex or labels two degree-2 vertices.

The Nonseparating Independent Tag Set problem asks, for a given tagged graph 𝐺 and a
given number 𝑠, whether there exists a set 𝑆 of tags such that |𝑆| = 𝑠 and such that 𝑆′, the
set of vertices in 𝐺 which are labeled with tags in 𝑆, is a nonseparating independent set.

21

Notice that on inputs that are cubic graphs whose vertices are each uniquely labeled,
a solution to the Nonseperating Independent Tag Set problem corresponds exactly to a
nonseperating independent set in that graph. In other words, the Nonseperating Independent
Tag Set problem is a generalization of the Cubic Nonseperating Independent Set problem.
The Cubic Nonseparating Independent Set problem was shown to be polynomial-time solvable
in [21] via a reduction to the Matching problem for 2-polymatroids (introduced later in this
section), which itself was shown to be polynomial-time solvable in [16]. We will expand
upon this result, providing a very similar reduction from the more general Nonseperating
Independent Tag Set problem to the Matching problem for 2-polymatroids.

To define the Matching problem for 2-polymatroids, we need to introduce several new
terms.

Definition 2.12. A polymatroid is a pair (𝑋, 𝑓) where 𝑋 is a finite set and 𝑓 is a function
defined on subsets of 𝑋 such that

1. 𝑓(∅) = 0,

2. 𝑓(𝐴1) ≤ 𝑓(𝐴2) if 𝐴1 ⊆ 𝐴2 ⊆ 𝑋, and

3. 𝑓(𝐴1 ∪ 𝐴2) + 𝑓(𝐴1 ∩ 𝐴2) ≤ 𝑓(𝐴1) + 𝑓(𝐴2) for any 𝐴1, 𝐴2 ⊆ 𝑋.

A 𝑘-polymatroid is a polymatroid (𝑋, 𝑓) satisfying the additional condition that 𝑓({𝑥}) ≤
𝑘 for all 𝑥 ∈ 𝑋. A matroid is a 1-polymatroid.

Definition 2.13. A matching of a 2-polymatroid (𝑋, 𝑓) is a set 𝑌 ⊆ 𝑋 such that 𝑓(𝑌) =
2|𝑌 |.

At this point, we are almost ready to define the Matching problem for 2-polymatroids.
The issue is that polymatroids in general are computationally intractible to deal with; just
the description of a polymatroid (𝑋, 𝑓) has length exponential in |𝑋|. This is not the case
for a restricted subset of all polymatroids: “linearly represented” polymatroids.

“Linearly represented” polymatroids are defined in terms of linearly represented matroids
below, where we treat linearly represented matroids as a black box whose definition will not
be given in this chapter. For the definition of and other information on linearly represented
matroids, see [24].

Definition 2.14. A linearly represented polymatroid is a polymatroid with a “linear repre-
sentation.” A linear representation of polymatroid (𝑋, 𝑓) is a linearly represented matroid
(𝐸, 𝑟) and an assignment of subsets 𝐸𝑥 to elements 𝑥 of 𝑋 such that, for any 𝑌 ⊆ 𝑋,

𝑓(𝑌) = 𝑟

(︃ ⋃︁
𝑥∈𝑌

𝐸𝑥

)︃
.

With that done, we can finally define the Matching problem for 2-polymatroids:

Problem 2.15. The Matching problem for linearly represented 2-polymatroids asks, for
a given linear representation of 2-polymatroid (𝑋, 𝑓) and a given number 𝑠, whether it is
possible to find a matching of (𝑋, 𝑓) of size at least 𝑠.

We wish to reduce from the Nonseperating Independent Tag Set problem to the Matching
problem for 2-polymatroids, so we need some way to connect graphs and polymatroids. This
is done through the following definition.

22

Definition 2.16. Define the circuit rank 𝜇(𝐺) of graph 𝐺 to be 𝑚 − 𝑛 + 𝑐 where 𝑚, 𝑛, and
𝑐 are the edge, vertex, and connected-component counts in 𝐺.

Suppose 𝐺 is a graph. If 𝑉 is the set of vertices of 𝐺, then we define 𝑃 (𝐺) to equal
(𝑉, 𝑓) where 𝑓 is a function defined on subsets of 𝑉 such that for 𝑉 ′ ⊆ 𝑉 we define
𝑓(𝑉 ′) = 𝜇(𝐺) − 𝜇(𝐺 − 𝑉 ′).

Suppose next that 𝐺 is a tagged graph and 𝑇 is the set of tags in 𝐺. Let (𝑉, 𝑓) = 𝑃 (𝐺),
and for 𝑡 ∈ 𝑇 let 𝑒(𝑡) be the set of vertices in 𝑉 labeled with tag 𝑡. Then we define
𝑃 (𝐺) = (𝑇, 𝑓 ′) where 𝑓 ′ is a function defined on subsets of 𝑇 such that, for any 𝑇 ′ ⊆ 𝑇 ,

𝑓 ′(𝑇 ′) = 𝑓

⎛⎝ ⋃︁
𝑡∈𝑇 ′

𝑒(𝑡)

⎞⎠ .

Then the reduction we are looking for takes as input a tagged graph 𝐺 and a number 𝑠
(an instance of Nonseperating Independent Tag Set) and outputs a linear representation of
𝑃 (𝐺) and 𝑠 (an instance of the Matching problem for 2-polymatroids).

Later in this section, we will prove two major lemmas, stated below, which will allow us
to show that this reduction is both correct and computable in polynomial time:
Lemma 2.17. For any tagged graph 𝐺, 𝑃 (𝐺) is a linearly representable 2-polymatroid
whose linear representation can be identified in polynomial time.

Lemma 2.18. 𝑇 ′ is a matching of 𝑃 (𝐺) = (𝑇, 𝑓 ′) if and only if the set of vertices 𝑆 labeled
with tags in 𝑇 ′ is a nonseparating independent set.
Theorem 2.19. The Nonseperating Independent Tag Set problem is polynomial-time solv-
able.
Proof. We can immediately conclude from Lemma 2.17 that the outputs of the reduction
(a linear representation of 𝑃 (𝐺) and 𝑠) can be computed from the inputs (𝐺 and 𝑠) in
polynomial time. Lemma 2.17 also tells us that 𝑃 (𝐺) is a 2-polymatroid, which makes the
output of the reduction a valid instance of the Matching problem for 2-polymatroids. In
addition, we know from Lemma 2.18 that the sets of tags for which the corresponding sets of
vertices are nonseparating independent sets are exactly the matchings in 𝑃 (𝐺). Thus, 𝑃 (𝐺)
has a matching of size 𝑠 if and only if 𝐺 has a set of tags of size 𝑠 whose corresponding set
of vertices is a nonseparating independent set. In other words, there exists a solution to the
Nonseperating Independent Tag Set instance specified by 𝐺 and 𝑠 if and only if there exists
a solution to the Matching for 2-polymatroids instance specified by a linear representation
of 𝑃 (𝐺) and 𝑠.

Thus, the reduction is correct and can be run in polynomial time, so we can conclude that
as desired, the Nonseperating Independent Tag Set problem is polynomial-time solvable.

All that is left is to prove the two lemmas above.
We begin with Lemma 2.17. It was shown in [21] that for any graph 𝐺, 𝑃 (𝐺) is a

polymatroid. The paper then proves that a linear representation for 𝑃 (𝐺) can be found in
polynomial time. In order to make use of this fact, we will prove the following lemma:
Lemma 2.20. Suppose (𝑋, 𝑓) is a polymatroid, (𝐿, ℎ) is a linearly represented polymatroid,
and each element 𝑥 of 𝑋 is assigned a subset 𝐿𝑥 ⊂ 𝐿 such that for any 𝑌 ⊆ 𝑋,

𝑓(𝑌) = ℎ

(︃ ⋃︁
𝑥∈𝑌

𝐿𝑥

)︃
.

23

Then a linear representation for (𝑋, 𝑓) can be computed from a linear representation of
(𝐿, ℎ) in polynomial time.

Proof. Let (𝐸, 𝑟) and {𝐸𝑙}𝑙∈𝐿 be a linear representation of (𝐿, ℎ).
For each 𝑥 ∈ 𝑋 define 𝐸′

𝑥 to be
⋃︀

𝑙∈𝐿𝑥
𝐸𝑙. Then (𝐸, 𝑟) and {𝐸′

𝑥}𝑥∈𝑋 is the linear
representation of (𝑋, 𝑓) whose existence is claimed by this lemma. We can certainly compute
(𝐸, 𝑟) and {𝐸′

𝑥}𝑥∈𝑋 in polynomial time from (𝐸, 𝑟) and {𝐸𝑙}𝑙∈𝐿, so provided this really is a
linear representation, we will have shown our desired result.

In order for (𝐸, 𝑟) and {𝐸𝑙}𝑙∈𝐿 to be the linear representation of (𝐿, ℎ), the object (𝐸, 𝑟)
must be a linearly representable matroid. And since 𝐸𝑙 ⊆ 𝐸 for all 𝑙 ∈ 𝐿, we have that
𝐸′

𝑥 =
⋃︀

𝑙∈𝐿𝑥
𝐸𝑙 ⊆ 𝐸 for all 𝑥 ∈ 𝑋. Thus in order to show that (𝐸, 𝑟) and {𝐸′

𝑥}𝑥∈𝑋 is a linear
representation of (𝑋, 𝑓), all that is left is to show that for any set 𝑌 ⊆ 𝑋, it is the case that

𝑓(𝑌) = 𝑟

(︃ ⋃︁
𝑥∈𝑌

𝐸′
𝑥

)︃
.

Define 𝐿𝑌 =
⋃︀

𝑥∈𝑌 𝐿𝑥. We can apply the definition of 𝐸′
𝑥 to see that

𝑟

(︃ ⋃︁
𝑥∈𝑌

𝐸′
𝑥

)︃
= 𝑟

⎛⎝ ⋃︁
𝑥∈𝑌

⋃︁
𝑙∈𝐿𝑥

𝐸𝑙

⎞⎠ .

Then substituting in the definition of 𝐿𝑦, we see that

𝑟

⎛⎝ ⋃︁
𝑥∈𝑌

⋃︁
𝑙∈𝐿𝑥

𝐸𝑙

⎞⎠ = 𝑟

⎛⎝ ⋃︁
𝑙∈𝐿𝑌

𝐸𝑙

⎞⎠ .

Next, we apply the definition of a linear representation to linear representation (𝐸, 𝑟) and
{𝐸𝑙}𝑙∈𝐿 of (𝐿, ℎ) to get

𝑟

⎛⎝ ⋃︁
𝑙∈𝐿𝑌

𝐸𝑙

⎞⎠ = ℎ(𝐿𝑦).

But by definition of 𝐿𝑦,

ℎ(𝐿𝑦) = ℎ

(︃ ⋃︁
𝑥∈𝑌

𝐿𝑥

)︃
.

Finally, applying the assumption given in this lemma, we see that

ℎ

(︃ ⋃︁
𝑥∈𝑌

𝐿𝑥

)︃
= 𝑓(𝑌).

Putting this all together, we have that 𝑓(𝑌) = 𝑟 (
⋃︀

𝑥∈𝑌 𝐸′
𝑥) as desired.

With this lemma in place, we procede to show that 𝑃 (𝐺) is a linearly representable
polymatroid whose linear representation can be identified in polynomial time.

Lemma 2.21. For any tagged graph 𝐺, 𝑃 (𝐺) is a linearly representable polymatroid whose
linear representation can be identified in polynomial time.

Proof. Suppose that 𝑃 (𝐺) = (𝑇, 𝑓 ′) and 𝑃 (𝐺) = (𝑉, 𝑓).

24

We first verify that (𝑇, 𝑓 ′) is a polymatroid.
Consider 𝑓 ′(∅). This value is defined to be 𝑓 (

⋃︀
𝑡∈∅ 𝑒(𝑡)) = 𝑓(∅), so since 𝑃 (𝐺) = (𝑉, 𝑓)

is a polymatroid, we have that 𝑓(∅) = 0. Thus 𝑓 ′(∅) = 0.
Consider any 𝐴1 ⊆ 𝐴2 ⊆ 𝑇 . We know that 𝑓 ′(𝐴1) = 𝑓

(︀⋃︀
𝑡∈𝐴1 𝑒(𝑡)

)︀
and that 𝑓 ′(𝐴2) =

𝑓
(︀⋃︀

𝑡∈𝐴2 𝑒(𝑡)
)︀

Then if we let 𝐵1 =
⋃︀

𝑡∈𝐴1 𝑒(𝑡) and let 𝐵2 =
⋃︀

𝑡∈𝐴2 𝑒(𝑡), we see that 𝐵1 ⊆
𝐵2 ⊆ 𝑉 , and therefore (since 𝑃 (𝐺) = (𝑉, 𝑓) is a polymatroid) 𝑓(𝐵1) ≤ 𝑓(𝐵2). But then
𝑓 ′(𝐴1) = 𝑓(𝐵1) ≤ 𝑓(𝐵2) = 𝑓 ′(𝐴2) so 𝑓 ′(𝐴1) ≤ 𝑓 ′(𝐴2).

Consider any 𝐴1, 𝐴2 ⊆ 𝑇 . Define 𝐵1 =
⋃︀

𝑡∈𝐴1 𝑒(𝑡) and 𝐵2 =
⋃︀

𝑡∈𝐴2 𝑒(𝑡). Then we have

𝑓 ′(𝐴1 ∪ 𝐴2) = 𝑓

⎛⎝ ⋃︁
𝑡∈𝐴1∪𝐴2

𝑒(𝑡)

⎞⎠ = 𝑓

⎛⎝ ⋃︁
𝑡∈𝐴1

𝑒(𝑡) ∪
⋃︁

𝑡∈𝐴2

𝑒(𝑡)

⎞⎠ = 𝑓(𝐵1 ∪ 𝐵2),

𝑓 ′(𝐴1) = 𝑓

⎛⎝ ⋃︁
𝑡∈𝐴1

𝑒(𝑡)

⎞⎠ = 𝑓(𝐵1),

and

𝑓 ′(𝐴2) = 𝑓

⎛⎝ ⋃︁
𝑡∈𝐴2

𝑒(𝑡)

⎞⎠ = 𝑓(𝐵2).

Using the fact that the sets 𝑒(𝑡) are disjoint for different 𝑡, we can also show that

𝑓 ′(𝐴1 ∩ 𝐴2) = 𝑓

⎛⎝ ⋃︁
𝑡∈𝐴1∩𝐴2

𝑒(𝑡)

⎞⎠ = 𝑓

⎛⎝ ⋃︁
𝑡∈𝐴1

𝑒(𝑡) ∩
⋃︁

𝑡∈𝐴2

𝑒(𝑡)

⎞⎠ = 𝑓(𝐵1 ∩ 𝐵2).

Then the statement 𝑓(𝐵1 ∪ 𝐵2) + 𝑓(𝐵1 ∩ 𝐵2) ≤ 𝑓(𝐵1) + 𝑓(𝐵2) (true because 𝑃 (𝐺) = (𝑉, 𝑓)
is a polymatroid) can be rewritten as 𝑓 ′(𝐴1 ∪ 𝐴2) + 𝑓 ′(𝐴1 ∩ 𝐴2) ≤ 𝑓 ′(𝐴1) + 𝑓 ′(𝐴2)

As we see, (𝑇, 𝑓 ′) satisfies all the conditions in the definition of a polymatroid and
therefore is one.

Next, notice that if 𝑇 ′ ⊆ 𝑇 , then 𝑓 ′(𝑇 ′) = 𝑓 (
⋃︀

𝑡∈𝑇 ′ 𝑒(𝑡)). Because of this property, we
can apply Lemma 2.20: it is possible to compute a linear representation for 𝑃 (𝐺) = (𝑇, 𝑓 ′)
from a linear representation of 𝑃 (𝐺) = (𝑉, 𝑓). Since a linear representation for 𝑃 (𝐺) can
be computed in polynomial time, this means that a linear representation for 𝑃 (𝐺) can be
computed in polynomial time.

We have shown that, for a tagged graph 𝐺, the object 𝑃 (𝐺) is a polymatroid whose
linear representation can be computed in polynomial time. Consider Lemma 2.17 reproduced
below. All that we have left to show in order to prove Lemma 2.17 is that 𝑃 (𝐺) is actually
a 2-polymatroid.

Lemma 2.17. For any tagged graph 𝐺, 𝑃 (𝐺) is a linearly representable 2-polymatroid
whose linear representation can be identified in polynomial time.

Proof. Suppose that 𝑃 (𝐺) = (𝑇, 𝑓 ′) and 𝑃 (𝐺) = (𝑉, 𝑓). We must show that, for any 𝑡 ∈ 𝑇 ,
𝑓 ′({𝑡}) ≤ 2.

There are two cases. Either 𝑡 is a tag labeling two degree-2 nodes or 𝑡 is a tag labeling one
degree-3 node. If 𝑡 is a tag labeling two degree-2 nodes, then 𝑒(𝑡) = {𝑣1, 𝑣2} where 𝑣1, 𝑣2 ∈ 𝑉
have degree 2. Then 𝑓 ′({𝑡}) = 𝑓({𝑣1, 𝑣2}) ≤ 𝑓({𝑣1}) + 𝑓({𝑣2}). If 𝑡 is a tag labeling one
degree-3 node, then 𝑒(𝑡) = {𝑣} where 𝑣 ∈ 𝑉 has degree 3. Then 𝑓 ′({𝑡}) = 𝑓({𝑣}).

25

For any vertex 𝑣, 𝑓({𝑣}) = 𝜇(𝐺) − 𝜇(𝐺 − {𝑣}). If we define Δ𝑚, Δ𝑛, and Δ𝑐 to be the
increases in edge, vertex, and connected component counts due to adding vertex 𝑣 into graph
𝐺 − {𝑣}, then 𝑓({𝑣}) = Δ𝑚 − Δ𝑛 + Δ𝑐. Note that Δ𝑚 is the degree of 𝑣 in 𝐺, Δ𝑛 = 1
and Δ𝑐 ≤ 0 (since adding a vertex that is connected to something else cannot increase
the number of connected components). Therefore we see that for any vertex 𝑣, 𝑓({𝑣}) is
bounded above by the degree of 𝑣 minus one.

Thus in the first case 𝑓 ′({𝑡}) = 𝑓({𝑣1, 𝑣}) ≤ 𝑓({𝑣1}) + 𝑓({𝑣2}) ≤ (2 − 1) + (2 − 1) = 2
and in the second case 𝑓 ′({𝑡}) = 𝑓({𝑣}) ≤ (3 − 1) = 2. In both cases, we have concluded
that 𝑓 ′({𝑡}) ≤ 2, so we can conclude that 𝑃 (𝐺) is a 2-polymatroid.

With that done, we can proceed to the last remaining part of the proof: the proof of
Lemma 2.18. Consider first the following lemma connecting 𝑃 (𝐺) and 𝐺:

Lemma 2.22. Define 𝑑𝐺(𝑣) to be the degree of vertex 𝑣 in graph 𝐺. Suppose for some
graph 𝐺 we have 𝑃 (𝐺) = (𝑉, 𝑓). Then for any set 𝑋 ⊆ 𝑉 , 𝑓(𝑋) =

∑︀
𝑣∈𝑋(𝑑𝐺(𝑣) − 1) if and

only if 𝑋 is a nonseparating independent set in 𝐺.

Proof. We will first prove that if 𝑋 is a nonseparating independent set of 𝐺, then 𝑓(𝑋) =∑︀
𝑣∈𝑋(𝑑𝐺(𝑣) − 1).

We proceed by induction on the size of 𝑋. Clearly, if 𝑋 is a nonseparating independent
set and |𝑋| = 0, then 𝑓(𝑋) = 0 =

∑︀
𝑣∈𝑋(𝑑𝐺(𝑣) − 1).

Next suppose that for any nonseparating independent set 𝑌 of size at most 𝑖 − 1, we
have that 𝑓(𝑌) =

∑︀
𝑣∈𝑌 (𝑑𝐺(𝑣) − 1) and let 𝑋 be a nonseparating independent set of size

𝑖. Choose some vertex 𝑥 ∈ 𝑋. The set 𝑋 − {𝑥} is a nonseparating set of size 𝑖 − 1, so the
inductive hypothesis applies and 𝑓(𝑋 − {𝑥}) =

∑︀
𝑣∈𝑋−{𝑥}(𝑑𝐺(𝑣) − 1). Then

𝑓(𝑋) = 𝜇(𝐺) − 𝜇(𝐺 − 𝑋) = (𝜇(𝐺) − 𝜇(𝐺 − (𝑋 − {𝑥}))) + (𝜇(𝐺 − (𝑋 − {𝑥})) − 𝜇(𝐺 − 𝑋))

= 𝑓(𝑋 − {𝑥}) + (𝜇(𝐺 − (𝑋 − {𝑥})) − 𝜇(𝐺 − 𝑋)).

Since 𝑋 is an independent set, 𝑥 is not adjacent to any other member of 𝑋 and so removing
them from the graph does not affect the degree of 𝑥. In other words 𝑑𝐺(𝑥) = 𝑑𝐺−(𝑋−{𝑥})(𝑥).
Thus from graph 𝐺 − 𝑋 to graph 𝐺 − (𝑋 − {𝑥}), the number of vertices increases by one
and the number of edges increases by 𝑑𝐺(𝑥). Since 𝑋 is a nonseparating set, the number
of connected components in 𝐺, 𝐺 − (𝑋 − {𝑥}), and 𝐺 − 𝑋 are all the same. Thus from
graph 𝐺 − 𝑋 to graph 𝐺 − (𝑋 − {𝑥}), the number of connected components does not change.
Putting these numbers together, we see that (𝜇(𝐺 − (𝑋 − {𝑥})) − 𝜇(𝐺 − 𝑋)) = 𝑑𝐺(𝑥) − 1.
Thus,

𝑓(𝑋) =

⎛⎝ ∑︁
𝑣∈𝑋−{𝑥}

(𝑑𝐺(𝑣) − 1)

⎞⎠+ (𝑑𝐺(𝑥) − 1) =
∑︁
𝑣∈𝑋

(𝑑𝐺(𝑣) − 1),

as desired. By induction, we see that if 𝑋 is a nonseparating independent set of any size,
then 𝑓(𝑋) =

∑︀
𝑣∈𝑋(𝑑𝐺(𝑣) − 1).

Next we prove the other direction: if 𝑋 is not a nonseparating independent set, then
𝑓(𝑋) ̸=

∑︀
𝑣∈𝑋(𝑑𝐺(𝑣) − 1). We know that 𝑓(𝑋) is defined as 𝑓(𝑋) = 𝜇(𝐺) − 𝜇(𝐺 − 𝑋).

Then if we list the elements of 𝑋 as 𝑥1, 𝑥2, ..., 𝑥𝑖, we can rewrite 𝑓(𝑋) as

𝑓(𝑋) =
𝑖∑︁

𝑗=1
(𝜇(𝐺 − {𝑥1, . . . , 𝑥𝑗−1}) − 𝜇(𝐺 − {𝑥1, . . . , 𝑥𝑗})) .

26

Notice that 𝜇(𝐺 − {𝑥1, . . . , 𝑥𝑗−1}) − 𝜇(𝐺 − {𝑥1, . . . , 𝑥𝑗}) = 𝑑𝐺−{𝑥1,...,𝑥𝑗−1}(𝑥𝑗) − 1 − Δ𝑐
where Δ𝑐 is the decrease in the number of connected components between graph 𝐺 −
{𝑥1, . . . , 𝑥𝑗} and graph 𝐺 − {𝑥1, . . . , 𝑥𝑗−1}. We know that 𝑑𝐺−{𝑥1,...,𝑥𝑗−1}(𝑥) − 1 − Δ𝑐 is
bounded above by 𝑑𝐺(𝑥) − 1 with equality only if Δ𝑐 = 0 and 𝑑𝐺−{𝑥1,...,𝑥𝑗−1}(𝑥𝑗) = 𝑑𝐺(𝑥𝑗).

If 𝑋 is not an independent set, then some vertex 𝑥𝑗1 will be adjacent to some other
vertex 𝑥𝑗2 . Without loss of generality, let 𝑗1 < 𝑗2. Then in graph 𝐺 − {𝑥1, . . . , 𝑥𝑗2−1},
vertex 𝑥𝑗2 will have a smaller degree than in graph 𝐺 (since at least the neighbor 𝑥𝑗1 is
missing). Thus 𝑑𝐺−{𝑥1,...,𝑥𝑗−1}(𝑥𝑗) ̸= 𝑑𝐺(𝑥𝑗) and strict inequality holds at least in that case:
𝜇(𝐺 − {𝑥1, . . . , 𝑥𝑗−1}) − 𝜇(𝐺 − {𝑥1, . . . , 𝑥𝑗}) < 𝑑𝐺(𝑥𝑗) − 1.

If 𝑋 is not a nonseparating set, then some minimal subset 𝐴 ⊆ 𝑋 separates the graph.
Suppose we order the 𝑥𝑖s such that 𝐴 = {𝑥1, . . . , 𝑥𝑗}. Then vertex 𝑥𝑗 will be a cut-vertex
in graph 𝐺 − {𝑥1, . . . , 𝑥𝑗−1}. At that step, removing the vertex will change the number
of connected components (i.e. Δ𝑐 ̸= 0). As a result, strict inequality will again hold:
𝜇(𝐺 − {𝑥1, . . . , 𝑥𝑗′−1}) − 𝜇(𝐺 − {𝑥1, . . . , 𝑥𝑗′}) < 𝑑𝐺(𝑥𝑗′) − 1.

Combining this upper bound over the summation, we can bound 𝑓(𝑥) from above by∑︀
𝑣∈𝑋(𝑑𝐺(𝑣) − 1). Notice that this is exactly our target value. And provided that 𝑋 is not a

nonseparating independent set, at least one of the inequalities used to construct this bound
will be strict. In that case, our target value cannot be achieved: 𝑓(𝑋) <

∑︀
𝑣∈𝑋(𝑑𝐺(𝑣) − 1).

This concludes the proof that if 𝑋 is not a nonseparating independent set, then 𝑓(𝑋) ̸=∑︀
𝑣∈𝑋(𝑑𝐺(𝑣) − 1).

As desired, we have shown that 𝑋 is a nonseparating independent set if and only if
𝑓(𝑋) ̸=

∑︀
𝑣∈𝑋(𝑑𝐺(𝑣) − 1).

With that done, we can prove Lemma 2.18, which is reproduced below:

Lemma 2.18. 𝑇 ′ is a matching of 𝑃 (𝐺) = (𝑇, 𝑓 ′) if and only if the set of vertices 𝑆 labeled
with tags in 𝑇 ′ is a nonseparating independent set.

Proof. Suppose 𝑃 (𝐺) = (𝑇, 𝑓 ′) and 𝑃 (𝐺) = (𝑉, 𝑓).
Let 𝑇 ′ ⊆ 𝑇 be any set. Then let 𝑆 be the set of vertices labeled with tags in 𝑇 ′. The

sum over all vertices in 𝑆 of the vertex’s degree minus one is equal to 2|𝑇 ′|. This is because
each tag contributes either one degree-3 vertex to 𝑆 or two degree-2 vertices. A degree-2
vertex contributes 1 to this sum (so two degree-2 vertices contribute 2) while a degree-3
vertex contributes 2 to the sum. Therefore each tag in 𝑇 ′ contributes 2 to the sum, and so
the sum in question is equal to 2|𝑇 ′|.

By Lemma 2.22, 𝑆 is a nonseparating independent set if and only if 𝑓(𝑇 ′) is equal to this
sum (or in other words 𝑓(𝑇 ′) = 2|𝑇 ′|). But the condition that 𝑓(𝑇 ′) = 2|𝑇 ′| is the definition
of 𝑇 ′ being a matching of (𝑉, 𝑓).

Thus we have, as desired, that 𝑇 ′ is a matching of 𝑃 (𝐺) = (𝑇, 𝑓 ′) if and only if the set
of vertices 𝑆 labeled with tags in 𝑇 ′ is a nonseparating independent set.

2.3.3 ({1, 2, 3},N)-TRVB is polynomial-time solvable

We prove that ({1, 2, 3},N)-TRVB is polynomial-time solvable by reducing to the Nonseper-
ating Independent Tag Set problem.

Theorem 2.23. ({1, 2, 3},N)-TRVB is polynomial-time solvable.

Proof. The following is a procedure for solving ({1, 2, 3},N)-TRVB in polynomial time:

27

Take as input a multigraph 𝐺0 whose breakable vertices each have degree at most 3.
We can modify 𝐺0 to get an equivalent graph 𝐺1 (with respect to the TRVB problem) by
inserting two unbreakable degree-2 vertices into every edge.

Next, convert graph 𝐺1 into tagged graph 𝐺2 as follows. Duplicate 𝐺1 and include both
copies into 𝐺2. For each breakable degree-3 vertex in 𝐺1, create two tags, assigning each
copy of the vertex one of the tags. For each breakable degree-2 vertex in 𝐺1, create one tag
and assign it to both copies of the vertex.

Suppose 𝐺1 had 𝑛 vertices and 𝑚 edges. Then use the polynomial-time algorithm for the
Nonseparating Independent Tag Set problem to determine whether there exists a set of tags
of size 𝑚 + 1 − 𝑛 in 𝐺2 such that the associated vertices make a nonseparating independent
set. Output the answer of this subroutine as the answer of the ({1, 2, 3},N)-TRVB problem.

Next, we will show that the above procedure is correct, or in other words that the
TRVB problem of 𝐺1 can be solved if and only if 𝐺2 contains a set of 𝑚 + 1 − 𝑛 tags whose
corresponding vertices form a nonseparating independent set.

Suppose first that the TRVB problem of 𝐺1 can be solved by breaking the vertices in
some set 𝑆1. We will show that in that case 𝐺2 contains a set of 𝑚 + 1 − 𝑛 tags whose
corresponding vertices form a nonseparating independent set. Suppose the solution of the
TRVB problem breaks 𝑏3 vertices of degree 3, 𝑏2 vertices of degree 2, and 𝑏1 vertices of
degree 1. Breaking a vertex does not affect the number of edges in a graph, but increases
the number of vertices by the degree minus one. Thus the final vertex count in the graph is
𝑏2 + 2𝑏3 + 𝑛. Since the final graph is a tree, the number of vertices is one more than the
number of edges. Thus 𝑏2 + 2𝑏3 + 𝑛 = 𝑚 + 1, or in other words 𝑏2 + 2𝑏3 = 𝑚 + 1 − 𝑛.

Furthermore, applying Lemma 2.9 tells us that 𝑆1 is a nonseparating independent set in
𝐺1. Then consider the copies of 𝐺1 making up 𝐺2 and let 𝑆2 consist of the two copies of
𝑆1 with all degree-1 vertices removed. Since 𝑆1 is a nonseparating independent set in 𝐺1
we know that 𝑆2 is a nonseparating independent set in 𝐺2. There are 𝑏2 tags of degree-2
vertices in 𝑆2 (with the tags shared across the two halves of 𝐺2) and 2𝑏3 tags of degree-3
vertices in 𝑆2 (with one tag in each half of 𝐺2 per degree-3 vertex in 𝑆1). Thus the total
number of tags for vertices in 𝑆2 is 𝑏2 + 2𝑏3 = 𝑚 + 1 − 𝑛. The set 𝑇 of these tags is a solution
to the Nonseparating Independent Tag Set instance consisting of 𝐺2 and 𝑚 + 1 − 𝑛.

Next suppose that we find a set of tags in 𝐺2 of size 𝑚 + 1 − 𝑛 whose corresponding
vertex set is a nonseparating independent set. Suppose that there are 𝑡2 tags for degree-2
vertex pairs, and 𝑡3 tags for degree-3 vertices (with 𝑡2 + 𝑡3 = 𝑚 + 1 − 𝑛). Then among
the two halves of 𝐺2 (each of which is a copy of 𝐺1), one half will have a nonseparating
independent set of 𝑡2 degree-2 vertices and at least 𝑡3

2 degree-3 vertices.
We can convert this into a nonseparating independent set 𝑆 in 𝐺1 with 𝑡2 degree-2

vertices and 𝑡′
3
2 ≥ 𝑡3

2 degree-3 vertices. By Lemma 2.9, the graph formed by breaking the
vertices of 𝑆 in 𝐺1 is connected. This graph has the same number of edges as 𝐺1 (in
particular 𝑚), but has a number of vertices equal to 𝑛 + 2 × 𝑡′

3
2 + 𝑡2 = 𝑛 + 𝑡2 + 𝑡′

3 (since
breaking a degree-3 vertex increases the number of vertices by two and breaking a degree-2
vertex increases the number of vertices by one). The difference between the number of
vertices and edges is (𝑛 + 𝑡2 + 𝑡′

3) − 𝑚 ≥ (𝑛 + 𝑡2 + 𝑡3) − 𝑚 = (𝑛 + 𝑚 + 1 − 𝑛) − 𝑚 = 1.
Thus we see that the resulting graph is connected and has at least one more vertex than it
has edges. The only way this is possible is if the resulting graph is a tree. In other words,
breaking the vertices in 𝑆 solves the TRVB problem on 𝐺1.

We have shown that the TRVB instance that we wish to solve has a solution if and only
if the Nonseparating Independent Tag Set instance that we actually solve has a solution.

28

Therefore we have described a correct algorithm.

By Lemma 2.3, we can also conclude that

Corollary 2.24. (𝐵, 𝑈)-TRVB is polynomial-time solvable if 𝐵 ⊆ {1, 2, 3}. So are Planar
(𝐵, 𝑈)-TRVB, Graph (𝐵, 𝑈)-TRVB, and Planar Graph (𝐵, 𝑈)-TRVB.

2.4 Planar Graph TRVB is polynomial-time solvable without
small vertex degrees

The overall purpose of this section is to show that variants of Planar Graph TRVB which
disallow all small vertex degrees are polynomial-time solvable because the answer is always
“no.” Consider for example the following theorem.

Theorem 2.25. If 𝑏 > 5 for every 𝑏 ∈ 𝐵 and 𝑢 > 5 for every 𝑢 ∈ 𝑈 , then Planar Graph
(𝐵, 𝑈)-TRVB has no “yes” inputs. As a result, Planar Graph (𝐵, 𝑈)-TRVB problem is
polynomial-time solvable.

Proof. The average degree of a vertex in a planar graph must be less than 6, so there are no
planar graphs with all vertices of degree at least 6. Thus, if 𝑏 > 5 for every 𝑏 ∈ 𝐵 and 𝑢 > 5
for every 𝑢 ∈ 𝑈 , then every instance of Planar Graph (𝐵, 𝑈)-TRVB is a “no” instance.

In fact, we will strengthen this theorem below to disallow “yes” instances even when
degree-5 unbreakable vertices are present by using the particular properties of the TRVB
problem. Note that this time, planar graph inputs which satisfy the degree constraints
are possible; however, any such graph will still yield a “no” answer to the Tree-Residue
Vertex-Breaking instance.

We begin with the proof idea in Section 2.4.1, and proceed through the details in
Section 2.4.2

2.4.1 Proof idea

Consider the hypothetical situation in which we have a solution to the TRVB problem in a
planar graph whose unbreakable vertices each have degree at least 5 and whose breakable
vertices each have degree at least 6. The general idea of the proof is to show that this
situation is impossible by assigning a scoring function (described below) to the possible
states of the graph as vertices are broken. The score of the initial graph can easily be seen
to be zero and assuming the TRVB instance has a solution, the score of the final tree can be
shown to be positive. It is also the case, however, that if we break the vertices in the correct
order, no vertex increases the score when broken, implying a contradiction.

Before we introduce the precise scoring mechanism, we can describe what aspects of
the graph are being scored. Consider the state of the graph after breaking some number of
vertices and in this graph consider one specific vertex. This vertex has several neighbors,
some of which have degree 1. We can group the edges of this vertex that lead to degree-1
neighbors into “bundles” seperated by the edges leading to higher degree neighbors. For
example, in Figure 2-3, the vertex shown has two bundles of size 2 and one bundle of size 3.
Each bundle is given a score according to its size, and the score of the graph is equal to the
cumulative score of all present bundles.

29

Figure 2-3: A degree-10 vertex with seven degree-1 neighbors (shown) and three other
neighbors (not shown). The edges to the degree-1 neighbors form two bundles of size 2 and
one bundle of size 3.

Suppose we have a set 𝑆 of vertices such that breaking those vertices leaves the graph
as a tree. We can choose to break these vertices in order starting on the exterior of the
graph and moving inward. In particular, we can do this by repeatedly doing the following.
Consider the external face of the graph. Either the graph is a tree (i.e. we have already
broken all the vertices in 𝑆) or the external face is actually a cycle. Since every cycle includes
a vertex in 𝑆 (otherwise that cycle would remain after breaking every vertex in 𝑆), we can
choose a vertex from 𝑆 on the external face of the graph and break that vertex next.

Breaking the vertices of 𝑆 in this order has an interesting effect on the bundles formed
in the subsequent graph: in particular, since every vertex is on the external face when it is
broken, every degree-1 vertex ends up in the external face when it appears. Thus all bundles
are within the external face of the graph at all times.

As it turns out, the final graph (a tree) cannot have disproportionately many small
bundles, so we will use the intuition that the goal of breaking the vertices is to increase
bundle sizes. To apply this intuition, we consider the effect of breaking some vertex of degree
𝑑 on the bundle sizes in the graph. It must be the case that any vertex in 𝑆 on the external
face has exactly two edges which border this face. The remaining 𝑑 − 2 edges all leave the
vertex into the interior of the graph. When the vertex is broken, each of these 𝑑 − 2 edges
becomes a new bundle. Thus, breaking the vertex will necessarily create 𝑑 − 2 new bundles
of size 1. Applying the intuition described above, we see that creating 𝑑 − 2 bundles of size
one can be thought of as the “cost” of breaking the vertex. The “benefit” of breaking the
vertex is that each of the two edges which were on the external face is now each added to a
bundle, thereby increasing the size of that bundle. In summary, the breaking of a vertex can
increase the sizes of two bundles by 1 each at the cost of creating 𝑑 − 2 ≥ 4 new bundles of
size 1.

Having said that, we can now specify how we score a bundle. If a bundle has a size of 1,
we assign the bundle a score of −1. Otherwise, if the bundle has size 𝑛, we assign the bundle
a score of 𝑛 − 1. If we do this, then the benefit of increasing a bundle’s size by 1 corresponds
to a score increase of at most 2 (when increasing a bundle from size 1 to size 2). On the
other hand the cost of adding a bundle of size 1 corresponds to a score decrease of 1. Thus,
the effect of breaking one vertex is to increase the score by at most 2 twice and decrease the
score by 1 at least 4 times. In other words, the score must either decrease or stay the same.

Then since the initial graph has no bundles (and therefore score 0), the final score of the
tree that remains after breaking all vertices in 𝑆 cannot be positive. On the other hand, the

30

final graph is a tree all of whose non-leaves have degree at least 5. It is possible to show
that with the specific scoring mechanism described above, the score of such a tree is always
positive. This is a contradiction, giving us our desired result.

2.4.2 Proof

In this section, we will follow the proof outline given in the previous section. We begin with
a sequence of definitions leading to a formal definition of the scoring function used above.

Throughout this section, we will be considering a planar graph 𝐺 whose breakable
vertices each have degree at least 6 and whose unbreakable vertices each have degree at least
5.

Definition 2.26. We say that 𝐺′ is a state of 𝐺 if we can obtain 𝐺′ by breaking some
vertices of 𝐺.

We choose a particular planar embedding for 𝐺 to be the canonical planar embedding
for 𝐺. When a vertex is broken in some state 𝐺′ of 𝐺, the new state 𝐺′′ can inherit a
planar embedding from 𝐺′ in the natural way: all vertices and edges unaffected by the
vertex-breaking are embedded in the same place while the new vertices are placed so that the
order of edges around each vertex is preserved. For example, breaking the center vertex in
the planar embedding shown in the left part of Figure 2-4 would yield the planar embedding
shown in the center of the figure rather than the right part. Then every state of 𝐺 can (via
a sequence of states) inherit the canonical planar embedding for 𝐺. We will then use this
embedding as the canonical embedding for the state of 𝐺. With that done, we no longer
have to specify which planar embedding we are using for the states of 𝐺: we will always use
the canonical planar embedding.

Figure 2-4: Breaking the top vertex in the first planar embedding should yield the second
planar embedding rather than the third in order to maintain the order of edges around the
bottom vertex.

Definition 2.27. We call 𝑆 a contiguous set of edges at 𝑥 if 𝑆 is a set of edges all sharing
endpoint 𝑥 and we can proceed clockwise around 𝑥 starting and ending at some edge in 𝑆
such that the edges encountered are exactly those in 𝑆. Then a bundle at vertex 𝑥 is a
non-empty maximal contiguous set of edges at 𝑥 whose other endpoints have degree 1.

Define the score of a bundle at vertex 𝑥 to be −1 if the bundle has size 1 and 𝑛 − 1 if
the bundle has size 𝑛 > 1. Define the score of 𝑥 to be the cumulative score of all the bundles
at 𝑥. Define the score of a state 𝐺′ of 𝐺 to be the cumulative score of all the vertices in 𝐺′.

31

Suppose for the sake of contradiction that 𝑆 is a set of breakable vertices in 𝐺 such that
breaking the vertices in 𝑆 yields state 𝑇 which is a tree. In other words, suppose that there
exists a solution to the instance 𝐺 of Planar Graph ({6, 7, 8, . . .}, {5, 6, 7, . . .})-TRVB.

We begin by showing one side of the contradiction: that the score of 𝑇 is positive. To
do this, we introduce the following lemma about trees:

Lemma 2.28. If 𝑇 ′ is a tree with at least 2 vertices, then

2(number of leaves of 𝑇 ′) + (number of degree-2 vertices in 𝑇 ′) > (number of edges in 𝑇 ′).

Proof. Define 𝑛1(𝑇 ′) to be the number of leaves in 𝑇 ′, define 𝑛2(𝑇 ′) to be the number of
degree-2 vertices in 𝑇 ′, and define 𝑛𝑒(𝑇 ′) to be the number of edges in 𝑇 ′. Then we wish to
show that for any tree 𝑇 ′ with at least 2 vertices, 2𝑛1(𝑇 ′) + 𝑛2(𝑇 ′) > 𝑛𝑒(𝑇 ′). We will prove
this by induction on the number of vertices in 𝑇 ′.

First consider the base case: if 𝑋 ′ is a tree on 2 vertices, then 𝑋 ′ contains exactly one edge
(between its two vertices) so the number of leaves of 𝑋 ′ is 2, the number of degree-2 vertices is
0 and the number of edges is 1. We see then that 2𝑛1(𝑋)+𝑛2(𝑋) = 2×2+0 = 4 > 1 = 𝑛𝑒(𝑋)
as desired.

Next suppose that for any tree 𝑋 on 𝑖 − 1 vertices it is the case that 2𝑛1(𝑋) + 𝑛2(𝑋) >
𝑛𝑒(𝑋). Let 𝑋 ′ be any tree on 𝑖 vertices and let 𝑣 be a leaf of 𝑋 ′. The graph 𝑋 ′ −{𝑣} is a tree
with 𝑖−1 vertices, so we can apply the inductive hypothesis: 2𝑛1(𝑋 ′ −{𝑣})+𝑛2(𝑋 ′ −{𝑣}) >
𝑛𝑒(𝑋 ′ − {𝑣}).

Let 𝑢 be the sole neighbor of 𝑣 in 𝑋. The value 2𝑛1 + 𝑛2 (twice the number of leaves
plus the number of degee-2 vertices) changes as we go from 𝑋 ′ − {𝑣} to 𝑋 ′ due to the
change in degree of 𝑢 and the addition of 𝑣. Adding a neighbor to 𝑢 either converts 𝑢 from
being a leaf to a degree-2 vertex, converts 𝑢 from being a degree-2 vertex to a degree-3
vertex, or converts 𝑢 from being a vertex of degree 𝑛 > 2 to a vertex of degree 𝑛 + 1. In all
cases, the value 2𝑛1 + 𝑛2 decreases by at most one due to the change in degree of 𝑢. The
addition of the new leaf 𝑣, on the other hand, increases this value by 2. Thus the overall
increase of the value 2𝑛1 + 𝑛2 when going from tree 𝑋 ′ − {𝑣} to tree 𝑋 ′ is at least 1. In
other words, we have that 2𝑛1(𝑋 ′) + 𝑛2(𝑋 ′) ≥ 2𝑛1(𝑋 ′ − {𝑣}) + 𝑛2(𝑋 ′ − {𝑣}) + 1. Note
also that the number of edges in 𝑋 ′ is one more than the number of edges in 𝑋 ′ − {𝑣} (i.e.
𝑛𝑒(𝑋 ′) = 𝑛𝑒(𝑋 ′ − {𝑣}) + 1).

Putting this all together, we see that

2𝑛1(𝑋 ′) + 𝑛2(𝑋 ′) ≥ 2𝑛1(𝑋 ′ − {𝑣}) + 𝑛2(𝑋 ′ − {𝑣}) + 1 > 𝑛𝑒(𝑋 ′ − {𝑣}) + 1 = 𝑛𝑒(𝑋 ′).

As desired, we have shown for any tree 𝑋 ′ with 𝑖 vertices that 2𝑛1(𝑋 ′)+𝑛2(𝑋 ′) > 𝑛𝑒(𝑋 ′)
concluding the inductive step. By induction, we have shown that for any tree 𝑇 ′ with at
least 2 vertices, 2𝑛1(𝑇 ′) + 𝑛2(𝑇 ′) > 𝑛𝑒(𝑇 ′).

Lemma 2.29. The score of 𝑇 is positive.

Proof. Every vertex in 𝑇 is either a vertex originally in 𝐺 or a new vertex created by the
breaking of some vertex in 𝑆. Vertices in 𝐺 have degree at least 5 and vertices created by
the breaking of a vertex have degree 1. Thus every vertex in 𝑇 that is not a leaf is a vertex
originally in 𝐺. Let 𝑇 ′ be the tree formed by removing every leaf from 𝑇 . Notice that the
vertices in 𝑇 ′ are exactly the vertices in 𝐺 ∖ 𝑆.

Since every tree has at least one vertex of degree at most 1 and 𝐺 does not, we know
that 𝐺 is not a tree. Thus 𝐺 ̸= 𝑇 and so 𝑆 ̸= ∅. Consider any vertex 𝑣 ∈ 𝑆; 𝑣 has at least 6

32

neighbors, none of which can be in 𝑆 (since then breaking 𝑆 disconnects the graph). Thus
the number of vertices in 𝑇 ′ is at least 6.

Below, we will show that the score of 𝑇 is

−2(number of edges in 𝑇 ′)+4(number of leaves of 𝑇 ′)+2(number of degree-2 vertices in 𝑇 ′).

But since 𝑇 ′ is a tree with at least 6 vertices, the previous lemma applies to show that

2(number of leaves of 𝑇 ′) + (number of degree-2 vertices in 𝑇 ′) > (number of edges in 𝑇 ′).

Simply rearranging (and doubling) this inequality immediately shows that the score of 𝑇 is
positive. Thus, all that is left is to show that the expression given above for the score of 𝑇
is correct.

The score of 𝑇 is the sum over all vertices 𝑥 in 𝑇 of the score of 𝑥. If 𝑥 is not in 𝑇 ′,
then 𝑥 is a leaf of 𝑇 . If 𝑥 has a degree-1 neighbor in 𝑇 , then the connected component of
𝑥 in 𝑇 would consist entirely of just those two vertices and as a result, 𝑇 would have no
non-leaf nodes. This cannot be the case since |𝑇 ′| ≥ 6. Thus, 𝑥 has no degree-1 neighbors,
and therefore there are no bundles at 𝑥. As a result, the score of 𝑥 is 0. Thus, the score of
𝑇 is the sum over all vertices 𝑥 in 𝑇 ′ of the score of 𝑥.

For 𝑥 ∈ 𝑇 ′, define 𝑑(𝑥) to be the degree of 𝑥 in tree 𝑇 ′. For any vertex 𝑥 ∈ 𝑇 ′, we can
lower-bound the score of 𝑥 using casework:

∙ 𝑑(𝑥) = 0. This would imply that 𝑥 is the only vertex in 𝑇 ′, directly contradicting the
fact that |𝑇 ′| ≥ 6. Thus, we can conclude that this case is impossible.

∙ 𝑑(𝑥) = 1. The vertex 𝑥 in has exactly one edge in 𝑇 leading to a non-leaf neighbor.
This necessarily implies that all the other edges incident on 𝑥 form a bundle. Notice
that 𝑥 has degree at least 5 in 𝑇 since it is a vertex that was originally in 𝐺. Thus,
the one bundle at 𝑥 has size at least 4. The score of this bundle is then at least 3, and
so the score of 𝑥 is also at least 3 = 4 − 𝑑(𝑥).

∙ 𝑑(𝑥) = 2. The vertex 𝑥 has exactly two edges in 𝑇 leading to non-leaf neighbors.
These two edges seperate all of the other edges incident on 𝑥 into at most two bundles.
Notice that 𝑥 has degree at least 5 in 𝑇 since it is a vertex that was originally in 𝐺.
Thus there are at least 3 edges in the (at most) two bundles at 𝑥. If there is one bundle,
then the bundle has size at least 3 and score at least 2. If there are two bundles, then
the total size of the two bundles is at least 3, implying that the minimum possible
total score of the two bundles is 0 (which occurs in the case that one bundle has size 1
and the other has size 2). In all cases, the score of 𝑥 is at least 0 = 2 − 𝑑(𝑥).

∙ 𝑑(𝑥) > 2. The vertex 𝑥 has exactly 𝑑(𝑥) edges leading to non-leaf neighbors. These
𝑑(𝑥) edges seperate all of the other edges incident on 𝑥 into at most 𝑑(𝑥) bundles.
Each bundle has a score of at least −1, so 𝑥 has a score of at least −𝑑(𝑥).

If we use 1𝑋 to represent the indicator function (which outputs 1 if 𝑋 is true and 0
otherwise), then the above results can be summarized as follows: the score of 𝑥 ∈ 𝑇 ′ is
bounded below by (−𝑑(𝑥))×1𝑑(𝑥)>2 +(4−𝑑(𝑥))×1𝑑(𝑥)=1 +(2−𝑑(𝑥))×1𝑑(𝑥)=2. Equivalently,
we have that the score of 𝑥 ∈ 𝑇 ′ is bounded below by −𝑑(𝑥) + 4 × 1𝑑(𝑥)=1 + 2 × 1𝑑(𝑥)=2.

Adding this up, we see that the score of 𝑇 is at least∑︁
𝑥∈𝑇 ′

(︁
−𝑑(𝑥) + 4 × 1𝑑(𝑥)=1 + 2 × 1𝑑(𝑥)=2

)︁
= −

∑︁
𝑥∈𝑇 ′

𝑑(𝑥) + 4
∑︁

𝑥∈𝑇 ′

1𝑑(𝑥)=1 + 2
∑︁

𝑥∈𝑇 ′

1𝑑(𝑥)=2.

33

Since
∑︀

𝑥∈𝑇 ′ 𝑑(𝑥) is the total degree of vertices in tree 𝑇 ′, this value is twice the total number
of edges in 𝑇 ′. The terms

∑︀
𝑥∈𝑇 ′ 1𝑑(𝑥)=1 and

∑︀
𝑥∈𝑇 ′ 1𝑑(𝑥)=2 are the number of leaves and

number of degree-2 vertices in 𝑇 ′.
Thus the score of 𝑇 is at least

−2(number of edges in 𝑇 ′)+4(number of leaves of 𝑇 ′)+2(number of degree-2 vertices in 𝑇 ′).

As argued above, this implies our desired result: that the score of 𝑇 is positive.

Next, we proceed to the other side of the contradiction: showing that the score of 𝑇 is
non-positive.

To begin, we define an ordering 𝑠1, . . . , 𝑠|𝑆| of the vertices in 𝑆 as follows:

Definition 2.30. Let 𝐺0 = 𝐺. Then for 𝑖 = 1, . . . , |𝑆|, define 𝑠𝑖 and 𝐺𝑖 as follows: Let 𝑠𝑖

be any vertex of 𝑆 that is on the boundary of the external face of 𝐺𝑖−1 and let 𝐺𝑖 be 𝐺𝑖−1
with vertex 𝑠𝑖 broken.

Lemma 2.31. Definition 2.30 is well defined.

Proof. Notice that once a vertex is broken, it is no longer in the graph. Thus, it is impossible
for the procedure given in Definition 2.30 to assign some element of 𝑆 to be both 𝑠𝑖 and 𝑠𝑗

for 𝑖 ̸= 𝑗.
With that said, in order to conclude that Definition 2.30 is well defined, it is sufficient

to show that at each step, a choice of 𝑠𝑖 satisfying the conditions given in the definition is
possible.

Fix 𝑖 ∈ {1, . . . , |𝑆|}. Notice that 𝐺𝑖−1 is not a tree since that would mean that breaking
a proper subset {𝑠1, . . . , 𝑠𝑖−1} of 𝑆 in 𝐺 yields a tree (in which case breaking the rest of 𝑆
would disconnect 𝐺). From this, we can conclude that 𝐺𝑖−1 has both an external face and
at least one internal face.

The points not in the external face form some set of connected regions; furthermore,
this set is not empty since there is at least one internal face. Let 𝑅 be any such connected
region. The boundary of 𝑅 must consist of a cycle of edges seperating the external face from
the internal faces inside 𝑅. This cycle of edges must contain at least one vertex of 𝑆 since
otherwise the cycle would remain in 𝑇 after breaking every vertex of 𝑆 in 𝐺. Furthermore,
this cycle is a subset of the boundary of the external face.

Thus, when Definition 2.30 says to choose 𝑠𝑖 to be any vertex of 𝑆 that is on the boundary
of the external face of 𝐺𝑖−1, this is well defined.

Definition 2.32. We say that edge 𝑒 is an external edge in 𝐺𝑖 if 𝑒 is an edge of 𝐺𝑖 with
the external face on both sides. We say that 𝑒 is a boundary edge of 𝐺𝑖 if the external face
is on exactly one side of 𝑒. Finally, we say that 𝑒 is an internal edge of 𝐺𝑖 if the external
face is on neither side of 𝑒.

Lemma 2.33. Consider any edge 𝑒 incident on 𝑠𝑖 in graph 𝐺𝑖−1 and let 𝑥 be the other
endpoint. When converting 𝐺𝑖−1 into 𝐺𝑖 by breaking 𝑠𝑖,

∙ if 𝑒 is a boundary edge, then 𝑒 either joins one previously existing bundle at 𝑥 or
becomes a new bundle at 𝑥 of size 1.

∙ if 𝑒 is an internal edge, then 𝑒 becomes a new bundle at 𝑥 of size 1.

34

Proof. We begin with a proof by induction that every degree-1 vertex in 𝐺𝑖 is inside the
external face for 𝑖 ∈ {0, . . . , |𝑆|}. Certainly, it is the case that every degree-1 vertex in
𝐺 = 𝐺0 is inside the external face since 𝐺 has no degree-1 vertices. Then suppose all the
degree-1 vertices of 𝐺𝑖−1 are inside the external face of 𝐺𝑖−1 for some 𝑖. We obtain 𝐺𝑖 from
𝐺𝑖−1 by breaking vertex 𝑠𝑖 on the boundary of the external face of 𝐺𝑖−1. As a result, the
external face in 𝐺𝑖 is equal to the union of the faces touching 𝑠𝑖 in 𝐺𝑖−1 (including the
external face). Thus, every degree-1 vertex that was inside the external face of 𝐺𝑖−1 is still
inside the external face. Furthermore, every new degree-1 vertex (formed by breaking 𝑠𝑖) is
also created inside the external face of 𝐺𝑖. By induction, we have our desired result: for
𝑖 ∈ {0, . . . , |𝑆|}, every degree-1 vertex in 𝐺𝑖 is inside the external face.

Notice that 𝑥 must have at least one neighbor other than 𝑠𝑖 that has degree more than 1
in 𝐺𝑖−1 because otherwise breaking 𝑠𝑖 would disconnect 𝑥 and its neighbors from the rest
of the graph. This means that if we start at edge 𝑒 and go clockwise around 𝑥, we will
eventually encounter some edge leading to a neighbor with degree more than 1. Call this
edge 𝑒+. Similarly, starting at edge 𝑒 and going counterclockwise around 𝑥, we can let the
first encountered edge leading to a neighbor with degree more than 1 be 𝑒−. There may or
may not be a bundle at 𝑥 between 𝑒 and 𝑒+. Similarly there may or may not be a bundle at
𝑥 between 𝑒 and 𝑒−. In any case, when 𝑠𝑖 is broken, these bundles, if they exist, are merged,
and edge 𝑒 is added to the one resulting bundle.

Suppose that there is a bundle between 𝑒 and 𝑒+. This means that there are degree-1
vertices in the face that is clockwise from 𝑒0 around 𝑥. Then since degree-1 vertices are
always found inside the external face, we can conclude that the face on that side of 𝑒 is the
external face of 𝐺𝑖−1. Similarly, we can use the same logic to show that if there is a bundle
between 𝑒 and 𝑒−, then the region on the other side of 𝑒 is the external face of 𝐺𝑖−1. These
results are shown in Figure 2-5.

R+

R-

si

e

e+
e-

x

Figure 2-5: This figure shows vertices 𝑠𝑖 and 𝑥 with edge 𝑒 between them and edges 𝑒−
and 𝑒+ at 𝑥 as defined in the proof. Regions 𝑅+ and 𝑅− are the regions on the two sides
of 𝑒. The bundle shown in region 𝑅+ at 𝑥 can be present only if 𝑅+ is the external face.
Similarly, the bundle shown in region 𝑅− at 𝑥 can be present only if 𝑅− is the external face.

Next, consider the two cases in which edge 𝑒 is a boundary or internal edge. If 𝑒 is an
internal edge, then it has the external face on zero sides, and so neither the bundle at 𝑥

35

between 𝑒 and 𝑒+ nor the bundle at 𝑥 between 𝑒 and 𝑒− can exist. Then when 𝑠𝑖 is broken,
edge 𝑒 forms a new bundle of size 1 at 𝑥. If 𝑒 is a boundary edge, then it has the external
face on exactly one side. In this case, at most one of the two bundles at 𝑥 (between 𝑒 and
𝑒+ or 𝑒 and 𝑒−) can exist. Then when 𝑠𝑖 is broken, edge 𝑒 either forms a new bundle of size
1 (if neither bundle existed) or is added to a previously existing bundle at 𝑥 (if one of the
two bundles existed). This is exactly what we wished to show.

Lemma 2.34. When going from 𝐺𝑖−1 to 𝐺𝑖, the score cannot increase.

Proof. The only vertices in 𝐺𝑖 that are not in 𝐺𝑖−1 are the degree-1 vertices which replace
𝑠𝑖 when it is broken. The only vertex in 𝐺𝑖−1 that is not in 𝐺𝑖 is 𝑠𝑖. We claim that the
neighbors of all of these vertices have degree not equal to 1, and therefore that each of
these vertices has no bundles and thus a score of 0. Suppose for the sake of contradiction
that some one of these vertices which are present in one graph but not the other has a
neighbor of degree 1. This means that either a degree-1 vertex in 𝐺𝑖 or 𝑠𝑖 in 𝐺𝑖−1 has a
degree-1 neighbor. If 𝑠𝑖 has a degree-1 neighor, then when it is broken, one of the degree-1
vertices replacing it inherits that neighbor. Thus in all cases, some two degree-1 vertices
in 𝐺𝑖 are neighbors. These two vertices form a connected component, implying that 𝐺𝑖 is
not connected. This contradicts the fact that 𝑆 is a solution to the TRVB instance, so as
desired, none of the vertices in question have degree-1 neighbors.

Thus, since every vertex in one of 𝐺𝑖−1 and 𝐺𝑖 but not both has a score of 0, the
difference in score between 𝐺𝑖−1 and 𝐺𝑖 is equal to the cumulative difference in score over
all vertices that are in both of these graphs. Suppose 𝑥 is a vertex of both graphs that does
not neighbor 𝑠𝑖. Breaking 𝑠𝑖 does not affect 𝑥 or the degrees of the neighbors of 𝑥. Thus
the bundles at 𝑥 remain the same in 𝐺𝑖−1 and 𝐺𝑖. In other words, there is no change in
score at vertex 𝑥.

Then to compute the difference in scores between 𝐺𝑖−1 and 𝐺𝑖 we must simply compute
the cumulative difference in scores between 𝐺𝑖−1 and 𝐺𝑖 of vertices 𝑥 that neighbor 𝑠𝑖. If
the edge between 𝑠𝑖 and 𝑥 is an internal edge, then by the previous lemma, the change in
bundles at 𝑥 between 𝐺𝑖−1 and 𝐺𝑖 is that a new bundle of size 1 is added. This decreases
the score of 𝑥 by 1. If the edge between 𝑠𝑖 and 𝑥 is a boundary edge, then by the previous
lemma, the change in bundles at 𝑥 between 𝐺𝑖−1 and 𝐺𝑖 is either that a new bundle of size
1 is added or that the size of some one bundle is increased by 1. Thus, the score of 𝑥 either
decreases by 1 (if a new bundle is added), increases by 2 (if a bundle of size 1 becomes a
bundle of size 2), or increases by 1 (if a bundle of size at least 2 increases in size by 1).
Below, we will show that exactly two of the edges incident on 𝑠𝑖 in 𝐺𝑖−1 are boundary edges
and that the rest are internal edges. Since the degree of 𝑠𝑖 is at least 6, this means that
exactly two neighbors of 𝑥 will have their score increase by at most 2 and that all the other
neighbors (of which there are at least 4) will have their score decrease by 1. The change in
score between 𝐺𝑖−1 and 𝐺𝑖 is then an increase of at most 4 plus a decrease of at least 4. In
other words, when going from 𝐺𝑖−1 to 𝐺𝑖, the score cannot increase, which is exactly the
statement of this lemma.

All that’s left is to show that exactly two of the edges incident on 𝑠𝑖 in 𝐺𝑖−1 are boundary
edges and that the rest are internal edges.

Consider the faces which touch at 𝑠𝑖 in 𝐺𝑖−1. Since 𝑠𝑖 was chosen to be on the external
face, one of these faces is the external face. Let this face be 𝐹0, and let the other faces
clockwise around 𝑠𝑖 be 𝐹1, 𝐹2, . . . 𝐹𝑑−1 where 𝑑 is the degree of 𝑠𝑖 in 𝐺𝑖−1. Let 𝑒𝑗 be the
edge seperating face 𝐹𝑗 from the previous face clockwise around 𝑠𝑖. See Figure 2-6 for an
example. Finally, let 𝑥𝑗 be the endpoint of 𝑒𝑗 other than 𝑠𝑖.

36

F0

external face

F1

F2

F3

F4

F5

si

e0
e1

e2

e3e4

e5

Figure 2-6: This figure shows an example vertex 𝑠𝑖 of 𝐺𝑖−1 together with the edges and
faces meeting at 𝑠𝑖.

Since 𝐺𝑖 is connected, there exists a path from 𝑥0 to 𝑥1 in 𝐺𝑖. This path will also exist
in 𝐺𝑖−1 since a path cannot use any vertices of degree 1 and every vertex in 𝐺𝑖 whose degree
is not 1 is also in 𝐺𝑖−1. There is another path in 𝐺𝑖−1 from 𝑥0 to 𝑥1: namely the path
𝑥0, 𝑠𝑖, 𝑥1. Together, these two paths form a cycle in 𝐺𝑖−1 including the two edges 𝑒0 and 𝑒1.
Either the faces that are between 𝑒0 and 𝑒1 clockwise around 𝑠𝑖 (in particular face 𝐹0) or
counterclockwise around 𝑠𝑖 (all the other 𝐹𝑗s) must be on the interior of this cycle. Since 𝐹0
is the external face, we know that it cannot be on the interior of a cycle. Thus each other
𝐹𝑗 must be on the interior of the cycle and therefore cannot equal the external face. Notice
that edges 𝑒0 and 𝑒1 have the external face on exactly one side and that each other edge 𝑒𝑗

has the external face on neither side. As desired, we have shown that exactly two of the
edges incident on 𝑠𝑖 in 𝐺𝑖−1 are boundary edges and that the rest are internal edges.

Lemma 2.35. The score of 𝑇 is not positive.

Proof. 𝐺0 = 𝐺 has no degree-1 vertices and therefore has no bundles. Thus, the score of
𝐺0 is 0. By the previous lemma, the score of 𝐺𝑖 is non-increasing as a function of 𝑖. We
can immediately conclude that the score of 𝐺|𝑆|, the graph formed by breaking vertices
𝑠1, . . . , 𝑠|𝑆| is not positive. But 𝑠1, . . . , 𝑠|𝑆| are all the vertices in 𝑆, so 𝐺|𝑆| = 𝑇 and as
desired, the score of 𝑇 is not positive.

Notice that we have seen two directly contradictory lemmas: we have shown that the
score of 𝑇 is both positive and not positive. By contradiction, we can conclude that 𝑆, the
solution to Planar Graph ({6, 7, 8, . . .}, {5, 6, 7, . . .})-TRVB instance 𝐺, cannot exist. Thus,
we have that

Lemma 2.36. Planar Graph ({6, 7, 8, . . .}, {5, 6, 7, . . .})-TRVB is polynomial-time solvable

Proof. We have shown that for any instance of Planar Graph ({6, 7, 8, . . .}, {5, 6, 7, . . .})-
TRVB, the correct answer is “no.” Thus rejecting all inputs (a polynomial-time algorithm)
solves Planar Graph ({6, 7, 8, . . .}, {5, 6, 7, . . .})-TRVB.

From this, we obtain our desired result.

37

Theorem 2.37. If 𝑏 > 5 for every 𝑏 ∈ 𝐵 and 𝑢 > 4 for every 𝑢 ∈ 𝑈 , then Planar Graph
(𝐵, 𝑈)-TRVB can be solved in polynomial time.

Proof. This follows immediately from the previous lemma together with Lemma 2.3.

2.5 Planar ({𝑘}, {4})-TRVB is NP-hard for any 𝑘 ≥ 4
The overall goal of this section is to prove NP-hardness for several variants of TRVB. In
particular, we will introduce an NP-hard variant of the Hamiltonicity problem in Section 2.5.1
and then reduce from this problem to Planar ({𝑘}, {4})-TRVB for any 𝑘 ≥ 4 in Section 2.5.2.
This is the only reduction from an external problem in this chapter. All further hardness
results will be derived from this one via reductions between different TRVB variants.

2.5.1 Planar Hamiltonicity in Directed Graphs with all in- and out-degrees
2 is NP-hard

The following problem was shown NP-complete in [19]:

Problem 2.38. The Planar Max-Degree-3 Hamiltonicity Problem asks for a given planar
directed graph whose vertices each have total degree at most 3 whether the graph is Hamiltonian
(has a Hamiltonian cycle).

For the sake of simplicity we will assume that every vertex in an input instances of the
Planar Max-Degree-3 Hamiltonicity problem has both in- and out-degree at least 1 (and
therefore at most 2). This is because the existence of a vertex with in- or out-degree 0 in a
graph immediately implies that there is no Hamiltonian cycle in that graph.

As it turns out, this problem is not quite what we need for our reduction, so below we
introduce several new definitions and define a new variant of the Hamiltonicity problem:

Definition 2.39. Call a vertex 𝑣 ∈ 𝐺 alternating for a given planar embedding of a planar
directed graph 𝐺 if, when going around the vertex, the edges switch from inward to outward
oriented more than once. Otherwise, call the vertex non-alternating. A non-alternating
vertex has all its inward oriented edges in one contiguous section and all its outward oriented
edges in another; an alternating vertex on the other hand alternates between inward and
outward sections more times.

We call a planar embedding of planar directed graph 𝐺 a planar non-alternating embedding
if every vertex is non-alternating under that embedding. If 𝐺 has a planar non-alternating
embedding we say that 𝐺 is a planar non-alternating graph.

Problem 2.40. The Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem
asks, for a given planar non-alternating directed graph whose vertices each have in- and
out-degree exactly 2, whether the graph is Hamiltonian

The goal of this section is to prove that this problem is NP-hard. To this purpose,
consider the following definition and lemmas:

Definition 2.41. Define simplifying 𝐺 over edge (𝑢, 𝑣) to be the following operation: remove
all edges (𝑢′, 𝑣) and (𝑢, 𝑣′) from 𝐺 and then contract edge (𝑢, 𝑣). The resulting graph has one
new vertex instead of 𝑢 and 𝑣; this vertex inherits the inward oriented edges of 𝑢 and inherits
the outward oriented edges of 𝑣. The inward oriented edges of 𝑣 and outward oriented edges
of 𝑢 are removed from the graph.

38

Lemma 2.42. If (𝑢, 𝑣) is an edge of directed graph 𝐺 and either 𝑢 has outdegree 1 or 𝑣 has
indegree 1, then simplifying 𝐺 over (𝑢, 𝑣) maintains the Hamiltonicity of 𝐺.

Proof. Let 𝐺′ be the graph that results from simplifying 𝐺 over edge (𝑢, 𝑣) and let 𝑤 be the
vertex in 𝐺′ that replaces 𝑢 and 𝑣. Any Hamiltonian cycle 𝑥1, 𝑥2, . . . , 𝑥𝑛−2, 𝑢, 𝑣 in 𝐺 using
edge (𝑢, 𝑣) corresponds with Hamiltonian cycle 𝑥1, 𝑥2, . . . , 𝑥𝑛−2, 𝑤 in 𝐺′. And any Hamilto-
nian cycle 𝑥1, 𝑥2, . . . , 𝑥𝑛−2, 𝑤 in 𝐺′ corresponds with Hamiltonian cycle 𝑥1, 𝑥2, . . . , 𝑥𝑛−2, 𝑢, 𝑣
in 𝐺 using edge (𝑢, 𝑣). Thus there is a bijection between Hamiltonian cycles of 𝐺′ and
Hamiltonian cycles of 𝐺 using edge (𝑢, 𝑣).

But if either 𝑢 has outdegree 1 or 𝑣 has indegree 1, then every Hamiltonian cycle in
𝐺 must use edge (𝑢, 𝑣), and so the Hamiltonian cycles of 𝐺 using edge (𝑢, 𝑣) are all the
Hamiltonian cycles of 𝐺. Thus there is a bijection between Hamiltonian cycles of 𝐺′ and
Hamiltonian cycles of 𝐺, and so the numbers of Hamiltonian cycles in 𝐺 and 𝐺′ are the
same. As desired, 𝐺′ is Hamiltonian if and only if 𝐺 is.

Lemma 2.43. If (𝑢, 𝑣) is an edge of planar non-alternating directed graph 𝐺, then simplifying
𝐺 over (𝑢, 𝑣) maintains the planar non-alternating property of 𝐺.

Proof. Let 𝐺′ be the graph that results from simplifying 𝐺 over edge (𝑢, 𝑣). Starting with a
planar non-alternating embedding of 𝐺, the corresponding planar embedding of 𝐺′ will also
be non-alternating. We prove this below.

If 𝑥 is a vertex of 𝐺 that is not 𝑢 or 𝑣, then in the planar non-alternating embedding
𝑥 will have all the inward oriented edges in one contiguous section. The simplification
of 𝐺 over (𝑢, 𝑣) will at most affect 𝑥 by removing some edges incident on 𝑥. In no case
does this introduce alternation of inward and outward oriented sections to 𝑥. Thus 𝑥 is
non-alternating in the planar embedding of 𝐺′.

If 𝑥 is the new vertex introduced due to the simplification of 𝐺 over (𝑢, 𝑣), then 𝑥 is
non-alternating in the planar embedding of 𝐺′ because (1) the inward oriented edges are all
inherited from 𝑢, (2) the outward oriented edges are all inherited from 𝑣, and (3) the edges
inherited from the two vertices by 𝑥 can be separated into two contiguous sections.

As desired, this shows that 𝐺′ is planar non-alternating.

We apply these lemmas to prove that the Planar Non-Alternating Indegree-2 Outdegree-2
Hamiltonicity Problem is NP-hard:

Theorem 2.44. The Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem
is NP-hard.

Proof. We prove this via the following reduction from the Planar Max-Degree-3 Hamiltonicity
Problem. On input a planar graph 𝐺 with all in- and out-degrees 1 or 2, repeatedly identify
edges (𝑢, 𝑣) such that either 𝑢 has outdegree 1 or 𝑣 has indegree 1 and simplify 𝐺 over (𝑢, 𝑣).
Only stop once no such edges (𝑢, 𝑣) can be found, at which point output the resulting graph
𝐺′.

First note that this algorithm runs in polynomial time since (1) simplification is a
polynomial-time operation and (2) the number of simplifications of 𝐺 is bounded above by
the number of vertices in 𝐺 since each simplification decreases the number of vertices by 1.

Suppose the input instance 𝐺 is a “no” instance of the Planar Max-Degree-3 Hamiltonicity
Problem. This means that 𝐺 is not Hamiltonian. By repeated application of Lemma 2.42,
𝐺′ is Hamiltonian if and only if 𝐺 is Hamiltonian. Thus 𝐺′ is not Hamiltonian and so 𝐺′ is a
“no” instance of the Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem.

39

On the other hand, suppose the input instance 𝐺 is a “yes” instance of the Planar Max-
Degree-3 Hamiltonicity Problem. By repeated application of Lemma 2.42, 𝐺′ is Hamiltonian
if and only if 𝐺 is Hamiltonian, so 𝐺′ must have a Hamiltonian cycle. Below we show that
all in- and out-degrees in 𝐺′ are 2 and that 𝐺′ is a planar non-alternating graph. Together,
this is enough to imply that 𝐺′ is a “yes” instance of the Planar Non-Alternating Indegree-2
Outdegree-2 Hamiltonicity Problem.

Since 𝐺′ has a Hamiltonian cycle, no vertex in 𝐺′ can have in- or out-degree 0. Fur-
thermore, no vertex in 𝐺′ can have in- or out-degree 1 because the reduction does not stop
simplifying the graph until there are no in- or out-degree 1 vertices left. Thus every in- or
out-degree in 𝐺′ is at least 2. When simplifying a graph over an edge, every in- or out-degree
in the resulting graph is less than or equal to some in- or out-degree in the initial graph.
By repeatedly applying this rule, we see that every in- and out-degree in 𝐺′ is at most the
largest in- or out-degree in 𝐺. But as 𝐺 is a Planar Max-Degree-3 Hamiltonicity instance,
the largest in- or out-degree in 𝐺 is at most 2. Thus, we can conclude that every in- and
out-degree in 𝐺′ must be exactly 2.

By repeated application of Lemma 2.43, we know that provided the original graph 𝐺
is a planar non-alternating graph, the final graph 𝐺′ will be as well. But if 𝐺 is a planar
max-degree-3 graph, then every vertex in 𝐺 is non-alternating in any planar embedding
(since alternating vertices always have total degree at least 4). Thus, any planar embedding
of 𝐺 is a planar non-alternating embedding. We can therefore conclude that both 𝐺 and 𝐺′

are planar non-alternating graphs.
As desired, 𝐺 is a “yes” instance of the Planar Max-Degree-3 Hamiltonicity Problem

if and only if 𝐺′ is a “yes” instance of the Planar Non-Alternating Indegree-2 Outdegree-2
Hamiltonicity Problem. Together with the fact that the reduction runs in polynomial time,
we have our desired result: the Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity
Problem is NP-hard.

2.5.2 Reduction to Planar ({𝑘}, {4})-TRVB for any 𝑘 ≥ 4

Consider the following definition:

Definition 2.45. For 𝑘 ≥ 4, algorithm 𝑅𝑘 defined below takes as input a planar non-
alternating graph whose vertex in- and out-degrees all equal 2, and outputs an instance of
Planar ({𝑘}, {4})-TRVB.

Suppose that 𝐺 is the graph being given as input to 𝑅𝑘. Then to begin, we construct a
labeled undirected multigraph 𝑀 as follows.

First we build all the vertices (and vertex labels) of 𝑀 . For each vertex in 𝐺, we include
an unbreakable vertex in 𝑀 and for each edge in 𝐺 we include a breakable vertex in 𝑀 . If
𝑣 is a vertex or 𝑒 is an edge of 𝐺, we define 𝑚(𝑣) and 𝑚(𝑒) to be the corresponding vertices
in 𝑀 .

Next we add all the edges of 𝑀 . Fix vertex 𝑣 in 𝐺. Let (𝑢1, 𝑣) and (𝑢2, 𝑣) be the edges
into 𝑣 and let (𝑣, 𝑤1) and (𝑣, 𝑤2) be the edges out of 𝑣. Then add the following edges to 𝑀 :

∙ Add an edge from 𝑚(𝑣) to each of 𝑚((𝑢1, 𝑣)), 𝑚((𝑢2, 𝑣)), 𝑚((𝑣, 𝑤1)), and 𝑚((𝑣, 𝑤2)).

∙ Add an edge from 𝑚((𝑣, 𝑤1)) to 𝑚((𝑣, 𝑤2)).

∙ Add 𝑘 − 3 edges from 𝑚((𝑢1, 𝑣)) to 𝑚((𝑢2, 𝑣)).

40

Finally, pick any specific vertex 𝑣 in 𝐺. Let (𝑢1, 𝑣) and (𝑢2, 𝑣) be the edges into 𝑣 and let
(𝑣, 𝑤1) and (𝑣, 𝑤2) be the edges out of 𝑣. We modify 𝑀 by removing vertex 𝑚(𝑣) (and all inci-
dent edges), and adding the two edges (𝑚((𝑢1, 𝑣)), 𝑚((𝑢2, 𝑣))), and (𝑚((𝑣, 𝑤1)), 𝑚((𝑣, 𝑤2))).
Call the resulting multigraph 𝑀 ′ and return it as output of algorithm 𝑅𝑘.

In order to analyze the behavior of algorithm 𝑅𝑘, it will be helpful to have the following
definition:

Definition 2.46. We say that two edges in a planar non-alternating indegree-2 outdegree-2
graph are conflicting if they start or end at the same vertex. A Hamiltonian cycle in such a
graph must contain exactly one out of every pair of conflicting edges.

Lemma 2.47. The output 𝑀 ′ of 𝑅𝑘 is a planar labeled multigraph whose vertices are all
breakable with degree 𝑘 or unbreakable with degree 4.

Proof. Define all variables used in the description of 𝑅𝑘 as defined there. Because 𝐺 is
planar non-alternating, we can immediately conclude that multigraph 𝑀 is planar as well
(see Figure 2-7 for an example).

Figure 2-7: If the planar non-alternating directed graph on the left is 𝐺, then if 𝑘 = 4 the
𝑀 produced is on the right. As you can see, the planarity is maintained. If 𝑘 > 4, then the
output 𝑀 remains the same except some edges are duplicated; in that case too, 𝑀 is planar.

Consider any vertex 𝑚(𝑣) in 𝑀 (where 𝑣 is a vertex of 𝐺). This vertex has exactly four
neighbors: the vertices 𝑚(𝑒) for every edge 𝑒 in 𝐺 that is incident on 𝑣. Furthermore, this
vertex is unbreakable.

Consider any vertex 𝑚((𝑢, 𝑣)) in 𝑀 (where (𝑢, 𝑣) is an edge of 𝐺). This vertex has one
edge to 𝑚(𝑢), one edge to 𝑚(𝑣), one edge to 𝑚((𝑢, 𝑣′)), and 𝑘 − 3 edges to 𝑚((𝑢′, 𝑣)) (where
(𝑢, 𝑣′) and (𝑢′, 𝑣) are the two edges in 𝐺 conflicting with (𝑢, 𝑣)). Thus the degree of this
vertex is 𝑘.

This shows that 𝑀 consists of only degree-4 unbreakable vertices and degree-𝑘 breakable
vertices. Thus, we have shown that 𝑀 has exactly those properties that we are trying to
show for 𝑀 ′: 𝑀 is a planar labeled multigraph whose vertices are all breakable with degree

41

𝑘 or unbreakable with degree 4. All that’s left is to show that the operation converting 𝑀
to 𝑀 ′ leaves these properties unchanged.

To convert 𝑀 to 𝑀 ′, vertex 𝑚(𝑣) is removed, and two edges (𝑚((𝑢1, 𝑣)), 𝑚((𝑢2, 𝑣))),
and (𝑚((𝑣, 𝑤1)), 𝑚((𝑣, 𝑤2))) are added.

Note first that the four endpoints of these two edges are exactly the four neighbors of
𝑚(𝑣) in 𝑀 . Thus, each vertex in 𝑀 other than 𝑚(𝑣) has the same degree in 𝑀 : either the
vertex was unaffected by the change from 𝑀 to 𝑀 ′ or a single edge was removed from the
vertex and a single edge was added. Therefore the vertices of 𝑀 ′ are all breakable with
degree 𝑘 or unbreakable with degree 4.

Next note that the two edges added to the multigraph are both already present. Increasing
the multiplicity of an edge in a multigraph does not affect the planarity of the multigraph,
and neither does removal of vertices and edges. Thus, the operation transforming 𝑀 into
𝑀 ′ maintains the planarity of the multigraph.

We can conclude that we have our desired properties: 𝑀 ′ is a planar labeled multigraph
whose vertices are all breakable with degree 𝑘 or unbreakable with degree 4. This can be
seen for the Figure 2-7 example in Figure 2-8.

Figure 2-8: If the 𝑀 produced by the algorithm is shown in Figure 2-7 (for 𝑘 = 4), then
shown here is one possible 𝑀 ′ (where the shown multigraph is 𝑀 ′ if 𝑣 is chosen to be
the bottom left vertex). Notice that 𝑀 ′ has our desire properties: 𝑀 ′ is a planar labeled
multigraph whose vertices are all breakable with degree 𝑘 or unbreakable with degree 4.

The following is an additional, trivial, property of 𝑅𝑘:

Lemma 2.48. 𝑅𝑘 runs in polynomial time.

Consider the following lemma:

Lemma 2.49. Suppose 𝑅𝑘 outputs 𝑀 ′ on input 𝐺 and there exists a solution to the TRVB
problem on 𝑀 ′. Then the set of edges 𝑒 in 𝐺 such that 𝑚(𝑒) is not broken is a disjoint cycle
cover of 𝐺.

42

Proof. Consider any pair of conflicting edges 𝑒1 and 𝑒2 in 𝐺 that share endpoint 𝑣. There
exists at least one edge in 𝑀 between 𝑚(𝑒1) and 𝑚(𝑒2), and this edge is still present in 𝑀 ′.
Thus, in order to avoid disconnecting that edge from the rest of the graph, either 𝑚(𝑒1)
or 𝑚(𝑒2) must not be broken. 𝑀 also contains a cycle on three vertices 𝑚(𝑒1), 𝑚(𝑒2), and
𝑚(𝑣). If 𝑣 = 𝑣, then the third vertex is missing in 𝑀 ′, but in that case there is instead a
cycle in 𝑀 ′ with just 𝑚(𝑒1) and 𝑚(𝑒2). In any case, 𝑀 ′ contains at least one cycle whose
only breakable vertices are 𝑚(𝑒1) and 𝑚(𝑒2). In order for the resulting graph to be acyclic,
at least one of these two vertices must be broken. This shows that in any solution to the
TRVB problem on 𝑀 ′′, exactly one out of every pair of conflicting edges (𝑒1, 𝑒2) has 𝑚(𝑒𝑖)
broken.

Consider the set 𝐶 of edges 𝑒 in 𝐺 such that 𝑚(𝑒) is not broken. For every vertex 𝑣
of 𝐺, the two edges out of 𝑣 conflict and the two edges into 𝑣 conflict. Since every pair of
conflicting edges (𝑒1, 𝑒2) has exactly one 𝑚(𝑒𝑖) broken, we conclude that 𝐶 contains one edge
that enters 𝑣 and one that exists it. Thus 𝐶 is a disjoint cycle cover of 𝐺, as desired.

Based on this lemma, we can define the following correspondence:

Definition 2.50. For any solution of TRVB instance 𝑀 ′, define 𝐶 to be the disjoint cycle
cover of 𝐺 consisting of edges 𝑒 such that 𝑚(𝑒) is not broken in the given solution of 𝑀 ′.

As per this definition, we can derive a disjoint cycle cover of 𝐺 from any solution to
TRVB instance 𝑀 ′. Similarly, for any disjoint cycle cover of 𝐺, we can derive a candidate
solution (though not necessarily an actual solution) for 𝑀 ′: simply break every vertex 𝑚(𝑒)
where 𝑒 is an edge of 𝐺 that is not in the given disjoint cycle cover. Then for some suitable
definition of “candidate solution,” there is a bijection between disjoint cycle covers of 𝐺
and candidate solutions of TRVB instance 𝑀 ′. We will show below that in fact, a disjoint
cycle cover of 𝐺 is actually a Hamiltonian cycle if and only if the corresponding candidate
solution for 𝑀 ′ is actually a solution. For example, see Figure 2-9.

Figure 2-9: This figure shows a Hamiltonian cycle in example graph 𝐺 from Figure 2-7 (left)
and the corresponding solution of TRVB instance 𝑀 ′ shown in Figure 2-8 (right).

43

Lemma 2.51. Suppose 𝑅𝑘 outputs 𝑀 ′ on input 𝐺. If there exists a solution to the TRVB
problem on 𝑀 ′, then the corresponding cycle cover of 𝐺 is actually a Hamiltonian cycle.

Proof. Let 𝐶 be the disjoint cycle cover of 𝐺 consisting of edges 𝑒 such that 𝑚(𝑒) is not
broken in the given solution of 𝑀 ′. We know that 𝐶 is a union of disjoint cycles and we
wish to show that there is exactly one cycle in 𝐶. Let 𝑣 be a vertex in 𝐺 and let 𝐶𝑣 be the
cycle in 𝐶 containing 𝑣. We will prove that 𝐶 contains exactly one cycle by proving that 𝐶𝑣

contains every vertex of 𝐺.
Let 𝑀 ′

𝑠𝑜𝑙𝑣𝑒𝑑 be the solved version of 𝑀 ′ (after breaking vertices) and let 𝑀𝑠𝑜𝑙𝑣𝑒𝑑 be a
version of 𝑀 in which the same vertices are broken. Consider the difference between 𝑀 and
𝑀 ′ from a connectivity standpoint. In 𝑀 , vertex 𝑚(𝑣) connects its four neighbors, while in
𝑀 ′, these neigbors are instead connected in pairs with two edges. Thus, 𝑀 is at least as
connected as 𝑀 ′. This connectivity pattern carries through to the solved versions of these
multigraphs: 𝑀𝑠𝑜𝑙𝑣𝑒𝑑 is at least as connected as 𝑀 ′

𝑠𝑜𝑙𝑣𝑒𝑑. Since 𝑀 ′
𝑠𝑜𝑙𝑣𝑒𝑑 is a tree, it is fully

connected, and so 𝑀𝑠𝑜𝑙𝑣𝑒𝑑 is also fully connected.
From this, we see that there exists a path in 𝑀𝑠𝑜𝑙𝑣𝑒𝑑 from 𝑚(𝑣) to 𝑚(𝑣′) for any vertex

𝑣′ in 𝐺. This path starts in 𝑚(𝑣), ends in 𝑚(𝑣′), and passes through vertices that all have
degree at least 2. Therefore every vertex in this path is a vertex from the original multigraph
𝑀 that was not broken. We prove below that every path in 𝑀𝑠𝑜𝑙𝑣𝑒𝑑 using only vertices
originally in 𝑀 which starts in 𝑚(𝑣) must end at a vertex of the form 𝑚(𝑥) where 𝑥 is a
vertex or edge in cycle 𝐶𝑣. Since there exists a path in 𝑀𝑠𝑜𝑙𝑣𝑒𝑑 using only vertices originally
in 𝑀 from 𝑚(𝑣) to 𝑚(𝑣′), we conclude that 𝑣′ is a vertex in 𝐶𝑣. Applying this to every
vertex in 𝐺, we see that 𝐶𝑣 is a cycle containing every vertex in 𝐺, and therefore 𝐶 = 𝐶𝑣 is
a Hamiltonian cycle.

Consider any path in 𝑀𝑠𝑜𝑙𝑣𝑒𝑑 using only vertices originally in 𝑀 which starts in 𝑚(𝑣).
We prove by induction on the path length that this path ends at a vertex of the form 𝑚(𝑥)
where 𝑥 is a vertex or edge in cycle 𝐶𝑣.

If the path length is zero, then the end vertex is 𝑚(𝑣), which is certainly of the correct
form.

Next, suppose that the statement holds for all paths of length 𝑖 − 1 or less. Then given
a path of length 𝑖, we can apply the inductive hypothesis to this path without the last step.
Thus we have that the pre-last node in the given path is of the form 𝑚(𝑥) where 𝑥 is a
vertex or edge in cycle 𝐶𝑣. The final node in the path is a neighbor of 𝑚(𝑥) that is in 𝑀
and not a broken vertex.

If 𝑥 is a vertex, then the only possible non-broken neighbors of 𝑚(𝑥) are the two nodes
𝑚(𝑒1) and 𝑚(𝑒2) where 𝑒1 and 𝑒2 are the two edges into and out of 𝑥 in 𝐶𝑣.

If 𝑥 is an edge, then the neighbors of 𝑚(𝑥) are nodes of the form 𝑚(𝑦) where 𝑦 is either a
conflicting edge in 𝐺 or an endpoint of 𝑥. But since 𝑚(𝑥) is in 𝐶𝑣, it was not broken, which
means that the vertices in 𝑀 corresponding to the conflicting edges were broken. Thus the
only possible non-broken neighbors of 𝑚(𝑥) are the two nodes 𝑚(𝑒1) and 𝑚(𝑒2) where 𝑒1
and 𝑒2 are the two endpoints of 𝑥. Since 𝑥 is in 𝐶𝑣, so are its endpoints.

We conclude that in either case, the final node in the path is of the form 𝑚(𝑦) where 𝑦 is
a vertex or edge in cycle 𝐶𝑣, proving the inductive step. By induction, any path in 𝑀𝑠𝑜𝑙𝑣𝑒𝑑

using only vertices originally in 𝑀 which starts in 𝑚(𝑣) ends at a vertex of the form 𝑚(𝑥)
where 𝑥 is a vertex or edge in cycle 𝐶𝑣.

As argued above, this implies that 𝐶 = 𝐶𝑣 is a Hamiltonian cycle. Thus, we have shown
that if the TRVB-problem 𝑀 ′ has a solution, then the corresponding cycle cover of 𝐺 is
actually a Hamiltonian cycle.

44

Lemma 2.52. Suppose 𝑅𝑘 outputs 𝑀 ′ on input 𝐺 and there exists a Hamiltonian cycle in
𝐺. Then the corresponding candidate solution of the TRVB instance 𝑀 ′ is a solution.

Proof. Suppose that the Hamiltonian cycle of 𝐺 is 𝐶. Then let 𝑆 be the set of vertices
𝑚(𝑒) such that 𝑒 is an edge of 𝐺 not in 𝐶. If 𝑚(𝑒1), 𝑚(𝑒2) ∈ 𝑆, then 𝑒1 and 𝑒2 cannot be
conflicting edges (since out of every pair of conflicting edges, one is in 𝐶). Therefore there
is no edge between 𝑚(𝑒1) and 𝑚(𝑒2). Thus 𝑆 contains no pair of adjacent vertices and is
therefore an independent set in 𝑀 ′.

Let 𝐴 be any subset of 𝑆. Define 𝑀 ′
𝐴 to be the multigraph derived from 𝑀 ′ by removing

the vertices in 𝐴. Every vertex in 𝑀 ′ is either equal to 𝑚(𝑣) or adjacent to 𝑚(𝑣) for some
vertex 𝑣 in 𝐺. Then since 𝐴 ⊆ 𝑆 contains only vertices of the form 𝑚(𝑒) where 𝑒 is an
edge of 𝐺, we conclude that every vertex in 𝑀 ′

𝐴 is either equal to 𝑚(𝑣) or adjacent to 𝑚(𝑣)
for some vertex 𝑣 in 𝐺. Then provided we show that every 𝑚(𝑣) is in the same connected
component of 𝑀 ′

𝐴, we will be able to conclude that 𝑀 ′
𝐴 is a connected graph. To show

this, we prove that there exists a path in 𝑀 ′
𝐴 from any 𝑚(𝑣1) to any 𝑚(𝑣2) (with 𝑣1 and 𝑣2

vertices in 𝐺).
Consider the path 𝑣1 = 𝑥1, 𝑥2, . . . , 𝑥𝑙 = 𝑣2 from 𝑣1 to 𝑣2 in 𝐺 which is part of Hamiltonian

cycle 𝐶 and excludes vertex 𝑣. Then consider the following list of vertices:

𝑚(𝑥1), 𝑚((𝑥1, 𝑥2)), 𝑚(𝑥2), 𝑚((𝑥2, 𝑥3)), 𝑚(𝑥3), . . . , 𝑚((𝑥𝑙−1, 𝑥𝑙)), 𝑚(𝑥𝑙).

This list of vertices is a path in 𝑀 , so since 𝑚(𝑣) is not in the list, it is also a path in 𝑀 ′.
Thus we have a path in 𝑀 ′ from 𝑚(𝑣1) to 𝑚(𝑣2). No vertex in this path of the form 𝑚(𝑥)
where 𝑥 is a vertex of 𝐺 is in 𝐴 simply because 𝐴 ⊆ 𝑆 ⊆ {𝑚(𝑒) | 𝑒 is an edge of 𝐺}. Every
vertex of the form 𝑚(𝑒) where 𝑒 is an edge of 𝐺 has 𝑒 ∈ 𝐶, and so vertex 𝑚(𝑒) is not in 𝑆
(and consequentially not in 𝐴). Thus, no vertex in the path is in 𝐴, and so every vertex in
the path is present in 𝑀 ′

𝐴. Therefore this path is also a path from 𝑚(𝑣1) to 𝑚(𝑣2) in 𝑀 ′
𝐴.

As described above, this allows us to conclude that 𝑀 ′
𝐴 is connected. We see that for

any subset 𝐴 ⊆ 𝑆, removing 𝐴 from 𝑀 ′ leaves the multigraph connected. Thus every 𝐴 ⊆ 𝑆
is not a separating set of 𝑀 ′, and so 𝑆 is a nonseparating set of 𝑀 ′.

We have shown that 𝑆 is a nonseparating independent set in 𝑀 ′, so by Lemma 2.9, the
multigraph that results from breaking the vertices of 𝑆 in 𝑀 ′ is connected.

Suppose 𝐺 has 𝑛 vertices. Then the number of edges in 𝐺 is 2𝑛. The number of edges
of 𝐺 not in a Hamiltonian cycle is 𝑛, so |𝑆| = 𝑛. Then the number of vertices in 𝑀 is
𝑛 + 2𝑛 = 3𝑛, the total number of vertices and edges in 𝐺. The number of edges in 𝑀 is
𝑛×4+2𝑛×𝑘

2 = 𝑛(𝑘 + 2). Transitioning from 𝑀 to 𝑀 ′ requires converting one vertex and four
edges into zero vertices and two edges. Thus 𝑀 ′ has 3𝑛 − 1 vertices and 𝑛(𝑘 + 2) − 2 edges.

Each vertex in 𝑆 has degree 𝑘, so breaking the 𝑛 vertices of 𝑆 in 𝑀 ′ increases the
number of vertices in the resulting multigraph by 𝑛(𝑘 − 1). Then the multigraph that results
from breaking the vertices of 𝑆 in 𝑀 ′ has 3𝑛 − 1 + 𝑛(𝑘 − 1) = 𝑛(𝑘 + 2) − 1 vertices and
𝑛(𝑘 + 2) − 2 edges. Furthermore, we showed above that this multigraph is connected. Since
this multigraph is connected and has one more vertex than it has edges, we can conclude
that it is a tree.

We have shown that if 𝐺 has a Hamiltonian cycle, breaking the vertices in 𝑀 ′ of set 𝑆
as defined above yields a tree. Thus we have that in the case that 𝐺 has a Hamiltonian
cycle, the corresponding candidate solution of the TRVB instance 𝑀 ′ is a solution.

Theorem 2.53. Planar ({𝑘}, {4})-TRVB is NP-hard for any 𝑘 ≥ 4.

45

Proof. Consider the following reduction from Planar Non-Alternating Indegree-2 Outdegree-
2 Hamiltonicity Problem to Planar ({𝑘}, {4})-TRVB. On input a graph 𝐺, we first check
whether 𝐺 is a planar non-alternating graph all of whose in- and out-degrees are 2. If yes, we
run 𝑅𝑘 on input 𝐺 and output the result. Otherwise, we simply output any “no” instance
of Planar ({𝑘}, {4})-TRVB.

Since 𝑅𝑘 runs in polynomial time, the above is clearly a polynomial-time reduction.
Furthermore, 𝑅𝑘 always outputs a planar labeled multigraph whose vertices are all breakable
with degree 𝑘 or unbreakable with degree 4. As a result, in order to show that the above
reduction is answer-preserving, it is sufficient to show that for all planar non-alternating
graphs 𝐺 whose in- and out-degrees are 2, 𝐺 has a Hamiltonian cycle if and only if the
corresponding output 𝑀 ′ of 𝑅𝑘 on input 𝐺, when interpreted as a TRVB instance, has a
solution. This is exactly what we showed in the previous two lemmas.

Since the Planar Non-Alternating Indegree-2 Outdegree-2 Hamiltonicity Problem is
NP-hard, we conclude that for any 𝑘 ≥ 4, Planar ({𝑘}, {4})-TRVB is NP-hard.

2.6 Planar TRVB and TRVB are NP-complete with high-
degree breakable vertices

The goal of this section is to show that Planar (𝐵, 𝑈)-TRVB and (𝐵, 𝑈)-TRVB are NP-
complete if 𝐵 contains any 𝑘 ≥ 4. To do this, we will show that Planar ({𝑘}, ∅)-TRVB is
NP-hard for any 𝑘 ≥ 4.

Lemma 2.54. For any 𝑘 ≥ 4, there exists a reduction from either Planar ({𝑘}, {3})-TRVB
or Planar ({𝑘}, {4})-TRVB to Planar ({𝑘}, ∅)-TRVB.

Proof. Below we will show that if 𝑘 ≥ 4, it is possible to simulate either a degree-4
unbreakable vertex or a degree-3 unbreakable vertex with a small gadget consisting of
degree-𝑘 breakable vertices. As a result, for every 𝑘 ≥ 4, we can construct a reduction from
either Planar ({𝑘}, {4})-TRVB or Planar ({𝑘}, {3})-TRVB to Planar ({𝑘}, ∅)-TRVB.

In particular, our reduction simply replaces every occurrence of an unbreakable degree-
3 or degree-4 vertex with the corresponding gadget made of breakable degree-𝑘 vertices.
Provided we can design gadgets of constant size (with respect to the size of 𝐺, not with
respect to 𝑘) whose behavior is the same as the vertex they are simulating, this reduction
will be correct and will run in polynomial time.

To design the gadgets, we have two cases.
For 𝑘 = 4, we use the gadget shown in Figure 2-10. Suppose that the gadget shown was

included in a Tree-Residue Vertex-Breaking instance. In order to break the cycle between
𝑃0 and 𝑃1 without disconnecting the edges between them from the rest of the graph, exactly
one of those two vertices 𝑃𝑖 must be broken. But then the neighbor 𝑄𝑖 of 𝑃𝑖 cannot be
broken without disconnecting the edge (𝑃𝑖, 𝑄𝑖) from the rest of the graph. On the other
hand, the node 𝑄1−𝑖 cannot be broken either since breaking it would disconnect 𝑃1−𝑖 from
the rest of the graph. Thus any valid solution of the Tree-Residue Vertex-Breaking instance
must break neither 𝑄𝑖 and exactly one 𝑃𝑖. The resulting graph connects the other four
neighbors of the 𝑄𝑖s without forming any cycles. In other words the behavior of this gadget
in a graph is the same as the behavior of an unbreakable degree-4 vertex.

For 𝑘 ≥ 5, we use the gadget shown in Figure 2-11. In this gadget, breakable vertex 𝑄 has
2𝑎 edges to other vertices 𝑃0, 𝑃1, . . . , 𝑃2𝑎−1 in the gadget and 𝑘 − 2𝑎 edges out of the gadget.
In addition, there are 𝑘 − 1 edges between 𝑃2𝑖 and 𝑃2𝑖+1 for every 𝑖 in {0, 1, . . . , 𝑎 − 1}. Note

46

Q0 Q1

P0 P1

Figure 2-10: A gadget simulating an unbreakable degree-4 vertex using only breakable
degree-4 vertices arranged in a planar manner.

that the degree of each vertex is 𝑘, as desired. When solving a graph containing this gadget,
the cycle between 𝑃2𝑖 and 𝑃2𝑖+1 guarantees that exactly one of the two vertices must be
broken. In order to not disconnect the other vertex from the rest of the graph, 𝑄 cannot be
broken in any valid solution. Thus, provided 𝑎 > 0, every valid solution will break exactly
one 𝑃2𝑖+𝑗 with 𝑗 ∈ {0, 1} for each 𝑖 and will not break 𝑄. If this is done, the part of the
resulting graph corresponding to this gadget will connect the 𝑘 − 2𝑎 external neighbors of 𝑄
to each other without forming any cycles. In other words the behavior of this gadget in a
graph is the same as the behavior of an unbreakable degree-(𝑘 − 2𝑎) vertex.

Q

P0 P1 P2 P3 P2a-1......

k - 2a edges

...

k - 1 edges

...

Figure 2-11: A gadget simulating an unbreakable degree-(𝑘 −2𝑎) vertex using only breakable
degree-𝑘 vertices arranged in a planar manner.

Since 𝑘 ≥ 5, it is possible to choose 𝑎 > 0 such that 𝑘 − 2𝑎 ∈ {3, 4}. Then for every
𝑘, we are able to make a gadget to simulate either an unbreakable degree-4 vertex or an
unbreakable degree-3 vertex. In all cases we can make the required gadgets, and so the
reductions go through.

We already know that Planar ({𝑘}, {4})-TRVB is NP-hard from Section 2.5, so to obtain
NP-hardness from the previous lemma, all that is left is to show that Planar ({𝑘}, {3})-TRVB
is NP-hard.

Lemma 2.55. Planar ({𝑘}, {3})-TRVB is NP-hard for any 𝑘 ≥ 4.

Proof. We reduce from Planar ({𝑘}, {4})-TRVB to Planar ({𝑘}, {3})-TRVB.
Consider any unbreakable degree-4 vertex 𝑣. We can replace 𝑣 with two new degree-3

unbreakable vertices 𝑢 and 𝑢′ with edges between the two new vertices and the neighbors
of 𝑣 and an edge between 𝑢 and 𝑢′. If we allocate two neighbors of 𝑣 to each of 𝑢 and 𝑢′,
we succeed in making 𝑢 and 𝑢′ have degree 3. Note that it is possible to do this while
maintaining the planarity of a multigraph. See Figure 2-12.

This pair of vertices “behaves” exactly the same as the original vertex did; in other
words this change does not affect the answer to the Tree-Residue Vertex-Breaking question.

47

Figure 2-12: The degree-4 unbreakable vertex on the left can be simulated with two degree-3
unbreakable vertices as shown on the right while maintaining planarity.

As a result, applying this change to every unbreakable degree-4 vertex 𝑣 converts a Planar
({𝑘}, {4})-TRVB instance into a Planar ({𝑘}, {3})-TRVB instance.

By Theorem 2.53, Planar ({𝑘}, {4})-TRVB is NP-hard for any 𝑘 ≥ 4, and so the existence
of this reduction proves that Planar ({𝑘}, {3})-TRVB is NP-hard for any 𝑘 ≥ 4.

Corollary 2.56. Planar ({𝑘}, ∅)-TRVB is NP-hard for any 𝑘 ≥ 4.

Proof. Lemmas 2.54 and 2.55, together with Theorem 2.53, allow us to conclude the desired
result.

Theorem 2.57. Planar (𝐵, 𝑈)-TRVB is NP-complete if 𝐵 contains any 𝑘 ≥ 4. Also
(𝐵, 𝑈)-TRVB is NP-complete if 𝐵 contains any 𝑘 ≥ 4.

Proof. By Lemma 2.3, there is a reduction from Planar ({𝑘}, ∅)-TRVB to Planar (𝐵, 𝑈)-
TRVB if 𝐵 contains 𝑘. Thus, if 𝑘 ≥ 4 and 𝐵 contains 𝑘, then Planar (𝐵, 𝑈)-TRVB is
NP-hard. Lemma 2.3 also gives a reduction from Planar (𝐵, 𝑈)-TRVB to (𝐵, 𝑈)-TRVB, so
we see that if 𝑘 ≥ 4 and 𝐵 contains 𝑘, then (𝐵, 𝑈)-TRVB is also NP-hard.

Using Corollary 2.5, we see that as desired, if 𝑘 ≥ 4 and 𝐵 contains 𝑘, then Planar
(𝐵, 𝑈)-TRVB and (𝐵, 𝑈)-TRVB are both NP-complete.

2.7 Graph TRVB is NP-complete with high-degree break-
able vertices

The goal of this section is to show that Graph (𝐵, 𝑈)-TRVB is NP-complete if 𝐵 contains
any 𝑘 ≥ 4. To do this, we will show that Graph ({𝑘}, ∅)-TRVB is NP-hard for any 𝑘 ≥ 4.

Lemma 2.58. Graph ({𝑘}, {2})-TRVB is NP-hard if 𝑘 ≥ 4.

Proof. In Corollary 2.56 we saw that Planar ({𝑘}, ∅)-TRVB is NP-hard if 𝑘 ≥ 4. We will
reduce from this problem to Graph ({𝑘}, {2})-TRVB.

In order to do so, we must convert a given multigraph into a graph. One way to do this
is to insert two degree-2 unbreakable vertices into every edge. After doing this, there will no
longer be any duplicated edges or self loops, and so the result will be graph. Furthermore,
adding an unbreakable degree-2 vertex into the middle of an edge does not influence the
answer to a Tree-Residue Vertex-Breaking question. Thus applying this transformation is a
valid reduction.

We conclude that as desired, Graph ({𝑘}, {2})-TRVB is NP-hard if 𝑘 ≥ 4.

Theorem 2.59. Graph ({𝑘}, ∅)-TRVB is NP-hard if 𝑘 ≥ 4.

48

Proof. In Lemma 2.58 we saw that Graph ({𝑘}, {2})-TRVB is NP-hard if 𝑘 ≥ 4. We wish
to reduce from that problem to Graph ({𝑘}, ∅)-TRVB.

In order to do this, we construct a constant sized (in the size of 𝐺) gadget using degree-𝑘
breakable vertices that behaves the same as a degree-2 unbreakable vertex. Simply replacing
every degree-2 unbreakable vertex with a copy of this gadget is a valid reduction, allowing
us to conclude that Graph ({𝑘}, ∅)-TRVB is NP-hard if 𝑘 ≥ 4.

The gadget is shown in Figure 2-13. The gadget consists of 2𝑘 − 2 breakable vertices,
each of degree 𝑘. Call them 𝑃1, 𝑃2, . . . , 𝑃𝑘−2 and 𝑄1, 𝑄2, . . . , 𝑄𝑘. The gadget contains an
edge between each pair (𝑃𝑖, 𝑄𝑗) and an edge between each pair (𝑄𝑖, 𝑄𝑖+1). Finally, both 𝑄1
and 𝑄𝑘 will have one edge leaving the gadget.

...

...

Q1 Q2 Q3 Q4 Qk-1 Qk

P1 P2 P3 Pk-2

Figure 2-13: A gadget simulating an unbreakable degree-2 vertex using only breakable
degree-𝑘 vertices arranged without self loops or duplicated edges.

In a solution to this gadget, either 𝑃1 is broken or not. If 𝑃1 is broken, then to avoid
disconnecting the edge (𝑄𝑖, 𝑃1) from the rest of the graph, 𝑄𝑖 must not be broken. But
(𝑄1, 𝑄2, 𝑃𝑖) is a cycle for every 𝑖, so in order to avoid having that cycle in the final graph,
𝑃𝑖 must also be broken.

If 𝑃1 is not broken, then either 𝑄1 or 𝑄2 must be broken (due to cycle (𝑄1, 𝑄2, 𝑃𝑖)).
Then if 𝑄𝑖 is broken, 𝑃𝑗 must not be broken in order to avoid disconnecting edge (𝑄𝑖, 𝑃𝑗)
from the rest of the graph. This means that every 𝑃𝑗 will not be broken. In that case,
however, the existence of cycle (𝑄𝑖1 , 𝑃1, 𝑄𝑖2 , 𝑃2) guarantees that either 𝑄𝑖1 or 𝑄𝑖2 will be
broken for every pair 𝑖1, 𝑖2. In other words, at most one 𝑄𝑖 can be unbroken. This means,
however, that either both 𝑄1 and 𝑄2 or both 𝑄3 and 𝑄4 will be broken, in either case
isolating an edge from the rest of the graph. Thus we see that this case is not possible.

We can conclude that the only solution to this gadget is to break all of the 𝑃𝑖s but none
of the 𝑄𝑖s, thereby connecting the external neighbors of 𝑄1 and 𝑄𝑘 (through the path of
𝑄𝑖s) without leaving any cycles or disconnecting the graph. In other words, this gadget
behaves like an unbreakable degree-2 vertex, as desired.

Thus we see that the reduction goes through and Graph ({𝑘}, ∅)-TRVB is NP-hard if
𝑘 ≥ 4.

Corollary 2.60. Graph (𝐵, 𝑈)-TRVB is NP-complete if 𝐵 contains any 𝑘 ≥ 4.

Proof. We saw in Theorem 2.59 that Graph ({𝑘}, ∅)-TRVB is NP-hard if 𝑘 ≥ 4, and we saw
in Lemma 2.3, there is a reduction from Graph ({𝑘}, ∅)-TRVB to Graph (𝐵, 𝑈)-TRVB if 𝐵
contains 𝑘. Thus, if 𝑘 ≥ 4 and 𝐵 contains 𝑘, then Graph (𝐵, 𝑈)-TRVB is NP-hard. Using
Corollary 2.5, we see that as desired, if 𝑘 ≥ 4 and 𝐵 contains 𝑘, then Graph (𝐵, 𝑈)-TRVB
is NP-complete.

49

2.8 Planar Graph TRVB is NP-hard with both low-degree
vertices and high-degree breakable vertices

The goal of this section is to show that Planar Graph (𝐵, 𝑈)-TRVB is NP-complete if (1)
either 𝐵 ∩ {1, 2, 3, 4, 5} ≠ ∅ or 𝑈 ∩ {1, 2, 3, 4} ≠ ∅ and (2) there exists a 𝑘 ≥ 4 with 𝑘 ∈ 𝐵.
To do this, we will demonstrate that these conditions are sufficient to guarantee that it
is possible to build small planar gadgets which behave like unbreakable degree-2 vertices.
Inserting two copies of such a gadget into every edge converts a planar multigraph into a
planar graph while keeping the answer to the TRVB question the same.

Below, we prove the existence of the desired gadgets.

Lemma 2.61. There exists a planar gadget that simulates an unbreakable vertex of degree-2
built out of breakable degree-𝑘 vertices (for any 𝑘 ≥ 4) and unbreakable degree-4 vertices such
that the number of nodes is constant with respect to the size of a given multigraph 𝐺.

Proof. The gadget for this theorem is shown in Figure 2-14. For each breakable vertex in
this figure, there exists a cycle in the gadget containing the vertex and no other breakable
vertex. To avoid leaving this cycle in the final graph, the two breakable vertices in the gadget
must both be broken in a valid solution. This fully determines the solution of the gadget.

k edges

... ...

Figure 2-14: A gadget simulating an unbreakable degree-2 vertex using only breakable
degree-𝑘 and unbreakable degree-4 vertices arranged in a planar manner without self loops
or duplicate edges.

Thus, if this gadget is included in a graph, the two breakable vertices must be broken,
resulting in the gadget connecting the two edges that extend out to the rest of the graph.
In other words, the gadget behaves like a degree-2 unbreakable vertex.

Note also that this gadget uses 𝑘 + 2 nodes, which is constant with respect to the size of
a given multigraph 𝐺.

Lemma 2.62. There exists a planar gadget that simulates an unbreakable degree-2 vertex
built out of breakable degree-𝑘 vertices (for any 𝑘 ≥ 4) and unbreakable degree-3 vertices such
that the number of nodes is constant with respect to the size of a given multigraph 𝐺.

Proof. The gadget for this theorem is shown in Figure 2-15. The one breakable vertex in
this figure is in a cycle in the gadget (with no other breakable vertex). To avoid leaving this
cycle in the final graph, the breakable vertex must be broken in a valid solution. This fully
determines the solution of the gadget.

Thus, if this gadget is included in a graph, the breakable vertex must be broken, resulting
in the gadget connecting the two edges that extend out to the rest of the graph. In other
words, the gadget behaves like a degree-2 unbreakable vertex.

50

... ...

k edges

Figure 2-15: A gadget simulating an unbreakable degree-2 vertex using only breakable
degree-𝑘 and unbreakable degree-3 vertices arranged in a planar manner without self loops
or duplicate edges.

Note also that this gadget uses 𝑘 + 1 nodes, which is constant with respect to the size of
a given multigraph 𝐺.

Lemma 2.63. There exists a planar gadget that simulates an unbreakable degree-2 vertex
built out of breakable degree-𝑘 vertices (for any 𝑘 ≥ 4) and unbreakable degree-1 vertices such
that the number of nodes is constant with respect to the size of a given multigraph 𝐺.

Proof. The gadget for this theorem is shown in Figure 2-16. The one breakable vertex in
this figure cannot be broken (as that would separate the unbreakable vertices from the rest
of the graph).

k - 2 edges

...

Figure 2-16: A gadget simulating an unbreakable degree-2 vertex using only breakable
degree-𝑘 and unbreakable degree-1 vertices arranged in a planar manner without self loops
or duplicate edges.

Thus, if this gadget is included in a graph, the breakable vertex must not be broken,
resulting in the gadget connecting the two edges that extend out to the rest of the graph.
In other words, the gadget behaves like a degree-2 unbreakable vertex.

Note also that this gadget uses 𝑘 − 1 nodes, which is constant with respect to the size of
a given multigraph 𝐺.

Lemma 2.64. There exists a planar gadget that simulates an unbreakable degree-2 vertex
built out of breakable degree-𝑘 vertices (for any 𝑘 ≥ 4) and breakable degree-1 vertices such
that the number of nodes is constant with respect to the size of a given multigraph 𝐺.

Proof. Breaking a degree-1 vertex does nothing, so breakable degree-1 vertices are essentially
the same as unbreakable degree-1 vertices. Thus we can simply use the same construction
as for the previous theorem.

Lemma 2.65. There exists a planar gadget that simulates an unbreakable degree-2 vertex
built out of breakable degree-𝑘 vertices (for any 𝑘 ≥ 4) and breakable degree-2 vertices such
that the number of nodes is constant with respect to the size of a given multigraph 𝐺.

51

Proof. We begin by constructing the gadget shown in Figure 2-17. In this gadget, breakable
vertex 𝑄 has 2𝑎 edges to other vertices 𝑃0, 𝑃1, . . . , 𝑃2𝑎−1 in the gadget and 𝑘 − 2𝑎 edges
out of the gadget. In addition, there is an edge between 𝑃2𝑖 and 𝑃2𝑖+1 for every 𝑖 in
{0, 1, . . . , 𝑎 − 1}. Note that the degree of 𝑄 is 𝑘 and the degree of each 𝑃𝑖 is 2. When
solving a graph containing this gadget, the cycle (𝑄, 𝑃2𝑖, 𝑃2𝑖+1) guarantees that exactly one
of the three vertices in the cycle must be broken. 𝑄, however, cannot be broken without
disconnecting 𝑃2𝑖 and 𝑃2𝑖+1 from the rest of the graph. Thus, provided 𝑎 > 0, every valid
solution will break exactly one 𝑃2𝑖+𝑗 out of every pair (𝑃2𝑖, 𝑃2𝑖+1) and will not break 𝑄.
If this is done, the part of the resulting graph corresponding to this gadget will connect
the 𝑘 − 2𝑎 external neighbors of 𝑄 to each other without forming any cycles. In other
words the behavior of this gadget in a graph is the same as the behavior of an unbreakable
degree-(𝑘 − 2𝑎) vertex.

Q

P0 P1 P2 P3 P2a-1......

k - 2a edges

...

...

Figure 2-17: A gadget simulating an unbreakable degree-(𝑘 −2𝑎) vertex using only breakable
degree-𝑘 and degree-2 vertices arranged in a planar manner without self loops or duplicate
edges.

Notice that the number of nodes in the above gadget is constant with respect to the size
of a given multigraph 𝐺 (in particular, there are 2𝑎 + 1 ≤ 𝑘 + 1 nodes).

Since 𝑘 ≥ 4, we can select 𝑎 > 0 such that 𝑘 − 2𝑎 ∈ {2, 3}. In other words, the above
gadget behaves either as an unbreakable degree-2 vertex gadget or as an unbreakable degree-3
vertex gadget.

If the gadget behaves as an unbreakable degree-3 vertex gadget, then an unbreakable
degree-2 vertex gadget can be built (as in the previous theorem) using breakable degree-𝑘
vertices and unbreakable degree-3 vertex gadgets. In this case, the size of the new combined
gadget is at most a constant times the size of the above gadget.

Thus in all cases we can construct a gadget simulating an unbreakable degree-2 vertex
using only degree-𝑘 and degree-2 breakable vertices.

Lemma 2.66. There exists a planar gadget that simulates an unbreakable degree-2 vertex
built out of breakable degree-3 vertices such that the number of nodes is constant with respect
to the size of a given multigraph 𝐺.

Proof. The gadget for this theorem is shown in Figure 2-18. If either vertex 𝑃 or vertex 𝑄2
is broken, then none of the others can be (since all the non-𝑃 vertices are adjacent to 𝑃 and
all the non-𝑄2 vertices are adjacent to 𝑄2). If neither 𝑃 nor vertex 𝑄2 is broken, then in
order to avoid having cycles, both 𝑄1 and 𝑄3 must be broken; this however, disconnects
𝑃 and 𝑄2 from the rest of the graph. Thus the only valid solutions of this gadget break
exactly one of 𝑃 and 𝑄2 and nothing else. In either case, the resulting graph piece connects
the two edges that extend out to the rest of the graph. In other words, the gadget behaves
like a degree-2 unbreakable vertex.

52

Q1 Q2 Q3

P

Figure 2-18: A gadget simulating an unbreakable degree-2 vertex using only breakable
degree-3 vertices arranged in a planar manner without self loops or duplicate edges.

Note also that this gadget uses 4 nodes, which is constant with respect to the size of a
given multigraph 𝐺.

Lemma 2.67. There exists a planar gadget that simulates an unbreakable degree-2 vertex
built out of breakable degree-4 vertices such that the number of nodes is constant with respect
to the size of a given multigraph 𝐺.

Proof. The gadget for this theorem is shown in Figure 2-19. Note that this is actually the
same gadget as described in Theorem 2.59 for 𝑘 = 4. Thus we have already argued the
correctness of this gadget.

Figure 2-19: A gadget simulating an unbreakable degree-2 vertex using only breakable
degree-4 vertices arranged in a planar manner without self loops or duplicate edges.

Note also that this gadget uses 5 nodes, which is constant with respect to the size of a
given multigraph 𝐺.

Lemma 2.68. There exists a planar gadget that simulates an unbreakable degree-2 vertex
built out of breakable degree-5 vertices such that the number of nodes is constant with respect
to the size of a given multigraph 𝐺.

Proof. The gadget for this theorem is shown in Figure 2-20.
This gadget contains exactly thirty-two degree-5 vertices with two edges leaving the

gadget. A choice of vertices to break within the gadget is a valid solution if either (1) the
resulting graph restricted to the vertices within the gadget is a tree (with the two edges
extending out of the gadget connected to this tree) or (2) the resulting graph restricted to
the vertices within the gadget consists of two trees (with the two edges extending out of
the gadget connected to one of these trees each). Since there are 32 degree-5 vertices with
two edges out of the gadget, the number of edges in the gadget is 32×5−2

2 = 79. Breaking
vertices does not affect the number of edges in a graph, so the final tree or pair of trees in a
valid solution of the gadget will also have 79 edges. A tree with 79 edges has 80 vertices
while two trees with 79 edges have 81 vertices. Breaking one vertex increases the number of
vertices by 4. Thus, it is possible to achieve the one-tree solution by breaking 80−32

4 = 12
vertices and it is impossible to achieve the two-tree solution.

53

Figure 2-20: A gadget simulating an unbreakable degree-2 vertex using only breakable
degree-5 vertices arranged in a planar manner without self loops or duplicate edges.

The one-tree solution corresponds with the situation in which the gadget connects the
two edges that extend out to the rest of the graph. In other words, provided that the gadget
can be solved, every possible solution is one under which the gadget behaves like a degree-2
unbreakable vertex. There is, however, still the question of whether the gadget can be solved.
In fact, breaking every vertex above or below the center horizontal line of the gadget (and
leaving the 20 vertices along the center line unbroken) is a valid solution of the gadget.

Therefore this gadget behaves like a degree-2 unbreakable vertex.
Note also that this gadget uses 32 nodes, which is constant with respect to the size of a

given multigraph 𝐺.

With these gadgets, we can now reduce from the Planar TRVB variants:

Theorem 2.69. Planar Graph (𝐵, 𝑈)-TRVB is NP-complete if (1) either 𝐵∩{1, 2, 3, 4, 5} ≠
∅ or 𝑈 ∩ {1, 2, 3, 4} ≠ ∅ and (2) there exists a 𝑘 ≥ 4 with 𝑘 ∈ 𝐵.

Proof. Suppose that for some 𝑘 ≥ 4, we have that 𝑘 ∈ 𝐵 and also that either 𝐵 ∩
{1, 2, 3, 4, 5} ≠ ∅ or 𝑈 ∩ {1, 2, 3, 4} ≠ ∅. Then we can reduce from Planar ({𝑘}, ∅)-TRVB
to Planar Graph (𝐵, 𝑈)-TRVB. Our reduction works by inserting either two degree-2
unbreakable vertices or two degree-2 unbreakable vertex gadgets (built out of vertices whose
types are allowed in (𝐵, 𝑈)-TRVB) into each edge. In either case, the resulting multigraph
uses only vertices with allowed degrees (with the answer staying the same), but is now also
a graph.

There are several cases:
If 𝐵 ∩ {3, 4, 5} ̸= ∅, then let 𝑏 be an element of 𝐵 ∩ {3, 4, 5}. We can build a constant

size planar gadget which behaves like an unbreakable degree-2 vertex using only breakable
degree-𝑏 vertices.

54

If 𝐵 ∩ {1, 2} ≠ ∅, then let 𝑏 be an element of 𝐵 ∩ {1, 2}. We can build a constant
size planar gadget which behaves like an unbreakable degree-2 vertex using only breakable
degree-𝑏 vertices and breakable degree-𝑘 vertices.

If 𝑈 ∩ {1, 3, 4} ≠ ∅, then let 𝑢 be an element of 𝑈 ∩ {1, 3, 4}. We can build a constant
size planar gadget which behaves like an unbreakable degree-2 vertex using only unbreakable
degree-𝑢 vertices and breakable degree-𝑘 vertices.

If 2 ∈ 𝑈 , then the problem we are reducing to allows degree-2 unbreakable vertices.
Thus, in all cases either (1) the problem we are reducing to allows degree-2 unbreakable

vertices or (2) the problem we are reducing to allows vertex types with which we can build a
constant sized gadget which behaves like a degree-2 unbreakable vertex.

Thus, our desired reduction from Planar ({𝑘}, ∅)-TRVB to Planar Graph (𝐵, 𝑈)-TRVB
is possible. Since Planar ({𝑘}, ∅)-TRVB is NP-hard (by Corollary 2.56), we see that Planar
Graph (𝐵, 𝑈)-TRVB is NP-hard. By Corollary 2.5, Planar Graph (𝐵, 𝑈)-TRVB is in NP, so
as desired, Planar Graph (𝐵, 𝑈)-TRVB is NP-complete.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

Chapter 3

Hamiltonian Cycle in Grid Graphs

3.1 Introduction

In 2007, Arkin et al. [3] initiated a systematic study of the complexity of Hamiltonian
Cycle in square, triangular, or hexagonal grid graphs, restricted to several special cases:
polygonal, thin, superthin, degree-bounded, or solid grid graphs. See [3] or Section 3.2
for definitions. Table 3.1 (nonbold) summarizes the many results they obtained, including
several NP-completeness results and a few polynomial-time algorithms. In this chapter,
we prove that two cases left open in that paper, Hamiltonian Cycle in Square Polygonal
Grid Graphs and Hamiltonian Cycle in Hexagonal Thin Grid Graphs, are NP-complete. In
addition, we consider another case not considered in Arkin et al. [3], namely, thin polygonal
grid graphs (the fusion of two special cases). We show that Hamiltonian Cycle becomes
polynomially solvable in this case, for all three shapes of grid graph. Table 3.1 (bold)
summarizes our new results.

In Section 3.2, we briefly define the several types of grid graphs. In Section 3.3, we show
that Hamiltonian Cycle can be solved in polynomial time in the three thin polygonal grid
graph cases; this is particularly challenging for hexagonal grid graphs, where the problem
reduces to the polynomially solvable ({1, 2, 3}, {1, 2, 3})-TRVB problem from Chapter 2.
In Section 3.4, we prove NP-completeness of Hamiltonian Cycle in Hexagonal Thin Grid
Graphs. In Section 3.5, we prove NP-completeness of the Hamiltonian Cycle in Square
Polygonal Grid Graphs problem. Finally, in Section 3.6, we discuss the final remaining open

Grid Triangular Square Hexagonal
General NP-complete NP-complete NP-complete
Degree- deg ≤ 3 deg ≤ 3 deg ≤ 2
bounded NP-complete NP-complete Polynomial
Thin NP-complete NP-complete NP-complete
Superthin NP-complete Polynomial Polynomial
Polygonal Polynomial NP-complete NP-complete
Solid Polynomial Polynomial Open
Thin Polygonal Polynomial Polynomial Polynomial

Table 3.1: Complexity of Hamiltonian Cycle in grid graph variants; bold entries correspond
to new results in this chapter (see [3] or Section 3.2 for definitions).

57

problem, Hamiltonian Cycle in Hexagonal Solid Grid Graphs.
The research in this chapter is joint work with Erik Demaine. This research was initiated

during the open problem sessions of MIT’s graduate class 6.890: Algorithmic Lower Bounds,
Fall 2014. We thank the other participants of those sessions—in particular, Quanquan
Liu and Yun William Yu—for helpful discussions and for providing a stimulating research
environment.

3.2 Grid graph terminology

In this section, we introduce the definitions of several terms relating to grid graphs. We
restrict our attention to only those terms and concepts relevant to the contents of this
chapter. See Arkin et al. [3] for a more general overview of these concepts.

We begin with a general definition.

Definition 3.1. The sets Z�, Z△, and Z7 refer to the sets of vertices of the tilings of the
plane with unit-side squares, equilateral triangles, and regular hexagons. A grid graph is
a finite graph 𝐺 = (𝑉, 𝐸) where 𝑉 is a subset of Z�, Z△, or Z7 and 𝐸 is the set of pairs
(𝑢, 𝑣) of elements of 𝑉 such that 𝑢 and 𝑣 are at a distance of 1 from each other. If 𝑉 ⊂ Z�,
the grid graph is said to be a square grid graph. Similarly, if 𝑉 ⊂ Z△ then 𝐺 is said to be a
triangular grid graph and if 𝑉 ⊂ Z7 then 𝐺 is said to be a hexagonal grid graph.

Because we are concerned with Hamiltonian Cycle, we restrict our attention to connected
grid graphs with no degree-1 vertices. This does not affect the hardness of any Hamiltonian
Cycle problems because all grid graphs which are disconnected or which contain a degree-1
vertex are trivially not Hamiltonian and can be easily recognized.

In order to define the grid graph properties we are interested in, we need some more
terminology:

Definition 3.2. Let 𝐺 be a grid graph. Consider the faces of the graph. There is one
unbounded face. The cycle bordering this unbounded face is called the outer boundary of
𝐺. The bounded faces of 𝐺 fall into two categories. Any bounded face containing a lattice
point in its interior is called a hole. The cycles bordering the holes of 𝐺 are called the inner
boundaries of 𝐺. The other category of bounded face is the category without lattice points in
the interior; any such face must necessarily have a minimal length cycle (length 3, 4, or 6
for triangular, square, or hexagonal grid graphs) as its boundary. This type of face is called
a pixel. Any vertex on the inner or outer boundaries is called a boundary vertex. All other
vertices are interior vertices.

The above terminology allows us to define the grid graph properties of interest:

Definition 3.3. A polygonal grid graph is a grid graph 𝐺 = (𝑉, 𝐸) such that every vertex
in 𝑉 and every edge in 𝐸 belongs to a pixel and such that no vertex can be removed to merge
two boundaries (See Figure 3-1, top.)

Definition 3.4. A grid graph is called solid if it has no holes, or equivalently if every
bounded face is a pixel. (See Figure 3-1, middle.)

Definition 3.5. A grid graph is called thin if every vertex in the graph is a boundary vertex.
Note that a thin grid graph need not be polygonal. (See Figure 3-1, bottom.)

58

polygonal not polygonal

solid not solid

thin not thin

Figure 3-1: Examples of grid graphs that are or are not polygonal, solid, or thin

Now that we have defined all of the relevant terms, we can state the problems in ques-
tion: the Hamiltonian Cycle in [Square/Hexagonal/Triangular] [Polygonal/Thin/Polygonal
Thin] Grid Graphs problem asks whether a given [square/hexagonal/triangular] [polygo-
nal/thin/polygonal and thin] grid graph is Hamiltonian.

3.3 Polygonal Thin Grid Graph Hamiltonian Cycle is easy

In this section, we show that the three polygonal thin grid graph Hamiltonian Cycle problems
are all polynomial-time solvable. This is trivial for triangular grids and easy for square grids,
but is non-trivial to show for hexagonal grids.

3.3.1 Triangular grids

Theorem 3.6 ([3]). The Hamiltonian Cycle in Triangular Polygonal Thin Grid Graphs
problem is polynomially solvable.

Proof. This problem is a special case of the Hamiltonian Cycle in Triangular Polygonal Grid
Graphs problem, which was shown to be polynomially solvable in [3].

3.3.2 Square grids

We prove below that

Theorem 3.7. Every polygonal thin square grid graph is Hamiltonian.

and therefore conclude that

Corollary 3.8. There exists a polynomial time algorithm which decides the Hamiltonian
Cycle in Square Polygonal Thin Grid Graphs problem (the “always accept” algorithm).

59

To prove Theorem 3.7, we will provide a polynomial-time algorithm for finding a
Hamiltonian cycle in a polygonal thin square grid graph, prove that if the algorithm
produces an output then the output is a Hamiltonian cycle, and prove that following the
algorithm is always possible.

First, the algorithm: Suppose the set of pixels in input graph 𝐺 is 𝑃 . Initialize 𝑆 to
be the empty set. Then repeat the following step until 𝑃 − 𝑆 contains no cycles of pixels:
identify a cycle of pixels in 𝑃 − 𝑆, find a pixel 𝑝 in this cycle such that exactly two pixels
in 𝐺 neighbor 𝑝 and the two neighboring pixels are on opposite sides of 𝑝, and add 𝑝 to 𝑆.
Once this loop is finished, let 𝑇 = 𝑃 − 𝑆 be the set of pixels in 𝐺 but not in 𝑆. Treating 𝑇
as a region, output the boundary of that region as a Hamiltonian cycle.

Clearly, this algorithm is a polynomial-time algorithm. The only questions are (1)
whether the output is actually a Hamiltonian cycle if the algorithm succeeds and (2) whether
a given cycle of pixels always contains a pixel 𝑝 such that exactly two pixels in 𝐺 neighbor 𝑝
and the two neighboring pixels are on opposite sides of 𝑝. We prove that the answer to both
these questions is “yes” below:

Lemma 3.9. Provided the given algorithm succeeds at each step on input 𝐺, the final output
will be a Hamiltonian cycle in 𝐺.

Proof. Since 𝐺 is connected, the pixels in 𝑃 are connected as well. At every step of the
algorithm, 𝑃 − 𝑆 remains connected since the only pixel added to 𝑆 (and therefore removed
from 𝑃 − 𝑆) is a pixel in a cycle with no neighbors outside the cycle. Furthermore, the final
value of 𝑃 − 𝑆 (also known as 𝑇) will be acyclic since that is the terminating condition of
the loop. Thus 𝑇 is connected and acyclic. In other words 𝑇 is a tree of pixels. As a result,
the region defined by 𝑇 is connected and hole-free. Therefore the boundary of 𝑇 is one cycle.
All that is left to show is that every vertex in 𝐺 is on this boundary.

Consider any vertex 𝑣 in 𝐺. 𝐺 is a thin grid graph, so every vertex, including 𝑣, is on
the boundary of 𝐺. Then provided 𝑣 is adjacent to some pixel in 𝑇 , we also have that 𝑣 is
on the boundary of 𝑇 . Thus we need to show that every vertex is adjacent to at least one
pixel in 𝑇 .

Consider any pair of adjacent pixels 𝑝1 and 𝑝2 such that each of the two pixels has
exactly two neighbors. As soon as one of these pixels is added to 𝑆 (if this ever occurs), the
other will forevermore have at most one neighbor in 𝑃 − 𝑆. As a result, this second pixel
will never be in a cycle of pixels in 𝑃 − 𝑆. Then this second pixel will never itself be added
to 𝑆, or in other words at most one of 𝑝1 and 𝑝2 will be added to 𝑆. Thus, the final value of
the set 𝑆 will contain no two adjacent pixels, or in other words every pixel adjacent to a
pixel in 𝑆 will be in 𝑇 .

But if 𝑆 contains pixel 𝑝 then every vertex adjacent to 𝑝 is also adjacent to one of the
two neighbors of 𝑝 (since the two neighbors must be on opposite sides of 𝑝). Since these
neighbors are in 𝑇 , we see that every vertex adjacent to a pixel in 𝑆 is also adjacent to a
pixel in 𝑇 .

Since the graph is polygonal, every vertex in the graph is adjacent to some pixel: either
a pixel in 𝑇 or a pixel in 𝑆. In either case, we can conclude that the vertex is adjacent
to a pixel in 𝑇 , and therefore, as argued above, the boundary of 𝑇 is a Hamiltonian cycle
in 𝐺.

Lemma 3.10. For any cycle of pixels 𝐶 in a polygonal thin grid graph 𝐺, there exists a
pixel 𝑝 in that cycle such that exactly two pixels in 𝐺 neighbor 𝑝 and the two neighboring
pixels are on opposite sides of 𝑝.

60

p0,0

p0,1

p0,2

p0,-1

p-1,0

p-1,1

p-1,2

p-1,-1

p1,0

p1,1

p1,2

p1,-1

p0,3p-1,3 p1,3

(a) The naming scheme given
to the pixels in the plane.

p0,0

p0,1

p0,2

p0,-1

p-1,0

p-1,1

p-1,2

p-1,-1

p1,0

p1,1

p1,2

p1,-1

p0,3p-1,3 p1,3

(b) Pixels that cannot be in
𝐶 by definition of 𝑝0,0 are
crossed out.

p0,0

p0,1

p0,2

p0,-1

p-1,0

p-1,1

p-1,2

p-1,-1

p1,0

p1,1

p1,2

p1,-1

p0,3p-1,3 p1,3

(c) Pixels that must be in 𝐶
are shaded gray and those not
in 𝐺 are crossed out.

Figure 3-2

Proof. Consider the leftmost column of pixels which contains any pixels in 𝐶 and let 𝑝0,0 be
the bottom-most pixel of 𝐶 in this column. Assign 𝑥 and 𝑦 coordinates to the pixels in Z�

so that 𝑝0,0 has coordinates (0, 0) and the coordinates increase as we go up and to the right.
See Figure 3-2a.

By definition of 𝑝0,0, we know that 𝑝−1,𝑖 is not a pixel in 𝐶 for any 𝑖 and neither is 𝑝0,−1.
These pixels are crossed out in Figure 3-2b.

But 𝐶 is a cycle so 𝑝0,0 must have exactly two neighbors in 𝐶. Therefore 𝑝1,0 and 𝑝0,1
must both be in 𝐶. Then in order for 𝐺 to be thin, pixel 𝑝1,1 cannot be in 𝐺 (nor in 𝐶). 𝑝0,1
is a pixel in 𝐶 and therefore must have two neighbors in 𝐶. Since neither 𝑝−1,1 nor 𝑝1,1 are
pixels in 𝐶 we can conclude that these two neighbors must be 𝑝0,0 and 𝑝0,2. In particular,
𝑝0,2 must be a pixel in 𝐶.

Suppose for the sake of contradiction that 𝑝1,2 is a pixel in 𝐺. Then 𝑝1,2, 𝑝0,2, 𝑝0,1, 𝑝0,0,
and 𝑝1,0 are all pixels in 𝐺. As a result, all four vertices on the boundary of pixel 𝑝1,1 are in
𝐺, and so since 𝐺 is an induced subgraph, the edges between these vertices are in 𝐺 as well.
As a result, we can conclude that pixel 𝑝1,1 is in 𝐺, which is a contradiction. Thus 𝑝1,2 is
not a pixel in 𝐺.

Pixel 𝑝0,2 is in 𝐶 and therefore must have two neighbors in 𝐶. Since neither 𝑝−1,2 nor
𝑝1,2 is in 𝐶 we can conclude that these two neighbors must be 𝑝0,1 and 𝑝0,3. In particular,
𝑝0,3 must be in 𝐶.

We have shown that 𝑝0,0, 𝑝0,1, 𝑝0,2, and 𝑝0,3 are all pixels in 𝐶 and that 𝑝1,1 and 𝑝1,2 are
not pixels in 𝐺. See Figure 3-2c. Since 𝐺 is thin, either 𝑝−1,1 or 𝑝−1,2 must be a pixel not
in 𝐺. Then for some 𝑖 ∈ {1, 2} we have that 𝑝0,𝑖 is a pixel in 𝐶, 𝑝0,𝑖±1 are pixels in 𝐶, and
𝑝±1,𝑖 are pixels not in 𝐺.

That pixel 𝑝1,𝑖 is the pixel 𝑝 we wished to find: a pixel in 𝐶 such that exactly two pixels
in 𝐺 neighbor 𝑝 and the two neighboring pixels are on opposite sides of 𝑝.

3.3.3 Hexagonal grids

Recall the Tree-Residue Vertex-Breaking (TRVB) problem from Chapter 2:

Problem 3.11. The Tree-Residue Vertex-Breaking problem (TRVB) asks for a given multi-
graph 𝐺 in which every vertex is labeled as “breakable” or “unbreakable” whether there exists
a subset of the breakable vertices such that “breaking” those vertices results in a tree.

61

Here the operation of breaking a vertex in a multigraph (shown in Figure 3-3) results in
a new multigraph by removing the vertex, adding a number of new vertices equal to the degree
of the vertex in the original multigraph, and connecting these new vertices to the neighbors
of the vertex in a one-to-one manner.

(a) Before. (b) After.

Figure 3-3: An example of breaking a vertex

In particular, consider the following variant of TRVB:

Theorem 3.12. The ({1, 2, 3}, {1, 2, 3})-TRVB (Max-Degree-3 TRVB) problem asks the
same question as the TRVB problem, but restricts the inputs to be graphs whose vertices
each have degree at most 3. We showed that ({1, 2, 3}, {1, 2, 3})-TRVB is polynomial-time
solvable in Chapter 2.

In this section, we will show that

Theorem 3.13. There exists a polynomial-time reduction from the Hamiltonian Cycle in
Hexagonal Polygonal Thin Grid Graphs problem to ({1, 2, 3}, {1, 2, 3})-TRVB.

and therefore that

Corollary 3.14. The Hamiltonian Cycle in Hexagonal Polygonal Thin Grid Graphs problem
is polynomial-time solvable.

We prove Theorem 3.13 with the following reduction: On input a hexagonal polygonal
thin grid graph 𝐺, construct the graph 𝐺′ whose vertices are pixels and whose edges connect
adjacent vertices. Label a vertex in 𝐺′ as breakable if it has degree-3. Otherwise label the
vertex unbreakable. Output the resulting labeled graph.

To prove the correctness of this reduction, we first consider the behavior of a Hamiltonian
cycle in the local vicinity of a pixel, then narrow down the possibilities using non-local
constraints, and finally use the global constraints imposed by the existence of a Hamil-
tonian cycle to characterize the hexagonal polygonal thin grid graphs with Hamiltonian
cycles. We will show using this characterization that a hexagonal polygonal thin grid graph
is Hamiltonian if and only if the corresponding reduction output is a “yes” instance of
({1, 2, 3}, {1, 2, 3})-TRVB.

Lemma 3.15. In a hexagonal polygonal thin grid graph, the only possible behaviors for a
Hamiltonian cycle near a given pixel in the graph look like one of the diagrams in Figures
3-4b, 3-4c, 3-4d, or 3-4e depending on the number of other pixels adjacent to the pixel in
question.

Proof. Consider the pattern of pixels in Figure 3-4a. In any grid graph containing three
pixels in this arrangement, the circled vertex is not on the boundary. Thus, because every
vertex must be on the boundary of a thin grid graph, the three-pixel pattern does not occur
in any hexagonal thin grid graph.

62

O

(a) Not thin
(b) Zero neighbors

...

(c) One neighbor

......

...

...

...

...

(d) Two neighbors

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

(e) Three neighbors

Figure 3-4: Local constraints on hexagons

Next consider a single pixel. It can have up to 6 neighboring pixels, but in order to avoid
the three pixel arrangement from Figure 3-4a, it will have at most 3 neighbors.

If a pixel has zero neighbors (i.e., Figure 3-4b), it is a single connected component of the
graph. Because the graphs we consider are connected, that means that the pixel is the entire
graph. In that case, there is a Hamiltonian cycle (consisting of the whole graph). Since in
this case we can easily solve the Hamiltonian Cycle problem, we restrict our attention to
other cases.

If a pixel has exactly one neighbor, the cycle must pass through it as shown in Figure 3-4c
(up to rotation).

If a pixel has exactly two neighbors, they can be arranged (up to rotation) in two ways.
If the two neighboring pixels are opposite, the cycle must pass through the pixel as shown
in Figure 3-4d (left). In the other arrangement, there are two possibilities as shown in
Figure 3-4d (right).

Finally, there is exactly one way to arrange a pixel with three neighboring pixels, and
the cycle can pass through this type of pixel in seven different ways. This is shown in
Figure 3-4e.

The different possibilities of how to arrange the cycle in a given diagram were computed
by exhaustive search subject to the constraints that (1) every vertex must be in the cycle
and (2) exactly two edges next to each vertex must be in the cycle.

Lemma 3.16. In a hexagonal polygonal thin grid graph, the only possible behaviors for a
Hamiltonian cycle near a given pixel look like one of the diagrams in Figure 3-5e. Furthermore,
the final situation in Figure 3-5e necessarily leads to the situation shown in the rightmost
part of Figure 3-5f.

Proof. Suppose that we have three pixels arranged as shown in the leftmost part of Figure 3-
5a with the three bold edges definitely included in the Hamiltonian Cycle. Because the
circled vertex in the second part of the figure has to have two edges, we can conclude that
the situation must be as shown in the third part of the figure. But the bottom right edge
must be part of a pixel, and because every vertex must be on the boundary, only one of
the two possible pixels will work. This yields the situation in the fourth part of the figure.
Consider the circled vertex in the fifth part of the figure. That vertex must have two edges
in the Hamiltonian cycle touching it. One is already accounted for, so we just have to decide
on the other.

Consider for the sake of contradiction that the chosen edge was as shown in the first
part of Figure 3-5b. Then because of the circled vertex in the second part of the figure, the

63

O

O

(a)

O

O

(b) (c)

O

O

(d)

...

...

...

...

...

...

...

...

...

...

...

...

(e)

O

O

(f)

Figure 3-5: Less local constraints on hexagons

situation must be as shown in the third part of the figure. Again, every edge must be part
of a pixel, and again only one of the two possible pixels would yield a thin graph. Thus we
arrive at the situation in the fourth part of the figure. Because of the circled vertex in the
fifth part of the figure, we arrive at the situation in the sixth. But then the dotted edge in
the seventh figure must also be in the graph (because no two adjacent vertices can exist in
the graph without the edge between them also being in the graph). This, however, yields a
graph that is not thin. Thus we have a contradiction.

Therefore, what must actually have happened is shown in the left side of Figure 3-5c.
Looking only at the bottom three pixels in this new situation and ignoring some of the
bold lines, we have the situation in the right half of the figure. Note, however, that this
situation is identical (up to reflection and translation down) to the situation at the start of
Figure 3-5a. Thus, having the pattern in the first part of Figure 3-5a necessitates another
copy of the same pattern lower down (and flipped). That in turn necessitates another copy
lower down, which necessitates another copy lower down, etc... In other words, no finite
graph can contain the pattern shown at the start of Figure 3-5a.

As a result of this, many of the “possible” local solutions at a pixel are actually not
allowed.

We can restrict the possibilities even more, however. Consider the penultimate scenario
from Figure 3-4e. Under this scenario, consider the circled vertices in the first part of
Figure 3-5d. The constraints at those vertices lead to the scenario in the center part of that
figure, which in turn leads to the existence of the edge added in the final part of the figure.
This contradicts the fact that the grid graph must be thin, so the actual list of possible local
solutions does not include the penultimate scenario from Figure 3-4e.

Then the restricted list of possibilities is as shown in Figure 3-5e where we include only
those local solutions which omit the pattern at the start of Figure 3-5a and where we exclude
the penultimate scenario from Figure 3-4e.

Finally, we wish to show that the last situation listed in Figure 3-5e directly leads to
the situation shown in the last part of Figure 3-5f. The first part of Figure 3-5f is exactly

64

the final situation listed in Figure 3-5e. Consider the circled vertices in the second part
of Figure 3-5f. The constraints at these vertices lead to the situation shown in the third
part of Figure 3-5f. Next, due to the thin and polygonal properties, the pixels added in the
penultimate part of Figure 3-5f must be present in the graph. Consider the rightmost pixel
with three neighbors. We have a list of situations that are possible in the vicinity of a pixel
with three neighbors (in Figure 3-5e), and only one of those possibilities matches the already
chosen edges. Thus, we must have the situation shown in the last part of Figure 3-5f.

Lemma 3.17. There exists a Hamiltonian cycle in a hexagonal polygonal thin grid graph if
and only if there exists a tree of pixels such that every pixel with fewer than three neighbors
is in the tree and such that at least one pixel out of every pair of adjacent degree-3 pixels is
in the tree.

Proof. First suppose there exists a Hamiltonian cycle in a hexagonal polygonal thin grid
graph.

Based on the local solutions for degree-1 and degree-2 pixels, whenever one pixel with
degree at most two is adjacent to another, the two pixels are on the same side of the cycle
(both inside or both outside). Based on the local solutions for degree-3 pixels (and based
on the specific situation that the final situation listed in Figure 3-5e necessarily leads to),
whenever two degree-1 or degree-2 pixels are adjacent to the same degree-3 pixel, the two
pixels are on the same side of the cycle. Finally, whenever two degree-3 pixels are neighbors,
their other four neighbors are all degree-1 or degree-2 pixels and are all on the same side of
the cycle. All together, this implies that all pixels with at most two neighbors must be on
the same side of the cycle. And because the unbounded face is outside the cycle, the faces
next to it—pixels—must be inside the cycle.

We can conclude that all pixels with two or fewer neighbors are always inside the cycle.
This immediately implies that all holes are outside the cycle.

Clearly, the pixels inside the Hamiltonian cycle are connected. Furthermore, they are
acyclic because a cycle inside the Hamiltonian cycle would imply either that the Hamiltonian
cycle contains a hole or that the graph contains an interior vertex. Thus the pixels inside
the Hamiltonian cycle form a tree.

In addition, it is easy to verify that whenever two degree-3 pixels are adjacent, they are
not both outside the Hamiltonian cycle.

Next suppose that there exists a tree of pixels such that every pixel with fewer than
three neighbors is in the tree and such that at least one pixel out of every pair of adjacent
degree-3 pixels is in the tree. Then consider the perimeter of this tree of pixels. We claim
that the perimeter is a Hamiltonian cycle. Clearly, the perimeter is a cycle, so the only
question is whether it touches every vertex. Every vertex is either between two degree-3
vertices or adjacent to at least one degree-2 or degree-1 pixel. In either case, the assumptions
are sufficient to show that the vertex is on the perimeter of at least one pixel in the tree.
Because the graph is thin, there are no interior vertices; in other words, every vertex on the
perimeter of a pixel in the tree is also on the perimeter of the entire tree of pixels. Thus the
perimeter of the tree of pixels hits every vertex and is therefore a Hamiltonian cycle.

We have now shown both directions of the desired statement.

Lemma 3.18. Suppose 𝐺 is a hexagonal polygonal thin grid graph and 𝐺′ is the output of
the reduction on input 𝐺. Then 𝐺′ is a “yes” instance of ({1, 2, 3}, {1, 2, 3})-TRVB if and
only if there exists a tree of pixels in 𝐺 such that every pixel with fewer than three neighbors

65

is in the tree and such that at least one pixel out of every pair of adjacent degree-3 pixels is
in the tree.

Proof. First suppose that 𝐺′ is a “yes” instance of ({1, 2, 3}, {1, 2, 3})-TRVB. Then let 𝐵 be
the set of breakable vertices in 𝐺′ whose breaking yields a tree. Vertices in 𝐺′ correspond
with pixels in 𝐺, so define 𝑇 to be the set of pixels in 𝐺 that do not correspond to vertices
in 𝐵.

Breaking a vertex in 𝐺′ corresponds to removing the vertex and then adding some
number of degree-1 vertices. The result of breaking the vertices of 𝐵 in 𝐺′ is a tree 𝐺′

𝑏𝑟𝑒𝑎𝑘.
If instead of breaking the vertices we simply removed them, we would get a graph 𝐺′

𝑟𝑒𝑚𝑜𝑣𝑒

which could instead be obtained by removing the degree-1 vertices that were added during
the breaking operation. Since removing degree-1 vertices from a tree yields a tree, we can
conclude that 𝐺′

𝑟𝑒𝑚𝑜𝑣𝑒 is a tree. But 𝐺′
𝑟𝑒𝑚𝑜𝑣𝑒 has as vertices the pixels of 𝑇 and as edges

the adjacencies between pixels. Thus 𝑇 forms a tree of pixels.
By the way the reduction was defined, every breakable vertex corresponds to a pixel in

𝐺 of degree-3. Thus 𝐵 contains only vertices of degree-3 and so 𝑇 contains every pixel that
has fewer than three neighbors.

Consider any pair of adjacent degree-3 pixels. If the vertices corresponding to both
pixels were in 𝐵 then both vertices would be broken, leading to the edge between those two
vertices being disconnected from the rest of the graph. Since breaking the vertices of 𝐵 in
𝐺′ yields a tree, this is not the case. Thus, at least one of the two vertices is not in 𝐵, and
so at least one of the pair of pixels is in 𝑇 .

We have shown that 𝑇 is a tree of pixels in 𝐺 such that every pixel with fewer than three
neighbors is in the tree and such that at least one pixel out of every pair of adjacent degree-3
pixels is in the tree. Thus whenever 𝐺′ is a “yes” instance of ({1, 2, 3}, {1, 2, 3})-TRVB such
a tree of pixels must exist.

Next we prove the other direction. Suppose that 𝑇 is a tree of pixels in 𝐺 such that
every pixel with fewer than three neighbors is in the tree and such that at least one pixel out
of every pair of adjacent degree-3 pixels is in the tree. Define 𝐵 to be the set of breakable
vertices in 𝐺′ corresponding to pixels of 𝐺 that are not in 𝑇 .

Consider the graph 𝐺′
𝑟𝑒𝑚𝑜𝑣𝑒, which is constructed from 𝐺′ by removing every vertex in

𝐵. The vertices of this graph are the pixels in 𝑇 and the edges are adjacencies of pixels.
Thus, since 𝑇 is a tree of pixels, 𝐺′

𝑟𝑒𝑚𝑜𝑣𝑒 is a tree.
Also consider the graph 𝐺′

𝑏𝑟𝑒𝑎𝑘 that results from breaking the vertices in 𝐵. Breaking
a vertex can be accomplished by removing it and then adding some number of degree-1
vertices. Therefore the graph 𝐺′

𝑏𝑟𝑒𝑎𝑘 could also be constructed from 𝐺′
𝑟𝑒𝑚𝑜𝑣𝑒 by adding

some number of degree-1 vertices. If every vertex that is added has as its sole neighbor a
vertex from 𝐺′

𝑟𝑒𝑚𝑜𝑣𝑒 then the addition of these degree-1 vertices maintains the tree property,
allowing us to conclude that 𝐺′

𝑏𝑟𝑒𝑎𝑘 is a tree.
Note that by the definition of 𝑇 , no two vertices in 𝐵 are adjacent. Suppose 𝑣′ is a

degree-1 vertex created to neighbor vertex 𝑢 ∈ 𝐺′ during the breaking operation of vertex
𝑣 ∈ 𝐵. Since 𝐵 contains no adjacent pairs of vertices, 𝑢 ̸∈ 𝐵, and therefore 𝑢 is never broken
when constructing 𝐺′

𝑏𝑟𝑒𝑎𝑘. Thus the sole neighbor of 𝑣′ in 𝐺′
𝑏𝑟𝑒𝑎𝑘 is 𝑢, which is a vertex from

𝐺′
𝑟𝑒𝑚𝑜𝑣𝑒. As stated above, applying this logic to every 𝑣′ allows us to assert that 𝐺′

𝑏𝑟𝑒𝑎𝑘 is a
tree, and therefore (since the maximum degree of vertices in 𝐺′ is at most 3) that 𝐺′ is a
“yes” instance of ({1, 2, 3}, {1, 2, 3})-TRVB.

We have shown both directions, thus proving the desired equivalence.

Putting the last two lemmas together, we conclude that the given reduction is correct.

66

3.4 Hamiltonian Cycle in Hexagonal Thin Grid Graphs is
NP-complete

In this section, we show that the Hamiltonian Cycle in Hexagonal Thin Grid Graphs problem
is NP-complete. Membership in NP is trivial, while NP-hardness follows via reduction from
Planar ({6}, ∅)-TRVB.

Recall the definition of the Tree-Residue Vertex-Breaking problem:

Problem 3.11. The Tree-Residue Vertex-Breaking problem (TRVB) asks for a given multi-
graph 𝐺 in which every vertex is labeled as “breakable” or “unbreakable” whether there exists
a subset of the breakable vertices such that “breaking” those vertices results in a tree.

Here the operation of breaking a vertex in a multigraph (shown in Figure 3-3) results in
a new multigraph by removing the vertex, adding a number of new vertices equal to the degree
of the vertex in the original multigraph, and connecting these new vertices to the neighbors
of the vertex in a one-to-one manner.

We showed in Chapter 2 that Planar ({6}, ∅)-TRVB—a variant of TRVB in which the
inputs is restricted to be a planar multigraph whose vertices are each breakable vertices of
degree exactly 6—is NP-complete.

The main work of our reduction is constructing a gadget to simulate a degree-6 breakable
vertex. The desired behavior of the gadget is shown in Figure 3-6. If we define a wire to
be a path of pixels then the idea of the gadget is to connect 6 incoming wires in such a
way that the local constraints on a hypothetical Hamiltonian cycle allow only two possible
solutions within the gadget. In one of the locally allowed solutions (Figure 3-6b) the regions
inside the six wires are connected through the gadget while in the other (Figure 3-6c) the
regions are all disconnected at the gadget. Note that the gadget shown in Figure 3-6 is only
a schematic and cannot be used as the actual gadget for the reduction because it does not
lie on the hexagonal grid.

gadget

(a) A degree-6 breakable gad-
get connects 6 wires with only
two local solutions

(b) One solution of the gad-
get connects the regions in-
side the wires

(c) The other solution discon-
nects the regions inside the
wires

Figure 3-6: Desired behavior of a degree-6 breakable vertex gadget

Below, we will (1) provide and analyze a reduction from Planar ({6}, ∅)-TRVB under
the assumption of the existance of a degree-6 breakable vertex gadget and (2) provide the
gadget and prove that it has the desired behavior.

67

3.4.1 Reduction

Suppose we have a degree-6 breakable vertex gadget with the desired behavior. Then to
complete the reduction from Planar ({6}, ∅)-TRVB, we simply lay out the given multigraph
in the plane, replace every vertex with the degree-6 breakable vertex gadget, and extend a
wire for each edge from the gadget of one endpoint to the gadget of the other. Since finding
a planar embedding for a graph is a polynomial time operation (provided one exists), such a
reduction can be completed in polynomial time.

Below, we define more precisely what constraints a degree-6 vertex gadget must satisfy
and then prove that the above reduction is correct. In short, the idea is that there is
a correspondence between breaking a vertex and choosing the gadget solution shown in
Figure 3-6c; under this correspondence the shape of the region inside the candidate set of
edges is the same as the post-breaking multigraph. This region is connected and hole-free
if and only if the post-breaking graph is connected and acyclic. Since a region has as its
boundary a single cycle if and only if the region is connected and hole-free, we conclude
that the candidate set of edges is a Hamiltonian cycle if and only if the answer to the
corresponding Planar ({6}, ∅)-TRVB instance is “yes.”

Suppose we start with an instance of Planar ({6}, ∅)-TRVB consisting of multigraph 𝑀
and produce via the above reduction a grid graph 𝐺.

Definition 3.19. Define a candidate solution for the Hamiltonian Cycle in Hexagonal Thin
Grid Graphs instance 𝐺 to be a set of edges 𝐶 in 𝐺 satisfying the following constraints: (1)
every vertex in 𝐺 is the endpoint of exactly two edges in 𝐶 and (2) no one gadget or wire
contains a cycle of edges from 𝐶 entirely inside it.

Failing to satisfy either of the constraints in the above definition is sufficient to disqualify
a set of edges from being a Hamiltonian cycle. Thus the question of whether a Hamiltonian
cycle exists in 𝐺 is the same as the question of whether a candidate solution consisting of
just one cycle exists.

Before, we described a degree-6 breakable vertex gadget by saying that the local con-
straints on a hypothetical Hamiltonian cycle allow only two possible solutions within the
gadget. To make this more precise, intersecting the set of edges in the gadget with the set
of edges in a candidate solution should only have two possible results. As before, the two
possibilities are shown in Figure 3-6. We will refer to the posibilities in Figure 3-6b and
Figure 3-6c as the connecting and disconnecting solutions respectively. We will refer to a
vertex gadget using one of these solutions as a connecting or disconnecting vertex gadget.

Consider a wire between two gadgets and let 𝐶 be any candidate solution. In both
possible solutions of a gadget, there are two edges from the gadget entering into the wire.
Thus two edges from 𝐶 must enter the wire from each end. Simply applying the definition
of a candidate solution (no cycles within a wire and every vertex must touch two edges), we
can conclude that the edges in the wire that belong to 𝐶 must be the boundary edges of the
wire. For example, see Figure 3-7.

As a result, a candidate solution is completely constrained by the choice of behavior at
each degree-6 vertex gadget. We can identify the disconnecting solution of a vertex gadget
with the choice of breaking the corresponding vertex and identify the connecting solution
with the choice of leaving the vertex unbroken. Under this correspondence we have a bijection
between the choice of candidate solution in the Hamiltonian Cycle in Hexagonal Thin Grid
Graphs instance 𝐺 and the choice of what vertices to break in the Planar ({6}, ∅)-TRVB
instance 𝑀 . We show below that the candidate solutions which are Hamiltonian cycles

68

(a) (b)

Figure 3-7: The wire shown connects two degree-6 breakable vertex gadgets. The bold
edges on the left are the edges that must belong to any candidate solution because of the
behavior of the degree-6 vertex gadgets. The bold edges on the right show the resulting
forced behavior in the wire.

correspond under this bijection with the choices of vertices to break whose breaking converts
𝑀 into a tree. As a result, a Hamiltonian cycle exists in 𝐺 if and only if it is possible to
break vertices in 𝑀 so as to obtain a tree, so we conclude that the reduction is correct.

By definition, a candidate solution 𝐶 is a disjoint cycle cover of 𝐺 (since every vertex
has two edges in 𝐶 incident on it). Therefore 𝐶 seperates the plane into several regions.
Among these regions, consider the ones which contain the interior of a wire. Let 𝑅 be the
union of these regions.

Looking at the possible behaviors of a candidate solution in a vertex gadget, it is easy
to see that 𝑅 will consist of the interior of each wire, one connected hole-free region from
each connecting vertex gadget, and six connected hole-free regions from each disconnecting
vertex gadget. In fact, the boundary of 𝑅 is exactly the set of edges 𝐶.

Consider the above decomposition of 𝑅 into sub-regions. The choice of candidate solution
𝐶 corresponds with a set 𝑆 of vertices to break in 𝑀 . Let 𝑀𝑆 be the version of 𝑀 with
the vertices of 𝑆 broken. The sub-regions of 𝑅 exactly correspond with the vertices and
edges of 𝑀𝑆 . If 𝑢 and 𝑣 are vertices in 𝑀 then the edge (𝑢, 𝑣) in 𝑀 also occurrs in 𝑀𝑆 and
corresponds to the interior of the wire between the vertex gadgets for 𝑢 and 𝑣. If 𝑢 ̸∈ 𝑆 is a
vertex of 𝑀 then 𝑢 is also a vertex in 𝑀𝑆 and corresponds to the sub-region of 𝑅 from the
vertex gadget for 𝑢. If 𝑢 ∈ 𝑆 is a vertex of 𝑀 then there are six vertices in 𝑀𝑆 that result
from the breaking of 𝑢, and these six vertices corresponds to the six sub-regions of 𝑅 from
the vertex gadget for 𝑢.

Clearly, the vertices and edges of 𝑀𝑆 correspond to the sub-regions of 𝑅. Furthermore,
it can be easily verified that two sub-regions of 𝑅 touch if and only if those two sub-regions
correspond to a vertex 𝑣 and an edge 𝑒 in 𝑀𝑆 such that the 𝑣 is an endpoint of 𝑒. Furthermore,
there is no hole in 𝑅 at such a point of contact between two sub-regions. We show below
using these facts that 𝑀𝑆 is connected if and only if 𝑅 is connected and that 𝑀𝑆 is acyclic
if and only if 𝑅 is hole-free.

𝑀𝑆 is connected if and only if there exists a path through 𝑀𝑆 from any edge or vertex 𝑎
to any other edge or vertex 𝑏. Such a path can be expressed as a list of edges and vertices
𝑎 = 𝑥0, 𝑥1, . . . , 𝑥𝑘 = 𝑏 such that every consecutive pair 𝑥𝑖 and 𝑥𝑖+1 consists of one edge and
one vertex that is an endpoint of that edge. We can create a corresponding list of sub-regions
of 𝑅 of the form 𝑦0, 𝑦1, . . . , 𝑦𝑘 where 𝑦𝑖 is the sub-region corresponding to edge or vertex 𝑥𝑖.
In this list, every consecutive pair 𝑦𝑖 and 𝑦𝑖+1 consists of two touching subregions. Thus we
see that 𝑀𝑆 is connected if and only if for every pair of sub-regions 𝑎′, 𝑏′, there exists a list
of the form 𝑎′ = 𝑦0, 𝑦1, . . . , 𝑦𝑘 = 𝑏′ with 𝑦𝑖 touching 𝑦𝑖+1 for each 𝑖. Since every sub-region is
itself connected, this last condition is equivalent to the condition that there exist a path in
𝑅 between any two points; or in other words, 𝑀𝑆 is connected if and only if 𝑅 is connected.

69

Consider any cycle in 𝑀𝑆 consisting of vertices and edges 𝑥0, 𝑥1, . . . , 𝑥𝑘 = 𝑥0. This cycle
corresponds to a cycle of sub-regions 𝑦0, 𝑦1, . . . , 𝑦𝑘 = 𝑦0. Such a cycle of sub-regions will
have an inner boundary, or in other words a hole. On the other hand, for any hole in 𝑅, we
can list the subregions going around that hole: 𝑦0, 𝑦1, . . . , 𝑦𝑘 = 𝑦0. Since each sub-region is
hole free and each sub-region contact point does not have a hole, this list of subregions will
correspond to a cycle of vertices and edges 𝑥0, 𝑥1, . . . , 𝑥𝑘 = 𝑥0 in 𝑀𝑆 . Thus we see that 𝑀𝑆

is acyclic if and only if 𝑅 is hole-free.
𝑀𝑆 is a tree, or in other words connected and acyclic, if and only if 𝑅 is hole-free and

connected. But 𝑅 is hole-free and connected if and only if the boundary of 𝑅 (which happens
to be 𝐶) is exactly one cycle. Since 𝐶 is a cycle cover of 𝐺, 𝐶 is a Hamiltonian cycle if and
only if 𝐶 consists of exactly one cycle. Putting that all together, we see that 𝑀𝑆 is a tree if
and only if 𝐶 is a Hamiltonian cycle in 𝐺.

As you can see, the constructed grid graph is Hamiltonian if and only if the input Planar
({6}, ∅)-TRVB instance is a “yes” instance, and therefore the reduction is correct.

3.4.2 Degree-6 breakable vertex gadget

Thus, all that is left is to demonstrate a degree-6 breakable vertex gadget of the desired
form. The gadget we will use is shown in Figure 3-8a.

We show below that the gadget only has the two desired solutions.

Theorem 3.20. The gadget shown in Figure 3-8a has exactly two possible solutions and
they correspond with the solutions shown in Figure 3-6.

Proof. Figure 3-8b shows the gadget from Figure 3-8a, but with all edges that must be in
any candidate solution bold. These constraints can be derived purely from the fact that
every vertex must be the endpoint of exactly two edges in a candidate solution.

The gadget contains six contiguous regions of pixels, arranged in a cycle with a single
edge that is not part of any pixel between adjacent regions. We claim that either all of these
single edges must be in the candidate solution or none of them. It can be verified that these
two possibilities lead, again via the constraints on candidate solutions, to the two solutions
shown in Figures 3-8c and 3-8d.

All that’s left to show is that our claim is correct: that using only some of the single
edges in a candidate solution is impossible. Suppose for the sake of contradiction that a
candidate solution exists which uses some but not all of these edges. Going around the cycle
of regions, there will be some region where we transition from using the single edge to not
using it. That region will have exactly one of its two single edges in the candidate solution.
Thus, the candidate solution will enter or exit the region exactly three times: twice through
the wire that exists the gadget from this region and once through the single edge. Since this
is impossible for a cycle cover, we arrive at the desired contradiction.

70

(a) A degree-6 breakable vertex gadget (with
six wires).

(b) The gadget with edges that must be in a
Hamiltonian cycle in bold.

(c) The first solution of the gadget with edges
chosen for the Hamiltonian cycle bold. Note
that the regions inside the wires are connected
via this gadget.

(d) The second solution of the gadget with
edges chosen for the Hamiltonian cycle bold.
Note that the regions inside the wires are
disconnected via this gadget.

Figure 3-8: A degree-6 breakable vertex gadget together with the two possible solutions.

71

3.5 Hamiltonian Cycle in Square Polygonal Grid Graphs is
NP-complete

In this section, we show that the Hamiltonian Cycle in Square Polygonal Grid Graphs
problem is NP-complete. Membership in NP is trivial, while NP-hardness follows from
a polynomial-time reduction. We reduce from the Planar Monotone Rectilinear 3SAT
problem—which was shown NP-hard in [5]—to the Hamiltonian Cycle in Square Polygonal
Grid Graphs problem. In order to state the Planar Monotone Rectilinear 3SAT problem, we
first need some preliminary terms:

Definition 3.21. A rectilinear embedding of a CNF formula into a plane is a planar
embedding of the variable-clause bipartite graph for the CNF formula into the plane such
that the vertices (variables and clauses) are mapped to horizontal segments, the edges are
mapped to vertical segments, and the variables all lie on the 𝑥 axis. Furthermore, a monotone
rectilinear embedding of a CNF formula into a plane is a rectilinear embedding with the
additional property that the clauses positioned above the 𝑥 axis contain only positive literals
while clauses positioned below the 𝑥 axis contain only negative literals.

Figure 3-9 shows an example of a rectilinear embedding. This embedding could represent
several possible CNF formulas, such as (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥3 ∨ 𝑥4 ∨ 𝑥5) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥5) or
(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥3 ∨ 𝑥4 ∨ 𝑥5) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥5). If, however, this is a monotone rectilinear
embedding then a specific CNF formula, (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥3 ∨ 𝑥4 ∨ 𝑥5) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥5) is
implied.

x1 x2 x3 x4 x5

Figure 3-9: A rectilinear embedding

Now the problem we are reducing from can be stated as follows:

Problem 3.22. The problem Planar Monotone Rectilinear 3SAT decides, for every mono-
tone rectilinear embedding of a 3-CNF formula into the plane, whether the given instance is
satisfiable.

Our overall strategy for reducing Planar Monotone Rectilinear 3SAT to Hamiltonian
Cycle in Square Polygonal Grid Graphs is the following:

1. We begin by describing several simple gadgets.

(a) A wire gadget consists of a path of pixels.
(b) A one-enforcer gadget, when inserted into a wire, enforces the fact that any

Hamiltonian cycle in the grid graph must pass through the wire only once,
zig-zagging through the wire in one direction.

72

(c) A two-enforcer gadget, when inserted into a wire, enforces the fact that any
Hamiltonian cycle in the grid graph must pass through the wire twice, once in
each direction.

2. We can then combine these gadgets to form variable and clause gadgets, which we will
use to simulate a Planar Monotone Rectilinear 3SAT instance.

(a) A variable gadget consists of a loop of wire, which when correctly inserted into a
one-enforced wire enforces certain constraints on any Hamiltonian cycle (provided
one exists). In particular, among the two wires in the gadget (the top and
bottom halves of the loop of wire), one will be one-enforced, and the other will
be two-enforced. This choice corresponds to a choice of value for the variable.

(b) A clause gadget attaches to three variable gadgets (attaching to either the top
or bottom wires of each) in such a way that the previously stated facts about
variable gadgets continue to hold. If all three attaching points connect the clause
gadget to one-enforced wire (due to the choices at the variable gadgets) then
there exists no Hamiltonian cycle in the grid graph. Conversely, whenever this
fails to occur, it is possible to modify one of the pieces-of-cycle passing through
the variable gadgets to also pass through every point in the clause gadget.

3. Next, we assemble a grid graph out of these gadgets to simulate a Planar Monotone
Rectilinear 3SAT instance. We create a variable gadget for every variable and connect
them in a loop with one-enforcers appropriately placed. We then add clause gadgets
outside the loop and inside the loop to represent the positive and negative clauses. For
an example, see Figure 3-10.

4. If there exists a satisfying assignment then we can construct a cycle passing through
the one-enforced loop and through the variable gadgets in such a way that each clause
gadget attaches to at least one two-enforced wire (among the three variable gadget
wires that it attaches to). Then by the clause gadget properties listed above, we can
modify that cycle to also pass through every point in each clause gadget. This yields
a Hamiltonian cycle. If there exists no satisfying assignment then any cycle passing
through the one-enforced wire loop and variable gadgets will result in at least one
clause gadget being attached to three one-enforced wires. Then by the clause gadget
properties listed above, no Hamiltonian cycle exists. This shows that the reduction is
answer preserving.

We follow this outline below to prove that

Theorem 3.23. There exists a polynomial time reduction from the Planar Monotone
Rectilinear 3SAT problem to the Hamiltonian Cycle in Square Polygonal Grid Graphs
problem.

and therefore that

Corollary 3.24. The Hamiltonian Cycle in Square Polygonal Grid Graphs problem is
NP-complete.

73

x1 x2 x3 x4

(a) The Planar Monotone Rectilinear 3SAT instance
(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥3 ∨ 𝑥4) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥4) ∧ (𝑥2 ∨
𝑥3 ∨ 𝑥3) ∧ (𝑥2 ∨ 𝑥3 ∨ 𝑥4)

variable
gadget

variable
gadget

variable
gadget

variable
gadget

clause gadget

clause gadget

clause gadget

clause gadget

clause gadget

(b) The corresponding Hamiltonian Cycle in Square
Polygonal Grid Graphs instance

Figure 3-10: An example of the reduction from Planar Monotone Rectilinear 3SAT to
Hamiltonian Cycle in Square Polygonal Grid Graphs

3.5.1 Simple gadgets

Wires

The simplest gadget we will use will be the wire, which is simply a path of pixels. As shown
in Figure 3-11, there are multiple ways to pass a cycle through a wire. The important
distinction to make is between “two-enforced” wires for which the cycle passes through
most pixels twice, once in each direction (the first two solutions in Figure 3-11), and “one-
enforced” wires for which the cycle passes through most pixels once (the final two solutions
in Figure 3-11).

... ...

(a) Gadget

...

(b) Solutions

Figure 3-11: A wire

Note that the distinction between one-enforced and two-enforced wires must propagate
through a wire by a simple contradiction argument: if a cycle goes into a wire once from one
side and comes out twice from the other then it enters that wire an odd number of times in
all, which is impossible for a cycle.

Furthermore, as seen in Figure 3-12, even if the wire turns (provided the turns are not
too close), it is possible to propagate this property.

One-enforcers

A one-enforcer, when inserted into a wire causes the wire to be one-enforced in a particular
parity. The gadget is shown in Figure 3-13a. The two possible solutions are shown in
Figure 3-13b.

In both solutions, the behavior of the cycle in the wire attached to the gadget is the
same: a one-enforced wire of a particular parity. The parity is different on each side; in

74

...

...

(a) Gadget

...

...

...

...

...

...

(b) Solutions

Figure 3-12: A turning wire

... ...

(a) Gadget

...

(b) Solutions

Figure 3-13: A one-enforcer gadget

other words, the gadget causes a parity shift in addition to its other effects.

Two-enforcers

Inserting a two-enforcer into a wire causes that wire to be two-enforced. The shape of a two
enforcer is shown in Figure 3-14a. Every edge adjacent to a vertex with only two neighbors
must be in a Hamiltonian cycle if one exists. Thus all the bold edges in Figure 3-14b must
be in the cycle. But then the section of gadget in the middle is a two-enforced wire and this
property propagates along the wire in both directions away from the gadget.

...

...

(a) Gadget

...

...

(b) Solutions

Figure 3-14: A two-enforcer gadget

3.5.2 Variable gadget

A variable gadget consists of a loop of wire of odd width and height 6 that is inserted into a
one-enforced wire of a particular parity. Figure 3-15a shows a variable gadget together with
the appropriate one-enforcers necessary for the gadget to properly function.

Consider just one half of the gadget (Figure 3-16a). The possible ways for a cycle to
pass through this gadget half are listed in Figure 3-16b. The important thing to note is that
in all cases one of the two branches is one-enforced and the other is two-enforced.

Putting the variable gadget together from two halves, we can figure out the legal solutions
by assigning solutions to the two halves in ways that don’t result in isolated cycles. The only
two possible ways (up to reflection) for a cycle to pass through a variable gadget are shown
in Figures 3-15b and 3-15c. As you can see, the variable gadget allows a choice: either the
top or bottom wire must be two-enforced while the other must be one-enforced.

75

...

...

... ...

(a)
...

...

... ...

(b)
...

...

... ...

(c)

Figure 3-15: A variable gadget (Figure 3-15a) and two ways a cycle can pass through the
variable gadget (Figures 3-15b and 3-15c)

...

...

...

(a) Gadget

...

...

...

...

...

...

...

...

...

...

...

...

(b) Solutions

Figure 3-16: One half of a variable gadget

76

3.5.3 Clause gadget

A clause gadget is a long horizontal wire with three two-enforced vertical wires brought
vertically down (or up) from the horizontal wire. It is shown in Figure 3-17 with the
two-enforcers omitted but with bold edges as appropriate to indicate that the wires are
two-enforced.

... ...

... ...

Figure 3-17: Two clause gadgets

When used, this gadget will attach each of the three two-enforced vertical wires to a
variable gadget. A variable gadget has a top horizontal wire and a bottom horizontal wire.
The vertical two-enforced wire from the clause is connected directly (in a particular place
described later) to one of these two wires (the bottom one if the clause’s vertical wires go
up from the horizontal clause section and the top if the clause’s vertical wires go down from
the horizontal clause section). This is a modification to the variable gadget, and so we must
verify that the variable gadget continues to work as expected (and no other way) with this
addition.

In fact, a rigorous derivation of the behavior of a cycle in a variable gadget relies on a
repeated application of the same parity argument. For example, to show that the two wires
in a variable half cannot be both one-enforced or both two-enforced, we would argue that
the total number of arcs of cycle at the edge of that gadget must be even, and therefore
cannot be 3 or 5 (which would occur if the wires were both one- or two-enforced). Similarly,
to show that the two-enforced wire from one half of the variable gadget cannot coincide with
the one-enforced wire from the other, we argue based on the parity of the number of cycle
arcs entering the wire. Since our modification only attaches a two-enforced wire, and since
that addition only ever adds an even number of cycle arcs to a region, we see that the same
arguments must continue to hold and therefore that the set of possible ways for a cycle to
pass through a vertex gadget remains the same (one variable wire will be two-enforced while
the other will be one-enforced).

So consider the horizontal variable wire that the clause gadget connects to. That wire
could be either one-enforced or two-enforced. Furthermore, if the wire is one-enforced, the
cycle follows a particular parity of zigzag that is known in advance. When attaching a
clause gadget to the horizontal variable wire, the vertical clause wire is aligned so that if the
variable wire is one-enforced, the two wires match up as shown in Figure 3-18.

We prove that if the variable wire is one-enforced, the situation from Figure 3-18 is
exactly what will occur. Without loss of generality, suppose the horizontal wire is the top
wire of the variable node. The cycle in the one-enforced variable wire propagates from the
left through this wire. And the two arcs of the cycle in the two-enforced vertical clause wire
propagate down. At this point, all we know is what is shown in Figure 3-19a. Consider the
circled node in that figure. It must contribute the next two edges as shown in Figure 3-19b.
Then the next circled node contributes the next edge as shown in Figure 3-19c. Finally, the
circled vertex in that figure contributes two edges to the cycle in the horizontal variable wire
as shown in Figure 3-19d. Thus the horizontal variable wire continues to be one-enforced

77

...

...

...

...

...

...

Figure 3-18: The junction between a variable gadget’s horizontal wire and one of the three
vertical wires from a clause gadgets; the case shown is where the variable gadget’s wire is
one-enforced; in this case, the cycle does not “match up”

despite the fact that the vertical wire is attached. As desired, the cycle must pass through
this clause/variable junction as shown in Figure 3-18.

...

...

...

(a)

...

...

...

(b)

...

...

...

(c)

...

...

...

(d)

Figure 3-19: The parts of the cycle in the variable and clause wires do not connect if the
variable wire is one-enforced

On the other hand, when the horizontal variable wire is two-enforced, the parts of the
cycle inside the variable and clause gadgets are free to connect as shown in Figure 3-20.
Note however, that the parts of the cycle in the two gadgets are also free to not connect,
which is useful when multiple variables satisfy a clause.

...

...

...

Figure 3-20: The parts of the cycle in the variable and clause wires can connect if the
variable wire is two-enforced

Thus we can conclude the following two facts about our clause gadget.
If a Hamiltonian cycle passes through each vertex gadget such that some clause gadget

attaches to some three one-enforced wires, then the part of the cycle in the clause gadget
has no way to connect to the part in the variable gadgets and so we don’t actually have
a Hamiltonian cycle (rather we have a contradiction). In other words, a Hamiltonian

78

cycle passing through each vertex gadget must attach each clause gadget to at least one
two-enforced horizontal variable wire.

If a grid graph has a Hamiltonian cycle and we add a clause gadget, attaching it to three
horizontal vertex wires of which at least one is two-enforced, then the new graph is also
Hamiltonian. This is because we can simply join the cycle that forms the boundary of the
clause gadget to the pre-existing Hamiltonian cycle at one of the two-enforced horizontal
variable wires (as in Figure 3-20), merging them into a Hamiltonian cycle for the entire
graph.

3.5.4 Overall reduction

Suppose we are given an instance of Planar Monotone Rectilinear 3SAT, or in other words a
monotone rectilinear embedding of a 3-CNF formula in the plane. We convert this instance
into a grid graph as follows. Each variable segment gets replaced by a variable gadget, which
are connected in order with wires and one-enforcers. Then a long wire (possibly with extra
one-enforcers for parity) connects the two variable gadgets at the ends, forming a big loop of
variable gadgets (and one-enforcers). After that, we add clause gadgets for each clause. The
positive clauses get a clause gadget above the variable gadgets while the negative clauses get
a clause gadget inside the loop. An example schematic of what the final result might be
is shown in Figure 3-21, corresponding to the Planar Monotone Rectilinear 3SAT instance
shown in Figure 3-10.

As you can see, the resulting instance of Hamiltonian Cycle in Square Polygonal Grid
Graphs (the resulting grid graph) is very similar in shape to the original embedding. This
similarity in shape between the embedding inputted into the reduction and the resulting
instance of Hamiltonian Cycle in Square Polygonal Grid Graphs can be used as an argument
that this is a polynomial time reduction. It is very easy to construct the Hamiltonian
Cycle in Square Polygonal Grid Graphs instance from the embedding, and furthermore, the
resulting graph is barely larger than the embedding. Due to the simplicity of the reduction,
it is possible to construct the grid graph in time proportional to the size of the grid graph,
but that size is itself linear in the size of the embedding. Thus we see that the reduction
given above runs in polynomial time.

The remaining goal is to show that the reduction is answer preserving.
Consider first the case that the grid graph is Hamiltonian. Then we construct a

variable assignment by assigning the value true to a variable if and only if that variable’s
variable gadget has the top wire two-enforced. Consider any [positive/negative] clause
[(𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘)/(𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘)] under this assignment. The corresponding gadget for a
[positive/negative] clause is [outside/inside] the large loop in the grid graph; thus the clause
gadget is attached to the [top/bottom] wires of the variable gadgets for variables 𝑥𝑖, 𝑥𝑗 ,
and 𝑥𝑘. By one of our derived properties for clause gadgets, we know that each clause is
attached to at least one two-enforced wire; thus the [top/bottom] wire for the 𝑥𝑖, 𝑥𝑗 , or 𝑥𝑘

variable gadget must be two-enforced. Equivalently, either 𝑥𝑖, 𝑥𝑗 , or 𝑥𝑘 must be [true/false].
Thus, at least one variable in the clause is [true/false], and so at least one literal in the
clause is true. In other words, the entire clause must be true. Then we see that we have
found a satisfying assignment.

Next consider the case that a satisfying assignment for the formula exists. Consider the
grid graph with all the clause gadgets removed (just a loop of variable gadgets and one-
enforcers). Certainly a Hamiltonian cycle exists in this graph; in fact, many do: the cycle has
two choices of behavior at each variable gadget. Construct the particular Hamiltonian cycle

79

key:
one-enforced wire
two-enforced wire
un-enforced wire

Figure 3-21: An example schematic for the resulting grid graph that could be produced
from the instance of Planar Monotone Rectilinear 3SAT in Figure 3-10

80

in which a variable gadget’s top wire is two-enforced if and only if the variable is assigned a
value of true. We will add the clause gadgets back into the graph one at a time. By one of
our derived properties for clause gadgets, we know that if the clause being added attaches to
at least one two-enforced wire then we can extend the Hamiltonian cycle to the new graph.
Consider a clause gadget for a [positive/negative] clause [(𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘)/(𝑥𝑖 ∨ 𝑥𝑗 ∨ 𝑥𝑘)]. The
gadget is [outside/inside] the large loop in the grid graph and is therefore attached to the
[top/bottom] wires of the variable gadgets for variables 𝑥𝑖, 𝑥𝑗 , and 𝑥𝑘. But since the clause
is satisfied, either 𝑥𝑖, 𝑥𝑗 , or 𝑥𝑘 must be [true/false] and so the [top/bottom] wire for that
variable gadget must be two-enforced. Thus the clause attaches to at least one two-enforced
wire. Thus, as we add the clause gadgets back into the graph one at a time, the graph
remains Hamiltonian. Clearly then the full graph is Hamiltonian.

As desired, we see that the grid graph in question is Hamiltonian if and only if the
3-CNF formula is satisfiable and that therefore we have described a polynomial-time answer-
preserving reduction.

3.6 Conclusion and further work

We showed that Hamiltonian Cycle in Thin Polygonal Grid Graphs is solvable in polynomial
time for every shape of grid graph. In addition, we showed that Hamiltonian Cycle in Square
Polygonal Grid Graphs and Hamiltonian Cycle in Hexagonal Thin Grid Graphs are both
NP-complete. Having determined this, we have proved the hardness of two of the problems
left open by Arkin et al. [3], as well as determining the complexity of three problems not
addressed in that paper.

This leaves only one of Arkin et al.’s open problems, namely, the complexity of Hamiltonian
Cycle in Hexagonal Solid Grid Graphs. Arkin et al. conjectured that this problem can
be solved in polynomial time, based on the idea that the polynomial-time algorithm for
Hamiltonian Cycle in Square Solid Grid Graphs could be adapted to also solve Hamiltonian
Cycle in Hexagonal Solid Grid Graphs. The algorithm is a cycle-merging algorithm which
starts with a 2-factor for the grid graph and progressively merges cycles until the 2-factor
has one component (a Hamiltonian cycle) or until further merging is impossible. Many of
the ideas appear relevant to hexagonal grid graphs as well, but a direct translation of the
algorithm from solid square grid graphs and the relevant correctness proofs to hexagonal
grid graphs fails. In order to make this approach work, some new insight seems necessary.
Nevertheless, having struggled with this problem for some time, we believe the conjecture to
be correct: Hamiltonian Cycle in Hexagonal Solid Grid Graphs can probably be solved in
polynomial time.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

Chapter 4

Solving the Rubik’s Cube
Optimally is NP-complete

4.1 Introduction

The overall purpose of this chapter is to address the computational difficulty of optimally
solving Rubik’s Cubes. In particular, consider the decision problem which asks for a given
puzzle configuration whether that puzzle can be solved in a given number of moves. We show
that this problem is NP-complete for several different types of puzzles: for the generalized
𝑛 × 𝑛 Rubik’s Square (a simplified version of the Rubik’s Cube) and for the generalized
𝑛 × 𝑛 × 𝑛 Rubik’s Cube under two different move models. These results close a problem
that has been repeatedly posed as far back as 1984 [6, 20, 23] and has until now remained
open [15].

In Section 4.2, we formally introduce the decision problems regarding Rubik’s Squares
and Rubik’s Cubes whose complexity we will analyze. Then in Section 4.3, we introduce the
variant of the Hamiltonicity problem that we will reduce from—Promise Cubical Hamiltonian
Path—and prove this problem to be NP-hard. Next, we prove that the problems regarding
the Rubik’s Square are NP-complete in Section 4.4 by reducing from Promise Cubical
Hamiltonian Path. After that, we apply the same ideas in Section 4.5 to a more complicated
proof of NP-hardness for the problems regarding the Rubik’s Cube. Finally, we discuss
possible next steps in Section 4.6.

The research in this chapter is joint work with Erik Demaine and Sarah Eisenstat.

4.2 Rubik’s Cube and Rubik’s Square problems

4.2.1 Rubik’s Square

We begin with a simpler model based on the Rubik’s Cube which we will refer to as the
Rubik’s Square. In this model, a puzzle consists of an 𝑛 × 𝑛 array of unit cubes, called cubies
to avoid ambiguity. Every cubie face on the outside of the puzzle has a colored (red, blue,
green, white, yellow, or orange) sticker. The goal of the puzzle is to use a sequence of moves
to rearrange the cubies such that each face of the puzzle is monochromatic in a different
color. A move consists of flipping a single row or column in the array through space via a
rotation in the long direction as demonstrated in Figure 4-1.

We are concerned with the following decision problem:

83

Figure 4-1: A single move in an example 6 × 6 Rubik’s Square.

Problem 4.1. The Rubik’s Square problem has as input an 𝑛 × 𝑛 Rubik’s Square config-
uration and a value 𝑘. The goal is to decide whether a Rubik’s Square in configuration 𝐶
can be solved in 𝑘 moves or fewer.

This type of puzzle was previously introduced in [11] as the 𝑛 × 𝑛 × 1 Rubik’s Cube. In
that paper, the authors showed that deciding whether it is possible to solve the 𝑛 × 𝑛 × 1
Rubik’s Cube in a given number of moves is NP-complete when the puzzle is allowed to
have missing stickers (where the puzzle is considered solved if each face contains stickers of
only one color).

4.2.2 Rubik’s Cube

Next consider the Rubik’s Cube puzzle. An 𝑛 × 𝑛 × 𝑛 Rubik’s Cube is a cube consisting
of 𝑛3 unit cubes called cubies. Every face of a cubie that is on the exterior of the cube
has a colored (red, blue, green, white, yellow, or orange) sticker. The goal of the puzzle is
to use a sequence of moves to reconfigure the cubies in such a way that each face of the
cube ends up monochromatic in a different color. A move count metric is a convention for
counting moves in a Rubik’s Cube. Several common move count metrics for Rubik’s Cubes
are listed in [25]. As discussed in [7], however, many common move count metrics do not
easily generalize to 𝑛 > 3 or are not of any theoretical interest. In this chapter, we will
restrict our attention to two move count metrics called the Slice Turn Metric and the Slice
Quarter Turn Metric. Both of these metrics use the same type of motion to define a move.
Consider the subdivision of the Rubik’s Cube’s volume into 𝑛 slices of dimension 1 × 𝑛 × 𝑛
(or 𝑛 × 1 × 𝑛 or 𝑛 × 𝑛 × 1). In the Slice Turn Metric (STM), a move is a rotation of a single
slice by any multiple of 90∘. Similarly, in the Slice Quarter Turn Metric (SQTM), a move is
a rotation of a single slice by an angle of 90∘ in either direction. An example SQTM move is
shown in Figure 4-2.

We are concerned with the following decision problems:

Problem 4.2. The STM/SQTM Rubik’s Cube problem takes as input a configuration
of a Rubik’s Cube together with a number 𝑘. The goal is to decide whether a Rubik’s Cube in
configuration 𝐶 can be solved in 𝑘 STM/SQTM moves.

84

Figure 4-2: A single slice rotation in an example 7 × 7 × 7 Rubik’s Cube.

4.2.3 Notation

Next we define some notation for dealing with the Rubik’s Cube and Rubik’s Square
problems.

To begin, we need a way to refer to cubies and stickers. For this purpose, we orient the
puzzle to be axis-aligned. In the case of the Rubik’s Square we arrange the 𝑛 × 𝑛 array of
cubies in the 𝑥 and 𝑦 directions and we refer to a cubie by stating its 𝑥 and 𝑦 coordinates.
In the case of the Rubik’s Cube, we refer to a cubie by stating its 𝑥, 𝑦, and 𝑧 coordinates.
To refer to a sticker in either puzzle, we need only specify the face on which that sticker
resides (e.g. “top” or “+𝑧”) and also the two coordinates of the sticker along the surface of
the face (e.g. the 𝑥 and 𝑦 coordinates for a sticker on the +𝑧 face).

If 𝑛 = 2𝑎 + 1 is odd, then we will let the coordinates of the cubies in each direction range
over the set {−𝑎, −(𝑎 − 1), . . . , −1, 0, 1, . . . , 𝑎 − 1, 𝑎}. This is equivalent to centering the
puzzle at the origin. If, however, 𝑛 = 2𝑎 is even, then we let the coordinates of the cubies in
each direction range over the set {−𝑎, −(𝑎 − 1), . . . , −1} ∪ {1, . . . , 𝑎 − 1, 𝑎}. In this case, the
coordinate scheme does not correspond with a standard coordinate sheme no matter how we
translate the cube. This coordinate scheme is a good idea for the following reason: under
this scheme, if a move relocates a sticker, the coordinates of that sticker remain the same up
to permutation and negation.

Next, we need a way to distinguish the sets of cubies affected by a move from each other.
In the Rubik’s Square, there are two types of moves. The first type of move, which we

will call a row move or a 𝑦 move, affects all the cubies with some particular 𝑦 coordinate.
The second type of move, which we will call a column move or an 𝑥 move affects all the
cubies with some particular 𝑥 coordinate. We will refer to the set of cubies affected by a row
move as a row and refer to the set of cubies affected by a column move as a column. In order
to identify a move, we must identify which row or column is being flipped, by specifying
whether the move is a row or column move as well as the index of the coordinate shared by
all the moved cubies (e.g. the index −5 row move is the move that affects the cubies with
𝑦 = −5).

In the Rubik’s Cube, each STM/SQTM move affects a single slice of 𝑛2 cubies sharing
some coordinate. If the cubies share an 𝑥 (or 𝑦 or 𝑧) coordinate, then we call the slice an 𝑥
(or 𝑦 or 𝑧) slice. As with the Rubik’s Square, we identify the slice by its normal direction
together with its cubies’ index in that direction (e.g. the 𝑥 = 3 slice). We will also refer to
the six slices at the boundaries of the Cube as face slices (e.g. the +𝑥 face slice).

85

A move in a Rubik’s Cube can be named by identifying the slice being rotated and the
amount of rotation. We split this up into the following five pieces of information: the normal
direction to the slice, the sign of the index of the slice, the absolute value of the index of the
slice, the amount of rotation, and the direction of rotation. Splitting the information up
in this way allows us not only to refer to individual moves (by specifying all five pieces of
information) but also to refer to interesting sets of moves (by omitting one or more of the
pieces of information).

To identify the normal direction to a slice, we simply specify 𝑥, 𝑦, or 𝑧; for example, we
could refer to a move as an 𝑥 move whenever the rotating slice is normal to the 𝑥 direction.
We will use two methods to identify the sign of the index of a moved slice. Sometimes we will
refer to positive moves or negative moves, and sometimes we will combine this information
with the normal direction and specify that the move is a +𝑥, −𝑥, +𝑦, −𝑦, +𝑧, or −𝑧 move.
We use the term index-𝑣 move to refer to a move rotating a slice whose index has absolute
value 𝑣. In the particular case that the slice rotated is a face slice, we instead use the term
face move. We refer to a move as a turn if the angle of rotation is 90∘ and as a flip if
the angle of rotation is 180∘. In the case that the angle of rotation is 90∘, we can specify
further by using the terms clockwise turn and counterclockwise turn. We make the notational
convention that clockwise and counterclockwise rotations around the 𝑥, 𝑦, or 𝑧 axes are
labeled according to the direction of rotation when looking from the direction of positive 𝑥,
𝑦, or 𝑧.

We also extend the same naming conventions to the Rubik’s Square moves. For example,
a positive row move is any row move with positive index and an index-𝑣 move is any move
with index ±𝑣.

4.2.4 Group-theoretic approach

An alternative way to look at the Rubik’s Square and Rubik’s Cube problems is through
the lens of group theory. The transformations that can be applied to a Rubik’s Square or
Rubik’s Cube by a sequence of moves form a group with composition as the group operation.
Define 𝑅𝑆𝑛 to be the group of possible sticker permutations in an 𝑛 × 𝑛 Rubik’s Square and
define 𝑅𝐶𝑛 to be the group of possible sticker permutations in an 𝑛 × 𝑛 × 𝑛 Rubik’s Cube.

Consider the moves possible in an 𝑛 × 𝑛 Rubik’s Square or an 𝑛 × 𝑛 × 𝑛 Rubik’s Cube.
Each such move has a corresponding element in group 𝑅𝑆𝑛 or 𝑅𝐶𝑛.

For the Rubik’s Square, let 𝑥𝑖 ∈ 𝑅𝑆𝑛 be the transformation of flipping the column with
index 𝑖 in an 𝑛 × 𝑛 Rubik’s Square and let 𝑦𝑖 be the transformation of flipping the row with
index 𝑖 in the Square. Then if 𝐼 is the set of row/column indices in an 𝑛 × 𝑛 Rubik’s Square
we have that 𝑅𝑆𝑛 is generated by the set of group elements

⋃︀
𝑖∈𝐼{𝑥𝑖, 𝑦𝑖}.

Similarly, for the Rubik’s Cube, let 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖 in 𝑅𝐶𝑛 be the transformations
corresponding to clockwise turns of 𝑥, 𝑦, or 𝑧 slices with index 𝑖. Then if 𝐼 is the set of
row/column indices in an 𝑛 × 𝑛 × 𝑛 Rubik’s Cube we have that 𝑅𝐶𝑛 is generated by the set
of group elements

⋃︀
𝑖∈𝐼{𝑥𝑖, 𝑦𝑖, 𝑧𝑖}.

Using these groups we obtain a new way of identifying puzzle configurations. Let 𝐶0
be a canonical solved configuration of a Rubik’s Square or Rubik’s Cube puzzle. For the
𝑛 × 𝑛 Rubik’s Square, define 𝐶0 to have top face red, bottom face blue, and the other four
faces green, orange, yellow, and white in some fixed order. For the 𝑛 × 𝑛 × 𝑛 Rubik’s Cube,
let 𝐶0 have the following face colors: the +𝑥 face is orange, the −𝑥 face is red, the +𝑦 face
is green, the −𝑦 face is yellow, the +𝑧 face is white, and the −𝑧 face is blue. Then from
any element of 𝑅𝑆𝑛 or 𝑅𝐶𝑛, we can construct a configuration of the corresponding puzzle

86

by applying that element to 𝐶0. In other words, every transformation 𝑡 ∈ 𝑅𝑆𝑛 or 𝑡 ∈ 𝑅𝐶𝑛

corresponds with the configuration 𝐶𝑡 = 𝑡(𝐶0) of the 𝑛 × 𝑛 Rubik’s Square or 𝑛 × 𝑛 × 𝑛
Rubik’s Cube that is obtained by applying 𝑡 to 𝐶0.

Using this idea, we define a new series of problems:

Problem 4.3. The Group Rubik’s Square problem has as input a transformation 𝑡 ∈ 𝑅𝑆𝑛

and a value 𝑘. The goal is to decide whether the transformation 𝑡 can be reversed by a
sequence of at most 𝑘 transformations corresponding to Rubik’s Square moves. In other
words, the answer is “yes” if and only if the transformation 𝑡 can be reversed by a sequence
of at most 𝑘 transformations of the form 𝑥𝑖 or 𝑦𝑖.

Problem 4.4. The Group STM/SQTM Rubik’s Cube problem has as input a trans-
formation 𝑡 ∈ 𝑅𝐶𝑛 and a value 𝑘. The goal is to decide whether the transformation 𝑡 can be
reversed by a sequence of at most 𝑘 transformations corresponding with legal Rubik’s Cube
moves under move count metric STM/SQTM.

We can interpret these problems as variants of the Rubik’s Square or Rubik’s Cube
problems. For example, the Rubik’s Square problem asks whether it is possible (in a given
number of moves) to unscramble a Rubik’s Square configuration so that each face ends up
monochromatic, while the Group Rubik’s Square problem asks whether it is possible (in a
given number of moves) to unscramble a Rubik’s Square configuration so that each sticker
goes back to its exact position in the originally solved configuration 𝐶0. As you see, the
Group Rubik’s Square problem, as a puzzle, is just a more difficult variant of the puzzle:
instead of asking the player to move all the stickers of the same color to the same face,
this variant asks the player to move each stickers to the exact correct position. Similarly,
the Group STM/SQTM Rubik’s Cube problem as a puzzle asks the player to move each
sticker to an exact position. These problems can have practical applications with physical
puzzles. For example, some Rubik’s Cubes have pictures split up over the stickers of each
face instead of just monochromatic colors on the stickers. For these puzzles, as long as no
two stickers are the same, the Group STM/SQTM Rubik’s Cube problem is more applicable
than the STM/SQTM Rubik’s Cube problem (which can leave a face “monochromatic” but
scrambled in image).

We formalize the idea that the Group version of the puzzle is a strictly more difficult
puzzle in the following lemmas:

Lemma 4.5. If (𝑡, 𝑘) is a “yes” instance to the Group Rubik’s Square problem, then (𝑡(𝐶0), 𝑘)
is a “yes” instance to the Rubik’s Square problem.

Lemma 4.6. If (𝑡, 𝑘) is a “yes” instance to the Group STM/SQTM Rubik’s Cube problem,
then (𝑡(𝐶0), 𝑘) is a “yes” instance to the STM/SQTM Rubik’s Cube problem.

The proof of each of these lemmas is the same. If (𝑡, 𝑘) is a “yes” instance to the
Group variants of the puzzle problems, then 𝑡 can be inverted using at most 𝑘 elements
corresponding to moves. Applying exactly those moves to 𝑡(𝐶0) yields configuration 𝐶0,
which is a solved configuration of the cube. Thus it is possible to solve the puzzle in
configuration 𝑡(𝐶0) in at most 𝑘 moves. In other words, (𝑡(𝐶0), 𝑘) is a “yes” instance to the
non-Group variant of the puzzle problem.

At this point it is also worth mentioning that the Rubik’s Square with SQTM move
model is a strictly more difficult puzzle than the Rubik’s Square with STM move model:

87

Lemma 4.7. If (𝐶, 𝑘) is a “yes” instance to the SQTM Rubik’s Cube problem, then it is also
a “yes” instance to the STM Rubik’s Cube problem. Similarly, if (𝑡, 𝑘) is a “yes” instance to
the Group SQTM Rubik’s Cube problem, then it is also a “yes” instance to the Group STM
Rubik’s Cube problem.

To prove this lemma, note that every move in the SQTM move model is a legal move in
the STM move model. Then if configuration 𝐶 can be solved in 𝑘 or fewer SQTM moves, it
can certainly also be solved in 𝑘 or fewer STM moves. Similarly, if 𝑡 can be inverted using at
most 𝑘 transformations corresponding to SQTM moves, then it can also be inverted using
at most 𝑘 transformations corresponding to STM moves.

4.2.5 Membership in NP

Consider the graph whose vertices are transformations in 𝑅𝑆𝑛 (or 𝑅𝐶𝑛) and whose edges
(𝑎, 𝑏) connect transformations 𝑎 and 𝑏 for which 𝑎−1𝑏 is the transformation corresponding to
a single move (under the standard Rubik’s Square move model or under the STM or SQTM
move model). It was shown in [11] that the diameter of this graph is Θ(𝑛2

log 𝑛). This means
that any achievable transformation of the puzzle (any transformation in 𝑅𝑆𝑛 or 𝑅𝐶𝑛) can
be reached using a polynomial 𝑝(𝑛) number of moves.

Using this fact, we can build an NP algorithm solving the (Group) STM/SQTM Rubik’s
Cube and the (Group) Rubik’s Square problems. In these problems, we are given 𝑘 and
either a starting configuration or a transformation, and we are asked whether it is possible to
solve the configuration/invert the transformation in at most 𝑘 moves. The NP algorithm can
nondeterministically make min(𝑘, 𝑝(𝑛)) moves and simply check whether this move sequence
inverts the given transformation or solves the given puzzle configuration.

If any branch accepts, then certainly the answer to the problem is “yes” (since that
branch’s chosen sequence of moves is a solving/inverting sequence of moves of length at most
𝑘). On the other hand, if there is a solving/inverting sequence of moves of length at most 𝑘,
then there is also one that has length both at most 𝑘 and at most 𝑝(𝑛). This is because 𝑝(𝑛)
is an upper bound on the diameter of the graph described above. Thus, if the answer to
the problem is “yes”, then there exists a solving/inverting sequence of moves of length at
most min(𝑘, 𝑝(𝑛)), and so at least one branch accepts. As desired, the algorithm described
is correct. Therefore, we have established membership in NP for the problems in question.

4.3 Hamiltonicity variants

To prove the problems introduced above hard, we need to introduce several variants of the
Hamiltonian cycle and path problems.

It is shown in [13] that the following problem is NP-complete.

Problem 4.8. A square grid graph is a finite induced subgraph of the infinite square lattice.
The Grid Graph Hamiltonian Cycle problem asks whether a given square grid graph with no
degree-1 vertices has a Hamiltonian cycle.

Starting with this problem, we prove that the following promise version of the grid graph
Hamiltonian path problem is also NP-hard.

Problem 4.9. The Promise Grid Graph Hamiltonian Path problem takes as input a square
grid graph 𝐺 and two specified vertices 𝑠 and 𝑡 with the promise that any Hamiltonian path

88

in 𝐺 has 𝑠 and 𝑡 as its start and end respectively. The problem asks whether there exists a
Hamiltonian path in 𝐺.

The above problem is more useful, but it is still inconvenient in some ways. In particular,
there is no conceptually simple way to connect a grid graph to a Rubik’s Square or Rubik’s
Cube puzzle. It is the case, however, that every grid graph is actually a type of graph called
a “cubical graph”. Cubical graphs, unlike grid graphs, can be conceptually related to Rubik’s
Cubes and Rubik’s Squares with little trouble.

So what is a cubical graph? Let 𝐻𝑚 be the 𝑚 dimensional hypercube graph; in particular,
the vertices of 𝐻𝑚 are the bitstrings of length 𝑚 and the edges connect pairs of bitstrings
whose Hamming distance is exactly one. Then a cubical graph is any induced subgraph of
any hypercube graph 𝐻𝑚.

Notably, when embedding a grid graph into a hypercube, it is always possible to assign
the bitstring label 00 . . . 0 to any vertex. Suppose we start with Promise Grid Graph
Hamiltonian Path problem instance (𝐺, 𝑠, 𝑡); then by embedding 𝐺 into a hypercube graph,
we can reinterpret this instance as an instance of the promise version of cubical Hamiltonian
path:

Problem 4.10. The Promise Cubical Hamiltonian Path problem takes as input a cubical
graph whose vertices are length-𝑚 bitstrings 𝑙1, 𝑙2, . . . , 𝑙𝑛 with the promise that (1) 𝑙𝑛 = 00 . . . 0
and (2) any Hamiltonian path in the graph has 𝑙1 and 𝑙𝑛 as its start and end respectively.
The problem asks whether there exists a Hamiltonian path in the cubical graph. In other
words, the problem asks whether it is possible to rearrange bitstrings 𝑙1, . . . , 𝑙𝑛 into a new
order such that each bitstring has Hamming distance one from the next.

In the following subsections, we will show the reductions used to prove Problems 4.9
and 4.10 hard.

4.3.1 Promise Grid Graph Hamiltonian Path is NP-hard

First, we reduce from the Grid Graph Hamiltonian Cycle problem to the Promise Grid
Graph Hamiltonian Path problem.

Lemma 4.11. The Promise Grid Graph Hamiltonian Path problem (Problem 4.9) is NP-
hard.

Proof. Consider an instance 𝐺 of the Grid Graph Hamiltonian Cycle problem. Consider
the vertices in the top row of 𝐺 and let the leftmost vertex in this row be 𝑢. 𝑢 has no
neighbors on its left or above it, so it must have a neighbor to its right (since 𝐺 has no
degree-1 vertices). Let that vertex be 𝑢′. We can add vertices to 𝐺 above 𝑢 and 𝑢′ as shown
in figure 4-3 to obtain new grid graph 𝐺′ in polynomial time. Note that two of the added
vertices are labeled 𝑣 and 𝑣′. Also note that the only edges that are added are those shown
in the figure since no vertices in 𝐺 are above 𝑢.

Notice that (𝐺′, 𝑣, 𝑣′) is a valid instance of the Promise Grid Graph Hamiltonian Path
problem. In particular, (𝐺′, 𝑣, 𝑣′) satisfies the promise—any Hamiltonian path in 𝐺′ must
have 𝑣 and 𝑣′ as endpoints—since both 𝑣 and 𝑣′ have degree-1.

Below we show that (𝐺′, 𝑣, 𝑣′) is a “yes” instance to the Promise Grid Graph Hamiltonian
Path problem (i.e., 𝐺′ has a Hamiltonian path) if and only if 𝐺 is a “yes” instance to the
Grid Graph Hamiltonian Cycle problem (i.e., 𝐺 has a Hamiltonian cycle).

89

u u′

v v′

Figure 4-3: The vertices added to 𝐺 to obtain 𝐺′.

First suppose 𝐺 contains a Hamiltonian cycle. This cycle necessarily contains edge (𝑢, 𝑢′)
because 𝑢 has only two neighbors; removing this edge yields a Hamiltonian path from 𝑢′ to
𝑢 in 𝐺. This path can be extended by adding paths from 𝑣′ to 𝑢′ and from 𝑢 to 𝑣 into a
Hamiltonian path in 𝐺′ from 𝑣′ to 𝑣.

On the other hand, suppose 𝐺′ has a Hamiltonian path. Such a path must have 𝑣 and
𝑣′ as the two endpoints, and it is easy to show that the two short paths between 𝑢 and 𝑣
and between 𝑢′ and 𝑣′ must be the start and end of this path. In other words, if 𝐺′ has a
Hamiltonian path, then the central part of this path is a Hamiltonian path in 𝐺′ between 𝑢
and 𝑢′. Adding edge (𝑢, 𝑢′), we obtain a Hamiltonian cycle in 𝐺.

By the above reduction, the Promise Grid Graph Hamiltonian Path problem is NP-
hard.

4.3.2 Promise Cubical Hamiltonian Path is NP-hard

Second, we reduce from the Promise Grid Graph Hamiltonian Path problem to the Promise
Cubical Hamiltonian Path problem.

Theorem 4.12. The Promise Cubical Hamiltonian Path problem (Problem 4.10) is NP-hard.

Proof. Consider an instance (𝐺, 𝑠, 𝑡) of the Promise Grid Graph Hamiltonian Path problem.
Suppose 𝐺 has 𝑚𝑟 rows and 𝑚𝑐 columns and 𝑛 vertices.

Assign a bitstring label to each row and a bitstring label to each column. In particular,
let the row labels from left to right be the following length 𝑚𝑟 − 1 bitstrings: 000 . . . 0,
100 . . . 0, 110 . . . 0, . . ., and 111 . . . 1. Similarly, let the column labels from top to bottom be
the following length 𝑚𝑐 − 1 bitstrings: 000 . . . 0, 100 . . . 0, 110 . . . 0, . . ., and 111 . . . 1. Then
assign each vertex a bitstring label of length 𝑚 = 𝑚𝑟 +𝑚𝑐 −2 consisting of the concatenation
of its row label followed by its column label.

Consider any two vertices. Their labels have Hamming distance one if and only if the
vertices’ column labels are the same and their row labels have Hamming distance one, or
visa versa. By construction, two row/column labels are the same if and only if the two
rows/columns are the same and they have Hamming distance one if and only if the two
rows/columns are adjacent. Thus two vertices’ labels have Hamming distance one if and
only if the two vertices are adjacent in 𝐺.

In other words, we have expressed 𝐺 as a cubical graph by assigning these bitstring
labels to the vertices of 𝐺. In particular, suppose the vertices of 𝐺 are 𝑣1, 𝑣2, . . . , 𝑣𝑛 with
𝑣1 = 𝑠 and 𝑣𝑛 = 𝑡. Let 𝑙′𝑖 be the label of 𝑣𝑖. Then the bitstrings 𝑙′1, 𝑙′2, . . . , 𝑙′𝑛 specify the
cubical graph that is 𝐺.

Define 𝑙𝑖 = 𝑙′𝑖 ⊕ 𝑙′𝑛. Under this definition, the Hamming distance between 𝑙𝑖 and 𝑙𝑗 is the
same as the Hamming distance between 𝑙′𝑖 and 𝑙′𝑗 . Therefore 𝑙𝑖 has Hamming distance one

90

from 𝑙𝑗 if and only if 𝑣𝑖 and 𝑣𝑗 are adjacent. Thus, the cubical graph specified by bitstrings
𝑙1, . . . , 𝑙𝑛 is also 𝐺. Note that the 𝑙𝑖 bitstrings can be computed in polynomial time.

We claim that 𝑙1, . . . , 𝑙𝑛 is a valid instance of Promise Cubical Hamiltonian Path, i.e.,
this instance satisfies the promise of the problem. The first promise is that 𝑙𝑛 = 00 . . . 0; by
definition, 𝑙𝑛 = 𝑙′𝑛 ⊕ 𝑙′𝑛 = 00 . . . 0. The second promise is that any Hamiltonian path in the
cubical graph specified by 𝑙1, 𝑙2, . . . , 𝑙𝑛 has 𝑙1 and 𝑙𝑛 as its start and end. The cubical graph
specified by 𝑙1, 𝑙2, . . . , 𝑙𝑛 is the graph 𝐺 with vertex 𝑙𝑖 in the cubical graph corresponding to
vertex 𝑣𝑖 in 𝐺. In other words, the promise requested is that any Hamiltonian path in 𝐺
must start and end in vertices 𝑣1 = 𝑠 and 𝑣𝑛 = 𝑡. This is guaranteed by the promise of the
Promise Grid Graph Hamiltonian Path problem.

Since 𝐺 is the graph specified by 𝑙1, 𝑙2, . . . , 𝑙𝑛, the answer to the Promise Cubical
Hamiltonian Path instance 𝑙1, 𝑙2, . . . , 𝑙𝑛 is the same as the answer to the Promise Grid
Graph Hamiltonian Path instance (𝐺, 𝑠, 𝑡). Thus, the procedure converting (𝐺, 𝑠, 𝑡) into
𝑙1, 𝑙2, . . . , 𝑙𝑛, which runs in polynomial time, is a reduction proving that Promise Cubical
Hamiltonian Path is NP-hard.

4.4 (Group) Rubik’s Square is NP-complete

4.4.1 Reductions

To prove that the Rubik’s Square and Group Rubik’s Square problems are NP-complete, we
reduce from the Promise Cubical Hamiltonian Path problem of Section 4.3.2.

Suppose we are given an instance of the Promise Cubical Hamiltonian Path problem
consisting of 𝑛 bitstrings 𝑙1, . . . , 𝑙𝑛 of length 𝑚 (with 𝑙𝑛 = 00 . . . 0). To construct a Group
Rubik’s Square instance we need to compute the value 𝑘 indicating the allowed number of
moves and construct the transformation 𝑡 ∈ 𝑅𝑆𝑠.

The value 𝑘 can be computed directly as 𝑘 = 2𝑛 − 1.
The transformation 𝑡 will be an element of group 𝑅𝑆𝑠 where 𝑠 = 2(max(𝑚, 𝑛) + 2𝑛).

Define 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛 to be (𝑥1)(𝑙𝑖)1 ∘ (𝑥2)(𝑙𝑖)2 ∘ · · · ∘ (𝑥𝑚)(𝑙𝑖)𝑚 where (𝑙𝑖)1, (𝑙𝑖)2, . . . , (𝑙𝑖)𝑚

are the bits of 𝑙𝑖. Also define 𝑏𝑖 = (𝑎𝑖)−1 ∘ 𝑦𝑖 ∘ 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Then we define 𝑡 to be
𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛.

Outputting (𝑡, 𝑘) completes the reduction from the Promise Cubical Hamiltonian Path
problem to the Group Rubik’s Square problem. To reduce from the Promise Cubical
Hamiltonian Path problem to the Rubik’s Square problem we simply output (𝐶𝑡, 𝑘) =
(𝑡(𝐶0), 𝑘). These reductions clearly run in polynomial time.

4.4.2 Intuition

The key idea that makes this reduction work is that the transformations 𝑏𝑖 for 𝑖 ∈ {1, . . . , 𝑛}
all commute. This allows us to rewrite 𝑡 = 𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛 with the 𝑏𝑖s in a different
order. If the order we choose happens to correspond to a Hamiltonian path in the cubical
graph specified by 𝑙1, . . . , 𝑙𝑛, then when we explicitly write the 𝑏𝑖s and 𝑎1 in terms of 𝑥𝑗s and
𝑦𝑖s, most of the terms cancel. In particular, the number of remaining terms will be exactly
𝑘. Since we can write 𝑡 as a combination of exactly 𝑘 𝑥𝑗s and 𝑦𝑖s, we can invert 𝑡 using
at most 𝑘 𝑥𝑗s and 𝑦𝑖s. In other words, if there is a Hamiltonian path in the cubical graph
specified by 𝑙1, . . . , 𝑙𝑛, then (𝑡, 𝑘) is a “yes” instance to the Group Rubik’s Square problem.

In order to more precisely describe the cancelation of terms in 𝑡, we can consider just one
local part: 𝑏𝑖 ∘ 𝑏𝑖′ . We can rewrite this as (𝑎𝑖)−1 ∘ 𝑦𝑖 ∘ 𝑎𝑖 ∘ (𝑎𝑖′)−1 ∘ 𝑦𝑖′ ∘ 𝑎𝑖′ . The interesting

91

part is that 𝑎𝑖 ∘ (𝑎𝑖′)−1 will cancel to become just one 𝑥𝑗 . Note that

𝑎𝑖 ∘ (𝑎𝑖′)−1 = (𝑥1)(𝑙𝑖)1 ∘ (𝑥2)(𝑙𝑖)2 ∘ · · · ∘ (𝑥𝑚)(𝑙𝑖)𝑚 ∘ (𝑥1)−(𝑙𝑖′)1 ∘ (𝑥2)−(𝑙𝑖′)2 ∘ · · · ∘ (𝑥𝑚)−(𝑙𝑖′)𝑚 ,

which we can rearrange as

(𝑥1)(𝑙𝑖)1−(𝑙𝑖′)1 ∘ (𝑥2)(𝑙𝑖)2−(𝑙𝑖′)2 ∘ · · · ∘ (𝑥𝑚)(𝑙𝑖)𝑚−(𝑙𝑖′)𝑚 .

Next, if 𝑏𝑖 and 𝑏𝑖′ correspond to adjacent vertices 𝑙𝑖 and 𝑙𝑖′ , then (𝑙𝑖)𝑗 − (𝑙𝑖′)𝑗 is zero for all 𝑗
except one for which (𝑙𝑖)𝑗 − (𝑙𝑖′)𝑗 = ±1. Thus the above can be rewritten as (𝑥𝑗)1 or (𝑥𝑗)−1

for some specific 𝑗. Since 𝑥𝑗 = (𝑥𝑗)−1 this shows that (𝑎𝑖1)−1 ∘ 𝑎𝑖2 simplifies to 𝑥𝑗 for some
𝑗.

This intuition is formalized in a proof in the following subsection.

4.4.3 Promise Cubical Hamiltonian Path solution → (Group) Rubik’s
Square solution

Lemma 4.13. The transformations 𝑏𝑖 all commute.
Proof. Consider any such transformation 𝑏𝑖. The transformation 𝑏𝑖 can be rewritten as
(𝑎𝑖)−1∘𝑦𝑖∘𝑎𝑖. For any cubie not moved by the 𝑦𝑖 middle term, the effect of this transformation
is the same as the effect of transformation (𝑎𝑖)−1 ∘ 𝑎𝑖 = 1. In other words, 𝑏𝑖 only affects
cubies that are moved by the 𝑦𝑖 term. But 𝑦𝑖 only affects cubies with 𝑦 coordinate 𝑖. In
general in a Rubik’s Square, cubies with 𝑦 coordinate 𝑖 at some particular time will have 𝑦
coordinate ±𝑖 at all times. Thus, all the cubies affected by 𝑏𝑖 start in rows ±𝑖.

This is enough to see that the cubies affected by 𝑏𝑖 are disjoint from those affected by 𝑏𝑗

(for 𝑗 ̸= 𝑖). In other words, the transformations 𝑏𝑖 all commute.

Theorem 4.14. If 𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the Promise Cubical Hamiltonian Path
problem, then (𝑡, 𝑘) is a “yes” instance to the Group Rubik’s Square problem.
Proof. Suppose 𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the Promise Cubical Hamiltonian Path
problem. Let 𝑚 be the length of 𝑙𝑖 and note that 𝑙𝑛 = 00 . . . 0 by the promise of the Promise
Cubical Hamiltonian Path problem. Furthermore, since 𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the
Promise Cubical Hamiltonian Path problem, there exists an ordering of these bitstrings
𝑙𝑖1 , 𝑙𝑖2 , . . . , 𝑙𝑖𝑛 such that each consecutive pair of bitstrings is at Hamming distance one,
𝑖1 = 1, and 𝑖𝑛 = 𝑛 (with the final two conditions coming from the promise).

By Lemma 4.13, we know that 𝑡 = 𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛 can be rewritten as

𝑡 = 𝑎1 ∘ 𝑏𝑖1 ∘ 𝑏𝑖2 ∘ · · · ∘ 𝑏𝑖𝑛 .

Using the definition of 𝑏𝑖, we can further rewrite this as

𝑡 = 𝑎1 ∘ ((𝑎𝑖1)−1 ∘ 𝑦𝑖1 ∘ 𝑎𝑖1) ∘ ((𝑎𝑖2)−1 ∘ 𝑦𝑖2 ∘ 𝑎𝑖2) ∘ · · · ∘ ((𝑎𝑖𝑛)−1 ∘ 𝑦𝑖𝑛 ∘ 𝑎𝑖𝑛),

or as

𝑡 = (𝑎1 ∘ (𝑎𝑖1)−1) ∘ 𝑦𝑖1 ∘ (𝑎𝑖1 ∘ (𝑎𝑖2)−1) ∘ 𝑦𝑖2 ∘ (𝑎𝑖2 ∘ (𝑎𝑖3)−1) ∘ · · · ∘ (𝑎𝑖𝑛−1 ∘ (𝑎𝑖𝑛)−1) ∘ 𝑦𝑖𝑛 ∘ (𝑎𝑖𝑛).

We know that 𝑖1 = 1, and therefore that 𝑎1 ∘ (𝑎𝑖1)−1 = 𝑎1 ∘ (𝑎1)−1 = 1 is the identity
element. Similarly, we know that 𝑖𝑛 = 𝑛 and therefore that 𝑎𝑖𝑛 = 𝑎𝑛 = (𝑥1)(𝑙𝑛)1 ∘ (𝑥2)(𝑙𝑛)2 ∘
· · · ∘ (𝑥𝑚)(𝑙𝑛)𝑚 = (𝑥1)0 ∘ (𝑥2)0 ∘ · · · ∘ (𝑥𝑚)0 = 1 is also the identity.

92

Thus we see that

𝑡 = 𝑦𝑖1 ∘ (𝑎𝑖1 ∘ (𝑎𝑖2)−1) ∘ 𝑦𝑖2 ∘ (𝑎𝑖2 ∘ (𝑎𝑖3)−1) ∘ · · · ∘ (𝑎𝑖𝑛−1 ∘ (𝑎𝑖𝑛)−1) ∘ 𝑦𝑖𝑛 .

Consider the transformation 𝑎𝑖𝑝 ∘ (𝑎𝑖𝑝+1)−1. This transformation can be written as

𝑎𝑖𝑝∘(𝑎𝑖𝑝+1)−1 = (𝑥1)(𝑙𝑖𝑝)1∘(𝑥2)(𝑙𝑖𝑝)2∘· · ·∘(𝑥𝑚)(𝑙𝑖𝑝)𝑚∘(𝑥1)−(𝑙𝑖𝑝+1)1∘(𝑥2)−(𝑙𝑖𝑝+1)2∘· · ·∘(𝑥𝑚)−(𝑙𝑖𝑝+1)𝑚 .

Because 𝑥𝑢 always commutes with 𝑥𝑣, we can rewrite this as

𝑎𝑖𝑝 ∘ (𝑎𝑖𝑝+1)−1 = (𝑥1)(𝑙𝑖𝑝)1−(𝑙𝑖𝑝+1)1 ∘ (𝑥2)(𝑙𝑖𝑝)2−(𝑙𝑖𝑝+1)2 ∘ · · · ∘ (𝑥𝑚)(𝑙𝑖𝑝)𝑚−(𝑙𝑖𝑝+1)𝑚 .

Since 𝑙𝑖𝑝 differs from 𝑙𝑖𝑝+1 in only one position, call it 𝑗𝑝, we see that (𝑙𝑖𝑝)𝑗 −(𝑙𝑖𝑝+1)𝑗 is zero
unless 𝑗 = 𝑗𝑝, and is ±1 in that final case. This is sufficient to show that 𝑎𝑖𝑝 ∘ (𝑎𝑖𝑝+1)−1 =
(𝑥𝑗𝑝)±1 = 𝑥𝑗𝑝 .

Thus we see that
𝑡 = 𝑦𝑖1 ∘ 𝑥𝑗1 ∘ 𝑦𝑖2 ∘ 𝑥𝑗2 ∘ · · · ∘ 𝑥𝑗𝑛−1 ∘ 𝑦𝑖𝑛 ,

or (by left multiplying) that

1 = 𝑦−1
𝑖𝑛

∘ 𝑥−1
𝑗𝑛−1

∘ · · · ∘ 𝑥−1
𝑗2

∘ 𝑦−1
𝑖2

∘ 𝑥−1
𝑗1

∘ 𝑦−1
𝑖1

∘ 𝑡 = 𝑦𝑖𝑛 ∘ 𝑥𝑗𝑛−1 ∘ · · · ∘ 𝑥𝑗2 ∘ 𝑦𝑖2 ∘ 𝑥𝑗1 ∘ 𝑦𝑖1 ∘ 𝑡.

We see that 𝑡 can be reversed by 𝑘 = 2𝑛 − 1 moves of the form 𝑥𝑗 or 𝑦𝑖, or in other words
that (𝑡, 𝑘) is a “yes” instance to the Group Rubik’s Square problem.

Corollary 4.15. If 𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the Promise Cubical Hamiltonian Path
problem, then (𝐶𝑡, 𝑘) is a “yes” instance to the Rubik’s Square problem.

Proof. This follows immediately from Theorem 4.14 and Lemma 4.5.

4.4.4 Coloring of 𝐶𝑡

In order to show the other direction of the proof, it will be helpful to consider the coloring
of the stickers on the top and bottom faces of the Rubik’s Square. In particular, if we define
𝑏 = 𝑏1 ∘ · · · ∘ 𝑏𝑛 (so that 𝑡 = 𝑎1 ∘ 𝑏), then it will be very helpful for us to know the colors of
the top and bottom stickers in configuration 𝐶𝑏 = 𝑏(𝐶0).

Consider for example the instance of Promise Cubical Hamiltonian Path with 𝑛 = 5 and
𝑚 = 3 defined below:

𝑙1 = 011
𝑙2 = 110
𝑙3 = 111
𝑙4 = 100
𝑙5 = 000

For this example, 𝐶0 is an 𝑠 × 𝑠 Rubik’s Square with 𝑠 = 2(max(𝑚, 𝑛) + 2𝑛) = 24.
To describe configuration 𝐶𝑏, we need to know the effect of transformation 𝑏𝑖. For

example, Figure 4-4 shows the top face of a Rubik’s Square in configurations 𝐶0, 𝑎2(𝐶0),
(𝑦2 ∘ 𝑎2)(𝐶0), and 𝑏2(𝐶0) = ((𝑎2)−1 ∘ 𝑦2 ∘ 𝑎2)(𝐶0) where 𝑎2 and 𝑦2 are defined in terms of
𝑙2 = 110 as in the reduction.

93

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

(a)

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

(b)
−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

(c)

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

(d)

Figure 4-4: Applying 𝑏2 to 𝐶0 step by step (only top face shown).

The exact behavior of a Rubik’s Square due to 𝑏𝑖 is described by the following lemma:

Lemma 4.16. Suppose 𝑖 ∈ {1, . . . , 𝑛}, and 𝑐, 𝑟 ∈ {1, . . . , 𝑠/2}. Then

1. if 𝑟 = 𝑖 and 𝑐 ≤ 𝑚 such that bit 𝑐 of 𝑙𝑖 is 1, then 𝑏𝑖 swaps the cubies in positions
(𝑐, −𝑟) and (−𝑐, 𝑟) without flipping either;

2. if 𝑟 = 𝑖 and either 𝑐 > 𝑚 or 𝑐 ≤ 𝑚 and bit 𝑐 of 𝑙𝑖 is 0, then 𝑏𝑖 swaps the cubies in
positions (𝑐, 𝑟) and (−𝑐, 𝑟) and flips them both;

3. all other cubies are not moved by 𝑏𝑖.

Proof. As noted in the proof of Lemma 4.13, a cubie is affected by 𝑏𝑖 = (𝑎𝑖)−1 ∘ 𝑦𝑖 ∘ 𝑎𝑖 if
and only if it is moved by the 𝑦𝑖 term.

94

Note also that (𝑎𝑖)−1 = 𝑎𝑖 only moves cubies within their columns and only for columns
𝑐 for which bit 𝑐 of 𝑙𝑖 is 1. One consequence is that a cubie can only be moved by 𝑎𝑖 if
its column index is positive. Any cubie moved by the 𝑦𝑖 term will have a column index of
different signs before and after the 𝑦𝑖 move, so as a consequence such a cubie cannot be
moved by both 𝑎𝑖 and (𝑎𝑖)−1.

Thus there are three possibilities for cubies that are moved by 𝑏𝑖: (1) the cubie is moved
only by 𝑦𝑖, (2) the cubie is moved by 𝑎𝑖 and then by 𝑦𝑖, and (3) the cubie is moved by 𝑦𝑖

and then by (𝑎𝑖)−1.
Consider any cubie of type (1) whose coordinates have absolute values 𝑐 and 𝑟. Since

the cubie is moved by 𝑦𝑖, we know that 𝑟 = 𝑖. Since it is not moved by either 𝑎𝑖 or (𝑎𝑖)−1,
we know that the cubie’s column index both before and after the move is not one of the
column indices affected by 𝑎𝑖. But these two column indices are 𝑐 and −𝑐 (in some order).
Therefore it must not be the case that bit 𝑐 of 𝑙𝑖 is 1. Also note that cubies of this type are
flipped exactly once. Putting that together, we see that if 𝑐 ∈ {1, . . . , 𝑠/2}, 𝑟 = 𝑖, and it is
not the case that bit 𝑐 of 𝑙𝑖 exists and is 1, then 𝑏𝑖 swaps the cubies in positions (𝑐, 𝑟) and
(−𝑐, 𝑟) and flips them both.

Consider any cubie of type (2) whose coordinates have absolute values 𝑐 and 𝑟. Since
the cubie is first moved by 𝑎𝑖 and then by 𝑦𝑖, we know that 𝑟 = 𝑖 and that 𝑐 ≤ 𝑚 with bit 𝑐
of 𝑙𝑖 equal to 1. Furthermore, the cubie must have started in position (𝑐, −𝑟), then moved
to position (𝑐, 𝑟) by 𝑎𝑖, and then moved to position (−𝑐, 𝑟) by 𝑦𝑖. Since this cubie is flipped
twice, it is overall not flipped.

Consider on the other hand any cubie of type (3) whose coordinates have absolute values
𝑐 and 𝑟. Since the cubie is first moved by 𝑦𝑖 and then by (𝑎𝑖)−1 = 𝑎𝑖, we know that 𝑟 = 𝑖
and that 𝑐 ≤ 𝑚 with bit 𝑐 of 𝑙𝑖 equal to 1. Furthermore, the cubie must have started in
position (−𝑐, 𝑟), then moved to position (𝑐, 𝑟) by 𝑦𝑖, and then moved to position (𝑐, −𝑟) by
𝑎𝑖. Since this cubie is flipped twice, it is overall not flipped.

Putting that together, we see that if 𝑟 = 𝑖, and bit 𝑐 of 𝑙𝑖 is 1, then 𝑏𝑖 swaps the cubies
in positions (𝑐, −𝑟) and (−𝑐, 𝑟) without flipping either.

This covers the three types of cubies that are moved by 𝑏𝑖. All other cubies remain in
place.

We can apply the above to figure out the effect of transformation 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛 on
configuration 𝐶0. In particular, that allows us to learn the coloring of configuration 𝐶𝑏.

Theorem 4.17. In 𝐶𝑏, a cubie has top face blue if and only if it is in position (𝑐, 𝑟) such
that 1 ≤ 𝑟 ≤ 𝑛 and either |𝑐| > 𝑚 or |𝑐| ≤ 𝑚 and bit |𝑐| of 𝑙𝑟 is 0.

Proof. 𝐶𝑏 is obtained from 𝐶0 by applying transformation 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛. A cubie has top
face blue in 𝐶𝑏 if and only if transformation 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛 flips that cubie an odd number
of times. Each 𝑏𝑖 affects a disjoint set of cubies. Thus, among the cubies affected by some
particular 𝑏𝑖, the only ones that end up blue face up are the ones that are flipped by 𝑏𝑖. By
Lemma 4.16, these are the cubies in row 𝑖 with column 𝑐 such that it is not the case that bit
|𝑐| of 𝑙𝑖 is 1. Tallying up those cubies over all the 𝑏𝑖s yields exactly the set of blue-face-up
cubies given in the theorem statement.

This concludes the description of 𝐶𝑏 in terms of colors. The coloring of configuration
𝐶𝑡—the configuration that is actually obtained by applying the reduction to 𝑙1, . . . , 𝑙𝑛—can
be obtained from the coloring of configuration 𝐶𝑏 by applying transformation 𝑎1.

95

Applying Theorem 4.17 to the previously given example, we obtain the coloring of the
Rubik’s Square in configuration 𝐶𝑏 as shown in Figure 4-5a. Note that the 𝑛 × 𝑚 grid of bits
comprising 𝑙1, . . . , 𝑙𝑛 is actually directly encoded in the coloring of a section of the Rubik’s
Square. In addition, the coloring of the Rubik’s Square in configuration 𝐶𝑡 is shown for the
same example in Figure 4-5b.

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

(a) The top face of 𝐶𝑏 for the example input 𝑙1, . . . , 𝑙𝑛.

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12

12

11

10

9

8

7

6

5

4

3

2

1

−1

−2

−3

−4

−5

−6

−7

−8

−9

−10

−11

−12

(b) The top face of 𝐶𝑡 for the example input 𝑙1, . . . , 𝑙𝑛.

Figure 4-5: The coloring of the Rubik’s Square for the example input 𝑙1, . . . , 𝑙𝑛.

4.4.5 (Group) Rubik’s Square solution → Promise Cubical Hamiltonian
Path solution

Below, we prove the following theorem:

Theorem 4.18. If (𝐶𝑡, 𝑘) is a “yes” instance to the Rubik’s Square problem, then 𝑙1, . . . , 𝑙𝑛
is a “yes” instance to the Promise Cubical Hamiltonian Path problem.

By Lemma 4.5, this will immediately also imply the following corollary:

Corollary 4.19. If (𝑡, 𝑘) is a “yes” instance to the Group Rubik’s Square problem, then
𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the Promise Cubical Hamiltonian Path problem.

To prove the theorem, we consider a hypothetical solution to the (𝐶𝑡, 𝑘) instance of
the Rubik’s Square problem. A solution consists of a sequence of Rubik’s Square moves
𝑚1, . . . , 𝑚𝑘′ with 𝑘′ ≤ 𝑘 such that 𝐶 ′ = (𝑚𝑘′ ∘ · · · ∘ 𝑚1)(𝐶𝑡) is a solved configuration of
the Rubik’s Square. Throughout the proof, we will use only the fact that move sequence
𝑚1, . . . , 𝑚𝑘′ solves the top and bottom faces of the Rubik’s Square in configuration 𝐶𝑡.

The main idea of the proof relies on three major steps. In the first step, we show that
𝑚1, . . . , 𝑚𝑘′ must flip row 𝑖 an odd number of times if 𝑖 ∈ {1, . . . , 𝑛}, and an even number
of times otherwise.

We then define set 𝑂 ⊆ {1, . . . , 𝑛} (where 𝑂 stands for “one”) to be the set of indices
𝑖 such that there is exactly one index-𝑖 row move. Clearly, in order to satisfy the parity
constraints, every 𝑖 ∈ 𝑂 must have one row 𝑖 move and zero row −𝑖 moves in 𝑚1, . . . , 𝑚𝑘′ .

96

The second step of the proof is to show that, if 𝑖1, 𝑖2 ∈ 𝑂, then the number of column moves
in 𝑚1, . . . , 𝑚𝑘′ between the single flip of row 𝑖1 and the single flip of row 𝑖2 is at least the
Hamming distance between 𝑙𝑖1 and 𝑙𝑖2 .

The final step of the proof is a counting argument. There are four types of moves in
𝑚1, . . . , 𝑚𝑘′ :

1. index-𝑖 row moves with 𝑖 ∈ 𝑂 (all of which are positive moves as shown above),

2. index-𝑖 row moves with 𝑖 ∈ {1, . . . , 𝑛} ∖ 𝑂,

3. column moves, and

4. index-𝑖 row moves with 𝑖 ̸∈ {1, . . . , 𝑛}.

For each 𝑖 ∈ 𝑂, there is exactly one index-𝑖 move by definition of 𝑂. Therefore the
number of type-1 moves is exactly |𝑂|.

For each 𝑖 in {1, . . . , 𝑛} ∖ 𝑂, the number of index-𝑖 row moves is odd by the parity
constraint. Furthermore, by the definition of 𝑂, this number is not one. Thus each 𝑖 in
{1, . . . , 𝑛} ∖ 𝑂 contributes at least three moves. Therefore the number of type-2 moves is at
least 3(|{1, . . . , 𝑛} ∖ 𝑂|) = 3(𝑛 − |𝑂|).

Consider the moves of rows 𝑖 with 𝑖 ∈ 𝑂. Since the 𝑙𝑖s are all distinct, there must be
at least one column move between every consecutive pair of such moves. Thus the total
number of type-3 moves (column moves) is at least |𝑂| − 1. Furthermore, the number of
type-3 moves is |𝑂| − 1 if and only if the consecutive pairs of row 𝑖 ∈ 𝑂 moves have exactly
one column move between them. Such a pair of 𝑖s has exactly one column move between the
two row-𝑖 moves only if the corresponding pair of 𝑙𝑖s is at Hamming distance one. Therefore,
if we consider the 𝑙𝑖s for 𝑖 ∈ 𝑂 in the order in which row-𝑖 moves occur in 𝑚1, . . . , 𝑚𝑘′ , then
the number of type-3 moves is exactly |𝑂| − 1 if and only if those 𝑙𝑖s in that order have each
𝑙𝑖 at Hamming distance exactly one from the next (and more otherwise).

The number of type-4 moves is at least 0.
Adding these bounds up, we see that there are at least (|𝑂|)+3(𝑛−|𝑂|)+(|𝑂|−1)+0 =

3𝑛 − 1 − |𝑂| = 𝑘 + (𝑛 − |𝑂|) moves. Since 𝑛 − |𝑂| ≥ 0 and the number of moves is at most
𝑘, we can conclude that (1) |𝑂| = 𝑛 and (2) the number of moves of each type is exactly the
minimum possible computed above. Since |𝑂| = 𝑛 we know that 𝑂 = {1, . . . , 𝑛}. But then
looking at the condition for obtaining the minimum possible number of type-3 moves, we see
that the 𝑙𝑖s for 𝑖 ∈ 𝑂 = {1, . . . , 𝑛} in the order in which row-𝑖 flips occur in 𝑚1, . . . , 𝑚𝑘′ are
each at Hamming distance exactly one from the next. Thus, there is a reordering of 𝑙1, . . . , 𝑙𝑛
in which each 𝑙𝑖 is Hamming distance one from the next; in other words, the cubical graph
specified by bitstrings 𝑙1, . . . , 𝑙𝑛 has a Hamiltonian path and 𝑙1, . . . , 𝑙𝑛 is a “yes” instance to
the Promise Cubical Hamiltonian Path problem.

All that’s left is to complete the first two steps of the proof. We prove these two steps in
the lemmas below:

Lemma 4.20. Move sequence 𝑚1, . . . , 𝑚𝑘′ must flip row 𝑖 an odd number of times if
𝑖 ∈ {1, . . . , 𝑛}, and an even number of times otherwise.

Proof. Consider the transformation

𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑡 = 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛.

97

This transformation, while not necessarily the identity transformation, must transform 𝐶0
into another solved Rubik’s Square configuration 𝐶 ′.

Consider the 2𝑛 = 𝑘 + 1 indices max(𝑚, 𝑛) + 1, . . . , max(𝑚, 𝑛) + 2𝑛. At least one such
index 𝑖 must exist for which no move in 𝑚1, . . . , 𝑚𝑘′ is an index-𝑖 move. Let 𝑢 be such an
index.

Consider the effect of transformation 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛 on the cubie in
position (𝑢, 𝑢). If we write 𝑡 = 𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛 as a sequence of 𝑥𝑗s and 𝑦𝑖′s (using the
definitions of 𝑎1 and 𝑏𝑖), then every move in 𝑡 flips rows and columns with indices of absolute
value at most max(𝑚, 𝑛). Thus no term in the transformation (𝑚𝑘′ ∘· · ·∘𝑚1∘𝑎1∘𝑏1∘𝑏2∘· · ·∘𝑏𝑛)
flips row or column 𝑢. We conclude that the cubie in position (𝑢, 𝑢) is unmoved by this
transformation. Applying this transformation to 𝐶0 yields 𝐶 ′. So since this cubie starts
with top sticker red in configuration 𝐶0, the final configuration 𝐶 ′ also has this cubie’s top
sticker red. Since 𝐶 ′ is a solved configuration, the entire top face in 𝐶 ′ must be red.

Next consider the cubie in position (𝑢, 𝑟) for any 𝑟. Since no row or column with index
±𝑢 is ever flipped in transformation 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛, this cubie is only
ever affected by flips of row 𝑟. Furthermore, every flip of row 𝑟 flips this cubie and therefore
switches the color of its top face. Since the transformation in question converts configuration
𝐶0 into configuration 𝐶 ′, both of which have every cubie’s top face red, the row in question
must be flipped an even number of times.

For 𝑖 ∈ {1, . . . , 𝑛}, the tranformation 𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛, when written out fully in terms
of 𝑦𝑖′s and 𝑥𝑗s, includes exactly one flip of row 𝑦𝑖. Thus move sequence 𝑚1, . . . , 𝑚𝑘′ must flip
each of these rows an odd number of times. Similarly, for 𝑖 ̸∈ {1, . . . , 𝑛}, the tranformation
𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛, when written out fully in terms of 𝑦𝑖′s and 𝑥𝑗s, does not include any
flips of row 𝑦𝑖 at all. Thus move sequence 𝑚1, . . . , 𝑚𝑘′ must flip each of these rows an even
number of times.

Lemma 4.21. If 𝑖1, 𝑖2 ∈ 𝑂 (with 𝑖1 ̸= 𝑖2), then the number of column moves 𝑥𝑗 between the
unique 𝑦𝑖1 and 𝑦𝑖2 moves in sequence 𝑚1, . . . , 𝑚𝑘′ is at least the Hamming distance between
𝑙𝑖1 and 𝑙𝑖2.

Proof. We will prove the following useful fact below: if 𝑖1, 𝑖2 ∈ 𝑂 (with 𝑖1 ̸= 𝑖2) and
𝑗 ∈ {1, 2, . . . , 𝑚} such that the top colors of the cubies in locations (𝑗, 𝑖1) and (𝑗, 𝑖2) are
different in configuration 𝐶𝑏, then there must be at least one index-𝑗 column move in between
the unique 𝑦𝑖1 and 𝑦𝑖2 moves in sequence 𝑚1, . . . , 𝑚𝑘′ .

We know from Theorem 4.17 that, if 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑗 ∈ {1, 2, . . . , 𝑚}, then the top
color of the cubie in location (𝑗, 𝑖) of configuration 𝐶𝑏 is red if and only if (𝑙𝑖)𝑗 = 1. Thus, if
𝑙𝑖1 and 𝑙𝑖2 differ in bit 𝑗, then in configuration 𝐶𝑏 one of the two cubies in positions (𝑗, 𝑖1)
and (𝑗, 𝑖2) will have top face red and the other will have top face blue. Applying the above
useful fact, we see that at least one index-𝑗 column move will occur in sequence 𝑚1, . . . , 𝑚𝑘′

between the unique 𝑦𝑖1 and 𝑦𝑖2 moves. Since this column move has index ±𝑗, every difference
in 𝑙𝑖1 and 𝑙𝑖2 will contribute at least one distinct column move between the unique 𝑦𝑖1 and
𝑦𝑖2 moves. Assuming the useful fact, we can conclude that the number of column moves
between the unique 𝑦𝑖1 and 𝑦𝑖2 moves is at least the Hamming distance between 𝑙𝑖1 and 𝑙𝑖2 ,
as desired.

We now prove the useful fact by contradiction. Assume that the useful fact is false, i.e.,
that there exists some 𝑖1, 𝑖2 ∈ 𝑂 and 𝑗 ∈ {1, 2, . . . , 𝑚} such that the top colors of the cubies
in locations (𝑗, 𝑖1) and (𝑗, 𝑖2) are different in 𝐶𝑏 and such that no index-𝑗 column move is
made between the unique 𝑦𝑖1 and 𝑦𝑖2 moves in sequence 𝑚1, . . . , 𝑚𝑘′ .

98

Consider these two cubies. Starting in configuration 𝐶𝑏, we can reach configuration 𝐶 ′ by
applying transformation 𝑚𝑘′ ∘ · · · ∘𝑚1 ∘𝑎1 = 𝑚𝑘′ ∘ · · · ∘𝑚1 ∘ (𝑥1)(𝑙1)1 ∘ (𝑥2)(𝑙1)2 ∘ · · · ∘ (𝑥3)(𝑙1)𝑚 .
Note that this transformation consists of some (but not necessarily all) of the moves
𝑥1, 𝑥2, . . . , 𝑥𝑚 followed by the move sequence 𝑚1, . . . , 𝑚𝑘′ . We will consider the effect of this
transformation on the two cubies.

Since the two cubies start in locations (𝑗, 𝑖1) and (𝑗, 𝑖2), the only moves that could ever
affect these cubies are of the forms 𝑥𝑗 , 𝑥−𝑗 , 𝑦𝑖1 , 𝑦−𝑖1 , 𝑦𝑖2 , and 𝑦−𝑖2 . Furthermore, by the
definition of 𝑂, no moves of the form 𝑦−𝑖1 or 𝑦−𝑖2 occur and the moves 𝑦𝑖1 and 𝑦𝑖2 each
occur exactly once. Finally, we have by assumption that no moves of the form 𝑥𝑗 or 𝑥−𝑗

(index-𝑗 column moves) occur between moves 𝑦𝑖1 and 𝑦𝑖2 .
Putting these facts together, we see that the effect of transformation 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑎1

on these two cubies is exactly the same as the effect of some transformation of the following
type: (1) some number of moves of the form 𝑥𝑗 or 𝑥−𝑗 , followed by (2) the two moves 𝑦𝑖1

and 𝑦𝑖2 in some order, followed by (3) some number of moves of the form 𝑥𝑗 or 𝑥−𝑗 .
Consider the effect of any such transformation on the two cubies. In step (1), each move

of the form 𝑥𝑗 or 𝑥−𝑗 either flips both cubies (since they both start in column 𝑗) or flips
neither, so the two cubies are each flipped an equal number of times. Furthermore, the row
index of the two cubies is either positive for both or negative for both at all times throughout
step (1). In step (2), either each of the two cubies is flipped exactly once (if their row indices
at the start of step (2) are both positive) or neither of the two cubies is flipped at all (if
their row indixes at the start of step (2) are negative); again, the number of flips is the same.
Finally, in step (3), both cubies are in the same column (column 𝑗 if they were not flipped
in step (2) and column −𝑗 if they were), so each move of the form 𝑥𝑗 or 𝑥−𝑗 either flips
both cubies or flips neither; the two cubies are flipped an equal number of times. Thus we
see that the two cubies are flipped an equal number of times by such a transformation.

We can conclude that the two cubies are flipped an equal number of times by transfor-
mation 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑎1. In configuration 𝐶𝑏, the two cubies have different colors on their
top faces, so after transformation 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑎1 flips each of the two cubies an equal
number of times, the resulting configuration still has different colors on the top faces of the
two cubies. But the resulting configuration is 𝐶 ′, which has red as the top face color of
every cubie. Thus we have our desired contradiction. Therefore the useful fact is true and
the desired result holds.

4.4.6 Conclusion

Theorems 4.14 and 4.18 and Corollaries 4.15 and 4.19 show that the polynomial time
reductions given are answer preserving. As a result, we conclude that

Theorem 4.22. The Rubik’s Square and Group Rubik’s Square problems are NP-complete.

4.5 (Group) STM/SQTM Rubik’s Cube is NP-complete

4.5.1 Reductions

Below, we introduce the reductions used for the Rubik’s Cube case. These reductions very
closely mirror the Rubik’s Square case, and the intuition remains exactly the same: the 𝑏𝑖

terms commute, and so if the input Promise Cubical Hamiltonian Path instance is a “yes”
instance then the 𝑏𝑖s can be reordered so that all but 𝑘 moves in the definition of 𝑡 will
cancel; therefore in that case 𝑡 can be both enacted and reversed in 𝑘 moves.

99

There are, however, several notable differences from the Rubik’s Square case. The first
difference is that in a Rubik’s Cube, the moves 𝑥𝑖, 𝑦𝑖, and 𝑧𝑖 are all quarter turn rotations
rather than self-inverting row or column flips. One consequence is that unlike in the Rubik’s
Square case, the term 𝑎𝑖 does not have the property that (𝑎𝑖)−1 = 𝑎𝑖. A second difference is
that in a Rubik’s Square, the rows never become columns or visa versa. In a Rubik’s Cube
on the other hand, rotation of the faces can put rows of stickers that were once aligned
parallel to one axis into alignment with another axis. To avoid allowing a solution of the
puzzle due to this fact in the absence of a solution to the input Promise Cubical Hamiltonian
Path instance, the slices in this construction which take the role of rows 1 through 𝑛 in
the Rubik’s Square case and the slices which take the role of columns 1 through 𝑚 in the
Rubik’s Square case will be assigned entirely distinct indices.

To prove that the STM/SQTM Rubik’s Cube and Group STM/SQTM Rubik’s Cube
problems are NP-complete, we reduce from the Promise Cubical Hamiltonian Path problem
of Section 4.3.2 as described below.

Suppose we are given an instance of the Promise Cubical Hamiltonian Path problem
consisting of 𝑛 biststrings 𝑙1, . . . , 𝑙𝑛 of length 𝑚 (with 𝑙𝑛 = 00 . . . 0). To construct a Group
STM/SQTM Rubik’s Square instance we need to compute the value 𝑘 indicating the allowed
number of moves and construct the transformation 𝑡 in 𝑅𝐶𝑠.

The value 𝑘 can be computed directly as 𝑘 = 2𝑛 − 1.
The transformation 𝑡 will be an element of group 𝑅𝐶𝑠 where 𝑠 = 6𝑛 + 2𝑚. Define 𝑎𝑖 for

1 ≤ 𝑖 ≤ 𝑛 to be (𝑥1)(𝑙𝑖)1 ∘ (𝑥2)(𝑙𝑖)2 ∘ · · · ∘ (𝑥𝑚)(𝑙𝑖)𝑚 where (𝑙𝑖)1, (𝑙𝑖)2, . . . , (𝑙𝑖)𝑚 are the bits of 𝑙𝑖.
Also define 𝑏𝑖 = (𝑎𝑖)−1 ∘ 𝑧𝑚+𝑖 ∘ 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Then we define 𝑡 to be 𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛.

Outputting (𝑡, 𝑘) completes the reduction from the Promise Cubical Hamiltonian Path
problem to the Group STM/SQTM Rubik’s Cube problem. To reduce from the Promise
Cubical Hamiltonian Path problem to the STM/SQTM Rubik’s Cube problem we simply
output (𝐶𝑡, 𝑘) = (𝑡(𝐶0), 𝑘). As with the Rubik’s Square case, these reductions are clearly
polynomial time reductions.

4.5.2 Promise Cubical Hamiltonian Path solution → (Group) STM/SQTM
Rubik’s Cube solution

In this section, we prove one direction of the answer preserving property of the reductions.
This proof is not substantively different from the proof of the first direction for the Rubik’s
Square problems (in Section 4.4.3). The differences in these proofs are all minor details that
are only present to account for the differences (listed above) between the Rubik’s Square
and Rubik’s Cube reductions.

Lemma 4.23. The transformations 𝑏𝑖 all commute.

Proof. Consider any such transformation 𝑏𝑖. The transformation 𝑏𝑖 can be rewritten as
(𝑎𝑖)−1 ∘ 𝑧𝑚+𝑖 ∘ 𝑎𝑖. For any cubie not moved by the 𝑧𝑚+𝑖 middle term, the effect of this
transformation is the same as the effect of transformation (𝑎𝑖)−1 ∘ 𝑎𝑖 = 1. In other words, 𝑏𝑖

only affects cubies that are moved by the 𝑧𝑚+𝑖 term.
A cubie affected by this term was either moved into the 𝑧 slice with index (𝑚 + 𝑖) by 𝑎𝑖

or was already there. 𝑎𝑖 consists of some number of clockwise 𝑥 turns. Thus, in order to
be moved into a position with 𝑧 = (𝑚 + 𝑖), a cubie would have to start in a position with
𝑦 = −(𝑚 + 𝑖) on the +𝑧 face or in a position with 𝑦 = (𝑚 + 𝑖) on the −𝑧 face.

Thus, the cubies affected by 𝑏𝑖 must either have 𝑦 coordinate ±(𝑚 + 𝑖) and lie on one of
the ±𝑧 faces or have 𝑧 coordinate (𝑚 + 𝑖) and lie on one of the other four faces. This is

100

enough to see that the cubies affected by 𝑏𝑖 are disjoint from those affected by 𝑏𝑗 (for 𝑗 ̸= 𝑖).
In other words, the transformations 𝑏𝑖 all commute.

Theorem 4.24. If 𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the Promise Cubical Hamiltonian Path
problem, then (𝑡, 𝑘) is a “yes” instance to the Group SQTM Rubik’s Cube problem.

Proof. Suppose 𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the Promise Cubical Hamiltonian Path
problem. Let 𝑚 be the length of 𝑙𝑖 and note that 𝑙𝑛 = 00 . . . 0 by the promise of the Promise
Cubical Hamiltonian Path problem. Furthermore, since 𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the
Promise Cubical Hamiltonian Path problem, there exists an ordering of these bitstrings
𝑙𝑖1 , 𝑙𝑖2 , . . . , 𝑙𝑖𝑛 such that each consecutive pair of bitstrings is at Hamming distance one,
𝑖1 = 1, and 𝑖𝑛 = 𝑛 (with the final two conditions coming from the promise).

By Lemma 4.23, we know that 𝑡 = 𝑎1 ∘ 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛 can be rewritten as

𝑡 = 𝑎1 ∘ 𝑏𝑖1 ∘ 𝑏𝑖2 ∘ · · · ∘ 𝑏𝑖𝑛 .

Using the definition of 𝑏𝑖, we can further rewrite this as

𝑡 = 𝑎1 ∘ ((𝑎𝑖1)−1 ∘ 𝑧𝑚+𝑖1 ∘ 𝑎𝑖1) ∘ ((𝑎𝑖2)−1 ∘ 𝑧𝑚+𝑖2 ∘ 𝑎𝑖2) ∘ · · · ∘ ((𝑎𝑖𝑛)−1 ∘ 𝑧𝑚+𝑖𝑛 ∘ 𝑎𝑖𝑛),

or as

𝑡 = (𝑎1∘(𝑎𝑖1)−1)∘𝑧𝑚+𝑖1∘(𝑎𝑖1∘(𝑎𝑖2)−1)∘𝑧𝑚+𝑖2∘(𝑎𝑖2∘(𝑎𝑖3)−1)∘· · ·∘(𝑎𝑖𝑛−1∘(𝑎𝑖𝑛)−1)∘𝑧𝑚+𝑖𝑛∘(𝑎𝑖𝑛).

We know that 𝑖1 = 1, and therefore that 𝑎1 ∘ (𝑎𝑖1)−1 = 𝑎1 ∘ (𝑎1)−1 = 1 is the identity
element. Similarly, we know that 𝑖𝑛 = 𝑛 and therefore that 𝑎𝑖𝑛 = 𝑎𝑛 = (𝑥1)(𝑙𝑛)1 ∘ (𝑥2)(𝑙𝑛)2 ∘
· · · ∘ (𝑥𝑚)(𝑙𝑛)𝑚 = (𝑥1)0 ∘ (𝑥2)0 ∘ · · · ∘ (𝑥𝑚)0 = 1 is also the identity.

Thus we see that

𝑡 = 𝑧𝑚+𝑖1 ∘ (𝑎𝑖1 ∘ (𝑎𝑖2)−1) ∘ 𝑧𝑚+𝑖2 ∘ (𝑎𝑖2 ∘ (𝑎𝑖3)−1) ∘ · · · ∘ (𝑎𝑖𝑛−1 ∘ (𝑎𝑖𝑛)−1) ∘ 𝑧𝑚+𝑖𝑛 .

Consider the transformation 𝑎𝑖𝑝 ∘ (𝑎𝑖𝑝+1)−1. This transformation can be written as

𝑎𝑖𝑝∘(𝑎𝑖𝑝+1)−1 = (𝑥1)(𝑙𝑖𝑝)1∘(𝑥2)(𝑙𝑖𝑝)2∘· · ·∘(𝑥𝑚)(𝑙𝑖𝑝)𝑚∘(𝑥1)−(𝑙𝑖𝑝+1)1∘(𝑥2)−(𝑙𝑖𝑝+1)2∘· · ·∘(𝑥𝑚)−(𝑙𝑖𝑝+1)𝑚 .

Because 𝑥𝑢 always commutes with 𝑥𝑣, we can rewrite this as

𝑎𝑖𝑝 ∘ (𝑎𝑖𝑝+1)−1 = (𝑥1)(𝑙𝑖𝑝)1−(𝑙𝑖𝑝+1)1 ∘ (𝑥2)(𝑙𝑖𝑝)2−(𝑙𝑖𝑝+1)2 ∘ · · · ∘ (𝑥𝑚)(𝑙𝑖𝑝)𝑚−(𝑙𝑖𝑝+1)𝑚 .

Since 𝑙𝑖𝑝 differs from 𝑙𝑖𝑝+1 in only one position, call it 𝑗𝑝, we see that (𝑙𝑖𝑝)𝑗 −(𝑙𝑖𝑝+1)𝑗 is zero
unless 𝑗 = 𝑗𝑝, and is ±1 in that final case. This is sufficient to show that 𝑎𝑖𝑝 ∘ (𝑎𝑖𝑝+1)−1 =
(𝑥𝑗𝑝)𝑠𝑝 where 𝑠𝑝 = ±1.

Thus we see that

𝑡 = 𝑧𝑚+𝑖1 ∘ (𝑥𝑗1)𝑠1 ∘ 𝑧𝑚+𝑖2 ∘ (𝑥𝑗2)𝑠2 ∘ · · · ∘ (𝑥𝑗𝑛−1)𝑠𝑛−1 ∘ 𝑧𝑚+𝑖𝑛 ,

or (by left multiplying) that

(𝑧𝑚+𝑖𝑛)−1 ∘ (𝑥𝑗𝑛−1)−𝑠𝑛−1 ∘ · · · ∘ (𝑥𝑗2)−𝑠2 ∘ (𝑧𝑚+𝑖2)−1 ∘ (𝑥𝑗1)−𝑠1 ∘ (𝑧𝑚+𝑖1)−1 ∘ 𝑡 = 1.

We see that 𝑡 can be reversed by 𝑘 = 2𝑛 − 1 terms of the form (𝑧𝑖)−1, 𝑥𝑗 , and (𝑥𝑗)−1, which

101

are all SQTM moves. In other words, (𝑡, 𝑘) is a “yes” instance to the Group SQTM Rubik’s
Cube problem.

Corollary 4.25. If 𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the Promise Cubical Hamiltonian Path
problem, then (𝐶𝑡, 𝑘) is a “yes” instance to the STM/SQTM Rubik’s Cube problem and (𝑡, 𝑘)
is a “yes” instance to the Group STM/SQTM Rubik’s Cube problem.

Proof. This follows immediately from Theorem 4.24 and Lemmas 4.6 and 4.7.

4.5.3 Coloring of 𝐶𝑡

As in the Rubik’s Square case, it will be helpful for the second direction of the proof to
know the coloring of the Cube’s configuration. As before, we define 𝑏 = 𝑏1 ∘ · · · ∘ 𝑏𝑛 (so that
𝑡 = 𝑎1 ∘ 𝑏) and determine the colors of the stickers in configuration 𝐶𝑏 = 𝑏(𝐶0).

Consider the example instance of Promise Cubical Hamiltonian Path with 𝑛 = 5 and
𝑚 = 3 introduced in the Rubik’s Square section and reproduced below:

𝑙1 = 011
𝑙2 = 110
𝑙3 = 111
𝑙4 = 100
𝑙5 = 000

For this example instance, the Rubik’s Cube configuration produced by the reduction is
an 𝑠 × 𝑠 × 𝑠 Rubik’s Cube with 𝑠 = 2𝑚 + 6𝑛 = 36. Furthermore, the coloring of the stickers
in 𝐶𝑏 for this example is shown in Figure 4-6. Note that the 𝑛 × 𝑚 grid of bits comprising
𝑙1, . . . , 𝑙𝑛 is actually directly encoded in the coloring of each face.

In this section, we prove the following useful theorem, which formalizes the pattern of
colors from the example (Figure 4-6):

Theorem 4.26. In 𝐶𝑏, the stickers have the following coloring:

+𝑧: The stickers on the +𝑧 face with (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and the 𝑗th bit of 𝑙𝑖 is one are all red. All other stickers are white.

−𝑧: The stickers on the −𝑧 face with (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and the 𝑗th bit of 𝑙𝑖 is one are all orange. All other stickers are blue.

+𝑦: The stickers on the +𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and either 𝑙𝑖 doesn’t have a 𝑗th bit (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or the 𝑗th bit of 𝑙𝑖 is zero are
all red. All other stickers are green.

−𝑦: The stickers on the −𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and either 𝑙𝑖 doesn’t have a 𝑗th bit (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or the 𝑗th bit of 𝑙𝑖 is zero are
all orange. All other stickers are yellow.

+𝑥: The stickers on the +𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and the 𝑗th bit of 𝑙𝑖 is one are all white. All other stickers with 𝑧 coordinate in
{1, . . . , 𝑛} are green. All other stickers are orange.

102

Figure 4-6: The faces of 𝐶𝑏 for the example input 𝑙1, . . . , 𝑙𝑛. In this figure, the top and
bottom faces are the +𝑧 and −𝑧 faces, while the faces in the vertical center of the figure are
the +𝑥, +𝑦, −𝑥, and −𝑦 faces from left to right.

−𝑥: The stickers on the −𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and the 𝑗th bit of 𝑙𝑖 is one are all blue. All other stickers with 𝑧 coordinate in {1, . . . , 𝑛}
are yellow. All other stickers are red.

The proof of this theorem is involved and uninsightful. In addition, no other result from
this section will be used in the rest of this chapter. As a result, the reader should feel free
to skip the remainder of this section.

To formally derive the coloring of configuration 𝐶𝑏, we need to have a formal description
of the effect of transformation 𝑏𝑖. For example, Figure 4-7 shows the +𝑥, +𝑦, and +𝑧
faces of a Rubik’s Cube in configurations 𝐶0, 𝑎2(𝐶0), (𝑧𝑚+2 ∘ 𝑎2)(𝐶0), and 𝑏2(𝐶0) =
((𝑎2)−1 ∘ 𝑧𝑚+2 ∘ 𝑎2)(𝐶0) where 𝑎2 and 𝑧𝑚+2 = 𝑧5 are defined in terms of 𝑙2 = 110 as in the
reduction.

The exact behavior of a Rubik’s Cube due to 𝑏𝑖 is described by Lemmas 4.27 through 4.29:

Lemma 4.27. Suppose 𝑖 ∈ {1, . . . , 𝑛}. Then the effect of 𝑏𝑖 on the stickers from the ±𝑧
faces of a Rubik’s Cube can be described as follows:

∙ If the 𝑗th bit of 𝑙𝑖 is one, then the sticker starting on the +𝑧 face with (𝑥, 𝑦) coordinates
(𝑗, −(𝑚 + 𝑖)) ends up on the +𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)).

103

(a) (b)

(c) (d)

Figure 4-7: Applying 𝑏2 to 𝐶0 step by step.

∙ If the 𝑗th bit of 𝑙𝑖 is one, then the sticker starting on the −𝑧 face with (𝑥, 𝑦) coordinates
(𝑗, −(𝑚 + 𝑖)) ends up on the −𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)).

∙ All other stickers on the ±𝑧 faces stay in place.

Proof. As noted in the proof of Lemma 4.23, a sticker is affected by 𝑏𝑖 = (𝑎𝑖)−1 ∘ 𝑧𝑚+𝑖 ∘ 𝑎𝑖 if
and only if it is moved by the 𝑧𝑚+𝑖 term.

Consider the stickers originally on the +𝑧 face. 𝑏𝑖 starts with 𝑎𝑖, which rotates the 𝑥

104

slices with 𝑥 coordinates 𝑗 such that bit 𝑗 of 𝑙𝑖 is one. Therefore, the stickers on the +𝑧 face
with 𝑥 coordinates of this form are rotated to the +𝑦 face, and all the other stickers are left
in place. After that, the only stickers from the +𝑧 face which are moved by the 𝑧𝑚+𝑖 term
of 𝑏𝑖 are the stickers which were on the +𝑦 face with 𝑧 coordinate (𝑚 + 𝑖) and 𝑥 coordinate
𝑗 such that bit 𝑗 of 𝑙𝑖 is one. In other words, the only stickers from the +𝑧 face moved by
the 𝑧𝑚+𝑖 term, are those starting at (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)) where bit 𝑗 of 𝑙𝑖 is one.

All other stickers starting on the +𝑧 face are not affected by the 𝑧𝑚+𝑖 term, and are
therefore not moved by 𝑏𝑖. On the other hand, consider any sticker of this form: a sticker
starting on the +𝑧 face at (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)) where bit 𝑗 of 𝑙𝑖 is one. Such a
sticker is moved by 𝑎𝑖 to (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) of face +𝑦. It is then moved by 𝑧𝑚+𝑖

to (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)) of face +𝑥. Finally, (𝑎𝑖)−1 does not affect the sticker since
it is on the +𝑥 face at the time and (𝑎𝑖)−1 consists of rotations of 𝑥 slices.

Thus, if the 𝑗th bit of 𝑙𝑖 is one, then the sticker starting on the +𝑧 face with (𝑥, 𝑦)
coordinates (𝑗, −(𝑚 + 𝑖)) ends up on the +𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)). All
other stickers starting on the +𝑧 face remain in place.

The exact same logic applies to the stickers originally on the −𝑧 face, allowing us to
conclude that the lemma statement holds, as desired.

Lemma 4.28. Suppose 𝑖 ∈ {1, . . . , 𝑛}. Then the effect of 𝑏𝑖 on the stickers from the ±𝑦
faces of a Rubik’s Cube can be described as follows:

∙ If the 𝑗th bit of 𝑙𝑖 does not exist (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or if the 𝑗th bit of 𝑙𝑖 is zero,
then the sticker starting on the +𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) ends up on
the +𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)).

∙ If the 𝑗th bit of 𝑙𝑖 does not exist (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or if the 𝑗th bit of 𝑙𝑖 is zero,
then the sticker starting on the −𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) ends up on
the −𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)).

∙ All other stickers on the ±𝑦 faces stay in place.

Proof. As noted in the proof of Lemma 4.23, a sticker is affected by 𝑏𝑖 = (𝑎𝑖)−1 ∘ 𝑧𝑚+𝑖 ∘ 𝑎𝑖 if
and only if it is moved by the 𝑧𝑚+𝑖 term.

Consider the stickers originally on the +𝑦 face. 𝑏𝑖 starts with 𝑎𝑖, which rotates the 𝑥
slices with 𝑥 coordinates 𝑗 such that bit 𝑗 of 𝑙𝑖 is one. Therefore, the stickers on the +𝑦 face
with 𝑥 coordinates of this form are rotated to the −𝑧 face, and all the other stickers are
left in place. After that, the only stickers from the +𝑦 face which are moved by the 𝑧𝑚+𝑖

term of 𝑏𝑖 are the stickers with 𝑧 coordinate (𝑚 + 𝑖) which were not moved from the +𝑦
face. In other words, the only stickers from the +𝑧 face moved by the 𝑧𝑚+𝑖 term, are those
starting at (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)) where bit 𝑗 of 𝑙𝑖 either does not exist (i.e. 𝑗 < 0
or 𝑗 > 𝑚) or is zero.

All other stickers starting on the +𝑦 face are not affected by the 𝑧𝑚+𝑖 term, and are
therefore not moved by 𝑏𝑖. On the other hand, consider any sticker of this form: a sticker
starting on the +𝑦 face at (𝑥, 𝑧) coordinates (𝑗, (𝑚+ 𝑖)) where bit 𝑗 of 𝑙𝑖 either does not exist
or is zero. Such a sticker is not moved by 𝑎𝑖. It is then moved by 𝑧𝑚+𝑖 to (𝑦, 𝑧) coordinates
(−𝑗, (𝑚 + 𝑖)) of face +𝑥. Finally, (𝑎𝑖)−1 does not affect the sticker since it is on the +𝑥 face
at the time and (𝑎𝑖)−1 consists of rotations of 𝑥 slices.

Thus, if the 𝑗th bit of 𝑙𝑖 does not exist (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or if the 𝑗th bit of 𝑙𝑖 is
zero, then the sticker starting on the +𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) ends up on

105

the +𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)). All other stickers starting on the +𝑦 face
remain in place.

The exact same logic applies to the stickers originally on the −𝑦 face, allowing us to
conclude that the lemma statement holds, as desired.

Lemma 4.29. Suppose 𝑖 ∈ {1, . . . , 𝑛}. Then the effect of 𝑏𝑖 on the stickers from the ±𝑥
faces of a Rubik’s Cube can be described as follows:

∙ If the 𝑗th bit of 𝑙𝑖 is one, then the sticker starting on the +𝑥 face with (𝑦, 𝑧) coordinates
(𝑗, (𝑚 + 𝑖)) ends up on the −𝑧 face with (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)).

∙ If the 𝑗th bit of 𝑙𝑖 does not exist (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or if the 𝑗th bit of 𝑙𝑖 is zero,
then the sticker starting on the +𝑥 face with (𝑦, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) ends up on
the −𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)).

∙ If the 𝑗th bit of 𝑙𝑖 is one, then the sticker starting on the −𝑥 face with (𝑦, 𝑧) coordinates
(𝑗, (𝑚 + 𝑖)) ends up on the +𝑧 face with (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)).

∙ If the 𝑗th bit of 𝑙𝑖 does not exist (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or if the 𝑗th bit of 𝑙𝑖 is zero,
then the sticker starting on the −𝑥 face with (𝑦, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) ends up on
the +𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)).

∙ All other stickers on the ±𝑥 faces stay in place.

Proof. As noted in the proof of Lemma 4.23, a sticker is affected by 𝑏𝑖 = (𝑎𝑖)−1 ∘ 𝑧𝑚+𝑖 ∘ 𝑎𝑖 if
and only if it is moved by the 𝑧𝑚+𝑖 term.

Consider the stickers originally on the +𝑥 face. 𝑏𝑖 starts with 𝑎𝑖, which affects none of
the stickers on the +𝑥 face. After that, the 𝑧𝑚+𝑖 term moves exactly those stickers from the
+𝑥 face that had 𝑧 coordinate (𝑚 + 𝑖). As a result, these stickers are all affected by 𝑏𝑖, and
all others are not.

Consider a sticker starting on the +𝑥 face with (𝑦, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)). This
sticker is unaffected by 𝑎𝑖 and then moved to the −𝑦 face by 𝑧𝑚+𝑖. In particular, it is moved
to (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)). After that, there are two cases:

Case 1: If bit 𝑗 of 𝑙𝑖 does not exist (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or if the 𝑗th bit of 𝑙𝑖 is zero,
then the sticker is unaffected by (𝑎𝑖)−1. This shows that if the 𝑗th bit of 𝑙𝑖 does not exist or
if the 𝑗th bit of 𝑙𝑖 is zero, then the sticker starting on the +𝑥 face with (𝑦, 𝑧) coordinates
(𝑗, (𝑚 + 𝑖)) ends up on the −𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)).

Case 2: If bit 𝑗 of 𝑙𝑖 is one, then after being moved to the −𝑦 face by 𝑧𝑚+𝑖, the sticker
in question is moved to the −𝑧 face by (𝑎𝑖)−1. In particular, the sticker ends up at (𝑥, 𝑦)
coordinates (𝑗, −(𝑚 + 𝑖)). This shows that if the 𝑗th bit of 𝑙𝑖 is one, then the sticker
starting on the +𝑥 face with (𝑦, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) ends up on the −𝑧 face with
(𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)).

As previously mentioned, all stickers starting on the +𝑥 face other than those addressed
by the above cases stay in place due to 𝑏𝑖. Together with the statements shown in the two
cases, this is exactly what we wished to show.

The same logic applies to the stickers originally on the −𝑥 face, allowing us to conclude
that the lemma statement holds, as desired.

We can apply the above lemmas to figure out the effect of transformation 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛

on configuration 𝐶0. In particular, this allows us to learn the coloring of configuration 𝐶𝑏.
At this point, we can prove Theorem 4.26, which is restated below for convenience:

106

Theorem 4.26. In 𝐶𝑏, the stickers have the following coloring:

+𝑧: The stickers on the +𝑧 face with (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and the 𝑗th bit of 𝑙𝑖 is one are all red. All other stickers are white.

−𝑧: The stickers on the −𝑧 face with (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and the 𝑗th bit of 𝑙𝑖 is one are all orange. All other stickers are blue.

+𝑦: The stickers on the +𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and either 𝑙𝑖 doesn’t have a 𝑗th bit (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or the 𝑗th bit of 𝑙𝑖 is zero are
all red. All other stickers are green.

−𝑦: The stickers on the −𝑦 face with (𝑥, 𝑧) coordinates (𝑗, (𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and either 𝑙𝑖 doesn’t have a 𝑗th bit (i.e. 𝑗 < 0 or 𝑗 > 𝑚) or the 𝑗th bit of 𝑙𝑖 is zero are
all orange. All other stickers are yellow.

+𝑥: The stickers on the +𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and the 𝑗th bit of 𝑙𝑖 is one are all white. All other stickers with 𝑧 coordinate in
{1, . . . , 𝑛} are green. All other stickers are orange.

−𝑥: The stickers on the −𝑥 face with (𝑦, 𝑧) coordinates (−𝑗, (𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and the 𝑗th bit of 𝑙𝑖 is one are all blue. All other stickers with 𝑧 coordinate in {1, . . . , 𝑛}
are yellow. All other stickers are red.

Proof. 𝐶𝑏 is obtained from 𝐶0 by applying transformation 𝑏1 ∘ 𝑏2 ∘ · · · ∘ 𝑏𝑛. Each 𝑏𝑖 affects a
disjoint set of stickers. Using this fact together with the description of the effect of one 𝑏𝑖,
we can obtain the description of the coloring of 𝐶𝑏 given in the above theorem statement.

For example, consider the stickers that end up on the +𝑧 face. According to Lemma 4.29,
if the 𝑗th bit of 𝑙𝑖 is one, then 𝑏𝑖 moves the sticker starting on the −𝑥 face with (𝑦, 𝑧)
coordinates (−𝑗, (𝑚 + 𝑖)) to the +𝑧 face with (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)). Since the
𝑏𝑖s each affect disjoint sets of stickers, the stickers on the +𝑧 face with (𝑥, 𝑦) coordinates
(𝑗, −(𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛} and the 𝑗th bit of 𝑙𝑖 is one are all stickers that started
on the −𝑥 face. Since the −𝑥 face is red in 𝐶0, these stickers are all red. We know from
Lemmas 4.27 through 4.29 that no stickers other than the ones that started there and those
described above are moved to the +𝑧 face by 𝑏𝑖. Therefore all other stickers on the +𝑧 face
started there. Since the +𝑧 face is white in 𝐶0, these stickers are all white. Putting this
together, we obtain exactly the first bullet point of the theorem statement:

The stickers on the +𝑧 face with (𝑥, 𝑦) coordinates (𝑗, −(𝑚 + 𝑖)) where 𝑖 ∈ {1, . . . , 𝑛}
and the 𝑗th bit of 𝑙𝑖 is one are all red. All the other stickers are white.

The logic for the other five faces is exactly analogous, and is omitted here for brevity.

This concludes the description of 𝐶𝑏 in terms of colors. The coloring of configuration
𝐶𝑡—the configuration that is actually obtained by applying the reduction to 𝑙1, . . . , 𝑙𝑛—can
be obtained from the coloring of configuration 𝐶𝑏 by applying transformation 𝑎1. This is
shown for the previously given example in Figure 4-8.

107

Figure 4-8: The +𝑥, +𝑦, and +𝑧 faces of 𝐶𝑡 for the example input 𝑙1, . . . , 𝑙𝑛.

4.5.4 (Group) STM/SQTM Rubik’s Cube solution → Promise Cubical
Hamiltonian Path solution: proof outline

We wish to prove the following:

Theorem 4.30. If (𝐶𝑡, 𝑘) is a “yes” instance to the STM Rubik’s Cube problem, then
𝑙1, . . . , 𝑙𝑛 is a “yes” instance to the Promise Cubical Hamiltonian Path problem.

By Lemmas 4.6 and 4.7, this will immediately also imply the following corollary:

Corollary 4.31. If (𝑡, 𝑘) is a “yes” instance to the Group STM/SQTM Rubik’s Cube problem
or (𝐶𝑡, 𝑘) is a “yes” instance to the STM/SQTM Rubik’s Cube problem, then 𝑙1, . . . , 𝑙𝑛 is a
“yes” instance to the Promise Cubical Hamiltonian Path problem.

The intuition behind the proof of this theorem is similar to that used in the Rubik’s
Square case, but there is added complexity due to the extra options available in a Rubik’s
Cube. Most of the added complexity is due to the possibility of face moves (allowing rows
of stickers to align in several directions over the course of a solution).

Below, we describe an outline of the proof, including several high level steps, each of
which is described in more detail in an additional subsection.

To prove the theorem, we consider a hypothetical solution to the (𝐶𝑡, 𝑘) instance of the
STM Rubik’s Cube problem. A solution consists of a sequence of STM Rubik’s Cube moves
𝑚1, . . . , 𝑚𝑘′ with 𝑘′ ≤ 𝑘 such that 𝐶 ′ = (𝑚𝑘′ ∘ · · · ∘ 𝑚1)(𝐶𝑡) is a solved configuration of the
Rubik’s Cube.

One very helpful idea that is used several times throughout the proof is the idea of an
index 𝑢 such that no move 𝑚𝑖 is an index-𝑢 move.

Definition 4.32. Define 𝑢 ∈ {𝑚 + 𝑛 + 1, 𝑚 + 𝑛 + 2, . . . , 𝑚 + 𝑛 + (2𝑛)} to be an index such
that 𝑚1, . . . , 𝑚𝑘′ contains no index-𝑢 move.

108

Notice that a value for 𝑢 satisfying this definition must exist because variable 𝑢 has
2𝑛 = 𝑘 + 1 > 𝑘 ≥ 𝑘′ possible values and each of the 𝑘′ moves 𝑚𝑖 disqualifies at most one
possible value from being assigned to variable 𝑢.

Step 1 of the proof is a preliminary characterization of the possible index-(𝑚 + 𝑖) moves
among 𝑚1, . . . , 𝑚𝑘′ for 𝑖 ∈ {1, . . . , 𝑛}. Consider the following definition:

Definition 4.33. Partition the set {1, . . . , 𝑛} into four sets of indices 𝑍, 𝑂, 𝑇 , and 𝑀
(where 𝑍, 𝑂, 𝑇 , and 𝑀 are named after “zero”, “one”, “two”, and “more”) as follows:

∙ 𝑖 ∈ 𝑍 if and only if 𝑚1, . . . , 𝑚𝑘′ contains exactly zero index-(𝑚 + 𝑖) moves
∙ 𝑖 ∈ 𝑂 if and only if 𝑚1, . . . , 𝑚𝑘′ contains exactly one index-(𝑚 + 𝑖) move
∙ 𝑖 ∈ 𝑇 if and only if 𝑚1, . . . , 𝑚𝑘′ contains exactly two index-(𝑚 + 𝑖) moves
∙ 𝑖 ∈ 𝑀 if and only if 𝑚1, . . . , 𝑚𝑘′ contains at least three index-(𝑚 + 𝑖) moves

In Step 1, we prove the following list of results, thereby restricting the set of possible
index-(𝑚 + 𝑖) moves (for 𝑖 ∈ {1, . . . , 𝑛}) among 𝑚1, . . . , 𝑚𝑘′ :

∙ 𝑍 is empty.

∙ If 𝑖 ∈ 𝑂, then the sole index-(𝑚 + 𝑖) move must be a counterclockwise 𝑧 turn.

∙ If 𝑖 ∈ 𝑇 , then the two index-(𝑚 + 𝑖) moves must be a clockwise 𝑧 turn and a 𝑧 flip in
some order.

∙ If 𝑖 ∈ 𝑂 ∪ 𝑇 , then any move of 𝑧 slice (𝑚 + 𝑖) must occur at a time when faces +𝑥,
+𝑦, −𝑥, and −𝑦 all have zero rotation and any move of 𝑧 slice −(𝑚 + 𝑖) must occur at
a time when these faces all have rotation 180∘.

Step 2 of the proof concerns the concept of paired stickers:

Definition 4.34. Suppose 𝑝1, 𝑝2, and 𝑞 are all distinct positive non-face slice indices. Then
we say that two stickers are (𝑝1, 𝑝2, 𝑞)-paired if the two stickers are on the same index-𝑗
slice, the two stickers are on the same quadrant of a face, one of the stickers has coordinates
±𝑞 and ±𝑝1 within that face, and the second sticker has coordinates ±𝑞 and ±𝑝2 within the
face.

In particular, we prove the following useful properties of paired stickers:

∙ If two stickers are (𝑝1, 𝑝2, 𝑞)-paired, then they remain (𝑝1, 𝑝2, 𝑞)-paired after one move
unless the move is an index-𝑝1 move or an index-𝑝2 move which moves one of the
stickers.

∙ Suppose 𝑖1, 𝑖2 ∈ 𝑂 and 𝑗 ∈ {1, 2, . . . , 𝑚}. Then consider any pair of stickers that
are (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired in 𝐶𝑏. If there are no face moves of faces +𝑥, +𝑦,
−𝑥, and −𝑦 and no index-𝑗 moves that affect either of the stickers between the
index-(𝑚 + 𝑖1) 𝑂-move and the index-(𝑚 + 𝑖2) 𝑂-move, then the two stickers remain
(𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired in 𝐶 ′.

Step 3 of the proof uses a counting argument to significantly restrict the possible moves
in 𝑚1, . . . , 𝑚𝑘′ . In particular, consider the following classification of moves into disjoint
types:

109

∙ “𝑂-moves”: index-(𝑚 + 𝑖) moves with 𝑖 ∈ 𝑂

∙ “𝑇 -moves”: index-(𝑚 + 𝑖) moves with 𝑖 ∈ 𝑇

∙ “𝑀 -moves”: index-(𝑚 + 𝑖) moves with 𝑖 ∈ 𝑀

∙ “𝐽-moves”: index-𝑗 moves with 𝑗 ∈ 𝐽 = {1, . . . , 𝑚}

∙ “vertical face moves”: face moves of faces +𝑥, +𝑦, −𝑥, or −𝑦

∙ “other moves”: all other moves

We show using the results from Steps 1 and 2 that there must be a 𝐽-move or two
vertical face moves between each pair of 𝑂-moves in 𝑚1, . . . , 𝑚𝑘′ . As a result, we can count
the number of moves of each type as follows:

Let 𝑐𝑂, 𝑐𝑇 , 𝑐𝑀 , 𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙, 𝑐𝐽 , and 𝑐𝑜𝑡ℎ𝑒𝑟 be the number of moves of each type. We derive
the following constraints:

∙ 𝑐𝑂 = |𝑂|

∙ 𝑐𝑇 = 2|𝑇 |

∙ 𝑐𝑀 ≥ 3|𝑀 |

∙ 𝑐𝐽 + 1
2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ≥ |𝑂| − 1

∙ 𝑐𝑜𝑡ℎ𝑒𝑟 ≥ 0

Adding these together, we find that

𝑘′− 1
2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 𝑐𝑂 +𝑐𝑇 +𝑐𝑀 + 1

2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙+𝑐𝐽 +𝑐𝑜𝑡ℎ𝑒𝑟 ≥ |𝑂|+2|𝑇 |+3|𝑀 |+(|𝑂|−1) = 𝑘+|𝑀 |.

The above shows that 𝑘′ ≥ 𝑘, but we also know that 𝑘′ ≤ 𝑘. Thus, equality must hold
at each step. Working out the details, we find that 𝑐𝑂 = |𝑂|, 𝑐𝑇 = 2|𝑇 |, 𝑐𝐽 = |𝑂| − 1, and
𝑐𝑀 = 𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 𝑐𝑜𝑡ℎ𝑒𝑟 = 0. Thus, the counting argument in this step shows that the only
moves in 𝑚1, . . . , 𝑚𝑘′ other than 𝑂-moves and 𝑇 -moves are the |𝑂| − 1 quantity of 𝐽-moves
which are between 𝑂-moves.

In Step 4, we further restrict the possibilities. In particular, we show the following:

∙ Since there are no face moves, the index-(𝑚 + 𝑖) 𝑂-move for 𝑖 ∈ 𝑂 can only be a
counterclockwise 𝑧 turn of slice (𝑚 + 𝑖). Similarly the index-(𝑚 + 𝑖) 𝑇 -moves for 𝑖 ∈ 𝑇
are a clockwise 𝑧 turn and a 𝑧 flip of slice (𝑚 + 𝑖).

∙ Consider the elements 𝑖 ∈ 𝑂 in the order in which their 𝑂-moves occur. We show that
if 𝑖1 is immediately before 𝑖2 in this order, then it must be the case that 𝑙𝑖1 differs
from 𝑙𝑖2 in exactly one bit.

∙ Furthermore, the one 𝐽-move between two consecutive 𝑂-moves of slices 𝑚 + 𝑖1 and
𝑚 + 𝑖2 must rotate the 𝑥 slice whose index is the unique index 𝑗 at which strings 𝑙𝑖1

and 𝑙𝑖2 differ.

110

At this point, we are almost done. Consider the elements 𝑖 ∈ 𝑂 in the order in which
their 𝑂-moves occur. The corresponding bitstring 𝑙𝑖 in the same order have the property
that each 𝑙𝑖 is at Hamming distance one from the next. In Step 5, we use the ideas of paired
stickers to show that 𝑇 is empty, and as a result conclude that 𝑂 = {1, . . . , 𝑛} and therefore
that the above ordering of the 𝑙𝑖s is an ordering of all the 𝑙𝑖s in which each 𝑙𝑖 has Hamming
distance one from the next. In other words, we show our desired result: that 𝑙1, . . . , 𝑙𝑛 is a
“yes” instance to the Promise Cubical Hamiltonian Path problem.

4.5.5 Step 1: restricting the set of possible index-(𝑚 + 𝑖) moves

As stated in the proof outline, we will prove the following list of results in this section

∙ 𝑍 is empty.

∙ If 𝑖 ∈ 𝑂, then the sole index-(𝑚 + 𝑖) move must be a counterclockwise 𝑧 turn.

∙ If 𝑖 ∈ 𝑇 , then the two index-(𝑚 + 𝑖) moves must be a clockwise 𝑧 turn and a 𝑧 flip in
some order.

∙ If 𝑖 ∈ 𝑂 ∪ 𝑇 , then any move of 𝑧 slice (𝑚 + 𝑖) must occur at a time when faces +𝑥,
+𝑦, −𝑥, and −𝑦 all have zero rotation and any move of 𝑧 slice −(𝑚 + 𝑖) must occur at
a time when these faces all have rotation 180∘.

We begin with a preliminary result concerning the coloring of the solved configuration
𝐶 ′ = (𝑚𝑘′ ∘ · · · ∘ 𝑚1)(𝐶𝑡).

Lemma 4.35. The solved Rubik’s Cube configuration 𝐶 ′ has the same face colors as 𝐶0.

Proof. Consider the sticker with both coordinates 𝑢 on any face of 𝐶0. No index-𝑢 moves
occur within 𝑚𝑘′ ∘· · ·∘𝑚1 by definition of 𝑢. No index-𝑢 moves occur within 𝑡 = 𝑎1∘𝑏1∘· · ·∘𝑏𝑛

because 𝑡 is defined entirely using moves of slices whose indices have absolute values at most
𝑚 + 𝑛 and 𝑢 > 𝑚 + 𝑛. As a result, the sticker in question is never moved off of the face it
starts on by the transformation 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑡. Applying transformation 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑡
to 𝐶0 yields 𝐶 ′, so the sticker is on the same face in 𝐶 ′ as it is in 𝐶0. Since both 𝐶0 and
𝐶 ′ are solved configurations, we conclude that configuration 𝐶 ′ has the same face colors as
𝐶0.

Using this, we can show the first desired result:

Lemma 4.36. 𝑍 is empty.

Proof. Suppose for the sake of contradiction that 𝑚1, . . . , 𝑚𝑘′ contains no index-(𝑚 + 𝑖)
move for some 𝑖 ∈ {1, . . . , 𝑛}.

Then consider the sticker with coordinates (𝑥, 𝑧) = (𝑢, 𝑚 + 𝑖) on the +𝑦 face of 𝐶𝑏.
Configuration 𝐶 ′ can be obtained from configuration 𝐶𝑏 by transformation 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑎1.
We know, however, that moves 𝑚1, . . . , 𝑚𝑘′ include no index-(𝑚 + 𝑖) or index-𝑢 moves.
Similarly, since 𝑎1 = (𝑥1)(𝑙1)1 ∘ · · · ∘ (𝑥𝑚)(𝑙1)𝑚 , we see that 𝑎1 consists of no index-𝑗 moves
with 𝑗 > 𝑚. Since both 𝑚+ 𝑖 and 𝑢 are greater than 𝑚, we can conclude that transformation
𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑎1 can be built without any index-(𝑚 + 𝑖) or index-𝑢 moves. As a result,
this transformation does not move the sticker in question to a different face.

111

We then see that the sticker with coordinates (𝑥, 𝑧) = (𝑢, 𝑚 + 𝑖) on the +𝑦 face of 𝐶𝑏 is
also on the +𝑦 face of 𝐶 ′. By Theorem 4.26, we see that the color of this sticker in 𝐶𝑏 is red.
However, the +𝑦 face of 𝐶 ′ is supposed to be the same color as the +𝑦 face of 𝐶0: green.

By contradiction, we see as desired that 𝑚1, . . . , 𝑚𝑘′ must contain some index-(𝑚 + 𝑖)
move for all 𝑖 ∈ {1, . . . , 𝑛}

The rest of what we wish to show concerns index-(𝑚 + 𝑖) moves where 𝑖 ∈ 𝑂 ∪ 𝑇 .
For any 𝑖, we can restrict our attention to a specific set of stickers as in the following

definition:

Definition 4.37. Define the special stickers to be the 48 stickers in 𝐶𝑏 with coordinates ±𝑢
and ±(𝑚 + 𝑖) (eight special stickers per face).

Notice that by Theorem 4.26, all but 8 special stickers have the same color as the color
of their starting face in 𝐶0. This motivates the following further definition:

Definition 4.38. Define the correctly placed stickers to be the 40 special stickers which
have the same color as their starting face has in 𝐶0. Define the misplaced stickers to be the
other 8 special stickers.

Of the 8 misplaced stickers, the two on the +𝑦 face have the color of the −𝑥 face in 𝐶0,
the two on the −𝑥 face have the color of the −𝑦 face in 𝐶0, the two on the −𝑦 face have the
color of the +𝑥 face in 𝐶0, and the two on the +𝑥 face have the color of the +𝑦 face in 𝐶0.
In short, starting at 𝐶𝑏, the 8 misplaced stickers must each move one face counterclockwise
around the 𝑧 axis in order to end up on the face whose color in 𝐶0 matches the color of the
sticker.

Next, consider the effect that move sequence 𝑚1, . . . , 𝑚𝑘′ must have on the special
stickers

Lemma 4.39. When starting in configuration 𝐶𝑏, move sequence 𝑚1, . . . , 𝑚𝑘′ must move
the misplaced stickers one face counterclockwise around the 𝑧 axis and must return each of
the correctly placed stickers to the face that sticker started on.

Proof. Configuration 𝐶 ′, which has the same coloring scheme as configuration 𝐶0, can be
reached from configuration 𝐶𝑏 by applying transformation 𝑚𝑘′ ∘ · · · ∘ 𝑚1 ∘ 𝑎1. Therefore,
the 8 misplaced stickers must be moved counterclockwise one face around the 𝑧 axis and
the 40 correctly placed stickers must stay on the same face due to this transformation.
Notice that the only moves which transfer special stickers between faces are index-𝑢 and
index-(𝑚 + 𝑖) moves. The only other moves that even affect special stickers are face moves.
As previously argued, 𝑎1 contains no index-𝑢 moves. In fact, 𝑎1 does not contain face moves
or index-(𝑚 + 𝑖) moves either and so 𝑎1 does not move any of the special stickers at all.

In other words, the effect of this transformation (𝑚𝑘′ ∘ · · ·∘𝑚1 ∘𝑎1) on the special stickers
is the same as the effect of just the transformation 𝑚1, . . . , 𝑚𝑘′ . Thus, 𝑚1, . . . , 𝑚𝑘′ must
move the misplaced stickers one face counterclockwise around the 𝑧 axis and must return
each of the correctly placed stickers to the face that sticker started on.

This allows us to directly prove the next two parts of our desired result:

Lemma 4.40. If 𝑖 ∈ 𝑂, then the sole index-(𝑚 + 𝑖) move must be a counterclockwise 𝑧 turn.

112

Proof. Consider the result of move sequence 𝑚1, . . . , 𝑚𝑘′ when starting in configuration 𝐶𝑏.
We showed above that the 8 misplaced stickers must each move one face counterclockwise
around the 𝑧 axis and the correctly placed stickers must stay on the same face. Furthermore,
the only moves which cause special stickers to change faces are index-𝑢 or index-(𝑚+𝑖) moves.
Since 𝑚1, . . . , 𝑚𝑘′ includes no index-𝑢 moves and includes exactly one index-(𝑚 + 𝑖) move
(for 𝑖 ∈ 𝑂), we see that the special stickers only change faces during the sole index-(𝑚 + 𝑖)
move in 𝑚1, . . . , 𝑚𝑘′ .

Every slice with index ±(𝑚 + 𝑖) contains exactly 8 special stickers; therefore the sole
index-(𝑚 + 𝑖) move must cause exactly 8 of the special stickers to change faces.

In order for the 8 misplaced stickers to change faces and for the correctly placed stickers
not to, it must be the case that the single index-(𝑚+𝑖) move relocates exactly the 8 misplaced
stickers. These stickers are on the ±𝑥 and ±𝑦 faces. Since the single index-(𝑚 + 𝑖) move
affects 8 stickers on the ±𝑥 and ±𝑦 faces and moves each of these stickers exactly one face
counterclockwise around the 𝑧 axis, it must be the case that this move is a counterclockwise
𝑧 slice turn. As desired, the sole index-(𝑚 + 𝑖) move is a counterclockwise 𝑧 turn.

Lemma 4.41. If 𝑖 ∈ 𝑇 , then the two index-(𝑚 + 𝑖) moves must be a clockwise 𝑧 turn and a
𝑧 flip in some order.

Proof. As before, consider the result of move sequence 𝑚1, . . . , 𝑚𝑘′ when starting in configu-
ration 𝐶𝑏. The 8 misplaced stickers must each move one face counterclockwise around the 𝑧
axis and the correctly placed stickers must stay on the same face. Since the only moves which
cause special stickers to change faces are index-𝑢 or index-(𝑚 + 𝑖) moves, the only moves
among 𝑚1, . . . , 𝑚𝑘′ which move special stickers between faces are the two index-(𝑚 + 𝑖)
moves (for 𝑖 ∈ 𝑇).

Notice that every slice with index ±(𝑚 + 𝑖) contains exactly 8 special stickers, so each of
the two index-(𝑚 + 𝑖) moves must cause exactly 8 of the special stickers to change faces.

We proceed by casework:

∙ If exactly one of the two index-(𝑚 + 𝑖) moves is an 𝑥 or 𝑦 move, then at least one
of the correctly placed stickers from the +𝑧 face is moved from that face and never
returned there. Note that correctly placed stickers are supposed to end up on their
starting faces.

∙ If both index-(𝑚 + 𝑖) moves are 𝑥 moves, then the misplaced stickers from the +𝑦 face
never leave that face. Note that misplaced stickers are supposed to move from their
starting faces.

∙ If both index index-(𝑚 + 𝑖) moves are 𝑦 moves, then the misplaced stickers from the
+𝑥 face never leave that face. Note that misplaced stickers are supposed to move from
their starting faces.

∙ If the first index-(𝑚 + 𝑖) move is an 𝑥 move and the second is a 𝑦 move, then each
of the misplaced stickers from the +𝑥 face end up on the ±𝑥 or ±𝑧 faces. Note that
misplaced stickers from the +𝑥 face are supposed to move to the +𝑦 face.

∙ If the first index-(𝑚 + 𝑖) move is a 𝑦 move and the second is an 𝑥 move, then each
of the misplaced stickers from the +𝑦 face end up on the ±𝑦 or ±𝑧 faces. Note that
misplaced stickers from the +𝑦 face are supposed to move to the −𝑥 face.

113

Since all these cases lead to contradiction, we can conclude that the only remaining case
holds: both index-(𝑚 + 𝑖) moves must be 𝑧 moves.

Next suppose for the sake of contradiction that the 8 special stickers which are moved
by one index-(𝑚 + 𝑖) move are not the same as the special stickers moved by the other
index-(𝑚+𝑖) move. Any special sticker moved by exactly one of these moves will change faces
and must therefore be a misplaced sticker. That sticker must move one face counterclockwise
around the 𝑧 axis. Since each of the two index-(𝑚+ 𝑖) moves includes at least one sticker that
is not moved by the other index-(𝑚 + 𝑖) move we can conclude that the two index-(𝑚 + 𝑖)
moves are both counterclockwise 𝑧 turns. Then any sticker moved by both index-(𝑚 + 𝑖)
moves is moved two faces counterclockwise around the 𝑧 axis. This is not the desired behavior
for any of the special stickers so none of the stickers can be moved by both index-(𝑚 + 𝑖)
moves. Thus there are a total of 16 different special stickers, each of which is moved by
exactly one of the two index-(𝑚 + 𝑖) moves. All 16 of these stickers end up on a different
face from the one they started at. This is a contradiction since there are only 8 misplaced
stickers.

We conclude that the two moves affect the same 8 stickers. The only way to rotate a
total of one quarter rotation counterclockwise with two moves is using one clockwise turn
and one flip. Thus, as desired, the two index-(𝑚 + 𝑖) moves for 𝑖 ∈ 𝑇 must be a clockwise 𝑧
turn and a 𝑧 flip in some order.

Finally, we have only one thing left to prove in this section:

Lemma 4.42. If 𝑖 ∈ 𝑂 ∪ 𝑇 , then any move of 𝑧 slice (𝑚 + 𝑖) must occur at a time when
faces +𝑥, +𝑦, −𝑥, and −𝑦 all have zero rotation and any move of 𝑧 slice −(𝑚 + 𝑖) must
occur at a time when faces +𝑥, +𝑦, −𝑥, and −𝑦 all have rotation 180∘.

Proof. As before, consider the result of move sequence 𝑚1, . . . , 𝑚𝑘′ when starting in con-
figuration 𝐶𝑏. The 8 misplaced stickers must each move one face counterclockwise around
the 𝑧 axis and the correctly placed stickers must stay on the same face. The only moves
which cause special stickers to change faces are index-𝑢 or index-(𝑚 + 𝑖) moves, though face
moves also move special stickers. The only moves among 𝑚1, . . . , 𝑚𝑘′ which move special
stickers between faces are the one or two index-(𝑚 + 𝑖) moves (for 𝑖 ∈ 𝑂 ∪ 𝑇). Furthermore,
as shown in the proofs of Lemmas 4.40 and 4.41, the special stickers which are affected by
these moves are exactly the misplaced stickers. In other words, throughout the entire move
sequence 𝑚1, . . . , 𝑚𝑘′ , the only moves which affect the correctly placed stickers are the face
moves.

Let 𝑚𝑗 be any index-(𝑚 + 𝑖) move. According to Lemmas 4.40 and 4.41, 𝑚𝑗 rotates a 𝑧
slice.

Consider the six correctly placed stickers on one of the ±𝑥 or ±𝑦 faces. Since these
stickers are only ever affected by face moves, their coordinates within the face are completely
determined by the total rotation of the face so far. If the total rotation so far is 0, then the
six correctly placed stickers are in the positions with coordinates ±𝑢 and ±(𝑚 + 𝑖) and with
𝑧 ̸= (𝑚 + 𝑖). If the total rotation so far is 90∘, then the six correctly placed stickers are in
the positions with coordinates ±𝑢 and ±(𝑚 + 𝑖) and with 𝑥 ̸= −(𝑚 + 𝑖) for the ±𝑦 faces or
𝑦 ≠ (𝑚 + 𝑖) for the ±𝑥 faces. If the total rotation so far is 180∘, then the six correctly placed
stickers are in the positions with coordinates ±𝑢 and ±(𝑚 + 𝑖) and with 𝑧 ̸= −(𝑚 + 𝑖). If
the total rotation so far is 270∘, then the six correctly placed stickers are in the positions
with coordinates ±𝑢 and ±(𝑚 + 𝑖) and with 𝑥 ̸= (𝑚 + 𝑖) for the ±𝑦 faces or 𝑦 ̸= −(𝑚 + 𝑖)
for the ±𝑥 faces.

114

The only way for move 𝑚𝑗 to avoid affecting these stickers if 𝑚𝑗 rotates 𝑧 slice (𝑚 + 𝑖) is
for the stickers to be in the positions with 𝑧 ≠ (𝑚 + 𝑖). In other words, the total rotation of
the face must be 0. The only way for move 𝑚𝑗 to avoid affecting these stickers if 𝑚𝑗 rotates
𝑧 slice −(𝑚 + 𝑖) is for the stickers to be in the positions with 𝑧 ̸= −(𝑚 + 𝑖). In other words,
the total rotation of the face must be 180∘. This logic applies to each of the ±𝑥 and ±𝑦
faces. In other words, if 𝑚𝑗 is some move with index (𝑚 + 𝑖), then each of the ±𝑥 and ±𝑦
faces must have rotation 0 and if 𝑚𝑗 is some move with index −(𝑚 + 𝑖), then each of the
±𝑥 and ±𝑦 faces must have rotation 180∘.

4.5.6 Step 2: exploring properties of paired stickers

As stated in the proof outline, this step of the proof explores the properties of paired stickers.

Lemma 4.43. If two stickers are (𝑝1, 𝑝2, 𝑞)-paired, then they remain (𝑝1, 𝑝2, 𝑞)-paired after
one move unless the move is an index-𝑝1 move or an index-𝑝2 move which moves one of the
stickers.

Proof. Consider the effect of any move on the two stickers.
If the move doesn’t affect either sticker, then the two stickers maintain their coordinates

(and therefore also stay on the same face quadrant and slice). Thus the two stickers remain
(𝑝1, 𝑝2, 𝑞)-paired.

If the move moves both stickers, then they both rotate the same amount. In other words,
as far as those two stickers are concerned, the effect of the move is the same as the effect of
rotating the entire Rubik’s Cube. When rotating the Rubik’s Cube, two stickers sharing a
slice continue to share a slice, two stickers sharing a face quadrant continue to share a face
quadrant, and each sticker maintains the same set of coordinate absolute values as it had
before. Thus, the two stickers remain (𝑝1, 𝑝2, 𝑞)-paired.

Clearly, the only way for the stickers to no longer be (𝑝1, 𝑝2, 𝑞)-paired is for the move to
affect exactly one of the stickers. The possible moves affecting the stickers are face moves,
index-𝑞 moves, index-𝑝1 moves, and index-𝑝2 moves. Among these, face moves and index-𝑞
moves necessarily affect either both stickers in the pair or neither. Thus, the only way for
the stickers to stop being (𝑝1, 𝑝2, 𝑞)-paired is via an index-𝑝1 move or an index-𝑝2 move
which moves one of the stickers.

Using this, we prove the following lemma:

Lemma 4.44. Suppose 𝑖1, 𝑖2 ∈ 𝑂 and 𝑗 ∈ {1, 2, . . . , 𝑚}. Then consider any pair of stickers
that are (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired in 𝐶𝑏. If there are no face moves of faces +𝑥, +𝑦, −𝑥, and
−𝑦 and no index-𝑗 moves that affect either of the stickers between the index-(𝑚+ 𝑖1) 𝑂-move
and the index-(𝑚 + 𝑖2) 𝑂-move, then the two stickers remain (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired in 𝐶 ′.

Proof. Consider two (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired stickers in 𝐶𝑏. Suppose that there exists
neither an index-𝑗 move affecting one of the stickers nor a face move of face +𝑥, +𝑦, −𝑥, or
−𝑦 between the index-(𝑚 + 𝑖1) and index-(𝑚 + 𝑖2) 𝑂-moves. Let 𝑚𝛼 be the index-(𝑚 + 𝑖1)
𝑂-move and let 𝑚𝛽 be the index-(𝑚 + 𝑖2) 𝑂-move. Without loss of generality, suppose 𝑚𝛼

occurs before 𝑚𝛽.
Since there are no +𝑥, +𝑦, −𝑥, or −𝑦 face moves between 𝑚𝛼 and 𝑚𝛽 , we know that the

rotations of these faces remain the same at the times of both moves. Applying the results
from Step 1, either 𝑚𝛼 and 𝑚𝛽 are both counterclockwise turns of 𝑧 slices (𝑚 + 𝑖1) and
(𝑚 + 𝑖2) or 𝑚𝛼 and 𝑚𝛽 are counterclockwise turns of 𝑧 slices −(𝑚 + 𝑖1) and −(𝑚 + 𝑖2).

115

Configuration 𝐶 ′ can be obtained from configuration 𝐶𝑏 by applying transformation
𝑚𝑘′ ∘· · ·∘𝑚2 ∘𝑚1 ∘𝑎1. Since 𝑎1 consists of some number of 𝑥-slice turns, we can represent this
transformation as a sequence of moves. We know that since the stickers are (𝑚+𝑖1, 𝑚+𝑖2, 𝑗)-
paired in 𝐶𝑏, they must remain (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired until immediately before the first
index-(𝑚 + 𝑖1) or index-(𝑚 + 𝑖2) move: 𝑚𝛼. We will show below that because of our
assumption, the stickers will also end up (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired immediately after 𝑚𝛽 in
all cases.

The first case is that the stickers are on face +𝑧 or face −𝑧 immediately before 𝑚𝛼.
In that case, move 𝑚𝛼, which is a 𝑧 move, will not affect either sticker. As a result, the
two stickers will remain (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired after 𝑚𝛼. With the exception of 𝑚𝛼

and 𝑚𝛽, the only moves in 𝑚1, . . . , 𝑚𝑘′ which move these two stickers between faces are
index-𝑗 moves. But by assumption, there are no index-𝑗 moves occurring between 𝑚𝛼 and
𝑚𝛽 which affect the stickers. Thus, immediately before 𝑚𝛽, the two stickers will still be
(𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired and will still be on face +𝑧 or face −𝑧. As a result, 𝑚𝛽 will also
not affect the stickers. Therefore, they will remain (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired immediately
after 𝑚𝛽.

The second case is that the stickers are on face +𝑥, +𝑦, −𝑥, or −𝑦 immediately before
𝑚𝛼. Between 𝑚𝛼 and 𝑚𝛽, the only moves in 𝑚1, . . . , 𝑚𝑘′ which move these two stickers
are face moves and index-𝑗 moves. No matter how 𝑚𝛼 affects the two stickers, they will
both remain on the four faces +𝑥, +𝑦, −𝑥, and −𝑦. By assumption, neither sticker will be
moved by an index-𝑗 move until 𝑚𝛽 . Since the stickers are on faces +𝑥, +𝑦, −𝑥, or −𝑦, the
assumption tells us that neither sticker will be moved by a face move until 𝑚𝛽 either. Thus,
the next move after 𝑚𝛼 which affects either sticker is 𝑚𝛽.

Immediately before 𝑚𝛼, the first sticker has 𝑧 coordinate (𝑚+𝑖1) if and only if the second
sticker has 𝑧 coordinate (𝑚 + 𝑖2). Similarly, the first sticker has 𝑧 coordinate −(𝑚 + 𝑖1) if
and only if the second sticker has 𝑧 coordinate −(𝑚 + 𝑖2). This is simply a consequence of
the definition of (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired stickers. We know that 𝑚𝛼 and 𝑚𝛽 together either
rotate 𝑧 slices (𝑚 + 𝑖1) and (𝑚 + 𝑖2) counterclockwise one turn or rotate 𝑧 slices −(𝑚 + 𝑖1)
and −(𝑚 + 𝑖2) counterclockwise one turn. Thus in any case we see that over the course of
the moves from 𝑚𝛼 to 𝑚𝛽 , either both stickers are rotated counterclockwise one turn around
the 𝑧 axis or neither is. As far as the two stickers are concerned, that is equivalent to a
rotation of the entire Rubik’s Cube. That means that in this case as well, the two stickers
remain (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired immediately after 𝑚𝛽.

We see that in both cases the two stickers remain (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired immediately
after 𝑚𝛽 . Since there are no index-(𝑚 + 𝑖1) or index-(𝑚 + 𝑖2) moves after 𝑚𝛽 , we know that
the two stickers will continue to be (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired until 𝐶 ′.

4.5.7 Step 3: classifying possible moves with a counting argument

As stated in the proof outline, this step uses a counting argument to restrict the possible
moves in 𝑚1, . . . , 𝑚𝑘′ .

To begin, we show the following:

Lemma 4.45. There must be a 𝐽-move or two vertical face moves between each pair of
𝑂-moves in 𝑚1, . . . , 𝑚𝑘′.

Proof. Consider any pair of 𝑂-moves 𝑚𝛼 and 𝑚𝛽 which occur in that order. Suppose 𝑚𝛼

is an index-(𝑚 + 𝑖1) move and 𝑚𝛽 is an index-(𝑚 + 𝑖2) move. Let 𝑗 be an index such that
(𝑙𝑖1)𝑗 differs from (𝑙𝑖2)𝑗 .

116

Notice that the (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired stickers on face +𝑦 with (𝑥, 𝑧) coordinates
(𝑗, 𝑚 + 𝑖1) and (𝑗, 𝑚 + 𝑖2) have different colors in 𝐶𝑏 (see Theorem 4.26). Therefore they
cannot be (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired in 𝐶 ′. By the contraposative of Lemma 4.44, we see
that at least one index-𝑗 move affecting one of these stickers or at least one face move of
faces +𝑥, +𝑦, −𝑥, or −𝑦 must occur between 𝑚𝛼 and 𝑚𝛽.

We know from the results of Step 1 that at the times of 𝑚𝛼 and 𝑚𝛽, the four faces ±𝑥
and ±𝑦 must either each have total rotation of 0 or total rotation of 180∘. Thus between
the two moves, either the rotations of all four faces must change, or the rotation of any face
that changes must also change back. Therefore it is impossible for exactly one face move of
faces +𝑥, +𝑦, −𝑥, and −𝑦 to occur between these two moves.

In other words, we have shown that at least one 𝐽-move or at least two vertical face
moves must occur between 𝑚𝛼 and 𝑚𝛽.

Corollary 4.46. If

∙ 𝑚𝛼 and 𝑚𝛽 are index-(𝑚 + 𝑖1) and index-(𝑚 + 𝑖2) 𝑂-moves,

∙ 𝑙𝑖1 and 𝑙𝑖2 differ in bit 𝑗, and

∙ there are no vertical face moves between 𝑚𝛼 and 𝑚𝛽,

then there must be an index-𝑗 𝐽-move between 𝑚𝛼 and 𝑚𝛽.

Proof. This follows directly from one of the cases in the previous proof.

With that done, we can count the number of moves of each type as follows:
There is exactly one 𝑂-move for each 𝑖 ∈ 𝑂 (the sole index-(𝑚 + 𝑖) move), so therefore

𝑐𝑂 = |𝑂|.
There are exactly two 𝑇 -move for each 𝑖 ∈ 𝑇 (the two index-(𝑚 + 𝑖) moves), so therefore

𝑐𝑇 = 2|𝑇 |.
There are at least three 𝑀 -moves for each 𝑖 ∈ 𝑀 (the index-(𝑚 + 𝑖) moves), so therefore

𝑐𝑀 ≥ 3|𝑀 |.
Consider the 𝑂-moves in order. Between the 𝑐𝑂 = |𝑂| different 𝑂-moves there are |𝑂| − 1

gaps. As shown above, each such gap must contain either at least one 𝐽-move or at least
two vertical face moves. Therefore the number of 𝐽-moves plus half the number of vertical
face moves upper-bounds the number of gaps: 𝑐𝐽 + 1

2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ≥ |𝑂| − 1.
Finally, 𝑐𝑜𝑡ℎ𝑒𝑟 ≥ 0.
Putting this together, we see the following:

𝑘′ = 𝑐𝑂 + 𝑐𝑇 + 𝑐𝑀 + 𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 + 𝑐𝐽 + 𝑐𝑜𝑡ℎ𝑒𝑟

= 𝑐𝑂 + 𝑐𝑇 + 𝑐𝑀 +
(︂

𝑐𝐽 + 1
2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

)︂
+ 1

2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 + 𝑐𝑜𝑡ℎ𝑒𝑟

≥ |𝑂| + 2|𝑇 | + 3|𝑀 | + (|𝑂| − 1) + 1
2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

= 2|𝑂| + 2|𝑇 | + 3|𝑀 | − 1 + 1
2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

= 2𝑛 − 1 + |𝑀 | + 1
2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

= 𝑘 + |𝑀 | + 1
2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

≥ 𝑘

117

The above shows that 𝑘′ ≥ 𝑘, but we also know that 𝑘′ ≤ 𝑘. Thus, equality must hold
at each step. In particular, 𝑐𝑀 must equal 3|𝑀 |,

(︁
𝑐𝐽 + 1

2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙

)︁
must equal |𝑂| − 1, 𝑐𝑜𝑡ℎ𝑒𝑟

must equal 0, and |𝑀 | + 1
2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 must equal 0.

Since |𝑀 | + 1
2𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 0, we can conclude that both |𝑀 | and 𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 are equal to

0. Thus 𝑐𝑀 = 3|𝑀 | = 0 also holds. All together, this shows that 𝑐𝑂 = |𝑂|, 𝑐𝑇 = 2|𝑇 |,
𝑐𝐽 = |𝑂| − 1, and 𝑐𝑀 = 𝑐𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 𝑐𝑜𝑡ℎ𝑒𝑟 = 0.

4.5.8 Step 4: further restricting possible move types

As stated in the proof outline, we will prove the following list of results in this section:

∙ Since there are no face moves, the index-(𝑚 + 𝑖) 𝑂-move for 𝑖 ∈ 𝑂 can only be a
counterclockwise 𝑧 turn of slice (𝑚 + 𝑖). Similarly the index-(𝑚 + 𝑖) 𝑇 -moves for 𝑖 ∈ 𝑇
are a clockwise 𝑧 turn and a 𝑧 flip of slice (𝑚 + 𝑖).

∙ Consider the elements 𝑖 ∈ 𝑂 in the order in which their 𝑂-moves occur. We show that
if 𝑖1 is immediately before 𝑖2 in this order, then it must be the case that 𝑙𝑖1 differs
from 𝑙𝑖2 in exactly one bit.

∙ Furthermore, the one 𝐽-move between two consecutive 𝑂-moves of slices 𝑚 + 𝑖1 and
𝑚 + 𝑖2 must rotate the 𝑥 slice whose index is the unique index 𝑗 at which strings 𝑙𝑖1

and 𝑙𝑖2 differ.

Lemma 4.47. If 𝑖 ∈ 𝑂, the single index-(𝑚 + 𝑖) move in 𝑚1, . . . , 𝑚𝑘′ is a counterclockwise
𝑧 turn of slice (𝑚 + 𝑖).

Proof. We have already seen that the move in question must be either a counterclockwise 𝑧
turn of slice (𝑚 + 𝑖) or a counterclockwise 𝑧 turn of slice −(𝑚 + 𝑖). Furthermore, the slice
being rotated is slice (𝑚 + 𝑖) if at the time of the move each vertical face (±𝑥 and ±𝑦) has
the total rotation 0. We have already seen, however, that none of the moves in 𝑚1, . . . , 𝑚𝑘′

are face moves. Thus the total rotation of each face is always 0, and as desired, the move in
question is a counterclockwise 𝑧 turn of slice (𝑚 + 𝑖).

Lemma 4.48. If 𝑖 ∈ 𝑇 , the two index-(𝑚 + 𝑖) moves in 𝑚1, . . . , 𝑚𝑘′ are a clockwise 𝑧 turn
of slice (𝑚 + 𝑖) and a 𝑧 flip of slice (𝑚 + 𝑖).

Proof. This proof follows analagously to the previous.

Lemma 4.49. Suppose that 𝑚𝛼 and 𝑚𝛽 are two 𝑂-moves of slices (𝑚 + 𝑖1) and (𝑚 + 𝑖2)
with no other 𝑂-moves between them. It must be the case that 𝑙𝑖1 differs from 𝑙𝑖2 in exactly
one bit.

Proof. We have already seen that there must be at least one 𝐽-move between 𝑚𝛼 and 𝑚𝛽.
In fact, there has to be exactly one 𝐽-move in each of the |𝑂| − 1 “gaps” between 𝑂-moves,
so there can only be one 𝐽-move between 𝑚𝛼 and 𝑚𝛽.

We saw in Corollary 4.46, however, that if 𝑙𝑖1 and 𝑙𝑖2 differ in bit 𝑗, then there must be
an index-𝑗 𝐽-move between 𝑚𝛼 and 𝑚𝛽 . As desired, we conclude that 𝑙𝑖1 and 𝑙𝑖2 must differ
in at most one bit 𝑗. Since the bitstrings are all distinct, this is exactly what we were trying
to show.

118

Lemma 4.50. Suppose that 𝑚𝛼 and 𝑚𝛽 are two 𝑂-moves of slices (𝑚 + 𝑖1) and (𝑚 + 𝑖2)
with no other 𝑂-moves between them. If 𝑙𝑖1 differs from 𝑙𝑖2 in bit 𝑗, then it must be the case
that the one 𝐽-move between 𝑚𝛼 and 𝑚𝛽 must rotate the 𝑥 slice with index 𝑗.

Proof. We know that the 𝐽-move in question must rotate a slice with index ±𝑗. We want
to show that the move rotates the 𝑥 slice with index 𝑗 in particular.

Consider the pair of stickers in 𝐶𝑏 at (𝑥, 𝑧) coordinates (𝑗, 𝑚 + 𝑖1) and (𝑗, 𝑚 + 𝑖2) on the
+𝑦 face and also the pair of stickers in 𝐶𝑏 at (𝑥, 𝑦) coordinates (𝑗, −(𝑚+𝑖1)) and (𝑗, −(𝑚+𝑖2))
on the +𝑧 face. These two pairs of stickers are both (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired. Furthermore,
each of these two pairs contain stickers of two different colors (see Theorem 4.26).

To transition from 𝐶𝑏 to 𝐶 ′, we apply transformation 𝑚𝑘 ∘ · · · ∘ 𝑚1 ∘ 𝑎1. In other words,
we apply a sequence of moves starting with some number of 𝑥 turns (making up 𝑎1) and
then proceeding through move sequence 𝑚1, . . . , 𝑚𝑘. Because the solution contains no face
moves, the only moves in this list before 𝑚𝛼 which affect the four stickers in question are
rotations of the 𝑥 slice with index 𝑗. No matter how much or how little this slice rotates,
one of the two pairs of stickers will be on face +𝑧 or −𝑧.

Consider that pair. Move 𝑚𝛼 will be a counterclockwise 𝑧 turn and therefore will not
affect either sticker in the pair. That pair of stickers cannot be (𝑚+ 𝑖1, 𝑚+ 𝑖2, 𝑗)-paired in 𝐶 ′

since they have different colors. Since 𝑚𝛽 is the only other index-(𝑚 + 𝑖1) or index-(𝑚 + 𝑖2)
move, we can conclude from Lemma 4.43 that one of the two stickers must be affected by
𝑚𝛽. In order for that to be the case, however, the sole 𝐽-move between 𝑚𝛼 and 𝑚𝛽 must
move the stickers in this pair off of the ±𝑧 face. Notice that the 𝐽-move between 𝑚𝛼 and
𝑚𝛽 must rotate a slice with index ±𝑗. Since there are no face moves in the solution, the only
option which meets the requirements is to have the 𝐽-move rotate the 𝑥 slice with index
𝑗.

4.5.9 Step 5: showing 𝑇 is empty

As stated in the proof outline, the purpose of this step is to show that 𝑇 is empty. That on
its own is sufficient to complete the proof.

Lemma 4.51. When applying the move sequence 𝑎1, 𝑚1, . . . , 𝑚𝑘 to 𝐶𝑏, the stickers with
𝑧 = 𝑖 and 1 ≤ 𝑥 ≤ 𝑛 of face +𝑦 for 𝑖 ∈ 𝑂 immediately after the 𝑂-move of slice (𝑚 + 𝑖) are
the ones which started in the corresponding positions 𝑧 = 𝑖 and 1 ≤ −𝑦 ≤ 𝑛 of the face +𝑥
in 𝐶𝑏.

Proof. Let 𝑚𝛼 be the 𝑂-move of slice (𝑚 + 𝑖).
Consider the stickers in positions 𝑧 = 𝑖 and 1 ≤ 𝑥 ≤ 𝑛 of face +𝑦 for 𝑖 ∈ 𝑂 immediately

after the move 𝑚𝛼. These stickers were moved there by 𝑚𝛼 from positions 𝑧 = 𝑖 and
1 ≤ −𝑦 ≤ 𝑛 of the face +𝑥.

All 𝑂-moves and 𝑇 -moves prior to 𝑚𝛼 affect 𝑧 slices whose indices are not 𝑖. All 𝐽-
moves and all moves comprising 𝑎1 affect non-face 𝑥 slices and therefore don’t affect the
+𝑥 face. As a result, no move in 𝑎1, 𝑚1, . . . , 𝑚𝑘 before 𝑚𝛼 affects the stickers with 𝑧 = 𝑖
and −𝑛 ≤ 𝑦 ≤ −1 on the +𝑥 face. Thus, the stickers in positions 𝑧 = 𝑖 and 1 ≤ −𝑦 ≤ 𝑛
of the face +𝑥 immediately before 𝑚𝛼 are the same as the stickers in those positions in
configuration 𝐶𝑏.

As desired, the stickers with 𝑧 = 𝑖 and 1 ≤ 𝑥 ≤ 𝑛 of face +𝑦 for 𝑖 ∈ 𝑂 immediately
after the move 𝑚𝛼 are the ones which started in the corresponding positions 𝑧 = 𝑖 and
1 ≤ −𝑦 ≤ 𝑛 of the face +𝑥 in 𝐶𝑏.

119

Lemma 4.52. When applying the move sequence 𝑎1, 𝑚1, . . . , 𝑚𝑘 to 𝐶𝑏, the stickers with
𝑧 = 𝑖 and 1 ≤ 𝑥 ≤ 𝑛 of face +𝑦 for 𝑖 ∈ 𝑇 after the second 𝑇 -move rotating a slice with index
(𝑚 + 𝑖) are the ones which started in the corresponding positions 𝑧 = 𝑖 and 1 ≤ −𝑦 ≤ 𝑛 of
the face +𝑥 in 𝐶𝑏.

Proof. Let 𝑚𝛼 and 𝑚𝛽 be the two 𝑇 -moves of slice (𝑚 + 𝑖).
Consider the stickers in positions 𝑧 = 𝑖 and 1 ≤ 𝑥 ≤ 𝑛 of face +𝑦 immediately after 𝑚𝛽 .

These stickers were moved there by 𝑚𝛽 either from positions 𝑧 = 𝑖 and 1 ≤ 𝑦 ≤ 𝑛 of the face
−𝑥 or from positions 𝑧 = 𝑖 and 1 ≤ −𝑥 ≤ 𝑛 of face −𝑦 (depending on whether the second
𝑇 -move is the turn or the flip).

In either case, none of the moves between 𝑚𝛼 and 𝑚𝛽 could have affected any of these
stickers (since the moves in that interval are all either 𝑂- or 𝑇 - moves moving 𝑧 slices of
other indices or 𝐽-moves moving 𝑥 slices with indices 1 through 𝑛). Therefore immediately
before 𝑚𝛼, these stickers were in positions 𝑧 = 𝑖 and 1 ≤ −𝑦 ≤ 𝑛 of the face +𝑥. Once
again, no moves before that could affect these stickers, so these stickers must have started in
that position in 𝐶𝑏.

As desired, the stickers with 𝑧 = 𝑖 and 1 ≤ 𝑥 ≤ 𝑛 of face +𝑦 immediately after the move
𝑚𝛽 are the ones which started in the corresponding positions 𝑧 = 𝑖 and 1 ≤ −𝑦 ≤ 𝑛 of the
face +𝑥 in 𝐶𝑏.

Theorem 4.53. 𝑇 is empty.

Proof. Note that 𝑂 cannot be empty since then the number of 𝐽-moves would be |𝑂|−1 = −1.
Suppose for the sake of contradiction that 𝑖1 ∈ 𝑇 . Consider the second 𝑇 -move of the 𝑧

slice with index (𝑚 + 𝑖1) in move sequence 𝑎1, 𝑚1, . . . , 𝑚𝑘. Call this move 𝑚𝛼. The move
𝑚𝛼 cannot be seperated from every 𝑂-move by 𝐽-moves because if that were the case, there
would be two 𝐽-moves without an 𝑂-move between them (or in other words there would be
two 𝑂-moves with at least two 𝐽-moves between them). Thus there must be some 𝑂-move
𝑚𝛽 of slice (𝑚 + 𝑖2) that is not seperated from 𝑚𝛼 by any 𝐽-move.

Consider what happens if we apply the move sequence 𝑎1, 𝑚1, . . . , 𝑚𝑘 to 𝐶𝑏 until right
after both 𝑚𝛼 and 𝑚𝛽 have occurred. Call this configuration 𝐶𝑚𝑖𝑑. For every 𝑗 ∈ {1, . . . , 𝑚},
the stickers that are in (𝑥, 𝑧) coordinates (𝑗, 𝑚 + 𝑖1) and (𝑗, 𝑚 + 𝑖2) of face +𝑦 in 𝐶𝑚𝑖𝑑

are (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired. When transitioning from 𝐶𝑚𝑖𝑑 to 𝐶 ′, no index-(𝑚 + 𝑖1) or
index-(𝑚 + 𝑖2) moves occur, and so these stickers are also (𝑚 + 𝑖1, 𝑚 + 𝑖2, 𝑗)-paired in 𝐶 ′.
Thus we conclude that the stickers in each pair are the same color.

Therefore we have that in 𝐶𝑚𝑖𝑑, the stickers on face +𝑦 with 𝑧 = 𝑖2 and 1 ≤ 𝑥 ≤ 𝑛 have
the same color scheme, call it 𝑆, as the stickers on face +𝑦 with 𝑧 = 𝑖1 and 1 ≤ 𝑥 ≤ 𝑛.
Before we reach the configuration 𝐶𝑚𝑖𝑑, the final few moves are a sequence of 𝑂-moves and
𝑇 -moves including 𝑚𝛼 and 𝑚𝛽 . Furthermore, among these 𝑂-moves and 𝑇 -moves, none that
occur after 𝑚𝛼 affect the stickers with 𝑧 = 𝑖1 and none that occur after 𝑚𝛽 affect the stickers
with 𝑧 = 𝑖2. Therefore the color scheme of the stickers in positions 𝑧 = 𝑖2 and 1 ≤ 𝑥 ≤ 𝑛
of face +𝑦 immediately after 𝑚𝛽 is the same as 𝑆: the color scheme of those stickers in
𝐶𝑚𝑖𝑑. Similarly, the color scheme of the stickers in positions 𝑧 = 𝑖1 and 1 ≤ 𝑥 ≤ 𝑛 of face
+𝑦 immediately after 𝑚𝛼 is also 𝑆. Using Lemmas 4.51 and 4.52, we conclude that the color
scheme of the stickers in positions 𝑧 = 𝑖2 and 1 ≤ −𝑦 ≤ 𝑛 of face +𝑥 in configuration 𝐶𝑏 is
𝑆 and that the color scheme of the stickers in positions 𝑧 = 𝑖1 and 1 ≤ −𝑦 ≤ 𝑛 of face +𝑥 in
configuration 𝐶𝑏 is also 𝑆. This, however, is a contradiction, since those two color schemes
in 𝐶𝑏 are different for any two different 𝑖1 and 𝑖2 (see Theorem 4.26).

We conclude that 𝑖1 ∈ 𝑇 cannot exist, and therefore that 𝑇 is empty.

120

This completes the proof of Theorem 4.30 outlined in Section 4.5.4.

4.5.10 Conclusion

Theorems 4.24 and 4.30 and Corollaries 4.25 and 4.31 show that the polynomial time
reductions given are answer preserving. As a result, we conclude that

Theorem 4.54. The STM/SQTM Rubik’s Cube and Group STM/SQTM Rubik’s Cube
problems are NP-complete.

4.6 Future work

In this chapter, we resolve the complexity of optimally solving Rubik’s Cubes under move
count metrics for which a single move rotates a single slice. It could be interesting to consider
the complexity of this problem under other move count metrics.

Of particular interest are the Wide Turn Metric (WTM) and Wide Quarter Turn Metric
(WQTM), in which the puzzle solver can rotate any number of contiguous layers together
provided they include one of the faces. These move count metrics are the closest to how one
would physically solve a real-world 𝑛 × 𝑛 × 𝑛 Rubik’s Cube: by grabbing some of the slices
in the cube (including a face) from the side and rotating those slices together. We can also
consider the 1 × 𝑛 × 𝑛 analogue of the Rubik’s Cube with WTM move count metric: this
would be a Rubik’s Square in which a single move flips a contiguous sequence of rows or
columns including a row or column at the edge of the Square. Solving this toy model could
help point us in the right direction for the WTM and WQTM Rubik’s Cube problems. If
even the toy model resists analysis, it could be interesting to consider this toy model with
missing stickers.

121

THIS PAGE INTENTIONALLY LEFT BLANK

122

Bibliography

[1] Daniel Andersson. Hashiwokakero is NP-complete. Information Processing Letters,
109(19):1145–1146, 2009.

[2] Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Sándor P. Fekete, Joseph S. B.
Mitchell, and Saurabh Sethia. Optimal covering tours with turn costs. SIAM Journal
on Computing, 35(3):531–566, 2005.

[3] Esther M. Arkin, Sándor P. Fekete, Kamrul Islam, Henk Meijer, Joseph S. B. Mitchell,
Yurai Núñez-Rodŕıguez, Valentin Polishchuk, David Rappaport, and Henry Xiao. Not
being (super)thin or solid is hard: A study of grid Hamiltonicity. Computational
Geometry: Theory and Applications, 42(6–7):582–605, 2009. Originally published at
EuroComb’07.

[4] Esther M. Arkin, Sándor P. Fekete, and Joseph S.B. Mitchell. Approximation algorithms
for lawn mowing and milling. Computational Geometry: Theory and Applications, 17(1–
2):25–50, 2000.

[5] Mark Berg and Amirali Khosravi. Optimal binary space partitions in the plane. In
Proceedings of the 16th Annual International Conference on Computing and Combina-
torics, volume 6196 of Lecture Notes in Computer Science, pages 216–225, Nha Trang,
Vietnam, July 2010.

[6] Stephen A. Cook. Can computers routinely discover mathematical proofs? Proceedings
of the American Philosophical Society, 128(1):40–43, 1984.

[7] Cride5. Move count metrics for big cubes - standards and preferences. Speed Solv-
ing Forum, August 2010. URL: https://www.speedsolving.com/forum/showthread.
php?23546-Move-count-metrics-for-big-cubes-standards-and-preferences.

[8] P. Damaschke. The hamiltonian circuit problem for circle graphs in np-complete. Inf.
Process. Lett., 32(1):1–2, July 1989.

[9] H. N. de Ridder et al. Problem: Hamiltonian cycle. Information System on Graph
Classes and their Inclusions (ISGCI). URL: http://www.graphclasses.org/classes/
problem_Hamiltonian_cycle.html.

[10] Erik D. Demaine. Lecture 8: Hamiltonicity. In MIT 6.890: Algorithmic Lower Bounds.
2014. http://courses.csail.mit.edu/6.890/fall14/lectures/L08.html.

[11] Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Anna Lubiw, and Andrew
Winslow. Algorithms for solving Rubik’s Cubes. In Proceedings of the 19th European

123

Conference on Algorithms, ESA’11, pages 689–700, Berlin, Heidelberg, 2011. Springer-
Verlag.

[12] Michal Forǐsek. Computational complexity of two-dimensional platform games. In
Proceedings of the 5th International Conference on Fun with Algorithms, pages 214–227,
Ischia, Italy, June 2010.

[13] Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths in
grid graphs. SIAM Journal on Computing, 11(4):676–686, November 1982.

[14] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a
Symposium on the Complexity of Computer Computations, pages 85–103, Yorktown
Heights, New York, March 1972.

[15] Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of NP-complete
puzzles. ICGA Journal, 31:13–34, 2008.

[16] László Lovász. The matroid matching problem. Algebraic methods in graph theory,
1:495–517, 1978.

[17] Haiko Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics,
156(1):291 – 298, 1996.

[18] Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related
to the travelling salesman problem. Journal of Algorithms, 5(2):231–246, 1984.

[19] J. Plesńık. The NP-completeness of the Hamiltonian cycle problem in planar digraphs
with degree bound two. Information Processing Letters, 8(4):199–201, April 1979.

[20] Daniel Ratner and Manfred Warmuth. The (𝑛2 − 1)-puzzle and related relocation
problems. Journal of Symbolic Computation, 10(2):111–137, July 1990.

[21] Shuichi Ueno, Yoji Kajitani, and Shin’ya Gotoh. On the nonseparating independent set
problem and feedback set problem for graphs with no vertex degree exceeding three.
Discrete Mathematics, 72(1):355 – 360, 1988.

[22] Christopher Umans and William Lenhart. Hamiltonian cycles in solid grid graphs. In
Proceedings of the 38th Annual IEEE Conference on Foundations of Computer Science,
pages 496–505, Miami, Florida, October 1997.

[23] Jeff𝜀 (https://cstheory.stackexchange.com/users/111/jeff\%CE\%B5). Is op-
timally solving the n×n×n Rubik’s Cube NP-hard? Theoretical Com-
puter Science Stack Exchange. URL: https://cstheory.stackexchange.com/q/
783(version:2010-10-23).

[24] Hassler Whitney. On the abstract properties of linear dependence. American Journal
of Mathematics, 57(3):509–533, 1935.

[25] Speed Solving Wiki. Metric, May 2010. URL: https://www.speedsolving.com/wiki/
index.php/Metric.

[26] Takayuki Yato. On the NP-completeness of the Slither Link puzzle. IPSJ SiG Notes,
AL-74:25–32, 2000.

124

