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Abstract

Rapidly growing real-world networks, with billions of vertices, call for scalable, fast, and

e�cient graph algorithms. Luckily, commercial multi-core, multi-processor, and multi-

machine environments can handle such volumes of data. Unfortunately, despite the avail-

ability of such resources, many current graph algorithms do not take full advantage of

these parallel and distributed environments or have non-optimal theoretical guarantees,

translating to slower and less e�cient algorithms in practice. The purpose of this thesis is

to theoretically improve previous graph algorithms in modern machines. We demonstrate

through experiments that such theoretical improvements also translate to practical gains.

Towards this goal, this thesis takes a two-pronged approach. First, we formulate al-

gorithms in computation models that mimic large-scale data processing environments.

Algorithms in such models take advantage of clusters of machines and a machine’s multi-

ple cores and processors. Second, we use speci�c properties of real-world networks when

designing our algorithms. The degeneracy is one such characteristic; while a network

may have billions of vertices, its degeneracy may only be a few hundred.

This thesis consists of three parts. The �rst part presents static graph algorithms. We

�rst introduce a set of new editing algorithms for a framework that approximates solu-

tions to hard-to-solve optimization problems via editing a graph into a desired structured

class. Then, we present novel small subgraph counting algorithms, with better theoreti-

cal space and round guarantees, in the massively parallel computation model; our experi-

ments corroborate our theoretical gains and show improvements in number of rounds and

approximation factor, compared to the previous state-of-the-art, in real-world graphs. We

conclude this part with a near-linear time scheduling algorithm for scheduling on identi-

cal machines with communication delay where precedence constrained jobs are modeled

as directed acyclic graphs.

The second part focuses on dynamic graph algorithms. We �rst show a𝑂(1) amortized

time, with high probability, dynamic algorithm for (∆ + 1)-vertex coloring. Then, we

provide a new parallel level data structure for the 𝑘-core decomposition problem under

batch-dynamic updates (where dynamic edge updates are applied in batches). We show

that our data structure provably provides a (2+𝜀)-approximation on the coreness of each

vertex, improving on the previously best-known bound of (4 + 𝜀). We conclude with

new parallel, work-e�cient batch-dynamic algorithms for triangle and clique counting.

Our extensive experiments for our batch-dynamic algorithms show orders of magnitude
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improvements in performance over the best previous multi-core implementations in real-

world networks.

The last part concludes with lower bounds. We show via hard instances the hardness

of obtaining an optimal computation schedule on directed acyclic computation graphs

in the external-memory model. We then demonstrate that such graphs can be used to

construct static-memory-hard hash functions that use disk memory to deter large-scale

password-cracking attacks.
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Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Julian Shun
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Chapter 1

Introduction

Graphs are ubiquitous in computer science. They are fundamental objects that have been

studied and analyzed for hundreds of years beginning with the Königsberg Bridge prob-

lem, famously studied by Euler in 1736. Fundamentally, graphs are mathematical repre-

sentations of relationships between people, objects, and ideas. Each vertex in the graph

represents an object and each edge represents some relationship between a pair of objects.

It is thus no wonder that analyzing the properties of graphs can provide us with better in-

sight into many di�erent types of structures. When a graph is used to model a real system,

it is often colloquially called a network with nodes and links. Common examples of real-

world networks include road networks, brain networks, communication networks, molec-

ular networks, disease transmission networks, and circuits. These networks could vastly

di�er in their characteristics. Some may be sparse while others are dense; some may have

high diameter and others low diameter. Analyzing the di�erent properties of graphs pro-

vides us with answers to a myriad of problems in network analysis, optimization, schedul-

ing, data organization, security, and many more [Bón06, Dal17, Deo17, EK10, KK16, VS10].

Consider a large social network graph such as the Friendster friendship network or

the densely connected neuronal network of the human brain. What are some things re-

searchers might want to learn about these graphs? Although these two networks rep-

resent vastly di�erent types of relationships, there are some common characteristics of

both types of networks that are valuable to researchers. For one, it may be useful to de-

termine the nodes which are well-connected in both networks. Well-connected nodes in

the Friendster graph could indicate popular social in�uencers; well-connected nodes in

the brain network could indicate an area of the brain that participates in many di�erent

aspects of thinking. A set of nodes which are all mutually connected to each other could

indicate a close-knit community in the Friendster graph or an assembly of neurons repre-

senting a thought or memory in the neuronal network. It is, however, not possible to use

any algorithm to determine these properties due to the immense size of today’s networks;

this algorithm would also need to be e�cient in order to be useful.

The public graphs that we study nowadays can have up to billions of vertices and

hundreds of billions of edges. The publicly available Friendster graph has more than 65

million vertices and almost 2 billion edges [LS16]. The neuronal network provided by

NeuroData is incredibly dense with 784,262 vertices and 267,844,669 edges [RA15].

Furthermore, many of these networks are also rapidly changing and evolving, with new
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edges and connections being added each second. For example, in the past second,
1

over

9 thousand Tweets were made, 100,000 Google searches were conducted, and 3 million

emails were sent [ILS]. In previous decades, the state-of-the-art algorithms were con-

sidered e�cient if they are able to process such graphs in time that is linear in the size

of the graph. However, such methods are too slow in today’s rapidly evolving world. If

thousands of edges change in the course of a few seconds, then we cannot hope for even

linear time algorithms to provide us with accurate values if we were to rerun these al-

gorithms every time the graph changes. Luckily, such graphs can still be processed in

commercial multi-core, multi-processor, and multi-machine environments using dynamic

algorithms that provide accurate values without processing the entire graph each time

one part changes. Such machines can even be rented by the hour from Google Cloud

Platform [GCP] or Amazon Cloud Services [AWS]. However, it is often not the case that

classical static algorithms in the sequential model will necessarily (1) be easily made dy-

namic and (2) take advantage of the computational advantages of modern machines. Thus,

the goal of this thesis is the following:

We seek to develop fast, scalable, and provably e�cient graph algorithms and algorithms

for performing computation on graphs in models that mimic modern computing systems.

We take a two-pronged approach in working toward this goal. First, we formulate

algorithms in parallel and distributed computation models that represent today’s large-

scale data processing environments. Algorithms in such models take advantage of clusters

of machines and a particular machine’s multiple cores and processors. Second, we make

use of some speci�c properties of real-world networks when designing our algorithms.

It may be the case that most real-world networks have small average degree or are close

(via some number of edge deletions) to a structured graph class. One can design faster

and more e�cient algorithms that take advantage of these characteristics.

Models of Computation The standard model of computation used by most previous

works in the past few decades is the sequential model of computation. In this model, each

step of the algorithm occurs sequentially, one after the other. This model of computa-

tion accurately models the setting when all computation is performed on a single thread

where no two steps of the algorithm can be performed simultaneously or in parallel. Such

a model is somewhat prohibitive in today’s computing environments as even our basic

laptops have more than one core and can maintain multiple threads.

In this thesis, we consider four additional models of computation, designed to mimic

modern machines: the shared-memory work-depth model, the massively parallel computa-

tion (MPC) model, and the external-memory model. Each model captures a di�erent aspect

of the modern computing environment:

• The shared-memory work-depth model assumes a shared common memory be-

tween one or more processors which can process the input in parallel.

• The massively parallel computation (MPC) model assumes memory is dis-

tributed across multiple machines which perform computation and then share their

results with each other via one or more rounds of communication.

1
Calculated at the time of the writing of this thesis.
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• The external-memorymodel or I/Omodel separates memory into a fast, but small

cache and a slow, but large disk, where data can be transferred between the two.

The formal de�nitions of the above models are provided in Section 2.2. There are

various challenges in �nding provably e�cient algorithms in each of these models such

that one cannot trivially perform some number of basic conversions to transform an al-

gorithm in the sequential model to one that is e�cient in each of these models. In shared-

memory settings, algorithm designers need to �gure out which steps of the algorithm can

be performed simultaneously without causing race conditions or deadlock. In distributed

memory settings, one often needs to compute global values–such as the set of edges in the

induced subgraph of a set of vertices–without using too many communication rounds. Fi-

nally, in the external-memory model, the cache is often too small to �t the entire input and

one needs to design an algorithm that minimizes the number of times data is transferred

between the cache and disk.

In each of the following chapters of this thesis, we describe the speci�c challenges we

face for each result we obtain in one of these models.

Graph Properties and Problems Certain graph properties allow algorithm design-

ers to design simpler and faster algorithms. For example, one can e�ciently �nd the

minimum vertex cover in bipartite graphs even though the problem is NP-hard in general

graphs. Other examples of graph classes that allow for better algorithms to hard problems

are bounded degree graphs and planar graphs. The drawback for designing algorithms

for these special classes of graphs is that such classes of graphs may not represent real

networks. Both of the aforementioned Friendster and neuronal graphs are not bipartite,

do not have degree bounded by a small constant, and are not planar.

However, there are certain properties of graphs that are simultaneously realistic and

allow algorithm designers to design better algorithms. The well-known degeneracy prop-

erty (and the related arboricity property) is one such example. Not only do many real-life

networks exhibit small degeneracy (e.g., the Friendster graph has a degeneracy of 304
compared to 2 billion edges) but also the degeneracy of a graph is closely related to its

𝑘-core decomposition, which is used in many applications in computer science. We de�ne

degeneracy, arboricity, and 𝑘-core decomposition in what follows.

In this thesis, we mainly study algorithms for undirected graphs, although a few re-

sults we include are algorithms on directed graphs. Unless otherwise speci�ed, we de�ne

a graph 𝐺 = (𝑉 ,𝐸) to be an undirected, unweighted graph with a set of 𝑛 = |𝑉 | vertices

and 𝑚 = |𝐸| edges.

Degeneracy and Arboricity The degeneracy of a graph is one measure of a graph’s

sparsity. The degeneracy of a graph 𝐺 = (𝑉 ,𝐸) is de�ned as the minimum value 𝑘 such

that every induced subgraph of 𝐺 has a vertex of degree at most 𝑘. It is also equivalent

to a number of other notions which we give in Lemma 2.1.5. The classic algorithm of

Matula and Beck [MB83] �nds the degeneracy of a graph in𝑂(𝑛+𝑚) time; the algorithm

works by repeatedly removing the vertex with smallest degree (resolving ties arbitrarily).

The degeneracy of the graph is the largest degree of a vertex removed by this procedure.

The order by which vertices are removed in this procedure is known as the degeneracy

27



ordering.

To see why the degeneracy ordering may be useful, consider the problem of enumer-

ating the set of triangles in a graph. A classical algorithm for this problem by Chiba and

Nishizeki [CN85] �rst �nds a degeneracy ordering, then, in order, starting with the �rst

vertex in the ordering, they consider all possible wedges incident to the vertex and check

whether the wedge forms a triangle. Checking all such wedges can be done in 𝑂(𝑘𝑚)
time in a graph with degeneracy 𝑘 and �nding the degeneracy ordering can be done in

𝑂(𝑚+ 𝑛) time to result in a 𝑂(𝑘𝑚+ 𝑛) algorithm. The degeneracy ordering is also used

by many other e�cient algorithms that solve di�erent types of graph problems.

By the Nash-Williams theorem, the degeneracy of the graph is within a factor of two

of another measure of sparsity known as the arboricity of the graph. The arboricity of the

graph is formally de�ned as the minimum number of forests into which the edges of the

graph can be partitioned. Given a graph with arboricity 𝛼, the degeneracy, 𝑘, of the graph

is bounded by: 𝛼 ≤ 𝑘 ≤ 2𝛼 − 1.

Finally, a graph with degeneracy 𝑘 has average degree at most 𝑘. The proof for this

is quite simple: given a graph with degeneracy 𝑘, it has at most 𝑛𝑘 edges. Then, the

average degree is upper bounded by 𝑛𝑘/𝑛 = 𝑘. Several of the algorithms in this thesis use

the degeneracy/arboricity of the input graph as well as these related properties.

We study a number of problems in this thesis and among the problems we study,

we consider the following three key problems.

𝑘-Core Decomposition The 𝑘-core of a graph 𝐺 = (𝑉 ,𝐸) is the maximal subgraph of

𝐺 where the degree of every vertex in the subgraph is at least 𝑘 [Sei83]. The coreness of

a vertex 𝑣 ∈ 𝑉 in the graph is the largest 𝑘 where 𝑣 is part of a 𝑘-core. The 𝑘-core decom-

position of 𝐺 is a partition of the vertices 𝑉 into layers based on their coreness, inducing

a natural hierarchical clustering of the graph. Vertices with larger coreness values clearly

have larger degree and are more central to a network’s structure. In a social network,

one can think of such nodes as the popular social in�uencers who are friends with other

famous social in�uencers. On the other hand, nodes with smaller coreness either have

small degree or are not central to the network’s structure. In our social network anal-

ogy, such nodes may have few friends or may have many friends, but none of whom are

particularly famous. Thus, one can see that the 𝑘-core decomposition tells us something

more profound than how many friends a user has; it tells us which users are fundamental

to a social network’s function. Namely, it tells us which individuals have the ability to

in�uence a large portion of the network.

The 𝑘-core decomposition of a graph is an incredibly useful graph statistic. The 𝑘-core

decomposition and its variants have been widely studied in the past and also more re-

cently in the machine learning [AHDBV05, ELM18, GLM19], database [CZL
+

20, LZZ
+

19,

ESTW19, BGKV14, MMSS20], graph analytics [KBST15, KM17a, DBS17, DBS18b], and

other communities [GBGL20, KBST15, LYL
+

19, SGJS
+

13].

Triangle and 𝑘-Clique Counting Given an input graph𝐺 = (𝑉 ,𝐸), the triangle count

of 𝐺 is the number of triangles that are contained in any subgraph of 𝐺. Likewise, the
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𝑘-clique count is de�ned as the number of subsets, 𝑆 , of 𝑘 vertices such that there exists

an edge between every pair of vertices in the induced subgraph given by 𝑆 . Triangle and

clique counting are widely used to measure the cohesiveness of communities in social

network analysis. In a graph of the web where edges consist of hyperlinks between pages,

triangles and cliques can reveal the sets of webpages that share a common topic. The

triangle and clique counts of a graph are also instrumental in numerous other social and

network science measurements [FM95, Gra77, GLM12, MFC
+

20, NG04, RAK18, SSPc17,

Tso15, TPM17, WS98, YBL18].

(∆+1)-Vertex Coloring Given an input graph 𝐺 = (𝑉 ,𝐸), the (∆+1)-vertex coloring

of 𝐺 is de�ned as the problem where provided ∆ + 1 colors where ∆ is the maximum

degree in the graph, color all vertices such that no two adjacent vertices are colored the

same color. Server scheduling is one longstanding application of vertex coloring. Suppose

some company wants to take down some number of their servers for a software update.

However, they do not want to simultaneously take down any two adjacent servers at the

same time. To �gure out a schedule to take down the servers, the company can perform a

(∆+1)-vertex coloring of the server network; then the set of servers with the same color

can be taken down at the same time.

Similar to the previous problems mentioned in this section, (∆ + 1)-coloring

also has numerous applications in scheduling, register and resource allocation,

designing seating plans, data mining, clustering, image segmentation, and even Su-

doku [Akm08, Cha04, CM84, GMP05, JP94, KHSL16, Lei79, Lew15, Mar04, MSZ15, Saa96].

In particular, we study these problems in dynamically changing graphs. For the 𝑘-

core decomposition and triangle/clique counting algorithms, we also provide extensive

experiments on real-world networks.

Dynamic Graph Algorithms Many of the results in this thesis are dynamic graph

algorithms which are meant to provide accurate graph statistics when the graph changes

due to vertex or edge updates. Provided an initial graph, 𝐺 = (𝑉 ,𝐸), updates can be

vertex/edge insertions/deletions. In this thesis, we only consider edge updates although

several of our algorithms can be adapted to handle vertex updates.
2

In the sequential setting, an edge update is applied one at a time. After each update, our

dynamic graph algorithm updates the desired graph statistic.
3

Such a setting is the most

fundamental setting to consider and is the setting that has received the most attention

in the sequential model. However, in the parallel and distributed models, we can lever-

age the ability to perform computation simultaneously to obtain dynamic algorithms that

can handle multiple, simultaneous updates. This model is formally de�ned as the batch-

dynamic model [BW09, DDK
+

20].

2
Speci�cally, vertex updates involving adding and deleting vertices with 0 degree.

3
Some versions of dynamic algorithms allow for separate update and query operations. An update oper-

ation in such a setting only a�ects the internal data structures maintained by the dynamic algorithm (and

the algorithm does not have to report accurate graph statistics after each update). After a query operation,

the algorithm reports the updated graph statistic. In this thesis, we only consider the model where accurate

graph statistics are provided after each graph update.
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Batch-Dynamic Model Provided an initial graph, 𝐺 = (𝑉 ,𝐸), updates are applied in

batches, ℬ, of updates to be processed in parallel. A batch-dynamic algorithm provides

accurate graph statistics after each batch of updates is applied.

1.1 Summary of Contributions

In the following, we give a high-level introduction to the contents of this thesis as well

as the motivation behind the topics we chose to study. In Parts II to IV, we provide the

technical components of the thesis which is split into three parts:

1. Part II �rst discusses static graph algorithms. Chapter 3 provides approximation

algorithms for hard-to-solve graph problems in graphs that are near an algorith-

mically tractable graph class. Chapter 4 discusses algorithms in the MPC model for

small subgraph counting and demonstrates via experiments that our algorithms also

empirically provides better approximations than the state-of-the-art on all tested

real-world graphs. Chapter 5 shows a near-linear time scheduling algorithm for

scheduling with communication delay where precedence constrained jobs are mod-

eled as directed acyclic graphs.

2. Part III then expands on new e�cient and scalable dynamic graph algorithms. Chap-

ter 7 shows a 𝑂(1) amortized time, whp, dynamic algorithm for (∆+1)-vertex col-

oring. Chapter 6 provides a new parallel, batch-dynamic 𝑘-core decomposition al-

gorithm. Chapter 8 provides new parallel, work-e�cient batch-dynamic algorithms

for triangle and clique counting. Both of these chapters also include extensive ex-

periments showing orders of magnitude improvement in performance on real-world

networks.

3. Finally, Part IV discusses hardness results from pebbling and cryptographic con-

structions using such hard instances. Chapter 9 presents a set of results showing

the hardness of obtaining optimal computation schedules on directed acyclic com-

putation graphs in the external-memory model. Chapter 10 concludes with con-

structions using such hard instance graphs to construct static-memory-hard hash

functions that use disk memory to deter large-scale password-cracking attacks, even

against an adversary with unlimited parallel processing power.

Each of these parts begins with its own technically more in-depth overview of the

background and results therein. In Chapter 2, we provide all de�nitions, notations, and

terminology used throughout the thesis.

The following sections provide details on the results mentioned in the outline above.

1.1.1 Part II: Static Graph Algorithms

Chapter 3: Approximation Algorithms for Graphs Near an Algorithmically

Tractable Class Real-world networks often do not have underlying graphs that fall

under a structured graph class such as bounded degree, bounded degeneracy, or bounded

treewidth. Such networks could result from a variety of di�erent reasons including nat-

ural variations in the underlying model or measurement error. We consider real-world
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Figure 1-1: Pictorial representation of some of the graph algorithm results in this thesis.

networks that require some number of 𝛾 vertex deletions, edge deletions, or edge con-

tractions to become a member of a structured graph class to be 𝛾-close to this graph class;

this leads to a natural procedure for solving hard problems in graphs that are 𝛾-close to

structured graph classes.

First, edit the graph by deleting some number of vertices and/or edges so that the

graph becomes structured. Then, solve the hard-to-compute problem on the new graph.

Finally, lift the solution 𝑆 obtained for the problem on the structured graph by adding the

set of vertices/edges that were deleted back into 𝑆 . For any problemΠ that satisfy our sta-

bility and lifting conditions [DGK
+

19], we show that a

(︁
1+𝑂

(︁
𝛿 log1.5𝑛

)︁)︁
-approximation

exists for Π for graphs which are (𝛿 · |OPTΠ(𝐺)|)-close to having treewidth 𝑤 via vertex

deletions. Problems which fall under this domain include Vertex Cover, Feedback Vertex

Set, Minimum Maximal Matching, and Chromatic Number. We also show that a

(︁
1−4𝛿
4𝑘+1

)︁
-

approximation exists for Independent Set on graphs (𝛿 · |OPTΠ(𝐺)|)-close to having de-

generacy 𝑘.

Given this framework, it seems natural to study approximation editing algorithms for

deleting vertices and edges to obtain a graph in a desired class. For parameterized graph

classes, the natural bicriteria approximation is an approximation on the edit set combined

with an approximation of the parameter of the parameterized graph class. So, in addi-

tion, we also show a set of new editing results spanning from editing algorithms that

obtain constant or polylogarithmic bicriteria approximations to hardness of approxima-

tion results for computing the optimal number of edits to the exact parameterized graph

class. Our results for editing to parameterized graph classes include, most prominently, an(︁
𝑂

(︁
log1.5(𝑛)

)︁
,𝑂

(︁√︀
log𝑤

)︁)︁
-approximation on vertex deletion to treewidth 𝑤 where the

�rst parameter is the approximation factor on the vertex deletion set and the second is the
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approximation factor on the treewidth. Our results also include a

(︁
1
𝜀 ,

4
1−𝜀

)︁
-approximation

for any 𝜀 < 1 to bounded degeneracy and a𝑂(log𝑛)-approximation for editing to constant

degeneracy 𝑘, which is tight up to constant factors with our lower bounds [DGK
+

19].

Chapter 4: Static Small Subgraph Counting In this chapter, we present results for

triangle and clique counting in the massively parallel computation (MPC) model [BEL
+

20].

With the growing popularity of frameworks and programming models, such as MapRe-

duce, Hadoop, Spark, and Dryad, that distribute computation across many machines and

then perform such computation in parallel, the MPC model has become the theoretical

standard for studying algorithms in such massively parallel frameworks. In this chapter,

we show that there exists an MPC algorithm that gives the exact count of triangles in

an input graph in 𝑂(loglog𝑛) rounds, 𝑂(𝑛𝛿) space per machine for any constant 𝛿 > 0,

and 𝑂(𝑚𝛼) total space where 𝛼 is the arboricity of the graph [BEL
+

20]. To the best of

our knowledge, there are no known MPC triangle counting algorithms for bounded ar-

boricity graphs beyond the trivial algorithm of computing a degeneracy orientation and

brute-force counting the triangles by putting all out-neighbors in the same machine and

trying all pairs. This naïve algorithm requires at least 𝑂(log𝑛) rounds and total space

𝑂(𝑛𝛼2), both of which are more costly than what we obtain in our work.

Approximate triangle counting on the one hand requires less time and space than

exact counting. However, to obtain good estimates on the subgraph count and to provide

approximations that concentrate well oftentimes require lower bounds on the count of

the subgraphs in an input graph. In fact, these lower bounds could be quite large, on the

order of 𝑛, where 𝑛 is the number of vertices in the input graph. We show a (1 + 𝜀)-
approximation algorithm for the number of triangles that uses near-linear total space

and space per machine and with a lower bound of square root of the average degree,

𝑇 =Ω
(︁√︀
𝑑𝑎𝑣𝑔

)︁
. All of this is done in a constant number of MPC rounds. The best previous

results for this problem required the lower bound on 𝑇 to beΩ(𝑑𝑎𝑣𝑔) [PT11, KPS13]. Thus,

compared to the best previous bound on the number of triangles, our algorithm achieves

a quadratic improvement over the previous lower bound and also improves on the space

per machine. We show an extension of this algorithm to any 𝐾-vertex subgraph where

𝐾 ≥ 1 is constant.

We further extend our results to counting 𝑘-cliques. In the domain of graphs with

bounded arboricity 𝛼, we obtain an exact 𝑘-clique counting algorithm in𝑂
(︁
𝑚𝛼𝑘−2

)︁
total

space and𝑂(loglog𝑛) rounds given machines with space at most𝑂(𝑛𝛿) for any constant

𝛿 > 0. In order to achieve this bound, we formulated several novel MPC primitives that

allows us to duplicate and aggregate counts across multiple machines.

We tested
4

our triangle counting algorithms using graphs from the Stanford SNAP

database [LS16]. For our simulation of the exact triangle counting algorithm on bounded

arboricity graphs, we picked di�erent values of space per machine and computed the

number of rounds necessary to �nd the number of triangles. We tested the algorithm

against the trivial folklore algorithm of just sending all the vertices for the out-degree

neighborhood of a vertex to the same machine. We saw that our algorithm performs better

4
Code can be found here: https://github.com/qqliu/mpc-triangle-count-exact-approx-simulations.git.
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than the trivial algorithm for nearly all cases even when we give the trivial algorithm more

memory.

For our implementation of the approximation algorithm, we looked at the approx-

imation factors returned by our implementation of [PT11] with our implementation of

our approximate algorithm. As expected, we obtain a better approximation for all cases

than [PT11] for the same space per machine because we require a smaller theoretical

bound on the number of triangles.

Chapter 5: E�cient Algorithms for Scheduling In this chapter, we consider the

problem of e�ciently scheduling precedence-constrained jobs on a set of identical ma-

chines in the presence of uniform communication delay [LPS
+

21]. Assuming a communi-

cation delay of 𝜌-time units where 𝜌 > 1, all jobs are unit size, and allowing duplication,

we provide the �rst e�cient approximation algorithm that runs in near-linear time for

this problem and whose approximation matches the best-known approximation algorithm

by [LR02]. A naïve implementation of the Lepere and Rapine algorithm [LR02] requires

𝑂 (𝑚𝜌+𝑛 ln𝑀) time on a directed acyclic graph with 𝑛 vertices and𝑚 edges. For a large

communication delay, such a schedule is not e�cient to compute.

The main bottleneck in the original algorithm proposed by Lepere and Rapine is a

graph theoretic one: how does one obtain the sizes of ancestor sets of each vertex and

determine sets that do not overlap too much in near-linear time? We solve this issue and

others via a sampling-based approach to obtain our near-linear time algorithm where the

crux of the algorithm is a new way of determining the fraction of ancestor sets that over-

lap between any two nodes in a DAG. Namely, we provide an 𝑂
(︁ ln𝜌
lnln𝜌

)︁
-approximation

algorithm that runs in 𝑂 (𝑛 ln𝑀 +𝑚 ·polylog𝑛) time, where 𝑀 is the total number of

machines.

1.1.2 Part III: Dynamic Graph Algorithms

Chapter 6: Dynamic 𝑘-Core Decompositions Maintaining a 𝑘-core decomposition

quickly in a dynamic graph is an important problem in many machine learning applica-

tions and has been cited as one problem that bridges theory and practice [HHS21]. The

𝑘-core decomposition of the graph is de�ned as a partition of the graph into layers such

that a vertex 𝑣 is in layer 𝑘 if it belongs to a 𝑘-core but not a (𝑘 + 1)-core. This induces

a natural hierarchical clustering on the input graph. Many well-known algorithms for

𝑘-core decomposition are inherently sequential. The classic algorithm for �nding such a

decomposition is to iteratively select and remove all vertices 𝑣 with smallest degree from

the graph until the graph is empty [MB83]. The length of the sequential dependencies

(the depth) of such a process could be Ω(𝑛) given a graph with 𝑛 vertices. Due to the po-

tentially large depth, this algorithm cannot fully take advantage of parallelism on modern

machines, and can therefore be too costly to run on large graphs.

In this chapter, we present the �rst parallel batch-dynamic algorithm for maintain-

ing an approximate 𝑘-core decomposition that is e�cient in both theory and prac-

tice [LSY
+

21]. Provided an input graph with 𝑚 edges and a batch of 𝐵 updates, our al-

gorithm maintains a (2+ 𝜀)-approximation of the coreness values for all vertices (for any
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constant 𝜀 > 0) in 𝑂(𝐵 log2𝑛) amortized work, 𝑂(log2𝑛 loglog𝑛) depth with high prob-

ability, using𝑂(𝑛 log2𝑛+𝑚) space. Theoretically, our proof of our (2+𝜀)-approximation

bound improves upon the (4+𝜀)-approximation guarantee of the most recent dynamic al-

gorithm for this problem by [SCS20] while maintaining polylogarithmic amortized work.

Practically, we also implemented our algorithm on a 30-core machine with two-way hy-

perthreading. Our code-optimized implementations achieve up to 497.63× speedup over

Sun et al. [SCS20] and 114.52× speedup over the state-of-the-art exact, multi-core imple-

mentation [HSY
+

20].
5

Chapter 7: Dynamic (∆ + 1)-Vertex Coloring The problem of vertex coloring with

(∆+1) colors is an extremely well-studied problem under various computational models

and settings. The problem seeks to �nd a set of colors to assign to each vertex in an input

graph such that no two vertices which share an edge use the same color. The fully dynamic

version of this problem seeks to maintain a valid (∆ + 1)-coloring of the graph under

edge insertions and deletions. Our work [BGK
+

19] improves upon the previously best

known result via an optimal𝑂(1) amortized update time algorithm with high probability,

improving on the time bound of [BCHN18] and providing a result with high probability

compared to the concurrent result of [HP20] which only provides the bound in expectation.

This result makes use of a data structure known as a level data structure. Di�erent

types of level data structures are used for a variety of dynamic graph problems. The result

provided in Chapter 6 is based on our new parallel variant of the level data structure which

we simply call a parallel level data structure. Such techniques used in our parallel level data

structure may be applicable to the level data structure in this chapter. If such techniques

can be applied, an interesting future direction would be to see whether our (∆+1)-vertex

coloring algorithm would perform well, experimentally, on highly dynamic networks.

Chapter 8: Dynamic Triangle and Clique Counting Algorithms Triangle, 𝑘-

clique, and other subgraph counting algorithms have wide practical importance. It is

thus important to come up with fast triangle counting algorithms that have very good

theoretical guarantees as well as being implementable and fast in practice. Furthermore,

because graphs are continuously changing in real-world networks, it is also important to

study the dynamic version of the problem. We investigated algorithms for such problems

in two practical models of real-world systems.

Our algorithms in this chapter are algorithms in the shared-memory work-depth

model. They also handle batch-dynamic updates. Given an input of a batch ℬ of edge in-

sertions and/or deletions into a graph, our goal is to formulate an algorithm such that the

amortized work is at most the work of applying the update one at a time, but the depth is

𝑂(log𝑛). Building on the sequential triangle counting algorithm presented in [KNN
+

18],

we obtain a batch-dynamic triangle counting algorithm that returns the triangle count

in 𝑂(log𝑛) depth, 𝑂(
√
𝑚) work per update, and 𝑂(𝑚) total space in the batch-dynamic

setting [DLSY20]. A trivial implementation of the best sequential algorithm by Kara et.

al. [KNN
+

18] instead results in at leastΩ(|𝐵|) depth, much too large for large batches. We

also present a parallel batch-dynamic algorithm for 𝑘-clique counting in 𝑂(log(𝑚+ |𝐵|))
5
Code can be found here: https://github.com/qqliu/batch-dynamic-kcore-decomposition.
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depth, 𝑂
(︁
min(|𝐵|𝑚0.469𝑘−0.704, (𝑚+ |𝐵|)0.469𝑘)

)︁
work, and 𝑂

(︁
(𝑚+ |𝐵|)0.469𝑘

)︁
space us-

ing our parallel implementation of the currently best-known matrix multiplication algo-

rithm. This result also achieves the theoretically best bounds for 𝑘-clique counting in

dense graphs in the sequential model when 𝑘 > 9 [DLSY20].

We tested our batch-dynamic triangle counting algorithm on a 72-core machine on a

number of datasets obtained from the Stanford SNAP database [LS16] and benchmarked

against the state-of-the-art batch-dynamic triangle counting algorithm of [MBG17]. We

found a 10× improvement for all tested batch sizes on the Twitter network graph which

has billions of edges as well as improvements for smaller batch sizes on other graphs.

1.1.3 Part IV: Hardness from Pebbling

Chapter 9: Hardness of Computation via the Red-Blue Pebble Game Pebble

games were originally used to model various forms of computation including register

allocation, reversible computation, and input/output complexity in the external memory

model. The hardness of computing the optimal strategy for pebbling a directed acyclic

graph (DAG) using the rules of these games have been well-studied in the past (see

e.g. [GLT80, HP10, CLNV15]). We proved the best current bound on the inapproximabil-

ity of the standard pebble game in [DL17]. We showed that the standard pebble game is

PSPACE-hard to approximate to an additive term of𝑂(𝑛1/3) [DL17] (where 𝑛 is the num-

ber of vertices in the DAG) whereas the previously best known result only proved that it

is PSPACE-hard to approximate to an additive constant term of approximation [CLNV15].

In this chapter, we show additional hardness results for obtaining optimal schedules

in the external-memory model. We show that determining the optimal strategy in the

red-blue pebble game is PSPACE-complete and is �xed-parameter intractable when con-

sidering the number of input/outputs from disk to cache and vice versa [DL18]. The com-

plexity of pebble games has long been studied [GLT80, HP10, WAPL14, CLNV15, DL17],

because of the implications for proof complexity and computation. Furthermore, more re-

cently, the hardness of the red-blue pebble game has been used to prove properties about

bandwidth-hard hash functions [RD17, BRZ18]. Thus, our hardness result for the red-blue

pebble game implies that these bandwidth-hard functions provide additional security.

Most recently, pebble games have been used to study rematerialization in the compu-

tation performed by neural networks [KPS
+

19]; thus, our hardness results also imply that

such research on �nding e�cient algorithms to perform neural network computation in

the area of deep learning should focus on speci�c graph classes.

Chapter 10: Static-Memory-Hard Hash Functions Defending against large-scale

password cracking attacks have always been a fundamental problem in theory and in

practice. The evolution of password hashing functions that are resistant to large-scale

attacks has been something of an arms race for decades, with memory-hard functions

as the recent bulwark against adversarial advantage. In this chapter, we �rst provide

two signi�cant and practical considerations not analyzed by existing models of memory-

hardness, propose and analyze new models to capture them, and, �nally, provide novel

hash function constructions based on hard-to-pebble graphs that achieve the desired
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memory-hardness [DLP18]. Our cryptographic constructions use ideas from Chapter 9,

speci�cally those related to the construction of the hard instances in that chapter.

Most notably, we introduce a new cryptographic primitive–static-memory-hard hash

functions–that can be combined with current memory-hard hash functions to obtain

greater security. The main idea behind static-memory-hard hash functions is to use stat-

ic/preprocessed (disk) memory as the memory-hard component of the function. Previous

functions used only dynamic memory (RAM) such that the memory requirement of the

function is bounded by the runtime of computing the function; this bound is due to the fact

that honest evaluators need to be able to compute the function using standard hardware

(e.g., a laptop).

Thus, by allowing the use of static memory (generated through a one-time prepro-

cessing phase) we can guarantee that adversaries who try to cheat can su�er a penalty

of potentially having to use gigabytes of RAM at runtime. We also instantiate our static-

memory-hard function with two constructions and created an initial prototype in silico

of our simpler construction. Our work can potentially have broad impact in password

security. Furthermore, the ideas we introduce can be used in proofs-of-space protocols

for cryptocurrencies (like Bitcoin) that require some proof-of-work or space.

1.2 Research Works Presented in This Thesis

This thesis contains the following research works performed by the thesis author and her

collaborators (in the order they are presented in this thesis):

• [DGK
+

19] Erik D. Demaine, Timothy D. Goodrich, Kyle Kloster, Brian Lavallee,

Quanquan C. Liu, Blair D. Sullivan, Ali Vakilian, and Andrew van der Poel. Struc-

tural rounding: Approximation algorithms for graphs near an algorithmically-

tractable class. (Chapter 3)

• [BEL
+

20] Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitro-

vić, and Ronitt Rubinfeld. Parallel algorithms for small subgraph counting. (Chap-

ter 4)

• [LPS
+

21] Quanquan C. Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R.

Wang. Scheduling with communication delay in near-linear time. (Chapter 5)

• [LSY
+

21] Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian

Shun. Parallel batch-dynamic 𝑘-core decomposition. (Chapter 6)

• [BGK
+

19] Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan

C. Liu, and Shay Solomon. Fully dynamic (∆+1)-coloring in constant update time.

(Chapter 7)

• [DLSY21] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. Par-

allel batch-dynamic 𝑘-clique counting. (Chapter 8)

• [DL18] Erik D. Demaine and Quanquan C. Liu. Red-blue pebble game: Complexity

of computing the trade-o� between cache size and memory transfers. (Chapter 9)

• [DLP18] Thaddeus Dryja, Quanquan C. Liu, and Sunoo Park. Static-memory-hard

functions, and modeling the cost of space vs. time. (Chapter 10)
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Other Research andWorks Several other works not included in this thesis but studied

by the author of this thesis and her coauthors also re�ect a somewhat di�erent aspect of

the theme of this thesis. We include a brief description of them here for completeness. The

�rst several works are algorithms and lower bounds for problems in the external-memory

and cache-adaptive models. The last work studies important symmetry-breaking prob-

lems in graphs but in a somewhat di�erent model where the input graph itself represents

the communication network.

We studied the notion of �ne-grained complexity in the external-memory (I/O) model

in [DLL
+

18]. Several algorithms for very fundamental problems are slow in the I/O-model,

particularly graph algorithms in sparse graphs, such as the algorithms for triangle detec-

tion and �nding the diameter and radius in sparse graphs. We explain the reason for

this lack of progress by using ideas from �ne-grained complexity [DLL
+

18] to show that

solving these problems in the I/O-model is just as hard as solving the all-pairs shortest

paths problem (APSP), the 3-SUM problem, or orthogonal vectors problem (OV) which

are commonly conjectured to not have linear time algorithms in both the I/O and RAM

models.

Our work in cache-adaptive algorithms includes two important features: scan-

hiding for adaptivity and smoothed analysis of non-cache-adaptive algorithms. Cache-

adaptivity is a concept developed to account for multiple threads or processes run-

ning on a shared common cache. This behavior is modeled via the cache-adaptive

model [BEF
+

14, BDE
+

16], where the performance of an I/O algorithm is evaluated on

a changing memory pro�le. In this model, we developed a scan-hiding technique that in-

troduced the �rst cache-adaptive matrix multiplication algorithm that uses less I/Os than

the number of I/Os used by the naïve matrix multiplication algorithm [LLLX18]. Further-

more, we generalize this scan-hiding procedure to any (𝑎,𝑏,𝑐)-regular recursive algorithm

which scans at most the size of the input at each level of the recursion.

More recently, we showed that non-cache-adaptive algorithms are cache-adaptive be-

yond the worst-case [BCD
+

20]. We performed a smoothed analysis of common cache-

oblivious but non-cache-adaptive algorithms and showed that even simple, natural forms

of smoothing the worst-case input lead to the algorithm being cache-adaptive in expec-

tation. Most notably, we show that provided any memory pro�le, if we randomly shu�e

the parts of the pro�le (where a part is de�ned by some “signi�cant event”), then our

algorithm is optimally cache-adaptive on the shu�ed pro�le in expectation. This shows

that in real-world systems where it is di�cult to tailor a memory sequence to a particular

algorithmic structure, cache-obliviousness is a good proxy for cache-adaptiveness.

Finally, in a work currently under submission [ALS20], we consider a number of

symmetry-breaking problems in the distributed Congest setting. In the Congest model,

vertices in the input graph compose the communication network over which messages, of

size 𝑂(log𝑛) bits, are sent in a point-to-point fashion. The main di�erence between this

model and a sequential dynamic model is that vertices in the graph only know about a

topological change in the graph if they are adjacent to the edge update or if another vertex

informs them about a change. Vertices in the graph are asleep and cannot send messages

to other vertices in the graph unless an edge update incident to the vertex occurs or an-

other adjacent vertex wakes them up. Only after a vertex wakes up can the vertex send

messages to its neighbors. Due to the lack of knowledge of the current topology of the
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graph, the key challenge we face when formulating algorithms in this model is for each

vertex to maintain an accurate estimate of the number of edges in the graph. In the case

when some number of vertices are present in disconnected subgraphs, oftentimes, vertices

in such a disconnected component would not know about the number of edge insertions

and deletions in other parts of the graph. We solve this issue by presenting a general

framework for restarting the graph by updating the edge counts stored in vertices when a

certain number of edge insertions and deletions have occurred. Using this framework, we

obtain deterministic algorithms that are robust against a strongly adaptive adversary for

maximal matching, (3/2)-approximate maximum matching, (∆ + 1)-coloring, and maxi-

mal independent set [ALS20], which improve upon previous algorithms in their message

complexity.

1.2.1 Summary and Thesis Statement

The goal of this thesis is to present e�cient graph algorithms, in both the static and dy-

namic settings, and also lower bounds for computation on graphs in models that closely

mimic current real-world systems. The next parts of the thesis detail the advances in the

aforementioned three categories: static graph algorithms, dynamic graph algorithms, and

hardness from pebbling.

In this thesis, we present novel theoretical results in the work-depth, MPC/distributed,

and external-memory models. While the focus of this thesis is on the upper bound results,

we also provide some complementary lower bound results. For many of our results, we

also provide implementations of the algorithms/constructions and show the e�ciency

of these implementations on real-world data. The code for all of our implementation

are publicly available (with links included in this thesis). We hope that the theoretical

results in this thesis that do not currently have accompanying experiments will prove to

be practically useful should future practitioners choose to implement them. We also hope

that algorithm designers would be convinced that there are a variety of problems in this

space that will lead to interesting theoretical contributions.

We conclude with the following thesis statement.

Thesis Statement Novel static and dynamic graph theoretic techniques and lower bounds

in the work-depth, massively parallel computation and external-memory models can lead to

algorithms and constructions that are better suited for modern computing environments.
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Chapter 2

Preliminaries

2.1 Graph De�nitions and Notations

In this thesis, we consider simple, �nite graphs with no self-loops or multi-edges. Un-

less otherwise speci�ed, we de�ne a graph 𝐺 = (𝑉 ,𝐸) to be an undirected, unweighted

graph with a set of 𝑛 = |𝑉 | vertices and 𝑚 = |𝐸| edges. We denote an edge between

two vertices 𝑢,𝑣 ∈ 𝑉 by (𝑢,𝑣). The set of neighbors of a vertex 𝑣 is denoted by

𝑁 (𝑣) = {𝑢 | (𝑢,𝑣) ∈ 𝐸} and the degree of 𝑣 by deg(𝑣) = |𝑁 (𝑣)|. For a subset of vertices,

𝑆 ⊆ 𝑉 , 𝑁 (𝑆) =
⋃︀
𝑣∈𝑆𝑁 (𝑣). Given some subset 𝐸′ ⊆ 𝐸 of the edges in 𝐺, we de�ne 𝐺[𝐸′]

to be the subgraph of 𝐺 induced on the edge set 𝐸′ . Note that if every edge adjacent to

some vertex 𝑣 is in 𝐸 ∖𝐸′ , then 𝑣 does not appear in the vertex set of 𝐺[𝐸′].
For directed graphs, we denote the in-neighbors of a vertex 𝑣 by 𝑁−(𝑣) and the out-

neighbors of 𝑣 by 𝑁+(𝑣). We then let the in-degree and out-degree of 𝑣 be deg-(𝑣) and

deg+(𝑣), respectively. We let ∆(𝐺) be the maximum degree of 𝐺; when the context is

clear, we simply use ∆.

GraphClasses and Properties We �rst de�ne the related properties of degeneracy and

arboricity which are used in several results in this thesis.

De�nition 2.1.1 (Degeneracy). A graph 𝐺 = (𝑉 ,𝐸) is 𝑘-degenerate if every subgraph of

𝐺 contains a vertex of degree at most 𝑘; the degeneracy is the smallest 𝑘 ∈ N so that 𝐺 is

𝑘-degenerate. Let degen(𝐺) = 𝑘 denote the degeneracy of 𝐺.

The concept of 𝑘-cores is directly related to degeneracy and much literature center

around 𝑘-cores and 𝑘-core decomposition.

De�nition 2.1.2 (𝑘-Core and 𝑘-Shell). For a graph 𝐺 = (𝑉 ,𝐸) and positive integer 𝑘, the
𝑘-core of 𝐺, core𝑘(𝐺), is the maximal subgraph of 𝐺 with minimum degree 𝑘. The 𝑘-shell
of 𝐺 is core𝑘(𝐺) ∖ core𝑘+1(𝐺).

Using the de�nition of 𝑘-core, we can now de�ne a 𝑘-core decomposition.

De�nition 2.1.3 (𝑘-Core Decomposition). A 𝑘-core decomposition is a partition of ver-

tices into layers such that a vertex 𝑣 is in layer 𝑘 if it belongs to a 𝑘-core but not to a (𝑘+1)-
core. 𝑘(𝑣) denotes the layer that vertex 𝑣 is in, and is called the coreness of 𝑣.
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The above de�nes an exact 𝑘-core decomposition. A 𝑐-approximate 𝑘-core decompo-

sition is de�ned as follows.

De�nition 2.1.4 (𝑐-Approximate 𝑘-Core Decomposition). A 𝑐-approximate 𝑘-core de-
composition is a partition of vertices into layers such that a vertex 𝑣 is in layer 𝑘′ only if

𝑘(𝑣)
𝑐 ≤ 𝑘

′ ≤ 𝑐𝑘(𝑣) where 𝑘(𝑣) is the coreness of 𝑣.

Throughout, we let �̂�(𝑣) denote the estimate of 𝑣’s coreness. Fig. 2-1 shows a 𝑘-core

decomposition and a (3/2)-approximate 𝑘-core decomposition.

3/2-Approximate 
3-Core

3-Core

2-Core

1-Core 1-Core

Figure 2-1: Exact 𝑘-core decomposition (left) and (3/2)-approximate 𝑘-core decomposi-

tion (right).

The degeneracy of a graph is equivalent to several other properties.

Lemma 2.1.5 ([CE91, LW70, MB83]). Given a graph 𝐺 = (𝑉 ,𝐸), the following are equiv-
alent:

1. The degeneracy of 𝐺 is 𝑘.
2. The (𝑘 +1)-core of 𝐺 is empty and the 𝑘-core of 𝐺 is non-empty.

3. There exists an orientation of the edges in 𝐸 so that it forms a directed acyclic graph

and deg+(𝑢) ≤ 𝑘 for all 𝑢 ∈ 𝑉 .

4. There exists an ordering 𝑣1, . . . , 𝑣𝑛 of 𝑉 so that the degree of 𝑣𝑗 in 𝐺[{𝑣1, . . . , 𝑣𝑗}] is at
most 𝑘.

We formally de�ne low out-degree orientation mentioned in Lemma 2.1.5.

De�nition 2.1.6 (Low Out-degree Orientation). A low out-degree orientation of an

undirected graph is an orientation of its edges such that the out-degree of every vertex is

𝑂(𝑘) where 𝑘 is the degeneracy of the graph.

Given a graph 𝐺 = (𝑉 ,𝐸), the size of the largest clique that is a subgraph of 𝐺 is

called the clique number of 𝐺 and denoted 𝜔(𝐺). The coloring number of a graph 𝐺 is the

minimum number of colors needed to color 𝐺 so that no two adjacent vertices have the

same color. It is well-known that a graph which has bounded degeneracy 𝑘 immediately

implies bounded clique and chromatic numbers 𝜔(𝐺),𝜒(𝐺) ≤ degen(𝐺) + 1 = 𝑘 +1.

Theorem 2.1.7 (Degeneracy Ordering Algorithm [MB83]). Given 𝐺 = (𝑉 ,𝐸), there exists
a sequential algorithm that runs in𝑂(𝑚+𝑛) time that �nds the degeneracy of𝐺 by repeatedly

�nding and removing a vertex of minimum degree. The order by which vertices are removed

is called the degeneracy ordering.
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Degeneracy is closely related to another notion of graph sparsity called arboricity.

This thesis uses the arboricity of the graph as a parameter in several of our analyses. We

de�ne the property below.

De�nition 2.1.8 (Arboricity). Let 𝛼 denote the arboricity. Provided an input graph, 𝐺 =
(𝑉 ,𝐸), the arboricity of the graph, 𝛼, is the minimum number of forests into which 𝐸 can

be partitioned.

The arboricity and the degeneracy are both upper bounded by 𝑂(
√
𝑚) [CN85]. No-

tably, by the Nash-Williams theorem, given a graph with arboricity 𝛼, the degeneracy,

𝑘, of the graph is bounded by: 𝛼 ≤ 𝑘 ≤ 2𝛼 − 1. The Nash-Williams theorem also relates

arboricity to another quantity known as the densest subgraph.

De�nition 2.1.9 (Densest Subgraph). A densest subgraph 𝑆 of a graph 𝐺 = (𝑉 ,𝐸) has
density

⌈︀
|𝐸(𝑆)|/ |𝑆 |

⌉︀
=max𝑆 ′⊆𝑉 (

⌈︀
|𝐸(𝑆 ′)|/ |𝑆 ′ |

⌉︀
).

The Nash-Williams theorem speci�cally shows that the arboricity is equal to

max𝑆 ′⊆𝑉 (
⌈︀
|𝐸(𝑆 ′)|/(|𝑆 ′ | − 1)

⌉︀
). This means that the density of the densest subgraph is up-

per bounded by the arboricity (and is approximately equal to the arboricity).

2.2 Models of Computation

In this section, we de�ne the models of computation we consider in this thesis.

2.2.1 Shared-Memory Work-Depth Model

We analyze the theoretical e�ciency of our parallel algorithms in the work-depth model.

The work-depth model is a fundamental tool in analyzing parallel algorithms, e.g., see

[BFS16, DBS18b, GSSB15, SBLP19, WGS20] for a sample of recent practical uses of this

model. An algorithm in the work-depth model is characterized by two complexity mea-

sures, work and depth, which are standard measures for analyzing shared-memory al-

gorithms [Jaj92, CLRS09]. The work is the total number of operations performed by the

algorithm. No parallel algorithm can perform less work than the best-known sequential

algorithm since any parallel algorithm can be made sequential by performing each parallel

step sequentially. Thus, the gold standard for parallel algorithms are algorithms whose

work matches the running time of the best-known sequential algorithm. We call such

algorithms work-e�cient algorithms. The depth of the algorithm is the longest chain

of sequential dependencies in the algorithm (or the computation time given an in�nite

number of processors) [Jaj92]. For sequential algorithms, the depth is equal to the work.

However, for parallel algorithms, the depth of the algorithm is often much smaller than

the work of the algorithm. Provided a graph 𝐺 = (𝑉 ,𝐸), an e�cient algorithm in this

model is work-e�cient and operates in polylog𝑛 depth.

Our algorithms can run in the nested-parallel model or the PRAM model. We use the

concurrent-read concurrent-write (CRCW) model, where reads and writes to a memory

location can happen concurrently. We assume that concurrent reads and writes are sup-

ported in 𝑂(1) work/depth. We also assume either that concurrent writes are resolved

arbitrarily, or are reduced together (i.e., fetch-and-add PRAM).
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Parallel Primitives We use the following primitives throughout this thesis. Approx-

imate compaction takes a set of 𝑚 objects in the range [1,𝑛] and allocates them unique

IDs in the range [1,𝑂(𝑚)]. The primitive is useful for �ltering (i.e. removing) out a set

of obsolete elements from an array of size 𝑛, and mapping the remaining 𝑚 live elements

to a sparse array of size 𝑂(𝑚). Approximate compaction can be implemented in 𝑂(𝑛)
work and𝑂(log*𝑛) depth [GMV91]. We also use a parallel hash table which supports 𝑛
operations (insertions, deletions) in𝑂(𝑛) work and𝑂(log*𝑛) depth with high probability,

and 𝑛 lookup operations in 𝑂(𝑛) work and 𝑂(1) depth [GMV91].

Our algorithms in this thesis make use of the widely used fetch-and-add instruction.

A fetch-and-add instruction takes a memory location and atomically increments the value

stored at the location. In this thesis, we assume that the fetch-and-add instruction can be

implemented in 𝑂(1) work and depth. Existing simulation results show that the CRCW

PRAM augmented with a fetch-and-add instruction can be simulated work-e�ciently at

the cost of a space increase proportional to the number of fetch-and-adds done, and a

multiplicative 𝑂(log𝑛) factor increase in the depth [MV91].

We use a parallel reduce-add in our algorithms, which takes as input a sequence

𝐴 of length 𝑛, and returns the sum of the entries in 𝐴 using 𝑂(𝑛) work and 𝑂(log𝑛)
depth [Jaj92].

Parallel Batch-Dynamic Algorithms All batch-dynamic [BW09, DDK
+

20] algo-

rithms in this thesis operate in the shared-memory parallel setting. A batch-dynamic
algorithm processes updates (vertex or edge insertions/deletions) in batches, ℬ, of size

|ℬ|. A batch-dynamic algorithm provides accurate graph statistics after each batch of

updates is applied. For simplicity, since we can reprocess the graph using an e�cient

parallel static algorithm when |ℬ| ≥𝑚, we consider 1 ≤ |ℬ| < 𝑚 for our bounds.

2.2.2 Massively Parallel Computation (MPC) Model

The massively parallel computation (MPC) model assumes memory is distributed across

multiple machines. Initially, the input is distributed in some organized fashion across

more than one machine. This means that machines know how to access the relevant in-

formation via communication with other machines. Then, computation is performed by

each individual machine and data is shared via one or more synchronous rounds of com-

munication. During each round, the machines �rst perform computation locally without

communicating with other machines. The computation done locally can be unbounded

(although the machines have limited space so any reasonable program will not do an ab-

surdly large amount of computation). At the end of the round, the machines exchange

messages to inform the computation for the next round. The total size of all messages

that can be received by a machine is upper bounded by the size of its local memory, and

each machine outputs messages of su�ciently small size that can �t into its memory.

The purpose of such a model is to mimic distributed systems that process data that

cannot all �t on one machine. The memory per machine is �xed and the complexity of an

algorithm in this model is measured by the total space used and the number of rounds
of communication. Provided a graph 𝐺 = (𝑉 ,𝐸), e�cient algorithms in this model use

𝑂(𝑛+𝑚) total space and 𝑂(log𝑛) or 𝑂(1) rounds of communication.
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Notation There existℳmachines that communicate with each other in synchronous

rounds. If 𝑁 is the total size of the data and each machine has 𝑆 words of space, we are

interested in settings where 𝑆 is sublinear in 𝑁 . We use total space to refer toℳ · 𝑆 ,

which represent the joined available space across all the machines.

2.2.3 External-Memory Model

In this model, memory is divided between a fast, but small internal memory (cache),

and a slow, but large external memory (disk). Computation is performed in the cache.

Sometimes not all data required in a computation can �t in cache, thus, the disk is needed

to store the extra data necessary in the computation. Given a �xed cache size, the goal

of cache-e�cient algorithms is to minimize the number of reads and writes from disk.

A read/write into disk is known as an I/O operation. Then, the number of read/writes

into disk is generally called the I/O complexity. The general assumption made in this

model is that the I/O complexity takes up the majority of the computation time. In other

words, the time required to perform computations in cache is negligible compared to

the time required to perform read/writes into disk. Thus, the complexity measure used

to determine the e�ciency of an algorithm in this model is the number of I/Os or I/O

complexity.

Notation The cache has size 𝑀 and is connected to a disk of unbounded size. Both

the internal and external memory are divided into blocks of size 𝐵. One I/O consists of

moving one block of 𝐵 contiguous elements from cache to disk or vice versa.

2.3 Problem De�nitions

2.3.1 (∆+1)-Vertex Coloring

Given an input graph 𝐺 = (𝑉 ,𝐸), a valid (∆+1)-vertex coloring exists if and only if no

two adjacent vertices (two vertices 𝑢 and 𝑣 are adjacent if (𝑢,𝑣) ∈ 𝐸) are colored the same

color and at most (∆+1) colors are used.

2.3.2 𝑘-Clique Counting

Given an undirected graph 𝐺 = (𝑉 ,𝐸) with 𝑛 vertices and 𝑚 edges, and an integer 𝑘,

a 𝑘-clique is de�ned as a set of 𝑘 vertices 𝑣0, . . . , 𝑣𝑘 such that for all 𝑖 , 𝑗 , (𝑣𝑖 ,𝑣𝑗) ∈
𝐸. The 𝑘-clique count is the total number of 𝑘-cliques in the graph. The dynamic 𝑘-
clique problem maintains the number of 𝑘-cliques in the graph upon edge insertions

and deletions, given individually or in a batch.

A quick note on notation: in this thesis, we choose to refer to 𝑘-core decomposition

and 𝑘-clique counting both using the variable 𝑘. We made this choice since previous

literature tend to use this variable when discussing these two topics. To avoid confusion,

we preface each usage of 𝑘 with the quantity it refers to.
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2.3.3 Pebble Games

A pebble game is a one-player game played on a directed acyclic graph (DAG) where the

goal of the player is to place pebbles on a set of one or more target nodes in the DAG.

A pebble can be placed and moved according to some movement rules that are di�erent

for each type of pebble game. Given a directed acyclic computation graph, the number

of pebbles used at any time represents the maximum space used in the computation. The

number of pebble placements and moves represents the time necessary to perform the

computation. The sequence of pebble placements and moves is also sometimes referred

to as a schedule for the given computation graph.

Given an input DAG, the goal is to minimize the maximum number of pebbles on the

graph at any time or the number of pebble moves/placements, or both.

2.4 Probability Bounds

Throughout the thesis, when we say high probability, we mean with probability 1− 1
𝑛𝑐

for any constant 𝑐 ≥ 1. We also use the following probability bounds in this thesis.

De�nition 2.4.1 (Chebyshev’s Inequality). Let 𝑋 denote a real-valued random variable

with �nite expected value 𝜇 and �nite, non-zero variance, 𝜎2
. For any 𝑐 > 0,

P [|𝑋 −𝜇| ≥ 𝑐𝜎 ] ≤ 1
𝑐2
.

De�nition 2.4.2 (Cherno� Bound). Let 𝑌1, . . . ,𝑌𝑚 be𝑚 independent random variables that

take on values in [0,1] where E[𝑌𝑖] = 𝑝𝑖 and
∑︀𝑚
𝑖=1𝑝𝑖 = 𝑃 . For any 𝛾 ∈ (0,1], the multi-

plicative Cherno� bound gives

P

⎡⎢⎢⎢⎢⎢⎣ 𝑚∑︁
𝑖=1

𝑌𝑖 > (1 +𝛾)𝑃

⎤⎥⎥⎥⎥⎥⎦ < exp
(︁
−𝛾2𝑃 /3

)︁
and

P

⎡⎢⎢⎢⎢⎢⎣ 𝑚∑︁
𝑖=1

𝑌𝑖 < (1−𝛾)𝑃

⎤⎥⎥⎥⎥⎥⎦ < exp
(︁
−𝛾2𝑃 /2

)︁
.
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Part II

Static Graph Algorithms
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Overview

A teacher announces that a test will be given on one of the �ve week days of next week, but

tells the class, "You will not know which day it is until you are informed at 8a.m. of your

1p.m. test that day. Why isn’t the test going to be given? The Joy of Mathematics [Pap89].
1

This part of the thesis presents novel static graph algorithms designed for real-world

networks.

Structural Rounding Chapter 3 introduces a framework called structural rounding that

provides approximation algorithms for hard-to-solve graph problems in classes of graphs

that are close to some structured graph class. The framework consists of three steps:

edit to a target class of graphs, apply an existing approximation algorithm to the edited

graph, and then lift the solution to the original graph. An edit operation consists of the

removal of an edge or vertex. The motivation behind such a line of study is that we

hypothesize many real-world networks, social networks, communication networks, road

networks...etc., are close to structured graph classes. Namely, these real-world networks

will become part of a structured graph class after a small number of edits compared to the

size of the optimum solution in the graph. This framework can be applied to any problem

that satis�es a combinatorial property called stability and an algorithmic property called

structural lifting. The �rst property ensures that the optimum solution does not change by

much more than the number of edits that occur in the graph. The second property ensures

that any solution in the edited graph can be converted to a solution in the original graph

without too much change to the cost of the solution. We show a number of approximation

algorithms for well-known NP-hard graph optimization problems including maximum in-

dependent set, minimum dominating set, minimum vertex cover, and minimum maximal

matching using this framework. The best approximation algorithms resulting from the

framework are for classes of graphs that are close to bounded degeneracy and bounded

treewidth graphs.

Speci�cally, in Chapter 3, we show:

• A general framework for obtaining approximation algorithms for problems such

as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum Maxi-

mal Matching, Chromatic Number, (ℓ-)Dominating Set, Edge (ℓ-)Dominating

Set, and Connected Dominating Set in graphs that are 𝑂(𝛿 ·OPT(𝐺))-close to

bounded degeneracy and bounded treewidth. [Corollary 3.5.7, Corollary 3.5.10,

1
Rather than quotes from literature (as is traditionally used), each part of this thesis will instead be

prefaced with a math puzzle (loosely) related to at least one chapter in the part.
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Corollary 3.5.11, Theorem 3.5.12, Corollary 3.5.15, Corollary 3.5.18, Corollary 3.5.19,

Corollary 3.5.22, Corollary 3.5.25, Corollary 3.5.26, Corollary 3.5.29]

• A bicriteria (4,4)-approximation algorithm for vertex editing to bounded degener-

acy that extends to a smoother bicriteria trade-o�. [Theorem 3.6.1]

• A bicriteria (5,5)-approximation algorithm for edge editing to bounded degeneracy.

[Corollary 3.6.16]

• A𝑂(𝑘 log𝑛)-approximation algorithm for vertex and edge editing to degeneracy 𝑘.

This approximation factor is tight up to constant factors when 𝑘 is constant. [Corol-

lary 3.6.24]

• A bicriteria (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤))-approximation algorithm for vertex editing to

bounded treewidth 𝑤. [Theorem 3.6.31, Theorem 3.6.32]

• A bicriteria (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤 · log𝑛))-approximation algorithm for vertex

editing to bounded pathwidth 𝑤. [Corollary 3.6.34]

Experimental FollowupWork Since the publication of [DGK
+

19], a recent work em-

pirically evaluated the structural rounding framework. This work showed that the struc-

tural rounding framework may lead to faster and more e�cient practical implementations

of approximation algorithms for graph optimization problems. Speci�cally, Lavallee, Rus-

sell, Sullivan, and van der Poel [LRSvdP20] show that structural rounding combined with

various lifting strategies provides better approximations for vertex cover than traditional

approaches on a large number of graphs with varying characteristics. It is an interest-

ing open question whether the structural rounding framework is amenable to either the

work-depth model or the MPC model.

Small Subgraph Counting in the MPC Model Chapter 4 presents static algorithms

for small subgraph counting in the massively parallel computation (MPC) model. Such a

model is used in practice at commercial data centers to process large graphs (with hun-

dreds of billions of edges) that cannot �t on a single machine. Suppose the average degree

of an input graph 𝐺 = (𝑉 ,𝐸) is 𝑑𝑎𝑣𝑔 . We present a (1 + 𝜀)-approximation algorithm (for

any constant 𝜀 > 0) for counting the number of triangles in the input graph in𝑂(𝑛𝛿) space

per machine (for any constant 𝛿 > 0), 𝑂(1) rounds, and
̃︀𝑂(𝑛+𝑚) total space

2
when the

number of triangles 𝑇 is lower bounded 𝑇 ≥
√︀
𝑑𝑎𝑣𝑔 . This quadratically improves on the

best-known previous lower bound on 𝑇 by [PT11]. We also present an exact algorithm for

triangle counting in graphs of arboricity 𝛼, that works in 𝑂(𝑛𝛿) space per machine (for

any constant 𝛿 > 0),𝑂(𝑚𝛼) total space, and𝑂(loglog𝑛) rounds. To the best of our knowl-

edge, this is the �rst algorithm that achieves 𝑜(log𝑛) rounds for exact triangle counting

in graphs with arboricity bounded by 𝛼. All of our results can be extended to cliques with

a slight increase in total space and/or number of rounds. Furthermore, the approximation

algorithm can be extended to any subgraph with 𝑘 vertices for any constant 𝑘.

Speci�cally, in Chapter 4, we show:

• An (1 + 𝜀)-approximation algorithm for 𝑇 , the number of triangles, whp, when

𝑇 ≥
√︀
𝑑𝑎𝑣𝑔 where 𝑑𝑎𝑣𝑔 = 𝑚/𝑛. The algorithm uses 𝑂(𝑛𝛿) space per machine for

2 ̃︀𝑂 is typically used in theoretical computer science to hide polylog𝑛 factors.
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any constant 𝛿 > 0,
̃︀𝑂(𝑛+𝑚) total space, and 𝑂(1) rounds. [Theorem 4.1.1, Corol-

lary 4.1.2]

• An (1 + 𝜀)-approximation algorithm for counting the number of occurrences of 𝐻 ,

a subgraph of size 𝐾 (where 𝐾 is constant), whp, when 𝐵 ≥ 𝑑𝐾/2−1𝑎𝑣𝑔 where 𝐵 is the

number of occurrences of𝐻 in the graph and 𝑑𝑎𝑣𝑔 =𝑚/𝑛. The algorithm uses𝑂(𝑛𝛿)
space per machine for any constant 𝛿 > 0,

̃︀𝑂(𝑛+𝑚) total space, and 𝑂(1) rounds.

[Theorem 4.5.13, Corollary 4.5.14]

• An exact algorithm for counting the number of triangles given 𝑂(𝑛𝛿) space per

machine (for constant 𝛿 > 0) that uses 𝑂(𝑚𝛼) total space, and 𝑂(loglog𝑛) rounds

where 𝛼 is the arboricity of the graph. [Theorem 4.1.3]

• An exact algorithm for counting the number of 𝑘-cliques given𝑂(𝑛𝛿) space per ma-

chine (for constant 𝛿 > 0) that uses 𝑂(𝑚𝛼𝑘−2) total space and 𝑂(loglog𝑛) rounds

where 𝛼 is the arboricity of the graph. [Theorem 4.6.4]

• An exact algorithm for counting the number of 𝑘-cliques that requiresΩ(𝛼2) space

per machine and uses 𝑂(𝑛𝛼2) total space and 𝑂(loglog𝑛) rounds where 𝛼 is the

arboricity of the graph. [Theorem 4.6.5]

Scheduling with Communication Delay in Near-Linear Time Chapter 5 consid-

ers the problem of e�ciently scheduling jobs with precedence constraints on a set of

identical machines in the presence of a uniform communication delay. Such precedence-

constrained jobs can be modeled as a directed acyclic graph, 𝐺 = (𝑉 ,𝐸). In this setting,

if two precedence-constrained jobs 𝑢 and 𝑣, with 𝑣 dependent on 𝑢 (𝑢 ≺ 𝑣), are sched-

uled on di�erent machines, then 𝑣 must start at least 𝜌 time units after 𝑢 completes. The

scheduling objective is to minimize makespan, i.e. the total time from when the �rst job

starts to when the last job �nishes. The focus of this chapter is to provide an e�cient

approximation algorithm with near-linear running time. We build on the algorithm of

Lepere and Rapine [STACS 2002] for this problem to give an 𝑂
(︁ ln𝜌
lnln𝜌

)︁
-approximation

algorithm that runs in �̃�(|𝑉 |+ |𝐸|) time. Speci�cally, we show:

• There is an 𝑂(ln𝜌/ lnln𝜌)-approximation algorithm for scheduling jobs with

precedence constraints on a set of identical machines in the presence of a uniform

communication delay that runs in 𝑂
(︂
𝑛 ln𝑀 + 𝑚 ln3𝑛 ln𝜌

lnln𝜌

)︂
time, assuming that the

optimal solution has cost at least 𝜌. [Theorem 5.1.1]

Bibliographic Information The results in Part II are based o� the following works:

1. [DGK
+

19] Erik D. Demaine, Timothy D. Goodrich, Kyle Kloster, Brian Lavallee,

Quanquan C. Liu, Blair D. Sullivan, Ali Vakilian, and Andrew van der Poel. Struc-

tural rounding: Approximation algorithms for graphs near an algorithmically-

tractable class. (Chapter 3)

2. [BEL
+

20] Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitro-

vić, and Ronitt Rubinfeld. Parallel algorithms for small subgraph counting. (Chap-

ter 4)

3. [LPS
+

21] Quanquan C. Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R.

Wang. Scheduling with communication delay in near-linear time. (Chapter 5)

49



50



Chapter 3

Approximation Algorithms for

Graphs Near an Algorithmically

Tractable Class

This chapter presents results from the paper titled, "Structural rounding: Approximation

algorithms for graphs near an algorithmically tractable class" that the thesis author

coauthored with Erik D. Demaine, Timothy D. Goodrich, Kyle Kloster, Brian Lavallee, Blair

D. Sullivan, Ali Vakilian and Andrew van der Poel [DGK
+
19]. This paper appeared in the

European Symposium on Algorithms (ESA), 2019.

3.1 Introduction

Network science has empirically established that real-world networks (social, biologi-

cal, computer, etc.) exhibit signi�cant sparse structure. Theoretical computer science has

shown that graphs with certain structural properties enable signi�cantly better approxi-

mation algorithms for hard problems. Unfortunately, the experimentally observed struc-

tures and the theoretically required structures are generally not the same: mathematical

graph classes are rigidly de�ned, while real-world data is noisy and full of exceptions.

This chapter provides a framework for extending approximation guarantees from exist-

ing rigid classes to broader, more �exible graph families that are more likely to include

real-world networks.

Speci�cally, we hypothesize that most real-world networks are in fact small perturba-

tions of graphs from a structural class. Intuitively, these perturbations may be exceptions

caused by unusual/atypical behavior (e.g., weak links rarely expressing themselves), nat-

ural variation from an underlying model, or noise caused by measurement error or un-

certainty. Formally, a graph is 𝛾-close to a structural class 𝒞, where 𝛾 ∈ N, if some 𝛾 edits

(e.g., vertex deletions, edge deletions, or edge contractions) bring the graph into class 𝒞.

Our goal is to extend existing approximation algorithms for a structural class 𝒞 to

apply more broadly to graphs 𝛾-close to 𝒞. To achieve this goal, we need two algorithmic

ingredients:

1. Editing algorithms. Given a graph 𝐺 that is 𝛾-close to a structural class 𝒞, �nd a
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sequence of 𝑓 (𝛾) edits that edit𝐺 into 𝒞. When the structural class is parameterized

(e.g., treewidth ≤ 𝑤), we may also approximate those parameters.

2. Structural rounding algorithms. Develop approximation algorithms for op-

timization problems on graphs 𝛾-close to a structural class 𝒞 by converting 𝜌-

approximate solutions on an edited graph in class 𝒞 into 𝑔(𝜌,𝛾)-approximate solu-

tions on the original graph.

3.1.1 Our Results: Structural Rounding

In Section 3.5, we present a general metatheorem giving su�cient conditions for an op-

timization problem to be amenable to the structural rounding framework. Speci�cally, if

a problem Π has an approximation algorithm in structural class 𝒞, the problem and its

solutions are “stable” under an edit operation, and there is an 𝛼-approximate algorithm

for editing to 𝒞, then we get an approximation algorithm for solvingΠ on graphs 𝛾-close

to 𝒞. The new approximation algorithm incurs an additive error of 𝑂(𝛾), so we preserve

PTAS-like (1 + 𝜀) approximation factors provided 𝛾 ≤ 𝛿OPTΠ for a suitable constant

𝛿 = 𝛿(𝜀,𝛼) > 0.

For example, we obtain (1 + 𝑂(𝛿 log1.5𝑛))-approximation algorithms for Vertex

Cover, Feedback Vertex Set, Minimum Maximal Matching, and Chromatic Num-

ber on graphs (𝛿 ·OPTΠ(𝐺))-close to having treewidth 𝑤 via vertex deletions (general-

izing exact algorithms for bounded treewidth graphs); and we obtain a (1−4𝛿)/(4𝑘 +1)-
approximation algorithm for Independent Set on graphs (𝛿 ·OPTΠ(𝐺))-close to having

degeneracy 𝑘 (generalizing a 1/𝑘-approximation for degeneracy-𝑘 graphs). These results

use our new algorithms for editing to treewidth-𝑤 and degeneracy-𝑘 graph classes as

summarized next.

3.1.2 Our Results: Editing

We develop editing approximation algorithms and/or hardness-of-approximation results

for six well-studied graph classes: bounded clique number, bounded degeneracy, bounded

treewidth and pathwidth, bounded treedepth, bounded weak 𝑐-coloring number, and

Star Forest

Treedepth

Planar-Minor-Free

Treewidth

Bounded Expansion

Weak c-Coloring Number

Weak 2-Coloring Number

Degeneracy

Clique Number

Bounded Degree

Figure 3-1: Illustration of hierarchy of structural graph classes used in this chapter.
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bounded degree. Figure 3-1 summarizes the relationships among these classes, and Ta-

ble 3.1 summarizes our results for each class.

Edit Operation 𝜓
Graph Family 𝒞𝜆 Vertex Deletion Edge Deletion

Bounded Degree (𝑑)

𝑑-BDD-V
𝑂(log𝑑)-approx. [EKS]

(ln𝑑 −𝐶 · lnln𝑑)-inapprox.

𝑑-BDD-E
Polynomial time [HP17]

Bounded Degeneracy

(𝑘)

𝑘-DE-V
𝑂(𝑘 log𝑛)-approx.(︁4𝑚−𝛽𝑘𝑛
𝑚−𝑘𝑛 ,𝛽

)︁
-approx.(︁

1
𝜀 ,

4
1−2𝜀

)︁
-approx. (𝜀 < 1/2)

𝑜(log(𝑛/𝑘))-inapprox.

𝑘-DE-E
𝑂(𝑘 log𝑛)-approx.

–(︁
1
𝜀 ,

4
1−𝜀

)︁
-approx. (𝜀 < 1)

𝑜(log(𝑛/𝑘))-inapprox.

Bounded Weak

𝑐-Coloring Number (𝑡)

𝑡-BWE-V-𝑐
–

𝑜(𝑡)-inapprox. for 𝑡 ∈ 𝑜(log𝑛)

𝑡-BWE-E-𝑐
–

𝑜(𝑡)-inapprox. for 𝑡 ∈ 𝑜(log𝑛)

Bounded Treewidth (𝑤)

𝑤-TW-V

(𝑂(log1.5𝑛), 𝑂(
√︀
log𝑤))-

approx.

𝑜(log𝑛)-inapprox. for 𝑤 ∈Ω(𝑛1/2)

𝑤-TW-E

(𝑂(log𝑛 loglog𝑛), 𝑂(log𝑤))-
approx. [BRU17]

–

Bounded Pathwidth (𝑤)

𝑤-PW-V

(𝑂(log1.5𝑛), 𝑂(
√︀
log𝑤 · log𝑛))-

approx.

–

𝑤-PW-E

(𝑂(log𝑛 loglog𝑛), 𝑂(log𝑤 · log𝑛))-
approx. [BRU17]

–

Star Forest

SF-V

4-approx.

(2− 𝜀)-inapprox. (UGC)

SF-E

3-approx.

APX-complete

Table 3.1: Summary of results for (𝒞𝜆,𝜓)-Edit problems (including abbreviations and

standard parameter notation). “Approx.” denotes a polynomial-time approximation or

bicriteria approximation algorithm; “inapprox.” denotes inapproximability assuming P ,
NP unless otherwise speci�ed.

This chapter only presents the approximation algorithms given in [DGK
+

19]; we refer

readers to our full paper [DGK
+

18] for proofs of our lower bound results. In this chap-

ter, we present two bicriteria approximation algorithms for 𝑘-DE-V, one using the local

ratio theorem and another using LP-rounding. While both approximations can be tuned

with error values, they yield constant (4,4)- and (6,6)-approximations for vertex editing,

respectively. Note that the LP-rounding algorithm also gives a (5,5)-approximation for 𝑘-

DE-E. We also give a𝑂(𝑘 log𝑛)-approximation algorithm for 𝑘-DE-E and 𝑘-DE-V. Finally,

using vertex separators, we show a (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤))-bicriteria approximation for

vertex editing to bounded treewidth and pathwidth.

3.1.3 Related Work

Editing to approximate optimization problems. While there is extensive work on

editing graphs into a desired graph class (summarized below), there is little prior work on

how editing a�ects the quality of approximation algorithms (when applied to the edited
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graph, but we desire a solution to the original graph). The most closely related results of

this type are parameterized approximation results, meaning that they run in polynomial

time only when the number of edits is very small (constant or logarithmic input size).

This research direction was initiated by Cai [Cai03]; see the survey and results of Marx

[Mar08, Section 3.2] and e.g. [GHN04, Mar06]. An example of one such result is a
7
3-

approximation algorithm to Chromatic Number in graphs that become planar after 𝛾

vertex edits, with a running time of 𝑓 (𝛾) ·𝑂(𝑛2), where 𝑓 (𝛾) is at least 22
22
Ω(𝛾)

(from

the use of Courcelle’s Theorem), limiting its polynomial-time use to when the number of

edits satis�es 𝛾 = 𝑂(loglogloglog𝑛). In contrast, our algorithms allow up to 𝛿OPTΠ
edits.

Another body of related work is the “noisy setting” introduced by Magen and Mo-

harrami [MM09], which imagines that the “true” graph lies in the structural graph class

that we want, and any extra edges observed in the given graph are “noise” and thus can

be ignored when solving the optimization problem. This approach e�ectively avoids an-

alyzing the e�ect of the edge edits on the approximation factor, by asking for a solution

to the edited graph instead of the given graph. In this simpler model, Magen and Mo-

harrami [MM09] developed a PTAS for estimating the size of Independent Set (IS) in

graphs that are 𝛿𝑛 edits away from a minor-closed graph family (for su�ciently small

values of 𝛿). Later, Chan and Har-Peled [CHP12] developed a PTAS that returns a (1+𝜀)-
approximation to IS in noisy planar graphs. Recently, Bansal et al. [BRU17] developed an

LP-based approach for noisy minor-closed IS whose runtime and approximation factor

achieve better dependence on 𝛿. Moreover, they provide a similar guarantee for noisy

Max 𝑘-CSPs. Unlike our work, none of these algorithms bound the approximation ratio

for a solution on the original graph.

Editing algorithms. Editing graphs into a desired graph class is an active �eld of re-

search and has various applications outside of graph theory, including computer vision

and pattern matching [GXTL10]. In general, the editing problem is to delete a mini-

mum set 𝑋 of vertices (or edges) in an input graph 𝐺 such that the result 𝐺[𝑉 ∖ 𝑋]
has a speci�c property. Previous work studied this problem from the perspective of

identifying the maximum induced subgraph of 𝐺 that satis�es a desired “nontrivial,

hereditary” property [KD79, Lew78, LY80, Yan78]. A graph property 𝜋 is nontriv-

ial if and only if in�nitely many graphs satisfy 𝜋 and in�nitely many do not, and 𝜋
is hereditary if 𝐺 satisfying 𝜋 implies that every induced subgraph of 𝐺 satis�es 𝜋.

The vertex-deletion problem for any nontrivial, hereditary property has been shown

to be NP-complete [LY80] and even requires exponential time to solve, assuming the

ETH [Kom18]. Approximation algorithms for such problems have also been studied some-

what [Fuj98, LY93, OB03] in this domain, but in general this problem requires additional

restrictions on the input graph and/or output graph properties in order to develop fast

algorithms [DGvH
+

15, Dra15, DDLS15, HKN15, KKO16, Mat10, MS08, Xia16].

Much past work on editing is on parameterized algorithms. For example, Dabrowski

et al. [DGvH
+

15] found that editing a graph to have a given degree sequence is W[1]-

complete, but if one additionally requires that the �nal graph be planar, the problem be-

comes Fixed Parameter Tractable (FPT). Mathieson [Mat10] showed that editing to de-
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generacy 𝑘 is W[P]-hard (even if the original graph has degeneracy 𝑘 + 1 or maximum

degree 2𝑘+1), but suggests that classes which o�er a balance between the overly rigid re-

strictions of bounded degree and the overly global condition of bounded degeneracy (e.g.,

structurally sparse classes such as 𝐻-minor-free and bounded expansion [NdM12]) may

still be FPT. Some positive results on the parameterized complexity of editing to classes

can be found in Drange’s 2015 PhD thesis [Dra15]; in particular, the results mentioned

include parameterized algorithms for a variety of NP-complete editing problems such as

editing to threshold and chain graphs [DDLS15], star forests [DDLS15], multipartite clus-

ter graphs [FKP
+

14], andℋ-free graphs given �niteℋ and bounded indegree [DDS16].

Our approach di�ers from this prior work in that we focus on approximations of edit

distance that are polynomial-time approximation algorithms. There are previous results

about approximate edit distance by Fomin et al. [FLMS12] and, in a very recent result re-

garding approximate edit distance to bounded treewidth graphs, by Gupta et al. [GLL
+

18].

Fomin et al. [FLMS12] provided two types of algorithms for vertex editing to planar ℱ -

minor-free graphs: a randomized algorithm that runs in 𝑂(𝑓 (ℱ ) ·𝑚𝑛) time with an ap-

proximation constant 𝑐ℱ that depends on ℱ , as well as a �xed-parameter algorithm pa-

rameterized by the size of the edit set whose running time thus has an exponential de-

pendence on the size of this edit set.

Gupta et al. [GLL
+

18] strengthen the results in [FLMS12] but only in the context

of parameterized approximation algorithms. Namely, they give a deterministic �xed-

parameter algorithm for Planar ℱ -Deletion that runs in 𝑓 (ℱ ) · 𝑛 log𝑛 + 𝑛𝑂(1)
time

and an 𝑂(log𝑘)-approximation where 𝑘 is the maximum number of vertices in any pla-

nar graph in ℱ ; this implies a �xed-parameter 𝑂(log𝑤)-approximation algorithm with

running time 2𝑂(𝑤2 log𝑤) · 𝑛 log𝑛+ 𝑛𝑂(1)
for 𝑤-TW-V and 𝑤-PW-V. They also show that

𝑤-TW-E and 𝑤-PW-E have parameterized algorithms that give an absolute constant fac-

tor approximation but with running times parameterized by 𝑤 and the maximum degree

of the graph [GLL
+

18]. Finally, they show that when ℱ is the set of all connected graphs

with three vertices, deleting the minimum number of edges to exclude ℱ as a subgraph,

minor, or immersion is APX-hard for bounded degree graphs [GLL
+

18]. Again, these run-

ning times are weaker than our results, which give bicriteria approximation algorithms

that are polynomial without any parameterization on the treewidth or pathwidth of the

target graphs.

In a similar regime, Bansal et al. [BRU17] studied𝑤-TW-E (which implies an algorithm

for 𝑤-PW-E) and designed an LP-based bicriteria approximation for this problem. For a

slightly di�erent set of problems in which the goal is to exclude a single graph 𝐻 of size

𝑠 as a subgraph (𝐻-Vertex-Deletion), there exists a simple 𝑠-approximation algorithm.

On the hardness side, Guruswami and Lee [GL17] proved that whenever 𝐻 is 2-vertex-

connected, it is NP-hard to approximate𝐻-Vertex-Deletion within a factor of (|𝑉 (𝐻)|−
1−𝜀) for any 𝜀 > 0 (|𝑉 (𝐻)|−𝜀 assuming UGC). Moreover, when𝐻 is a star or simple path

with 𝑠 vertices,𝑂(log𝑠)-approximation algorithms with running time 2𝑂(𝑠3 log𝑠) ·𝑛𝑂(1)
are

known [GL17, Lee17].

An important special case of the problem of editing graphs into a desired class is the

minimum planarization problem, in which the target class is planar graphs, and the related

application is approximating the well-known crossing number problem [CMS11]. Refer
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to [BCDM17, CS13, Chu11, JLS14, KS17, Kaw09, MS12, Sch13] for the recent developments

on minimum planarization and crossing number.

3.2 Techniques

This section provides a quick summary of the main techniques, ideas, and contributions in

the rest of the chapter. This chapter discusses the structural rounding framework and the

editing algorithms to bounded degeneracy and bounded treewidth. For our lower bound

results and our editing algorithms for treedepth and bounded degree, please refer to our

full paper [DGK
+

18].

Structural Rounding Framework The main contribution of our structural rounding

framework (Section 3.5) is establishing the right de�nitions that make for a broadly appli-

cable framework with precise approximation guarantees. Our framework supports arbi-

trary graph edit operations and both minimization and maximization problems, provided

they jointly satisfy two properties: a combinatorial property called “stability” and an algo-

rithmic property called “structural lifting”. Roughly, these properties bound the amount of

change that OPT can undergo from each edit operation, but they are also parameterized

to enable us to derive tighter bounds when the problem has additional structure. With

the right de�nitions in place, the framework is simple: edit to the target class, apply an

existing approximation algorithm, and lift.

The rest of Section 3.5 shows that this framework applies to many di�erent graph op-

timization problems. In particular, we verify the stability and structural lifting properties,

and combine all the necessary pieces, including our editing algorithms from Section 3.6

and existing approximation algorithms for structural graph classes. We summarize all of

these results in Table 3.2 and formally de�ne the framework in Section 3.5.1.

Editing to Bounded Degeneracy and Degree We present two constant-factor bicri-

teria approximation algorithms for �nding the fewest vertex or edge deletions to reduce

the degeneracy to a target threshold 𝑘. The �rst approach (Section 3.6.1) uses the lo-

cal ratio technique by Bar-Yehuda et al. [BYBFR04] to establish that good-enough local

choices result in a guaranteed approximation. The second approach (Section 3.6.2) is based

on rounding a linear-programming relaxation of an integer linear program. Finally, we

present a greedy combinatorial algorithm in Section 3.6.4 that uses the degeneracy or-

dering obtained by Theorem 2.1.7. This algorithm gives a 𝑂(𝑘 log𝑛) approximation to an

optimum edit set where 𝑘 is the degeneracy of the target class. When 𝑘 is constant, this

approximation matches our lower bound given in our full paper [DGK
+

18].

Editing to Bounded Treewidth In Section 3.6.5, we present a bicriteria approximation

algorithm for �nding the fewest vertex edits to reduce the treewidth to a target thresh-

old 𝑤. Our approach builds on the deep separator structure inherent in treewidth. We

combine ideas from Bodlaender’s 𝑂(log𝑛)-approximation algorithm for treewidth with

Feige et al.’s 𝑂(
√︀
log𝑤)-approximation algorithm for vertex separators [FHL08] (where
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Problem Edit

type 𝜓
𝑐′ 𝑐 Class 𝒞𝜆 𝜌(𝜆) runtime

Independent Set (IS) vertex

deletion

1 0 degeneracy 𝑘 1
𝑟+1 polytime

Annotated Dominating Set (ADS) vertex
*

deletion

0 1 degeneracy 𝑘 𝑂(𝑟) polytime [BU17]
1

Independent Set (IS) vertex

deletion

1 0 treewidth 𝑤 1 𝑂(2𝑤𝑛) [AN01]

Annotated Dominating Set (ADS) vertex
*

deletion

0 1 treewidth 𝑤 1 𝑂(3𝑤𝑛)

Annotated (ℓ-)Dominating Set (ADS) vertex
*

deletion

0 1 treewidth 𝑤 1 𝑂((2ℓ +1)𝑤𝑛) [BL17]

Connected Dominating Set (CDS) vertex
*

deletion

0 3 treewidth 𝑤 1 𝑂(𝑛𝑤)2

Vertex Cover (VC) vertex

deletion

0 1 treewidth 𝑤 1 𝑂(2𝑤𝑛) [AN01]

Feedback Vertex Set (FVS) vertex

deletion

0 1 treewidth 𝑤 1 2𝑂(𝑤)𝑛𝑂(1) [CNP
+

11]

Minimum Maximal Matching (MMM) vertex

deletion

0 1 treewidth 𝑤 1 𝑂(3𝑤𝑛)3

Chromatic Number (CRN) vertex

deletion

0 1 treewidth 𝑤 1 𝑤𝑂(𝑤)𝑛𝑂(1)

Independent Set (IS) edge

deletion

0 1 degeneracy 𝑘 1
𝑟+1 polytime

Dominating Set (DS) edge

deletion

1 0 degeneracy 𝑘 𝑂(𝑘) polytime [BU17]

(ℓ-)Dominating Set (DS) edge

deletion

1 0 treewidth 𝑤 1 𝑂((2ℓ +1)𝑤𝑛) [BL17]

Edge (ℓ-)Dominating Set (EDS) edge

deletion

1 1 treewidth 𝑤 1 𝑂((2ℓ +1)𝑤𝑛) [BL17]

Max-Cut (MC) edge

deletion

1 0 treewidth 𝑤 1 𝑂(2𝑤𝑛) [DF13]

Table 3.2: Problems for which structural rounding (Theorem 3.5.4) results in approxima-

tion algorithms for graphs near the structural class 𝒞, where the problem has a 𝜌(𝜆)-
approximation algorithm. We also give the associated stability (𝑐′) and lifting (𝑐) con-

stants, which are class-independent. The last column shows the running time of the

𝜌(𝜆)-approximation algorithm for each problem provided an input graph from class 𝒞𝜆.

We remark that vertex
*

is used to emphasize the rounding process has to pick the set of

annotated vertices in the edited set carefully to achieve the associated stability and lifting

constants.
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𝑤 is the target treewidth). In the end, we obtain a bicriteria (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤))-

approximation that runs in polynomial time on all graphs (in contrast to many previous

treewidth algorithms). The tree decompositions that we generate are guaranteed to have

𝑂(log𝑛) height. As a result, we also show a bicriteria (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤 · log𝑛))-

approximation result for pathwidth, based on the fact that the pathwidth is at most the

width times the height of a tree decomposition.

3.3 Treedwith and Pathwidth

In this section, we provide the additional necessary de�nitions for treewidth and path-

width which are two structural graph classes used in this chapter (illustrated in Figure 3-

1). This chapter also uses the de�nition of degeneracy given in De�nition 2.1.1.

Perhaps the most heavily studied structural graph class is that of bounded treewidth;

in this subsection we provide the necessary de�nitions for treewidth and pathwidth.

De�nition 3.3.1 ([RS86]). Given a graph 𝐺, a tree decomposition of 𝐺 consists of a col-

lection 𝒴 of subsets (called bags) of vertices in 𝑉 (𝐺) together with a tree 𝑇 = (𝒴 ,ℰ) whose
nodes 𝒴 correspond to bags which satisfy the following properties:

1. Every 𝑣 ∈ 𝑉 (𝐺) is contained in a bag 𝐵 ∈ 𝒴 (i.e.

⋃︀
𝐵∈𝒴 𝐵 = 𝑉 ).

2. For all edges (𝑢,𝑣) ∈ 𝐸(𝐺) there is a bag 𝐵 ∈ 𝒴 that contains both endpoints 𝑢,𝑣.
3. For each 𝑣 ∈ 𝑉 (𝐺), the set of bags containing 𝑣 form a connected subtree of 𝑇 (i.e.

{𝐵|𝑣 ∈ 𝐵,𝐵 ∈ 𝒴} forms a subtree of 𝑇 ).
The width of a tree decomposition ismax𝐵∈𝒴 |𝐵|−1, and the treewidth of a graph𝐺, denoted
tw(𝐺), is the minimum width of any tree decomposition of 𝐺.

All graphs that exclude a simple �xed planar minor𝐻 have bounded treewidth, indeed,

treewidth |𝑉 (𝐻)|𝑂(1)
[CC16]. Thus, every planar-𝐻-minor-free graph class is a subclass

of some bounded treewidth graph class.

De�nition 3.3.2 ([RS86]). A path decomposition is a tree decomposition in which the tree

𝑇 is a path. The pathwidth of 𝐺, pw(𝐺), is the minimum width of any path decomposition

of 𝐺.

3.4 Editing and Optimization Problems

3.4.1 Editing Problems

This chapter is concerned with algorithms that edit graphs into a desired structural class,

while guaranteeing an approximation ratio on the size of the edit set. Besides its own im-

portance, editing graphs into structural classes plays a key role in our structural round-

ing framework for approximating optimization problems on graphs that are “close” to

structural graph classes (see Section 3.5). The basic editing problem is de�ned as follows

relative to an edit operation 𝜓 such as vertex deletion, edge deletion, or edge contraction:
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Input: An input graph 𝐺 = (𝑉 ,𝐸), family 𝒞 of graphs, edit operation 𝜓
Problem: Find 𝑘 edits 𝜓1,𝜓2, . . . ,𝜓𝑘 such that 𝜓𝑘 ∘𝜓𝑘−1 ∘ · · · ∘𝜓2 ∘𝜓1(𝐺) ∈ 𝒞.

Objective: Minimize 𝑘

(𝒞,𝜓)-Edit

The literature has limited examples of approximation algorithms for speci�c edit op-

erations and graph classes. Most notably, Fomin et al. [FLMS12] studies (𝒞,𝜓)-Edit for

vertex deletions into the class of planar-𝐻-minor-free graphs (graphs excluding a �xed

planar graph 𝐻 ).
4

In addition to �xed-parameter algorithms (for when 𝑘 is small), they give a 𝑐𝐻 -

approximation algorithm for (𝒞,𝜓)-Edit where the constant 𝑐𝐻 = Ω
(︂
22
|𝑉 (𝐻)|3

)︂
is rather

large.

Most of the graph classes we consider consist of graphs where some parameter 𝜆
(clique number, maximum degree, degeneracy, weak 𝑐-coloring number, or treewidth)

is bounded. Thus we can think of the graph class 𝒞 as in fact being a parameterized

family 𝒞𝜆. (For planar-𝐻-minor-free, 𝜆 could be |𝑉 (𝐻)|.) We can also loosen the graph

class we are aiming for, and approximate the parameter value 𝜆 for the family 𝒞𝜆. Thus

we obtain a bicriteria problem which can be formalized as follows:

Input: An input graph 𝐺 = (𝑉 ,𝐸), parameterized family 𝒞𝜆 of graphs, a target

parameter value 𝜆*, edit operation 𝜓
Problem: Find 𝑘 edits 𝜓1,𝜓2, . . . ,𝜓𝑘 such that 𝜓𝑘 ∘ 𝜓𝑘−1 ∘ · · · ∘ 𝜓2 ∘ 𝜓1(𝐺) ∈ 𝒞𝜆

where 𝜆 ≥ 𝜆*.
Objective: Minimize 𝑘.

(𝒞𝜆,𝜓)-Edit

De�nition 3.4.1. An algorithm for (𝒞𝜆,𝜓)-Edit is a (bicriteria) (𝛼,𝛽)-approximation if it

guarantees that the number of edits is at most 𝛼 times the optimal number of edits into 𝒞𝜆,
and that 𝜆 ≤ 𝛽 ·𝜆*.

See Table 3.1 for a complete list of the problems considered, along with their abbrevi-

ations. Recall that 𝜌(𝜆) is the approximation factor for a problem in class 𝒞. We assume

that 𝒞𝑖 ⊆ 𝒞𝑗 for 𝑖 ≤ 𝑗 , or equivalently, that 𝜌(𝜆) is monotonically increasing in 𝜆.

3.4.2 Optimization Problems

We conclude this section with formal de�nitions of several additional optimization prob-

lems for which we give new approximation algorithms via structural rounding in Sec-

tion 3.5.

4
More generally, Fomin et al. [FLMS12] consider editing to the class of graphs excluding a �nite family

ℱ of graphs at least one of which is planar, but as we just want the fewest edits to put the graph in some

structural class, we focus on the case |ℱ | = 1.
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Input: An undirected graph 𝐺 = (𝑉 ,𝐸) and a positive integer ℓ.
Problem: Find a minimum size set of vertices𝐶 ⊆ 𝑉 s.t. every vertex in 𝑉 is either

in 𝐶 or is connected by a path of length at most ℓ to a vertex in 𝐶.

ℓ-Dominating Set (ℓ-DS)

Input: An undirected graph 𝐺 = (𝑉 ,𝐸) and a positive integer ℓ.
Problem: Find a minimum size set of edges 𝐶 ⊆ 𝐸 s.t. every edge in 𝐸 is either in

𝐶 or is connected by a path of length at most ℓ to an edge in 𝐶.

Edge ℓ-Dominating Set (ℓ-EDS)

When ℓ = 1, these are Dominating Set (DS) and Edge Dominating Set (EDS).

Input: An undirected graph 𝐺 = (𝑉 ,𝐸), a subset of vertices 𝐵 ⊆ 𝑉 and a posi-

tive integer.

Problem: Find a minimum size set of vertices 𝐶 ⊆ 𝑉 s.t. every vertex in 𝐵 is either

in 𝐶 or is connected by a path of length at most ℓ to a vertex in 𝐶.

Annotated (ℓ-)Dominating Set (ADS)

Note that when 𝐵 = 𝑉 , Annotated (ℓ-)Dominating Set becomes (ℓ-)Dominating

Set
5
.

Input: A graph 𝐺 = (𝑉 ,𝐸).
Problem: Find a maximum size set of vertices 𝑋 ⊆ 𝑉 s.t. no two vertices in 𝑋 are

connected by a path of length ≤ ℓ.

ℓ-Independent Set (ℓ-IS)

When ℓ = 1, we call this Independent Set (IS).

Input: A graph 𝐺 = (𝑉 ,𝐸).
Problem: Find a minimum size set of vertices 𝑋 ⊆ 𝑉 s.t. 𝐺 ∖𝑋 has no cycles.

Feedback Vertex Set (FVS)

Input: A graph 𝐺 = (𝑉 ,𝐸).
Problem: Find a minimum size set of edges 𝑋 ⊆ 𝐸 s.t. 𝑋 is a maximal matching.

Minimum Maximal Matching (MMM)

5
The Annotated Dominating Set problem has also been studied in the literature as subset dominating

set problem in [GK96, HQ17].
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Input: A graph 𝐺 = (𝑉 ,𝐸).
Problem: Find a minimum size coloring of 𝐺 s.t. adjacent vertices are di�erent

colors.

Chromatic Number (CRN)

Input: A graph 𝐺 = (𝑉 ,𝐸).
Problem: Find a partition of the nodes of 𝐺 into sets 𝑆 and 𝑉 ∖ 𝑆 such that the

number of edges from 𝑆 to 𝑉 ∖ 𝑆 is greatest.

Max-Cut (MC)

3.5 Structural Rounding

In this section, we show how approximation algorithms for a structural graph class can

be extended to graphs that are near that class, provided we can �nd a certi�cate of being

near the class. These results thus motivate our results in later sections about editing to

structural graph classes. Our general approach, which we call structural rounding, is to

apply existing approximation algorithms on the edited (“rounded”) graph in the class, then

“lift” that solution to solve the original graph, while bounding the loss in solution quality

throughout.

3.5.1 General Framework

First we de�ne our notion of “closeness” in terms of a general family 𝜓 of allowable graph

edit operations (e.g., vertex deletion, edge deletion, edge contraction):

De�nition 3.5.1. A graph𝐺′ is 𝛾-editable from a graph𝐺 under edit operation𝜓 if there is

a sequence of 𝑘 ≤ 𝛾 edits 𝜓1,𝜓2, . . . ,𝜓𝑘 of type 𝜓 such that𝐺′ = 𝜓𝑘∘𝜓𝑘−1∘· · ·∘𝜓2∘𝜓1(𝐺).
A graph𝐺 is 𝛾-close to a graph class 𝒞 under𝜓 if some𝐺′ ∈ 𝒞 is 𝛾-editable from𝐺 under𝜓.

To transform an approximation algorithm for a graph class 𝒞 into an approximation

algorithm for graphs 𝛾-close to 𝒞, we will need two properties relating the optimization

problem and the type of edits:
6

De�nition 3.5.2. A graph minimization (resp. maximization) problem Π is stable under

an edit operation 𝜓 with constant 𝑐′ if OPTΠ(𝐺′) ≤ OPTΠ(𝐺) + 𝑐′𝛾 (resp. OPTΠ(𝐺′) ≥
OPTΠ(𝐺) − 𝑐′𝛾) for any graph 𝐺′ that is 𝛾-editable from 𝐺 under 𝜓. In the special case

where 𝑐′ = 0, we call Π closed under 𝜓. When 𝜓 is vertex deletion, closure is equivalent to

the graph class de�ned by OPTΠ(𝐺) ≤ 𝜆 (resp. OPTΠ(𝐺) ≥ 𝜆) being hereditary; we also

callΠ hereditary.

6
These conditions are related to, but signi�cantly generalize, the “separation property” from the bidi-

mensionality framework for PTASs [DH05].
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De�nition 3.5.3. A minimization (resp. maximization) problem Π can be structurally

lifted with respect to an edit operation 𝜓 with constant 𝑐 if, given any graph 𝐺′ that is
𝛾-editable from 𝐺 under 𝜓, and given the corresponding edit sequence 𝜓1,𝜓2, . . . ,𝜓𝑘 with
𝑘 ≤ 𝛾 , a solution 𝑆 ′ for 𝐺′ can be converted in polynomial time to a solution 𝑆 for 𝐺 such

that CostΠ(𝑆) ≤ CostΠ(𝑆 ′) + 𝑐 · 𝑘 (resp. CostΠ(𝑆) ≥ CostΠ(𝑆 ′)− 𝑐 · 𝑘).

Now we can state the main result of structural rounding:

Theorem 3.5.4 (Structural Rounding Approximation). Let Π be a minimization (resp.

maximization) problem that is stable under the edit operation𝜓 with constant 𝑐′ and that can
be structurally lifted with respect to 𝜓 with constant 𝑐. If Π has a polynomial-time 𝜌(𝜆)-
approximation algorithm in the graph class 𝒞𝜆, and (𝒞𝜆,𝜓)-Edit has a polynomial-time

(𝛼,𝛽)-approximation algorithm, then there is a polynomial-time ((1+ 𝑐′𝛼𝛿) ·𝜌(𝛽𝜆)+ 𝑐𝛼𝛿)-
approximation (resp. ((1−𝑐′𝛼𝛿)·𝜌(𝛽𝜆)−𝑐𝛼𝛿)-approximation) algorithm forΠ on any graph

that is (𝛿 ·OPTΠ(𝐺))-close to the class 𝒞𝜆.

Proof. We write OPT(𝐺) for OPTΠ(𝐺). Let 𝐺 be a graph that is (𝛿 ·OPT(𝐺))-close to the

class 𝒞𝜆. By De�nition 3.4.1, the polynomial-time (𝛼,𝛽)-approximation algorithm �nds

edit operations 𝜓1,𝜓2, . . . ,𝜓𝑘 where 𝑘 ≤ 𝛼𝛿 ·OPT(𝐺) such that 𝐺′ = 𝜓𝑘 ∘ 𝜓𝑘−1 ∘ · · · ∘
𝜓2 ∘𝜓1(𝐺) ∈ 𝒞𝛽𝜆.

7
Let 𝜌 = 𝜌(𝛽𝜆) be the approximation factor we can attain on the graph

𝐺′ ∈ 𝒞𝛽𝜆.

First we prove the case when Π is a minimization problem. Because Π has a 𝜌-

approximation in 𝒞𝛽𝜆 (where 𝜌 > 1), we can obtain a solution 𝑆 ′ with cost at most

𝜌 ·OPT(𝐺′) in polynomial time. Applying structural lifting (De�nition 3.5.3), we can use

𝑆 ′ to obtain a solution 𝑆 for 𝐺 with Cost(𝑆) ≤ Cost(𝑆 ′) + 𝑐𝑘 ≤ Cost(𝑆 ′) + 𝑐𝛼𝛿 ·OPT(𝐺)
in polynomial time. Because Π is stable under 𝜓 with constant 𝑐′ ,

OPT(𝐺′) ≤OPT(𝐺) + 𝑐′𝑘 ≤OPT(𝐺) + 𝑐′𝛼𝛿 ·OPT(𝐺) = (1 + 𝑐′𝛼𝛿)OPT(𝐺),

and we have

Cost(𝑆) ≤ 𝜌 ·OPT(𝐺′) + 𝑐𝛼𝛿 ·OPT(𝐺)
≤ 𝜌(1 + 𝑐′𝛼𝛿)OPT(𝐺) + 𝑐𝛼𝛿 ·OPT(𝐺)
= (𝜌+ 𝜌𝑐′𝛼𝛿+ 𝑐𝛼𝛿)OPT(𝐺),

proving that we have a polynomial time (𝜌 + (𝑐 + 𝑐′𝜌)𝛼𝛿)-approximation algorithm as

required.

Next we prove the case when Π is a maximization problem. Because Π has a 𝜌-

approximation in 𝒞 (where 𝜌 < 1), we can obtain a solution 𝑆 ′ with cost at least 𝜌·OPT(𝐺′)
in polynomial time. Applying structural lifting (De�nition 3.5.3), we can use 𝑆 ′ to obtain

a solution 𝑆 for𝐺 with Cost(𝑆) ≥ Cost(𝑆 ′)−𝑐𝑘 ≥ Cost(𝑆 ′)−𝑐𝛼𝛿 ·OPT(𝐺) in polynomial

time. Because Π is stable under 𝜓 with constant 𝑐′ ,

OPT(𝐺′) ≥OPT(𝐺)− 𝑐′𝑘 ≥OPT(𝐺)− 𝑐′𝛼𝛿 ·OPT(𝐺) = (1− 𝑐′𝛼𝛿)OPT(𝐺),

7
We assume that 𝐶𝑖 ⊆ 𝐶𝑗 for 𝑖 ≤ 𝑗 , or equivalently, that 𝜌(𝜆) is monotonically increasing in 𝜆.
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and we have

Cost(𝑆) ≥ 𝜌 ·OPT(𝐺′)− 𝑐𝛼𝛿 ·OPT(𝐺)
≥ 𝜌(1− 𝑐′𝛼𝛿)OPT(𝐺)− 𝑐𝛼𝛿 ·OPT(𝐺)
= (𝜌 − (𝑐+ 𝑐′𝜌)𝛼𝛿)OPT(𝐺),

proving that we have a polynomial-time (𝜌 − (𝑐 + 𝑐′𝜌)𝛼𝛿)-approximation algorithm as

required. Note that this approximation is meaningful only when 𝜌 > (𝑐+ 𝑐′𝜌)𝛼𝛿.

To apply Theorem 3.5.4, we need four ingredients: (a) a proof that the problem of in-

terest is stable under some edit operation (De�nition 3.5.2); (b) a polynomial-time (𝛼,𝛽)-
approximation algorithm for editing under this operation (De�nition 3.4.1); (c) a struc-

tural lifting algorithm (De�nition 3.5.3); and (d) an approximation algorithm for the target

class 𝒞.

In the remainder of this section, we show how this framework applies to many prob-

lems and graph classes, as summarized in Table 3.2 on page 57. Most of our approxima-

tion algorithms depend on our editing algorithms described in Section 3.6. We present

the problems ordered by edit type, as listed in Table 3.2.

Structural rounding for annotated problems. We refer to graph optimization prob-

lems where the input consists of both a graph and subset of annotated vertices/edges as

annotated problems (see Annotated Dominating Set in Section 3.4.2). Hence, in our

rounding framework, we have to carefully choose the set of annotated vertices/edges in

the edited graph to guarantee small lifting and stability constants. To emphasize the di�er-

ence compared to “standard” structural rounding, we denote the edit operations as vertex
*

and edge
*

in the annotated cases. Moreover, we show that we can further leverage the

�exibility of annotated rounding to solve non-annotated problems that cannot normally

be solved via structural rounding. In Section 3.5.4, we consider applications of annotated

rounding for both annotated problems such as Annotated Dominating Set and non-

annotated problems such as Connected Dominating Set.

3.5.2 Vertex Deletions

For each problem, we show stability and structural liftability, and use these to conclude

approximation algorithms. Because IS is the only maximization problem we �rst consider

in this section, we consider it separately.

Lemma 3.5.5. Independent Set is stable under vertex deletion with constant 𝑐′ = 1.

Proof. Given a graph 𝐺 and any set 𝑋 ⊆ 𝑉 (𝐺) with |𝑋 | ≤ 𝛾 , let 𝐺′ = 𝐺[𝑉 ∖ 𝑋]. For

any independent set 𝑌 ⊂ 𝑉 (𝐺), 𝑌 ′ = 𝑌 ∖ 𝑋 is also an independent set in 𝐺′ with size

|𝑌 ′ | ≥ |𝑌 | − |𝑋 |, which is bounded below by |𝑌 | − 𝛾 . In particular, for 𝑌 optimal in 𝐺 we

have |𝑌 ′ | ≥OPT(𝐺)−𝛾 , and so OPT(𝐺′) ≥OPT(𝐺)−𝛾 .

Lemma 3.5.6. Independent Set can be structurally lifted with respect to vertex deletion

with constant 𝑐 = 0.
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Proof. An independent set in 𝐺′ = 𝐺 ∖𝑋 is also an independent set in 𝐺. Thus, a solution

𝑆 ′ for 𝐺′ yields a solution 𝑆 for 𝐺 such that Cost
IS
(𝑆 ′) = Cost

IS
(𝑆).

Corollary 3.5.7. For graphs (𝛿·OPT(𝐺))-close to a graph class 𝒞𝜆 via vertex deletions, Inde-
pendent Set has the following approximations. For degeneracy 𝑘, IS has a (1−4𝛿)/(4𝑘+1)-
approximation, for treewidth 𝑤 such that 𝑤

√︀
log𝑤 =𝑂(log𝑛), IS has a (1−𝑂(𝛿 log1.5𝑛))-

approximation, and for planar-𝐻-minor-free, IS has a (1− 𝑐𝐻𝛿)-approximation.

Proof. We apply Theorem 3.5.4 using stability with 𝑐′ = 1 (Lemma 3.5.5) and structural

lifting with 𝑐 = 0 (Lemma 3.5.6). The independent-set approximation algorithm and the

editing approximation algorithm depend on the class 𝒞𝜆.

For degeneracy 𝑘, we use our (4,4)-approximate editing algorithm (Section 3.6.2) and a

simple 1/(𝑘+1)-approximation algorithm for independent set: the 𝑘-degeneracy ordering

on the vertices of a graph gives a canonical (𝑘+1)-coloring, and the pigeonhole principle

guarantees an independent set of size at least |𝑉 |/(𝑘+1), which is at least 1/(𝑘+1) times

the maximum independent set. Thus 𝛼 = 𝛽 = 4 and 𝜌(𝛽𝑘) = 1/(𝛽𝑘 + 1), resulting in an

approximation factor of (1− 4𝛿)/(4𝑘 +1).
For treewidth 𝑤 such that 𝑤

√︀
log𝑤 =𝑂(log𝑛), we use our (𝑂(log1.5𝑛),𝑂(

√︀
log𝑤))-

approximate editing algorithm (Section 3.6.5) and an exact algorithm for independent set

[Bod88, AN01] given a tree decomposition of width 𝑂(log𝑛) of the edited graph. Thus

𝛼 =𝑂(log1.5𝑛) and 𝜌 = 1, resulting in an approximation factor of 1−𝑂(log1.5𝑛)𝛿.

For planar-𝐻-minor-free, we use Fomin’s 𝑐𝐻 -approximate editing algorithm

[FLMS12] and the same exact algorithm for IS in bounded treewidth (as any planar-𝐻-

minor-free graph has bounded treewidth [CC16]). Thus 𝛼 = 𝑐𝐻 and 𝜌 = 1, resulting in an

approximation factor of 1− 𝑐𝐻𝛿.

Lemma 3.5.8. The problems Vertex Cover, Feedback Vertex Set, Minimum Maximal

Matching, and Chromatic Number are hereditary (closed under vertex deletion).

Proof. Let 𝐺 be a graph, and 𝐺′ = 𝐺∖𝑋 where 𝑋 ⊆ 𝑉 (𝐺). Any vertex cover in 𝐺 remains

a cover in 𝐺′ because 𝐸(𝐺′) ⊆ 𝐸(𝐺), so VC is hereditary.

Let 𝑆 bs a feedback vertex set in 𝐺 and 𝑆 ′ = 𝑆 ∖𝑋. For FVS, we observe that removing

vertices can only decrease the number of cycles in the graph. Deleting a vertex in 𝑆 breaks

all cycles it is a part of and, thus, the cycles no longer need to be covered by a vertex in

the feedback vertex set of 𝐺′ . Deleting a vertex not in 𝑆 can only decrease the number of

cycles, and, thus, all cycles in 𝐺′ are still covered by 𝑆 ′ . Hence, FVS is hereditary.

For MMM, deleting vertices with adjacent edges not in the matching only decreases

the number of edges; thus, the original matching is a still a matching in the edited graph.

Deleting vertices adjacent to an edge in the matching means that at most one edge in the

matching per deleted vertex is deleted. For each edge in the matching with one of its two

endpoints deleted, at most one additional edge (an edge adjacent to its other endpoint)

needs to be added to maintain the maximal matching. Thus, the size of the maximal

matching does not increase and MMM is hereditary.

CRN is trivially hereditary because deleting vertices can only decrease the number of

colors necessary to color the graph.
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Lemma 3.5.9. The problems Vertex Cover, Feedback Vertex Set, Minimum Maximal

Matching, and Chromatic Number can be structurally lifted with respect to vertex deletion

with constant 𝑐 = 1.

Proof. Let 𝐺 be a graph, and 𝐺′ = 𝐺 ∖𝑋 where 𝑋 ⊆ 𝑉 (𝐺). Let 𝑆 ′ be a solution to opti-

mization problem Π on 𝐺′ . We will show that 𝑆 ⊆ 𝑆 ′ ∪𝑋 is a valid solution to Π on 𝐺
for each Π listed in the Lemma.

Given a solution 𝑆 ′ to VC for the graph 𝐺′ , the only edges not covered by 𝑆 ′ in 𝐺′

are edges between 𝑋 and 𝐺′ and between two vertices in 𝑋. Both sets of such edges are

covered by 𝑋. Thus, 𝑆 = 𝑆 ′ ∪𝑋 is a valid cover for 𝐺.

Given a solution 𝑆 ′ to FVS for the graph 𝐺′ , the only cycles not covered by 𝑆 ′ in 𝐺′

are cycles that include a vertex in 𝑋. Thus, 𝑆 = 𝑆 ′∪𝑋 is a valid feedback vertex set for 𝐺
since 𝑋 covers all newly introduced cycles in 𝐺.

Given a solution 𝑆 ′ to MMM for the graph 𝐺′ , the only edges not in the matching and

not adjacent to edges in the matching are edges between 𝑋 and 𝐺′ and edges between

two vertices in 𝑋. Thus, any additional edges added to the maximal matching will come

from 𝑋, and 𝑆 ⊆ 𝑆 ′ ∪𝑋 (by picking edges to add to the maximal matching greedily for

example) is a valid solution.

Given a solution 𝑆 ′ to CRN for the graph 𝐺′ , the only vertices that could violate the

coloring of the graph 𝐺′ are vertices in 𝑋. Making each vertex in 𝑋 a di�erent color from

each other as well as the colors in 𝐺′ creates a valid coloring of 𝐺. Thus, 𝑆 = 𝑆 ′ ∪𝑋 is a

valid coloring.

Corollary 3.5.10. The problems Vertex Cover, and Feedback Vertex Set have (1 +
𝑂(𝛿 log1.5𝑛))-approximations for graphs (𝛿 ·OPT(𝐺))-close to treewidth 𝑤 via vertex dele-

tions where 𝑤
√︀
𝑙𝑜𝑔𝑤 = 𝑂(log𝑛); and (1 + 𝑐𝐻𝛿)-approximations for graphs (𝛿 ·OPT(𝐺))-

close to planar-𝐻-minor-free via vertex deletions.

Proof. We apply Theorem 3.5.4 using stability with constant 𝑐′ = 0 (Lemma 3.5.8) and

structural lifting with constant 𝑐 = 1 (Lemma 3.5.9).

For treewidth 𝑤, we use our (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤))-approximate editing algo-

rithm (Section 3.6.5) and an exact polynomial-time algorithm for the problem of inter-

est [Bod88, AN01, CNP
+

11] given the tree-decomposition of width 𝑂(𝑤
√︀
log𝑤) of the

edited graph. Thus 𝛼 = 𝑂(log1.5𝑛) and 𝑐 = 1, resulting in an approximation factor of

1+𝑂(log1.5𝑛)𝛿. Note that since the edited graph has treewidth 𝑂(𝑤
√︀
log𝑤) =𝑂(log𝑛),

the exact algorithm runs in polynomial-time. For planar-𝐻-minor-free graphs, we use

Fomin’s 𝑐𝐻 -approximate editing algorithm [FLMS12] and the same exact algorithm for

bounded treewidth (as any planar-𝐻-minor-free graph has bounded treewidth [CC16]).

Thus 𝛼 = 𝑐𝐻 and 𝑐 = 1, resulting in an approximation factor of 1+ 𝑐𝐻𝛿.

Corollary 3.5.11. The problems Minimum Maximal Matching, and Chromatic Number

have (1 +𝑂(𝛿 log1.5𝑛))-approximations for graphs (𝛿 ·OPT(𝐺))-close to treewidth 𝑤 via

vertex deletions where 𝑤 log1.5𝑤 =𝑂(log𝑛); and (1 + 𝑐𝐻𝛿)-approximations for graphs (𝛿 ·
OPT(𝐺))-close to planar-𝐻-minor-free via vertex deletions.

Proof. We apply Theorem 3.5.4 using stability with constant 𝑐′ = 0 (Lemma 3.5.8) and

structural lifting with constant 𝑐 = 1 (Lemma 3.5.9).
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For treewidth 𝑤, we use our (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤))-approximate editing algorithm

(Section 3.6.5) and an exact algorithm for the problem of interest [Bod88] given a tree-

decomposition of width𝑂(𝑤
√︀
log𝑤) of the edited graph. Thus 𝛼 =𝑂(log1.5𝑛) and 𝑐 = 1,

resulting in an approximation factor of 1+𝑂(log1.5𝑛)𝛿. Note that since the edited graph

has treewidth𝑂(𝑤 log1.5𝑤) =𝑂(log𝑛), the exact algorithm runs in polynomial-time. For

planar-𝐻-minor-free graphs, we use Fomin’s 𝑐𝐻 -approximate editing algorithm [FLMS12]

and the same exact algorithm for bounded treewidth (as any planar-𝐻-minor-free graph

has bounded treewidth [CC16]). Thus 𝛼 = 𝑐𝐻 and 𝑐 = 1, resulting in an approximation

factor of 1+ 𝑐𝐻𝛿.

3.5.3 Edge Deletions

Theorem 3.5.12. For graphs (𝛿 ·OPT(𝐺))-close to degeneracy 𝑘 via edge deletions:
• Independent Set has a (1/(3𝑘 +1)− 3𝛿)-approximation.

• Dominating Set has an 𝑂((1 + 𝛿)𝑘)-approximation.

For graphs (𝛿 ·OPT(𝐺))-close to treewidth 𝑤 via edge deletions:

• (ℓ-)Dominating Set and Edge (ℓ-)Dominating Set have (1 +𝑂(𝛿 log𝑛 loglog𝑛))-
approximations when 𝑤 log𝑤 =𝑂(logℓ 𝑛).

• Max-Cut has a (1−𝑂(𝛿 log𝑛 loglog𝑛))-approximation when 𝑤 log𝑤 =𝑂(log𝑛).

We now consider the edit operation of edge deletion. For each problem, we show

stability and structural liftability, and use these to conclude approximation algorithms.

Lemma 3.5.13. For ℓ ≥ 1, (ℓ-)Independent Set is stable under edge deletion with constant
𝑐′ = 0.

Proof. Given 𝐺 and any set 𝑋 ⊆ 𝐸(𝐺) with |𝑋 | ≤ 𝛾 , let 𝐺′ = 𝐺[𝐸 ∖ 𝑋]. For any (ℓ-
)independent set 𝑌 ⊆ 𝑉 (𝐺), 𝑌 ′ = 𝑌 is also an (ℓ-)independent set in𝐺′ . Then OPT(𝐺′) ≥
|𝑌 ′ | = |𝑌 |, and so for optimal 𝑌 , OPT(𝐺′) ≥OPT(𝐺).

Lemma 3.5.14. For ℓ ≥ 1, (ℓ-)Independent Set can be structurally lifted with respect to

edge deletion with constant 𝑐 = 1.

Proof. Given a graph 𝐺 and 𝑋 ⊆ 𝐸(𝐺), let 𝐺′ = 𝐺[𝐸 ∖ 𝑋]. Let 𝑌 ′ ⊆ 𝑉 (𝐺′) be an (ℓ-
)independent set in 𝐺′ , and consider the same vertex set 𝑌 ′ in 𝐺. Assume that the edit set

is a single edge, 𝑋 = {(𝑢,𝑣)}. We claim there exists a subset of 𝑌 ′ with size at least |𝑌 ′ |−1
which is still an (ℓ-)independent set in 𝐺.

For convenience, we let 𝑑(·, ·) := 𝑑𝐺(·, ·) for the remainder of this proof. Suppose there

are four distinct nodes 𝑎,𝑏, 𝑓 ,𝑔 ∈ 𝑌 ′ such that 𝑑(𝑎,𝑏) ≤ ℓ and 𝑑(𝑓 ,𝑔) ≤ ℓ in𝐺. Since these

nodes are in 𝑌 ′ , we know 𝑑𝐺′ (𝑎,𝑏),𝑑𝐺′ (𝑓 ,𝑔) ≥ ℓ+1, hence, any shortest path from 𝑎 to 𝑏
in 𝐺 must use the edge (𝑢,𝑣) in order to have length ≤ ℓ. WLOG we can assume the 𝑎-𝑏
path goes from 𝑎 to 𝑢 to 𝑣 to 𝑏, and so 𝑑(𝑎,𝑢) + 1 + 𝑑(𝑣,𝑏) ≤ ℓ. Similarly we can assume

the 𝑓 -𝑔 path goes from 𝑓 to 𝑣 to 𝑢 to 𝑔 , and so 𝑑(𝑓 ,𝑣) + 1 + 𝑑(𝑢,𝑔) ≤ ℓ. We now argue

that the shortest paths in 𝐺 from 𝑎 to 𝑢, 𝑣 to 𝑏, 𝑓 to 𝑣, and 𝑢 to 𝑔 do not use the edge

(𝑢,𝑣) and are therefore also paths in 𝐺′ . Suppose not and consider WLOG the case when

a shortest path from 𝑎 to 𝑢 contains (𝑢,𝑣). Then concatenating the subpath from 𝑎 to 𝑣
with a shortest path from 𝑣 to 𝑏 gives an 𝑎,𝑏-path of length 𝑑(𝑎,𝑢)−1+𝑑(𝑣,𝑏) < ℓ, which
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does not use the edge (𝑢,𝑣) (and is thus a path in 𝐺′ , contradicting (ℓ−)independence of

𝑌 ′).
Now consider the paths (𝑎 to 𝑢 to 𝑔) and (𝑓 to 𝑣 to 𝑏). Let ℓ𝐴 = 𝑑(𝑎,𝑢) + 𝑑(𝑢,𝑔) and

ℓ𝐹 = 𝑑(𝑓 ,𝑣) +𝑑(𝑣,𝑏), and note that ℓ𝐴+ ℓ𝐹 = 𝑑(𝑎,𝑢) +𝑑(𝑣,𝑏) +𝑑(𝑓 ,𝑣) +𝑑(𝑢,𝑔), which is

≤ 2ℓ − 2. So at least one of ℓ𝐴 or ℓ𝐹 must be ≤ ℓ − 1, a contradiction.

Three cases remain: (1) 𝑌 ′ contains exactly two vertices connected by a path of length

≤ ℓ in𝐺; (2) 𝑌 ′ contains three distinct vertices pair-wise connected by paths of length ≤ ℓ
in 𝐺; or (3) 𝑌 ′ contains one vertex, 𝑎, connected to two or more other vertices of 𝑌 ′ by

paths of length ≤ ℓ in 𝐺. In the �rst case, 𝑌 ′ contains 𝑎,𝑏 with 𝑑(𝑎,𝑏) ≤ ℓ; then removing

either endpoint from 𝑌 ′ yields an (ℓ−)independent set of size |𝑌 ′ | − 1 in 𝐺.

We now show the second case cannot occur. Suppose that 𝑑(𝑏,𝑐),𝑑(𝑎,𝑏),𝑑(𝑎,𝑐) ≤ ℓ for

𝑎,𝑏,𝑐 ∈ 𝑌 ′ . Note that each vertex is within distance ℓ/2 of at least one of the vertices𝑢 or 𝑣.

By the pigeonhole principle, some two of 𝑎,𝑏,𝑐 must be within ℓ/2 of the same endpoint

of (𝑢,𝑣); say vertices 𝑎 and 𝑏 are within ℓ/2 of 𝑢 WLOG; this implies 𝑑𝐺′ (𝑎,𝑏) ≤ ℓ, a

contradiction.

Finally, in the third case, 𝑌 ′ contains a node 𝑎 and a subset 𝑆 so that |𝑆 | ≥ 2, 𝑑(𝑎,𝑠) ≤ ℓ
for all 𝑠 ∈ 𝑆 and 𝑑(𝑠1, 𝑠2) > ℓ for all 𝑠1 , 𝑠2 in 𝑆 . Further, we know no other pair of nodes

in 𝑌 ′ is at distance at most ℓ in𝐺 (since then we would have two disjoint pairs at distance

at most ℓ, a case we already handled). In this setting, 𝑌 ′ ∖ {𝑎} is an (ℓ−)independent set of

size |𝑌 ′ | − 1 in 𝐺. This proves that adding a single edge to 𝐺′ will reduce the size of the

(ℓ-)independent set 𝑌 ′ by no more than one, so by induction the lemma holds.

Corollary 3.5.15. Independent Set has a (1/(3𝑘 + 1) − 3𝛿)-approximation for graphs

(𝛿 ·OPT(𝐺))-close to degeneracy 𝑘 via edge deletions.

Proof. We apply Theorem 3.5.4 using stability with constant 𝑐′ = 0 (Lemma 3.5.5) and

structural lifting with constant 𝑐 = 1 (Lemma 3.5.6). We use our (3,3)-approximate editing

algorithm (Corollary 3.6.16) and the 1/(𝑘 + 1)-approximation algorithm for independent

set described in in the proof of Corollary 3.5.7. Thus 𝛼 = 𝛽 = 3 and 𝜌(𝛽𝑘) = 1/(𝛽𝑘 + 1),
resulting in an approximation factor of 1/(3𝑘 +1)− 3𝛿.

Note that Corollary 3.5.15 only applies to IS and not ℓ-IS.

Lemma 3.5.16. The problems (ℓ-)Dominating Set and Edge (ℓ-)Dominating Set are sta-

ble under edge deletion with constant 𝑐′ = 1.

Proof. Given 𝐺 and any set 𝑋 ⊆ 𝐸(𝐺) with |𝑋 | ≤ 𝛾 , let 𝐺′ = 𝐺[𝐸 ∖ 𝑋], and let 𝑌 be

a minimum (ℓ-)dominating set on 𝐺. Each vertex 𝑣 may be (ℓ-)dominated by multiple

vertices on multiple paths, which we refer to as 𝑣’s dominating paths.

Consider all vertices for which a speci�c edge (𝑢,𝑣) is on all of their dominating paths

in 𝐺. We refer to each of these vertices as (𝑢,𝑣)-dependent. Note that if we traverse

all dominating paths from each (𝑢,𝑣)-dependent vertex, (𝑢,𝑣) is traversed in the same

direction each time. Assume WLOG (𝑢,𝑣) is traversed with 𝑢 before 𝑣, implying 𝑢 is not

(𝑢,𝑣)-dependent but 𝑣 may be. Now if (𝑢,𝑣) is deleted, then 𝑌 ∪ {𝑣} is a (ℓ-)dominating

set on the new graph. Therefore for each edge (𝑢,𝑣) in 𝑋 we must add at most one

vertex to the (ℓ-)dominating set. Thus if 𝑌 ′ is a minimum (ℓ-)dominating set on 𝐺′ then

|𝑌 ′ | ≤ |𝑌 |+𝛾 and DS is stable under edge deletion with constant 𝑐′ = 1.
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Now let 𝑍 be a minimum edge (ℓ-)dominating set on 𝐺. The proof for EDS follows

similarly as in the above case when a deleted edge (𝑢,𝑣) is not in 𝑍 (though an edge

incident to 𝑣 would be picked to become part of the dominating set instead of 𝑣 itself).

However if (𝑢,𝑣) is in the minimum edge (ℓ-)dominating set then it is possible that there

are edges which are strictly (𝑢,𝑣)-dependent through only 𝑢 or 𝑣 and no single edge is

within distance ℓ of both. In this case we add an edge adjacent to 𝑢 and an edge adjacent

to 𝑣 to 𝑍 , which also increases 𝑍’s size by one with the deletion of (𝑢,𝑣). Thus if 𝑍 ′ is

a minimum edge (ℓ-)dominating set on 𝐺′ then |𝑍 ′ | ≤ |𝑍 |+𝛾 and Edge (ℓ-)Dominating

Set is stable under edge deletion with constant 𝑐′ = 1.

Lemma 3.5.17. (ℓ-)Dominating Set and Edge (ℓ-)Dominating Set can be structurally

lifted with respect to edge deletion with constants 𝑐 = 0 and 𝑐 = 1 respectively.

Proof. Given 𝐺 and any set 𝑋 ⊆ 𝐸(𝐺) with |𝑋 | ≤ 𝛾 , let 𝐺′ = 𝐺[𝐸 ∖𝑋]. A (ℓ-)dominating

set in 𝐺′ is also a (ℓ-)dominating set in 𝐺. Therefore, a solution 𝑆 ′ in 𝐺′ yields a solution

𝑆 in 𝐺 such that Cost
DS
(𝑆 ′) = Cost

DS
(𝑆).

An edge (ℓ-)dominating set 𝑌 ′ in 𝐺′ may not be an edge (ℓ-)dominating set in 𝐺, as

there may be edges in 𝑋 which are not (ℓ-)dominated by 𝑌 ′ . However 𝑌 ′ ∪𝑋 is an edge

(ℓ-)dominating set in 𝐺 and |𝑌 ′ ∪𝑋 | ≤ |𝑌 ′ |+ |𝑋 |.

Corollary 3.5.18. Dominating Set has an 𝑂((1 + 𝛿)𝑘)-approximation for graphs (𝛿 ·
OPT(𝐺))-close to degeneracy 𝑘 via edge deletions.

Proof. We apply Theorem 3.5.4 using stability with constant 𝑐′ = 1 (Lemma 3.5.16) and

structural lifting with constant 𝑐 = 0 (Lemma 3.5.17). We use our (3,3)-approximate edit-

ing algorithm (Section 3.6.3) and a known𝑂(𝑘2)-approximation algorithm for DS [LW10].

Thus𝛼 = 𝛽 = 3 and 𝜌(𝛽𝑘) = 𝛽2𝑘2, resulting in an approximation factor of 9(1+3𝛿)𝑘2.

Corollary 3.5.19. (ℓ-)Dominating Set and Edge (ℓ-)Dominating Set have (1 +
𝑂(𝛿 log𝑛 loglog𝑛))-approximations for graphs (𝛿 ·OPT(𝐺))-close to treewidth 𝑤 via edge

deletions where 𝑤 log𝑤 =𝑂(logℓ 𝑛).

Proof. We apply Theorem 3.5.4 using stability with constant 𝑐′ = 1 (Lemma 3.5.16) and

structural lifting with constant 𝑐 = 0 for DS and constant 𝑐 = 1 for EDS (Lemma 3.5.17).

For treewidth 𝑤, we use the (𝑂(log𝑛 loglog𝑛),𝑂(log𝑤))-approximate editing algorithm

of Bansal et al. [BRU17] and an exact algorithm for DS and EDS [BL17] given a tree-

decomposition of width 𝑂(𝑤 log𝑤) of the edited graph.

Thus 𝛼 = 𝑂(log𝑛 loglog𝑛) and 𝑐′ = 1 for DS and 𝑐′ = 𝑐 = 1 for EDS, resulting in

an approximation factor of 1 +𝑂(log𝑛 loglog𝑛)𝛿. Note that since the edited graph has

treewidth 𝑂(𝑤 log𝑤) =𝑂(logℓ 𝑛), the exact algorithm runs in polynomial-time.

Lemma 3.5.20. The problem Max-Cut is stable under edge deletion with constant 𝑐′ = 1.

Proof. Given 𝐺 and any set 𝑋 ⊆ 𝐸(𝐺) with |𝑋 | ≤ 𝛾 , let 𝐺′ = 𝐺[𝐸 ∖ 𝑋], and let 𝑌 be a

maximum cut in 𝐺. Then, 𝑌 ′ := 𝑌 ∖ 𝑋 is a cut in 𝐺′ of size at least |𝑌 | − |𝑋 |; hence,

𝑐′ = 1.

Lemma 3.5.21. Max-Cut can be structurally lifted with respect to edge deletion with con-

stant 𝑐 = 0.
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Proof. Given 𝐺 and any set 𝑋 ⊆ 𝐸(𝐺) with |𝑋 | ≤ 𝛾 , let 𝐺′ = 𝐺[𝐸 ∖𝑋]. A cut 𝑌 ⊆ 𝐸(𝐺′) is

trivially a valid cut in 𝐺 and consequently 𝑐 = 0.

Corollary 3.5.22. Max-Cut has (1 −𝑂(𝛿 log𝑛 loglog𝑛))-approximations for graphs (𝛿 ·
OPT(𝐺))-close to treewidth 𝑤 via edge deletions where 𝑤 log𝑤 =𝑂(log𝑛).

Proof. We apply Theorem 3.5.4 using stability with constant 𝑐′ = 1 (Lemma 3.5.20) and

structural lifting with constant 𝑐 = 0 for MC (Lemma 3.5.21). For treewidth 𝑤, we use the

(𝑂(log𝑛 loglog𝑛),𝑂(log𝑤))-approximate editing algorithm of Bansal et al. [BRU17] and

an exact algorithm for MC given a tree-decomposition of width 𝑂(𝑤 log𝑤) of the edited

graph.

Thus 𝛼 = 𝑂(log𝑛 loglog𝑛) and 𝑐′ = 1 for MC, resulting in an approximation factor

of 1 +𝑂(log𝑛 loglog𝑛)𝛿. Note that since the edited graph has treewidth 𝑂(𝑤 log𝑤) =
𝑂(log𝑛), the exact algorithm runs in polynomial-time.

3.5.4 Vertex Deletion for Annotated Problems (Vertex
*
Deletion)

In this section, we show that several important variants of annotated Dominating Set

(ADS) (which include their non-annotated variants as special cases) are closed under a

relaxed version of vertex deletion, denoted by vertex
*

deletion, which is su�cient to apply

the structural rounding framework. Given an instance of Annotated ℓ-Dominating Set

with input graph𝐺 = (𝑉 ,𝐸) and a subset of vertices 𝐵, the resulting ADS instance (𝐺′,𝐵′)
after deleting the set𝑋 ⊂ 𝑉 is de�ned as follows: 𝐺′ = (𝑉 ∖𝑋,𝐸[𝑉 ∖𝑋]) and𝐵′ = 𝐵∖𝑁ℓ[𝑋]
where 𝑁ℓ[𝑋] denotes the set of all vertices at distance at most ℓ from 𝑋 in 𝐺.

Lemma 3.5.23. For ℓ ≥ 1, Annotated ℓ-Dominating Set is stable under vertex
*
deletion

with 𝑐′ = 0.

Proof. Note that Annotated ℓ-Dominating Set with 𝐵 = 𝑉 reduces to ℓ-Dominating

Set and in particular ℓ-Dominating Set is stable under vertex
*

deletion with constant

𝑐′ = 0.

Let (𝐺′,𝐵′) denote the ADS instance after performing vertex
*

deletion with edit set 𝑋;

𝐺′ = (𝑉 ∖𝑋,𝐸[𝑉 ∖𝑋]) and 𝐵′ = 𝐵 ∖𝑁ℓ[𝑋] where 𝑁ℓ[𝑋] denotes the set of all vertices at

distance at most ℓ from 𝑋 in 𝐺. Moreover, let OPT(𝐺,𝐵) denote an optimal solution of

ADS(𝐺,𝐵). We show that OPT(𝐺,𝐵) ∖𝑋 is a feasible solution of ADS(𝐺′,𝐵′). Since 𝑋 ℓ-
dominates𝑁ℓ[𝑋], the set𝐵∖𝑁ℓ[𝑋] is ℓ-dominated byOPT(𝐺,𝑆)∖𝑋; hence, OPT(𝐺,𝑆)∖𝑋
is a feasible solution of ADS(𝐺′,𝑆 ′). Thus |OPT(𝐺′,𝑆 ′)| ≤ |OPT(𝐺,𝑆)∖𝑋 | ≤ |OPT(𝐺,𝑆)|.

Lemma 3.5.24. For ℓ ≥ 1, Annotated ℓ-Dominating Set can be structurally lifted with

respect to vertex
*
deletion with constant 𝑐 = 1.

Proof. Note that Annotated ℓ-Dominating Set with 𝐵 = 𝑉 reduces to ℓ-Dominating

Set and in particular ℓ-Dominating Set can be structurally lifted with respect to vertex
*

deletion with constant 𝑐 = 1.

Let (𝐺′,𝐵′) = ((𝑉 ∖𝑋,𝐸[𝑉 ∖𝑋]),𝐵 ∖𝑁ℓ[𝑋]) denote the ADS instance after perform-

ing vertex
*

deletion with edit set 𝑋 on ADS(𝐺,𝐵) and let OPT(𝐺′,𝐵′) denote an optimal

solution of ADS(𝐺′,𝐵′) instance. Since the set 𝑋 ℓ-dominates 𝑁ℓ[𝑋], OPT(𝐺′,𝐵′) ∪ 𝑋
ℓ-dominates 𝐵′ ∪𝑁ℓ[𝑋] = 𝐵. Hence, |OPT(𝐺,𝐵)| ≤ |OPT(𝐺′,𝐵′)|+ |𝑋 |.

69



Corollary 3.5.25. Annotated Dominating Set has an𝑂(𝑘+𝛿)-approximation for graphs

(𝛿 ·OPT(𝐺))-close to degeneracy 𝑘 via vertex deletion.

Proof. We apply Theorem 3.5.4 using stability with constant 𝑐′ = 0 (Lemma 3.5.23) and

structural lifting with constant 𝑐 = 1 (Lemma 3.5.24).

We use a (𝑂(1),𝑂(1))-approximate editing algorithm (Section 3.6.1/ 3.6.2) and 𝑂(𝑘)-
approximation algorithm for the problem of interest [BU17] in 𝑘-degenerate graphs. Note

that although the algorithm of [BU17] is for Dominating Set, it can easily be modi�ed

to work for the annotated variant. Thus, 𝛼 = 𝑂(1) and 𝑐 = 1, resulting in an 𝑂(𝑘 + 𝛿)-
approximation algorithm.

Corollary 3.5.26. Annotated Dominating Set has an 𝑂(1 + 𝑂(𝛿 log1.5𝑛))-
approximation for graphs (𝛿 · OPT(𝐺))-close to treewidth 𝑤 via vertex deletion where

𝑤
√︀
log𝑤 =𝑂(logℓ 𝑛).

Proof. We apply Theorem 3.5.4 using stability with constant 𝑐′ = 0 (Lemma 3.5.23) and

structural lifting with constant 𝑐 = 1 (Lemma 3.5.24).

We use our (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤))-approximate editing algorithm (Section 3.6.5)

and an exact polynomial-time algorithm for the problem of interest [BL17] given the

tree-decomposition of width 𝑂(𝑤
√︀
log𝑤) of the edited graph. Note that the algorithm

of [BL17] is presented for ℓ-DS; however, by slightly modifying the dynamic programming

approach it works for the annotated version as well. Thus 𝛼 = 𝑂(log1.5𝑛) and 𝑐 = 1, re-

sulting in an approximation factor of (1+𝑂(log1.5𝑛)𝛿). Moreover, since the edited graph

has treewidth 𝑂(𝑤
√︀
log𝑤) =𝑂(log𝑛), the exact algorithm runs in polynomial-time.

Smarter Vertex
*
Deletion. The idea of applying edit operations on annotated prob-

lems can also be used for non-annotated problems. More precisely, for several optimiza-

tion problems that fail to satisfy the required conditions of the standard structural round-

ing under vertex deletion, we can still apply our structural rounding framework with a

more careful choice of the subproblem that we need to solve on the edited graph. An

exemplary problem in this category is Connected Dominating Set (CDS). Note that

Connected Dominating Set is not stable under vertex deletion and the standard struc-

tural rounding framework fails to work for this problem. Besides the stability issue, it is

also non-trivial how to handle the connectivity constraint under vertex or edge deletions.

However, in what follows we show that if we instead solve a slightly di�erent problem

(i.e. annotated variant of Connected Dominating Set) on the edited graph, then we can

guarantee an improved approximation factor for CDS on the graphs close to a structural

class.

Let𝐺 = (𝑉 ,𝐸) be an input graph that is (𝛿 ·OPT(𝐺))-close to the class 𝒞 and let𝑋 ⊂ 𝑉
be a set of vertices so that 𝐺 ∖𝑋 ∈ 𝒞. For a subset of vertices 𝑋, 𝑁𝐺(𝑋) is de�ned to be

the set of all neighbors of 𝑋 excluding the set 𝑋 itself; 𝑁𝐺(𝑋) := {𝑢 | 𝑢𝑣 ∈ 𝐸(𝐺),𝑣 ∈
𝑋 and 𝑢 < 𝑋}8. Let 𝐺′ = 𝐺[𝑉 ∖𝑋] be the resulting graph after removing the edit set 𝑋.

The problem that we have to solve on 𝐺′ is an annotated variant of CDS which is de�ned

as follows:

8
We drop the 𝐺 in 𝑁𝐺 when it is clear from the context.
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Input: An undirected graph𝐺 = (𝑉 ,𝐸), a subset of vertices 𝐵 ⊂ 𝑉 and ℓ vertex-

disjoint cliques𝐾1 = (𝑉1,𝐸1), · · · ,𝐾ℓ = (𝑉ℓ,𝐸ℓ)where for each 𝑖, 𝑉𝑖 ⊂ 𝑉 .

Problem: Find a minimum size set of vertices 𝑆 ⊆ 𝑉 s.t. 𝑆 dominates all vertices

in 𝐵 and 𝑆 induces a connected subgraph in 𝐺∪ (
⋃︀
𝑖∈[ℓ]𝐾𝑖).

Annotated Connected Dominating Set

To specify the instance of Annotated Connected Dominating Set that we need to

solve on the edited graph 𝐺′ , we construct an auxiliary graph �̄� = (𝑁𝐺(𝑋), �̄�) as follows:

𝑢𝑣 ∈ �̄� if there exists a 𝑢𝑣-path in 𝐺 whose intermediate vertices are all in 𝑋.

First, we show that CDS is stable under vertex
*

deletion with constant 𝑐′ = 0: the size

of an optimal solution of ACDS(𝐺′,𝐵′,𝐾1, · · · ,𝐾ℓ) is not more than the size of an optimal

solution of CDS(𝐺) where {𝐾1, · · · ,𝐾ℓ} are the connected components of �̄�. Note that due

to the transitivity of connectivity for each 𝑖 ∈ [ℓ], 𝐾𝑖 is a clique.

Lemma 3.5.27. Connected Dominating Set is stable under vertex
*
deletion with 𝑐′ = 0.

Proof. Let OPT be an optimal solution of CDS(𝐺). Here, we show that OPT∖𝑋 is a fea-

sible solution of ACDS(𝐺′ = 𝐺[𝑉 ∖𝑋],𝐵′ = 𝑉 ∖𝑁𝐺(𝑋),𝐾1, · · · ,𝐾ℓ) where 𝐾1, · · · ,𝐾ℓ are

connected the components of �̄� as constructed above. This in particular implies that

OPT(𝐺′,𝐵′,𝐾1, · · · ,𝐾ℓ) ≤ |OPT∖𝑋 | ≤ |OPT | = OPT(𝐺).

Since OPT dominates 𝑉 , it is straightforward to verify that OPT∖𝑋 dominates 𝐵′ in

𝐺′ . Next, we show that OPT∖𝑋 is connected in𝐺′ when for each 𝑖, all edges between the

vertices of 𝐾𝑖 are added to 𝐺′ . Suppose that there exists a pair of vertices 𝑢,𝑣 ∈ OPT∖𝑋
that are not connected in 𝐺′ . However, since OPT is connected, there exists a 𝑢𝑣-path

𝑃𝑢𝑣 in OPT. If 𝑃𝑢𝑣 does not contain any vertices in 𝑋, then 𝑃𝑢𝑣 is contained in OPT∖𝑋
as well and it is a contradiction. Now consider all occurrences of the vertices of 𝑋 in 𝑃𝑢𝑣 .

We show that each of them can be replaced by an edge in one of the 𝐾𝑖s: for each subpath

𝑣0,𝑥1, · · · ,𝑥𝑞,𝑣1 of 𝑃𝑢𝑣 where 𝑥𝑖 ∈ 𝑋 for all 𝑖 ∈ [𝑞] and 𝑣0,𝑣1 ∈ 𝑁𝐺(𝑋), 𝑣0𝑣1 belongs to

the same connected component of �̄� . Hence, given 𝑃𝑢𝑣 , we can construct a path 𝑃 ′𝑢𝑣 in

𝐺′ ∪ (
⋃︀
𝑖∈[ℓ]𝐾𝑖). Thus, OPT∖𝑋 is a feasible solution of ACDS(𝐺′,𝐵′,𝐾1, · · · ,𝐾ℓ).

Next, we show that a solution of the Annotated Connected Dominating Set in-

stance we solve on the edited graph can be structurally lifted to a solution for Connected

Dominating Set on the original graph with constant 𝑐 = 3.

Lemma 3.5.28. Connected Dominating Set can be structurally lifted under vertex
*
dele-

tion with constant 𝑐 = 3.

Proof. Let OPT be an optimal solution of ACDS(𝐺′ = 𝐺[𝑉 ∖ 𝑋],𝐵′ = 𝑉 ∖
𝑁𝐺(𝑋),𝐾1, · · · ,𝐾ℓ) where 𝐾1, · · · ,𝐾ℓ are the connected components of �̄� as constructed

above. Here, we show that OPT∪𝑋∪𝑌 is a feasible solution of CDS(𝐺) where 𝑌 is a sub-

set of 𝑉 ∖𝑋 such that |𝑌 | ≤ 2|𝑋 |. First, it is easy to see that since 𝑋 dominates𝑁𝐺(𝑋)∪𝑋
in 𝐺, OPT∪𝑋 is a dominating set of 𝐺. Next, we show that in polynomial time we can
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�nd a subset of vertices 𝑌 of size at most 2|𝑋 | such that OPT∪𝑋 ∪ 𝑌 is a connected

dominating set in 𝐺.

Note that if the subgraph induced by the vertex set OPT on 𝐺′ ∪ (
⋃︀
𝑖∈[ℓ]𝐾𝑖) contains

an edge 𝑢𝑣 which is not in 𝐸(𝐺′), the edge can be replaced by a 𝑢𝑣-path in 𝐺 whose in-

termediate vertices are all in𝑋. Hence, we can replace all such edges in OPT by including

a subset of vertices 𝑋 ′ ⊆ 𝑋 and the set OPT∪𝑋 ′ remains connected in 𝐺. At this point,

if 𝑋 = 𝑋 ′ , we are done: OPT∪𝑋 is a connected dominating set in 𝐺. Suppose this is not

the case and let 𝑋1 := 𝑋 ∖𝑋 ′ and 𝑌1 := 𝑁𝐺(𝑋1) ∖𝑁𝐺(𝑋 ′). Since 𝐺 is connected, there

exists a path from 𝑋1 to OPT∪𝑋 ′ . Moreover, we claim that there exists a path of length

at most 4 from 𝑋1 to OPT∪𝑋 ′ . Recall that OPT∪𝑋 ′ dominates 𝑉 ∖ (𝑋1∪𝑌1). Hence, the

shortest path from of 𝑋1 to OPT∪𝑋 ′ has length at most 4. We add the vertices on the

shortest path which are in 𝑋 ∖𝑋 ′ to 𝑋 ′ and the vertices in 𝑉 ∖ (𝑋 ∪OPT∪𝑌 ) to 𝑌 , and

update the sets𝑋1 and 𝑌1 accordingly. Thus we reduce the size of𝑋1 and as we repeat this

process it eventually becomes zero. At this point 𝑋 = 𝑋 ′ and OPT∪𝑋∪𝑌 is a connected

dominating set in 𝐺. Since, we pick up at most three vertices per each 𝑥 ∈ 𝑋1 and at least

one is in 𝑋, the set 𝑋 ∪𝑌 has size at most 3|𝑋 |.

Corollary 3.5.29. Connected Dominating Set has 𝑂(1 +𝑂(𝛿 log1.5𝑛))-approximation

for graphs (𝛿 ·OPT(𝐺))-close to treewidth 𝑤 via vertex deletion where 𝑤 is a �xed constant.

Proof. We apply Theorem 3.5.4 using stability with constant 𝑐′ = 0 (Lemma 3.5.27) and

structural lifting with constant 𝑐 = 3 (Lemma 3.5.28).

We use our (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤))-approximate editing algorithm (Section 3.6.5)

and an exact polynomial-time algorithm for ACDS given the tree-decomposition of width

𝑂(𝑤
√︀
log𝑤) of the edited graph. The FPT algorithm modi�es the 𝑤𝑂(𝑤) ·𝑛𝑂(1)

dynamic-

programming approach of DS such that it incorporates the annotated sets and cliques

𝐾1, · · · ,𝐾ℓ which then runs in (𝑤+ℓ)𝑂(𝑤) ·𝑛𝑂(1) = 𝑛𝑂(𝑤)
. Thus 𝑤 =𝑂(1), 𝛼 =𝑂(log1.5𝑛)

and 𝑐 = 3, resulting in an algorithm that runs in polynomial time and constructs a

(1 +𝑂(log1.5𝑛)𝛿)-approximate solution.

Although we do not present any editing algorithms for edge contractions, we point

out that such an editing algorithm would enable our framework to apply to additional

problems such as (Weighted) TSP Tour (which is closed under edge contractions and

can be structurally lifted with constant 𝑐 = 2 [DHK11]), and to apply more e�ciently to

other problems such as Dominating Set (reducing 𝑐′ from 1 to 0).

3.6 Editing Algorithms

3.6.1 Degeneracy: Density-Based Bicriteria Approximation

In this section we prove the following:

Theorem 3.6.1. 𝑘-DE-V has a

(︁4𝑚−𝛽𝑘𝑛
𝑚−𝑘𝑛 ,𝛽

)︁
-approximation algorithm.

Observe that this yields a (4,4)-approximation when 𝛽 = 4. The algorithm is de�ned

in Algorithm 1, and the analysis is based on the local ratio theorem from Bar-Yehuda et

al. [BYBFR04].

72



Analysis overview and the local ratio theorem

Fundamentally, the local ratio theorem [BYBFR04] is machinery for showing that “good

enough” local choices accumulate into a global approximation bound. This bookkeeping is

done by maintaining weight vectors that encode the choices made. The local ratio theorem

applies to optimization problems of the following form: given a weight vector𝑤 ∈ R𝑛 and

a set of feasibility constraints 𝒞, �nd a solution vector 𝑥 ∈ R𝑛 satisfying the constraints 𝒞
and minimizing 𝑤𝑇 𝑥 (for maximization problems see [BYBFR04]). We say a solution 𝑥 to

such a problem is 𝛼-approximate with respect to 𝑤 if 𝑤𝑇 𝑥 ≤ 𝛼 ·min
𝑧∈𝒞

(𝑤𝑇 𝑧).

Theorem 3.6.2 (Local Ratio Theorem [BYBFR04]). Let 𝒞 be a set of feasibility constraints

on vectors in R𝑛. Let 𝑤,𝑤1,𝑤2 ∈ R𝑛 be such that 𝑤 = 𝑤1 +𝑤2. Let 𝑥 ∈ R𝑛 be a feasible

solution (with respect to 𝒞) that is 𝛼-approximate with respect to 𝑤1, and with respect to 𝑤2.

Then 𝑥 is 𝛼-approximate with respect to 𝑤 as well.

In our case, an instance of (𝛽𝑘)-Degenerate Vertex Deletion (abbreviated (𝛽𝑘)-
DE-V) is represented with (𝐺, 𝑤, 𝑘, 𝛽), where 𝐺 is the graph, 𝑤 is a weight vector on

the vertices (where 𝑤 is the all-ones vector,

−→
1 , when 𝐺 is unweighted), 𝑘 is our target

degeneracy, and 𝛽 is a multiplicative error on the target degeneracy. Our bicriteria ap-

proximation algorithm will yield an edit set to a (𝛽𝑘)-degenerate graph, using at most

𝛼 ·OPT(𝛽𝑘)-DE-V
(𝐺,𝑤,𝑘,𝛽) edits. This (weighted) cost function is encoded as an input

vector of vertex weights 𝑤, which is evaluated with an indicator function ℐ𝑋 on a fea-

sible solution 𝑋, such that the objective is to minimize 𝑤𝑇 ℐ𝑋 . Note that while the local

ratio theorem can allow all feasible solutions, we require minimal feasible solutions for

stronger structural guarantees.

Algorithm 1 Approximation for 𝑘-Degenerate Vertex Deletion

1: procedure LocalRatioRecursion(Graph 𝐺, weights 𝑤, target degeneracy 𝑘, error

𝛽)

2: if 𝑉 (𝐺) =∅ then

3: return ∅.

4: else if ∃ 𝑣 ∈ 𝑉 (𝐺) where deg𝐺(𝑣) ≤ 𝛽𝑘 then
5: return LocalRatioRecursion(𝐺 ∖ {𝑣}, 𝑤, 𝑘, 𝛽)

6: else if ∃ 𝑣 ∈ 𝑉 (𝐺) where 𝑤(𝑣) = 0 then

7: 𝑋← LocalRatioRecursion(𝐺 ∖ {𝑣}, 𝑤, 𝑘, 𝛽)

8: if 𝐺 ∖𝑋 has degeneracy 𝛽𝑘 then
9: return 𝑋.

10: else

11: return MinimalSolution(𝐺, 𝑋 ∪ {𝑣}, 𝑘, 𝛽).

12: else

13: Let 𝜀 := min𝑣∈𝑉 (𝐺)
𝑤(𝑣)

deg𝐺(𝑣)
.

14: De�ne 𝑤1(𝑢) := 𝜀 ·deg𝐺(𝑢) for all 𝑢 ∈ 𝑉 .

15: De�ne 𝑤2 := 𝑤 −𝑤1.

16: return LocalRatioRecursion(𝐺, 𝑤2, 𝑘, 𝛽).
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To utilize the local ratio theorem, our strategy is to de�ne a recursive function that

decomposes the weight vector into 𝑤 = 𝑤1 +𝑤2 and then recurses on (𝐺,𝑤2, 𝑘,𝛽). By

showing that the choices made in this recursive function lead to an (𝛼,𝛽)-approximation

for the instances (𝐺,𝑤1, 𝑘,𝛽) and (𝐺,𝑤2, 𝑘,𝛽), by the local ratio theorem, these choices

also sum to an (𝛼,𝛽)-approximation for (𝐺,𝑤,𝑘,𝛽).
As outlined in [BYBFR04, Section 5.2], the standard algorithm template for this recur-

sive method handles the following cases: if a zero-cost minimal solution can be found,

output this optimal solution, else if the problem contains a zero-cost element, do a prob-

lem size reduction, and otherwise do a weight decomposition.

Algorithm 2 Subroutine for guaranteeing minimal solutions

1: procedure MinimalSolution(Graph 𝐺, edit set 𝑋, target degeneracy 𝑘, error 𝛽)

2: for vertex 𝑣 ∈ 𝑉 (𝐺) do
3: if 𝐺 ∖ (𝑋 ∖ {𝑣}) has degeneracy 𝛽𝑘 then
4: return MinimalSolution(𝐺, 𝑋 ∖ {𝑣}, 𝑘, 𝛽).

5: return 𝑋.

Algorithm 1 follows this structure: Lines 2-3 are the �rst case, Lines 4-12 are the second

case, and Lines 13-18 are the third case. The �rst two cases are typically straightforward,

and the crucial step is the weight decomposition of 𝑤 = 𝑤1 +𝑤2. Note that the �rst case

guarantees that all vertices in𝐺 have degree at least 𝛽𝑘+1 before a weight decomposition

is executed, so we may assume WLOG that the original input graph also has minimum

degree 𝛽𝑘 +1.

In the following subsections we show that Algorithm 1 returns a minimal, feasible

solution (Lemma 3.6.3), that the algorithm returns an (𝛼,𝛽)-approximate solution with

respect to𝑤1 (Theorem 3.6.4), and �nally that the algorithm returns an (𝛼,𝛽)-approximate

solution with respect to 𝑤 (Theorem 3.6.1).(︁4𝑚−𝛽𝑘𝑛
𝑚−𝑘𝑛 ,𝛽

)︁
-approximation for vertex deletion

Lemma 3.6.3. Algorithm 1 returns minimal, feasible solutions for (𝛽𝑘)-DE-V.

Proof. We proceed by induction on the number of recursive calls. In the base case, only

Lines 2-3 will execute, and the empty set is trivially a minimal, feasible solution. In the

inductive step, we show feasibility by constructing the degeneracy ordering. We consider

each of the three branching cases not covered by the base case:

• Lines 4-5: Given an instance (𝐺,𝑤,𝑘,𝛽), if a vertex 𝑣 has degree at most 𝛽𝑘, add 𝑣 to

the degeneracy ordering and remove it from the graph. By the induction hypothesis,

the algorithm will return a minimal, feasible solution 𝑋𝛽𝑘 for (𝐺 − {𝑣},𝑤,𝑘,𝛽). By

de�nition, 𝑣 has at most 𝛽𝑘 neighbors later in the ordering (e.g. neighbors in𝐺−{𝑣}),
so the returned 𝑋𝛽𝑘 is still a feasible, minimal solution.

• Lines 6-12: Given an instance (𝐺,𝑤,𝑘,𝛽), if a vertex 𝑣 has weight 0, remove 𝑣 from

the graph. By the induction hypothesis, the algorithm will return a minimal, fea-

sible solution 𝑋𝛽𝑘 for (𝐺 − {𝑣},𝑤,𝑘,𝛽). If 𝑋𝛽𝑘 is a feasible solution on the instance
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(𝐺,𝑤,𝑘,𝛽), then 𝑋𝛽𝑘 will be returned as the minimal, feasible solution for this in-

stance. Otherwise the solution 𝑋𝛽𝑘 ∪{𝑣} is feasible, and can be made minimal with

a straightforward greedy subroutine (Algorithm 2).

• Lines 13-18: In this case, no modi�cations are made to the graph, therefore the

recursive call’s minimal, feasible solution 𝑋𝛽𝑘 remains both minimal and feasible.

In all cases, a minimal, feasible solution is returned.

We now show that a minimal, feasible solution is (𝛼,𝛽)-approximate with respect to

the instance de�ned by weight function 𝑤1:

Theorem 3.6.4. Any minimal, feasible solution 𝑋𝛽𝑘 is a
(︁4𝑚−𝛽𝑟𝑛
𝑚−𝑘𝑛 ,𝛽

)︁
-approximation to the

instance (𝐺,𝑤1, 𝑘,𝛽).

Given a minimal, feasible solution 𝑋𝛽𝑘 , note that 𝑤𝑇1 ℐ𝑋𝛽𝑘 = 𝜀
∑︀
𝑣∈𝑋𝛽𝑘 deg𝐺(𝑣). There-

fore it su�ces to show that 𝑏 ≤
∑︀
𝑣∈𝑋𝑘 deg𝐺(𝑣) and

∑︀
𝑣∈𝑋𝛽𝑘 deg𝐺(𝑣) ≤ 𝛼𝑏, for some bound

𝑏, any minimal, feasible edit set𝑋𝑘 to degeneracy 𝑘, and any minimal, feasible edit set𝑋𝛽𝑘
to degeneracy 𝛽𝑘. We prove these two bounds for 𝑏 =𝑚− 𝑘𝑛 in Lemmas 3.6.5 and 3.6.8,

respectively.

Lemma 3.6.5. For any minimal feasible solution 𝑋𝑘 for editing to degeneracy 𝑘,

𝑚− 𝑘𝑛 ≤
∑︁
𝑣∈𝑋𝑘

deg𝐺(𝑣).

Proof. Since 𝐺 ∖𝑋𝑘 has degeneracy 𝑘, it has at most 𝑘𝑛 edges, so at least 𝑚 − 𝑘𝑛 edges

were deleted. Each deleted edge had at least one endpoint in 𝑋𝑘 , therefore 𝑚 − 𝑘𝑛 ≤∑︀
𝑣∈𝑋𝑘 deg𝐺(𝑣).

Before proving the upper bound, we de�ne some notation. Let 𝑋𝛽𝑘 be a minimal, fea-

sible solution to (𝛽𝑘)-DE-V and let 𝑌 = 𝑉 (𝐺)∖𝑋𝛽𝑘 be the vertices in the (𝛽𝑘)-degenerate

graph. Denote by 𝑚𝑋 , 𝑚𝑌 , and 𝑚𝑋𝑌 the number of edges with both endpoints in 𝑋𝛽𝑘 ,
both endpoints in 𝑌 , and one endpoint in each set, respectively. We begin by bounding

𝑚𝑋𝑌 :

Lemma 3.6.6. For any 𝑋𝛽𝑘 , it holds that 𝑚𝑋𝑌 ≤ 2𝑚𝑌 +2𝑚𝑋𝑌 − 𝛽𝑘|𝑌 |.

Proof. Recall that we may assume WLOG that every vertex in𝐺 has degree at least 𝛽𝑘+1.

Therefore 𝛽𝑘|𝑌 | ≤
∑︀
𝑣∈𝑌 deg𝐺(𝑣) ≤ 2𝑚𝑌 +𝑚𝑋𝑌 , and so𝑚𝑋𝑌 ≤ 2𝑚𝑌 +2𝑚𝑋𝑌 −𝛽𝑘|𝑌 |.

Corollary 3.6.7. For any 𝑋𝛽𝑘 , it holds that −𝛽𝑘|𝑋𝛽𝑘 | ≥ −2𝑚𝑌 − 2𝑚𝑋𝑌 + 𝛽𝑘|𝑌 |.

Proof. Because𝑋𝛽𝑘 is minimal, every vertex in𝑋𝛽𝑘 will induce a (𝛽𝑘+1)-core with vertices

in 𝑌 if not removed. Therefore each such vertex has at least (𝛽𝑘+1)-neighbors in 𝑌 , and

𝛽𝑘|𝑋𝛽𝑘 | ≤ 𝑚𝑋𝑌 . Substituting into Lemma 3.6.6, we �nd that −𝛽𝑘|𝑋𝛽𝑘 | ≥ −2𝑚𝑌 −𝑚𝑋𝑌 +
𝛽𝑘|𝑌 |.

We now prove the upper bound:
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Lemma 3.6.8. For any minimal, feasible solution 𝑋𝛽𝑘 to (𝛽𝑘)-DE-V,∑︁
𝑣∈𝑋𝛽𝑘

deg𝐺(𝑣) ≤ 4𝑚− 𝛽𝑘𝑛.

Proof. By using substitutions from Lemmas 3.6.6 and Corollary 3.6.7, we know that∑︁
𝑣∈𝑋𝛽𝑘

deg𝐺(𝑣) = 2𝑚𝑋 +𝑚𝑋𝑌

≤ 2𝑚𝑋 +2𝑚𝑌 +2𝑚𝑋𝑌 − 𝛽𝑘|𝑌 |
= 2𝑚− 𝛽𝑘|𝑌 |
= 2𝑚+2𝑚𝑌 +2𝑚𝑋𝑌 − 2𝑚𝑌 − 2𝑚𝑋𝑌 + 𝛽𝑘|𝑌 | − 2𝛽𝑘|𝑌 |
≤ 2𝑚+2𝑚𝑌 +2𝑚𝑋𝑌 − 𝛽𝑘|𝑋𝛽𝑘 | − 2𝛽𝑘|𝑌 |
≤ 4𝑚− 𝛽𝑘𝑛.

Proof of Theorem 3.6.4. Let 𝑋𝛽𝑘 be any minimal, feasible solution for editing to a graph

of degeneracy 𝛽𝑘. By de�nition of 𝑤1 in Algorithm 1, it holds that 𝑤𝑇1 ℐ𝑋𝛽𝑘 =
𝜀
∑︀
𝑣∈𝑋𝛽𝑘 deg𝐺(𝑣), and because 𝜀 is a constant computed independently of the optimal

solution, it su�ces to show that

∑︀
𝑣∈𝑋𝛽𝑘 deg𝐺(𝑣) has an 𝛼-approximation.

By Lemma 3.6.5, any minimal, feasible edit set to a degeneracy-𝑟 graph has a degree

sum of at least 𝑚− 𝑘𝑛. If an edit set is allowed to leave a degeneracy-(𝛽𝑘) graph, then by

Lemma 3.6.8, at most 4𝑚 − 𝛽𝑘𝑛 degrees are added to the degree sum of 𝑋𝛽𝑘 . Therefore

𝑋𝛽𝑘 is

(︁4𝑚−𝛽𝑘𝑛
𝑚−𝑘𝑛 ,𝛽

)︁
-approximate with respect to (𝐺,𝑤1, 𝑘,𝛽).

We now prove the main result stated at the beginning of this section, Theorem 3.6.1.

Proof. For clarity, let 𝛼 :=
(︁4𝑚−𝛽𝑘𝑛
𝑚−𝑘𝑛

)︁
; we prove that Algorithm 1 is an (𝛼,𝛽)-

approximation. We proceed by induction on the number of recursive calls to Algorithm

1. In the base case (Lines 2-3), the solution returned is the empty set, which is trivially

optimal. In the induction step, we examine the three recursive calls:

• Lines 4-5: Given an instance (𝐺,𝑤,𝑘,𝛽), if a vertex 𝑣 has degree at most 𝛽𝑘, add 𝑣 to

the degeneracy ordering and remove it from the graph. By the induction hypothesis,

the algorithm will return an (𝛼,𝛽)-approximate solution 𝑋𝛽𝑘 for (𝐺 − {𝑣},𝑤,𝑘,𝛽).
Since 𝑣 will not be added to 𝑋𝛽𝑘 , then 𝑋𝛽𝑘 is also an (𝛼,𝛽)-approximation for

(𝐺,𝑤,𝑘,𝛽).
• Line 6-12: Given an instance (𝐺,𝑤,𝑘,𝛽), if a vertex 𝑣 has weight 0, remove 𝑣

from the graph. By the induction hypothesis, the algorithm returns an (𝛼,𝛽)-
approximate solution 𝑋𝛽𝑘 for (𝐺 − {𝑣},𝑤,𝑘,𝛽). Regardless of whether 𝑣 is added

to 𝑋𝛽𝑘 or not, it contributes exactly zero to the cost of the solution, therefore an

(𝛼,𝛽)-approximation is returned.

• Line 13-18: In this case, the weight vector is decomposed into 𝑤1 and 𝑤2 = 𝑤 −
𝑤1. By induction, the algorithm will return an (𝛼,𝛽)-approximate solution 𝑋𝛽𝑘 for
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(𝐺,𝑤 −𝑤1, 𝑘,𝛽). By Theorem 3.6.4, 𝑤𝑇1 ℐ𝑋𝛽𝑘 is also (𝛼,𝛽)-approximate. Therefore,

by Theorem 3.6.2, 𝑤𝑇 ℐ𝑋𝛽𝑘 must be (𝛼,𝛽)-approximate.

3.6.2 Degeneracy: LP-based Bicriteria Approximation

In this section, we design a bicriteria approximation for the problem of minimizing the

number of required edits (edge/vertex deletions) to the family of 𝑘-degenerate graphs.

Consider an instance of 𝑘-Degenerate Edge Deletion(𝐺,𝑘) and let OPT denote an op-

timal solution. The algorithm we describe here works even when the input graph is

weighted (both vertices and edges are weighted) and the goal is to minimize the total

weight of the edit set.

(6,6)-approximation for vertex deletion

In what follows we formulate an LP-relaxation for the problem of minimizing the number

of required vertex deletions to the family of 𝑘-degenerate graphs. For each edge 𝑢𝑣 ∈ 𝐸,

𝑥𝑢𝑣 variable denotes the orientation of 𝑢𝑣; 𝑥−−→𝑢𝑣 = 1, 𝑥−−→𝑣𝑢 = 0 if 𝑢𝑣 is oriented from 𝑢 to 𝑣
and 𝑥−−→𝑣𝑢 = 1, 𝑥−−→𝑢𝑣 = 0 otherwise. Moreover, for each vertex 𝑣 ∈ 𝑉 we de�ne 𝑦𝑣 to denote

whether 𝑣 is part of the edit set 𝑋 (𝑦𝑣 = 1 if 𝑣 ∈ 𝑋 and zero otherwise).

Input: 𝐺 = (𝑉 ,𝐸),𝑤,𝑘

Minimize

∑︁
𝑣∈𝑉

𝑦𝑣𝑤𝑣

s.t. 𝑥−−→𝑣𝑢 + 𝑥−−→𝑢𝑣 ≥ 1− 𝑦𝑢 − 𝑦𝑣 ∀𝑢𝑣 ∈ 𝐸∑︁
𝑢∈𝑁 (𝑣)

𝑥−−→𝑣𝑢 ≤ 𝑘 ∀𝑣 ∈ 𝑉

𝑥−−→𝑢𝑣 ≥ 0 ∀𝑢𝑣 ∈ 𝐸

DegenVertexEdit-LP

The �rst set of constraints in the LP-relaxation DegenVertexEdit-LP guarantees that

for each edge 𝑢𝑣 whose none of its endpoints is in 𝑋, it is oriented either from 𝑣 to 𝑢 or

from 𝑢 to 𝑣. The third set of the constraints ensure that for all 𝑣 ∈ 𝑉 , deg+(𝑣) ≤ 𝑘. Note

that if 𝑣 ∈ 𝑋 and thus 𝑦𝑣 = 1, then WLOG we can assume that both 𝑥−−→𝑢𝑣 and 𝑥−−→𝑣𝑢 are set

to zero.

Lemma 3.6.9. DegenVertexEdit-LP(𝐺,𝑤,𝑘) is a valid LP-relaxation of 𝑘-DE-V(𝐺,𝑤).

Proof. Let 𝑋 be a feasible edit set of 𝑘-DE-V(𝐺,𝑤). Let 𝐷 be an 𝑘-degenerate ordering of

𝑉 ∖𝑋. We de�ne vectors (𝑥,𝑦) corresponding to 𝑋 as follows: for each 𝑣 ∈ 𝑉 , 𝑦(𝑣) = 0 if

𝑣 ∈ 𝑋 and zero otherwise. Moreover, 𝑥−−→𝑢𝑣 = 1 if 𝑢,𝑣 ∈ 𝑉 ∖𝑋 and 𝑢 comes before 𝑣 in the

ordering 𝐷; otherwise, 𝑥−−→𝑢𝑣 is set to zero.
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Next, we show that the constructed solution (𝑥,𝑦) satis�es all constraints in

DegenVertexEdit-LP. Since 𝑥 only obtains non-negative values, for the �rst set of con-

straints we can only consider the set of survived edges after removing set 𝑋, 𝐸[𝑉 ∖𝑋].
For these edges, since one of 𝑢 and 𝑣 comes �rst in 𝐷 , exactly one of 𝑥−−→𝑢𝑣 ,𝑥−−→𝑣𝑢 is one and

the constraint is satis�ed. Lastly, since 𝐷 is an 𝑘-degenerate ordering of 𝑉 ∖𝑋, for each

vertex 𝑣 ∈ 𝑉 ∖𝑋, the out-degree is at most 𝑘. Moreover, for each 𝑣 ∈ 𝑋, the LHS in the

second set of constraints is zero.

Similarly to our approach for 𝑘-Degenerate Edge Deletion, �rst we �nd an optimal

solution (𝑥,𝑦) of DegenVertexEdit-LP in polynomial time.

Rounding scheme. We prove that the following rounding scheme of

DegenVertexEdit-LP gives a (1𝜀 ,
4

1−2𝜀 )-bicriteria approximation for 𝑘-DE-V.

𝑦𝑣 =
{︃

1 if 𝑦𝑣 ≥ 𝜀,
0 otherwise.

(3.1)

𝑥𝑢𝑣 =
{︃

1 if 𝑥𝑢𝑣 ≥ (1− 2𝜀)/2,
0 otherwise.

(3.2)

Lemma 3.6.10. If (𝑥,𝑦) is an optimal solution to DegenVertexEdit-LP, then (𝑥,𝑦) as
given by Eq. (3.1) and Eq. (3.2) is an integral (1𝜀 ,

2
1−2𝜀 )-bicriteria approximate solution of

DegenVertexEdit-LP(𝐺,𝑤,𝑟).

Proof. First we show that (𝑥,𝑦) satis�es the �rst set of constraints: for each 𝑢𝑣 ∈ 𝐸, 𝑥−−→𝑣𝑢 +
𝑥−−→𝑢𝑣 ≥ 1 − 𝑦𝑣 − 𝑦𝑢 . Note that if either 𝑦𝑣 or 𝑦𝑢 is one then the constraint trivially holds.

Hence, we assume that both 𝑦𝑣 and 𝑦𝑢 are zero. By Eq. (3.1), this implies that both 𝑦𝑣 and

𝑦𝑢 have value less than 𝜀. Hence, by feasibility of (𝑥,𝑦),

𝑥−−→𝑣𝑢 + 𝑥−−→𝑢𝑣 ≥ 1− 𝑦𝑣 − 𝑦𝑢 ≥ 1− 2𝜀,

and in particular, max(𝑥−−→𝑣𝑢 ,𝑥−−→𝑣𝑢 ) ≥
1−2𝜀
2 . Then, by Eq. (3.2), max(𝑥−−→𝑢𝑣 ,𝑥−−→𝑣𝑢 ) = 1 and the

constraint is satis�ed: 𝑥𝑢𝑣 +𝑥𝑣𝑢 ≥ 1 ≥ 1−𝑦𝑣 −𝑦𝑢 . Note that if both of 𝑥𝑢𝑣 and 𝑥𝑣𝑢 are set

to one, we can arbitrarily set one of them to zero.

Moreover, since for each arc
−−→𝑢𝑣 , 𝑥−−→𝑢𝑣 ≤

2
1−2𝜀 · 𝑥−−→𝑢𝑣 , for each 𝑣 ∈ 𝑉 :∑︁

𝑢∈𝑁 (𝑣)

𝑥−−→𝑣𝑢 ≤
2

1− 2𝜀
·

∑︁
𝑢∈𝑁 (𝑣)

𝑥−−→𝑣𝑢 ≤
2𝑘

1− 2𝜀
,

where the �rst inequality follows from Eq. (3.2) and the second from the feasibility of

(𝑥,𝑧).
Finally, since for each 𝑣 ∈ 𝑉 , 𝑦𝑣 ≤ 𝑦𝑣/𝜀, the cost of the rounded solution (𝑥,𝑦) is at
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most ∑︁
𝑢∈𝑉

𝑦𝑣𝑤𝑣 ≤
1
𝜀
·
∑︁
𝑢∈𝑉

𝑦𝑣𝑤𝑣 ≤ OPT𝑘-DE-V
(𝐺,𝑤,𝑘)/𝜀,

where the �rst inequality follows from Eq. (3.1) and the second directly from the opti-

mality of (𝑥,𝑦). Hence, (𝑥,𝑦) is an integral (1𝜀 ,
2

1−2𝜀 )-bicriteria approximate solution of

DegenVertexEdit-LP(𝐺,𝑤,𝑘).

Note that, the integral solution (𝑥,𝑦) speci�es an edit set 𝑋 := {𝑣 ∈ 𝑉 |𝑦(𝑣) = 1} and

orientation of edges 𝐷 := {−−→𝑢𝑣 |𝑥−−→𝑢𝑣 =1} such that for each 𝑣 ∈ 𝑉 ∖ 𝑋, deg+(𝑣) ≤ 2𝑟
1−2𝜀 .

Hence, together with Lemma 2.1.5, we have the following result.

Corollary 3.6.11. There exists a (1𝜀 ,
4

1−2𝜀 )-bicriteria approximation for 𝑘-DE-V.
In particular, by setting 𝜀 = 1/6, there exists a (6,6)-bicriteria approximation algorithm

for the 𝑘-Degenerate Vertex Deletion problem.

3.6.3 (5,5)-approximation for edge deletion

In what follows we formulate an LP-relaxation for the problem of minimizing the number

of required edge edits (deletions) to the family of 𝑘-degenerate graphs. For each edge

𝑢𝑣 ∈ 𝐸, 𝑥 variables denote the orientation of 𝑢𝑣; 𝑥−−→𝑢𝑣 = 1, 𝑥−−→𝑣𝑢 = 0 if 𝑢𝑣 is oriented from

𝑢 to 𝑣 and 𝑥−−→𝑣𝑢 = 1, 𝑥−−→𝑢𝑣 = 0 if 𝑒 is oriented from 𝑣 to 𝑢. Moreover, for each 𝑢𝑣 we de�ne

𝑧𝑢𝑣 to denote whether the edge 𝑢𝑣 is part of the edit set 𝑋 (𝑧𝑢𝑣 = 1 if the edge 𝑢𝑣 ∈ 𝑋
and zero otherwise).

Input: 𝐺 = (𝑉 ,𝐸),𝑤,𝑘

Minimize

∑︁
𝑢𝑣∈𝐸

𝑧𝑢𝑣𝑤𝑢𝑣

s.t. 𝑥−−→𝑣𝑢 + 𝑥−−→𝑢𝑣 ≥ 1− 𝑧𝑢𝑣 ∀𝑢𝑣 ∈ 𝐸∑︁
𝑢∈𝑁 (𝑣)

𝑥−−→𝑣𝑢 ≤ 𝑘 ∀𝑣 ∈ 𝑉

𝑥−−→𝑢𝑣 ≥ 0 ∀𝑢𝑣 ∈ 𝑉 ×𝑉

DegenEdgeEdit-LP

The �rst set of constraints in the LP-relaxation DegenEdgeEdit-LP guarantee that for

each edge 𝑢𝑣 < 𝑋, it is oriented either from 𝑣 to 𝑢 or from 𝑢 to 𝑣. The second set of the

constraints ensure that for all 𝑣 ∈ 𝑉 , deg+(𝑣) ≤ 𝑘. Note that if an edge 𝑢𝑣 ∈ 𝑋 and thus

𝑧𝑢𝑣 = 1, then WLOG we can assume that both 𝑥−−→𝑢𝑣 and 𝑥−−→𝑣𝑢 are set to zero.

Lemma 3.6.12. DegenEdgeEdit-LP(𝐺,𝑤,𝑘) is a valid LP-relaxation of 𝑘-DE-E(𝐺,𝑤).

Next, we propose a two-phase rounding scheme for the DegenEdgeEdit-LP.
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First phase. Let (𝑥,𝑧) be an optimal solution of DegenEdgeEdit-LP. Note that since

the DegenEdgeEdit-LP has polynomial size, we can �nd its optimal solution e�ciently.

Consider the following semi-integral solution (𝑥,𝑧) of DegenEdgeEdit-LP:

𝑧𝑢𝑣 =
{︃

1 if 𝑧𝑢𝑣 ≥ 𝜀,
0 otherwise.

(3.3)

Claim 3.6.13. ( 𝑥
1−𝜀 , 𝑧) as given by Eq. (3.3) is a (1𝜀 ,

1
1−𝜀 )-bicriteria approximate solution of

DegenEdgeEdit-LP(𝐺,𝑤,𝑘).

Proof. First, we show that ( 1
1−𝜀𝑥,𝑧) satis�es the �rst set of constraints. For each edge 𝑢𝑣,

𝑥−−→𝑢𝑣
1− 𝜀

+
𝑥−−→𝑣𝑢
1− 𝜀

=
1

1− 𝜀
(𝑥−−→𝑢𝑣 + 𝑥−−→𝑣𝑢 ) ≥

1
1− 𝜀

(1− 𝑧𝑢𝑣) ≥ 1− 𝑧𝑢𝑣 ,

where the �rst inequality follows from the feasibility of (𝑥,𝑧) and the second inequal-

ity follows from Eq. (3.3). Moreover, it is straightforward to check that as we multi-

ply each 𝑥𝑣𝑢 by a factor of 1/(1 − 𝜀), the second set of constraints are o� by the same

factor; that is, ∀𝑣 ∈ 𝑉 ,
∑︀
𝑢∈𝑉 𝑥−−→𝑣𝑢 /(1 − 𝜀) ≤ 𝑘/(1 − 𝜀). Finally, since for each edge

𝑢𝑣, 𝑧𝑢𝑣 ≤ 𝑧𝑢𝑣/𝜀, the cost of the edit set increases by at most a factor of 1/𝜀; that is,∑︀
𝑢𝑣∈𝐸 𝑧𝑢𝑣𝑤𝑢𝑣 ≤ 1

𝜀

∑︀
𝑢𝑣∈𝐸 𝑧𝑢𝑣𝑤𝑢𝑣 .

Second phase. Next, we prune the fractional solution further to get an integral approx-

imate nearly feasible solution of DegenEdgeEdit-LP. Let 𝑥 denote the orientation of the

surviving edges (edges 𝑢𝑣 such that 𝑧𝑢𝑣 = 0) given by:

𝑥−−→𝑢𝑣 =
{︃

1 if 𝑥−−→𝑢𝑣 ≥ (1− 𝜀)/2,
0 otherwise.

(3.4)

We say an orientation is valid if each surviving edge (𝑢,𝑣) is oriented from 𝑢 to 𝑣 or

𝑣 to 𝑢.

Lemma 3.6.14. 𝑥 as given by Eq. (3.4) is a valid orientation of the set of surviving edges.

Proof. We need to show that for each 𝑢𝑣 ∈ 𝐸 with 𝑧𝑢𝑣 = 0 at least one of 𝑥−−→𝑢𝑣 or 𝑥−−→𝑣𝑢 is

one. Note that if both are one, we can arbitrarily set one of them to zero.

For an edge 𝑢𝑣, by Eq. (3.3), 𝑧𝑢𝑣 = 0 i� 𝑧𝑢𝑣 ≤ 𝜀. Then, using the fact that (𝑥,𝑧)
is a feasible solution of DegenEdgeEdit-LP, 𝑥−−→𝑢𝑣 + 𝑥−−→𝑣𝑢 ≥ 1 − 𝑧𝑢𝑣 ≥ 1 − 𝜀. Hence,

max(𝑥−−→𝑢𝑣 ,𝑥−−→𝑣𝑢 ) ≥ (1−𝜀)/2 which implies that max(𝑥−−→𝑢𝑣 ,𝑥−−→𝑣𝑢 ) = 1. Hence, for any surviv-

ing edge 𝑢𝑣, at least one of 𝑥−−→𝑢𝑣 or 𝑥−−→𝑣𝑢 will be set to one.

Lemma 3.6.15. (𝑥,𝑧) as given by Eq. (3.3) and Eq. (3.4) is an integral (1𝜀 ,
2

1−𝜀 )-bicriteria
approximate solution of DegenEdgeEdit-LP(𝐺,𝑤,𝑟).

Proof. As we showed in Lemma 3.6.14, 𝑥 is a valid orientation of the surviving edges with

respect to 𝑧. Moreover, by Eq. (3.4), for each 𝑢𝑣 ∈ 𝐸, 𝑥−−→𝑢𝑣 ≤ 2𝑥−−→𝑢𝑣 /(1− 𝜀). Hence, for each

vertex 𝑣 ∈ 𝑉 , deg+(𝑣) ≤ 2𝑘/(1−𝜀). Finally, as we proved in Claim 3.6.13, the total weight
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of the edit set de�ned by 𝑧 is at most
1
𝜀 times the total weight of the optimal solution

(𝑥,𝑧).

Hence, together with Lemma 2.1.5, we have the following result.

Corollary 3.6.16. There exists a (1𝜀 ,
4

1−𝜀 )-bicriteria approximation algorithm for 𝑘-DE-E.
In particular, by setting 𝜀 = 1/5, there exists a (5,5)-bicriteria approximation algorithm

for the 𝑘-Degenerate Edge Deletion problem.

We note that our approach also works in the general setting when both vertices and

edges are weighted, and we consider an edit operation which includes both vertex and

edge deletion.

Integrality gap of DegenEdgeEdit-LP and DegenVertexEdit-LP

A natural open question is if we can obtain “purely multiplicative” approximation guar-

antees for 𝑘-DE-E and 𝑘-DE-V via LP-based approaches. In this section, we show

that the existing LP-relaxation of editing to bounded degeneracy cannot achieve 𝑜(𝑛)-
approximation. These results are particularly important because they show that the best

we can hope for are bicriteria approximations.

Theorem 3.6.17. The integrality gap of DegenEdgeEdit-LP isΩ(𝑛).

Proof. Consider an instance of 𝑘-DE-E(𝐺) where 𝐺 is an unweighted complete graph of

size 2𝑛 and 𝑘 = 𝑛−2. First, we show that DegenEdgeEdit-LP(𝐺,𝑟) admits a fractional so-

lution of cost/size𝑂(𝑛) and then we show that the size of any feasible edit set of 𝑘-DE-E(𝐺)
is Ω(𝑛2).

Consider the following fractional solution of DegenEdgeEdit-LP(𝐺,𝑟): for all 𝑢𝑣 ∈
𝑉 ×𝑉 and 𝑢 , 𝑣, 𝑥−−→𝑢𝑣 = 1/2− 1/𝑛 and for all edges 𝑢𝑣 ∈ 𝐸, 𝑧𝑢𝑣 = 2/𝑛. Note that 𝑥 and 𝑧
satisfy the �rst set of constraints in DegenEdgeEdit-LP(𝐺,𝑘):

∀𝑢𝑣 ∈ 𝐸, 𝑥−−→𝑢𝑣 + 𝑥−−→𝑣𝑢 = 1− 2/𝑛 = 1− 𝑧𝑢𝑣 .

Moreover, 𝑥 satis�es the second set of the constraints in DegenEdgeEdit-LP(𝐺,𝑘)

∀𝑣 ∈ 𝑉 ,
∑︁
𝑢∈𝑉

𝑥−−→𝑣𝑢 = (2𝑛− 1)(1/2− 1/𝑛) < 𝑛− 2.

Finally, Cost(𝑥,𝑧) =
∑︀
𝑢𝑣∈𝐸 𝑧𝑢𝑣 = 𝑛(2𝑛−1) · (2/𝑛) = 4𝑛−2 which implies that the cost of

an optimal solution of DegenEdgeEdit-LP(𝐺,𝑘) is 𝑂(𝑛).
Next, we show that any integral solution of 𝑘-DE-E(𝐺,𝑘) has size Ω(𝑛2). Let 𝑋 be a

solution of 𝑘-DE-E(𝐺,𝑘). Then, there exits an ordering of the vertices in 𝐺, 𝑣1, · · · ,𝑣2𝑛
such that deg(𝑣𝑖) in 𝐺[𝑣𝑖 , . . . , 𝑣2𝑛] is at most 𝑟 ≤ 𝑛 − 2. This implies that for 𝑖 ≤ 𝑛 − 2,

|𝛿(𝑣𝑖)∩𝑋 | ≥ 𝑛+2− 𝑖, where 𝛿(𝑣) denotes the set of edges incident to a vertex 𝑣. Thus,

|𝑋 | ≥ 1
2

∑︁
𝑖≤𝑛−2

|𝛿(𝑣𝑖)∩𝑋 | ≥
1
2

∑︁
𝑖≤𝑛−2

𝑛+2− 𝑖 ≥ 1
2
(𝑛2 − 4− (𝑛− 2)(𝑛− 3)

2
) ≥ 𝑛2/4.

Hence, the integrality gap of DegenEdgeEdit-LP is Ω(𝑛).
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Theorem 3.6.18. The integrality gap of DegenVertexEdit-LP isΩ(𝑛).

Proof. Consider an instance of 𝑘-DE-V(𝐺) where 𝐺 is an unweighted complete graph of

size 2𝑛 and 𝑘 = 𝑛− 2. First, we show that DegenVertexEdit-LP(𝐺,𝑟) admits a constant

size fractional solution and then we show that the size of any feasible edit set of 𝑘-DE-E(𝐺)
is Ω(𝑛).

Consider the following fractional solution of DegenVertexEdit-LP(𝐺,𝑟): for each

𝑢𝑣 ∈ 𝑉 2
and 𝑢 , 𝑣, 𝑥−−→𝑢𝑣 = 1/2− 1/𝑛 and for each vertex 𝑣 ∈ 𝑉 , 𝑧𝑣 = 1/𝑛. First, we show

that 𝑥 and 𝑧 satisfy the �rst set of constraints in DegenVertexEdit-LP(𝐺,𝑘):

∀𝑢𝑣 ∈ 𝐸, 𝑥−−→𝑢𝑣 + 𝑥−−→𝑣𝑢 = 1− 2/𝑛 = 1− 𝑧𝑢 − 𝑧𝑣 .

Moreover, 𝑥 satis�es the second set of the constraints in DegenVertexEdit-LP(𝐺,𝑘)

∀𝑣 ∈ 𝑉 ,
∑︁
𝑢∈𝑉

𝑥−−→𝑣𝑢 = (2𝑛− 1)(1/2− 1/𝑛) < 𝑛− 2.

Finally, Cost(𝑥,𝑧) =
∑︀
𝑢𝑣∈𝐸 𝑧𝑢𝑣 = 2𝑛 · (1/𝑛) = 2 which implies that the cost of an optimal

solution of DegenVertexEdit-LP(𝐺,𝑘) is at most 2.

Next, we show that any integral solution of 𝑘-DE-V(𝐺,𝑘) has size Ω(𝑛). Let 𝑋 be a

solution of 𝑘-DE-E(𝐺,𝑘). Since 𝐺 ∖𝑋 is a complete graph of size 2𝑛− |𝑋 |, in order to get

degeneracy 𝑛− 2, |𝑋 | ≥ 𝑛+2.

Hence, the integrality gap of DegenVertexEdit-LP is Ω(𝑛).

3.6.4 Degeneracy: 𝑂(log𝑛) Greedy Approximation

In this section, we give a polytime 𝑂(log𝑛)-approximation for reducing the degeneracy

of a graph by one using either vertex deletions or edge deletions. More speci�cally, given

a graph 𝐺 = (𝑉 ,𝐸) with degeneracy 𝑘, we produce an edit set 𝑋 such that 𝐺′ = 𝐺 ∖𝑋 has

degeneracy 𝑘 − 1 and |𝑋 | is at most 𝑂(log |𝑉 |) times the size of an optimal edit set. Note

that this complements an 𝑂(log 𝑛𝑘 )-approximation hardness result for the same problem.

In general, the algorithm works by computing a vertex ordering and greedily choosing

an edit to perform based on that ordering. In our algorithm, we use themin-degree ordering

of a graph. The min-degree ordering is computed via the classic greedy algorithm given

by Matula and Beck [MB83] that computes the degeneracy of the graph by repeatedly

removing a minimum degree vertex from the graph. The degeneracy of 𝐺, degen(𝐺), is

the maximum degree of a vertex when it is removed. In the following proofs, we make use

of the observation that given a min-degree ordering 𝐿 of the vertices in 𝐺 = (𝑉 ,𝐸) and

assuming the edges are oriented from smaller to larger indices in 𝐿, deg+(𝑢) ≤ degen(𝐺)9

for any 𝑢 ∈ 𝐿.

The �rst ordering 𝐿0 is constructed by taking a min-degree ordering on the vertices of

𝐺 where ties may be broken arbitrarily. Using 𝐿0, an edit is greedily chosen to be added

to 𝑋. Each subsequent ordering 𝐿𝑖 is constructed by taking a min-degree ordering on the

vertices of 𝐺 ∖𝑋 where ties are broken based on 𝐿𝑖−1. Speci�cally, if the vertices 𝑢 and 𝑣

9
For notational reminders for deg+(𝑢), please refer to Section 2.1.
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have equal degree at the time of removal in the process of computing 𝐿𝑖 , then 𝐿𝑖(𝑢) < 𝐿𝑖(𝑣)
if and only if 𝐿𝑖−1(𝑢) < 𝐿𝑖−1(𝑣). The algorithm terminates when the min-degree ordering

𝐿𝑗 produces a witness that the degeneracy of 𝐺 ∖𝑋 is 𝑘 − 1.

In order to determine which edit to make at step 𝑖, the algorithm �rst computes the

forward degree of each vertex 𝑢 based on the ordering 𝐿𝑖 (equivalently, deg+(𝑢) when

edges are oriented from smaller to larger index in 𝐿𝑖). Each vertex with forward degree 𝑘
is marked, and similarly, each edge that has a marked left endpoint is also marked. The

algorithm selects the edit that resolves the largest number of marked edges. We say that

a marked edge is resolved if it will not be marked in the subsequent ordering 𝐿𝑖+1.

We observe that given an optimal edit set (of size 𝑘), removing the elements of the set

in any order will resolve every marked edge after 𝑘 rounds (assuming that at most one

element from the optimal edit set is removed in each round). If it does not, then the �nal

ordering 𝐿𝑘 must have a vertex with forward degree 𝑘, a contradiction. Let 𝑚𝑖 be the

number of marked edges based on the ordering 𝐿𝑖 . We show that we can always resolve

at least
𝑚𝑖
𝑘 marked edges in each round, giving our desired approximation.

Lemma 3.6.19. A vertex that is unmarked in 𝐿𝑖 cannot become marked in 𝐿𝑗 for any 𝑗 > 𝑖.

Proof. For an unmarked vertex 𝑣 to become marked, its forward degree must increase

from 𝑑 ≤ 𝑘−1 to 𝑘 when going from 𝐿𝑖 to 𝐿𝑗 for some 𝑗 > 𝑖. In other words, deg+𝐿𝑖 (𝑣) < 𝑘
whereas deg+𝐿𝑗 (𝑣) = 𝑘. Since edges are not added to 𝐺, this can only occur if a backward

neighbor 𝑢 of 𝑣 becomes a forward neighbor. Let {𝑢,𝑣} be an inversion if 𝐿𝑖(𝑢) > 𝐿𝑖(𝑣) but

𝐿𝑗(𝑢) < 𝐿𝑗(𝑣)10
. An inversion can occur between neighbors 𝑢′ and 𝑣′ , in which case 𝑢′ and

𝑣′ are connected by an edge. We call this a positive inversion for 𝑢 and a negative inversion

for 𝑣. If the number of positive inversions for𝑢 of𝑢’s neighbors is greater than the number

of negative inversions of 𝑢’s neighbors between 𝐿𝑖 and 𝐿𝑗 , then deg+𝐿𝑗 (𝑢) > deg+𝐿𝑖 (𝑢).
By our previous observation, an unmarked vertex can only become a marked vertex

through inversions. Let 𝑢 be a vertex that was unmarked in 𝐿𝑖 but becomes marked in

𝐿𝑗 . Let 𝑢 and 𝑣 be the �rst positive inversion for 𝑢 in 𝐿𝑖 (i.e. there is not a 𝑤 such that 𝑢
and 𝑤 form a positive inversion for 𝑢 and 𝐿𝑖(𝑤) < 𝐿𝑖(𝑣)). Because the algorithm breaks

ties when constructing 𝐿𝑗 based on 𝐿𝑗−1, if 𝑢 and 𝑣 form a positive inversion for 𝑢 and 𝑢
becomes marked in 𝐿𝑗 , then deg+𝐿𝑗 (𝑢) < deg𝐿𝑗 [𝑖𝑢 ,𝑛](𝑣)

11
and deg+𝐿𝑗 (𝑢) = 𝑘. (If, instead,

deg+𝐿𝑗 (𝑢) > deg𝐿𝑗 [𝑖𝑢 ,𝑛](𝑣), then 𝑣 would have been removed �rst according to 𝐿𝑗 .) Then,

either (1) deg𝐿𝑗 [𝑖𝑢 ,𝑛](𝑣) ≤ deg+𝐿𝑖 (𝑣) or (2) deg𝐿𝑗 [𝑖𝑢 ,𝑛](𝑣) > deg+𝐿𝑖 (𝑣).

If (1) occurs, then deg+𝐿𝑗 (𝑢) cannot be 𝑘 since this would imply deg+𝐿𝑖 (𝑣) > 𝑘, a con-

tradiction. However, (2) can only occur through positive inversions of 𝑣 (in fact, through

positive inversions of 𝑣’s neighbors) since we chose 𝑣 to be the �rst positive inversion of

𝑢. (Hence, 𝑣 cannot gain additional edges in the range 𝐿𝑗[𝑖𝑢 , 𝑖𝑣] when going from 𝐿𝑖 to

𝐿𝑗 .) Let 𝑤 be the �rst positive inversion of 𝑣 in 𝐿𝑗 . Given that 𝑣 must have at least one

positive inversion with one of its neighbors, 𝑤 must exist (it can either be the neighbor of

10
Note that 𝑢 and 𝑣 do not have to be connected by an edge.

11
Let deg𝐿𝑗 [𝑖𝑢 ,𝑛](𝑣) be the degree of 𝑣 restricted to vertices between indices 𝑖𝑢 and 𝑛 in 𝐿𝑗 . Here, 𝑖𝑢 is the

index of 𝑢.
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𝑣 or another node.) The same case analysis applies to 𝑣 and𝑤, implying that𝑤 has a pos-

itive inversion and so on, eventually leading to a contradiction due to a lack of additional

vertices to form a positive inversion.

Using Lemma 3.6.19, we are able to prove a similar statement about marked edges.

Lemma 3.6.20. An edge that is unmarked in 𝐿𝑖 cannot become marked in 𝐿𝑗 for any 𝑗 > 𝑖.

Proof. Suppose wlog that the edge 𝑒 = (𝑢,𝑣) is unmarked in 𝐿𝑖 and that 𝐿𝑖(𝑢) < 𝐿𝑖(𝑣).
This implies that 𝑢 is unmarked in 𝐿𝑖 . By Lemma 3.6.19, 𝑢 cannot become marked in

𝐿𝑗 . Thus, in order for 𝑒 to become marked, 𝐿𝑗(𝑣) < 𝐿𝑗(𝑢) and deg+𝐿𝑗 (𝑣) = 𝑘. Since 𝑢 is

unmarked in 𝐿𝑗 , we know that deg+𝐿𝑗 (𝑢) ≤ 𝑘 −1. So for 𝐿𝑗(𝑣) < 𝐿𝑗(𝑢) where 𝑢 and 𝑣 are

an inversion, the forward degree of 𝑣 including 𝑢 must be less than 𝑘 − 1. Thus, 𝑣 must

be unmarked in 𝐿𝑗 , and so 𝑒 is also unmarked.

Lemmas 3.6.19 and 3.6.20 allow us to make a claim about the number of marked edges

that any one edit resolves.

Lemma 3.6.21. For a given edit 𝑥, the number of marked edges that it resolves is monoton-

ically non-increasing from 𝐿0. In other words, for any 𝑖 < 𝑗 , the number of marked edges 𝑥
resolves in 𝐿𝑖 is at least as many as the number of marked edges 𝑥 resolves in 𝐿𝑗 .

Proof. By Lemma 3.6.20, we know that an unmarked edge cannot become marked. Thus,

for the number of marked edges that an edit resolves in 𝐿𝑖 to increase in 𝐿𝑖+1, an existing

marked edge must become resolvable by making a di�erent edit. Note that edits resolve

edges by either deleting them or reducing the forward degree of marked vertices. Since

the back neighbors of an edit 𝑥 cannot become marked by Lemma 3.6.19 and any vertices

that form a negative inversion with 𝑥 via another edit must have forward degree at most

𝑘 − 1, it is not possible for 𝑥 to gain marked edges that are resolvable by deletion.

Instead, any new resolvable marked edges must be resolved by the deletion of 𝑥 re-

ducing the degree of a back neighbor by one. Note that changes to the set of resolvable

edges can only occur if the relative ordering of the neighbors of 𝑥 changes. First, we will

consider the case where a forward neighbor 𝑣 forms an inversion with neighbor 𝑥. After

the inversion, the forward degree of 𝑣 will be one less than the original forward degree of

𝑥. Furthermore, we note that 𝑣 can now only form an inversion with its last back neighbor

𝑏 assuming that the forward degree of 𝑏 is exactly one greater than the forward degree of

𝑣. Thus, the forward edges of 𝑏 are resolvable by 𝑥 if they are marked. Note that there are

exactly 𝑘 of these edges if this is the case. However, this implies that the forward degree

of 𝑣 is 𝑘−1, and so the original forward degree of 𝑥must have been 𝑘. These 𝑘 edges must

have been resolved by the inversion of 𝑣 and 𝑥, so 𝑥 resolves at most the same number of

edges as it did originally. Note that if multiple forward neighbors form inversions with 𝑥
simultaneously, only one of them can have forward degree 𝑘 − 1.

Next, we consider the case where a back neighbor 𝑏 of 𝑥 forms an inversion with some

other neighboring vertex 𝑣 (potentially of no relation to 𝑥). Again, we rely on the fact that

𝑏 must have forward degree 𝑘−1 after the inversion in order to be able to make a second

inversion that resolves additional marked edges. However, this implies that 𝑣 originally

had forward degree 𝑘, and so when 𝑏 inverted with 𝑣, 𝑘 marked edges were resolved.
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Since 𝑏 can only form an inversion with one of its back neighbors per edit, there are at

most 𝑘 new marked edges that could be resolved by editing 𝑥. Thus, 𝑥 resolves at most

the same number of edges as it did originally.

Finally, we consider the case where 𝑣 forms an inversion with a back neighbor 𝑏. In

order for 𝑏 to be able to form another inversion with a di�erent marked neighbor, it must

have forward degree 𝑘 − 1. However, it must �rst form an inversion with 𝑣 again which

has already been considered.

Theorem 3.6.22. There exists an 𝑂(log𝑛)-approximation for �nding the minimum size

edit set to reduce the degeneracy of a graph from 𝑘 to 𝑘 − 1.

Proof. Let 𝑚0 be the number of marked edges in the �rst min-degree ordering. Since the

optimal edit set (of size 𝑘) resolves every marked edge in 𝑘 steps, the 𝑘 edits must on

average resolve
𝑚0
𝑘 marked edges. Thus, the largest number of marked edges resolved by

an edit from the optimal edit set must be at least
𝑚0
𝑘 . Fix a sequence of the optimal edit

set. By Lemma 3.6.21, the number of marked edges that this edit resolves at the current

step must be at least as large as when it appears in the optimal sequence. Thus, there

must exist an edit which resolves at least
𝑚0
𝑘 marked edges, and so the edit that resolves

the most marked edges must resolve at least
𝑚0
𝑘 as well. After one iteration then, there

are 𝑚1 ≤𝑚0(1− 1
𝑘 ) marked edges remaining. Since the edited graph is a subgraph of the

original, the optimal sized edit set must still be of size at most 𝑘 and so the same analysis

applies. Thus, after 𝑡 steps, there are at most𝑚0(1− 1
𝑘 )
𝑡

marked edges remaining. If we set

𝑡 = 𝑘 ln𝑚0, then there at most 𝑚0(1− 1
𝑘 )
𝑘 ln𝑚0 ≤𝑚0 · 1𝑒

ln𝑚0 = 1 marked edges remaining.

Thus, we need at most 𝑘 ln𝑚0 +1 iterations to resolve every marked edge. Since we add

one edit at each iteration, we produce an edit set of size at most 𝑘 ln𝑚0 +1. Because 𝑚0
is at most 𝑛2, the size of the edit set is 𝑘 ln𝑚0 +1 ≤ 𝑘 ln𝑛2 +1 =𝑂(𝑘 log𝑛).

Corollary 3.6.23. There exists an𝑂(𝑑 ·log𝑛)-approximation for �nding the minimum size

edit set to reduce the degeneracy of a graph from 𝑘 to 𝑘 − 𝑑.

Proof. Apply the above algorithm 𝑑 times. Let 𝐺𝑖 be the edited graph after 𝑖 applications.

Note that 𝐺𝑖 has degeneracy 𝑘− 𝑖. The optimally sized edit set OPT to reduce the degen-

eracy of 𝐺𝑖 from 𝑘 − 𝑖 to 𝑘 − 𝑖 − 1 is at most the size of the smallest edit set to reduce the

degeneracy of 𝐺0 from 𝑘 to 𝑘−𝑑. Thus, at each iteration, we add at most 𝑂(|OPT | log𝑛)
edits to our edit set. After 𝑑 iterations then, we have a graph with degeneracy 𝑘 − 𝑑 and

an edit set of size 𝑂(𝑑|OPT | log𝑛).

Corollary 3.6.24. There exists an𝑂(𝑘 · log𝑛)-approximation for �nding the minimum size

edit set to reduce the degeneracy of a graph to 𝑘.

Proof. Apply an algorithm from Section 3.6.1 or 3.6.2. This yields a graph with degeneracy

𝑂(𝑘) and an edit set of size𝑂(|OPT |). Apply the algorithm from Corollary 3.6.23 to reduce

the degeneracy by the remaining 𝑂(𝑘) steps. The �nal size of the edit set is 𝑂(|OPT |) +
𝑂(𝑘|OPT | log𝑛) =𝑂(𝑘|OPT | log𝑛).

85



3.6.5 Treewidth/Pathwidth: Bicriteria Approximation for Vertex

Editing

In this section, we design a polynomial-time algorithm that constructs a

(𝑂(log1.5𝑛),𝑂(
√︀
log𝑤))-bicriteria approximate solution to 𝑤-Treewidth Ver-

tex Deletion: the size of the edit set is at most 𝑂(log1.5𝑛) times the optimum

(OPT𝑤-TW-V
(𝐺)) and the resulting subgraph has treewidth 𝑂(𝑤

√︀
log𝑤). We also give a

(𝑂(log1.5𝑛),𝑂(
√︀
log𝑤 · log𝑛))-bicriteria approximation for editing to pathwidth 𝑤.

Our approach relies on known results for vertex 𝑐-separators, structures which are used

extensively in many other algorithms for �nding an approximate tree decomposition.

De�nition 3.6.25. For a subset of vertices 𝑊 , a set of vertices 𝑆 ⊆ 𝑉 (𝐺) is a vertex 𝑐-
separator of 𝑊 in 𝐺 if each component of 𝐺[𝑉 ∖ 𝑆] contains at most 𝑐|𝑊 | vertices of 𝑊 .

The minimum size vertex 𝑐-separator of a graph, denoted sep𝑐(𝐺), is the minimum integer

𝑘 such that for any subset𝑊 ⊆ 𝑉 there exists a vertex 𝑐-separator of𝑊 in 𝐺 of size 𝑘.

The size of a minimum size vertex 𝑐-separator of a graph is a parameter of interest and

has applications in bounding treewidth and �nding an approximate tree decomposition.

Our algorithms in this section use vertex

(︁
3
4

)︁
-separators.

Lemma 3.6.26 ([FHL08, Section 6.2]). There exist polynomial time algorithms that �nd a

vertex

(︁
3
4

)︁
-separator of a graph 𝐺 of size 𝑐1 · sep2/3(𝐺)

√︀
logsep2/3(𝐺), for a su�ciently

large constant 𝑐1.

The following bounds relating the treewidth of𝐺, tw(𝐺), and the minimum size vertex

(23 )-separator of𝐺, sep2/3(𝐺), are useful in the analysis of our proposed algorithm for the

problem of editing to treewidth 𝑤.

Lemma3.6.27 ([RS86, RS95, HW17, Lemma 7]). For any graph𝐺, sep2/3(𝐺) ≤ tw(𝐺)+1 ≤
4sep2/3(𝐺).

Lemma 3.6.28. For any graph 𝐺 = (𝑉 ,𝐸), and integer 𝑤 ≤ 3
4 · tw(𝐺), sep2/3(𝐺) ≤ 6 ·

OPT𝑤-TW-V
(𝐺).

Proof. It is straightforward to verify that for any 𝑋 ⊆ 𝑉 , if tw(𝐺[𝑉 ∖𝑋]) = 𝑤, then |𝑋 | ≥
tw(𝐺) −𝑤. Suppose not. Then, we can add 𝑋 to all bags in the tree decomposition of

𝐺[𝑉 ∖𝑋] and the resulting tree decomposition of 𝐺 has treewidth less than tw(𝐺) which

is a contradiction.

If we assume 𝑤 ≤ 3
4 · tw(𝐺), then OPT𝑤-TW-V

(𝐺) ≥ tw(𝐺) − 𝑤 ≥ tw(𝐺)/4, which,

together with Lemma 3.6.27, implies that sep2/3(𝐺) ≤ 3
2 · tw(𝐺) ≤ 6 ·OPT𝑤-TW-V

(𝐺).

Treewidth: (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤))-approximation for vertex deletion

Our method exploits the general recursive approach of the approximation algorithms for

constructing a tree decomposition [Ami10, BGHK95, FHL08, Ree92]. Our algorithm it-

eratively subdivides the graph, considering 𝐺[𝑉𝑖] in iteration 𝑖. We �rst apply the re-

sult of [BGHK95, FHL08] to determine if 𝐺[𝑉𝑖] has a tree decomposition with “small”
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width; if yes, the algorithm removes nothing and terminates. Otherwise, we compute

an approximate vertex (3/4)-separator 𝑆 of 𝐺[𝑉𝑖] (applying the algorithm of [FHL08]),

remove it from the graph, and recurse on the connected components of 𝐺[𝑉𝑖 ∖ 𝑆]. We

show that the total number of vertices removed from 𝐺 in our algorithm is not more than

𝑂(OPT𝑤-TW-V
(𝐺) log1.5𝑛) in Theorem 3.6.31 and the treewidth of the resulting graph is

𝑂(𝑤
√︀
log𝑤) in Theorem 3.6.32.

Algorithm 3 Approximation for Vertex Editing to Bounded Treewidth Graphs

1: procedure TreeWidthNodeEdit(𝐺 = (𝑉 ,𝐸), 𝑤)

2: 𝑡← compute tw(𝐺) by invoking the algorithm of [BGHK95] together with [FHL08]

3: if 𝑡 ≤ 32𝑐1 ·𝑤
√︀
log𝑤 then

4: return ∅
5: else

6: 𝑆← compute a vertex (34 )-separator of 𝐺 by invoking the algorithm of [FHL08]

7: let 𝐺[𝑉1], · · · ,𝐺[𝑉ℓ] be the connected components of 𝐺[𝑉 ∖ 𝑆].
8: return

(︁⋃︀
𝑖≤ℓ TreeWidthNodeEdit(𝐺[𝑉𝑖],𝑤)

)︁
∪ 𝑆

The key observation in our approach is the following lemma:

Lemma 3.6.29. Suppose that the vertex set of 𝐺 = (𝑉 ,𝐸) is partitioned into 𝑉1, · · · ,𝑉ℓ . The
minimum edit set of 𝐺 to treewidth 𝑤 has size at least

∑︀
𝑖≤ℓmax(0, tw(𝐺[𝑉𝑖])−𝑤).

Proof. This directly follows from the straightforward observation that if tw(𝐺[𝑉 ∖𝑋]) = 𝑤,

then |𝑋 | ≥ tw(𝐺) − 𝑤. Since the sets of vertices are disjoint, then the lower bound on

the number of vertices that must be deleted is the summation of the lower bound of the

number of vertices that must be deleted in each disjoint set.

In Algorithm 3, we use the approach of Bodlaender et al. [BGHK95] together with

the𝑂(
√︀
log tw(𝐺))-approximation algorithm of [FHL08] for computing treewidth of𝐺 in

Line 2.

Theorem 3.6.30 ([BGHK95, FHL08]). There exists an algorithm that, given an input

graph 𝐺, in polynomial time returns a tree decomposition of 𝐺 of width at most 𝑐2 ·
tw(𝐺)

√︀
log tw(𝐺) and height 𝑂 (log |𝑉 (𝐺)|) for a su�ciently large constant 𝑐2.

For the sake of completeness, we provide the proof of Theorem 3.6.30 in Section 3.6.5.

Next, we analyze the performance of Algorithm 3.

Theorem 3.6.31. Algorithm 3 removes at most 𝑂(log1.5𝑛)OPT𝑤-TW-V
(𝐺) vertices from

any 𝑛-vertex graph 𝐺.

Proof. The proof is by induction on the number of vertices in the given induced subgraph

of𝐺: we show that for any subset𝑉 ′ ⊆ 𝑉 , the number of vertices removed by Algorithm 3

is at most (𝑐 · log4/3 |𝑉 ′ | ·
√︀
log𝑛)OPT𝑤-TW-V

(𝐺[𝑉 ′]) where 𝑐 ≥ 6 is a �xed constant. We

remark that 𝑐 must also be greater than the constant 𝑐2 in Theorem 3.6.30 for the width

guarantee.
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By the condition in Line 3 of the algorithm, the claim trivially holds for the case |𝑉 | =
𝑂(𝑤

√︀
log𝑤). Assume that the claim holds for all induced subgraphs of 𝐺 containing

at most 𝑛′ − 1 vertices. Next, we show that the claim holds for any 𝑛′-vertex induced

subgraph of 𝐺, 𝐺[𝑉 ′], too. If 𝑡 ≤ 32𝑐1 ·𝑤
√︀
log𝑤, then no vertex is deleted and the claim

holds. Otherwise,

32𝑐1 ·𝑤
√︀
log𝑤 < 𝑡 ≤ 𝑐1 · sep2/3(𝐺[𝑉 ′])

√︁
logsep2/3(𝐺[𝑉 ′]) by Lemma 3.6.26,

≤ 𝑐1 · (2tw(𝐺[𝑉 ′]))
√︀
2log tw(𝐺[𝑉 ′]) by Lemma 3.6.27,

which implies that tw(𝐺[𝑉 ′]) ≥ 4𝑤. By Lemma 3.6.28, sep2/3(𝐺[𝑉 ′]) ≤
6OPT𝑤-TW-V

(𝐺[𝑉 ′]) which implies that |𝑆 ′ | ≤ 𝑐1
√︀
logsep2/3(𝐺[𝑉 ′]) · sep2/3(𝐺[𝑉 ′]) ≤

6𝑐1
√︀
log𝑛·OPT𝑤-TW-V

(𝐺[𝑉 ′])where 𝑆 ′ is a vertex (34 )-separator of𝑉 ′ computed in Line 6

of the algorithm.

Let 𝑉 ′1, · · · ,𝑉
′
ℓ be the disjoint components in 𝐺[𝑉 ′ ∖ 𝑆 ′]. Then, OPT𝑤-TW-V

(𝐺[𝑉 ′]) ≥∑︀
𝑖≤ℓOPT𝑤-TW-V

(𝐺[𝑉 ′𝑖 ]), by Lemma 3.6.29. Further, by the induction assumption for

each 𝑖 ≤ ℓ, the number of vertices removed by TreeWidthNodeEdit(𝐺[𝑉 ′𝑖 ],𝑤) is

at most (𝑐 log4/3 |𝑉
′
𝑖 | ·

√︀
log𝑛)OPT𝑤-TW-V

(𝐺[𝑉 ′𝑖 ]). Hence, the vertices removed by

TreeWidthNodeEdit(𝐺[𝑉 ′],𝑤), satisfy

|𝑋 | ≤ 6𝑐1
√︀
log𝑛 · OPT

𝑤-TW-V

(𝐺[𝑉 ′]) +
∑︁
𝑖≤ℓ

(𝑐 log4/3 |𝑉
′
𝑖 | ·

√︀
log𝑛) · OPT

𝑤-TW-V

(𝐺[𝑉 ′𝑖 ])

≤ 6𝑐1
√︀
log𝑛 · OPT

𝑤-TW-V

(𝐺[𝑉 ′]) + (𝑐 log4/3
3|𝑉 ′ |
4
·
√︀
log𝑛)

∑︁
𝑖≤ℓ

OPT
𝑤-TW-V

(𝐺[𝑉 ′𝑖 ])

≤ 𝑐
√︀
log𝑛 · (1 + log4/3 |𝑉

′ | − 1) OPT
𝑤-TW-V

(𝐺[𝑉 ′]) with 𝑐 > 6𝑐1.

≤ (𝑐 log4/3 |𝑉
′ | ·

√︀
log𝑛) OPT

𝑤-TW-V

(𝐺[𝑉 ′]).

Theorem 3.6.32. The treewidth of the subgraph of 𝐺 returned by Algorithm 3 is 𝑂(𝑤 ·√︀
log𝑤).

Proof. This follows immediately from the condition in Line 3 of the algorithm.

Pathwidth: (𝑂(log1.5𝑛),𝑂(
√︀
log𝑤 · log𝑛))-approximation for vertex deletion

Our algorithm in this section builds on the reduction of Bodleander et al. [BGHK95] from

tree decomposition to path decomposition and Algorithm 3 described in Section 3.6.5 for

�nding a minimum size edit set to treewidth 𝑤. The main component of the reduction

approach of [BGHK95] is the following.

Lemma 3.6.33 ([BGHK95]). Given a tree decomposition of 𝐺 with width at most 𝑤 and

height at most ℎ, we can �nd a path decomposition of 𝐺 with width at most 𝑤 ·ℎ e�ciently.

Corollary 3.6.34. Given an input graph𝐺 = (𝑉 ,𝐸) and a target pathwidth𝑤, Algorithm 3

removes𝑂(log1.5𝑛)·OPT𝑤-PW-V
(𝐺) vertices𝑋 such that pw(𝐺[𝑉 ∖𝑋]) ≤ (

√︀
log𝑤·log𝑛)·𝑤.
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Proof. By Theorem 3.6.31, |𝑋 | ≤ (log1.5𝑛)·OPT𝑤-TW-V
(𝐺). Since tw(𝐺) ≤ pw(𝐺) for all𝐺,

we have OPT𝑤-TW-V
(𝐺) ≤OPT𝑤-PW-V

(𝐺). Hence, |𝑋 | ≤ log1.5𝑛 ·OPT𝑤-PW-V
(𝐺). Further,

by Lemma 3.6.33 and Theorem 3.6.30, pw(𝐺[𝑉 ∖𝑋]) ≤ (𝑤
√︀
log𝑤) · log𝑛.

Proof of Theorem 3.6.30

In this section, we provide the proof of Theorem 3.6.30 which is essentially via the

tree decomposition of Bodleander et al. [BGHK95] by plugging in the 𝑂(
√︀
logOPT)-

approximation algorithm of [FHL08] for vertex separators. Algorithm 4 is the recursive

approach of [BGHK95] for approximating treewidth (and constructing its tree decompo-

sition).

Algorithm 4 Approximation Algorithm for Tree Decomposition (From [BGHK95,

FHL08])

1: procedure TreeDecomposition(𝐺,𝑍,𝑊 ) ⟨⟨𝑍 ∩𝑊 = ∅, output contains 𝑊 in root

bag⟩⟩
2: if 8|𝑍 | ≤ |𝑊 | then
3: return a tree decomposition with a single node containing 𝑍 ∩𝑊
4: else

5: 𝑆 ← a vertex (34 )-separator of 𝑊 in 𝐺[𝑍 ∪ 𝑊 ] by invoking the algorithm

of [FHL08]

6: 𝑇 ← a vertex (34 )-separator of 𝑍 ∪𝑊 in 𝐺[𝑍 ∪𝑊 ] by invoking the algorithm

of [FHL08]

7: let 𝐺[𝑉1], · · · ,𝐺[𝑉ℓ] be the connected components of 𝐺[(𝑊 ∪𝑍) ∖ (𝑆 ∪ 𝑇 )].
8: for 𝑖 = 1 to ℓ do
9: 𝑍𝑖 ← 𝑍 ∩𝑉𝑖

10: 𝑊𝑖 ←𝑊 ∩𝑉𝑖
11: 𝑇𝑖 ← TreeDecomposition(𝐺,𝑍𝑖 ,𝑊𝑖 ∪ 𝑆 ∪ 𝑇 )
12: return the tree decomposition with (𝑊 ∪ 𝑆 ∪ 𝑇 ) as its root and 𝑇1, · · · ,𝑇ℓ as its

children

Claim 3.6.35. If 𝑊 and 𝑍 are disjoint sets of vertices of 𝐺 and |𝑊 | ≤ 32𝑐1 ·
tw(𝐺)

√︀
log tw(𝐺), then the solution produced by the algorithm is a tree decomposition of

𝐺[𝑊 ∪𝑍] of width at most 36𝑐1 · tw(𝐺)
√︀
log tw(𝐺).

Proof. First we show that the output is a valid tree decomposition of 𝐺[𝑊 ∪𝑍].
• All edges of 𝐺[𝑍 ∪𝑊 ] are covered in 𝑇 . The proof is by an induction on

the recursive structure of the algorithm. For a leaf bag in the tree decomposition

(|𝑍 | ≤ |𝑊 |/8), a single bag contains all vertices of 𝑍 ∪𝑊 ; hence, the claim holds.

Now, suppose that this property holds for all subtrees rooted at children of the tree

decomposition constructed by TreeDecomposition(𝐺,𝑍,𝑊 ). Consider an edge

𝑢𝑣 ∈ 𝐸. If 𝑢,𝑣 ∈𝑊 , then 𝑢 and 𝑣 are both contained in the root bag and it is cov-

ered in the tree decomposition. Otherwise, 𝑣 and 𝑢 both belong to 𝑉𝑖 ∪ 𝑆 ∪ 𝑇 for
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an 𝑖 ∈ [ℓ] and by the induction hypothesis, 𝑢𝑣 is covered in the subtree 𝑇𝑖 corre-

sponding to TreeDecomposition(𝐺,𝑍𝑖 ,𝑊𝑖 ∪ 𝑆 ∪ 𝑇 ). Thus, the property holds for

𝑇 as well.

• Bags containing each vertex are connected in tree structure 𝑇 . The proof is

by induction on the recursive structure of TreeDecomposition(·). More precisely,

we show that for each pair (𝑍 ′,𝑊 ′), the bags containing a vertex 𝑣 ∈ 𝑍 ′ ∪𝑊 ′ are

connected in TreeDecomposition(𝐺,𝑍 ′,𝑊 ′). The property trivially holds for the

leaves of 𝑇 (the case |𝑍 ′ | ≤ |𝑊 ′ |/8). Suppose that this property holds for all subtrees

rooted at children of the tree decomposition 𝑇 = TreeDecomposition(𝐺,𝑍,𝑊 ).

Then, we show that the property holds for 𝑇 as well. If 𝑣 ∈𝑊 ∪𝑆 ∪𝑇 , then by the

induction hypothesis on children of 𝑇 , the property holds for 𝑇 as well. Otherwise,

𝑣 is only contained in one of the children of 𝑇 (i.e., 𝑣 ∈ 𝑍𝑖∪𝑊𝑖) and by the induction

hypothesis the property holds.

Next, we show that the width of the tree decomposition constructed by TreeDe-

composition(𝐺,𝑍,𝑊 ) is at most 36𝑐1 · tw(𝐺)
√︀
log tw(𝐺). By induction on the size

of 𝑍 , it su�ces to show that |𝑊 ∪ 𝑆 ∪ 𝑇 | ≤ 36𝑐1 · tw(𝐺)
√︀
log tw(𝐺) and for each 𝑖,

|𝑊𝑖 ∪ 𝑆 ∪ 𝑇 | ≤ 32𝑐1 · tw(𝐺)
√︀
log tw(𝐺). Note that, by Line 3, if |𝑍 | ≤ |𝑊 |/8, then the

returned tree decomposition has width at most 36𝑐1 · tw(𝐺)
√︀
log tw(𝐺). Suppose that the

claim holds for all (𝑍 ′,𝑊 ′) where |𝑍 ′ | < |𝑍 |. We bound the size of 𝑆 and 𝑇 as follows:

|𝑆 |, |𝑇 | ≤ 𝑐1sep2/3(𝐺)
√︁
logsep2/3(𝐺) by Lemma 3.6.26,

< 4𝑐1 · tw(𝐺)
√︀
log tw(𝐺) by Lemma 3.6.27.

Since |𝑊 | ≤ 32𝑐1 · tw(𝐺)
√︀
log tw(𝐺), the root bag has size at most (32𝑐1 + 2 · 4𝑐1) ·

tw(𝐺)
√︀
log tw(𝐺). Moreover, since 𝑆 and 𝑇 are respectively a (34 )-vertex separator of

𝑊 and 𝑊 ∪𝑍 in 𝐺[𝑊 ∪𝑍], for each 𝑖 ∈ [ℓ],

|𝑍𝑖 | ≤
3
4
|𝑍 | < |𝑍 |, and

|𝑊𝑖 ∪ 𝑆 ∪ 𝑇 | ≤
(︂3
4
32𝑐1 +8𝑐1

)︂
· tw(𝐺)

√︀
log tw(𝐺) ≤ 32𝑐1 · tw(𝐺)

√︀
log tw(𝐺).

Thus, it follows from the induction hypothesis that the width of each subtree 𝑇𝑖 is at most

36𝑐1 · tw(𝐺)
√︀
log tw(𝐺).

Proof of Theorem 3.6.30. It follows from Claim 3.6.35 that TreeDecomposition(𝐺 =
(𝑉 ,𝐸),∅,𝑉 ) constructs a tree decomposition of 𝐺 of width at most 36𝑐1 ·
tw(𝐺)

√︀
log tw(𝐺). Moreover, since for each 𝑖 ∈ [ℓ], |𝑍𝑖 | ≤ 3|𝑍 |/4, the returned tree de-

composition has height 𝑂(log |𝑉 (𝐺)|).
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3.7 Open Problems

We hope that our framework for extending approximation algorithms from structural

graph classes to graphs near those classes, by editing to the class and lifting the resulting

solution, can be applied to many more contexts. Speci�c challenges raised by this work

include the following:

1. Editing via edge contractions. Approximation algorithms for this type of editing

would enable the framework to apply to the many optimization problems closed

under just contraction, such as TSP Tour and Connected Vertex Cover.

2. Editing to 𝐻-minor-free graphs. Existing results apply only when 𝐻 is planar

[FLMS12]. According to Graph Minor Theory, the natural next steps are when 𝐻
can be drawn with a single crossing, when 𝐻 is an apex graph (removal of one

vertex leaves a planar graph), and when 𝐻 is an arbitrary graph (say, a clique). 𝐻-

minor-free graphs have many PTASs (e.g., [DH05, DHK11]) that would be exciting

to extend via structural rounding.

3. Editing to bounded clique number and bounded weak 𝑐-coloring number. While we

have lower bounds on approximability, we lack good approximation algorithms.
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Chapter 4

Massively Parallel Algorithms for

Small Subgraph Counting

This chapter presents results from the paper titled, "Massively Parallel Algorithms for Small

Subgraph Counting" that the thesis author coauthored with Amartya Shankha Biswas,

Talya Eden, Slobodan Mitrović and Ronitt Rubinfeld [BEL
+
20]. This paper is currently

under submission at the time of the writing of this thesis.

4.1 Introduction

Estimating the number of small subgraphs, cliques in particular, is a fundamental problem

in computer science, and has been extensively studied both theoretically and from an ap-

plied perspective. Given its importance, the task of counting subgraphs has been explored

in various computational settings, e.g., sequential [AYZ97, Vas09, BHKK09], distributed

and parallel [SV11, PT12, KPP
+

14, PSKP14, LQLC15], streaming [BYKS02, KMSS12, BC17,

MVV16], and sublinear-time [ELRS17, ABG
+

18, AKK19, ERS20]. There are usually two

perspectives from which subgraph counting is studied: �rst, optimizing the running time

(especially relevant in the sequential and sublinear-time settings) and, second, optimizing

the space or query requirement (relevant in the streaming, parallel, and distributed set-

tings). In each of these perspectives, there are two, somewhat orthogonal, directions that

one can take. The �rst is exact counting. However, in most scenarios, algorithms that

perform exact counting are prohibitive, e.g., they require too much space or too many

parallel rounds to be implementable in practice.

Hence, the second direction of obtaining an estimate/approximation on the number of

small subgraphs is both an interesting theoretical problem and of practical importance.

If 𝐻# is the number of subgraphs isomorphic to 𝐻 , the main question in approximate

counting is whether we can design algorithms that, under given resource constraints,

provide approximations that concentrate well. This concentration is usually parametrized

by 𝐻# (and potentially some other parameters). In particular, most known results do not

provide a strong approximation guarantee when 𝐻# is very small, e.g., 𝐻# ∈ 𝑂(1). So,

the main attempts in this line of work is to provide an estimation that concentrates well

while imposing as small a lower bound on 𝐻# as possible.
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Due to ever increasing sizes of data stores, there has been an increasing interest in de-

signing scalable algorithms. TheMassively Parallel Computation (MPC) model is a theoret-

ical abstraction of popular frameworks for large-scale computation, such as MapReduce

[DG08], Hadoop [Whi12], Spark [ZCF
+

10] and Dryad [IBY
+

07]. MPC gained signi�cant

interest recently, most prominently in building algorithmic toolkits for graph process-

ing [GSZ11, LMSV11, BKS13, ANOY14, BKS14, HP15, AG15, RVW16, IMS17, CLM
+

18,

Ass17, ABB
+

19, GGK
+

18, HLL18, BFU18, ASW18, BEG
+

18, BDH
+

19, BBD
+

19, BHH19,

ASZ19, ASW19, GLM19, GKMS19, GU19, LMOS19, ILMP19, CFG
+

19, GKU19, GNT20].

E�ciency of an algorithm in MPC is characterized by three parameters: round complex-

ity, the space per machine in the system, and the number of machines/total memory used.

Our work aims to design e�cient algorithms with respect to all three parameters and is

guided by the following question:

How does one design e�cient massively parallel

algorithms for small subgraph counting?

In this chapter, we are working in the Massively Parallel Computation (MPC) model

introduced by [KSV10, GSZ11, BKS13] and de�ned by Section 2.2.2.

4.1.1 Our Contributions

In this chapter, let 𝐺 = (𝑉 ,𝐸) be a graph that has 𝑇 triangles.

First we study the question of approximately counting the number of triangles under

the restriction that the round and total space complexities are essentially optimal, i.e.,

𝑂(1) and
̃︀𝑂(𝑚), where �̃� hides 𝑂(polylog𝑛) factors, respectively.

Theorem 4.1.1. Let𝐺 = (𝑉 ,𝐸) be a graph over 𝑛 vertices,𝑚 edges, and let 𝑇 be the number

of triangles in 𝐺. Assuming

1. 𝑇 = ̃︀Ω(︁√︀
𝑚
𝑆

)︁
,

2. 𝑆 = ̃︀Ω(︂
max

{︂√
𝑚
𝜀 ,

𝑛2
𝑚

}︂)︂
,

there exists an MPC algorithm, usingℳ machines, each with local space 𝑆 , and total space
ℳ𝑆 = �̃�𝜀(𝑚), that outputs a (1 ± 𝜀)-approximation of 𝑇 , with high probability, in 𝑂(1)
rounds.

For 𝑆 = Θ(𝑛 log𝑛) (speci�cally, 𝑆 > 100𝑛 log𝑛) in Theorem 4.1.1, we derive the fol-

lowing corollary.

Corollary 4.1.2. Let 𝐺 be a graph and 𝑇 be the number of triangles it contains. If 𝑇 ≥√︀
𝑑𝑎𝑣𝑔 , then there exists anMPC algorithm that in𝑂(1) rounds with high probability outputs

a (1+𝜀)-approximation of 𝑇 . This algorithm uses a total space of
̃︀𝑂(𝑚) and space ̃︀Θ(𝑛) per

machine. 𝑑𝑎𝑣𝑔 is the average degree of the vertices in the graph.

The necessity of a lower bound in the triangle/subgraph count when obtaining good

approximations for the triangle/subgraph count in any sampling/streaming based al-

gorithm has been demonstrated in numerous prior papers in the streaming [BYKS02,

KMSS12, BC17, MVV16] and sublinear query-based models [ELRS17, ABG
+

18, AKK19,
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ERS20]; in the MPC setting, we improve the lower bound provided by [PT12] by a

quadratic factor. We extend these results to approximately counting any 𝐾-subgraph

where 𝐾 is a constant in Theorem 4.5.13 and Corollary 4.5.14.

There is a long line of work on computing approximate triangle counting in paral-

lel computation [Coh09, TKMF09, SV11, YK11, PT12, KMPT12, PC13, SPK13, AKM13,

PSKP14, KPP
+

14, JS17a] and references therein. Despite this progress, and to the best

of our knowledge, on one hand, each MPC algorithm for exact triangle counting either

requires strictly super-polynomial in 𝑚 total space, or the number of rounds is super-

constant. On the other hand, each algorithm for approximate triangle counting requires

𝑇 ≥ 𝑑𝑎𝑣𝑔 even when the space per machine is Θ(𝑛). We design an algorithm that has es-

sentially optimal total space and round complexity, while at least quadratically improving

the requirement on 𝑇 .

Furthermore, since the amount of messages sent and received by each machine is

bounded by 𝑂(𝑛), by [BDH18], our algorithm directly implies an 𝑂(1)-rounds algorithm

in the CONGESTED-CLIQUE model under the same restriction 𝑇 =Ω(
√
𝑚/𝑛). The best

known (to our knowledge) triangle approximation algorithm for general graphs in this

model, is an 𝑂(𝑛1/3/𝑡2/3)-rounds algorithm by [DLP12]. This bound only results in a

constant round complexity when 𝑇 =Ω(
√
𝑛).

The second question we consider is the question of exact counting, for which we

present an algorithm whose total space depends on the arboricity of the input graph.

The arboricity of a graph (roughly) equals the average degree of its densest subgraph.

Speci�cally, the arboricity, 𝛼, of a graph, 𝐺 = (𝑉 ,𝐸), is equal to the minimum num-

ber of forests into which 𝐸 can be partitioned (De�nition 2.1.8). The class of graphs

with bounded arboricity includes many important graph families such as planar graphs,

bounded degree graphs and randomly generated preferential attachment graphs. Also

many real-world graphs exhibit bounded arboricity [GG06, ELS13, SERF18], making this

property important also in practical settings. For many problems, a bound on the arboric-

ity of the graph allows for much more e�cient algorithms and/or better approximation

ratios [AG09, ELS13].

Speci�cally for the task of subgraph counting, in a seminal paper, Chiba and

Nishizeki [CN85] prove that triangle enumeration can be performed in 𝑂(𝑚𝛼)
time, and assuming 3SUM-hypothesis

1
this result is optimal up to dependencies in

𝑂(polylog𝑛) [Pat10, KPP16]. Many applied algorithms also rely on the property of hav-

ing bounded arboricity in order to achieve better space and time bounds, e.g., [SW05,

CC11, Lat08]. Our main theorem with respect to this question is the following. Here and

throughout, we use 𝑂𝛿 to hide constant factors of 𝛿.

Theorem 4.1.3. Let 𝐺 = (𝑉 ,𝐸) be a graph over 𝑛 vertices, 𝑚 edges and arboricity 𝛼.
Count-Triangles(𝐺) takes 𝑂𝛿 (loglog𝑛) rounds, 𝑂

(︁
𝑛𝛿

)︁
space per machine for any 𝛿 > 0,

and 𝑂 (𝑚𝛼) total space.

It is interesting to note that our total space complexity matches the time complex-

1
The 3SUM-hypothesis is a �ned-grained complexity hypothesis that states that the 3SUM problem

cannot be solved in 𝑂(𝑛2−𝜀) for any constant 𝜀 > 0.
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ity (both upper and conditional lower bounds) of combinatorial
2

triangle counting algo-

rithms in the sequential model [CN85, Pat10, KPP16].

We prove the above theorem in Section 4.6, and in Section 4.8, we prove that this result

can be extended to exactly counting 𝑘-cliques for any constant 𝑘:

Theorem 4.1.4. Let 𝐺 = (𝑉 ,𝐸) be a graph over 𝑛 vertices, 𝑚 edges and arboricity 𝛼.
Count-Cliques(𝐺) takes 𝑂𝛿 (loglog𝑛) rounds, 𝑂

(︁
𝑛𝛿

)︁
space per machine for any 𝛿 > 0,

and 𝑂
(︁
𝑚𝛼𝑘−2

)︁
total space.

We can improve on the total space usage if we are given machines where the memory

for each individual machine satis�es 𝛼 < 𝑛𝛿
′/2

where 𝛿′ < 𝛿. In this case, we obtain

an algorithm that counts the number of 𝑘-cliques in 𝐺 using 𝑂(𝑛𝛼2) total space and

𝑂𝛿(loglog𝑛) communication rounds.

Finally, in Section 4.9, we consider the problem of exactly counting subgraphs of size

at most 5, and show that the recent result of [BPS20] for this question in the sequential

model, can be implemented in the MPC model. Here too, our total space complexity

matches the time complexity of the sequential model algorithm.

Theorem 4.1.5. Let 𝐺 = (𝑉 ,𝐸) be a graph over 𝑛 vertices, 𝑚 edges, and arboricity 𝛼. The
algorithm of BPS for counting the number of occurrences of a subgraph𝐻 over 𝑘 ≤ 5 vertices

in 𝐺 can be implemented in the MPC model with high probability and round complexity

𝑂𝛿(
√︀
log𝑛 loglog𝑚) for any 𝛿 > 0. The space requirement per machine is 𝑂(𝑛2𝛿) and the

total space is 𝑂(𝑚𝛼3).

4.1.2 Related Work

There has been a long line of work on small subgraph counting in networks. [FFF15]

design an algorithm for clique counting, but their approach requires the total space of

𝑂(𝑚3/2). Another work, [AFU13], shows how to count small subgraphs by using 𝑏3 ma-

chines, each requiring𝑂(𝑚/𝑏2) space per machine. Hence, it uses a total space of𝑂(𝑚𝑏).
Therefore, this approach either requires super-linear total space or almost𝑂(𝑚) space per

machine.

[SV11] studied triangle counting in MPC, where they design two algorithms. The �rst

of those algorithms, that runs in 2 rounds, requires 𝑂(
√
𝑚) space per machine and total

space 𝑂(𝑚3/2). Their second algorithm requires only one round for exact triangle count-

ing, total space 𝑂(𝜌𝑚) and space per machine 𝑂(𝑚/𝜌2). Therefore, for this algorithm to

work with polynomially less than space 𝑚 per machine, it has to allow for a total space

that is polynomially larger than 𝑚. [CC11] focus on algorithms that require a total space

of 𝑂(𝑚). In the worst case, their algorithm performs 𝑂(|𝐸|/𝑆) MPC rounds to output the

exact count where 𝑆 is the maximum space per machine.

[TKMF09, AKM13] design a randomized algorithm for approximate triangle count-

ing. Their approach �rst sparsi�es the input graph by sampling a subset of edges, and

executes some of the known algorithms for triangle counting on the sampled subgraph.

2
Combinatorial algorithms, usually, refer to algorithms that do not rely on fast matrix multiplication.
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Denoting by 𝑝 their sampling probability, their approach outputs a (1 + 𝜀)-approximate

triangle count with probability at most 1− 1/(𝜀2𝑝3𝑇 ). 3
To contrast this result with our

approach, consider a graph 𝐺 where 𝑚 = Θ(𝑛2). Let 𝐺′ be the edge-sparsi�ed graph as

explained above. To be able to execute the �rst algorithm of [SV11] on 𝐺′ such that the

total space requirement is𝑂(𝑚), one can verify that it is needed to set 𝑝 =Θ(𝑛−2/3). This

in turn implies that the result in [TKMF09, AKM13] outputs the correct approximation

with constant probability only if 𝑇 =Ω(𝑛2). An improved lower-bound can be obtained

be using the second algorithm of [SV11]. By balancing out 𝜌 and 𝑝 and for 𝑆 =𝑂(𝑛), one

can show that the sparsi�cation results in a constant probability of success for 𝑇 =𝑂(𝑛).
On the other hand, for 𝑆 = 𝑂(𝑛), our approach obtains the same guarantee even when

𝑇 =Θ(
√︁
𝑑𝑎𝑣𝑔(𝐺)) =Θ(

√
𝑛).

[PT12] also gives a randomized algorithm for approximate triangle counting, which

is based on graph partitioning. The graph is partitioned into 1/𝑝 pieces, where 𝑝 is at

least the ratio of the maximum number of triangles sharing an edge and 𝑇 . When all

the triangles share one edge, then 𝑝 ≥ 1, and hence such an approach would require

the space per machine to be Ω(𝑚). Furthermore, this approach requires the number of

triangles to be lower bounded by 𝑇 = Ω
(︁
𝑑𝑎𝑣𝑔

)︁
. The techniques of [SPK13], that rely

on wedge sampling, provide a (1 + 𝜀)-approximation of the triangle count when 𝑇 is a

constant fraction of the sum of squares of degrees.

Other relatedwork Subgraph counting (primarily triangles) was also extensively stud-

ied in the streaming model, see [BYKS02, KMSS12, BOV13, JSP13, MVV16, BC17, AKK19]

and references therein. This culminated in a result that requires space
̃︀𝑂 (︁
𝑚3/2/(𝑇 𝜀2)

)︁
to estimate the number of triangles within a (1 + 𝜀)-factor. In the semi-streaming setting

it is assumed that one has
̃︀𝑂(𝑛) space at their disposal. This result �ts in this regime

for 𝑇 ≥ 𝑚3/2/𝑛 = 𝑑𝑎𝑣𝑔 ·𝑚1/2
. As a reminder, our MPC result requires 𝑇 ≥

√︀
𝑑𝑎𝑣𝑔 when

𝑆 ∈Θ(𝑛). Adapting known streaming results to the MPC setting is met with the key chal-

lenge of sending the correct subgraphs to each individual machine when each machine

has limited memory; without solving this challenge, known streaming algorithms do not

produce very good estimations of the triangle count in the MPC model.

In a celebrated result, [AYZ97] designed an algorithm for triangle counting in the se-

quential settings that runs in 𝑂(𝑚2𝜔/(𝜔+1)) time, where 𝜔 is the best known exponent of

matrix multiplication. Since then, several important works have extended this result to

𝑘-clique counting [EG04, Vas09]. In the work-depth (shared-memory parallel processors)

model, several results are known for this problem. There has been signi�cant work on

practical parallel algorithms for the case of triangle counting (e.g. [AKM13, SV11, PC13,

PSKP14, ST15] among others). There is even an annual competition for parallel triangle

counting algorithms [Gra]. For counting 𝑘 = 4 and 𝑘 = 5 cliques, e�cient practical so-

lutions have also been developed [ANR
+

17, DAH17, ESBD16, HD14, PSV17]. [DBS18a]

recently implemented the Chiba Nishizeki algorithm [CN85] for 𝑘-cliques in the par-

allel setting; although, their work does not achieve polylogarithmic depth. Even more

recently, [SS20] enumerated 𝑘-cliques in the work-depth model in 𝑂
(︁
𝑚𝛼𝑘−2

)︁
expected

3
The actual probability is even smaller and also depends on pairs of triangles that share an edge.
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work and 𝑂
(︁
log𝑘−2𝑛

)︁
depth with high probability, using 𝑂(𝑚) space. Among other dis-

tinctions from our setting, the CRCW PRAM model assumes a shared, common memory.

In the CONGESTED-CLIQUE model, [CHKK
+

19], present an �̃�(𝑛1−2/𝜔) = �̃�(𝑛0.158)
rounds algorithm for matrix multiplication, implying the same complexity for exact trian-

gle counting. [DLP12] present an algorithm for approximate triangle counting in general

graphs whose expected running time is 𝑂(𝑛2/3/𝑇 1/3). They also present an 𝑂(𝛼2/𝑛)-
rounds algorithm for bounded arboricity graphs.

Comparison with Other MPC Algorithm There exists a few related papers in the

MPC model [BHH19, GLM19] which partition the vertices in the graph to separate ma-

chines and compute the desired quantities on the partitions. As we emphasized previously,

our algorithm does not partition the graph. Instead, we sample with replacement the ver-

tices of the graph into machines. Thus, the subgraphs within each machine may overlap.

The key di�erence is that whereas a partition-based algorithm never exceeds the total

space of𝑂(𝑛+𝑚), a sampling-based approach may exceed this total space if the sampling

probabilities are not correctly chosen. In fact, the previous algorithm of [PT12] partitions

the vertices into machines, but we are able to achieve a quadratic improvement in the

lower bound on the number of triangles with our sampling-based approach.

4.2 Useful MPC Primitives and Notation

In this chapter, we use the notation
̃︀𝑂𝛿 to hide polylog𝑛 and 𝛿 factors. We are able to do

this since 𝛿 > 0 is generally assumed to be constant. We use the de�nition and notation

of the MPC model given in Section 2.2.2 and the de�nition of arboricity and its related

properties given in De�nition 2.1.8.

Counting Duplicates We make use of a new MPC algorithm for certain parts of this

chapter to count the number of repeating elements in a sorted list, given bounded space

per machine. We use an algorithm similar to the MPC sorting algorithm given by [GSZ11]

to obtain our count duplicates data structure implementation in the MPC model. We prove

the following theorem in the MPC model regarding our count duplicates algorithm.

Theorem4.2.1. Given a sorted list of𝑁 elements implemented on processors where the space

per processor is 𝑆 and the total space among all processors is 𝑂(𝑁 ), for each unique element

in the list, we can compute the number of times it repeats in 𝑂
(︁
log𝑆𝑁

)︁
communication

rounds.

Proof. Using a similar construction to the interval tree algorithm de�ned in [GSZ11] that

has branching factor 𝑑 =ℳ/2, we perform the following to count the number of times

each element repeats in our sorted list of 𝑁 elements. To initialize the tree, each leaf of

the tree contains exactly one of the elements in the sorted list of elements where leaf 𝑣𝑖
contains element 𝑥𝑖 of the list. Let the height of the tree be 𝐿, the leaves of the tree be

at level 𝐿 − 1 and the root be at level 0. Then, the rest of the algorithm proceeds in two

phases:
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1. Bottom-up phase: For each level ℓ = 𝐿− 1 up to 0:

(a) For each node 𝑣 on level ℓ:
i. If 𝑣 is a leaf, it sends its value 𝑥𝑖 to its parent 𝑝(𝑣).

ii. If 𝑣 is a vertex in level 𝐿 − 2, let (𝑥𝑖 ,𝑥𝑖+1, . . . ,𝑥𝑖+𝑗) where 𝑗 < 𝑑 be values

obtained from its leaf children from left to right. Let 𝑐(𝑥𝑖) be the count of

element 𝑥𝑖 among the values obtained from the children of 𝑣. The counts

are computed locally on the machine storing 𝑣. Then, 𝑣 sends 𝑥𝑖 , 𝑐(𝑥𝑖),
𝑥𝑖+𝑗 , 𝑐(𝑥𝑖+𝑗) to its parent 𝑝(𝑣).

iii. If 𝑣 is a non-leaf node on level ℓ < 𝐿 − 2, let 𝑥𝑎, 𝑐(𝑎),𝑥𝑏, 𝑐(𝑏), . . . be the

values of elements obtained from its children and their counts. 𝑣 updates

the counts of all elements received. For example, if 𝑥𝑎 = 𝑥𝑏, 𝑣 updates 𝑐(𝑎)
and 𝑐(𝑏) to be 𝑐(𝑎) + 𝑐(𝑏). Let 𝑥𝑙𝑒𝑓 𝑡 be the �rst element received from 𝑣’s

leftmost leaf and 𝑥𝑟𝑖𝑔ℎ𝑡 be the second element received from 𝑣’s rightmost

leaf. Then, send these elements and their updated counts, 𝑥𝑙𝑒𝑓 𝑡 , 𝑐(𝑥𝑙𝑒𝑓 𝑡),
𝑥𝑟𝑖𝑔ℎ𝑡 , and 𝑐(𝑥𝑟𝑖𝑔ℎ𝑡), to its parent 𝑝(𝑣).

2. Top-down phase: For each level ℓ = 0 down to ℓ = 𝐿− 1:

(a) For each node 𝑣 at level ℓ:
i. If 𝑣 is the root, then it computed and stored in its memory new repeating

counts for the values it received from its children: 𝑥𝑎, 𝑐(𝑥𝑎),𝑥𝑏, 𝑐(𝑥𝑏), . . . .
It sends the new counts and values to its respective child that sent it the

value originally (e.g. 𝑥𝑙𝑒𝑓 𝑡, 𝑐(𝑥𝑙𝑒𝑓 𝑡) to 𝑣𝑙𝑒𝑓 𝑡). Intuitively, this updates the

child’s count of values with values that are not in its subtree.

ii. If 𝑣 is not the root and is a non-leaf node, it receives the values from its

parents for its leftmost and rightmost child counts. Given the set of val-

ues it stored from its children it updates the counts with counts of values

received from its parents. This allows for the counts to re�ect values not

in its subtree. Then, it sends the updated counts to its children.

iii. If 𝑣 is a leaf, it receives values 𝑥𝑖 , 𝑐(𝑥𝑖) from its parent. 𝑐(𝑥𝑖) is then the

number of times 𝑥𝑖 occurs in the sorted list.

The above procedure uses 𝑂(𝑑) space per processor and 𝑂(𝐿) rounds of communication.

Since 𝐿 = 𝑂(log𝑑(𝑁 )) and 𝑑 = ℳ/2, the number of rounds of communication that is

necessary is 𝑂
(︁
logℳ𝑁

)︁
.

Subset Containment and Copying We also present MPC algorithms for determining

the intersection between two subsets of tuples and for copying the data in one machine

onto multiple machines. Although such algorithms are trivial in shared-memory settings,

they are somewhat tricky to do while using linear total space and 𝑂𝛿(1) rounds in the

MPC model.

Lemma 4.2.2. Given two sets of tuples 𝑄 and 𝐶 (both of which may contain duplicates),

for each tuple 𝑞 ∈ 𝑄, we return whether 𝑞 ∈ 𝐶 in 𝑂(|𝑄∪𝐶|) total space and 𝑂𝛿(1) rounds
given machines with space 𝑂(𝑛𝛿) for any 𝛿 > 0.

Proof. We �rst create the following tuples in parallel to represent tuples in 𝑄 and 𝐶, re-

spectively. For each tuple 𝑞 ∈ 𝑄, we create the tuple (𝑞,1). For each tuple 𝑐 ∈ 𝐶, we
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create the tuple (𝑐,0). Let 𝐹 denote the set of tuples (𝑐,0) and (𝑞,1). First, we sort the

tuples in 𝐹 lexicographically (where 0 comes before 1) [GSZ11]. Then, we use the prede-

cessor primitive given in (e.g. [GSZ11, ASS
+

18], Appendix A of [BDE
+

19]) to determine

the queries 𝑞 ∈ 𝑄 that are in 𝐶. Given the sorted 𝐹, we use the predecessor algorithm

of [BDE
+

19] to determine for each (𝑞,1) tuple, the �rst tuple that appears before it that

has value 0. Suppose this tuple is (𝑐,0). Then, if 𝑞 = 𝑐, then the queried tuple 𝑞 is in 𝐶.

For all tuples 𝑞 ∈ 𝑄, we can then return in parallel whether 𝑞 ∈ 𝐶 also. Both the sorting

and the predecessor queries take 𝑂(|𝑄∪𝐶|) total space and 𝑂𝛿(1) rounds.

Lemma 4.2.3. Given a machine𝑀 that has space 𝑂(𝑛2𝛿) for any 𝛿 > 0 and contains data

of 𝑂(𝑛𝛿) words, we can generate 𝑥 copies of 𝑀 , each holding the same data as 𝑀 , using

𝑂(𝑀 · 𝑥) machines with 𝑂(𝑛𝛿) space each in 𝑂(log𝑛𝛿 𝑥) rounds.

Proof. Let𝑀 be some machine with 𝑛𝛿 information and𝑂(𝑛2𝛿) space. We create the 𝑥 du-

plicates by repeatedly duplicating each machine𝑀 𝑖
𝑗 to 𝑛𝛿 machines𝑀 𝑖+1

𝑛𝛿·𝑗 , . . . ,𝑀
𝑖+1
𝑛𝛿·𝑗+𝑛𝛿−1,

starting with 𝑀0
0 =𝑀 . Therefore, after ℓ = log𝑛𝛿 𝑥 rounds this process terminates, and

the required duplicates is the set of machines 𝑀ℓ
1 to 𝑀ℓ

𝑥 .

4.3 Overview of Our Techniques

4.3.1 Approximate Triangle Counting

Our work reduces approximate triangle counting to exact triangle counting in multiple

induced subgraphs of the original graph. In our work, and in contrast to prior approaches

(e.g., [PT12]), the induced sugraphs on di�erent machines might overlap. This enables

us to obtain better concentration bounds compared to prior work, but also brings many

challenges.

The high level idea is that each machine 𝑀𝑖 samples a subset of vertices 𝑉𝑖 by in-

cluding each vertex in 𝑉𝑖 with probability �̂�. Then each machine computes the induced

subgraph 𝐺[𝑉𝑖] and the number of triangles in that subgraph. The total number of tri-

angles seen across all the machines is used as an estimator. We repeat in parallel this

sampling process 𝑂(log𝑛) times and return the median of the estimates. The main chal-

lenge this approach raises is: How do we e�ciently collect overlapping induced subgraphs?

(Indeed, approximate triangle counting, even when the number of triangles is 𝑂(1), can

be reduced to counting the number of edges in sparse induced subgraphs with the total

size of subgraphs being
̃︀𝑂(𝑚).) We now describe how to handle this task in our case.

Computing induced overlapping subgraphs It is unclear how to compute the in-

duced subgraph on each machine in 𝑂(1) rounds without exceeding the total allowed

space of �̃�(𝑚). This task becomes easier if the subgraphs are disjoint. The trivial strategy

of sampling vertices into the machines and querying for all possible edges between any

pair of two vertices takes total space at least

∑︀ℳ
𝑖=1𝑋

2
where 𝑋 is the number of vertices

sampled to each machine. In general, this approach requires much larger than
̃︀𝑂(𝑚) space.

We tackle this challenge by using a globally known hash function ℎ : 𝑉 × [ℳ]→ {0,1},
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to indicate whether vertex 𝑣 is sampled in the 𝑖th machine. By requiring that the hash

function is known to all machines, we can e�ciently compute which edges to send to

each machine, i.e., which edges belong to the subgraph 𝐺[𝑉𝑖]. However, in order for all

machines to be able to compute the hash function, it has to be of limited space. Hence, we

cannot hope for a fully independent function, rather we can only use an (𝑆/ log𝑛)-wise

independent hash function. Still, we manage to show, that we are able to handle the de-

pendencies introduced by the above, even if we allow as little as 𝑂(log𝑛)-independence.

4.3.2 Exact Triangle Counting

Let 𝐺 be a graph over 𝑛 vertices, 𝑚 edges and with arboricity at most 𝛼. We tackle

the task of exactly counting the number of triangles in 𝐺 in 𝑂𝛿(loglog𝑛) rounds using

the following ideas. In each round 𝑖, we partition the vertices into low-degree vertices

𝐴𝑖 and high-degree vertices, according to a degree threshold 𝛾𝑖 , which grows doubly

exponentially in the number of rounds. We then count the number of triangles incident

to the set of low degree vertices 𝐴𝑖 : Each low-degree vertex 𝑣 ∈ 𝐴𝑖 sends a list of its

neighbors to all its neighbors. Then, any neighbor 𝑢 of 𝑣 that detects a common neighbor

𝑤 to 𝑢 and 𝑣, adds the triangle (𝑢,𝑣,𝑤) to the list of discovered triangles.

Once all triangles incident to the vertices in 𝐴𝑖 are processed, we remove this set from

the graph and continue with the now smaller graph. This removal of the already processed

vertices, allows us to handle larger and larger degrees from step to step, while using a total

space of 𝑂(𝑚𝛼). This behavior also leads to the 𝑂𝛿(loglog𝑛) round complexity, as after

this many rounds all vertices are processed. Ideas similar to some of the above were used

in [ASS
+

18, BDE
+

19] with respect to connectivity, but ours is the �rst to achieve such

number of rounds for triangle counting.

4.3.3 Counting 𝑘-cliques and 5-subgraphs.

We use a similar technique for both problems of exactly counting the number of 𝑘-cliques

and of subgraphs up to size 5. See Section 4.8.1 for details on the former task, and Sec-

tion 4.9 for details on the latter. Let 𝐻 denote the subgraph of interest. We say that a

subgraph that can be mapped to a subset of vertices and edges of𝐻 of size 𝑖 is a 𝑖-subcopy
of 𝐻 . Our main contribution in this section is a procedure that in each round, tries to ex-

tend 𝑖-subcopies of𝐻 to (𝑖+1)-subcopies of𝐻 , by increasing the total space by a factor of

at most 𝛼. This is possible by ordering the vertices in𝐻 such that each vertex has at most

𝑂(𝛼) outgoing neighbors, so that in each iteration only 𝛼 possible extensions should be

considered per each previously discovered subcopy.

Challenges The major challenge we face here is dealing with �nding and storing copies

of small (constant-sized) subgraphs. This is a challenge due to the fact that an entire neigh-

borhood of a vertex 𝑣 may not �t on one machine (recall that we have no restrictions on

the 𝛿 in 𝑂(𝑛𝛿) machine size). Thus, we cannot compute all such small subgraphs on one

machine. However, if not done carefully, computing small subgraphs across many ma-

chines could potentially result in many rounds of computation (since we potentially have
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to try all combinations of vertices in a neighborhood). We solve this issue by formulat-

ing a procedure (Lemma 4.2.3) in which we carefully duplicate neighborhoods of vertices

across machines.

4.4 Approximate Triangle Counting inGeneral Graphs

In this section we provide our algorithm for estimating the number of triangles in general

graphs (see Algorithms 5 and 7) and hence prove Theorem 4.1.1.

Theorem 4.1.1. Let𝐺 = (𝑉 ,𝐸) be a graph over 𝑛 vertices,𝑚 edges, and let 𝑇 be the number

of triangles in 𝐺. Assuming

1. 𝑇 = ̃︀Ω(︁√︀
𝑚
𝑆

)︁
,

2. 𝑆 = ̃︀Ω(︂
max

{︂√
𝑚
𝜀 ,

𝑛2
𝑚

}︂)︂
,

there exists an MPC algorithm, usingℳ machines, each with local space 𝑆 , and total space
ℳ𝑆 = �̃�𝜀(𝑚), that outputs a (1 ± 𝜀)-approximation of 𝑇 , with high probability, in 𝑂(1)
rounds.

The rationale behind the lower bound constraints in Theorem 4.1.1 will become

clear when we discuss the challenges and analysis (formally presented in Sections 4.5.1

and 4.5.2).

4.4.1 Overview of the Algorithm and Challenges

Our approach is to use the collection of machines to repeat the following experiment

multiple times in parallel. Each machine 𝑀𝑖 samples a subset of vertices 𝑉𝑖 , and then

count the number of triangles 𝑇𝑖 seen in each induced graph 𝐺[𝑉𝑖]. We then use the

sum 𝑇 of all 𝑇𝑖 ’s as an unbiased estimator (after appropriate scaling) for the number of

triangles 𝑇 in the original graph.

Algorithm 5 Approximate-Triangle-Counting(𝐺 = (𝑉 ,𝐸))
1: 𝑅← 0
2: parfor 𝑖← 1 . . .ℳ do

3: Let 𝑉𝑖 be a random subset of 𝑉 ⟨⟨See Section 4.4.1 for details about the sampling⟩⟩
4: if size of 𝐺[𝑉𝑖] exceeds 𝑆 then

5: Ignore this sample and set 𝑇𝑖 ← 0
6: else

7: Let 𝑇𝑖 be the number of triangles in 𝐺[𝑉𝑖]
8: 𝑅← 𝑅+1
9: Let 𝑇 =

∑︀ℳ
𝑖=1𝑇𝑖

10: return
1
�̂�3𝑅

𝑇

Moving forwards, for the most part, we will focus on a speci�c machine𝑀𝑖 containing

𝑉𝑖 (a single experiment). We list the main challenges in the analysis of this algorithm,

along with the sections that describe them.
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1. Section 4.4.1: The induced subgraph 𝐺[𝑉𝑖] �ts into the memory 𝑆 of 𝑀𝑖 (thus

allowing us to count the number of triangles in 𝐺[𝑉𝑖] in one round).

2. Section 4.4.1: We can e�ciently (in one round) collect all the edges in the induced

subgraph 𝐺[𝑉𝑖]. This involves presenting an MPC protocol such that the number

of messages sent and received by any machine is at most the space per machine 𝑆 .

3. Section 4.4.1 With high constant probability ≥ 9/10, the number of messages sent

and received by each machine 𝑀𝑖 is at most 𝑆 .

4. Section 4.4.1: With high constant probability≥ 9/10, the sum of triangles across all

machines, 𝑇 , is close to its expected value. Then, repeating the algorithm polylog-

arithmic number of times with only a polylogarithmic increase in total space, and

by using the median trick, allows us to get a high probability bound. The speci�cs

are discussed in Section 4.5.2.

Challenge (1): Ensuring That 𝐺[𝑉𝑖] Fits on a Single Machine

Ensuring that edges �t on amachine: Our algorithm constructs 𝑉𝑖 by including each

𝑣 ∈ 𝑉 with probability �̂�, which implies that the expected number of edges in 𝐺[𝑉𝑖] is

�̂�2𝑚. Since we have to ensure that each induced subgraph 𝐺[𝑉𝑖] �ts on a single machine,

we obtain the constraint �̂�2𝑚 =𝑂(𝑆). Concretely, we achieve this by de�ning:

�̂�
def=

1
10
·
√︂

𝑆
𝑚𝑘

, (4.1)

where the parameter 𝑘 =𝑂(log𝑛) will be exactly determined later (See Section 4.4.1).

Ensuring that vertices �t on a machine: In certain regimes of values of 𝑛 and 𝑚, the

expected number of vertices ending up in an induced subgraph – �̂�𝑛, may exceed the space

limit 𝑆 . Avoiding this scenario introduces an additional constraint �̂�𝑛 = 𝑂(𝑆) ⇐⇒ 𝑆 =
Ω(𝑛2/𝑘𝑚).

Getting a high probability guarantee: As discussed above, the value of �̂� =̃︀Θ𝜀(√𝑆/𝑚) is chosen speci�cally so that the expected number of edges in the induced sub-

graphs 𝐺[𝑉𝑖] is �̂�2𝑚 ≤Θ(𝑆), thus using all the available space (asymptotically). In order

to guarantee that this bound holds with high probability (see Section 4.5.1), we require

additional constraints on the space per machine 𝑆 = ̃︀Ω𝜀(
√
𝑚). We remark that this lower

bound 𝑆 = ̃︀Ω𝜀(
√
𝑚) is essentially saying thatℳ = ̃︀𝑂𝜀(√𝑚), i.e. the space per machine

is much larger than the number of machines. This is a realistic assumption as in practice

we can have machines with 1011 words of local random access memory, however, it is

unlikely that we also have as many machines in our cluster.

Lower Bound on space per machine: Combining the above two constraints, we get:

𝑆 >max
{︃
15

√
𝑚𝑘
𝜀

,
100𝑛2

𝑘𝑚

}︃
=⇒ 𝑆 = ̃︀Ω𝜀

(︃
max

{︃√
𝑚,
𝑛2

𝑚

}︃)︃
(4.2)
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Note that Eq. (4.2) always allows linear space per machine, as long as 𝑚 = Ω(𝑛). Sec-

tions 4.5.1 and 4.5.1 present a detailed analysis, showing that the number of vertices and

edges in each subgraph is at most 𝑆 with high probability.

Challenge (2): Using 𝑘-wise Independence to Compute the Induced Subgraph

𝐺[𝑉𝑖] in MPC

For each sub-sampled set of vertices 𝑉𝑖 , we need to compute 𝐺[𝑉𝑖], i.e. we need to send

all the edges in the induced subgraph 𝐺[𝑉𝑖] to the machine 𝑀𝑖 . Let 𝑄𝑢 denote the set of

all machines containing 𝑢. Each edge (𝑢,𝑤) then needs to be sent to all machines that

contain both 𝑢 and 𝑤, 𝑄𝑢∩𝑄𝑤. Naively, one could try to send the sets𝑄𝑢 and𝑄𝑤 to the

edge 𝑒 = (𝑢,𝑤), for all 𝑒 ∈ 𝐸. However, this strategy could result in 𝑄𝑣 being replicated

𝑑(𝑣) times. Since the expected size of 𝑄𝑣 is |𝑄𝑣 | = �̂�ℳ the total expected memory usage

of this strategy would be

∑︀
𝑣∈𝑉 |𝑄𝑣 | · 𝑑(𝑣) = ̃︀Θ𝜀 (𝑚 · �̂�ℳ) = ̃︀𝜔𝜀(𝑚), since �̂� = ̃︀Θ(1/

√
ℳ).

This de�es our goal of optimal total memory.

Instead, we address this challenge by using globally known hash functions to sample

the vertices on each machine. That is, we let ℎ : 𝑉 × [ℳ]→ {0,1} (formally presented

in De�nition 4.4.1) be a hash function known globally to all the machines. Then we can

compute the induced subgraphs 𝐺[𝑉𝑖] as follows.

Algorithm 6 Compute-Induced-Subgraphs

1: 𝑄𝑣← {𝑖 ∈ [ℳ] | ℎ(𝑣, 𝑖) = 1} .
2: 𝑄𝑤← {𝑖 ∈ [ℳ] | ℎ(𝑤,𝑖) = 1} .
3: parfor 𝑖 ∈𝑄𝑣 ∩𝑄𝑤 do

4: Send 𝑒 to machine 𝑀𝑖 , containing 𝑉𝑖 .

De�nition 4.4.1. The hash function ℎ(𝑣, 𝑖) indicates whether vertex 𝑣 is sampled in 𝑉𝑖 or
not. Speci�cally, ℎ : 𝑉 ×[ℳ]→ {0,1} such that P[ℎ(𝑣, 𝑖) = 1] = �̂� for all 𝑣 ∈ 𝑉 and 𝑖 ∈ [ℳ].

Recall thatℳ is the number of machines, and �̂� = 1
10 ·

√︁
𝑆
𝑚𝑘 is the sampling probability set

in Eq. (4.1).

Using limited independence Ideally, we would want a perfect hash function, which

would allow us to sample the𝑉𝑖 ’s i.i.d. from the uniform distribution on𝑉 . However, since

the hash function needs to be known globally, it must �t into each of the machines. This

implies that we cannot use a fully independent perfect hash function. Rather, we can use

one that has a high level of independence. Speci�cally, given that the space per machine

is 𝑆 , we can have a globally known hash function ℎ that is 𝑘-wise independent
4

for any

𝑘 < Θ(𝑆/ log𝑛). In fact, we can get away with as little as (6log𝑛)-wise independence

(i.e., 𝑘 = 6log𝑛). Recalling Eq. (4.1), this also �xes the sampling probability to be �̂� =√︀
𝑆/600𝑚 log𝑛.

4
A 𝑘-wise independent hash function is one where the hashes of any 𝑘 distinct keys are guaranteed to

be independent random variables (see [WC81]).
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Challenge (3): Showing that, with high constant probability, the size of the sen-

t/received messages is bounded.

We need to show that the number of edges sent and received by any machine𝑀𝑖 is at most

𝑆 with high constant probability. To this end, we partition the vertex set 𝑉 into 𝑉𝑙𝑖𝑔ℎ𝑡 and

𝑉ℎ𝑒𝑎𝑣𝑦 by picking a threshold degree 𝜏 for the vertices. Following this, we de�ne light

edges as ones that have both end-points in 𝑉𝑙𝑖𝑔ℎ𝑡 , and conversely, any edge with at least

one end-point in 𝑉ℎ𝑒𝑎𝑣𝑦 is designated as heavy. In order for the protocol to succeed, the

following must hold:

1. The number of light edges concentrates (see Section 4.5.1).

2. The number of heavy edges concentrates (see Section 4.5.1).

3. The number of sent messages is at most 𝑆 (see Section 4.5.1).

The �rst two items ensure that each machine 𝑀𝑖 receives at most 𝑆 messages, and

the last item ensures that each machine sends at most 𝑆 messages. Given the above, we

proceed to address the last challenge.

Challenge (4): 𝑇 is close to its expected value

In this section, we provide merely a brief discussion of this challenge for intuition, and

we fully analyze the approximation guarantees of our algorithm in Section 4.5.2. That

analysis also makes clear the source of our advertised lower-bound on 𝑇 for which an

estimated count concentrates well.

Lower Bound on Number of Triangles In order to output any approximation (note

that we are ignoring all factors of 𝜀 and𝑂(polylog𝑛) here) to the triangle count, we must

seeΩ(1) triangles amongst all of the induced subgraphs on all the machines. The expected

number of triangles in a speci�c induced𝐺[𝑉𝑖] is �̂�3𝑇 , and therefore, the expected number

of triangles overall is �̂�3𝑇ℳ which must be Ω(1) for some setting of 𝑇 . Since we set �̂�
such that �̂�2𝑚 = Θ(𝑆), this gives that �̂�2 = 𝑂(𝑆/𝑚) which implies �̂�2 ·ℳ = �̂�2 · (𝑚/𝑆) =
Θ(1). This then immmediately implies that to show that �̂�3𝑇 isΩ(1), we need only show

that �̂� ·𝑇 isΩ(1). Speci�cally, we show in Lemma 4.5.9 that when 𝑇 > 1/�̂�, we can obtain

a (1 ± 𝜀)-approximation. To get some intuition for this lower bound on 𝑇 , note that, in

the linear memory regime, when 𝑆 = Θ(𝑛), this translates to 𝑇 >
√︀
𝑑𝑎𝑣𝑔 , where 𝑑𝑎𝑣𝑔 is

the average degree of 𝐺.

𝑇 >
1
�̂�
= ̃︀Θ (︃√︂

𝑚
𝑆

)︃
for 𝑆=̃︀Θ(𝑛)

=============⇒ 𝑇 > ̃︀Θ (︂√︁
𝑑𝑎𝑣𝑔

)︂
.

We present our complete proofs solving the above challenges in Section 4.5.
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4.5 Approximate Counting Detailed Analysis

4.5.1 Bounding the Number of Messages Sent/Received by a Ma-

chine

This section analyzes the estimation algorithm from Section 4.4. Recall, from Section 4.4.1,

that we use a 𝑘-wise independent hash function, to compute the induced sub-graphs

𝐺[𝑉𝑖], where 𝑘 = 6log𝑛. In the subsequent proofs, we will use the following assump-

tions from within Theorem 4.1.1 (note that we added speci�c constants).

𝑇 ≥ 10

√︂
𝑚𝑘
𝑆

𝑆 ≥max
{︃
15

√
𝑚𝑘
𝜀

,
100𝑘𝑛2

𝑚

}︃
ℳ =

2000𝑚𝑘
𝜀2𝑆

(4.3)

Note that we set the number of machines to a speci�c value, instead of lower bounding

it. This is acceptable, because we can just ignore some of the machines. We will now bound

the probability that any of the induced subgraphs does not �t on a machine. To that end,

we set a degree threshold 𝜏 = 𝑘
�̂� , and de�ne the set of light vertices 𝑉𝑙𝑖𝑔ℎ𝑡 to be the ones

with degree less than 𝜏 . All other vertices are heavy, and we let them comprise the set

𝑉ℎ𝑒𝑎𝑣𝑦 .

Fix a machine 𝑀𝑖 . We prove that, with probability at least 9/10, the number of edges

in 𝐺[𝑉𝑖] is upper bounded by 𝑆 .

We start with analyzing the contribution of the light vertices to the induced sub-

graphs.

Bounding the Number of Light Edges Received by a Machine

Fix a machine 𝑀𝑖 . We �rst consider the simpler case of bounding the number of edges in

𝐺[𝑉𝑖] that have both end-points in 𝑉𝑙𝑖𝑔ℎ𝑡 . We refer to such edges as light edges and denote

them by 𝐸𝑙𝑖𝑔ℎ𝑡. For every edge 𝑒 ∈ 𝐸𝑙𝑖𝑔ℎ𝑡 , we de�ne a random variable 𝑍
(𝑖)
𝑒 as follows.

𝑍
(𝑖)
𝑒 =

⎧⎪⎪⎨⎪⎪⎩1 if 𝑒 ∈ 𝐺[𝑉𝑖],
0 otherwise.

We let 𝑍(𝑖)
be the sum over all random variables 𝑍 𝑖𝑒 , 𝑍

𝑖 =
∑︀
𝑒∈𝐸𝑙𝑖𝑔ℎ𝑡 𝑍

𝑖
𝑒 , and we let

𝑚ℓ denote the total number of edges with light endpoints in the original graph 𝐺, i.e.,

𝑚ℓ = |𝐸𝑙𝑖𝑔ℎ𝑡 |.
We prove the following lemma.

Lemma 4.5.1. With probability at least 9/10, for every 𝑖 ∈ [ℳ], 𝐺[𝑉𝑖] contains at most

1
4𝑆 light edges.
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Proof. Fix a machine 𝑀𝑖 , and let 𝑍 = 𝑍 𝑖 be as de�ned in the previous paragraph.

E[𝑍] = E

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ∑︁
𝑒∈𝐸𝑙𝑖𝑔ℎ𝑡

𝑍𝑒

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =𝑚ℓ�̂�
2 ≤𝑚 · 𝑆

100𝑚𝑘
=

𝑆
100𝑘

≤ 𝑆
100

.

As 𝑍𝑒 are {0,1} random variables, we also have E [𝑍] = E
⎡⎢⎢⎢⎢⎣ ∑︀
𝑒∈𝐸𝑙𝑖𝑔ℎ𝑡

𝑍2
𝑒

⎤⎥⎥⎥⎥⎦. Now we upper-

bound the variance.

Var[𝑍] = E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑒∈𝐸𝑙𝑖𝑔ℎ𝑡

𝑍𝑒

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦−E

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ∑︁
𝑒∈𝐸𝑙𝑖𝑔ℎ𝑡

𝑍𝑒

⎤⎥⎥⎥⎥⎥⎥⎥⎦
2

≤
∑︁

𝑒∈𝐸𝑙𝑖𝑔ℎ𝑡

E[𝑍2
𝑒 ] +

∑︁
𝑒1,𝑒2∈𝐸𝑙𝑖𝑔ℎ𝑡
𝑒1,𝑒2

2 ·E
[︁
𝑍𝑒1𝑍𝑒2

]︁
−

∑︁
𝑒1,𝑒2∈𝐸𝑙𝑖𝑔ℎ𝑡
𝑒1,𝑒2

2 ·E[𝑍𝑒1]E[𝑍𝑒2]

=𝑚ℓ · �̂�2 +
∑︁

𝑒1,𝑒2∈𝐸𝑙𝑖𝑔ℎ𝑡
𝑒1,𝑒2

2 ·E
[︁
𝑍𝑒1𝑍𝑒2

]︁
−

∑︁
𝑒1,𝑒2∈𝐸𝑙𝑖𝑔ℎ𝑡
𝑒1,𝑒2

2 ·E[𝑍𝑒1]E[𝑍𝑒2]

≤𝑚ℓ · �̂�2 +
∑︁

𝑒1 and 𝑒2 intersect

2 ·E
[︁
𝑍𝑒1𝑍𝑒2

]︁
≤𝑚ℓ · �̂�2 +

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑣∈𝑉𝑙𝑖𝑔ℎ𝑡

𝑑(𝑣)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ · �̂�3
≤𝑚ℓ · �̂�2 +

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑣∈𝑉𝑙𝑖𝑔ℎ𝑡

𝑑(𝑣)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ · 𝑘�̂� · �̂�3
≤ 3𝑚ℓ · �̂�2 · 𝑘 ≤ 3𝑚 · 𝑆

100𝑚𝑘
· 𝑘 < 𝑆

30

We can now use Chebyshev’s inequality to conclude that

P
[︁
|𝑍(𝑖) −E[𝑍(𝑖)]| > 𝑆/

√
3
]︁
≤
Var

[︁
𝑍(𝑖)

]︁
𝑆2/3

=⇒ P
[︁
𝑍(𝑖) > 3𝑆/4

]︁
≤ 3
30𝑆

=
1

10𝑆
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Finally, we can use union bound over allℳ machines to upper bound the probability

that, any of the 𝑍(𝑖)
values exceeds 3𝑆/4 (using the the constraints descrbed in Eq. (4.3)

to simplify).

ℳ
10𝑆

=
2000𝑚𝑘
𝜀2𝑆

· 1
10𝑆

≤ 200𝑚𝑘
𝜀2

· 1

(15
√
𝑚𝑘/𝜀)2

=
200𝑚𝑘
𝜀2𝑆2

,

Therefore, with probability at least 9/10, none of the induced subgraphs 𝐺[𝑉𝑖] will con-

tain more than 3𝑆/4 light edges.

Bounding the Number of Heavy Edges Received by a Machine

Next, we turn our attention to the edges that have at least one endpoint in 𝑉ℎ𝑒𝑎𝑣𝑦 (we

call such edges heavy). We will show that for each 𝑣 ∈ 𝑉ℎ𝑒𝑎𝑣𝑦 ∩𝑉𝑖 , the number of edges

contributed by 𝑣 concentrates around its expectation.
5

In this section, we will use 2𝑚ℎ to

denote the total degree of all the heavy vertices i.e. 2𝑚ℎ =
∑︀
𝑣∈𝑉ℎ𝑒𝑎𝑣𝑦 𝑑(𝑣).

Let 𝑍
(𝑣)
𝑤 be the {0,1} indicator random variable for 𝑤 ∈ 𝑉𝑖 conditioned on the event

that 𝑣 ∈ 𝑉𝑖 ∩𝑉ℎ𝑒𝑎𝑣𝑦 . We use this conditioning on 𝑣 being present, because, in its absence,

the number of edges contributed by 𝑣, can be zero with probability (1− �̂�), i.e. this naive

estimator would not concentrate around its expectation.

Let 𝑍(𝑣)
be the sum of all 𝑍

(𝑣)
𝑤 for 𝑤 ∈ 𝑁 (𝑣). For a particular 𝑣, the 𝑍

(𝑣)
𝑤 variables are

𝑘-wise independent, which allows us to use the following lemma to bound 𝑍(𝑣)
. In what

follows, we will omit the super-script (𝑣) for the sake of convenience.

Lemma 4.5.2. If 𝑍1,𝑍2, · · · ,𝑍𝑛 are 𝑘-wise independent {0,1} random variables with

E[𝑍𝑖] = 𝑝 and 𝑘 ≤ 𝑛𝑝, then for 𝑍 =
∑︀
𝑖 𝑍𝑖 we have

P [𝑍 > 3𝑛𝑝] ≤ 2−𝑘 .

Proof. To prove the claim, we will re-write P[
∑︀
𝑍𝑖 > 3𝑛𝑝], as the probability that the

number of size 𝑘 subsets of {𝑍1,𝑍2, · · · ,𝑍𝑛} that are all equal to 1 is larger than

(︀3𝑛𝑝
𝑘

)︀
.

P [𝑍 > 3𝑛𝑝]

= P
[︃
|{𝑇 : 𝑇 ⊆ [𝑛], |𝑇 | = 𝑘, and 𝑍𝑖 = 1 ∀𝑖 ∈ 𝑇 }| >

(︃
3𝑛𝑝
𝑘

)︃]︃
≤ E [|{𝑇 : 𝑇 ⊆ [𝑛], |𝑇 | = 𝑘, and 𝑍𝑖 = 1 ∀𝑖 ∈ 𝑇 }|](︀3𝑛𝑝

𝑘

)︀
=

(︀𝑛
𝑘

)︀
· 𝑝𝑘(︀3𝑛𝑝
𝑘

)︀ ≤ (︃
𝑛

3𝑛𝑝 − 𝑘
· 𝑝

)︃𝑘
≤

(︃
𝑛𝑝

2𝑛𝑝

)︃𝑘
= 2−𝑘

where to obtain 3𝑛𝑝 − 𝑘 ≥ 2𝑛𝑝 we used our assumption that 𝑘 ≤ 𝑛𝑝.

5
Intuitively, this is because 𝑣 has high degree, and therefore the number of its sampled neighbors (|𝑁 (𝑣)∩

𝑉𝑖 |) will concentrate.
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Since 𝑣 is heavy, there are at least 𝜏 variables in the sum 𝑍(𝑣) =
∑︀
𝑤∈𝑁 (𝑣)𝑍

(𝑣)
𝑤 . Addi-

tionally, we know that E[𝑍(𝑣)
𝑤 ] = �̂� and 𝑘 ≤ 𝜏�̂�. Thus, we obtain the following corollary

from Lemma 4.5.2:

Corollary 4.5.3. For any vertex 𝑣 ∈ 𝑉ℎ𝑒𝑎𝑣𝑦 ∩ 𝑉𝑖 , we get P
[︁
𝑍(𝑣) > 3𝑑(𝑣) · �̂�

]︁
< 2−𝑘 , or ex-

plicitly

P [𝑁 (𝑣)∩𝑉𝑖 > 3𝑑(𝑣)�̂� | 𝑣 ∈ 𝑉𝑖 and 𝑑(𝑣) > 𝜏] < 2−𝑘 =
1
𝑛6

Corollary 4.5.4. With high probability 1 − 1
𝑛5
, we ensure that for all 𝑣 ∈ 𝑉ℎ𝑒𝑎𝑣𝑦 , 𝑍(𝑣) ≤

3 ·E
[︁
𝑍(𝑣)

]︁
The important point is that the sum of 𝑍(𝑣)

(over all 𝑣 ∈ 𝑉𝑖) is an upper bound on 𝑚ℎ
– the number of heavy edges in 𝐺[𝑉𝑖]. In order to bound this sum, we de�ne random

variables 𝑊𝑣 for each 𝑣 ∈ 𝑉ℎ𝑒𝑎𝑣𝑦 as follows:

𝑊𝑣 =

⎧⎪⎪⎨⎪⎪⎩𝑑(𝑣)𝑛 if 𝑣 ∈ 𝑉𝑖
0 otherwise

We also de�ne𝑊 to be the sum of all𝑊𝑣 , thus implying 𝜇 = E[𝑊 ] =
∑︀

𝑣∈𝑉ℎ𝑒𝑎𝑣𝑦
�̂� · 𝑑(𝑣)𝑛 ≤

2�̂�𝑚ℎ
𝑛 .

Theorem 4.5.5. (Theorem 5 from [SSS95]) If 𝑊 is the sum of 𝑘-wise independent random
variables, each of which takes values in the interval [0,1], and 𝛿 ≥ 1, then:

𝑘 <
⌊︁
𝛿𝜇𝑒−1/3

⌋︁
=⇒ P [|𝑊 −𝜇| > 𝛿𝜇] ≤ 𝑒⌊𝑘/2⌋

Corollary 4.5.6. P
[︁
𝑊 > 4�̂�𝑚𝑘

𝑛

]︁
≤ 𝑒−⌊𝑘/2⌋

Proof. We can use the fact the random variables 𝑊𝑣 are 𝑘-wise independent to apply

Theorem 4.5.5. First, we ensure that 𝑘 <
⌊︁
𝛿𝜇𝑒−1/3

⌋︁
, that we achieve by setting 𝛿 = 𝑚𝑘

𝑚ℎ
.

Recall that𝑚ℎ is the number of heavy edges (ones with at least one heavy end-point),

and 𝑚 is the total number of edges in the original graph 𝐺.

𝛿 =
𝑚𝑘
𝑚ℎ

=⇒ 𝛿𝜇𝑒−1/3 =
𝑚𝑘 · 2�̂�𝑚ℎ

𝑚ℎ ·𝑛
· 𝑒−1/3 >

�̂�𝑚𝑘

𝑛
=⇒ 𝛿𝜇𝑒−1/3 > 𝑘

In the last step, we used the fact that 𝑆 > 100𝑘𝑛2/𝑚 from Eq. (4.3), to imply that �̂�𝑚/𝑛 > 1.

Therefore, we can now apply Theorem 4.5.5 to conclude:

P [|𝑊 −𝜇| > 𝛿𝜇] ≤ 𝑒−⌊𝑘/2⌋

=⇒ P
[︃
𝑊 > 𝜇+

2�̂�𝑚𝑘
𝑛

]︃
≤ 𝑒−⌊𝑘/2⌋

=⇒ P
[︃
𝑊 >

4�̂�𝑚𝑘
𝑛

]︃
≤ 𝑒−⌊𝑘/2⌋
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In the second step, we used the fact that 𝜇 = E[𝑊 ] =
∑︀

𝑣∈𝑉ℎ𝑒𝑎𝑣𝑦
�̂� · 𝑑(𝑣)𝑛 ≤

2𝑚�̂�
𝑛 .

Now we are �nally ready to upper bound the number of heavy edges in 𝐺[𝑉𝑖]. With

high probability (using Corollary 4.5.3), the following holds:

#(heavy edges in 𝐺[𝑉𝑖]) ≤
∑︁

𝑣∈𝑉ℎ𝑒𝑎𝑣𝑦

P [𝑣 ∈ 𝑉𝑖] · (3𝑑(𝑣)�̂�)

≤
∑︁

𝑣∈𝑉ℎ𝑒𝑎𝑣𝑦

𝑊𝑣 ·𝑛 · (3�̂�) = 3𝑛�̂� ·𝑊

≤ 12�̂�2𝑚𝑘 =
12𝑆
100

<
𝑆
8

Theorem 4.5.7 (Heavy edges). With high probability, the number of edges in 𝐺[𝑉𝑖] that
have some endpoint with degree larger than 𝜏 is at most 𝑆/8.

Combining this result with Theorem 4.5.7, we conclude the following:

Theorem 4.5.8. With probability at least 9/10, the maximum number of edges in any of

the 𝐺[𝑉𝑖]s (where 𝑖 ∈ [𝑅]) does not exceed 𝑆 , and hence Algorithm 5 does not terminate on

Line 4.

Upper-Bounding the Number of Messages Sent by any Machine

Recalling Algorithm 6, we note that the number of messages received by the machine con-

taining 𝑉𝑖 , is equal to the number of edges in𝐺[𝑉𝑖]. Therefore, the last section essentially

proved that the number of messages (edges) received by a particular machine is upper-

bounded by 𝑆 . Conversely, in this section, we will justify that the number of messages

sent by any machine is 𝑂(𝑆). Since the number of edges stored in a machine is ≤ 𝑆 , it

su�ces to to show that for each edge 𝑒, Algorithm 6 sends only 𝑂(1) messages (each

message is a copy of the edge 𝑒).

Let 𝑍
(𝑒)
𝑖 be the {0,1} indicator random variable for 𝑒 ∈ 𝐺[𝑉𝑖], and let 𝑍(𝑒)

be the sum

of 𝑍
(𝑒)
𝑖 for all 𝑖 ∈ [ℳ]. Here, 𝑍(𝑒)

represents the number of messages that are created by

edge 𝑒. Additionally we make 𝑟 = 𝑆ℳ/𝑚 = 𝑂𝜀(log𝑛) copies of each edge 𝑒, and ensure

that all replicates reside on the same machine. We distribute the 𝑍(𝑒)
messages evenly

amongst the replicates, so that each replica is only responsible for 𝑍(𝑒)/𝑟 messages.

Since all replicates are on the same machine, this last step is purely conceptual, but

it will simplify our arguemnt, by allowing us to charge the outgoing messages to each

replicate (as opposed to each edge). Our goal will be show that each replicate is responsible

for only 𝑂(1) messages, which is the same as showing that w.h.p. 𝑍(𝑒)/𝑟 =𝑂(1).
Clearly 𝜇 = E[𝑍(𝑒)] = �̂�2 · ℳ = 𝑆ℳ

100𝑚𝑘 . This allows us to apply Lemma 4.5.2 with

𝛿 = 100𝑒1/3𝑚𝑘2
𝑆ℳ

P
[︁
𝑍(𝑒) > 𝛿𝜇

]︁
≤ 𝑒−⌊𝑘/2⌋ = 1

𝑛3
=⇒ P

[︃
𝑍(𝑒)

𝑟
>
𝑒1/3𝑘
𝑟

]︃
≤ 1
𝑛3
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Using the assumption (from Eq. (4.3)) thatℳ > 2000𝑚𝑘/𝑆 =⇒ 𝑟 > 2000𝑘, we see that

with high probability, the number of messages sent by any replicate is bounded above by

𝑒1/3/2000 ≤ 1. So, the number of messages sent from any machine is bounded by 𝑆 with

high probability.

4.5.2 Showing that the Estimate Concentrates

Showing Concentration for the Triangle Count

Algorithm 5 outputs an estimate on the number of triangles in 𝐺 (Line 10). It is not hard

to show that in expectation this output equals 𝑇 . The main challenge is to show that this

output also concentrates well around its expectation. Speci�cally, we show the following

claim.

Lemma 4.5.9. Ignore Line 4 of Algorithm 5. Let 𝑇 be as de�ned on Line 9 andℳ = 20
𝜀2�̂�2

be

as de�ned in Eq. (4.3), and assume that 𝑇 ≥ 1/�̂�. Then, the following hold:
1. E

[︁
𝑇
]︁
= �̂�3 ·𝑅 · 𝑇 , and

2. P
[︁
|𝑇 −E

[︁
𝑇
]︁
| > 𝜀E

[︁
𝑇
]︁]︁
< 1

10 .

We will prove Property (2) of the claim by applying Chebyshev’s inequality, for which

we need to compute Var
[︁
𝑇
]︁
. Let ∆(𝐺) be the set of all triangles in 𝐺. For a triangle

𝑡 ∈ ∆(𝐺), let 𝑇𝑖,𝑡 = 1 if 𝑡 ∈ 𝑉 [𝐺𝑖], and 𝑇𝑖,𝑡 = 0 otherwise. Hence, 𝑇𝑖 =
∑︀
𝑡∈∆(𝐺)𝑇𝑖,𝑡 . We

begin by deriving E
[︁
𝑇
]︁

and then proceed to showing that Var
[︁
𝑇
]︁
=

∑︀𝑅
𝑖=1Var

[︁
𝑇𝑖

]︁
. After

that we upper-bound Var
[︁
𝑇𝑖

]︁
and conclude the proof by applying Chebyshev’s inequality.

Deriving E
[︁
𝑇
]︁
. Let 𝑡 be a triangle in 𝐺. Let 𝑇𝑡 be a random variable denoting the total

number of times 𝑡 appears in 𝐺[𝑉𝑖], for all 𝑖 = 1 . . .𝑅. Given that P [𝑢 ∈ 𝑉𝑖] = �̂�, we have

that P [𝑡 ∈ 𝐺[𝑉𝑖]] = �̂�3. Therefore, E
[︁
𝑇𝑡

]︁
= 𝑅 · �̂�3.

Since 𝑇 =
∑︀
𝑡∈∆(𝐺)𝑇𝑡 , we have

E
[︁
𝑇
]︁
=

∑︁
𝑡∈∆(𝐺)

E
[︁
𝑇𝑡

]︁
= �̂�3 ·𝑅 · 𝑇 . (4.4)

This proves Property (1) of this claim.

DecouplingVar
[︁
𝑇
]︁
. To compute variance, one considers the second moment of a given

random variable. So, to compute Var
[︁
𝑇
]︁
, we will consider products 𝑇𝑖,𝑡1 · 𝑇𝑗,𝑡2 . Each of

those products depend on at most 6 vertices. Now, given that we used a 6-wise inde-

pendent function (see Section 4.4.1) to sample vertices in each 𝑉𝑖 , one could expect that

Var
[︁
𝑇𝑖

]︁
and Var

[︁
𝑇𝑗

]︁
for 𝑖 , 𝑗 behave like they are independent, i.e., one could expect that
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it holds Var
[︁
𝑇
]︁
=

∑︀𝑅
𝑖=1Var

[︁
𝑇𝑖

]︁
. As we show next, it is indeed the case. We have

Var
[︁
𝑇
]︁

= E
[︁
𝑇 2

]︁
−E

[︁
𝑇
]︁2

= E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝ 𝑅∑︁
𝑖=1

∑︁
𝑡∈∆(𝐺)

𝑇𝑖,𝑡

⎞⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦−

⎛⎜⎜⎜⎜⎜⎜⎝ 𝑅∑︁
𝑖=1

∑︁
𝑡∈∆(𝐺)

E
[︁
𝑇𝑖,𝑡

]︁⎞⎟⎟⎟⎟⎟⎟⎠
2

(4.5)

Consider now 𝑇𝑖,𝑡1 and 𝑇𝑗,𝑡2 for 𝑖 , 𝑗 and some 𝑡1, 𝑡2 ∈ ∆(𝐺) not necessarily distinct. In the

�rst summand of (4.5), we will have E
[︁
2𝑇𝑖,𝑡1 · 𝑇𝑗,𝑡2

]︁
. The vertices constituting 𝑡1 and 𝑡2 are

6 distinct copies of some (not necessarily all distinct) vertices of 𝑉 . Since they are chosen

by applying a 6-wise independent function, we have E
[︁
2𝑇𝑖,𝑡1 · 𝑇𝑗,𝑡2

]︁
= 2E

[︁
𝑇𝑖,𝑡1

]︁
·E

[︁
𝑇𝑗,𝑡2

]︁
.

On the other hand, the second summand of (4.5) also contains 2E
[︁
𝑇𝑖,𝑡1

]︁
·E

[︁
𝑇𝑗,𝑡2

]︁
, which

follows by direct expansion of the sum. Therefore, all the terms E
[︁
2𝑇𝑖,𝑡1 · 𝑇𝑗,𝑡2

]︁
in Var

[︁
𝑇
]︁

for 𝑖 , 𝑗 cancel each other. So, we can also write Var
[︁
𝑇
]︁

as

Var
[︁
𝑇
]︁

=
𝑅∑︁
𝑖=1

E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑡∈∆(𝐺)

𝑇𝑖,𝑡

⎞⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦−

𝑅∑︁
𝑖=1

⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑡∈∆(𝐺)

E
[︁
𝑇𝑖,𝑡

]︁⎞⎟⎟⎟⎟⎟⎟⎠
2

=
𝑅∑︁
𝑖=1

Var
[︁
𝑇𝑖

]︁
. (4.6)

Therefore, to upper-bound Var
[︁
𝑇
]︁

it su�ces to upper-bound Var
[︁
𝑇𝑖

]︁
.

Upper-bounding Var
[︁
𝑇𝑖
]︁
. We have

Var
[︁
𝑇𝑖

]︁
= E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑡∈∆(𝐺)

𝑇𝑖,𝑡

⎞⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦−

⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑡∈∆(𝐺)

E
[︁
𝑇𝑖,𝑡

]︁⎞⎟⎟⎟⎟⎟⎟⎠
2

≤ E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑡∈∆(𝐺)

𝑇𝑖,𝑡

⎞⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦

= E

⎡⎢⎢⎢⎢⎢⎢⎣ ∑︁
𝑡∈∆(𝐺)

𝑇 2
𝑖,𝑡

⎤⎥⎥⎥⎥⎥⎥⎦+E

⎡⎢⎢⎢⎢⎢⎢⎣ ∑︁
𝑡1,𝑡2∈∆(𝐺);𝑡1,𝑡2

𝑇𝑖,𝑡1 · 𝑇𝑖,𝑡2

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.7)

Since each 𝑇𝑖,𝑡 is a 0/1 random variables, 𝑇 2
𝑖,𝑡 = 𝑇𝑖,𝑡 . Let 𝑡1 , 𝑡2 be two triangles in ∆(𝐺).

Let 𝑘 be the number of distinct vertices they are consisted of, which implies 4 ≤ 𝑘 ≤ 6.

Then, observe that E
[︁
𝑇𝑖,𝑡1 · 𝑇𝑖,𝑡2

]︁
= �̂�𝑘 ≤ �̂�4. We now have all ingredients to upper-bound
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Var
[︁
𝑇𝑖

]︁
. From (4.7) and our discussion it follows

Var
[︁
𝑇𝑖

]︁
≤ 𝑇 �̂�3 + 𝑇 2�̂�4 ≤ 2𝑇 2�̂�4, (4.8)

where we used our assumption that 𝑇 ≥ 1/�̂�.

Finalizing the proof. From (4.6) and (4.8) we have

Var
[︁
𝑇
]︁
≤ 2𝑅𝑇 2�̂�4.

So, from Chebyshev’s inequality and (4.4) we derive

P
[︁
|𝑇 −E

[︁
𝑇
]︁
| > 𝜀E

[︁
𝑇
]︁]︁

<
Var

[︁
𝑇
]︁

𝜀2E
[︁
𝑇
]︁2

≤
2𝑅𝑇 2�̂�4

𝜀2�̂�6𝑅2𝑇 2

=
2

𝜀2�̂�2𝑅
.

Hence, for 𝑅 ≥ 20
𝜀2�̂�2

we get the desired bound.

Getting the High Probability Bound

By building on Lemma 4.5.9 and Algorithm 5, we design Algorithm 7 that outputs an ap-

proximate triangle counting with high probability, as opposed with only constant success

probability. We have the following guarantee for Algorithm 7.

Algorithm 7 Approximate Triangle Counting

1: function Approx-Triangles-Main(𝐺 = (𝑉 ,𝐸))
2: Let 𝐼 ← 100 · log𝑛.

3: parfor 𝑖← 1 . . . 𝐼 do
4: Let 𝑌𝑖 be the output of Algorithm 5 invoked on 𝐺. We assume that each invoca-

tion of Algorithm 5 uses fresh randomness compared to previous runs.

5: Let 𝒴 be the list of all 𝑌𝑖 , for 𝑖 = 1 . . . 𝐼 .
6: Sort 𝒴 in non-decreasing order.

7: return the median of 𝒴

Theorem 4.5.10. Let 𝑌 be the output of Algorithm 7. Then, with high probability it holds

|𝑌 − 𝑇 | ≤ 𝜀𝑇 .

In the proof of this theorem we use the following concentration bound.

113



Theorem 4.5.11 (Cherno� bound). Let 𝑋1, . . . ,𝑋𝑘 be independent random variables tak-

ing values in [0,1]. Let 𝑋
def=

∑︀𝑘
𝑖=1𝑋𝑖 and 𝜇

def= E [𝑋]. Then, or any 𝛿 ∈ [0,1] it holds
P [𝑋 ≤ (1− 𝛿)𝜇] ≤ exp

(︁
−𝛿2𝜇/2

)︁
.

Proof of Theorem 4.5.10. The proof of this theorem is essentially the so-called “Median

trick”. We provide full proof here for completeness.

Let 𝑌𝑖 be as de�ned on Line 4 of Algorithm 7. By Theorem 4.5.8, with probability at

most 1/10 Algorithm 5 terminates due to creating too big subgraphs. If we ignore Line 4

of Algorithm 5, then by Property (1) of Lemma 4.5.9 we have E [𝑌𝑖] = 𝑇 . 𝑌𝑖 signi�cantly

deviates from its expectation if Algorithm 5 terminates on Line 4 or if the estimate 𝑌𝑖 is

simply o�. De�ne a 0/1 variable 𝑍𝑖 which equals 1 i� |𝑌𝑖 − 𝑇 | ≤ 𝜀𝑇 . By union bound on

Property (2) of Lemma 4.5.9 and Theorem 4.5.8, we haveP [𝑍𝑖 = 1] ≥ 1−1/10−1/10 = 4/5.

Also, following Line 4 of Algorithm 7 we have that all 𝑍𝑖 are independent.

Let 𝑍 =
∑︀𝐼
𝑖=1𝑍𝑖 . We have that E [𝑍] ≥ 4

5𝐼 , implying that in expectation at least 4/5
fraction on 𝑍-variables are 1. We now bound the probability that at least 2/5 of these

variables equal 0, i.e, at most 3/5 of them equal 1. Since 𝑍-variables are independent, for

this we can use Theorem 4.5.11, obtaining

P
[︂
𝑍 ≤ 3

5
𝐼
]︂
≤ P

[︂
𝑍 ≤

(︂
1− 1

5

)︂
E [𝑍]

]︂
≤ exp(−E [𝑍] /50).

Given that 𝐼 = 100 · log𝑛 (see Line 2 of Algorithm 7), we derive that P
[︁
𝑍 ≤ 3

5𝐼
]︁
< 𝑛−1.

This now implies that with probability at least 𝑛−1 the output of Algorithm 7 is some 𝑌𝑗
such that 𝑍𝑗 = 1. This completes the analysis.

4.5.3 Showing Concentration for the 𝐾-Subgraph Count

Using similar analysis to the previous section, in this section, we show the expectation

and concentration bound of our subgraph counting algorithm for any subgraphs consist-

ing of 𝐾 nodes where 𝐾 is constant. Let this subgraph be𝐻 . In what follows, let 𝐵 be the

actual count of the 𝐾-subgraphs and �̂� be the estimate. We only require a (slightly) mod-

i�ed Algorithm 5; the rest of the algorithm follows that of Algorithm 6 and Algorithm 7.

Algorithm 8 Approximate-𝐾-Subgraph-Counting(𝐺 = (𝑉 ,𝐸))
1: 𝑅← 0
2: parfor 𝑖← 1 . . .ℳ do

3: Let 𝑉𝑖 be a random subset of 𝑉 ⟨⟨See Section 4.4.1 for details about the sampling⟩⟩
4: if size of 𝐺[𝑉𝑖] exceeds 𝑆 then

5: Ignore this sample and set �̂�𝑖 ← 0
6: else

7: Let �̂�𝑖 be the number of the desired 𝐾-subgraphs in 𝐺[𝑉𝑖]
8: 𝑅← 𝑅+1
9: Let �̂� =

∑︀ℳ
𝑖=1 �̂�𝑖

10: return
1
�̂�𝐾𝑅

�̂�
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Lemma 4.5.12. Let �̂� be the count of subgraph𝐻 (with𝐾 vertices) in𝐺[𝑉𝑖] andℳ = 20
𝜀2�̂�𝐾−1

be as de�ned in Eq. (4.3), and assume that 𝐵 ≥ 1/�̂�. Then, the following hold:
1. E

[︁
�̂�
]︁
= �̂�𝐾 ·𝑅 ·𝐵, and

2. P
[︁
|�̂�−E

[︁
�̂�
]︁
| > 𝜀E

[︁
�̂�
]︁]︁
< 1

10 .

Proof. We �rst prove Item 1. The probability that a particular 𝐾-vertex occurrence ℎ of

𝐻 appears in machine𝑀𝑖 is P [ℎ ∈ 𝐺[𝑉𝑖]] = �̂�𝐾 . There are 𝐵 number of occurrences of𝐻
in 𝐺. Thus, the expected number of occurrences of 𝐻 in machine 𝑀𝑖 is E

[︁
�̂�𝑀𝑖

]︁
= �̂�𝐾 ·𝐵.

Since there are𝑅machines (which did not exceed the memory limit), the expected number

of occurrences of 𝐻 in all 𝑅 machines is E
[︁
�̂�
]︁
=

∑︀
𝑖≤𝑅E

[︁
�̂�𝑀𝑖

]︁
= �̂�𝐾𝑅𝐵.

We now prove Item 2. Let 𝐻(𝐺) be the set of occurrences of 𝐻 in 𝐺. Let �̂�𝑖,ℎ be a

random variable where �̂�𝑖,ℎ = 1 if ℎ, a particular occurrence of 𝐻 in 𝐺, is in machine 𝑖;
otherwise, �̂�𝑖,ℎ = 0. Then,

Var
[︁
�̂�
]︁

= E
[︁
�̂�2

]︁
−E

[︁
�̂�
]︁2

(4.9)

= E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝ 𝑅∑︁
𝑖=1

∑︁
ℎ∈𝐻(𝐺)

�̂�𝑖,ℎ

⎞⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦−

⎛⎜⎜⎜⎜⎜⎜⎝ 𝑅∑︁
𝑖=1

∑︁
ℎ∈𝐻(𝐺)

E
[︁
�̂�𝑖,ℎ

]︁⎞⎟⎟⎟⎟⎟⎟⎠
2

. (4.10)

First, consider random variables �̂�𝑖,ℎ1 and �̂�𝑗,ℎ2 ; for each 𝑖 , 𝑗 ∈ [𝑅] and each ℎ1,ℎ2 ∈
𝐻(𝐺), there exists a term in the �rst summand of Section 4.5.3 containing E

[︁
2�̂�𝑖,ℎ1�̂�𝑗,ℎ2

]︁
.

The vertices constituting ℎ1 and ℎ2 are 2𝐾 distinct copies of some not necessarily distinct

copies of vertices in 𝑉 . Suppose we use a 2𝑘-wise independent hash function, then we

have E
[︁
2�̂�𝑖,ℎ1 · �̂�𝑗,ℎ2

]︁
= 2E

[︁
�̂�𝑖,ℎ1

]︁
·E

[︁
�̂�𝑗,ℎ2

]︁
. We see that this term also shows up in the

second summand of Section 4.5.3. Hence, the terms cancel for each 𝑖 , 𝑗 and we can

simplify Section 4.5.3 to the following.

Var
[︁
�̂�
]︁
=

𝑅∑︁
𝑖=1

E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
ℎ∈𝐻(𝐺)

�̂�𝑖,ℎ

⎞⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎦−

𝑅∑︁
𝑖=1

⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
ℎ∈𝐻(𝐺)

E
[︁
�̂�𝑖,ℎ

]︁⎞⎟⎟⎟⎟⎟⎟⎠
2

=
𝑅∑︁
𝑖=1

Var
[︁
�̂�𝑖

]︁
. (4.11)

Now, what remains is to upper bound Var
[︁
�̂�𝑖

]︁
. Using the same approach as in the

previous section with the observation that any two distince occurrences ℎ1 and ℎ2 must

contain 𝐾 + 1 ≤ 𝑘 ≤ 2𝐾 distinct vertices. This means that E
[︁
�̂�𝑖,ℎ1 · �̂�𝑖,ℎ2

]︁
= �̂�𝑘 ≤ �̂�𝐾+1.

Then, we can bound

Var
[︁
�̂�𝑖

]︁
≤ 2𝐵2�̂�𝐾+1 (4.12)

(assuming 𝐵 ≥ 1/�̂�).

Then, from Section 4.5.3 and Section 4.5.3, we get the bound on the variance to be

Var
[︁
�̂�
]︁
≤ 2𝑅𝐵2�̂�𝐾+1.
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By Chebyshev’s inequality and Item 1, we compute

P
[︁
|�̂�−E

[︁
�̂�
]︁
| > 𝜀E

[︁
�̂�
]︁]︁
<

Var
[︁
�̂�
]︁

𝜀2E
[︁
�̂�
]︁2 ≤ 2𝐵2�̂�𝐾+1

𝜀2�̂�2𝐾𝑅2𝐵2
=

2
𝜀2�̂�𝐾−1𝑅2 . (4.13)

When setting 𝑅 ≥ 20
𝜀2�̂�𝐾−1

, we obtain Item 2.

Using Lemma 4.5.12 and the median trick (used in an identical way to Theorem 4.5.10),

we can obtain the following theorem about counting occurrences of any subgraph𝐻 with

𝐾 vertices.

Theorem 4.5.13. Let 𝐺 = (𝑉 ,𝐸) be a graph over 𝑛 vertices, 𝑚 edges, and let 𝐵 be the

number of occurrrences of subgraph 𝐻 with 𝐾 vertices in 𝐺. Assuming

1. 𝐵 = ̃︀Ω(︂(︁
𝑚
𝑆

)︁𝐾/2−1)︂
,

2. 𝑆 = ̃︀Ω(︂
max

{︂√
𝑚
𝜀 ,

𝑛2
𝑚

}︂)︂
,

there exists an MPC algorithm, usingℳ machines, each with local space 𝑆 , and total space
ℳ𝑆 = �̃�𝜀(𝑚), that outputs a (1 ± 𝜀)-approximation of 𝑇 , with high probability, in 𝑂(1)
rounds.

Corollary 4.5.14. Let 𝐺 = (𝑉 ,𝐸) be an input graph and 𝐵 be the number of occurrences of

subgraph 𝐻 with 𝐾 vertices in 𝐺. If 𝐵 ≥ 𝑑𝐾/2−1𝑎𝑣𝑔 , then there exists an MPC algorithm that

in 𝑂(1) rounds with high probability outputs a (1 + 𝜀)-approximation of 𝐵. This algorithm
uses a total space of �̃�(𝑚) and space Θ̃(𝑛) per machine. 𝑑𝑎𝑣𝑔 is the average degree of the

vertices in the graph.

4.6 Exact Triangle Counting in 𝑂(𝑚𝛼) Total Space

In this section we describe our algorithm for (exactly) counting the number of triangles in

graphs 𝐺 = (𝑉 ,𝐸) of arboricity 𝛼 and prove Theorem 4.1.3, restated here, in Section 4.7.

Theorem 4.6.1. Let 𝐺 = (𝑉 ,𝐸) be a graph over 𝑛 vertices, 𝑚 edges and arboricity 𝛼.
Count-Triangles(𝐺) takes 𝑂𝛿 (loglog𝑛) rounds, 𝑂

(︁
𝑛𝛿

)︁
space per machine for some con-

stant 0 < 𝛿 < 1, and 𝑂 (𝑚𝛼) total space.

Importantly, unlike previous methods, we do not need to assume knowledge of the

arboricity of the graph 𝛼 as input into our algorithm. The arboricity only shows up in

our space bound as a property of the graph but we do not need to have knowledge of its

value as we run the algorithm.

In this section, we assume that individual machines have spaceΘ(𝑛𝛿) where 𝛿 is some

constant 0 < 𝛿 < 1. Given this setting, there are several challenges associated with this

problem.

Challenge 4.6.2. The entire subgraph neighborhood of a vertex may not �t on a single

machine. This means that all triangles incident to a particular vertex cannot be counted on
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one machine. Even if we are considering vertices with degree at most 𝛼, it is possible that
𝛼 > 𝑛𝛿. Thus, we need to have a way to count triangles e�ciently when the neighborhood of

a vertex is spread across multiple machines.

The second challenge is to avoid over-counting.

Challenge 4.6.3. When counting triangles across di�erent machines, over-counting the tri-

angles might occur, e.g., if two di�erent machines count the same triangle. We need some

way to deal with duplicate counting of the triangles to obtain the exact count of the triangles.

We deal with the above challenges in our procedures below. We assume in our algo-

rithm that each vertex can access its neighbors in 𝑂(1) rounds of communication; such

can be ensured via standard MPC techniques. Let 𝑑𝑄(𝑣) be the degree of 𝑣 in the sub-

graph induced by vertex set𝑄, i.e. in 𝐺[𝑄]. Our main algorithm consists of the following

Count-Triangles(𝐺) procedure.

Algorithm 9 Count-Triangles(𝐺 = (𝑉 ,𝐸))
1: Let 𝑄𝑖 be the set of vertices not yet processed by iteration 𝑖. Initially set 𝑄0← 𝑉 .

2: Let 𝑇 be the current count of triangles. Set 𝑇 ← 0.

3: for 𝑖 = 0 to 𝑖 =
⌈︁
log3/2(log2(𝑛))

⌉︁
do

4: 𝛾𝑖 ← 2(3/2)
𝑖
.

5: Let 𝐴𝑖 be the list of vertices 𝑣 ∈𝑄𝑖 where 𝑑𝑄𝑖 (𝑣) ≤ 𝛾𝑖 . Set 𝑄𝑖+1←𝑄𝑖 ∖𝐴𝑖 .
6: parfor 𝑣 ∈ 𝐴𝑖 do
7: Retrieve the list of neighbors of 𝑣 and denote it by 𝐿𝑣 .

8: Send each of 𝑣’s neighbors a copy of 𝐿𝑣 .

9: parfor 𝑤 ∈𝑄𝑖 do
10: Let ℒ𝑤 =

⋃︀
𝑣∈(𝑁 (𝑤)∩𝐴𝑖 )𝐿𝑣 be the union of neighbor lists received by 𝑤.

11: Set 𝑇 ← 𝑇 + Find-Triangles(𝑤,ℒ𝑤). ⟨⟨Algorithm 10⟩⟩
12: Return 𝑇 .

4.6.1 MPC Implementation Details

In order to implement Count-Triangles(𝐺) in the MPC model, we de�ne our

Find-Triangles(𝑤,ℒ) procedure and provide additional details on sending and storing

neighbor lists across di�erent machines. We de�ne high-degree vertices to be the set of

vertices whose degree is > 𝛾 and low-degree vertices to be ones whose degree is ≤ 𝛾 (for

some 𝛾 de�ned in our algorithm). We now de�ne the function Find-Triangles(𝑤,ℒ)

used in the above procedure:

Allocating machines for sorting Since each 𝑣 ∈ 𝑄𝑖 could have multiple neighbors

whose degrees are ≤ 𝛾 , the total size of all neighbor lists 𝑣 receives could exceed their

allowed space Θ
(︁
𝑛𝛿

)︁
. Thus, we allocate 𝑂

(︂
𝛾𝑑𝑄𝑖 (𝑣)

𝑛𝛿

)︂
machines for each vertex 𝑣 ∈ 𝑄𝑖 to

store all neighbor lists that 𝑣 receives.
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Algorithm 10 Find-Triangles(𝑤,ℒ𝑤)
1: Sort all elements in (ℒ𝑤 ∪ (𝑁 (𝑤)∩𝑄𝑖)) lexicographically, using the procedure given

in Lemma 4.3 of [GSZ11]. Let this sorted list of all elements be 𝑆 .

2: Let 𝑇 denote the corrected
6

number of duplicates in 𝑆 using Theorem 4.2.1.

3: Return 𝑇 .

The complete analysis for Theorem 4.6.1 is given in Section 4.7.

We provide two additional extensions of our triangle counting algorithm to counting

𝑘-cliques:

Theorem 4.6.4. Given a graph 𝐺 = (𝑉 ,𝐸) with arboricity 𝛼, we can count all 𝑘-cliques
in 𝑂(𝑚𝛼𝑘−2) total space, 𝑂𝛿(loglog𝑛) rounds, on machines with 𝑂(𝑛2𝛿) space for any

0 < 𝛿 < 1.

We can prove a stronger result when we have some bound on the arboricity of our

input graph. Namely, if 𝛼 =𝑂(𝑛𝛿
′/2) for any 𝛿′ < 𝛿, then we obtain the following result:

Theorem 4.6.5. Given a graph𝐺 = (𝑉 ,𝐸)with arboricity 𝛼 where 𝛼 =𝑂(𝑛
𝛿′
2 ) for any 𝛿′ <

𝛿, we can count all 𝑘-cliques in 𝑂
(︁
𝑛𝛼2

)︁
total space and 𝑂𝛿(loglog𝑛) rounds, on machines

with 𝑂(𝑛𝛿) space for any 0 < 𝛿 < 1.

The proofs of these theorems are provided in Section 4.8.

4.7 Exact Triangle Counting in 𝑂(𝑚𝛼) Total Space

Analysis

In this section we give the full details and analysis of algorithm Algorithm 9, , given

in Section 4.6, for exactly counting the number of triangles in the graph.

We �rst provide a detailed version of Algorithm 10 that also takes into account over

counting due to the fact that each triangle might be counted by several endpoints, and

then continue to prove the main theorem of this section, Theorem 4.1.3.

4.7.1 Details about �nding duplicate elements using Theo-

rem 4.2.1

Find-Triangles(𝑤,ℒ𝑤) �nds triangles by counting the number of duplicates that occur

between elements in lists. Theorem 4.2.1 provides a MPC implementation for �nding the

count of all occurrences of every element in a sorted list. Provided a sorted list of neigh-

bors of 𝑣 ∈ 𝑄𝑖 and neighbor lists in ℒ𝑣 , this function counts the number of intersections

between a neighbor list sent to 𝑣 and the neighbors of 𝑣. Every intersection indicates the

existence of a triangle. As given, Find-Triangles(𝑤,ℒ𝑤) (see v Algorithm 10) returns

a 6-approximation of the number of triangles in any graph. We provide a detailed and

somewhat more complicated algorithm Find-Triangles-Exact(𝑤,ℒ𝑤) that accounts for

over-counting of triangles and returns the exact number of triangles.
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Since Theorem 4.2.1 returns the total count of each element, we subtract the value

returned by 1 to obtain the number of intersections. Finally, each triangle containing one

low-degree vertex will be counted twice, each containing two low-degree vertices will be

counted 4 times, and each containing three low-degree vertices will be counted 6 times.

Thus, we need to divide the counts by 2, 4, and 6, respectively, to obtain the exact count

of unique triangles.

Algorithm 11 Find-Triangles-Exact(𝑤,ℒ𝑤)
1: Set the number of triangles 𝑇𝑖 ← 0.

2: Sort all elements in (ℒ𝑤 ∪ (𝑁 (𝑤)∩𝑄𝑖)) lexicographically using the procedure given

in Lemma 4.3 of [GSZ11]. Let this sorted list of all elements be 𝑆 .

3: Count the duplicates in 𝑆 using Theorem 4.2.1.

4: parfor all 𝑣 ∈𝑁 (𝑤) do
5: Let 𝑅 be the number of duplicates of 𝑣 returned by Theorem 4.2.1.

6: if 𝑑𝑄𝑖 (𝑣) > 𝛾𝑖 and 𝑑𝑄𝑖 (𝑤) > 𝛾𝑖 then
7: Increment 𝑇𝑖 ← 𝑇𝑖 +

𝑅−1
2 .

8: else if (𝑑𝑄𝑖 (𝑣) > 𝛾𝑖 and 𝑑𝑄𝑖 (𝑤) ≤ 𝛾𝑖) or (𝑑𝑄𝑖 (𝑣) ≤ 𝛾𝑖 and 𝑑𝑄𝑖 (𝑤) > 𝛾𝑖) then
9: Increment 𝑇𝑖 ← 𝑇𝑖 +

𝑅−1
4 .

10: else

11: Increment 𝑇𝑖 ← 𝑇𝑖 +
𝑅−1
6 .

12: Return 𝑇𝑖 .

Substituting Find-Triangles-Exact in Count-Triangles �nds the exact count of

triangles in graphs with arboricity 𝛼 using 𝑂(𝑚𝛼) total space.

4.7.2 Proof of Theorem 4.1.3

First, all proofs below assume we start at a cuto� of𝛾 = 4𝛼. Because we increase the cuto�

bound doubly exponentially, we can reach such a bound in 𝑂(loglog𝛼) rounds. Thus, in

the following proofs, we ignore all rounds before we get to a round where 𝛾 ≥ 4𝛼. Before

proving the theorem, we provide several useful lemmas stating that the number of vertices

and edges remaining at the beginning of each iteration is bounded.

Lemma 4.7.1. At the beginning of iteration 𝑖 of Count-Triangles, given 𝛾𝑖 = 2(3/2)
𝑖 · (2𝛼)

as stated in Algorithm 9, the number of remaining vertices 𝑁𝑖 = |𝑄𝑖 | is at most
𝑛

22·((3/2)𝑖−1)
.

Proof. Let 𝑁𝑖 be the number of vertices in 𝑄𝑖 at the beginning of iteration 𝑖. Since the

subgraph induced by 𝑄𝑖 must have arboricity bounded by 𝛼, we can bound the total

degree of 𝑄𝑖 , ∑︁
𝑣∈𝑄𝑖

𝑑𝑄𝑖 (𝑣) < 2𝛼|𝑄𝑖 | = 2𝑁𝑖𝛼.

At the end of the iteration, we only keep the vertices in 𝑄𝑖+1 = {𝑣 ∈𝑄𝑖 | 𝑑𝑄𝑖 (𝑣) > 𝛾𝑖}.
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If we assume that |𝑄𝑖+1| >
𝑁𝑖

𝛾𝑖 /(2𝛼)
, then we obtain a contradiction since this implies that∑︁

𝑣∈𝑄𝑖+1

𝑑𝑄𝑖 (𝑣) > |𝑄𝑖+1| ·𝛾𝑖 > 2𝑁𝑖𝛼 >
∑︁
𝑣∈𝑄𝑖

𝑑𝑄𝑖 (𝑣).

Then, the number of remaining vertices follows directly from the above by induction

on 𝑖 with base case 𝑁1 = 𝑛,

𝑁𝑖 ≤
𝑁𝑖−1
𝛾𝑖/(2𝛼)

=
𝑁𝑖−1

2(3/2)𝑖−1
≤ 𝑛

𝑖−1∏︀
𝑗=0

2(3/2)𝑗
=

𝑛

22·((3/2)
𝑖−1)

.

We can show a similar statement for the number of edges that remain at the start of

the 𝑖𝑡ℎ iteration.

Lemma 4.7.2. At the beginning of iteration 𝑖 of Count-Triangles, given 𝛾𝑖 , the number

of remaining edges 𝑚𝑖 is at most 𝑚𝑖 ≤ 𝑚

22·((3/2)𝑖−1−1)
.

Proof. The number of vertices remaining at the beginning of iteration 𝑖 is given by |𝑄𝑖 |.
Thus, because the arboricity of our graph is 𝛼, we can upper bound 𝑚𝑖 by

𝑚𝑖 ≤ |𝑄𝑖 |𝛼.

Then, we can also lower bound the number of edges at the beginning of iteration 𝑖−1
since the vertices that remain at the beginning of round 𝑖 are ones which have greater

than 𝛾𝑖−1 degree,

𝑚𝑖−1 ≥
1
2

∑︁
𝑣∈𝑄𝑖−1

𝑑𝑄𝑖−1(𝑣) ≥
1
2
|𝑄𝑖 |𝛾𝑖−1.

Thus, we conclude that 𝑚𝑖 ≤
2𝛼𝑚𝑖−1
𝛾𝑖−1

. By induction on 𝑖 with base case 𝑚0 = 𝑚, we

obtain,

𝑚𝑖 ≤ 2𝛼
(︃
𝑚𝑖−1
𝛾𝑖−1

)︃
≤ 𝑚∏︀𝑖−2

𝑗=02
(3/2)𝑗

=
𝑚

22·((3/2)𝑖−1−1)
.

The above lemmas allows us to bound the total space used by the algorithm.

Lemma 4.7.3. Count-Triangles(𝐺) uses 𝑂(𝑚𝛼) total space when run on a graph 𝐺 with

arboricity 𝛼.

Proof. The total space the algorithm requires is the sum of the space necessary for storing

the neighbor lists sent by all vertices with degree ≤ 𝛾𝑖 and the space necessary for all

vertices to store their own neighbor lists. The total space necessary for each vertex to

store its own neighbor list is 𝑂(𝑚).
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Now we compute the total space used by the algorithm during iteration 𝑖. The

number of vertices in 𝑄𝑖 at the beginning of this iteration is at most 𝑁𝑖 ≤ 𝑛

22·((3/2)
𝑖−1)

by Lemma 4.7.1. Each vertex 𝑣 with 𝑑𝑄𝑖 (𝑣) ≤ 𝛾𝑖 , makes 𝑑𝑄𝑖 (𝑣) copies of its neighbor

list (𝑁 (𝑣)∩𝑄𝑖) and sends each neighbor in 𝑁 (𝑣)∩𝑄𝑖 a copy of the list. Thus, the total

space required by the messages sent by 𝑣 is 𝑑𝑄𝑖 (𝑣)
2 ≤ 𝛾2

𝑖 . 𝑣 sends at most one message

of size 𝑑𝑄𝑖 (𝑣) ≤ 𝛾𝑖 along each edge (𝑣,𝑤) for 𝑤 ∈ 𝑁 (𝑣)∩𝑄𝑖 . Then, by Lemma 4.7.2 the

total space required by all the low-degree vertices in round 𝑖 is at most (as at most two

messages are sent along each edge):

2𝑚𝑖 ·𝛾𝑖 <
𝑚

22·((3/2)
𝑖−1−1)

·
[︁
2(3/2)

𝑖
(2𝛼)

]︁
= 16𝑚𝛼.

We are now ready to prove Theorem 4.1.3.

Proof of Theorem 4.1.3. By Lemma 4.7.1, the number of vertices remaining in𝑄𝑖 at the be-

ginning of iteration 𝑖 is
𝑛

22·((3/2)
𝑖−1) . This means that the procedure runs for 𝑂(loglog𝑛)

iterations before there will be no vertices. For each of the 𝑂(loglog𝑛) iterations,

Count-Triangles(𝐺) uses 𝑂𝛿(1) rounds of communication for the low-degree vertices

to send their neighbor lists to their neighbors. The algorithm then calls Find-Triangles-

Exact(𝑤,ℒ𝑤) on each vertex 𝑤 ∈𝑄𝑖 (in parallel) to �nd the number of triangles incident

to 𝑤 and vertices in 𝐴𝑖 ⊆ 𝑄𝑖 . Find-Triangles-Exact(𝑤,ℒ𝑤) requires 𝑂
(︀
log𝑛𝛿(𝑚𝛼)

)︀
=

𝑂(1/𝛿) rounds by Lemma 4.3 of [GSZ11] and Theorem 4.2.1. Therefore, the total number

of rounds required by Count-Triangles(𝐺) is 𝑂
(︁ loglog𝑛

𝛿

)︁
=𝑂𝛿(loglog𝑛).

4.8 Extensions to Exact 𝑘-Clique Counting in Graphs

with Arboricity 𝛼

In this section, we brie�y provide two algorithms for exact counting of 𝑘-cliques (where

𝑘 is constant) in graphs with arboricity 𝛼. The �rst is an extension of our exact triangle

counting result given in Section 4.6. The second is a query-based algorithm where the

neighborbood of a low-degree vertex is constructed on a single machine via edge queries.

In this case, the triangles incident to any given low-degree vertex can be counted on the

same machine.

4.8.1 Exact 𝑘-Clique Counting

Exact 𝑘-Clique Counting in𝑂
(︁
𝑚𝛼𝑘−2

)︁
Total Space and𝑂𝛿(loglog𝑛)Rounds We

extend our algorithm given in Section 4.6 to exactly count 𝑘-cliques (where 𝑘 is constant)

in 𝑂
(︁
𝑚𝛼𝑘−2

)︁
total space and 𝑂𝛿(loglog𝑛) rounds. Given a graph 𝐺 = (𝑉 ,𝐸) with ar-

boricity 𝛼, the idea behind the algorithm is the following: let 𝐺𝑖 = (𝑉𝑖 ∪𝑉 ,𝐸𝑘 ∪𝐸) be

a graph where each vertex 𝑣 ∈ 𝑉𝑖 corresponds to an 𝑖-clique in 𝐺. Let 𝐾(𝑢) denote the

𝐾𝑖 ∈ 𝐺 represented by 𝑢 ∈ 𝑉𝑘 . An edge (𝑢,𝑣) exists in 𝐸𝑖 i� 𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉 and𝐾(𝑢)∪{𝑣} is
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an (𝑖+1)-clique in𝐺. We construct the𝐺𝑘 graphs iteratively, starting with𝐺1 = 𝐺. Then,

given 𝐺𝑖−1, we recursively construct 𝐺𝑖 by using our exact triangle counting algorithm.

Once we have 𝐺𝑘−2, we obtain our �nal count of the number of 𝑘-cliques by running our

exact triangle counting algorithm one last time. The total space used is dominated by run-

ning the triangle counting algorithm on 𝐺𝑘−2, which uses 𝑂
(︁
𝑚𝛼𝑘−2

)︁
total space. Since

we run the triangle counting algorithm 𝑂(𝑘) times and 𝑘 is a constant, the total number

of rounds of communication necessary is𝑂𝛿(loglog𝑛) rounds. This detailed algorithm is

given below.

Below, we describe our 𝑂(𝑛𝛼𝑘−1) total space, 𝑂(loglog𝑛) rounds exact 𝑘-

clique counting algorithm that can be run on machines with space 𝑂(𝑛𝛿). Calling

Count-𝑘-Cliqes(𝐺,𝑘,𝑘) for any given graph𝐺 = (𝑉 ,𝐸) returns the number of 𝑘-cliques

in 𝐺.

Algorithm 12 𝑘-Clique-Counting(𝐺 = (𝑉 ,𝐸),𝑘,𝑘′)

1: if 𝑘 ≤ 1 then

2: Return (|𝑁 |,𝐺)
3: else

4: (𝑥,𝐺𝑘−1)← Count-𝑘-Cliqes(𝐺,𝑘 − 1, 𝑘′)
5: 𝑇 ← Enumerate-Triangles(𝐺𝑘−1). Let 𝑇 be the set of all enumerated triangles.

6: Initialize sets 𝑉𝑘←∅ and 𝐸𝑘←∅.

7: parfor 𝑡 ∈ 𝑇 do

8: Let 𝐾(𝑡) represent the set of vertices in 𝑉 composing the clique represented by

𝑡 ∈ 𝑇 .

9: parfor 𝑣 ∈ 𝐾(𝑡) do
10: Let 𝑣′(𝑆) be a vertex 𝑣 representing a set of vertices 𝑆 . In other words, 𝐾(𝑣) =

𝐾(𝑣′(𝑆)) = 𝑆 .

11: 𝑉𝑘← 𝑉𝑘 ∪ 𝑣′(𝐾(𝑡) ∖ 𝑣).
12: 𝐸𝑘← 𝐸𝑘 ∪ (𝑣,𝑣′(𝐾(𝑡) ∖ 𝑣)).
13: if 𝑘 = 𝑘′ − 2 then

14: Return |𝑇 |.
15: else

16: Return (|𝑉𝑘 |,𝐺𝑘(𝑉 ∪𝑉𝑘 ,𝐸 ∪𝐸𝑘)).

4.8.2 MPC Implementation

To implement Count-𝑘-Cliqes in the MPC model, we must be able to create the graph

𝐺2, . . . ,𝐺𝑘−1 e�ciently in our given space and rounds. The crux of this algorithm is the

procedure for enumerating all triangles given a set 𝐴 of vertices in 𝐺 where 𝑑(𝑣) ≤ 𝛾 for

all 𝑣 ∈ 𝐴. To do the triangle enumeration, we prove Lemma 4.8.1 which can enumerate

all such triangles incident to 𝐴 in 𝑂(𝑚𝛾) total space, 𝑂𝛿(1) rounds given machines with

space 𝑂
(︁
𝑛2𝛿

)︁
.
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Algorithm 13 Triangle-Enumeration(𝐺 = (𝑉 ,𝐸))
1: Let the set of enumerated triangles to be 𝑇 ←∅.

2: Let 𝑄𝑖 be the set of vertices that have not yet been processed by iteration 𝑖. Initially

set 𝑄0← 𝑉 .

3: parfor 𝑖 = 0 to 𝑖 =
⌈︁
log3/2(log2(𝑛))

⌉︁
do

4: 𝛾𝑖 ← 2(3/2)
𝑖 · 2𝛼.

5: Let 𝐴𝑖 be the list of vertices 𝑣 ∈𝑄𝑖 where 𝑑𝑄𝑖 (𝑣) ≤ 𝛾𝑖 . Set 𝑄𝑖+1←𝑄𝑖 ∖𝐴𝑖 .
6: Use Lemma 4.8.1 to enumerate the set of triangles incident to 𝐴𝑖 . Let this set be 𝑇𝑖 .
7: 𝑇 ← 𝑇 ∪ 𝑇𝑖 .
8: Return 𝑇 .

Lemma 4.8.1. Given a graph 𝐺, a constant integer 𝑘 ≥ 2, and a subset 𝐴 ⊆ 𝐺 of vertices

such that for every 𝑣 ∈ 𝐴, 𝑑(𝑣) ≤ 𝛾 , we can generate all triangles in 𝐺 that are incident to

vertices in 𝐴 in 𝑂𝛿(1) rounds, 𝑂(𝑛2𝛿) space per machine, and 𝑂(𝑚𝛾) total space.

Proof. Let 𝑅 be the set of machines holding the edges incident to 𝐴. Here too, similarly to

the proof of Lemma 4.9.4, it will be easier to think of each machine𝑀 as a set of 𝑛𝛿 parts,

so that each edge, incident to a vertex in𝐴, resides on a single part. We duplicate each such

part, holding some neighbor of𝐴, 𝛼 times, using Lemma 4.2.3. (We will actually duplicate

machines, but, again, think of the duplicated machines as a collection of duplicated parts.)

By Lemma 4.2.3, this takes𝑂(log𝑛𝛿 𝛼) =𝑂𝛿(1) rounds. Fix some vertex 𝑣 ∈ 𝐴 and assume

that 𝑢 ∈𝑁 (𝑣) resides on part 𝑃𝑖(𝑣). After the duplication step, there are 𝛼 copies of each

part. We denote these copies 𝑃𝑖,1(𝑣), . . . , 𝑃𝑖,𝛼(𝑣). All parts 𝑃𝑖,𝑗(𝑣) where 𝑗 ∈ [𝛼] and 𝑣 ∈ 𝐴
then asks for 𝑣’s 𝑖-th neighbor in 𝑂(1) rounds of communication. Now, each part 𝑃𝑖,𝑗(𝑣)
creates 𝑂(1) edge queries to check whether its vertices form a triangle. All of the queries

generated by all parts can be answered in parallel using Lemma 4.2.2 in 𝑂𝛿(1) rounds.

Then each part that discovered a triangle incident to 𝑣 adds it to a list 𝐾 . Now we sort

the list 𝐾 and remove any duplicated triangles, so that the list only holds a single copy of

every clique incident to some vertex in 𝐴. The total round complexity is𝑂𝛿(1) due to the

duplications, sorting, and answering the queries. The space per machine is 𝑂(𝑛2𝛿) and

the total memory is 𝑂(𝑚𝛼) as each machine was duplicated 𝛼 times.

Using Lemma 4.8.1, we can now prove the space usage and round complexity of

Enumerate-Triangles.

Lemma 4.8.2. Given a graph𝐺 = (𝑉 ,𝐸)with arboricity 𝛼, Enumerate-Triangles(𝐺) uses
𝑂(𝑛𝛼2) total space, 𝑂𝛿(loglog𝑛) rounds on machines with 𝑂(𝑛2𝛿) space.

Proof. By Lemma 4.7.1, the number of vertices remaining in 𝑄𝑖 at the beginning of the

𝑖-th iteration of Enumerate-Triangles is at most
𝑛

22·((3/2)
𝑖−1) . By Lemma 4.8.1, the total

space usage of enumerating all triangles incident to 𝐴𝑖 is 𝑂(𝑚𝛾𝑖) =𝑂
(︁
𝑚 ·

(︁
2(3/2)

𝑖 · 2𝛼
)︁)︁

.
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The summation of the space used for all 𝑖 is then:

⌈log3/2(log2(𝑛))⌉∑︁
𝑖=0

(︃
𝑛

22·((3/2)
𝑖−1)

)︃
·
(︁
2(3/2)

𝑖
· 2𝛼2

)︁
=𝑂(𝑛𝛼2).

The number of rounds required by this algorithm is 𝑂(loglog𝑛) · 𝑂𝛿(1) =
𝑂𝛿(loglog𝑛).

Given the total space usage and number of rounds required by

Enumerate-Triangles, we can now prove the total space usage and number of

rounds required by Count-𝑘-Cliqes. But �rst, we show that for any graph 𝐺 = (𝑉 ,𝐸)
with arboricity 𝛼, all graphs 𝐺1, . . . ,𝐺𝑘−1 created by Count-𝑘-Cliqes has arboricity

𝑂(𝛼) for constant 𝑘.

Lemma 4.8.3. Given a graph 𝐺 = (𝑉 ,𝐸) with arboricity 𝛼 as input to

Enumerate-Triangles, all graphs 𝐺1, . . . ,𝐺𝑘−1 generated by the procedure have ar-

boricity 𝑂(𝛼) for constant 𝑘.

Proof. We prove this lemma via induction. In the base case, 𝐺1 = 𝐺 and so 𝐺1 has ar-

boricity 𝛼. Now we assume that 𝐺𝑖 for 𝑖 ∈ [𝑘 − 1] has arboricity 𝑂(𝛼) (for constant 𝑖)
and show that 𝐺𝑖+1 has 𝑂(𝛼) arboricity. Suppose that 𝐺𝑖 has arboricity 𝑐𝛼 for some

constant 𝑐. We prove via contradiction that the arboricity of 𝐺𝑖+1 is upper bounded by

3(𝑖 + 1)𝑐𝛼. Suppose for the sake of contradiction that the arboricity of 𝐺𝑖+1 is greater

than 3(𝑖 + 1)𝑐𝛼. Then, there must exist a subgraph, 𝐺𝑖+1[𝑉 ′] for some vertex set, 𝑉 ′ , of

𝐺𝑖+1 that contains greater than 3(𝑖+1)𝑐𝛼|𝑉 ′ | edges (by de�nition of arboricity). We now

convert this subgraph 𝐺𝑖+1[𝑉 ′] to a subgraph in 𝐺𝑖 . Every vertex in 𝑉 ′ maps to at most

𝑖 pairs of vertices in 𝐺𝑖 connected by an edge. Every edge in 𝐺𝑖+1[𝑉 ′] maps to at least

1 edge. Thus, the subgraph in 𝐺𝑖 that 𝐺𝑖+1[𝑉 ′] maps to contains at most 2𝑖|𝑉 ′ | vertices

and at least 3(𝑖 + 1)𝑐𝛼|𝑉 ′ | edges. This implies, by the de�nition of arboricity, that the

arboricity of 𝐺𝑖 is ≥ 3(𝑖+1)𝑐𝛼|𝑉 ′ |
2𝑖|𝑉 ′ | > 𝑐𝛼, a contradiction. Hence, the arboricity of 𝐺𝑖+1 is at

most 3(𝑖 + 1)𝑐𝛼. And we have proven that the arboricity of 𝐺𝑖+1 is 𝑂(𝛼) for constant 𝑘.

By induction, all graphs 𝐺1, . . . ,𝐺𝑘−1 have arboricity 𝑂(𝛼).

Now we prove our �nal theorem of the space and round complexity of

Count-𝑘-Cliqes.

Proof of Theorem 4.6.4. The number of 𝑖-cliques in a graph with arboricity 𝛼 is at most

𝑂(𝑚𝛼𝑖−2). Thus, by Lemma 4.8.2 and Lemma 4.8.3, Count-𝑘-Cliqes during the 𝑖-th call

uses 𝑂(𝑚𝛼𝑖) total space, 𝑂𝛿(loglog𝑛) rounds. Thus, Count-𝑘-Cliqes uses 𝑂(𝑚𝛼𝑘−2)
space, 𝑂𝛿(loglog𝑛) rounds given machines with 𝑂(𝑛2𝛿) space to count 𝑘-cliques given

that the procedure terminates on the (𝑘 − 2)-th iteration.

4.8.3 Exact 𝑘-Clique Counting in 𝑂
(︁
𝑛𝛼2

)︁
Total Space and

𝑂𝛿(loglog𝑛) Rounds

We can improve on the total space usage if we are given machines where the memory

for each individual machine satis�es 𝛼 < 𝑛𝛿
′/2

where 𝛿′ < 𝛿. In this case, we obtain
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an algorithm that counts the number of 𝑘-cliques in 𝐺 using 𝑂(𝑛𝛼2) total space and

𝑂𝛿(loglog𝑛) communication rounds.

The entire neighborhood of any vertex with degree ≤ 𝑛𝛿/2 can �t on one machine.

Suppose that 𝛼 < 𝑛𝛿
′/2

where 𝛿′ < 𝛿, then, there will always exist vertices that have

degree ≤ 𝑛𝛿/2. Our algorithm proceeds as follows:

Algorithm 14 Count-Cliques(𝐺 = (𝑉 ,𝐸))
1: Let 𝑄𝑖 be the set of vertices that have not yet been processed by iteration 𝑖. Initially

set 𝑄0← 𝑉 .

2: Let 𝐶 be the current count of cliques. Set 𝐶← 0.

3: for 𝑖 = 0 to 𝑖 =
⌈︁
log3/2(log2(𝑛))

⌉︁
do

4: 𝛾𝑖 ← 2(3/2)
𝑖 · 2𝛼.

5: Let 𝐴𝑖 be the list of vertices where 𝑑𝑄𝑖 (𝑣) ≤min(𝑐𝑛𝛿/2,𝛾𝑖) for some constant 𝑐.
6: Set 𝑄𝑖+1←𝑄𝑖 ∖𝐴𝑖 .
7: parfor 𝑣 ∈ 𝐴𝑖 do
8: Retrieve all neighbors of 𝑣. Let this list of 𝑣’s neighbors be 𝐿𝑣 .

9: Query for all pairs 𝑢,𝑣 ∈ 𝐿𝑣 to determine whether edge (𝑢,𝑣) exist. Retrieve all

edges that exist.

10: Count the number of triangles 𝑇𝑣 incident to 𝑣, accounting for duplicates.

11: 𝑇 ← 𝑇 + 𝑇𝑣 .

4.8.4 MPC Implementation Details

Accounting for Duplicates We account for duplicates by counting for each iteration

𝑖 how many triangles on each machine contains 1, 2 or 3 vertices which have degree

≤min(𝑐𝑛𝛿/2,𝛾𝑖) (again we call these vertices low-degree). We multiply the count of tri-

angles which have 𝑡 ≥ 2 low-degree vertices by
1
𝑡 to correct for over-counting due to

multiple low-degree vertices performing the count on the same triangle. Each machine

can retrieve the degrees of vertices in it in 𝑂𝛿(1) rounds and such information can be

stored on the machine given su�ciently small constant 𝑐 in Count-Cliqe.

Proof of Theorem 4.6.5. Since we are considering vertices with degree at most

min(𝑐𝑛𝛿/2,𝛾𝑖), by Lemma 4.7.3, the total space used by our algorithm during any

iteration 𝑖 is

𝑁𝑖 ·
(︁
min

(︁
𝑐𝑛𝛿/2,𝛾𝑖

)︁)︁2
< 16𝑛𝛼2.

By Lemma 4.2.2, we query for whether each of the min
(︁
𝑐𝑛𝛿/2,𝛾𝑖

)︁2
potential edges on

each machine is an edge in 𝐺 in parallel using 𝑂(𝑛𝛼2) total space and 𝑂𝛿(1) rounds.

If 𝛾𝑖 < 𝑐𝑛𝛿/2 for all iterations 𝑖, then by Theorem 4.6.1, the number of commu-

nication rounds required by Count-Cliqes is 𝑂𝛿(loglog𝑛). If, on the other hand,

𝑐𝑛𝛿/2 < 𝛾𝑖 , then the number of vertices remaining in𝑄𝑖 decreases by a factor of 𝑐𝑛𝛿/2 ev-

ery round. Thus, the number of rounds required in this case is𝑂
(︁
2+𝛿′
𝛿

)︁
. Since we assume
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𝛿′ and 𝛿 are constants, the number of communication rounds needed by this algorithm is

𝑂𝛿(loglog𝑛).

4.9 Counting Subgraphs of Size at Most 5 in Bounded

Arboricity Graphs

In this section, we present a procedure that for every subgraph 𝐻 such that |𝐻 | ≤ 5,

counts the exact number of occurrences of𝐻 in𝐺 in𝑂(
√︀
log𝑛) rounds and𝑂(𝑚𝛼3) total

memory, where as before, 𝛼 is an upper bound on the arboricity of 𝐺 7
. The procedure is

based on a recent paper by Bera, Pashanasangi and Seshadhri [BPS20] (henceforth BPS)

which presented an𝑂(𝑚𝛼3) time and space algorithm for the same task in the sequential

model. We will start by a short description of the BPS result, and then continue to explain

how to implement it in the MPC model.

4.9.1 The BPS algorithm

BPS generalize the ideas of Chiba and Nisheziki [CN85] for counting constant-size-cliques

and 4-cycles in the classical sequential model to counting all subgraphs of up to 5 nodes in

𝑂(𝑛+𝑚𝛼3) time. Let 𝐻 be the subgraph in question. The main idea of BPS is as follows.

The algorithm starts by computing a degeneracy ordering of 𝐺, which is an acyclic ori-

entation of 𝐺, denoted

−→
𝐺 , where each vertex has at most 𝑂(𝛼) outgoing neighbors. The

idea is then to consider all acyclic orientations of 𝐻 (up to isomorphisms), and for each

such acyclic orientation

−→
𝐻 , count the number of occurrences of

−→
𝐻 in

−→
𝐺 , as described

next. The algorithm computes what is referred to as a largest directed rooted tree sub-

graph (DRTS) of

−→
𝐻 , denoted

−→
𝑇 . That is, the DRTS

−→
𝑇 is a largest (in number of vertices)

tree that is contained in

−→
𝐻 such that all of the edges are directed away from the root of

−→
𝑇 . Given a DRTS

−→
𝑇 , proceed by looking for all copies of

−→
𝑇 in

−→
𝐺 . Once a copy of

−→
𝑇

is found, it needs to be veri�ed whether it can be extended to a copy of

−→
𝐻 in

−→
𝐺 . This

veri�cation is based on the observation that for any directed subgraph

−→
𝐻 on at most 5

vertices, and for every largest directed rooted tree

−→
𝑇 of

−→
𝐻 , the complement of

−→
𝑇 in

−→
𝐻

is a collection of rooted paths and stars
8
. Therefore, all potential completions of a copy of

−→
𝑇 to

−→
𝐻 in

−→
𝐺 can be computed and hashed in time 𝑂(𝑚 · 𝑝𝑜𝑙𝑦(𝛼)). See �gure below for

an illustration of a possible

−→
𝐻 and its DRTS

−→
𝑇 (adapted from [BPS20]). Hence, whenever

a copy of

−→
𝑇 is discovered in

−→
𝐺 , it can be veri�ed in𝑂(1/𝛿) rounds whether this copy can

be extended to

−→
𝐻 . Since all copies of

−→
𝑇 can be enumerated in 𝑂(𝑚𝛼3) time, the overall

algorithm takes 𝑂(𝑚𝛼3) time.

7
Strictly speaking, we will have 𝛼 ≤ 5𝛼(𝐺) but as this does not a�ect the asymptotic bounds, it is easier

to just relate to it as the exact arboricity.

8
This does not hold for subgraphs 𝐻 that are stars, but stars can be dealt with di�erently.
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Figure 4-1: From left to right: A subgraph H; a possible directed copy of 𝐻 ; the DRTS in

green, and its complement with respect to 𝐻 in red. Based on a �gure from BPS [BPS20].

4.9.2 Implementation in the MPC model

Notation 4.9.1 (Outgoing neighbors and out-degree). Let

−→
𝐺 = (𝑉 ,

−→
𝐸 ) be a directed graph.

For a vertex 𝑣 ∈ 𝑉 , We denote by 𝑁+(𝑣) its set of outgoing neighbors, and by 𝑑+(𝑣) =
|𝑁+(𝑣)| its outgoing degree or out-degree.

De�nition 4.9.2 (Degeneracy and degeneracy ordering.). A degeneracy ordering of a

graph 𝐺, is an ordering obtained by repeatedly removing a minimum degree vertex and all

the edges incident to this vertex. A vertex 𝑢 precedes a vertex 𝑣 in this ordering, 𝑢 ≺ 𝑣, if 𝑢
was removed before 𝑣. The degeneracy of a graph 𝐺 is then the maximum outgoing degree

over all vertices in a degeneracy ordering of 𝐺.

Theorem 4.9.3 (Thm 2 in [GLM19].). Given a graph 𝐺 with arboricity 𝛼, it outputs, with

high probability, an orientation of 𝐺,
−→
𝐺 , where each vertex in

−→
𝐺 has out-degree at most

𝑂(𝛼). The algorithm performs 𝑂(
√︀
log𝑛 · loglog𝑛) rounds, uses ̃︀𝑂(𝑛𝛿) space per machine,

for an arbitrary constant 𝛿 ∈ (0,1), and the total memory is 𝑂(max{𝑚,𝑛1+𝛿}).

The following is a key lemma.

Lemma 4.9.4. Let

−→
𝐺 be a directed graph over𝑚 edges such that each vertex has out-degree

at most 𝛼. Let
−→
𝑇 be a directed rooted tree of size 𝑡 ≥ 2. We can list all copies of

−→
𝑇 in 𝐺 in

𝑂(1/𝛿) rounds, 𝑂(𝑛2𝛿) space per machine, and 𝑂(𝑚 ·𝛼𝑡−2) total memory.

Proof. Let 𝑎1, . . . , 𝑎𝑡 denote the vertices of

−→
𝑇 , where 𝑎1 is the root, and 𝑎𝑖 is the 𝑖th vertex

with respect to the BFS ordering of

−→
𝑇 . Let

−→
𝑇 𝑖 denote

−→
𝑇 [{𝑎0, . . . , 𝑎𝑖}].

We prove the claim by induction on 𝑡. For 𝑡 = 2, all edges in 𝐺 are copies of

−→
𝑇 , so the

claim holds trivially.

Assume that the claim holds for 𝑖, and we now prove it for 𝑖+1. By the assumption, in

𝑂(1/𝛿) rounds and 𝑂(𝑚𝛼𝑖−2) total memory, all copies of

−→
𝑇 𝑖 can be listed. We will show

that we can use these copies to �nd all copies of

−→
𝑇 𝑖+1 in 𝑂(1/𝛿) rounds and 𝑂(𝑚𝛼𝑖−1)

memory. Recall that we have machines with 𝑂(𝑛2𝛿) memory. We will divide the copies

among the machines, so that each machine only holds 𝑂(𝑛𝛿) copies. Let 𝑀 be some

machine containing copies 𝜏1, . . . , 𝜏𝑛𝛿 of

−→
𝑇 𝑖 . It will be easier to think of𝑀 as a collection

of 𝑛𝛿 constant memory parts, each holding a single copy of

−→
𝑇 𝑖 . Consider a speci�c copy 𝜏
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of

−→
𝑇 𝑖 and let 𝑃𝜏 denote the part storing that copy. Let 𝑎𝑝 denote the vertex in

−→
𝑇 that is the

parent of 𝑎𝑖+1, and let𝑢 denote the vertex in 𝜏 that is mapped to 𝑎𝑝. We would like to create

all tuples (𝜏,𝑤), where 𝑤 ∈ 𝑁+(𝑢) ∖ 𝜏 and 𝑤 can be mapped to 𝑎𝑖+1. In order to achieve

this we duplicate 𝑃𝜏 for 𝛼 times, to get copies 𝑃𝜏,1, . . . , 𝑃𝜏,𝛼 . Each part 𝑃(𝜏,𝑖) then asks 𝑢

for its 𝑖th neighbor 𝑤, and then checks if 𝜏 can be extended to

−→
𝑇 𝑡1+1 using 𝑤. If (𝜏,𝑤) is

a copy of

−→
𝑇 𝑖+1, then the part creates the tuple (𝜏,𝑤). All the the duplications above can

be done in parallel to all copies of

−→
𝑇 residing on a single machine, so that in total each

machine is duplicated 𝛼 time. Since each machine has 𝑂(𝑛𝛿) information, and 𝑂(𝑛2𝛿)
space, by Lemma 4.2.3, this process takes 𝑂(log𝑛𝛿 𝛼) = 𝑂(1/𝛿) rounds. Furthermore, as

each machine is duplicated 𝛼 times, the amount of total memory increases by a factor of

𝛼.

Hence, at the end of the process, all copies of

−→
𝑇 are generated, the round complexity

is 𝑂(1/𝛿), and the total memory is 𝑂(𝑚𝛼𝑡−2).

For a directed graph

−→
𝐺 , we consider the following lists of key-value pairs, as described

in Lemma 15 in [BPS20].

• ℋℳ1 : ((𝑢,𝑣),1) for all (𝑢,𝑣) ∈ 𝐸(
−→
𝐺 ).

• ℋℳ2 : (𝑆,ℓ) ∀𝑆 ⊆ 𝑉 (
−→
𝐺 ) such that 1 ≤ |𝑆 | ≤ 4 and ℓ is the number of vertices 𝑢

such that 𝑆 ⊆𝑁+(𝑢).

• ℋℳ3 :
(︁
(𝑆1,𝑆2, ℓ)

)︁
∀𝑆1,𝑆2 ⊆ 𝑉 (

−→
𝐺 ), where 1 ≤ |𝑆1 ∪ 𝑆2| ≤ 3, and ℓ is the number

of edges 𝑒 = (𝑢,𝑣) ∈ 𝐸(
−→
𝐺 ) such that 𝑆1 ⊆𝑁+(𝑢) and 𝑆2 ⊆𝑁+(𝑣).

Lemma 4.9.5. Let

−→
𝐺 be a directed graph with 𝑚 edges, such that for every 𝑣 ∈ 𝑉 (

−→
𝐺 ),

𝑑+(𝑣) ≤ 𝛼. The listsℋℳ1,ℋℳ2 andℋℳ3 can be computed in𝑂(1/𝛿) rounds and𝑂(𝑚𝛼3)
total memory.

Proof. In order to create ℋℳ1, each vertex 𝑢 simply adds for each 𝑣 ∈ 𝑁+(𝑢) the pair

((𝑢,𝑣),1) to the list. Clearly this can be done in 𝑂(1) rounds, and 𝑂(𝑚) total memory.

We now consider ℋℳ2. Let 𝑠 = |𝑆 | denote the size of the requested set. Fix 𝑠, and let

−→
𝑇 be a DRT which consists of a root and 𝑠 outgoing neighbors. By Lemma 4.9.4, we can

generate all copies of

−→
𝑇 in𝑂(1/𝛿) rounds, and𝑂(𝑚·𝛼𝑠−2) =𝑂(𝑚·𝛼2) total memory. From

each copy (𝑣,𝑢1, . . . ,𝑢𝑠) of

−→
𝑇 , we create a tuple ({𝑢1, . . . ,𝑢𝑠},1) and add it to a temporary

listℋℳ′2. Finally, we use Theorem 4.2.1 to sort this list and aggregate the counts of each

set 𝑆 = {𝑢1, . . . ,𝑢𝑠}, so that for every 𝑆 we create the tuple (𝑆,ℓ) and add it toℋℳ2, where

ℓ is the number of occurrences of the tuple (𝑆,1) inℋℳ′2. By Theorem 4.2.1, this process

takes 𝑂(log𝑛𝛿𝑚 ·𝛼2) =𝑂(1/𝛿) rounds.

ℋℳ3 is constructed similarly. Fix some 𝑠1 and 𝑠2 such that 1 ≤ 𝑠1 + 𝑠2 ≤ 3, and

consider the corresponding DRT

−→
𝑇 . That is,

−→
𝑇 is a DRT with a vertex 𝑢 with 𝑠1 outgoing

neighbors, where one of the neighbors has 𝑠2 additional outgoing neighbors. This is a

DRT over |𝑆1| + |𝑆2| + 1 ≤ 4 vertices, so by Lemma 4.9.4, we can generate all copies in

𝑂(1/𝛿) rounds, and 𝑂(𝑚 ·𝛼2) total memory. From the list of all copies we can generate

ℋℳ3, similarly to as described forℋℳ2, in 𝑂(1/𝛿) rounds.
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Theorem 4.9.6. Let𝐺 = (𝑉 ,𝐸) be a graph with 𝑛 = |𝑉 | and𝑚 = |𝐸|. There is an algorithm
for counting the number of occurrences of any given subgraph 𝐻 over 𝑘 ≤ 5 vertices in 𝐺
with high probability, with round complexity𝑂(

√︀
log𝑛+1/𝛿),𝑂(𝑛2𝛿)memory per machine,

and 𝑂(𝑚𝛼3) total memory.

Proof. If 𝐻 is a 𝑘-star, then the number of occurrence of 𝐻 in 𝐺 is simply

∑︀
𝑣∈𝑉

(︀𝑑(𝑣)
𝑘

)︀
where

(︀𝑑(𝑣)
𝑘

)︀
= 0 for 𝑘 > 𝑑(𝑣), which can be computed in 𝑂(1) rounds. Hence, we assume

that 𝐻 is not a star.

The �rst step in the algorithm of BPS is to direct the graph 𝐺 according to the de-

generacy ordering (see De�nition 4.9.2). We achieve this using the algorithm of [GLM19]

described in Theorem 4.9.3. Note that the algorithm of [GLM19] returns an approximate

degeneracy ordering, but as the degeneracy of a graph is at most twice the arboricity, it

holds that each vertex has out-degree 𝑂(𝛼).

Given the ordering of

−→
𝐺 , the algorithm continues by considering all orientations

−→
𝐻

of 𝐻 (up to isomorphisms). For each

−→
𝐻 it computes the maximal rooted directed tree,

DRT, of

−→
𝐻 , denoted

−→
𝑇 . As𝐻 is of constant size, this can be computed in𝑂(1) rounds on

a single machine.

The next step is to �nd all copies of

−→
𝑇 in

−→
𝐺 . By Lemma 4.9.4, this can be implemented

in 𝑂(1/𝛿) rounds, 𝑂(𝑛2𝛿) space per machine, and 𝑂(𝑚𝛼2) total memory.

Now, for each copy of

−→
𝑇 in

−→
𝐺 it needs to be veri�ed if the copy can be completed

to a copy of

−→
𝐻 in

−→
𝐺 . By Lemma 16 in [BPS20], this can be computed in if given query

access toℋℳ1,ℋℳ2 andℋℳ3, as de�ned in Section 4.9.2. That is, it can be determined

if a copy 𝜏 of

−→
𝑇 using 𝑂(|𝐻 |2) = 𝑂(1) queries to the lists ℋℳ1, ℋℳ2 and ℋℳ3. By

Lemma 4.9.5, these lists can be generated in 𝑂(1/𝛿) rounds, and 𝑂(𝑚𝛼2) total memory.

For 𝑖 ∈ [1..3], let 𝑄𝑖 denote the set of all queries to list ℋℳ𝑖 . By [GSZ11], all queries 𝑄𝑖
toℋℳ𝑖 can be answered in time 𝑂(1/𝛿).

Finally, by Lemma 16 in [BPS20], each 𝑣 can use the answers to its queries to compute

the number of copies of

−→
𝐻 it can be extended to. Therefore, by summing over all vertices

and over all possible orientations of 𝐻 , and taking into account isomorphisms, we can

compute the number of occurrences of𝐻 in

−→
𝐺 . The total round complexity is dominated

by computing the approximate arboricity orientation of 𝐺 and the sorting operations.

Therefore the round complexity is 𝑂(
√︀
log𝑛 loglog𝑛 + 1/𝛿). The space per machine is

𝑂(𝑛2𝛿), and the total memory over all machines is 𝑂(𝑚𝛼3).

4.10 Experiments

We performed experiments using our algorithms given in Sections 4.4 and 4.6. Our

code [exp20] simulates the algorithms described in these sections as well as the MPC

procedures we use as subroutines. In the implementation of the algorithm of Section 4.4

we output the approximation factor we achieve using our algorithm versus the amount

of space per machine. In the implementation of the exact algorithm of Section 4.6 we out-

put the number of MPC rounds necessary to execute the algorithm versus the arboricity
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bound we pass into it. In the implementation of the algorithm of Section 4.4, our algorithm

achieves a better approximation on all tested graphs than the best-known previous algo-

rithm. In the implementation of the exact algorithm of Section 4.6, our algorithm achieves

fewer number of MPC rounds than the baseline algorithm. We include these experiments

in this chapter only as a proof-of-concept. We leave as interesting future directions im-

plementing and testing our algorithms in massively parallel software framworks, such as

Apache Hadoop and others, on much larger graphs.

All real-world graphs on which we performed our experiments can be found in the

Stanford Large Network Dataset Collection (SNAP) [LK14].

We tested our algorithms against datasets described in Table 4.1.

File Number of Vertices (𝑛) Number of Edges (𝑚) Number of Triangles (𝑇 )

email-Eu-core 1005 25571 105461

ego-Facebook 4039 88234 1612010

feather-lastfm-social 7624 27806 40433

ca-GrQc 5242 14496 48260

musae-twitch (DE) 9498 153138 603088

ca-HepTh 9877 25998 28339

oregon1_010519 11051 22724 17677

ca-HepPh 12008 118521 3358499

email-Enron 36692 183831 727044

Table 4.1: All datasets can be found in the Stanford Large Network Dataset (SNAP) Collec-

tion [LK14]. This table shows the number of vertices, edges, and exact number of triangles

in each of these graphs.

Results for Section 4.6 The �rst set of experiments were performed using our new

exact triangle count algorithm provided in Section 4.6. The results are shown in Fig. 4-

2. Our experiments were performed on �ve datasets: oregon1_010519, email-Enron, ca-
HepTh, ca-GrQc, email-Eu-core. We compare against the baseline algorithm (labeled “-

base” in the �gures) of removing (and counting) the vertices with degree at most the

degeneracy of each graph during each round. We measure the number of rounds our

algorithm takes against the amount of space per machine (indicated by the di�erent colors

of the bars) and our initial setting of our degree bound. Recall that since the degree bound

of our algorithm for removal of vertices grows doubly exponentially, we can set our initial

degree bound to be smaller than the degeneracy of the graph. Note that for the baseline

algorithm, we cannot do this since the degree bound remains the same (and hence, a

smaller degree bound than the degeneracy will cause the algorithm to terminate at some

point with vertices still left in the graph with degree greater than the bound). Our initial

degree bound settings are shown on the x-axes while the y-axes shows the number of

rounds. The machine space bounds are in terms of the number of nodes of the graph that

can �t in each machine. These numbers are shown in the legend indicating the colors of

the bars. When setting the cuto� in the baseline algorithm, we consider the degeneracy
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of the graphs instead of the arboricity. But as we noted previously, the degeneracy of the

graph is at most within a constant factor of 2 of the arboricity of the graph.

We see in Fig. 4-2 that our algorithms result in less (or the same number of) rounds

than the baseline algorithm for all cases given the same space and degree bound except the

2225 case for the email-Enron dataset. This con�rms our theoretical analysis of the asymp-

totic number of rounds of our algorithm, taking 𝑂𝛿(loglog𝑛) compared to the 𝑂𝛿(log𝑛)
rounds we expect the baseline algorithm to take. The anomaly with the single 2225 case

might be due to the larger constant factor (derived from MPC sort and �nd duplicate) of

having to sort more items per round in our case compared to the baseline case. The ex-

periments con�rm that our algorithm can count triangles using much lower initial degree

bounds than the degeneracy of the graph. Even for such degree bounds, the number of

rounds necessary is still often (much) less than the number of rounds necessary for the

baseline algorithm. This provides the advantage of being able to use our algorithm for

real-world graphs without �rst needing to determine their degeneracy value.

File 𝛿 Partition Approximation ([PT12]) Our Approximation

ego-Facebook 0.5 0.62 1.31

feather-lastfm-social 0.5 5.41 1.08

ca-GrQc 0.5 4.53 1.64

ca-HepPh 0.5 0.66 1.22

ego-Facebook 0.75 0.75 0.97

ca-GrQc 0.75 5.82 0.82

ca-HepPh 0.75 5.90 0.86

musae-twitch (DE) 0.75 0.74 0.95

oregon1_010519 0.75 0.60 0.71

Table 4.2: The approximation factors obtained when running our algorithm given in Sec-

tion 4.4 against our implementation of the partition algorithm given in Algorithm 1 and

Algorithm 2 of [PT12]. We perform the algorithms on machines of size 2𝑚𝛿 · log𝑛. The

approximation factor is calculated by the equation 𝐶/𝑇 where 𝐶 is the triangle count

returned by either algorithm and 𝑇 is the actual count of the triangles in the graph.

Results for Section 4.4. The results of experiments for our approximation algorithm

described in Section 4.4 are given in Table 4.2. We further compare our approxima-

tions against our implementation of the partition algorithm given in Algorithms 1 and 2

of [PT12]. In the implementation of our algorithm, due to the (sequential) time con-

straints of simulating our algorithms, we do not use a 𝑘-wise independent hash function,

as such functions require too much time to compute. Hence, for our experiments, we use

standard pseudorandom functions given in programming packages (speci�cally numpy
in Python3). For each of the experiments the space per machine is 2𝑚𝛿 · log𝑛, where 𝛿 is
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(e) email-Eu-core. Degeneracy is 34.

Figure 4-2: This set of graphs shows the results of our experiments using our exact count-

ing algorithm described in Section 4.6. We test on �ve datasets labeled under each plot. In

each of these graphs, we compare against the number of rounds required by the MPC al-

gorithm that removes, in each round, only vertices with degree at most the degeneracy of

the graph 𝛼. Each color represents a di�erent space per machine, which is represented in

terms of the number of nodes that can �t in each machine. The colors (green, red, yellow)

labeled with “-base” represent our baseline algorithm results.
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speci�ed in Table 4.2. The same space per machine is used for both algorithms. The total

space used for both algorithms is 2𝑚 ·log𝑚. For the implementation of our algorithm, we

set the probability of sampling to be
1
5 ·

√︁
𝑆
𝑀·𝑘 where we set 𝑘 =max(2,

⌊︀
6.5 · log𝑛

⌋︀
). We

chose to test these algorithms on these speci�c 𝛿 values because 𝛿 = 0.5,0.7 represent

�̃�(𝑛) and 𝑜(𝑚), respectively. Because the theoretical guarantees of our algorithm relies

on some speci�c contraints on 𝑇 and 𝑆 , we wanted to see how our algorithm performs

on real-world networks. We use the median-of-means trick for the concentration for both

algorithms.

As Table 4.2 shows, compared to the partition algorithm, our algorithm obtains a bet-

ter approximation ratio for all datasets and for all machine spaces. This follows from our

theoretical analysis as we ensure (1 + 𝜀)-approximations on the number of triangles in

each graph using �̃�(𝑛) space and with a quadratically smaller constraint on the number

of actual triangles in the graph than all other previous work. Thus, we show that practi-

cally, on real-world graphs, our algorithm obtains better approximations on the number

of triangles even when given smaller space per machine compared to the state-of-the-art

algorithm of [PT11].

4.11 Open Questions

There are a number of key open questions that result from our work:

1. Can we obtain a better bound on the number of triangles, 𝑇 , while guaranteeing a

(1+𝜀)-approximation, 𝑂(𝑛𝛿) space per machine (for any constant 𝛿 > 0),
̃︀𝑂(𝑛+𝑚)

total space, and𝑂(1) rounds? The main challenge for us was obtaining the induced

subgraph for each set of sampled vertices in a machine; perhaps with a di�erent

MPC procedure for doing this, one can obtain a better bound on 𝑇 .

2. Our exact triangle counting algorithm uses 𝑂(loglog𝑛) rounds. Is it possible to

obtain 𝑂(1) rounds while using 𝑂(𝑛𝛿) space per machine (for constant 𝛿 > 0) and

𝑂(𝑚𝛼) total space?

3. The best-known algorithm for computing a (2+𝜀)-approximate 𝑘-core decomposi-

tion in 𝑂(𝑛𝛿) space per machine (for constant 𝛿 > 0) requires 𝑂(
√︀
log𝑛 · loglog𝑛)

rounds, whp, and total memory
̃︀𝑂 (︁

max{𝑚,𝑛1+𝛿}
)︁

[GLM19]. Is it possible to reduce

the number of rounds or the total memory for this problem using ideas from our

exact triangle counting algorithm (for graphs with bounded arboricity)?
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Chapter 5

Scheduling with Communication

Delay in Near-Linear Time

This chapter presents results from the paper titled, "Scheduling with Communication Delay

in Near-Linear Time" that the thesis author coauthored with Manish Purohit, Zoya

Svitkina, Erik Vee, and Joshua R. Wang [LPS
+
21]. This paper is currently under submission

at the time of the writing of this thesis.

5.1 Introduction

The problem of e�ciently scheduling a set of jobs over a number of machines is a fun-

damental optimization problem in computer science that becomes ever more relevant as

computational workloads become larger and more complex. Furthermore, in real-world

data centers, there exists non-trivial communication delay when data is transferred be-

tween di�erent machines. There is a variety of very recent literature devoted to the the-

oretical study of this topic [DKR
+

20, DKR
+

21, MRS
+

20]. However, all such literature to

date focuses on obtaining algorithms with good approximation factors for the schedule

length, but these algorithms require 𝜔(𝑛2) time (and potentially polynomially more) to

compute the schedule. In this chapter, we instead focus on e�cient, near-linear time algo-

rithms for scheduling while maintaining an approximation factor equal to that obtained

by the best-known algorithm for our setting [LR02].

Even simplistic formulations of the scheduling problem (e.g. precedence-constrained

jobs with unit length to be scheduled on 𝑀 machines) are typically NP-hard, and there

is a rich body of literature on designing good approximation algorithms for the many

variations of multiprocessor scheduling (refer to [Bru10] for a comprehensive history of

such problems). Motivated by a desire to better understand the computational complexity

of scheduling problems and to tackle rapidly growing input sizes, we ask the following

research question:

How computationally expensive is it to perform

approximately-optimal scheduling?

In this chapter, we focus on the classical problem of multiprocessor scheduling with

communication delays on identical machines where all jobs have unit size. The jobs that
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need to be scheduled have data dependencies between them, where the output of one

job acts as the input to another. These dependencies are represented using a directed

acyclic graph (DAG) 𝐺 = (𝑉 ,𝐸) where each vertex 𝑣 ∈ 𝑉 corresponds to a job and an

edge (𝑢,𝑣) ∈ 𝐸 indicates that job 𝑢 must be scheduled before 𝑣. In our multiprocessor

environment, if these two jobs are scheduled on di�erent machines, then some additional

time must be spent to transfer data between them. We consider the problem with uniform

communication delay; in this setting, a uniform delay of 𝜌 is incurred for transferring data

between any two machines. Thus for any edge (𝑢,𝑣) ∈ 𝐸, if the jobs 𝑢 and 𝑣 are scheduled

on di�erent machines, then 𝑣 must be scheduled at least 𝜌 units of time after 𝑢 �nishes.

Since the communication delay 𝜌 may be large, it may actually be more e�cient for a

machine to recompute some jobs rather than wait for the results to be communicated. Such

duplication of work can reduce schedule length by up to a logarithmic factor [MRS
+

20]

and has been shown to be e�ective in minimizing latency in schedulers for grid computing

and cloud environments [BOC08, CTR
+

17]. Our scheduling objective is to minimize the

makespan of the schedule, i.e., the completion time of the last job. In the standard three

�eld notation for scheduling problems, this problem is denoted “𝑃 | duplication,prec,𝑝𝑗 =
1, 𝑐 | 𝐶max”,

1
where 𝑐 indicates uniform communication delay.

This problem was studied by Lepere and Rapine, who devised an 𝑂(ln𝜌/ lnln𝜌)-
approximation algorithm for it [LR02], under the assumption that the optimal solution

takes at least 𝜌 time. However, their analysis was primarily concerned with getting a

good quality solution and less with optimizing the running time of their polynomial-time

algorithm. A naïve implementation of their algorithm takes roughly𝑂(𝑚𝜌+𝑛 ln𝑀) time,

where 𝑛 and 𝑚 are the numbers of vertices and edges in the DAG, respectively, and 𝑀 is

the number of machines. This runtime is based on two bottlenecks, (i) the computation of

ancestor sets, which can be done in𝑂(𝑚𝜌) time via propagating in topological order plus

merging and (ii) list scheduling, which can be done in 𝑂(𝑛 ln𝑀) time by using a priority

queue to look up the least loaded machine when scheduling a set of jobs.

However, with growing input sizes, it is highly desirable to obtain a scheduling algo-

rithm whose running time is linear in the size of the input. Our primary contribution is

to design a near-linear time approximation algorithm while preserving the approximation

ratio of the Lepere-Rapine algorithm:

Theorem 5.1.1. There is an 𝑂(ln𝜌/ lnln𝜌)-approximation algorithm for scheduling jobs

with precedence constraints on a set of identical machines in the presence of a uniform com-

munication delay that runs in 𝑂
(︂
𝑛 ln𝑀 + 𝑚 ln3𝑛 ln𝜌

lnln𝜌

)︂
time, assuming that the optimal solu-

tion has cost at least 𝜌.

Of course, this is tight, up to log factors, because any algorithm for this problem must

respect the precedence constraints, which require Ω(𝑛+𝑚) time to read in.

1
The �elds denote the following. Identical machine information: 𝑃 : number, 𝑀 , of machines is

provided as input to the algorithm; Job properties: duplication: duplication is allowed; prec: precedence

constraints; 𝑝𝑗 = 1: unit size jobs; 𝑐: there is non-zero communication delay; Objective: 𝐶max : minimize

makespan.
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5.1.1 Related Work

Algorithms for scheduling problems under di�erent models have been studied for decades,

and there is a rich literature on the topic (refer to [Bru10] for a comprehensive look). Here

we review work on theoretical aspects of scheduling with communication delay, which is

most relevant to our results.

Without duplication, scheduling a DAG of unit-length jobs with unit communica-

tion delay was shown to be NP-hard by Rayward-Smith [RS87], who also gave a 3-

approximation for this problem. Munier and König gave a 4/3-approximation for an un-

bounded number of machines [MK97], and Hanen and Munier gave a 7/3-approximation

for a bounded number of machines [HM01]. Hardness of approximation results were

shown in [BGK96, HLV94, Pic95]. In recent results, Kulkarni et al. [KLTY20] gave a quasi-

polynomial time approximation scheme for a constant number of machines and a constant

communication delay, whereas Davies et al. [DKR
+

20] gave an 𝑂(log𝜌 log𝑀) approxi-

mation for general delay and number of machines. Even more recently, Davies et al.

[DKR
+

21] presented a𝑂(log4𝑛)-approximation algorithm for the problem of minimizing

the weighted sum of completion times on related machines in the presence of communi-

cation delays. They also obtained a 𝑂(log3𝑛)-approximation algorithm under the same

model but for the problem of minimizing makespan under communication delay. Notably,

none of the aforementioned algorithms consider duplication.

Allowing the duplication of jobs was �rst studied by Papadimitriou and Yannakakis

[PY90], who obtained a 2-approximation algorithm for scheduling a DAG of identical

jobs on an unlimited number of identical machines. A number of papers have improved

the results for this setting [AK98, DA98, PLW96]. With a �nite number of machines,

Munier and Hanen [MH97] proposed a 2-approximation algorithm for the case of unit

communication delay, and Munier [Mun99] gave a constant approximation for the case of

tree precedence graphs. For a general DAG and a �xed delay 𝜌, Lepere and Rapine [LR02]

gave an algorithm that �nds a solution of cost 𝑂(log𝜌/ loglog𝜌) · (𝑂𝑃𝑇 + 𝜌), which is a

true approximation if one assumes that𝑂𝑃𝑇 ≥ 𝜌. This is the main result that this chapter

builds on. It applies to a set of identical machines and a set of jobs with unit processing

times. Recently, an𝑂(log𝑀 log𝜌/ loglog𝜌) approximation has been obtained for a more

general setting of 𝑀 machines that run at di�erent speeds and jobs of di�erent lengths

[MRS
+

20], also under the assumption that 𝑂𝑃𝑇 ≥ 𝜌. However, the running time of this

algorithm is a large polynomial, as it requires solving an LP with 𝑂(𝑀𝑛2) variables.

5.1.2 Technical Contributions

A naïve implementation of the Lepere-Rapine algorithm is bottlenecked by the need to

determine the set of all ancestors of a vertex 𝑣 in the graph, as well as the intersection of

this set with a set of already scheduled vertices. Since the ancestor sets may signi�cantly

overlap with each other, trying to compute them explicitly (e.g., using DFS to write them

down) results in superlinear work. We use a variety of technical ideas to only compute the

essential size information that the algorithm needs to make decisions about these ancestor

sets.

• Size estimation via sketching. We use streaming techniques to quickly estimate
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the sizes of all ancestor sets simultaneously. It costs 𝑂((|𝑉 | + |𝐸|) log2𝑛) time to

make such an estimate once, so we are careful to do so sparingly.

• Work charging argument. Since we cannot compute our size estimates too often,

we still need to perform some DFS for ancestor sets. We control the amount of work

spent doing so by carefully charging the edges searched to the edges we manage to

schedule.

• Sampling and pruning. Because we cannot brute-force search all ancestor sets,

we randomly sample vertices, using a consecutive run of unscheduleable vertices

as evidence that many vertices are not schedulable. This allows us to pay for an

expensive size-estimator computation to prune many ancestor sets simultaneously.

5.1.3 Organization

The main contribution of this chapter is our algorithm for scheduling small subgraphs in

near-linear time. We provide a detailed description and analysis of this algorithm in Sec-

tion 5.5. Then, we proceed with our algorithm for scheduling general graphs in Section 5.6.

5.2 Problem De�nition and Preliminaries

An instance of scheduling with communication delay is speci�ed by a directed acyclic

graph 𝐺 = (𝑉 ,𝐸), a quantity𝑀 ≥ 1 of identical machines, and an integer communication

delay 𝜌 > 1. We assume that time is slotted and let 𝑇 = {1,2, . . .} denote the set of integer

times. Each vertex 𝑣 ∈ 𝑉 corresponds to a job with processing time 1 and a directed edge

(𝑢,𝑣) ∈ 𝐸 represents the precedence constraint that job 𝑣 depends on job 𝑢. In total, there

are 𝑛 = |𝑉 | vertices (representing jobs) and𝑚 = |𝐸| precedence constraints. The parameter

𝜌 indicates the amount of time required to communicate the result of a job computed on

one machine to another. In other words, a job 𝑣 can be scheduled on a machine at time 𝑡
only if all jobs 𝑢 with (𝑢,𝑣) ∈ 𝐸 have either completed on the same machine before time

𝑡 or on another machine before time 𝑡 −𝜌. We allow for a job to be duplicated, i.e., copies

of the same vertex 𝑣 ∈ 𝑉 may be processed on di�erent machines. Letℳ be the set of

machines available to schedule the jobs. A schedule 𝜎 is represented by a set of triples

{(𝑚,𝑣, 𝑡)} ⊂ ℳ×𝑉 × 𝑇 where each triple represents that job 𝑣 is scheduled on machine

𝑚 at time 𝑡. The goal is to obtain a feasible schedule that minimizes the makespan, i.e.,

the completion time of the last job. Let OPT denote the makespan of an optimal schedule.

Since 𝜌 represents the amount of time required to communicate between machines, and

in practice, any schedule must communicate the results of the computation, we assume

that OPT ≥ 𝜌 as is standard in literature [LR02, MRS
+

20].

We now set up some notation to help us better discuss dependencies arising from the

precedence constraints of 𝐺. For any vertex 𝑣 ∈ 𝑉 , let Pred(𝑣) , {𝑢 ∈ 𝑉 | (𝑢,𝑣) ∈ 𝐸}
be the set of (immediate) predecessors of 𝑣 in the graph 𝐺, and similarly let Succ(𝑣) ,
{𝑤 ∈ 𝑉 | (𝑣,𝑤) ∈ 𝐸} be the set of (immediate) successors. For 𝐻 = (𝑉𝐻 ,𝐸𝐻 ), a subgraph

of 𝐺, we use 𝒜𝐻 (𝑣) , {𝑢 ∈ 𝑉𝐻 | ∃ a directed path from 𝑢 to 𝑣 in 𝐻} ∪ {𝑣} to denote the

set of (indirect) ancestors of 𝑣, including 𝑣 itself. Similarly, for 𝑆 ⊆ 𝑉 , we use 𝒜𝐻 (𝑆) ,⋃︀
𝑣∈𝑆𝒜𝐻 (𝑣) to denote the indirect ancestors of the entire set 𝑆 . We use ℰ𝐻 (𝑆) to denote
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Symbol Meaning

𝐺 = (𝑉 ,𝐸) main input graph

𝑛 = |𝑉 |,𝑚 = |𝐸| number of vertices / edges

𝐻 = (𝑉𝐻 ,𝐸𝐻 ) subgraph to be scheduled in each phase

𝜌 communication delay

𝑢,𝑣 vertices

𝒜𝐻 (𝑣) set of ancestors of vertex 𝑣 in graph 𝐻 including 𝑣
𝒜𝐻 (𝑆) 𝒜𝐻 (𝑆) =

⋃︀
𝑣∈𝑆𝒜𝐻 (𝑣) in graph 𝐻

ℰ𝐻 (𝑣) [resp., ℰ𝐻 (𝑆)] edges induced by 𝒜𝐻 (𝑣) [resp., 𝒜𝐻 (𝑆)] in graph 𝐻
𝑎𝐻 (𝑣), 𝑒𝐻 (𝑣) estimated size of 𝒜𝐻 (𝑣) and ℰ𝐻 (𝑣)

𝑀 number of machines

𝛾 threshold for fresh vs. stale vertices

Table 5.1: Table of Symbols

the edges of the subgraph induced by𝒜𝐻 (𝑆). We drop the subscript𝐻 when the subgraph

𝐻 is clear from context. Throughout, we use the phrase with high probability to indicate

with probability at least 1− 1
𝑛𝑐 for any constant 𝑐 ≥ 1.

For convenience, we summarize the notation we use throughout the chapter in Ta-

ble 5.1.

5.3 Technical Overview

We start by reviewing the algorithm of Lepere and Rapine [LR02], shown in Algorithm 15,

as our algorithm follows a similar outline. Then we describe the technical improvements

of our algorithm to achieve near-linear running time.

Algorithm 15 Outline of Lepere Rapine Scheduling Algorithm [LR02]

1: while 𝐺 is non-empty do

2: Let 𝐻 be a subgraph of 𝐺 induced by vertices with at most 𝜌 ancestors

3: while 𝐻 is non-empty do

4: for each vertex 𝑣 in 𝐻 do

5: if greater than 𝛾 fraction of 𝒜𝐻 (𝑣) is unscheduled then

6: Add 𝒜𝐻 (𝑣), in topological order, to a machine with earliest end time

7: Insert a delay until 𝐶 + 𝜌 on all machines, where 𝐶 is the latest end time

8: Remove scheduled vertices from 𝐻
9: Delete vertices in 𝐻 from 𝐺

Description of Lepere-Rapine [LR02] The outer loop (Line 1) iteratively �nds small

subgraphs of 𝐺 which consist of vertices that have height at most 𝜌 +1. We show in this

chapter that instead of considering their de�nition of height, it is su�cient to consider

small subgraphs to be those with at most 2𝜌 ancestors. We call one iteration of this loop
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(c) Remove scheduled vertices from the graph. Add a 𝜌
communication delay to the schedule after the previously

scheduled jobs. Find a new small subgraph and schedule it.

Figure 5-1: Overview of the Lepere-Rapine algorithm for scheduling general graphs.

a phase. Within the phase, 𝐻 is fully scheduled, after which the algorithm goes on to the

next “slice” of𝐺. However,𝐻 is not scheduled all at once, but instead each iteration of the

inner while loop (Line 3) schedules a subset of 𝐻 , which we call a batch. To determine

which vertices of 𝐻 make it into a batch, the algorithm checks the fraction of ancestors

of each vertex that have already been scheduled in the same batch. If this fraction for a

vertex 𝑣 is low (we call 𝑣 fresh in that case), then its ancestor set 𝒜𝐻 (𝑣) is list-scheduled

as a unit, i.e. topologically sorted and placed on one machine. If the fraction of scheduled

ancestors is high (in which case we call 𝑣 stale), 𝑣 is skipped in this iteration. This avoids

excessive duplication which would create too much load on the machines. After each

batch is placed on the machines, a delay of 𝜌 is added to the end of the schedule to allow

all the results to propagate. This allows the scheduled jobs to be deleted from 𝐻 . This

algorithm is illustrated pictorially in Fig. 5-1.

Runtime Challenges with Lepere-Rapine Naively, both �nding the small subgraphs

as well as determining each batch takes Ω(𝑛𝜌2) time. Determining which nodes belong

in the current small subgraph is a matter of whether their ancestor counts are more than

𝜌 or at most 𝜌. A standard procedure would be to apply DFS and merge ancestor sets, but

that can easily run in Ω(𝜌2) time per node (a node may have Ω(𝜌) direct parents, each
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with an ancestor size of Ω(𝜌) that needs to get merged in).

The other technical hurdle is in determining the batches to schedule. We would like

to schedule vertices whose ancestors do not overlap too much. To illustrate the di�culty

of applying sketching-based methods (e.g. min-hash), consider the following example.

Suppose that 𝜌2 elements have already been scheduled in this batch. Now, we want to

�nd the number of ancestors of vertex 𝑣,𝒜(𝑣), that intersect with the currently scheduled

batch, where |𝒜(𝑣)| ≤ 𝜌 by construction. By the lower bound given in [PSW14], even

estimating (up to 1±𝜀 relative error with constant probability) the size of this intersection

would require sketches of size at least 𝜀−2(𝜌2/𝜌) = 𝜀−2𝜌. Using such 𝜌-sized sketches over

all batches and all small subgraphs requires Ω(𝑛𝜌) time in total.

Since 𝜌 may be super-logarithmic, these naive implementations don’t quite meet our

goal of a near-linear time algorithm. To summarize, the two main technical challenges for

our setting are the following:

Challenge 5.3.1. We must be able to �nd the small subgraphs in near-linear time.

Challenge 5.3.2. We must be able to �nd the vertices to add to each batch ℬ in near-linear

time.

We solve Challenge 5.3.1 by relaxing the de�nition of small subgraph and using count-

distinct estimators (discussed in Section 5.4). The majority of this chapter focuses on

solving Challenge 5.3.2 which requires several new techniques for the problem outlined

in the rest of this section (Section 5.3.1 and Section 5.3.2). The below procedures run on a

small subgraph, 𝐻 = (𝑉𝐻 ,𝐸𝐻 ), where the number of ancestors of each vertex is bounded

by 2𝜌. Note the factor of 2 results from our count-distinct estimator. This is described

in Section 5.5.

5.3.1 Sampling Vertices to Add to the Batch

We �rst partition the set of unscheduled vertices in𝑉𝐻 into buckets based on the estimated

number of edges in the subgraph induced by their ancestors. (We place vertex 𝑣–if it has

no ancestors–into the smallest bucket.) More formally, let 𝑆𝑖 be the set of vertices not yet

scheduled in iteration 𝑖 (Line 3, Algorithm 15). We partition 𝑆𝑖 into 𝑘 =𝑂(log𝜌) buckets

𝐾1, . . . ,𝐾𝑘 such that bucket 𝐾𝑗 contains all vertices 𝑤 ∈ 𝑆𝑖 where 𝑒(𝑤) ∈ [2𝑗 ,2𝑗+1); 𝑒(𝑤)
denotes the estimated number of edges in the subgraph induced by ancestors of 𝑤.

From each bucket 𝐶𝑗 , in decreasing order of 𝑗 , we sample vertices, sequentially, with-

out replacement. For each sampled vertex 𝑣, we enumerate its ancestors and determine

how many are in the current batch ℬ. If at least a 𝛾-fraction of the vertices are not in ℬ
and at least a 𝛾-fraction of the edges in the induced subgraph 𝐺𝐻𝑖 (𝑣) are not in ℬ, then

add 𝑣 to ℬ. We call such a vertex 𝑣 fresh. Otherwise, we do not add 𝑣 to ℬ and label this

vertex as stale. For our algorithms, we set 𝛾 = 1√
𝜌 but 𝛾 can be set to any value 𝛾 < 1/2.

Lepere-Rapine did not consider edges in their algorithm because the number of edges in

the induced subgraph does not a�ect the schedule length; however, considering edges is

crucial for our algorithm to run in near-linear time.

For each bucket sequentially, we sample vertices uniformly at random, until we have

sampled 𝑂(log𝑛) consecutive vertices that are stale (or we have run out of vertices and

141



the bucket is empty). Then, the key intuition is that for every 𝑣 that we add to ℬ, we can

a�ord to charge the cost of enumerating the ancestor set for 𝑂(log𝑛) additional vertices in

the same bucket as well as 𝑂(log𝑛) additional vertices in each bucket with smaller 𝑗 to

it. Because we are looking at buckets with decreasing size, we can charge the additional

vertices found in future buckets to the most recently found fresh vertex. To see why

we can charge the samples from buckets with smaller 𝑖, suppose that one vertex 𝑣 in

bucket 𝑖 was added to 𝐵 and no vertices in buckets (𝑖, log𝜌] were added to 𝐵. Then,

the cost charged to 𝑣 of enumerating the 𝑂(log𝑛) ancestor sets in buckets [𝑖, log𝜌] is

at most

∑︀log𝜌
𝑗=𝑖 (2log𝜌−𝑗) log𝑛 =𝑂(2log𝜌−𝑖 log𝑛), asymptotically the same cost as charging

the sampled vertices from bucket 𝑖.

5.3.2 Pruning All Stale Vertices from Buckets

After we have performed the sampling procedure, we are still not done. Our goal is to

make sure that all vertices which are not included in ℬ are approximately stale. This

means that we must remove the stale vertices so that we can perform our sampling

procedure again in a smaller sample space in order to �nd additional fresh vertices. To

accomplish this, we perform a pruning procedure involving re-estimating the ancestor

sets consisting of vertices that have not been added to the batch. Using these estimates,

we remove all stale vertices from our buckets. Note that we do not rebucket the vertices

because none of the ancestor sets of the vertices changed sizes. Then, we perform our

sampling procedure above (again) to �nd more fresh vertices. The key is that since we

removed all stale vertices, the �rst sampled vertex from the largest non-empty bucket is fresh.

We perform the above sampling and pruning procedures until each bucket is empty.

Then, we schedule the batch and remove all scheduled vertices from 𝐻 and proceed

again with the procedure until the graph is empty. We perform a standard simple greedy

list scheduling algorithm (Appendix A.2) on our batch on 𝑀 machines.

5.4 Estimating Number of Ancestors

Let �̃� = (𝑉 ,�̃�) be an arbitrary directed, acyclic graph. We �rst present our algorithm to

estimate the number of ancestors of any vertex 𝑣 ∈ 𝑉 . Consider any vertex 𝑣 ∈ 𝑉 and

let 𝑝1,𝑝2, . . .𝑝ℓ be the predecessors of 𝑣 in �̃�. Then we have 𝒜�̃�(𝑣) = ∪ℓ𝑖=1𝒜�̃�(𝑝𝑖)∪ {𝑣}
and hence |𝒜�̃�(𝑣)| is the number of distinct elements in the multiset ∪ℓ𝑖=1𝒜�̃�(𝑝𝑖)∪{𝑣}. In

order to estimate |𝒜�̃�(𝑣)| e�ciently, we use a procedure to estimate the number of distinct

elements in a data stream. This problem, known as the count-distinct problem, is well stud-

ied and many e�cient estimators exist [AMS96, BYJK
+

02, WVZT90, FFGM07, KNW10].

Since we need to estimate |𝒜�̃�(𝑣)| for all vertices 𝑣 ∈ 𝑉 in near-linear time, we require

an additional mergeable property to ensure that we can e�ciently obtain an estimate for

|𝒜�̃�(𝑣)| from the estimates of the parent ancestor set sizes {|𝒜�̃�(𝑝1)|, . . . , |𝒜�̃�(𝑝ℓ)|}.
We formally de�ne the notion of a count-distinct estimator and the mergeable property.
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De�nition 5.4.1. For any multiset 𝒮 , let |𝒮| denote the number of distinct elements in 𝒮 .
We say 𝑇 is an (𝜀,𝛿,𝐷)-CountDistinctEstimator for 𝒮 if it uses space 𝐷 and returns a

value 𝑠 such that (1− 𝜀)|𝒮| ≤ 𝑠 ≤ (1 + 𝜀)|𝒮| with probability at least (1− 𝛿).

De�nition 5.4.2 (Mergeable Property). An (𝜀,𝛿,𝐷)-CountDistinctEstimator exhibits the
mergeable property if estimator 𝑇1 for multiset 𝒮1 and estimator 𝑇2 for multiset 𝒮2 can be

merged in 𝑂(𝐷) time using 𝑂(𝐷) space into an (𝜀,𝛿,𝐷)-estimator for 𝒮1 ∪𝒮2.

We note that the count-distinct estimator in [BYJK
+

02] satis�es the mergeable property

and su�ces for our purposes. We include a description of the procedure and a proof of

the mergeable property in Appendix A.1.

Lemma 5.4.3 ([BYJK
+

02]). For any constant 𝜀 > 0 and 𝑑 ≥ 1, there exists an(︁
𝜀, 1
𝑛𝑑
,𝑂

(︁
1
𝜀2
log2𝑛

)︁)︁
-CountDistinctEstimator that satis�es the mergeable property where

𝑛 denotes an upper bound on the number of distinct elements.

Given such an estimator, one can readily estimate the number of ancestors of each ver-

tex 𝑣 ∈ 𝑉 in near-linear time by traversing the vertices of the graph in topological order.

An estimator for vertex 𝑣 can be obtained by merging the estimators for each predecessor

of 𝑣. Similarly, we can also estimate the number of edges |ℰ(𝑣)| in the subgraph induced

by ancestors of any vertex 𝑣 in near-linear time. We defer a detailed description of these

procedures to Algorithm 36 and Algorithm 37 in Appendix A.1.

5.4.1 Estimator E�ciency

Lemma 5.4.4. Given any input graph �̃� = (𝑉 ,�̃�) and constants 𝜀 > 0,𝑑 ≥ 1, there exists
an algorithm that runs in 𝑂

(︁
(|𝑉 |+ |�̃�|) log2𝑛

)︁
time and returns estimates 𝑎(𝑣) and 𝑒(𝑣) for

each 𝑣 ∈ 𝑉 such that (1 − 𝜀)|𝒜�̃�(𝑣)| ≤ 𝑎(𝑣) ≤ (1 + 𝜀)|𝒜�̃�(𝑣)| and (1 − 𝜀)|ℰ�̃�(𝑣)| ≤ 𝑒(𝑣) ≤
(1 + 𝜀)|ℰ�̃�(𝑣)| with probability at least 1− 1

𝑛𝑑
.

Proof. Lemma A.1.1 provides us with our desired approximation. Now, all that remains

to show is that Algorithm 36 and Algorithm 37 runs within our desired time bounds.

Algorithm 37 visits each vertex exactly once. For each vertex, it merges the estimators of

each of its immediate predecessors. By Lemma A.1.2, each merge takes𝑂
(︁
1
𝜀2
log2𝑛

)︁
time.

Because we visit each vertex exactly once, we also visit each predecessor edge exactly

once. This means that in total we perform 𝑂
(︁
𝑚
𝜀2
log2𝑛

)︁
merges. Since 𝜀 is constant, this

algorithm requires 𝑂(𝑚 log2𝑛) time. The same proof follows for Algorithm 37.

Throughout the remaining parts of the chapter, we assume that 𝜀 = 1/3 in our esti-

mation procedures and do not explicitly give our results in terms of 𝜀.

5.5 Scheduling Small Subgraphs in Near-Linear Time

Here, we consider subgraphs𝐻 = (𝑉 ,𝐸) such that every vertex in the graph has a bounded

number of ancestors and obtain a schedule for such small subgraphs in near-linear time.
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De�nition 5.5.1. A small subgraph is a graph 𝐻 = (𝑉𝐻 ,𝐸𝐻 ) where each vertex 𝑣 ∈ 𝑉𝐻
has at most 2𝜌 ancestors.

Our main algorithm schedules a small graph in batches using Algorithm 17. After

scheduling a batch of vertices, we insert a communication delay of 𝜌 time units so that

results of the computation from the previous batch are shared with all machines (similar

to Lepere-Rapine). Then, we remove all vertices that we scheduled and compute the next

batch from the smaller graph. We present this algorithm in Algorithm 16.

Algorithm 16 ScheduleSmallSubgraph(𝐻,𝛾)
Input 𝐻 = (𝑉𝐻 ,𝐸𝐻 ) where |𝒜𝐻 (𝑣)| ≤ 2𝜌 for all 𝑣 ∈ 𝑉𝐻 and parameter 0 < 𝛾 < 1/2.

Output A schedule of small subgraph 𝐻 on 𝑀 processors.

1: while 𝐻 ,∅ do

2: ℬ ← FindBatch(𝐻,𝛾). [Algorithm 17]

3: List schedule 𝒜(𝑣) for all 𝑣 ∈ ℬ. (Appendix A.2)

4: Insert communication delay of 𝜌 time units into the schedule.

5: Remove each 𝑣 ∈ 𝒜(ℬ) and all edges adjacent to 𝑣 from 𝐻 .

Our algorithm for scheduling small subgraphs relies on two key building blocks –

estimating the sizes of the ancestor sets (and ancestor edges) of each vertex (Section 5.4),

and using these estimates to �nd a batch of vertices that can be scheduled without any

communication (possibly by duplicating some vertices). We show how to �nd a batch in

Section 5.5.1.

5.5.1 Batching Algorithm

Recall that the plan is for our algorithm to schedule a small subgraph by successively

scheduling maximal subsets of vertices in the graph whose ancestors do not overlap too

much; we call such a set of vertices a batch. After scheduling each batch, we remove all

the scheduled vertices from the graph and iterate on the remaining subgraph.

A detailed description of this procedure is given in Algorithm 17. For each vertex

𝑣 ∈ 𝑉𝐻 , let 𝑎(𝑣) and 𝑒(𝑣) denote the estimated sizes of 𝒜𝐻 (𝑣) and ℰ𝐻 (𝑣) respectively

(henceforth referred to as 𝒜(𝑣) and ℰ(𝑣)). Then the 𝑖-th bucket, 𝐶𝑖 , is de�ned as 𝐶𝑖 =
{𝑣 ∈ 𝑉𝐻 | 2𝑖 ≤ 𝑒(𝑣) < 2𝑖+1}. Since every node 𝑣 ∈ 𝑉𝐻 has at most 𝑂(𝜌) ancestors, there

are only 𝑘 = 𝑂(log𝜌) such buckets. Recall that from Lemma 5.4.4, this estimation can

be performed in near-linear time. The algorithm maintains a batch ℬ of vertices that is

initially empty. For each non-empty bucket 𝐶𝑖 (processed in decreasing order of size), we

repeatedly sample nodes uniformly at random from the bucket (without replacement).

For each sampled node 𝑣 ∈ 𝐶𝑖 , we explicitly enumerate the ancestor sets𝒜(𝑣) and ℰ(𝑣)
and also compute𝒜(𝑣)∖𝒜(𝐵) and ℰ(𝑣)∖ℰ(𝐵). Since we can maintain the ancestor sets of

the current batchℬ in a hash table, this enumeration takes𝑂(|ℰ(𝑣)|) time. A sampled node

𝑣 is said to be fresh if |𝒜(𝑣) ∖𝒜(𝐵)| > 𝛾 |𝒜(𝑣)| and |ℰ(𝑣) ∖ ℰ(𝐵)| > 𝛾 |ℰ(𝑣)|; and said to be

stale otherwise. The algorithm adds all fresh nodes to the batch ℬ and continues sampling

from the bucket until it samples Θ(log𝑛) consecutive stale nodes. Once all the buckets

have been processed, we prune the buckets to remove all stale nodes and then repeat the
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sampling procedure until all buckets are empty. The pruning procedure is presented in

Algorithm 18. In this step, we again estimate the sizes of ancestor sets of all vertices in

the graph 𝐻 ∖𝒜(𝐵) to determine whether a vertex is stale.

Algorithm 17 FindBatch(𝐻,𝛾)

Input A subgraph 𝐻 = (𝑉𝐻 ,𝐸𝐻 ) such that |𝒜𝐻 (𝑣)| ≤ 2𝜌 for all 𝑣 ∈ 𝑉𝐻 ; 0 < 𝛾 < 1/2.

Output Returns batch ℬ, the batch of vertices to schedule.

1: Let 𝑁 =Θ(log𝑛).
2: Initially, ℬ ←∅ and all nodes are unmarked.

3: Obtain estimates 𝑎(𝑣) and 𝑒(𝑣) for all 𝑣 ∈ 𝑉𝐻 .

4: Let bucket 𝐶𝑖 = {𝑣 ∈ 𝑉𝐻 : 2𝑖 ≤ 𝑒(𝑣) < 2𝑖+1}.
5: while at least one bucket is non-empty do

6: for 𝑖 = 𝑘 to 1 do

7: Let 𝑠 = 0.

8: while 𝑠 < 𝑁 and |𝐶𝑖 | > 0 do

9: Let 𝑣 be a uniformly sampled node in bucket 𝐶𝑖 .
10: Find 𝒜(𝑣) and 𝒜(𝑣) ∖𝒜(ℬ) as well as ℰ(𝑣) and ℰ(𝑣) ∖ ℰ(ℬ).
11: if |𝒜(𝑣) ∖𝒜(ℬ)| > 𝛾 |𝒜(𝑣)| and |ℰ(𝑣) ∖ ℰ(ℬ)| > 𝛾 |ℰ(𝑣)| then
12: Mark 𝑣 as fresh, add 𝑣 to ℬ, and remove 𝑣 from 𝐾𝑖 .
13: Set 𝑠 = 0.

14: else

15: Mark 𝑣 as stale and remove 𝑣 from 𝐾𝑖 . 𝑠 = 𝑠+1.

16: 𝐶1, . . . ,𝐶𝑘← Prune(𝐻 , 𝐵, 𝐶1, . . . , 𝐶𝑘) [Algorithm 18].

17: Return ℬ.

5.5.2 Analysis

We �rst provide two key properties of the batch ℬ of vertices found by Algorithm 17 that

are crucial for our �nal approximation factor and then analyze the running time of the

algorithm.

Quality of the Schedule We show that ℬ comprises of vertices whose ancestor sets do

not overlap signi�cantly, and further that it is the “maximal” such set.

5.5.3 Charateristics of Batches

Lemma 5.5.2. The batch ℬ returned by Algorithm 17 satis�es |𝒜(ℬ)| > 𝛾
∑︀
𝑣∈ℬ |𝒜(𝑣)| and

|ℰ(ℬ)| > 𝛾
∑︀
𝑣∈ℬ |ℰ(𝑣)|.

Proof. Let ℬ(ℓ) ⊆ 𝐵 denote the set containing the �rst ℓ vertices added to 𝐵 by the algo-

rithm. We prove the lemma via induction. In the base case, ℬ(1) consists of a single vertex

and trivially satis�es the claim. Now suppose that the claim is true for some ℓ ≥ 1 and let

𝑣 be the (ℓ+1)-th vertex to be added to 𝐵. By Line 11 of Algorithm 17, we add a vertex 𝑣
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Algorithm 18 Prune(𝐻,𝐵,𝐶1, . . . ,𝐶𝑘)
Input A graph 𝐻 = (𝑉 ,𝐸), a batch ℬ ⊆ 𝑉 , and buckets 𝐶1, . . . ,𝐶𝑘 .
Output New buckets 𝐶1, . . . ,𝐶𝑘 .

1: Obtain estimates 𝑎𝐻 (𝑣) and 𝑒𝐻 (𝑣) for all nodes 𝑣 ∈ ∪𝑘𝑖=1𝐶𝑖 in the graph 𝐻 .

2: Let 𝐻 ′←𝐻 ∖𝒜(𝐵)
3: Obtain estimates 𝑎𝐻 ′ (𝑣) and 𝑒𝐻 ′ (𝑣) for all nodes 𝑣 ∈ ∪𝑘𝑖=1𝐶𝑖 in the graph 𝐻 ′ .
4: for 𝑖 = 𝑘 to 1 do

5: for each node 𝑣 in bucket 𝐶𝑖 do

6: 𝑋← 𝑎𝐻 ′ (𝑣)
𝑎𝐻 (𝑣)

.

7: 𝑌 ← 𝑒𝐻 ′ (𝑣)
𝑒𝐻 (𝑣)

.

8: if 𝑋 ≤ 2𝛾 or 𝑌 ≤ 2𝛾 then

9: Remove 𝑣 from 𝐶𝑖 .

10: Return the new buckets 𝐶1, . . . ,𝐶𝑘 .

into ℬ(ℓ) if and only if |𝒜(𝑣) ∖𝒜(ℬ(ℓ))| > 𝛾 |𝒜(𝑣)| and |ℰ(𝑣) ∖ ℰ(ℬ(ℓ))| > 𝛾 |ℰ(𝑣)|. Further-

more, since we enumerate𝒜(𝑣) via DFS, our calculation of the cardinality of each of these

sets is exact. We now have, |𝒜(ℬ(ℓ+1))| = |𝒜(ℬ(ℓ))|+ |𝒜(𝑣) ∖𝒜(ℬ)| > |𝒜(ℬ(ℓ))|+ 𝛾 |𝒜(𝑣)|.
By the induction hypothesis, we now have |𝒜(ℬ(ℓ+1))| > 𝛾

∑︀
𝑤∈ℬ(ℓ)𝒜(𝑤) + 𝛾𝒜(𝑣) =

𝛾
∑︀
𝑤∈ℬ(ℓ+1)𝒜(𝑤). The same proof also holds for ℰ(ℬ) and the lemma follows.

Lemma 5.5.3. If a vertex 𝑤 was not added to 𝐵, it is pruned by Algorithm 18, with high

probability. If a vertex 𝑣 is pruned by Algorithm 18, then |𝒜(𝑣) ∖ 𝒜(ℬ)| ≤ 4𝛾 |𝒜(𝑣)| or
|ℰ(𝑣) ∖ ℰ(ℬ)| ≤ 4𝛾 |ℰ(𝑣)|, with high probability.

Proof. We �rst prove that any vertex 𝑣 that is not added to 𝐵 must be removed from its

bucket by Algorithm 18. Any vertex not added to 𝐵 must have |𝒜(𝑣) ∖ 𝒜(𝐵)| ≤ 𝛾 |𝒜(𝑣)|.
By Lemma 5.4.4, 𝑎𝐻 ′ (𝑣) ≤ 4/3|𝒜(𝑣) ∖𝒜(𝐵)| and 𝑎𝐻 (𝑣) ≥ 2/3|𝒜(𝑣)|, with high probability.

This must mean that
𝑎𝐻 ′ (𝑣)
𝑎𝐻 (𝑣)

≤ 4/3|𝒜(𝑣)∖𝒜(𝐵)|
2/3|𝒜(𝑣)| ≤

4/3𝛾 |𝒜(𝑣)|
2/3|𝒜(𝑣)| ≤ 2𝛾 . Thus, 𝑣 will be pruned. The

same proof holds for 𝑒𝐻 ′ (𝑣).
We now prove that the pruning procedure successfully prunes vertices with not too

many unique ancestors. In Algorithm 18, by Lemma 5.4.4 (setting 𝜀 = 1/3), we have

with high probability, 𝑎𝐻 ′ (𝑣) ≥ 2/3|𝒜𝐻 ′ (𝑣)|. Similarly, with high probability, 𝑎𝐻 (𝑣) ≤
4/3|𝒜𝐻 (𝑣)|. This means 𝑋 = 𝑎𝐻 ′ (𝑣)

𝑎𝐻 (𝑣)
≥ 2/3|𝒜𝐻 ′ (𝑣)|

4/3|𝒜𝐻 (𝑣)|
= 1

2

(︁ |𝒜𝐻 ′ (𝑣)|
|𝒜𝐻 (𝑣)|

)︁
. By the same argument, we

also have 𝑌 = 𝑒𝐻 ′ (𝑣)
𝑒𝐻 (𝑣)

≥ 1
2

(︁ |ℰ𝐻 ′ (𝑣)|
|ℰ𝐻 (𝑣)|

)︁
with high probability.

By Line 8 of Algorithm 18, when we remove a vertex 𝑣 we have either 𝑋 ≤ 2𝛾 or

𝑌 ≤ 2𝛾 . By the above,𝑋,𝑌 ≥ 1
2(4𝛾) = 2𝛾 . Thus, the largest that

(︁ |𝒜𝐻 ′ (𝑣)|
|𝒜𝐻 (𝑣)|

)︁
or

(︁ |ℰ𝐻 ′ (𝑣)|
|ℰ𝐻 (𝑣)|

)︁
can

be while still being pruned is 4𝛾 . Thus, with high probability, we have either
|𝒜𝐻 ′ (𝑣)|
|𝒜𝐻 (𝑣)|

≤ 4𝛾

or
|ℰ𝐻 ′ (𝑣)|
|ℰ𝐻 (𝑣)|

≤ 4𝛾 . Since 𝒜𝐻 ′ (𝑣) =𝒜(𝑣) ∖𝒜(ℬ), the claim follows.

The above two lemmas tell us that there are enough unique elements in each batch 𝐵,

any vertex not added to 𝐵 will be pruned w.h.p., and the pruning procedure only prunes
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vertices with a large enough overlap with 𝐵 w.h.p. This allows us to show the following

lemma on the length of the schedule produced by Algorithm 16 for small subgraph 𝐻 .

We �rst show that we only call Algorithm 17 at most 𝑂
(︁
log1/𝛾 (𝜌)

)︁
times from Line 2

of Algorithm 16.

5.5.4 Number of Batches and Small Subgraph Schedule Length

Lemma 5.5.4. The number of batches needed to be scheduled before all vertices in 𝐻 are

scheduled is at most 4log1/4𝛾 (2𝜌), with high probability.

Proof. By Lemma 5.5.3, each vertex 𝑣 we do not schedule in a batch ℬ has at least (1 −
4𝛾)|𝒜(𝑣)| vertices in𝒜(ℬ) or at least (1−4𝛾)|ℰ(𝑣)| edges in ℰ(ℬ). Since we assumed that

all vertices in 𝐻 have ≤ 2𝜌 ancestors, this means that 𝑣 can only remain unscheduled for

at most 2log1/4𝛾 (4𝜌
2) batches until 𝒜(𝑣) and ℰ(𝑣) both become empty (𝐺𝑣 can have at

most 4𝜌2 edges).

Using Lemma 5.5.4, we can prove the length of the schedule for𝐻 using Algorithm 16.

The proof of this lemma is similar to the proof of schedule length of small subgraphs

in [LR02].

Lemma 5.5.5. With high probability, the schedule obtained from Algorithm 16 has size at

most
|𝑉𝐻 |
𝛾𝑀 +12𝜌 log1/4𝛾 (2𝜌) on𝑀 processors.

Proof. By de�nition of the input, each 𝒜(𝑣) for 𝑣 ∈ 𝑉𝐻 has at most 2𝜌 elements. Recall

that we schedule all elements in each batchℬ by duplicating the common shared ancestors

such that we obtain a set of independent ancestor sets to schedule. Then, we use a standard

list scheduling algorithm to schedule these lists; see Appendix A.2 for a classic list schedul-

ing algorithm. Each vertex in 𝐻 gets scheduled in exactly one batch since we remove all

scheduled vertices from the subgraph used to compute the next batch. Let 𝐵1,𝐵2, . . . ,𝐵𝑘
denote the batches scheduled by Algorithm 16. Let 𝐻𝑖 be the subgraph obtained from 𝐻
by removing batches 𝐵0, . . . ,𝐵𝑖−1 and adjacent edges. (𝐵0 is empty.) By Lemma 5.5.2,

with high probability, for each batch ℬ𝑖 , we have

∑︀
𝑣∈ℬ𝑖 |𝒜𝐻𝑖 (𝑣)| ≤

1
𝛾 |𝒜𝐻𝑖 (ℬ𝑖)|. Let

𝑍𝑖 =
1
𝛾 |𝒜𝐻𝑖 (ℬ𝑖)|.

Graham’s list scheduling algorithm [Gra69] for independent jobs is known to produce

a schedule whose length is at most the total length of jobs divided by the number of

machines, plus the length of the longest job. In our case, we treat each ancestor set as one

big independent job, and thus for each batch ℬ𝑖 , this bound becomes 𝑍𝑖/𝑀 +2𝜌.

Finally Algorithm 16 inserts an idle time of 𝜌 between two successive batches. The

total length of the schedule is thus upper bounded by (where 𝑘 is the number of batches):
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𝑘∑︁
𝑖=1

(︂𝑍𝑖
𝑀

+2𝜌+ 𝜌
)︂
≤ 3𝜌 · 4log1/4𝛾 (2𝜌)

𝑘∑︁
𝑖=1

𝑍𝑖
𝑀

(by Lemma 5.5.4)

≤ 3𝜌 · 4log1/4𝛾 (2𝜌) +
1
𝛾𝑀
·
𝑘∑︁
𝑖=1

|𝒜𝐻𝑖 (𝐵𝑖)|

=
|𝑉𝐻 |
𝛾𝑀

+12𝜌 log1/4𝛾 (2𝜌)

Running Time In order to analyze the running time of Algorithm 17, we need a couple

of technical lemmas. The key observation is that although computing the ancestor sets

𝒜(𝑣) and ℰ(𝑣) (in Line 10) of a vertex 𝑣 takes 𝑂(|ℰ(𝑣)|) time in the worst case, we can

bound the total amount of time spent computing these ancestor sets by the size of the

ancestor sets scheduled in the batch. There are two main components to the analysis.

First, we show that after every iteration of the pruning step, the number of vertices in

each bucket reduces by at least a constant fraction and hence the sampling procedure is

repeated at most𝑂(ln𝑛) times per batch. Secondly, we use a charging argument to upper

bound the amount of time spent enumerating the ancestor sets of sampled vertices.

Finding Stale Vertices. We �rst argue that with high probability, there are at most 𝑂(ln𝑛)
iterations of the while loop in Line 5 of Algorithm 17. Intuitively, in each iteration of the

while loop, the number of vertices in any bucket𝐶𝑖 reduces by at least a constant fraction.

5.5.5 Runtime of Scheduling Small Subgraphs

Lemma 5.5.6. For any constant 𝑑 ≥ 1 and 𝜓 > 0, there is a constant 𝑐 ≥ 1 such that, with

probability at least 1− 1
𝑛𝑑
, at most a 𝜓-fraction of remaining nodes in each bucket are fresh

after sampling 𝑐 ln𝑛 stale vertices consecutively.

Proof. Algorithm 17 samples the vertices in each bucket 𝐶𝑖 consecutively, uniformly at

random without replacement, until a new fresh vertex is found or at least 𝑐 ln𝑛 stale

vertices are sampled consecutively. Let 𝐹 be the set of fresh and stale vertices sampled (and

removed) so far from bucket 𝐾𝑖 before the most recent time a fresh vertex was sampled

from 𝐾𝑖 (i.e. 𝐹 includes all vertices sampled including and up to the most recent fresh

vertex sampled from 𝐾𝑖). Let 𝑓 be some fraction 0 < 𝑓 < 1. Suppose at most a 𝑓 -fraction

of the vertices in bucket 𝐶𝑖 are fresh after removing the previously sampled 𝐹 vertices

and 𝑐 ln𝑛−1 additional stale vertices. Such an 𝑓 exists for every bucket with at least one

fresh vertex and one stale vertex after doing such removal. (In the case when all vertices

in the bucket are fresh, all vertices from that bucket will be sampled and added to 𝐵. If all

vertices in the bucket are stale, then 𝑐 ln𝑛 stale vertices will be sampled immediately.)

From here on out, we assume the bucket 𝐾𝑖 only contains the remaining vertices after

the previously sampled 𝐹 vertices were removed. We assume the number of vertices in

𝐾𝑖 is more than 𝑐 ln𝑛. The expected number of fresh vertices in the 𝑐 ln𝑛 samples from

𝐶𝑖 is upper bounded by:
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𝑐 ln𝑛∑︁
𝑖=1

(︃
𝑖 ·

(︃
𝑐 ln𝑛
𝑖

)︃
𝑓 𝑖(1− 𝑓 )𝑐 ln𝑛−𝑖

)︃
= 𝑓 𝑐 ln𝑛.

The above is an upper bound on the expected number of fresh vertices in 𝐾𝑖 since 𝑓
is the fraction of fresh vertices after removing 𝑐 ln𝑛−1 stale vertices, so 𝑓 upper bounds

the current fraction of fresh vertices in 𝐾𝑖 .
By the Cherno� bound, the probability that we sample less than (1 − 𝜀)𝑓 𝑐 ln𝑛 fresh

vertices is less than exp
(︂
−𝜀

2𝑓 𝑐 ln𝑛
2

)︂
. However, we are instead sampling vertices until the

next 𝑐 ln𝑛 consecutive vertices are all stale.

When 𝑐 > 1
(1−𝜀)𝑓 , (1 − 𝜀)𝑓 𝑐 ln𝑛 ≥ 1 for any 0 < 𝜀 < 1 and 0 < 𝑓 < 1. Then, the

probability that no fresh vertices are sampled is less than exp
(︂
−𝜀

2𝑓 𝑐 ln𝑛
3

)︂
= 𝑛

−𝜀2𝑓 𝑐
3 . We

replace 𝑓 in this expression by a constant 𝜙 ∈ (0,1). If 𝑓 = 𝑜(1), then there exists a

constant 𝜙 for which at most a 𝜙-fraction of the vertices in 𝐾𝑖 are fresh. If 𝑓 = 𝜔(1),
then the probability becomes super-polynomially small. We can sample 𝑐 ln𝑛 vertices for

large enough constant 𝑐 ≥ 3𝑑
𝜀2𝜓

such that with probability at least 1− 1
𝑛𝑑

for any constant

𝑑 ≥ 1, there exists less than 𝜓-fraction of vertices in the bucket that are fresh if the next

𝑐 ln𝑛 sampled vertices are stale.

Lemma 5.5.7. We perform𝑂(ln𝑛) iterations of sampling and pruning, with high probabil-

ity, before all buckets are empty. In other words, with high probability, Line 5 of Algorithm 17

runs for 𝑂(ln𝑛) iterations.

Proof. We prove the lemma for one bucket 𝐶𝑖 and by the union bound, the lemma holds

for all buckets. First, any sampled vertex which is fresh is added to ℬ. Furthermore, we

showed in Lemma 5.5.3 that any vertex which is stale is removed from𝐶𝑖 by Algorithm 18.

Since the estimates 𝑎(𝑣) and 𝑒(𝑣) are within a
1
3-factor of |𝒜(𝑣)| and |ℰ(𝑣)|, respectively,

we can upper bound
𝑎𝐻 ′ (𝑣)
𝑎𝐻 (𝑣)

≤ 2 · |𝒜(𝑣)∖𝒜(𝐵)||𝒜(𝑣)| (same holds for 𝑒(𝑣)). If a vertex 𝑣 is stale, then

with high probability, we have either
𝑎𝐻 ′ (𝑣)
𝑎𝐻 (𝑣)

≤ 2|𝒜(𝑣)∖𝒜(𝐵)|
|𝒜(𝑣)| ≤ 2𝛾 or

𝑒𝐻 ′ (𝑣)
𝑒𝐻 (𝑣)

≤ 2𝛾 , and it is

removed by Line 8 of Algorithm 18. Since any fresh vertices that are sampled gets added

into ℬ and all stale vertices are pruned at the end of each iteration, it only remains to

show a large enough number of stale vertices are pruned.

Lemma 5.5.6 guarantees that, with high probability, at least (1 − 𝜓)-fraction of the

vertices in 𝐶𝑖 are stale for any constant 𝜓 ∈ (0,1). Then, Algorithm 18 removes at least

(1 − 𝜓)|𝐶𝑖 | vertices in 𝐶𝑖 in each iteration. The number of iterations needed is then

log1/(1−𝜓)(|𝐶𝑖 |) =𝑂(ln𝑛).
Since there exists𝑂(log𝜌) buckets and𝑂(𝑚) estimates, we can take the union bound

on the probability of success over all buckets and estimates. We obtain, with high proba-

bility, 𝑂(log𝑛) iterations are necessary before all buckets are empty.

Charging the Cost of Examining Stale Sets. Here we describe our charging argument that

allows us to explictly enumerate the ancestor set of each sampled vertex. Computing the
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ancestor set of a vertex 𝑣 takes time𝑂(|ℰ(𝑣)|) using DFS. Since a fresh vertex gets added to

the batch, the cost of computing the ancestor set of a fresh vertex can be easily bounded by

the set of edges in ℰ(𝐵), achieving a total cost, speci�cally, of 𝑂
(︁
1
𝛾 |ℰ(𝐵)|

)︁
. Our charging

argument allows us to bound the cost of computing ancestor sets of sampled stale vertices

by charging it to the most recently sampled fresh vertex. Using the above, we provide the

runtime of Algorithm 17 below and then the runtime of Algorithm 16.

Lemma 5.5.8. With high probability, the total runtime of enumerating the ancestor sets

of all sampled vertices in Algorithm 17 is 𝑂
(︁
1
𝛾 |ℰ(ℬ)| ln𝜌 ln𝑛

)︁
. In other words, the total

runtime of performing all iterations of Line 6 of Algorithm 17 is 𝑂
(︁
1
𝛾 |ℰ(ℬ)| ln𝜌 ln𝑛

)︁
, with

high probability.

Proof. First, we calculate the runtime of enumerating the ancestor sets of each element of

ℬ. By Lemma 5.5.2, |ℰ(𝐵)| ≥ 𝛾
∑︀
𝑣∈ℬ |ℰ(𝑣)|. Hence, the amount of time to enumerate all

ancestor sets of every vertex in 𝐵 is at most
1
𝛾 |ℰ(𝐵)|.

We employ the following charging scheme to calculate the total time necessary to

enumerate the ancestor sets of all sampled stale vertices. Let 𝑢 be the most recent vertex

added to ℬ from some bucket 𝐶𝑖 . We charge the cost of enumerating the ancestor sets of

all stale vertices sampled after 𝑢 to the cost of enumerating the ancestor set of 𝑢. Since

we sample at most 𝑂(log𝑛) consecutive stale vertices from each bucket before moving

to the next bucket, 𝑢 gets charged with at most the work of enumerating 𝑂(log𝜌 log𝑛)
vertices from the same or smaller buckets. With high probability, the largest ancestor set

in bucket 𝐶𝑖 has a size at most four times the smallest ancestor set size. Since we sample

vertices in decreasing bucket size, we charge at most 𝑂(|ℰ(𝑣)| log𝜌 log𝑛) work to 𝑣.

By our bound on the cost of enumerating all ancestor sets of vertices in ℬ,

the additional charged cost results in a total cost of

∑︀
𝑣∈𝐵 |ℰ(𝑣)| · 𝑂(log𝜌 log𝑛) =

𝑂( 1𝛾 |ℰ(𝐵)| log𝜌 log𝑛).

Lemma 5.5.9. Algorithm 17 runs in 𝑂
(︁
1
𝛾 |ℰ𝐻 (ℬ)| ln𝜌 ln𝑛+ |𝐸𝐻 | ln

3𝑛
)︁
time, with high

probability.

Proof. The runtime of Algorithm 17 consists of three parts: the time to sample and enu-

merate ancestor sets, the time to prune stale vertices, and the time to list schedule all

vertices in ℬ.

By Lemma 5.5.8, the time it takes to enumerate all sampled ancestor sets is

𝑂
(︁
1
𝛾 |ℰ(ℬ)| log𝜌 log𝑛

)︁
over all iterations of the loops on Line 5 and Line 6 of Algorithm 17.

The time it takes to run Algorithm 18 is𝑂(|𝐸𝐻 | ln2𝑛) since obtaining the estimates for

each node (by Lemma 5.4.4), creating graph 𝐻 ′ , and calculating 𝑋 and 𝑌 for each node

in the bucket can be done in that time. By Lemma 5.5.7, we perform 𝑂(ln𝑛) iterations of

pruning, with high probability. Thus, the total time to prune the graph is 𝑂(|𝐸𝐻 | ln3𝑛).

Lemma 5.5.10. Given a graph 𝐻 = (𝑉𝐻 ,𝐸𝐻 ) where |𝒜(𝑣)| ≤ 2𝜌 for each 𝑣 ∈ 𝑉𝐻 and

parameter 𝛾 ∈ (0,1/2), the time it takes to compute the schedule of 𝐻 using Algorithm 16

is, with high probability, 𝑂
(︁
1
𝛾 |𝐸𝐻 | ln𝜌 ln𝑛+ |𝐸𝐻 | ln1/4𝛾 𝜌 ln

3𝑛+ |𝑉𝐻 | ln𝑀
)︁
.
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Proof. By Lemma 5.5.4, we perform𝑂(log1/4𝛾 𝜌) calls to Algorithm 17. Each call to Algo-

rithm 17 requires 𝑂
(︁
1
𝛾 |ℰ𝐻 (ℬ)| ln𝜌 ln𝑛+ |𝐸𝐻 | ln

3𝑛
)︁

time by Lemma 5.5.9. However, we

know that each vertex (and edges adjacent to it) is scheduled in exactly one batch.

For each batch ℬ, our greedy list scheduling procedure schedules each𝒜(𝑣) for 𝑣 ∈ ℬ
greedily and independently by duplicating vertices that appear in more than one ancestor

set. Thus, enumerating all the ancestor sets require 𝑂
(︁
1
𝛾 |ℰ(ℬ)|

)︁
time by Lemma 5.5.2.

When 𝑀 > |ℬ|, we easily schedule each list on a separate machine in 𝑂
(︁
1
𝛾 |ℰ(ℬ)|

)︁
time.

Otherwise, to schedule the lists, we maintain a priority queue of the machine �nishing

times. For each list, we greedily assign it to the machine that has the smallest �nishing

time. We can perform this procedure using 𝑂(𝑀 ln𝑀) time. Since 𝑀 ≤ |ℬ|, this results

in 𝑂(|ℬ| ln |ℬ|) time to assign ancestor sets to machines.

Thus, the total runtime of all calls to Algorithm 17 is

log1/4𝛾 𝜌∑︁
𝑖=1

𝑂

(︃
1
𝛾
|ℰ𝐻 (ℬ𝑖)| ln𝜌 ln𝑛+ |𝐸𝐻 | ln3𝑛+

1
𝛾
|ℰ(𝐵𝑖)|+ |𝐵| ln |𝐵|

)︃
=𝑂

(︃
1
𝛾
|𝐸𝐻 | ln𝜌 ln𝑛+ |𝐸𝐻 | ln1/4𝛾 𝜌 ln3𝑛

)︃
.

Then, the time it takes to perform Line 4 of Algorithm 16 is𝑂(1) per iteration. Schedul-

ing vertices with no adjacent edges requires |𝐵| ln |𝐵| = 𝑂(|𝑉𝐻 | ln𝑀) time. Finally, the

time it takes to remove each 𝑣 ∈ 𝒜(ℬ) and all edges adjacent to 𝑣 from 𝐻 for each batch

ℬ is𝑂(|𝑉𝐻 |+ |𝐸𝐻 |). Doing this for𝑂(ln1/4𝛾 𝜌) iterations results in𝑂(|𝑉𝐻 |+ |𝐸𝐻 | ln1/4𝛾 𝜌)
time.

5.6 Scheduling General Graphs

We now present our main scheduling algorithm for scheduling any DAG 𝐺 = (𝑉 ,𝐸) (Al-

gorithm 38 in Appendix A.3). This algorithm also uses as a subroutine the procedure for

estimating the number of ancestors of each vertex in𝐺 as described in Section 5.4. We use

the estimates to compute the small subgraphs which we pass into Algorithm 16 to sched-

ule. We produce the small subgraphs by setting the cuto� for the estimates to be
4
3𝜌. This

produces small graphs where the number of ancestors of each vertex is upper bounded

by 2𝜌, with high probability. We present a simpli�ed algorithm below in Algorithm 19.

Quality of the Schedule and Running Time Let OPT be the length of the optimal

schedule. We �rst give two bounds on OPT, and then relate them to the length of the

schedule found by our algorithm. A detailed set of proofs is provided in Section 5.6.1.

Our main algorithm, Algorithm 19, partitions the vertices of 𝐺 into small subgraphs

𝐻 ∈ ℋ. It does so based on estimates of ancestor set sizes. We �rst lower bound OPT
by working with exact ancestor set sizes. Since the schedule produced by our algorithm

cannot have length smaller than OPT, this process also provides a lower bound on our
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Algorithm 19 ScheduleGeneralGraph(𝐺)
Input A directed acyclic task graph 𝐺 = (𝑉 ,𝐸).
Output A schedule of the input graph 𝐺 = (𝑉 ,𝐸) on 𝑀 processors.

1: Letℋ←∅ represent a list of small subgraphs that we will build.

2: while 𝐺 is not empty do

3: Let 𝑉𝐻 be the set of vertices in 𝐺 where 𝑎(𝑣) ≤ 4
3𝜌 for each 𝑣 ∈ 𝑉𝐻 .

4: Compute edge set 𝐸𝐻 to be all edges induced by 𝑉𝐻 .

5: Add 𝐻 = (𝑉𝐻 ,𝐸𝐻 ) toℋ.

6: Remove 𝑉𝐻 and all incident edges from 𝐺.

7: for 𝐻 ∈ ℋ in the order they were added do

8: Call ScheduleSmallSubgraph(𝐻 ) to obtain a schedule of 𝐻 . [Algorithm 16]

schedule length. Then, we show that Algorithm 19 does not output more small subgraphs

than the number of subgraphs produced by working with exact ancestor set sizes, with

high probability.

The crucial fact in obtaining our �nal runtime is that producing the estimates of the

number of ancestors of each vertex requires
̃︀𝑂(|𝑉 |+ |𝐸|) time in total over the course of

�nding all small subgraphs. Together, these facts allow us to obtain Theorem 5.6.5.

5.6.1 Quality of Schedule Produced by Main Algorithm

Assuming we are working with exact ancestor set sizes, we would wind up with vertex

sets 𝑉1 , {𝑣 ∈ 𝑉 : |𝒜(𝑣)| ≤ 𝜌} and, inductively, for 𝑖 > 1, 𝑉𝑖 , {𝑣 ∈ 𝑉 ∖
⋃︀𝑖−1
𝑗=1𝑉𝑗 : |𝒜(𝑣) ∖⋃︀𝑖−1

𝑗=1𝑉𝑗 | ≤ 𝜌}. Let 𝐿 be the maximum index such that 𝑉𝐿 is nonempty.

The following lemma follows a similar argument as that found in Lepere-

Rapine [LR02] (although we have simpli�ed the analysis). We repeat it here for com-

pleteness.

Lemma 5.6.1. OPT ≥ (𝐿− 1)𝜌.

Proof. We show by induction on 𝑖 that in any valid schedule, there exists a job 𝑣 ∈ 𝑉𝑖
that cannot start earlier than time (𝑖 −1)𝜌. Given that, the job in 𝑉𝐿 starts at time at least

(𝐿− 1)𝜌 in OPT, proving the lemma.

The base case of 𝑖 = 1 is trivial. For the induction step, consider a job 𝑣 ∈ 𝑉𝑖+1. This

job has at least 𝜌 ancestors in 𝑉𝑖 (call this set 𝐴 =𝒜(𝑣)∩𝑉𝑖), since if it had less, 𝑣 would

be in 𝑉𝑖 itself. All jobs in 𝐴 start no earlier than (𝑖 − 1)𝜌 by the induction hypothesis.

There are two cases. If all of the jobs in 𝐴 are executed on the same machine as 𝑣, then

it would take at least 𝜌 units of time for them to �nish before 𝑣 can start. If at least one

job in 𝐴 is executed on a di�erent machine than 𝑣, then it would take 𝜌 units of time to

communicate the result. In either case, 𝑣 would start later than the �rst job in 𝐴 by at

least 𝜌, and thus no earlier than 𝑖 · 𝜌.

Lemma 5.6.2. OPT ≥ |𝑉 |/𝑀 .

Proof. Every job has to be scheduled on at least one machine, and the makespan is at least

the average load on any machine.
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We show that our general algorithm only calls the schedule small subgraph procedure

at most 𝐿 times, w.h.p.

Lemma 5.6.3. With high probability, Algorithm 38 calls Algorithm 16 at most 𝐿 times on

input graph 𝐺 = (𝑉 ,𝐸).

Proof. By construction, the 𝑉𝑖 ’s are inductively de�ned by stripping all vertices with

ancestor sets at most 𝜌 in size. With high probability, our estimates 𝑎(𝑣) are at most

4
3 |𝒜(𝑣)|. Line 7 of Algorithm 38 only takes vertex 𝑣 into the subgraph 𝐻 if 𝑎(𝑣) ≤ 4

3𝜌.

By Lemma 5.4.4,
2
3 |𝒜(𝑣)| ≤ 𝑎(𝑣) ≤

4
3 |𝒜(𝑣)|. Then, |𝒜(𝑣)| ≤ 3

2𝑎(𝑣) ≤
3
2 ·

4
3𝜌 = 2𝜌. Further-

more, since |𝒜(𝑣)| ≥ 3
4 ·𝑎(𝑣), if 𝑎(𝑣) = 4

3𝜌, then |𝒜(𝑣)| ≥ 𝜌. Hence, all vertices with height

𝜌 are added into 𝐻 , with high probability. Taken together, this means that all vertices

of 𝑉𝑖 (even if their ancestor sets are maximally overestimated) are contained in the small

graphs 𝐻 produced by iterations one through 𝑖 of Line 7 of Algorithm 38. Since 𝑉𝐿 was

chosen to be the last non-empty set, we know our algorithm runs for at most 𝐿 iterations,

with high probability.

Theorem 5.6.4. Algorithm 38 produces a schedule of length at most 𝑂
(︁ ln𝜌
lnln𝜌

)︁
· (OPT+𝜌).

Proof. In Algorithm 16, by Lemma 5.5.5, the schedule length obtained from any small

subgraph 𝐻 is
|𝑉𝐻 |
𝛾𝑀 +12𝜌 log1/4𝛾 (2𝜌).

Let ℋ be the set of all small subgraphs Algorithm 38 sends to Algorithm 16 to be

scheduled. By Lemma 5.6.3, there are at most 𝐿 of them. Each vertex trivially appears in

at most one subgraph. Then the total length of our schedule is given by∑︁
𝐻∈ℋ

(︃
|𝑉𝐻 |
𝛾𝑀

+12𝜌 log1/4𝛾 (2𝜌)
)︃
=

∑︁
𝐻∈ℋ

|𝑉𝐻 |
𝛾𝑀

+
∑︁
𝐻∈ℋ

12𝜌 log1/4𝛾 (2𝜌)

≤ |𝑉 |
𝛾𝑀

+𝐿
(︁
12𝜌 log1/4𝛾 (2𝜌)

)︁
.

By Lemmas 5.6.1 and 5.6.2, this last quantity is upper bounded by

𝑂𝑃𝑇 ·
(︃
1
𝛾
+12log1/4𝛾 (2𝜌)

)︃
+ 𝜌 · 12log1/4𝛾 (2𝜌)

Setting 𝛾 = 1/
√︀
ln𝜌 gives our bound of (𝑂𝑃𝑇 + 𝜌) ·𝑂( ln𝜌

lnln𝜌 ).

5.6.2 Running Time of the Main Algorithm

We prove the following theorem regarding the runtime of Algorithm 38 which uses Al-

gorithm 16 as a subroutine.

Theorem 5.6.5. On input graph 𝐺 = (𝑉 ,𝐸), Algorithm 38 produces a schedule of length at

most 𝑂
(︁ ln𝜌
lnln𝜌 · (OPT+𝜌)

)︁
and runs in time 𝑂

(︂
𝑛 ln𝑀 + 𝑚 ln3𝑛 ln𝜌

lnln𝜌

)︂
, with high probability.
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Proof. By Lemma 5.6.3, Algorithm 17 is called at most 𝐿 times. Then, since each vertex

is in at most one small subgraph (and hence each edge is in at most one small subgraph),

the total runtime for all the calls (by Lemma 5.5.10) is

𝐿∑︁
𝑖=1

𝑂

(︃
1
𝛾
|𝐸𝐻𝑖 | ln𝜌 ln𝑛+ |𝐸𝐻𝑖 | ln1/4𝛾 𝜌 ln

3𝑛+ |𝑉𝐻𝑖 | ln𝑀
)︃

=𝑂
(︃
1
𝛾
|𝐸| ln𝜌 ln𝑛+ |𝐸| ln1/4𝛾 𝜌 ln3𝑛+ |𝑉 | ln𝑀

)︃
.

Furthermore, each iteration of Line 7 requires estimating 𝑎(𝑣) for a set of vertices 𝑣,

adding 𝑣 to 𝐻 , and checking all successors of 𝑣. First, we show that 𝑎(𝑣) is computed at

most twice for each vertex in 𝑉 , and then, we show that the rest of the steps are e�cient.

Each vertex contained in the queue, 𝑄, in Algorithm 17, either does not have any

ancestors, or all of its ancestors are in 𝐻 (the current subgraph). If a vertex 𝑣 ∈ 𝑄 was

not added to 𝐻 during iteration 𝑖, then it must have at least one ancestor in iteration 𝑖
and no ancestors in iteration 𝑖 + 1. Since 𝑣 has no ancestors in iteration 𝑖 + 1, it must be

added to𝐻𝑖+1. The time it takes to compute the estimate for one vertex is𝑂(ln2𝑛). Thus,

the total time it takes to compute the estimate of the number of ancestors of all vertices is

𝑂
(︁
𝑚 ln2𝑛

)︁
. Adding 𝑣 to𝐻 and checking all successors can be done in𝑂(𝑚) time. Finally

removing each 𝑣 ∈𝐻 from 𝐺 can be done in 𝑂(𝑚) time.

As earlier, we use 𝛾 =
√︀
ln𝜌, so the total runtime summing the above can be upper

bounded by 𝑂
(︂
𝑛 ln𝑀 + 𝑚 ln3𝑛 ln𝜌

lnln𝜌

)︂
. Thus, the algorithm produces a schedule of length

𝑂
(︁ ln𝜌
lnln𝜌 · (OPT+𝜌)

)︁
and the total runtime of the algorithm is𝑂

(︂
𝑛 ln𝑀 + 𝑚 ln3𝑛 ln𝜌

lnln𝜌

)︂
, with

high probability.

Theorem 5.6.5 gives the main result stated informally in Theorem 5.1.1 of the intro-

duction.

5.7 Open Questions

Our results so far only apply to scheduling with duplication. In [MRS
+

20], a polynomial-

time reduction is presented that transforms a schedule with duplication into one without

duplication (with a polylogarithmic increase in makespan). However, this reduction in-

volves constructing an auxiliary graph of possiblyΩ(𝜌2) size, and thus does not lend itself

easily to a near-linear time algorithm. It would be interesting to see if a near-linear time

reduction could be found.
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	𝑎

	𝑏

	𝑐

	𝑑

	𝑒

(a) Input small subgraph.

	𝑎 	𝑏 	𝑐 	𝑑 	𝑒

0 ancestor edges 1 ancestor edge 3-4 ancestor edges

(b) Vertices are bucketed according to

the estimate of the number of edges in

the induced subgraph of its ancestors.

	𝑎 	𝑏 	𝑐 	𝑑 	𝑒	𝑎 	𝑐	𝑎 	𝑐	𝑎 	𝑒

	𝑎 	𝑒
𝑆

❌ ✅✅

(c) Vertices are uniformly at random sampled from buckets. Then,

vertices which have su�ciently many ancestors and ancestor edges

not in 𝑆 are added to 𝑆 .

	𝑎

	𝑏

	𝑐

	𝑑

	𝑒

	𝑎 	𝑏 	𝑐 	𝑑 	𝑒

0 ancestor edges 1 ancestor edge 2-3 ancestor edges

(d) Vertices which are in 𝑆 or have a

large proportion of ancestors or ances-

tor edges in 𝑆 are pruned from buckets.

𝑏 and 𝑑 are pruned in this example.

	𝑎

	𝑒	𝑎 	𝑐

(e) Vertices in 𝑆 and all an-

cestors are scheduled by du-

plicating ancestors and list

scheduling.

Figure 5-2: Overview of our scheduling small subgraphs algorithm. We choose 𝛾 = 2/3
here for illustration purposes but in our algorithms 𝛾 < 1/2.
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Dynamic Graph Algorithms
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Overview

Six Hollywood stars form a social group that has very special characteristics. Every two

stars in the group either mutually love each other or mutually hate each other. There is no

set of three individuals who mutually love one another. Prove that there is at least one set of

three individuals who mutually hate each other.

The Colossal Book of Short Puzzles and Problems [Gar06]

This part of the thesis presents new dynamic and batch-dynamic graph algorithms in

the sequential, parallel, and distributed models.

Parallel Batch-Dynamic𝑘-CoreDecomposition Chapter 6 presents a parallel batch-

dynamic 𝑘-core decomposition algorithm that maintains the coreness of each vertex on

batches of updates. Maintaining a 𝑘-core decomposition quickly in a dynamic graph is

an important problem in many applications, including social network analytics, graph vi-

sualization, centrality measure computations, and community detection algorithms. The

main challenge for designing e�cient 𝑘-core decomposition algorithms is that a single

change to the graph can cause the decomposition to change signi�cantly.

We present the �rst parallel batch-dynamic algorithm for maintaining an approximate

𝑘-core decomposition that is e�cient in both theory and practice. Given an initial graph

with 𝑚 edges, and a batch of 𝐵 updates, our algorithm maintains a (2+𝜀)-approximation

of the coreness values for all vertices (for any constant 𝜀 > 0) in 𝑂(|ℬ| log2𝑚) amortized

work and 𝑂(log2𝑚 loglog𝑚) depth (parallel time) with high probability. Our algorithm

also maintains a low out-degree orientation of the graph in the same bounds.

Speci�cally, we show:

• Provided an input graph with 𝑚 edges, and a batch of updates ℬ, our algorithm

maintains a (2 + 𝜀)-approximation of the coreness values for all vertices (for any

constant 𝜀 > 0) in𝑂(|ℬ| log2𝑚) amortized work and𝑂(log2𝑚 loglog𝑚) depth with

high probability, using 𝑂(𝑛 log2𝑚+𝑚) space. [Theorem 6.1.2]

• For a graph with𝑚 edges, there is a static algorithm that �nds an (2+𝜀)-approximate

𝑘-core decomposition in 𝑂(𝑚) expected work and 𝑂(log3𝑛) depth, whp. [Theo-

rem 6.1.1]

We implemented and experimentally evaluated our algorithm on a 30-core machine

with two-way hyper-threading on 11 graphs of varying densities and sizes. Compared to

the state-of-the-art algorithms, our algorithm achieves up to a 114.52x speedup against the

best exact, multicore implementation and up to a 497.63x speedup against the best sequen-

tial, approximate algorithm, obtaining results for graphs that are orders-of-magnitude

larger than those used in previous studies.
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In addition, we present the �rst approximate static 𝑘-core algorithm with linear work

and polylogarithmic depth. We show that on a 30-core machine with two-way hyper-

threading, our implementation achieves up to a 3.9x speedup in the static case over the

previous state-of-the-art parallel algorithm.

Fully Dynamic (∆ + 1)-Vertex Coloring Chapter 7 presents an improved algorithm

for dynamic (∆+1)-vertex coloring in the sequential model. The problem of (∆+1)-vertex

coloring a graph of maximum degree ∆ has been extremely well-studied over the years

in various settings and models including the static, distributed, and parallel models and

for special classes of graphs. Surprisingly, for the dynamic setting, almost nothing was

known until recently. In SODA’18, Bhattacharya, Chakrabarty, Henzinger and Nanongkai

devised a randomized algorithm for maintaining a (∆+1)-coloring with𝑂(log∆) expected

amortized update time [BCHN18]. This chapter presents an improved randomized algo-

rithm for (∆ + 1)-coloring that achieves 𝑂(1) amortized update time and show that this

bound holds not only in expectation but also with high probability. Speci�cally, in this

chapter, we prove the following:

• There is a randomized algorithm for maintaining a (∆ + 1)-vertex coloring in

a dynamic graph that, given any sequence of 𝑡 edge updates, takes total time

𝑂(𝑛 log𝑛+𝑛∆+𝑡) in expectation and with high probability. For 𝑡 =Ω(𝑛 log𝑛+𝑛∆),
we obtain 𝑂(1) amortized update time in expectation and with high probability.

[Theorem 7.1.2]

Our starting point is the state-of-the-art randomized algorithm for maintaining a max-

imal matching (Solomon, FOCS’16). We carefully build on the approach of Solomon, but,

due to inherent di�erences between the maximal matching and (∆+1)-coloring problems,

we need to deviate signi�cantly from it in several crucial and highly nontrivial points.

Although this algorithm is in the sequential model, one may perhaps use the tech-

niques for parallelizing level data structures (presented in Chapter 6) to parallelize this

algorithm for practical implementations.

Independent concurrent work: Independently of our work, Henzinger and

Peng [HP19] have obtained an algorithm for (∆+ 1)-vertex coloring with 𝑂(1) expected
amortized update time. Note that our work achieves (∆ + 1)-vertex coloring with 𝑂(1)
amortized update time not only in expectation, but also with with high probability, and

uses very di�erent techniques.

Parallel Batch-Dynamic 𝑘-Clique Counting Chapter 8 presents new batch-dynamic

algorithms for the 𝑘-clique counting problem for constant 𝑘. We study this problem

in the parallel setting, where the goal is to obtain algorithms with low (polylogarith-

mic) depth. Our �rst result is a new parallel batch-dynamic triangle counting algo-

rithm with 𝑂(|ℬ|
√
|ℬ|+𝑚) amortized work and 𝑂(log*(|ℬ| +𝑚)) depth with high prob-

ability, and 𝑂(|ℬ| +𝑚) space for a batch of |ℬ| edge insertions or deletions. Our sec-

ond result is an algebraic algorithm based on parallel fast matrix multiplication. As-

suming that a parallel fast matrix multiplication algorithm exists with parallel matrix

multiplication constant 𝜔𝑝, the same algorithm solves dynamic 𝑘-clique counting with
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𝑂

(︃
min

(︃
|ℬ|𝑚

(2𝑘−1)𝜔𝑝
3(𝜔𝑝+1) , (|ℬ|+𝑚)

2(𝑘+1)𝜔𝑝
3(𝜔𝑝+1)

)︃)︃
amortized work and 𝑂(log(|ℬ| +𝑚)) depth with

high probability, and 𝑂

(︃
(|ℬ|+𝑚)

2(𝑘+1)𝜔𝑝
3(𝜔𝑝+1)

)︃
space. Using a recently developed parallel 𝑘-

clique counting algorithm, we also obtain a simple batch-dynamic algorithm for 𝑘-clique

counting on graphs with arboricity 𝛼 running in 𝑂(|ℬ|(𝑚+ |ℬ|)𝛼𝑘−4) expected work and

𝑂(log2𝑛) depth with high probability, and 𝑂(𝑚+∆) space. Finally, we present a multi-

core CPU implementation of our parallel batch-dynamic triangle counting algorithm. On

a 72-core machine with two-way hyper-threading, our implementation achieves 36.54–

74.73x parallel speedup, and in certain cases achieves signi�cant speedups over existing

parallel algorithms for the problem, which are not theoretically-e�cient.

Speci�cally, in Chapter 8, we show:

• A parallel batch-dynamic algorithm that takes 𝑂(|ℬ|
√
|ℬ|+𝑚) amortized work and

𝑂(log*(|ℬ|+𝑚)) depth, whp. [Theorem 8.3.1]

• Using the best currently known parallel matrix multiplication algorithm [Wil12,

LG14, AW21], our algorithm dynamically maintains the number of 𝑘-cliques in

𝑂
(︁
min

(︁
|ℬ|𝑚0.469𝑘−0.235, (|ℬ|+𝑚)0.469𝑘+0.469

)︁)︁
amortized work and 𝑂(log(|ℬ| +

𝑚)) depth, whp. This is also faster than the best-known sequential algorithm when

𝑘 > 9. [Corollary 8.5.2]

• A parallel batch-dynamic algorithm that runs in𝑂(|ℬ|(𝑚+|ℬ|)𝛼𝑘−4) expected work,

𝑂(log2𝑛) depth w.h.p., and 𝑂(𝑚+ |ℬ|) space. [Theorem 8.2.1]
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+

21] Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian

Shun. Parallel batch-dynamic 𝑘-core decomposition. (Chapter 6)

2. [BGK
+

19] Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan

C. Liu, and Shay Solomon. Fully dynamic (∆+1)-coloring in constant update time.

(Chapter 7)

3. [DLSY21] Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. Par-

allel batch-dynamic 𝑘-clique counting. (Chapter 8)

159



160



Chapter 6

Parallel Batch-Dynamic 𝑘-Core
Decomposition

This chapter presents results from the paper titled, "Parallel Batch-Dynamic 𝑘-Core
Decomposition" that the thesis author coauthored with Jessica Shi, Shangdi Yu, Laxman

Dhulipala, and Julian Shun [LSY
+
21]. This paper is currently under submission at the time

of the writing of this thesis.

6.1 Introduction

Discovering the structure of large-scale networks is a fundamental problem for many ar-

eas of computing, including social network analysis, computational biology, and spam and

fraud detection, among many others. One of the key challenges is to detect communicaties

in which individuals (or vertices) have close ties with one another, and also to understand

how well-connected a particular individual is to the community. For example, a social net-

work provider may need this information to determine how many friends of a user needs

to drop out before that user also leaves. The well-connectedness of a node or a group of

nodes is naturally captured by the concept of a 𝑘-core or, more generally, the 𝑘-core de-

composition; hence, this particular problem and its variants have been widely studied in

the past and also more recently in the machine learning [AHDBV05, ELM18, GLM19],

database [CZL
+

20, LZZ
+

19, ESTW19, BGKV14, MMSS20], graph analytics [KBST15,

KM17a, DBS17, DBS18b], and other communities [GBGL20, KBST15, LYL
+

19, SGJS
+

13].

Given an undirected graph 𝐺, with 𝑛 vertices and 𝑚 edges, the 𝑘-core of the graph

is the maximal subgraph 𝐻 ⊆ 𝐺 such that the induced degree of every vertex in 𝐻 is at

least 𝑘. The 𝑘-core decomposition of the graph is de�ned as a partition of the graph into

layers such that a vertex 𝑣 is in layer 𝑘 if it belongs to a 𝑘-core but not a (𝑘 + 1)-core,

which induces a natural hierarchical clustering on the input graph. Many well-known

algorithms for 𝑘-core decomposition are inherently sequential. The classic algorithm for

�nding such a decomposition is to iteratively select and remove all vertices 𝑣 with smallest

degree from the graph until the graph is empty. Unfortunately, the length of the sequen-

tial dependencies (the depth) of such a process can beΩ(𝑛) given a graph with 𝑛 vertices.

Due to the potentially large depth, this algorithm cannot fully take advantage of paral-
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lelism on modern machines, and can therefore be too costly to run on large graphs. As

𝑘-core decomposition is a P-complete problem [AM84], it is unlikely that there is a paral-

lel algorithm with polylogarithmic depth for this problem. To obtain parallel methods for

this problem, we relax the condition of obtaining an exact 𝑘-core decomposition to one of

obtaining a close approximate 𝑘-core decomposition.

Parallel Static Approximate 𝑘-Core Decomposition In this chapter, we present a

novel parallel static approximate 𝑘-core decomposition algorithm based on a relaxed ver-

sion of the peeling algorithm of [DBS17] that achieves both optimal linear work and

has polylogarithmic depth. In contrast to existing parallel approximate 𝑘-core algo-

rithms [GLM19, ELM18] which are designed for distributed memory, our algorithm is

designed for shared-memory multicore machines, which have been shown to be able to

process the largest graphs with hundreds of billions of edges e�ciently [DBS18b, MIM15].

To the best of our knowledge, ours is the �rst parallel algorithm to achieve work-e�ciency

and polylogarithmic depth. Our bounds are summarized in Theorem 6.1.1.

Theorem 6.1.1. For a graph with 𝑚 edges,
1
for any constant 𝜀 > 0, there is an algorithm

that �nds an (2+𝜀)-approximate 𝑘-core decomposition in𝑂(𝑚) expected work and𝑂(log3𝑛)
depth with high probability,

2
using 𝑂(𝑚) space.

Parallel Batch-Dynamic Approximate 𝑘-Core Decomposition Because of the

rapidly changing nature of today’s graphs, it is ine�cient to recompute the 𝑘-core de-

composition of the graph from scratch on every update. For this purpose, dynamic 𝑘-core

decompositions are especially useful. In this chapter, we design an approximate 𝑘-core al-

gorithm with strong theoretical guarantees for the batch-dynamic setting, where updates

to the graph are provided in batches that can be processed in parallel. Our batch-dynamic

algorithm e�ciently maintains the 𝑘-core decomposition in parallel given batches of up-

dates, and uses a level data structure inspired by [BHNT15, HNW20] to maintain a par-

tition of the vertices satisfying certain degree properties. Our algorithm takes 𝑂(log2𝑚)
amortized work per update, matching the best sequential algorithm [SCS20], while achiev-

ing polylogarithmic depth at the same time. The bounds for our algorithms are as follows.

Theorem 6.1.2. Provided an input graph with 𝑚 edges, and a batch of updates ℬ, our
algorithm maintains a (2 + 𝜀)-approximation of the coreness values for all vertices (for any

constant 𝜀 > 0) in 𝑂(|ℬ| log2𝑚) amortized work and 𝑂(log2𝑚 loglog𝑚) depth with high

probability, using 𝑂(𝑛 log2𝑚+𝑚) space.

Moreover, our parallel batch-dynamic algorithm can be used to maintain low out-

degree orientations and approximate densest subgraphs in the same complexity bounds.

Experimental Evaluation In addition to our theoretical contributions, we also pro-

vide optimized multicore implementations of both our static and batch-dynamic algo-

rithms. We compare the performance of our algorithms with state-of-the-art algorithms

1
Our bounds in this chapter assume 𝑚 = Ω(𝑛) for simplicity, although our algorithms work even if

𝑚 = 𝑜(𝑛).
2With high probability (whp) is de�ned as with probability at least 1− 1/𝑛𝑐 for any 𝑐 ≥ 1.
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on a variety of real-world graphs using a 30-core machine with two-way hyper-threading.

Our parallel static approximate 𝑘-core algorithm achieves a 2.8–3.9x speedup over the

fastest parallel exact 𝑘-core algorithm [DBS17], and achieves a 14.76–36.07x self-relative

speedup. We show that our parallel batch-dynamic 𝑘-core algorithm achieves up to a

497.63x speedup over the state-of-the-art sequential dynamic 𝑘-core algorithm [SCS20],

while achieving comparable accuracy. Furthermore, our batch-dynamic algorithm is able

to outperform our static approximate 𝑘-core algorithm by up to 75.94x on small batch

sizes. We also achieve up to a 114.52x speedup over the state-of-the-art parallel batch-

dynamic 𝑘-core algorithm of Hua et al. [HSY
+

20].

RelatedWork The 𝑘-core decomposition of a graph and its related concepts of arboric-

ity, low out-degree orientation, and densest subgraph are widely used in machine learn-

ing applications, including community detection [MPP
+

15, BZ11], analyzing social net-

work dynamics [BKL
+

15], visualizing large-scale complex networks [AHDBV05], analyz-

ing protein networks [ASM
+

06], approximating network centrality measures [HJMA07],

and many more. In addition, low out-degree orientations can lead to e�cient graph algo-

rithms for sparse graphs [NS15, SW20b].

Many parallel 𝑘-core algorithms have been designed for the static setting (e.g., [PKT14,

EM13, MPM13, DDZ14, DBS17, KM17a, MCT20, THCG18]). The algorithms of [GLM19,

ELM18] are approximate algorithms that achieve a logarithmic or sub-logarithmic num-

ber of rounds in the distributed MPC model. However, the local computation in their

algorithms is free in the MPC model, but have linear depth in the shared-memory setting,

which is worse than the polylogarithmic depth bound that we achieve. [GLM19, ELM18]

do not report running times in their paper, and hence it is di�cult to compare actual per-

formance. We note that we are able to process graphs used in their papers using a single

commodity multicore machine.

Several generalizations of the 𝑘-core problem, such as 𝑘-truss, and the (𝑟, 𝑠) nucleus de-

composition problem have been intensely studied in recent years [WC12, CCC14, Zou16,

KM17b, SLA
+

17, CLS
+

20, SSPc17, SSP18, ESTW20]. Another recent line of work studies

𝑘-core-like computations in bipartite graphs [SS20, WLQ
+

20, LKPR20, SP18, LYL
+

20].

There has been signi�cant interest in obtaining fast and practical dynamic 𝑘-core

algorithms. Dynamic algorithms have been developed for both the sequential [LYM14,

SGJS
+

16, ZYZQ17, WQZ
+

19, LYM14, SCS20, LZL
+

21] and parallel [HSY
+

20, JWY
+

18,

ABMV16] settings. However, to the best of our knowledge, there are no parallel dy-

namic 𝑘-core algorithms with polylogarithmic depth, which our algorithm achieves. Sev-

eral dynamic algorithms have also been developed for the closely-related 𝑘-truss prob-

lem [HCQ
+

14, AZ17, ZY19, LYS
+

21].

A recent paper by Sun et. al. [SCS20] provides a sequential, dynamic 𝑘-core decom-

position algorithm that gives a (4+𝛿)-approximation in polylog𝑛 time. Their algorithm

is inherently sequential and parallelizing their algorithm requires non-trivial changes in

theory and in practice. The most recent, state-of-the-art parallel batch-dynamic algo-

rithm by Hua et al. [HSY
+

20] relies on the concept of a joint edge set whose insertion and

removal determines the core numbers of the nodes; however, their algorithm does not

achieve polylogarithmic depth.
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Related dynamic problems to 𝑘-core decompositions have been recently studied in

the theory community [BHNT15, HNW20, SW20b]. Such problems include densest sub-

graph [BHNT15, SW20a] and low out-degree orientations [HNW20, SW20b]. None of

these aforementioned works proved guarantees regarding the 𝑘-core decomposition that

can be maintained via a level data structure. Furthermore, no prior work have provided

implementations of their structures or performed experiments on the practical e�ciency

of these structures.

6.2 Preliminaries

In this chapter, we use the de�nition of 𝑘-core decomposition presented in De�nition 2.1.3

and its related properties. The problem we study is the following:

Problem De�nition. Given a graph 𝐺 = (𝑉 ,𝐸) and a sequence of batches of edge

insertions and deletions, ℬ1, . . . ,ℬ𝑁 , where ℬ𝑖 = (𝐸𝑖
delete

,𝐸𝑖
insert

), the goal is to e�ciently

maintain a (2 + 𝜀)-approximate 𝑘-core decomposition (for any constant 𝜀 > 0) after

applying each batch ℬ𝑖 (in order) on 𝐺. In other words, let 𝐺𝑖 = (𝑉 ,𝐸𝑖) be the graph

after applying batches ℬ1, . . . ,ℬ𝑖 and suppose we have a (2 + 𝜀)-approximate 𝑘-core

decomposition on 𝐺𝑖 ; then, for ℬ𝑖+1, our goal is to e�ciently �nd a (2 + 𝜀)-approximate

𝑘-core decomposition of 𝐺𝑖+1 =
(︁
𝑉 , (𝐸𝑖 ∪𝐸𝑖+1insert

) ∖𝐸𝑖+1
delete

)︁
.

All notations used in this chapter are summarized in Table 6.1.

6.3 Batch-Dynamic (2 + 𝜀)-Approximate 𝑘-Core De-

composition

In this section, we describe our parallel, batch-dynamic algorithm for maintaining an (2+
𝜀)-approximate 𝑘-core decomposition (for any constant 𝜀 > 0) and prove its theoretical

e�ciency.

6.3.1 Algorithm Overview

We provide a parallel level data structure (PLDS) that maintains a (2 + 𝜀)-approximate 𝑘-

core decomposition and low out-degree orientation that builds o� the sequential level data

structures (LDS) of [BHNT15, HNW20]. Our algorithm achieves 𝑂(log2𝑚) amortized

work per update and 𝑂(log2𝑚 loglog𝑚) depth whp. We also present a deterministic

version of our algorithm that achieves the same work bound with 𝑂(log3𝑚) depth. Our

data structure can also handle batches of vertex insertions/deletions, which we discuss

in Section 6.3.4.

As in the case of [HNW20], our data structure can handle changing arboricity that is

not known a priori to the algorithm. This means that our data structure can handle the

case when the arboricity 𝛼 of the underlying graph changes throughout the execution
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Symbol Meaning

𝐺 = (𝑉 ,𝐸) undirected/unweighted graph

𝑛,𝑚 number of vertices, edges, resp.

𝛼 current arboricity of graph

𝐾 number of levels in PLDS

𝑁 (𝑣) (resp. 𝑁 (𝑆)) set of neighbors of vertex 𝑣 (resp. vertices 𝑆)

dl(𝑣) desire-level of vertex 𝑣
ℓ a level (starting with level ℓ = 0)

ℓ(𝑣) current level of vertex 𝑣
𝑔𝑖 set of levels in group 𝑖 (starting with 𝑔0)

𝑉ℓ set of vertices in level ℓ
𝑍ℓ set of vertices in levels ≥ ℓ
𝑔(𝑣) group number of vertex 𝑣
𝑔𝑛(ℓ) index 𝑖 where level ℓ ∈ 𝑔𝑖
𝑘(𝑣) coreness of 𝑣
�̂�(𝑣) estimate of the coreness of 𝑣
up(𝑣) up-degree of 𝑣
up*(𝑣) up*-degree of 𝑣
𝜆 a constant where 𝜆 > 0
𝛿 a constant where 𝛿 > 0

Table 6.1: Table of notations used in this chapter.

of batches of updates and successfully maintains approximations of the coreness of each

node with respect to the current arboricity.

The level data structure consists of a partition of the vertices of the graph into 𝐾 =
𝑂(log2𝑚) levels. 3

The levels are partitioned into equal-sized groups of consecutive

levels. Vertices move up and down levels depending on the type of edge update incident to

the vertex. Rules governing the induced degrees of vertices to neighbors in di�erent levels

determine whether a vertex moves up or down. Using information about the assigned

level of a vertex, we obtain a (2 + 𝜀)-approximation on the coreness of the vertex.

Fig. 6-1 shows an illustration of this data structure. There are Θ(log𝑛) groups, each

withΘ(log𝑛) levels (labeled on the right). Each vertex is in exactly one level of the struc-

ture and moves up and down by some movement rules. We describe our parallel level data

structure in more detail in Section 6.3.3.

6.3.2 Low Out-Degree Orientations and LDS

Low out-degree orientations have been used in many e�cient static and dynamic algo-

rithms for graphs (e.g., [SW20b, ELS10, BE10, GP11]). Our work is based on the sequential

3
A more re�ned analysis shows that we only need 𝑂(log∆ log𝑚) levels, where ∆ is the current maxi-

mum degree in the graph.
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Figure 6-1: Example of invariants maintained by the PLDS for 𝛿 = 0.4 and 𝜆 = 3.
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Figure 6-2: Example of a cascade of vertex movements caused by edge deletion.

level data structures (LDS) of [BHNT15, HNW20], which maintain a low out-degree ori-

entation under dynamic updates. Within their LDS, a vertex moves up or down levels

one by one, meaning that a vertex 𝑣 (incident to an edge update) �rst checks whether an

invariant is violated, and then may move up or down one level. Then, the vertex checks

the invariants and repeats.

Unfortunately, such a procedure can be slow in practice. Speci�cally, a vertex that

moves one level could cause a cascade of vertices to move one level (illustrated in Exam-

ple 6.3.1). Then, if the vertex moves again, the same cascade of movements may occur.

Example 6.3.1. In Fig. 6-2, suppose a vertex 𝑢 at level 1 is incident to an edge deletion (𝑎,𝑢)
(dashed edge in red) and must move down one level. This in turn could cause another one of

its neighbors 𝑣 at level 2 to move down one level, leading to a cascade of vertices which must

move down (𝑤 at level 3, then 𝑥 at level 4, etc.). If 𝑢 could move down one additional level,

it may cause another cascade of movements.

Furthermore, any trivial parallelization of the LDS to support a batch of updates will

run into race conditions and other issues, requiring the use of locks which blows up the

runtime in practice. We must also be careful not to perform unnecessary work; one ex-

ample is a vertex that moves up due to edge insertions but then later moves down due to

edge deletions (from the same batch).

Thus, our PLDS algorithm solves several challenges posed by the sequential algorithm.
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Provided a batch ℬ of edge insertions and deletions: (1) our algorithm processes the levels

in a careful order that yields provably low depth for batches of updates; (2) our algorithm

processes insertions and deletions in separate batches to avoid excess work; (3) our in-

sertion algorithm processes vertices on each level at most once, which is key to bounding

the depth–after a vertex moves up from level ℓ, no future step in the algorithm requires

a vertex to move up from level ℓ; and (4) our deletion algorithm moves vertices to their

�nal level in one step. In other words, a vertex moves at most once in a batch of deletions

before a new batch arrives.

6.3.3 Detailed PLDS Algorithm

As mentioned previously, the vertices of the input graph𝐺 = (𝑉 ,𝐸) are partitioned across

𝐾 levels. For each level ℓ = 0, . . . ,𝐾 − 1, let 𝑉ℓ be the set of vertices that are currently

assigned to level ℓ. Let 𝑍ℓ be the set of vertices in levels ≥ ℓ. Provided a constant

𝛿 > 0, the levels are partitioned into groups 𝑔0, . . . , 𝑔⌈︁log(1+𝛿)𝑚⌉︁
, where each group con-

tains

⌈︁
log(1+𝛿)𝑚

⌉︁
consecutive levels. Each ℓ ∈

[︁
𝑖
⌈︁
log(1+𝛿)𝑚

⌉︁
, (𝑖 +1)

⌈︁
log(1+𝛿)𝑚

⌉︁
− 1

]︁
is a

level in group 𝑖. Our data structure consists of 𝐾 = 𝑂(log2𝑚) levels. The PLDS satis�es

the following invariants, which also govern how the data structure is maintained. The

invariants assume a given constant 𝛿 > 0 and a constant 𝜆 > 0.
4

The below invariants

follow invariants de�ned in [HNW20, BHNT15].

Invariant 1 (Degree Upper Bound). If vertex 𝑣 ∈ 𝑉ℓ , level ℓ < 𝐾 and ℓ ∈ 𝑔𝑖 , then 𝑣 has at

most (2 + 3/𝜆) (1 + 𝛿)𝑖 neighbors in 𝑍ℓ .

Invariant 2 (Degree Lower Bound). If vertex 𝑣 ∈ 𝑉ℓ , level ℓ > 0, and ℓ−1 ∈ 𝑔𝑖 , then 𝑣 has
at least (1 + 𝛿)𝑖 neighbors in 𝑍ℓ−1.

All vertices with no neighbors are placed in level 0. An example partitioning of ver-

tices and the maintained invariants is shown in Example 6.3.2.

Example 6.3.2. In Fig. 6-1, where 𝛿 = 0.4 and 𝜆 = 3, vertex 𝑥 (blue) is on level 3 in group

1. This means that by Invariant 1, it has at most (2 + 3/𝜆)(1 + 𝛿)1 = 4.2 neighbors at level

3 and above. In Fig. 6-1, the green box highlights all levels ≥ 3; indeed 𝑥 has 2 neighbors in

levels ≥ 3, satisfying Invariant 1. By Invariant 2, 𝑥 has more than (1 + 𝛿)0 = 1 neighbor in

levels ≥ 2 (note that level 2 is in group 0). In the example, 𝑥 has 3 neighbors, satisfying the

invariant (levels ≥ 2 are highlighted by the pink box).

Let ℓ(𝑣) be the level that 𝑣 is currently on. We de�ne the group number , 𝑔(𝑣), of a

vertex 𝑣 to be the index 𝑖 of the group 𝑔𝑖 where ℓ(𝑣) ∈ 𝑔𝑖 . Similarly, we de�ne 𝑔𝑛(ℓ) = 𝑖
to be the group number for level ℓ where ℓ ∈ 𝑔𝑖 . We de�ne the up-degree, up(𝑣), of

a vertex 𝑣 to be the number of its neighbors in 𝑍ℓ(𝑣) (up-neighbors), and up*-degree,

up*(𝑣), to be the number of its neighbors in 𝑍ℓ(𝑣)−1 (up*-neighbors). These two notions

of induced degree correspond to the requirements of the two invariants that our data

structure maintains. Lastly, the desire-level dl(𝑣) of a vertex 𝑣 is the closest level to the

current level of the vertex that satis�es both Invariant 1 and Invariant 2.

4
The magnitude of both 𝛿 and 𝜆 impact the approximation factor and the work, practically.
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Algorithm 20 Update(𝐵)

Input: A batch of edge updates 𝐵.

1: Let 𝐵
ins

= all edge insertions in 𝐵, and 𝐵
del

= all edge deletions in 𝐵.

2: Call RebalanceInsertions(𝐵
ins

). [Algorithm 21]

3: Call RebalanceDeletions(𝐵
del

). [Algorithm 22]

De�nition 6.3.3 (Desire-level). The desire-level, dl(𝑣), of vertex 𝑣 is the level ℓ′ which
minimizes |ℓ(𝑣) − ℓ′ |, and where up*(𝑣) ≥ (1 + 𝛿)𝑖

′
and up(𝑣) ≤ (2 + 3/𝜆) (1 + 𝛿)𝑖 where

ℓ′ − 1 ∈ 𝑔𝑖′ , ℓ′ ∈ 𝑔𝑖 and 𝑖′ ≤ 𝑖. In other words, the desire-level of 𝑣 is the closest level ℓ(𝑣)
where both Invariant 1 and Invariant 2 are satis�ed.

We show that the invariants above are always maintained except for a period of time

when processing a new batch of insertions/deletions. During this period, the data struc-

ture undergoes a rebalance procedure, during which the invariants may be violated. The

main update procedure is shown in Algorithm 20. It separates the updates into insertions

and deletions (Line 1), and then calls RebalanceInsertions (Line 2: Algorithm 21) and Re-

balanceDeletions (Line 3: Algorithm 22). We make note of two crucial observations that

we prove in the analysis: when processing a batch of insertions, Invariant 2 is never vio-

lated; and similarly, when processing a batch of deletions, Invariant 1 is not violated. This

means that no vertex needs to move down when processing a batch of insertions and no

vertex needs to move up when processing a batch of deletions. We �rst describe the data

structures that we maintain and then the RebalanceInsertions and RebalanceDeletions

procedures below.

Data Structures Each vertex 𝑣 keeps track of its set of neighbors in two structures.

𝑈 keeps track of the neighbors at 𝑣’s level and above. We denote this set of 𝑣’s neigh-

bors by 𝑈 [𝑣]. 𝐿𝑣 keeps track of neighbors of 𝑣 for every level below ℓ(𝑣)—in particular,

𝐿𝑣[𝑗] contains the neighbors of 𝑣 at level 𝑗 < ℓ(𝑣). We describe speci�c data structure

implementation details in Section 6.3.6 and Section 6.6.

RebalanceInsertions(𝐵ins) Algorithm 21 shows the pseudocode. Provided a batch of

insertions 𝐵
ins

, we iterate through the 𝐾 levels from the lowest level ℓ = 0 to the highest

level ℓ = 𝐾 − 1 (Algorithm 21, Line 5). For each level, in parallel we check the vertices

incident to edge insertions in 𝐵
ins

(or is marked) to see if they violate Invariant 1 (Line 6).

If a vertex 𝑣 in the current level 𝑙 violates Invariant 1, we move 𝑣 to level 𝑙 + 1 (Line 7).

After moving 𝑣, we update structures 𝑈 [𝑣],𝐿𝑣 , and the structures of 𝑤 ∈ 𝑁 (𝑣) where

ℓ(𝑤) ∈ [𝑙, 𝑙 + 1]. First, we create 𝐿𝑣[𝑙] to store the neighbors of 𝑣 in level 𝑙 (Line 7). If

𝑣 moved to level 𝑙 + 1 and 𝑤 stayed in level 𝑙, then we delete 𝑤 from 𝑈 [𝑣] and instead

insert 𝑤 into 𝐿𝑣[𝑙] (Line 9). We do not need to make any data structure modi�cations

for 𝑤 since 𝑣 stays in 𝑈 [𝑤]. Similarly, no data structure modi�cations to 𝑣 and 𝑤 are

necessary when both 𝑣 and 𝑤 move to level 𝑙 + 1. For each neighbor of 𝑣 on level 𝑙 + 1,

we need to check whether it now violates Invariant 1. If it does, then we mark the vertex

(Line 11). We process any such marked vertices when we process level 𝑙 + 1. We also

update the 𝑈 and 𝐿 arrays of every neighbor of 𝑣 on level 𝑙 + 1 (Line 12). Speci�cally,
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Algorithm 21 RebalanceInsertions(𝐵
ins

)

Input: A batch of edge insertions 𝐵
ins

.

1: Let 𝑈 contain all up-neighbors of each vertex, keyed by vertex. So 𝑈 [𝑣] contains all up-

neighbors of 𝑣.

2: Let 𝐿𝑣 contain all neighbors of 𝑣 in levels [0, ℓ(𝑣)− 1], keyed by level number.

3: parfor each edge insertion 𝑒 = (𝑢,𝑣) ∈ ℬ𝑖𝑛𝑠 do
4: Insert 𝑒 into the graph.

5: for each level 𝑙 ∈ [0,𝐾 − 1] starting with 𝑙 = 0 do

6: parfor each vertex 𝑣 incident to 𝐵
ins

or is marked, where ℓ(𝑣) = 𝑙 ∩ up(𝑣) > (2 + 3/𝜆)(1 +
𝛿)𝑔𝑛(𝑙) do

7: Mark and move 𝑣 to level 𝑙 +1 and create 𝐿𝑣[𝑙] to store 𝑣’s neighbors at level 𝑙.

8: parfor each 𝑤 ∈𝑁 (𝑣) of a vertex 𝑣 that moved to level 𝑙 +1 and 𝑤 stayed in level 𝑙 do
9: 𝑈 [𝑣]←𝑈 [𝑣] ∖ {𝑤} ,𝐿𝑣[𝑙]← 𝐿𝑣[𝑙]∪ {𝑤}.

10: parfor each 𝑢 ∈𝑁 (𝑣) of a vertex 𝑣 that moved to level 𝑙 +1 and 𝑢 is in level 𝑙 +1 do

11: Mark 𝑢 if up(𝑢) > (2 + 3/𝜆)(1 + 𝛿)𝑔𝑛(𝑙+1).
12: 𝑈 [𝑢]←𝑈 [𝑢]∪ {𝑣}, 𝐿𝑢[𝑙]← 𝐿𝑢[𝑙] ∖ {𝑣}.
13: parfor each 𝑥 ∈𝑁 (𝑣) of a vertex 𝑣 that moved to level 𝑙 +1 and 𝑥 is in level ℓ(𝑥) ≥ 𝑙 +2 do

14: 𝐿𝑥[𝑙]← 𝐿𝑥[𝑙] ∖ {𝑣},𝐿𝑥[𝑙 +1]← 𝐿𝑥[𝑙 +1]∪ {𝑣}.
15: Unmark 𝑣 if up(𝑣) ≤ (2 + 3/𝜆)(1 + 𝛿)𝑔𝑛(𝑙+1). Otherwise, leave 𝑣 marked.

let 𝑢 be one such neighbor, we add 𝑣 to 𝑈 [𝑢] and remove 𝑣 from 𝐿𝑢[𝑙]. We conclude

by making appropriate modi�cations to 𝐿 for each neighbor on levels ≥ 𝑙 + 2 (Line 13–

Line 14). Speci�cally, let 𝑥 be one such neighbor, we remove 𝑣 from 𝐿𝑥[𝑙] and add 𝑣 to

𝐿𝑥[𝑙 +1]. All neighbors of vertices that moved can be checked and processed in parallel.

Finally, 𝑣 becomes unmarked if it satis�es all invariants; otherwise, it remains marked

and must move again in a future step (Line 15).

A detailed example of this procedure is below.

𝜖 = 0.4 and 𝜆 = 3
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Figure 6-3: Example of RebalanceInsertions described in Example 6.3.4 for 𝛿 = 0.4 and

𝜆 = 3.

Example 6.3.4. Fig. 6-3 shows an example of our entire insertion procedure described in Al-

gorithm 21. The red lines in the example represent the batch of edge insertions. Thus, in

(𝑎), the newly inserted edges are the edges (𝑢,𝑣), (𝑢,𝑥), and (𝑥,𝑤). We iterate from the

bottommost level (starting with level 0) to the topmost level (level 𝐾 − 1).
The �rst level where we encounter vertices that are marked or are adjacent to an edge

insertion is level 2. Since level 2 is part of group 0, the cuto� for Invariant 1 is (2+3/𝜆)(1+
𝛿)0 = 3 provided 𝜆 = 3 and 𝛿 = 0.4. In level 2, only 𝑤 violates Invariant 1 since the number

of its neighbors on levels ≥ 2 is 4 (𝑥, 𝑦, 𝑧, and 𝑎), so up(𝑤) = 4 > 3 (shown in (𝑏)). Then, in
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Algorithm 22 RebalanceDeletions(𝐵
del

)

Input: A batch of edge deletions 𝐵
del

.

1: Let 𝑈 contain all up-neighbors of each vertex, keyed by vertex. So 𝑈 [𝑣] contains all up-

neighbors of 𝑣.

2: Let 𝐿𝑣 contain all neighbors of 𝑣 in levels [0, ℓ(𝑣)− 1], keyed by level number.

3: parfor each edge deletion 𝑒 = (𝑢,𝑣) ∈ 𝐵
del

do

4: Remove 𝑒 from the graph.

5: parfor each vertex 𝑣 where up*(𝑣) < (1 + 𝛿)𝑔𝑛(ℓ(𝑣)−1) do
6: Calculate dl(𝑣) using CalculateDesireLevel(𝑣).

7: for each level 𝑙 ∈ [0,𝐾 − 1] starting with level 𝑙 = 0 do

8: parfor each vertex 𝑣 where dl(𝑣) = 𝑙 do
9: Move 𝑣 to level 𝑙.

10: parfor each neighbor 𝑤 of a vertex 𝑣 that moved to level 𝑙 where ℓ(𝑤) ≥ ℓ(𝑣) do
11: Let 𝑝𝑣 and 𝑝𝑤 be the previous levels of 𝑣 and 𝑤, respectively, before the move.

12: if ℓ(𝑤) = ℓ(𝑣) = 𝑙 then
13: 𝐿𝑤[𝑝𝑣]← 𝐿𝑤[𝑝𝑣] ∖ {𝑣}, 𝐿𝑣[𝑝𝑤]← 𝐿𝑣[𝑝𝑤] ∖ {𝑤}.
14: 𝑈 [𝑤]←𝑈 [𝑤]∪ {𝑣},𝑈 [𝑣]←𝑈 [𝑣]∪ {𝑤}.
15: else

16: if 𝑝𝑣 > ℓ(𝑤) then
17: 𝑈 [𝑤]←𝑈 [𝑤] ∖ {𝑣},𝐿𝑣[ℓ(𝑤)]← 𝐿𝑣[ℓ(𝑤)] ∖ {𝑣}.
18: else if 𝑝𝑣 = ℓ(𝑤) then
19: 𝑈 [𝑤]←𝑈 [𝑤] ∖ {𝑣}.
20: else 𝐿𝑤[𝑝𝑣]← 𝐿𝑤[𝑝𝑣] ∖ {𝑣}.
21: 𝐿𝑤[𝑙]← 𝐿𝑤[𝑙]∪ {𝑣},𝑈 [𝑣]←𝑈 [𝑣]∪ {𝑤}.
22: if up*(𝑤) < (1 + 𝛿)𝑔𝑛(ℓ(𝑤)−1) then
23: Recalculate dl(𝑤) using Algorithm 23.

(𝑐), we move𝑤 up to level 3. We need to update the data structures for neighbors of𝑤 at level

3 and above (as well as 𝑤’s own data structures); the vertices with data structure updates are
𝑥, 𝑤, 𝑦, and 𝑧. After the move, 𝑥 becomes marked because it now violates Invariant 1 (the

cuto� for level 3 is 3 · (1.4) = 4.2 since level 3 is in group 1); 𝑤 becomes unmarked because

it no longer violates Invariant 1.

In (𝑑), wemove on to process level 3. The only vertex that is marked or violates Invariant 1

is 𝑥. Therefore, we move 𝑥 up one level (shown in (𝑒)) and update relevant data structures (of
𝑥, 𝑣, 𝑦, 𝑧, and 𝑏).

RebalanceDeletions(𝐵del) Deletions are handled in a similar way to insertions, except

for one major di�erence. Instead of moving vertices down one level at a time, we ensure

that when we move a vertex, we move it to its �nal level (i.e., we will not move this vertex

again during this procedure). As we show in the analysis, this guarantee is crucial to

obtaining low depth.

Algorithm 22 shows the pseudocode. For each vertex 𝑣 incident to an edge deletion,

�rst we check whether it violates Invariant 2 (Algorithm 22, Line 5). In Line 5, 𝑔𝑛(ℓ(𝑣)−1)
gives the group number 𝑖 where ℓ(𝑣) − 1 ∈ 𝑔𝑖 . If it violates Invariant 2, we calculate its
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desire-level, dl(𝑣), using CalculateDesireLevel (Algorithm 22, Line 6). We describe how to

do this at the end of this subsection. As in the insertion procedure, we iterate through the

levels from 𝑙 = 0 to 𝑙 = 𝐾 −1 (Line 7). Then, in parallel for each vertex whose desire-level

is 𝑙, we move the vertex to level 𝑙 (Line 8–Line 9). As with insertions, we update the data

structures of 𝑣 and 𝑤 ∈ 𝑁 (𝑣) where ℓ(𝑤) ≥ 𝑙 (Line 10–Line 21). Finally, we update the

desire-level of neighbors of 𝑣 that no longer satisfy Invariant 2 (Line 22–Line 23). We

process all vertices that move as well as their neighbors in parallel.

An example of the RebalanceDeletions procedure is given below.

𝜖 = 1 and 𝜆 = 3
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Figure 6-4: Example of RebalanceDeletions described in Example 6.3.5 for 𝛿 = 1 and𝜆 = 3.

Example 6.3.5. Fig. 6-4 shows an example of our entire deletion procedure described in Al-

gorithm 22 for 𝛿 = 1 and 𝜆 = 3. The red dotted lines in the example represent the batch

of edge deletions. Thus, in (𝑎), the newly deleted edges are the edges (𝑥,𝑧) and (𝑦,𝑤). For
each vertex adjacent to an edge deletion, we calculate its desire-level, or the closest level to its

current level that satis�es Invariant 2.

In this example, shown in (𝑏), only 𝑥 and 𝑧 violate Invariant 2. The lower bound on the

number of neighbors that must be at or above level 3 for 𝑥 and level 4 for 𝑧 is (1 + 𝛿)1 = 2
since 𝛿 = 1 and levels 3 and 4 are in group 1. (Recall that the lower bound is calculated with
respect to the level below 𝑥 and 𝑧.) We calculated that the desire levels of 𝑥 and 𝑧 are both 3.
The desire levels of 𝑦 and 𝑤 are their current levels because they do not violate the invariant.

Then, we iterate from the bottommost level (starting with level 0) to the topmost level (level

𝐾 − 1).
Level 3 is the �rst level where vertices want to move. Then, we move 𝑥 and 𝑧 to level 3

(shown in (𝑐)). We only need to update the data structures of neighbors at or above 𝑥 and 𝑧 so
we only update the data structures of 𝑥, 𝑦, and 𝑧. Invariant 2 is no longer violated for 𝑥 and
𝑧. In fact, our algorithm guarantees that each vertex moves at most once. We check whether

any of 𝑥 or 𝑧’s up-neighbors violate Invariant 2. Indeed, in this example, 𝑦 now violates the

invariant. We recompute the desire-level of 𝑦 and its desire-level is now 4 (shown in (𝑑)). We

proceed to process level 4 and move 𝑦 to that level (shown in (𝑒)).

CalculateDesireLevel(𝑣) Algorithm 23 shows the procedure for calculating the desire-

level, dl(𝑣), of vertex 𝑣, which is used in Algorithm 22. Let 𝑔𝑛(ℓ) be the index 𝑖 where level

ℓ ∈ 𝑔𝑖 . We use a doubling procedure followed by a binary search to calculate our desire-

level. We initialize a variable 𝑑 to up*(𝑣) (number of neighbors at or above ℓ(𝑣) − 1).

Starting with level ℓ(𝑣)− 2, we add the number of neighbors in level ℓ(𝑣)− 2 to 𝑑 (Algo-

rithm 23, Line 3). This procedure checks whether moving 𝑣 to ℓ(𝑣)−1 satis�es Invariant 2

(Line 6). If it passes the check, then we are done and we move 𝑣 to ℓ(𝑣) − 1. Otherwise,

we double the number of levels from which we count neighbors (Line 6). In our example,
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Algorithm 23 CalculateDesireLevel(𝑣)

Input: A vertex 𝑣 that needs to move to a level 𝑗 < ℓ(𝑣).
Output: The desire-level dl(𝑣) of vertex 𝑣.

1: 𝑑← up*(𝑣),𝑝← 1, 𝑖← 2
2: while 𝑑 < (1 + 𝛿)𝑔𝑛(ℓ(𝑣)−𝑝) and ℓ(𝑣)− 𝑝 > 0 do

3: 𝑑← 𝑑 +
∑︀𝑖−1
𝑗=𝑝

⃒⃒⃒
𝐿𝑣[ℓ(𝑣)− 𝑗 − 1]

⃒⃒⃒
4: if 𝑑 ≥ (1 + 𝛿)𝑔𝑛(ℓ(𝑣)−𝑖) then
5: Binary search within levels [ℓ(𝑣) − 𝑖 + 1, ℓ(𝑣) − 𝑝] to �nd the closest level to ℓ(𝑣) that

satis�es Invariants 1 and 2.

6: 𝑝← 𝑖, 𝑖←min(2 · 𝑖, ℓ(𝑣)).

in the next iteration, we sum the number of neighbors in levels [ℓ(𝑣) − 4, ℓ(𝑣) − 3]. We

continue until we �nd a level where Invariant 2 is satis�ed. Let this level be ℓ′ and the

previous cuto� be ℓ
prev

. Finally, we perform a binary search within the range [ℓ′, ℓ
prev

] to

�nd the closest level to ℓ(𝑣) that satis�es Invariant 2 (Line 5). The sum on Line 3 is done

using a parallel reduce.

6.3.4 Vertex Insertions and Deletions

We can handle vertex insertions and deletions by inserting vertices which have zero de-

gree and considering deletions of vertices to be a batch of edge deletions of all edges

adjacent to the deleted vertex. When we insert a vertex with zero degree, it automatically

gets added to level 0 and remains in level 0 until edges incident to the vertex are inserted.

For a vertex deletion, we add all edges incident to the deleted vertex to a batch of edge

deletions. Note, �rst, that all vertices which have 0 degree will remain in level 0. Thus,

there are at most 𝑂(𝑚) vertices which have non-zero degree.

Because we have 𝑂(log2𝑚) levels in our data structure, we rebuild the data structure

once we have made
𝑚
2 edge updates (including edge updates from edges incident to deleted

vertices). Rebuilding the data structure requires 𝑂(𝑚 log2𝑛) total work which we can

amortize to the
𝑚
2 edge updates to 𝑂(log2𝑛) amortized work. Running Algorithm 21

and Algorithm 22 on the entire set of 𝑂(𝑚) edges requires �̃�(log2𝑛) depth.

6.3.5 Coreness and Low-Outdegree Orientation

To obtain the coreness estimates from our PLDS, we only need to maintain the current

level of each vertex and the number of levels in a group (recall that all groups have equal

numbers of levels). Then, we calculate the estimate of the coreness of 𝑣 to be �̂�(𝑣) =
(1 + 𝛿)max(⌊ℓ(𝑣)/⌈log1+𝛿𝑚⌉⌋−1,0), where the number of levels in a group is

⌈︁
log1+𝛿𝑚

⌉︁
. In

other words, our estimate of the coreness of 𝑣 is (1+𝛿)𝑖 , where 𝑖 is the group index of the

highest level that is the last level in a group and is equal to or lower than ℓ(𝑣). We need

to perform this calculation in order to obtain our optimum approximation ratios both in

theory (Lemma 6.3.16) and in practice. To see an example, consider vertex 𝑦 in Fig. 6-4 (𝑒).
We estimate �̂�(𝑦) = 1 since the highest level that is the last level of a group and is equal
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to or below level ℓ(𝑦) = 4 is level 2. Level 2 is part of group 0 so our coreness estimate

for 𝑦 is (1 + 𝛿)0 = 1. This is a 2-approximation of its actual coreness 2.

To obtain a low-outdegree orientation we maintain an orientation of each edge from

the endpoint at a lower level to the endpoint with a higher level. So edges are directed

from lower to higher levels. For any two vertices on the same level, we direct the edge

from the vertex with higher ID to the vertex with lower ID. Performing this procedure

results in an 8𝛼 outdegree orientation, where 𝛼 is the arboricity of the graph.

6.3.6 Data Structure Implementations

Due to space constraints, we only specify the data structures used to obtain our random-

ized (high probability) bounds. We implement these data structures in our experiments.

Our data structures presented here result in 𝑂(𝑛 log2𝑚 +𝑚) space usage. However, we

present two additional sets of data structures in Section 6.6: one that achieves𝑂(𝑚) space

with an 𝑂(log2𝑚) factor increase in depth and another that results in a deterministic

PLDS.

Our data structure uses parallel hash tables, which support 𝑥 concurrent insertions,

deletions, or �nds in 𝑂(𝑥) amortized work and 𝑂(log*𝑥) depth whp [GMV91]. We use

dynamic arrays, which support adding or deleting 𝑥 elements from the end in𝑂(𝑥) amor-

tized work and 𝑂(1) depth.

We �rst assign each vertex a unique ID in [𝑛]. We also maintain an array 𝑈 of size 𝑛
keyed by vertex ID that returns a parallel hash table containing neighbors of 𝑣 on levels

≥ ℓ(𝑣). For each vertex 𝑣, we maintain a dynamic array𝐿𝑣 keyed by indices 𝑖 ∈ [0, ℓ(𝑣)−1].
The 𝑖’th entry of the array contains a pointer to a parallel hash table containing the neigh-

bors of 𝑣 in level 𝑖. Appropriate pointers exist that allow𝑂(1) work to access elements in

structures. Furthermore, we maintain a hash table which contains pointers to vertices 𝑣
where dl(𝑣) , ℓ(𝑣), partitioned by their levels. This allows us to quickly determine which

vertices to move up (in Algorithm 21) or move down (in Algorithm 22).

6.3.7 Analysis

We now present the lemmas used to analyze our algorithms, as well as our overall bounds

and approximation guarantee.

Depth and Work Bound First, it is easy to show that there exists a level where both

invariants are satis�ed. This allows our PLDS data structure to assign each vertex to a

single level.

Lemma 6.3.6. If a vertex 𝑣 violates Invariant 1, then there exists a level 𝑙 > ℓ(𝑣) where 𝑣
satis�es both Invariant 1 and Invariant 2. If a vertex 𝑤 violates Invariant 2, then there exists

a level 𝑙 < ℓ(𝑤) where 𝑤 satis�es both invariants or 𝑙 = 0 (it is in the bottommost level).

Proof. First note that no vertex can simultaneously violate both Invariant 1 and Invari-

ant 2. Thus, suppose �rst that 𝑣 violates Invariant 1. Then, this means that the number of

neighbors of 𝑣 on levels ≥ ℓ(𝑣) is more than (2 + 3/𝜆) (1 + 𝛿)𝑔(𝑣) where 𝑔(𝑣) is the group
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number of 𝑣. If 𝑣 still violates Invariant 1 on level ℓ(𝑣)+1, then we keep moving 𝑣 to the

next level.

Otherwise, 𝑣 does not violate Invariant 1 on level ℓ(𝑣) + 1. Since we know that 𝑣
violated Invariant 1 on level ℓ(𝑣), then after we move 𝑣 to ℓ(𝑣)+1, 𝑣’s up*-degree is greater

than (1 + 𝛿)𝑔𝑛(ℓ(𝑣)); hence, 𝑣 also does not violate Invariant 2. The very last level of the

𝐾 levels has up-degree bound (2 + 3/𝜆) (1+𝛿)⌈log1+𝛿(𝑚)⌉ ≥ 2𝑛′ where 𝑛′ is the number of

vertices with at least one adjacent edge. Hence, there must exist a level at or below the last

level where both invariants are satis�ed. A similar argument holds for Invariant 2.

Then, we show that the batch of insertions never violates Invariant 2 and a batch of

deletions never violates Invariant 1.

Lemma 6.3.7 (Batch Insertions). Given a batch of insertions, ℬ𝑖𝑛𝑠, Invariant 2 is never

violated at any point during the rebalance procedure given by Algorithm 21.

Proof. The �rst part of the algorithm inserts the edges into the data structure. Since no

edges are removed from the data structures, the degrees of all the vertices after the inser-

tion of edges cannot decrease. Invariant 2 was satis�ed before the insertion of the edges,

and hence, it remains satis�ed after the insertion of edges because no vertices lose neigh-

bors. We prove that the lemma holds for the remaining part of Algorithm 21 via induction

on the level 𝑖 processed by the procedure. In the base case, when 𝑖 = 0, all vertices 𝑣 in the

level which violate Invariant 1 are moved up to a level dl(𝑣) > 0. By de�nition of desire-

level, 𝑣 is moved to a level where Invariant 2 is still satis�ed, by Lemma 6.3.6. Vertices

from level 0 which move to levels 𝑘 ≥ 1 cannot decrease the up*-degree for neighbors in

all levels 𝑗 where 𝑗 > 1. Thus, Invariant 2 cannot be violated for these vertices. Vertices

not adjacent to 𝑣 are not a�ected by the move.

We assume that Invariant 2 was not violated up to level 𝑖 and prove it is not violated

while processing vertices on level 𝑖+1. By our induction hypothesis, no vertices violate In-

variant 2 before we process level 𝑖+1. Then, when we process level 𝑖+1, no vertices move

down to a lower level than 𝑖 + 1 by construction of our algorithm because Invariant 2 is

not violated for any vertex on level 𝑖 +1 and if Invariant 1 is violated for any vertex 𝑤, 𝑤
must move up to a higher level. Any vertex 𝑤 which moves up to a higher level cannot

decrease the up*-degree of neighbors of 𝑤. Hence, no vertex on levels ≥ 𝑖 + 1 can vio-

late Invariant 2. The up*-degree of vertices on levels < 𝑖 +1 are not a�ected by the move.

Hence, no vertices on levels < 𝑖 + 1 violate Invariant 2. Finally, if a vertex on level 𝑖 + 1
violates Invariant 1, it will move to a level 𝑗 > 𝑖 + 1 where both invariants are satis�ed

by Lemma 6.3.6.

Lemma 6.3.8 (Batch Deletions). Given a batch of deletions, ℬ𝑑𝑒𝑙 , Invariant 1 is never vio-
lated while ℬ𝑑𝑒𝑙 is applied.

Proof. Algorithm 22 �rst applies all the edge deletions in the batch. Edge deletions cannot

make the up-degree of any vertex greater; thus, no vertex violates Invariant 1 after apply-

ing the edge deletions. We prove that the rest of the algorithm does not violate Invariant 1

via induction over the levels 𝑖. Speci�cally, we use as our induction hypothesis that after

processing the 𝑖’th level, no vertices violate Invariant 1. In the base case, when 𝑖 = 0,
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no vertices violate Invariant 1 at the beginning, and vertices from levels 𝑖 > 0 move to

level 0. This means that during the processing of level 𝑖 = 0, vertices only move to level

0 from a higher level. Thus, all such vertices that move will move to a lower level. Since

vertices which move to lower levels do not increase the up-degree of any other vertices,

no vertex can violate Invariant 1 at the end of processing level 0. We now prove the case

for processing level 𝑖 + 1. In this case, we assume by our induction hypothesis that no

vertices violate Invariant 1 after we �nish processing level 𝑖. Thus, all vertices that want

to move to level 𝑖 + 1 and violate Invariant 2 are at levels 𝑗 > 𝑖 + 1. Such vertices move

down and thus cannot increase the up-degree of any vertex. This means that after moving

all vertices that want to move to level 𝑖 +1, no vertices violate Invariant 1.

Batch Insertion Depth Bound The depth of our batch insertion algorithm (Algo-

rithm 21) depends on the following lemma which states that once we have processed a

level (after �nishing the corresponding iteration of Line 5), no vertex will want to move

from any level lower than that level. This means that each level is processed exactly once,

resulting in at most 𝑂(log2𝑚) levels to be processed sequentially.

Lemma 6.3.9. After processing level 𝑖 in Algorithm 21, no vertex 𝑣 in levels ℓ(𝑣) ≤ 𝑖 will
violate Invariant 1. Furthermore, no vertex 𝑤 on levels ℓ(𝑤) > 𝑖 will have dl(𝑤) ≤ 𝑖.

Proof. We prove this via induction. For the base case 𝑖 = 0, all vertices on level 0 are

part of each other’s up-degree; then, no vertices which move up from 𝑖 = 0 can cause the

up-degree of any vertices remaining in level 0 to increase. We now assume the induction

hypothesis for 𝑖−1 and prove the case for 𝑖. Vertices on level 𝑗 ≤ 𝑖 already contain vertices

on levels ≥ 𝑖 in its up-degree. Such vertices on levels ≥ 𝑖 when moved to a higher level are

still part of the up-degree of vertices on levels 𝑗 ≤ 𝑖. Hence, no vertices on levels 𝑗 ≤ 𝑖 will

violate Invariant 1 due to vertices in levels ≥ 𝑖 moving up to a level 𝑙 > 𝑖. Then, in order

for a vertex 𝑤 with ℓ(𝑤) > 𝑖 to have dl(𝑤) ≤ 𝑖, some neighbors of 𝑤 must have moved to

a level ≤ 𝑖. By Lemma 6.3.7, no vertices move down during Algorithm 21, so this is not

possible.

Batch Deletion Depth Bound For the batch deletion algorithm (Algorithm 22), we

prove that after all vertices which have dl(𝑤) = 𝑖 are moved to the 𝑖’th level, no vertex

will have dl(𝑣) ≤ 𝑖. As in the insertion case, this means that each level is processed exactly

once, resulting in at most 𝑂(log2𝑚) levels to be processed sequentially.

Lemma 6.3.10. After processing all vertices that move to level 𝑖 in Algorithm 22, no vertex

needs to be moved to any level 𝑗 ≤ 𝑖 in a future iteration of Line 7; in other words, no vertex

𝑣 has dl(𝑣) ≤ 𝑖 after level 𝑖 has been processed.

Proof. We prove this invariant via induction. In the base case when 𝑖 = 0, all vertices with

dl(𝑣) = 0 are moved to level 0. All vertices which have dl(𝑣) = 0 are vertices which have

degree 0. Thus, all vertices that do not have dl(𝑣) = 0 have degree≥ 1 and have dl(𝑤) ≥ 1.

Hence, after moving all vertices with dl(𝑣) = 0 to level 0, no additional vertices need to

be moved to level 0. Assuming our induction hypothesis, we now show our lemma holds

for level 𝑖 + 1. All vertices that move to level 𝑖 + 1 violated Invariant 2 and hence have
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up*-degree < (1+𝛿)𝑔𝑛(𝑗−1) at level 𝑗 > 𝑖+1 and up*-degree≥ (1+𝛿)𝑔𝑛(𝑖) at level 𝑖+1. After

moving all vertices with dl(𝑣) = 𝑖+1 to level 𝑖+1, no vertices on levels 𝑘 ≤ 𝑖+1 have their

up*-degree decreased by the move. We conclude the proof with vertices at levels 𝑙 > 𝑖+1.

Suppose for the sake of contradiction that there exists some vertex 𝑤 on level 𝑙 > 𝑖 + 1
which has dl(𝑤) ≤ 𝑖 +1 after the move. In order for dl(𝑤) ≤ 𝑖 +1, some neighbor(s) of 𝑤
must move below level 𝑖, a contradiction. Finally, due to Lemma 6.3.8, no vertices below

level 𝑖 +1 will move up.

The depth of our algorithm follows almost immediately from the above lemmas. Be-

fore we present the �nal lemmas for the depth of our algorithm, we discuss the depth

incurred from our data structures and also brie�y the deterministic and space-e�cient

settings.

Deterministic Setting In the deterministic setting, we maintain the list of neighbors

using dynamic arrays, which also means that we maintain and access the sizes of these

arrays in 𝑂(1) work and depth. Because we are using dynamic arrays, we need to occa-

sionally resize the arrays in𝑂(1) amortized work and𝑂(1) depth. Finally, we can modify

the arrays in 𝑂(1) work and depth (not counting the depth for resizing).

Randomized Setting In the randomized setting, we maintain the list of neighbors us-

ing parallel hash tables keyed by level. Each vertex has one hash table which contains

their neighbors at each level below them as well as all its neighbors at the same or higher

levels. Then, vertices themselves are contained in separate hash tables for each level.

Parallel lookups into the hash tables each require𝑂(1) work and depth, whp. Then, mod-

ifying (inserting and deleting) elements within the hash tables require𝑂(loglog𝑚) depth

and work proportional to the number of inserted elements, whp.

Space-E�cient Setting In the space-e�cient setting, we replace the structure used to

represent 𝐿𝑣𝑖 with a linked list. Inserting and deleting nodes from the linked list requires

𝑂(1) work and depth (assuming we are given a pointer to the node). Then, resizing the

dynamic arrays (pointed to by the linked lists to maintain the set of elements in each level)

require 𝑂(1) amortized work and 𝑂(1) depth.

The only additional depth we need to consider is the depth acquired from Algo-

rithm 23. Both the doubling search and the binary search require𝑂(log𝐾) =𝑂(loglog𝑚)
depth. All other depth comes from concurrently modifying and accessing dynamic arrays

and hash tables, which can be done in 𝑂(log*𝑚) depth whp.

Using the above, we prove the depth of Algorithm 20.

Lemma 6.3.11. Algorithm 20 returns a deterministic level data structure that maintains

Invariant 1 and Invariant 2 and has𝑂(log3𝑚) worst-case depth and𝑂(𝑛 log2𝑚+𝑚) space.

Proof. All edge updates can be partitioned into ℬ𝑖𝑛𝑠 and ℬ𝑑𝑒𝑙 in parallel in 𝑂(1) depth.

Then, it remains to bound the depth of Algorithm 21 and Algorithm 22.

Algorithm 21 iterates through all 𝐾 =𝑂
(︁
log2𝑚

)︁
levels sequentially. By Lemma 6.3.9,

no vertices on level ≤ 𝑖 will violate Invariant 1 after processing level 𝑖. Thus, by the
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end of the procedure no vertices violate Invariant 1. By Lemma 6.3.7, Invariant 2 was

never violated during Algorithm 21. Thus, both invariants are maintained at the end of

the algorithm. Since we iterate through 𝑂(log2𝑚) levels and, in each level, we require

checking the neighbors at one additional level which can be done in parallel in𝑂(1) depth,

the total depth of this procedure is 𝑂(log2𝑚). To resize the dynamic array, we require

𝑂(log𝑚) depth whenever the array becomes too large or too small to compute the o�sets

by which to insert the new elements. For each level, an additional depth of 𝑂(log𝑚)
might be necessary to compute the element o�sets and then resize the arrays in 𝑂(1)
depth. Then, Algorithm 21 requires 𝑂(log3𝑚) worst-case depth.

Algorithm 22 iterates through all 𝐾 =𝑂
(︁
log2𝑚

)︁
levels sequentially. By Lemma 6.3.8

and Lemma 6.3.10, after processing level 𝑖, no vertices in a level higher than 𝑖 + 1 will

have dl(𝑣) ≤ 𝑖 + 1 and no vertices on levels ≤ 𝑖 will violate Invariant 1. Thus, by the

end of the procedure all vertices satisfy Invariant 2. Furthermore, Invariant 1 was never

violated due to Lemma 6.3.8. There are 𝑂(log2𝑚) levels and for each level we require

running Algorithm 23 to obtain the dl(𝑣) of each a�ected vertex 𝑣 that should be moved

to each level.

Running Algorithm 23 requires 𝑂 (loglog𝑚) depth to obtain the �rst level that sat-

is�es invariants for each a�ected vertex 𝑣 and 𝑂 (loglog𝑚) depth for the �nal binary

search that determines the closest level to ℓ(𝑣) that satis�es the invariants. In conclusion,

Algorithm 22 requires 𝑂(log3𝑚) worst-case depth.

In general, Algorithm 20 requires 𝑂(log3𝑚) worst-case depth.

Corollary 6.3.12. Algorithm 20 returns a randomized level data structure thatmaintains In-

variant 1 and Invariant 2 and has 𝑂(log2𝑚 loglog𝑚) depth, whp, and 𝑂(𝑛 log2𝑚 +𝑚)
space.

Proof. The proof is the same as the proof of Lemma 6.3.11 except we replace dynamic

arrays with parallel hash tables. Simultaneously changing the values within the hash

table require𝑂(log*𝑚) depth whp. Then, the depth per level of the structure is dominated

by Algorithm 23. Thus, the total depth of our randomized algorithm is𝑂(log2𝑚 loglog𝑚)
whp, and 𝑂(𝑛 log2𝑚+𝑚) space.

The additional 𝑛 log2𝑚 space comes from needing to store the 𝐿𝑣 dynamic arrays for

each vertex 𝑣 in the graph. We show that with slightly more complicated data structures

involving linked lists, we can obtain space-e�cient structures.

Corollary 6.3.13. Algorithm 20 returns a space-e�cient, deterministic, level data structure

that maintains Invariant 1 and Invariant 2 and has 𝑂(log4𝑚) worst-case depth.

Proof. The proof is the same as the proof of Lemma 6.3.11 except we replace Algorithm 23

with an 𝑂(log2𝑚) linear in number of levels search. The speci�c data structure we use

for each vertex 𝑣 is a linked list with each node of the linked list representing a level

≤ ℓ(𝑣)− 1 which contains one or more neighbors of 𝑣. Then, each node in the linked list

contains a pointer to a dynamic array containing the neighbors in that level. The linked

list has size at most 𝑂(log2𝑚). Thus, the total depth is 𝑂(log4𝑚).
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Our work bound uses potential functions similar to those presented in Section 4

of [BHNT15]. We show our parallel algorithm serializes to a set of sequential steps that

can be analyzed using these potential functions. Because the potential functions are very

similar to those in [BHNT15], we leave the discussion to Section 6.7. Together, we obtain

the work and depth bounds shown in Theorem 6.1.2.

6.3.8 (2 + 𝜀)-Approximation of Coreness

The coreness estimate, �̂�(𝑣), is an estimate of the coreness of a vertex 𝑣. As mentioned

previously in Section 6.3.5, we compute an estimate of the coreness using information

about the level of the vertex 𝑣. Here, we show that such an estimate provides us with a

(2 + 𝜀)-approximation to the actual coreness of 𝑣 for any constant 𝜀 > 0. (We can �nd

an approximation for any �xed 𝜀 by appropriately setting our parameters 𝛿 and 𝜆.) To

calculate �̂�(𝑣), we �rst �nd the largest index 𝑖 of a group 𝑔𝑖 , where ℓ(𝑣) is at least as high

as the highest level in 𝑔𝑖 .

De�nition 6.3.14 (Coreness Estimate). The coreness estimate �̂�(𝑣) of vertex 𝑣 is (1 +
𝛿)max(⌊ℓ(𝑣)/⌈log1+𝛿 𝑛⌉⌋−1,0).

We prove that our PLDS maintains a (2 + 3/𝜆) (1 + 𝛿) approximation of the coreness

value of each vertex, for any constants 𝜆 > 0 and 𝛿 > 0, if we use �̂�(𝑣) as computed in

De�nition 6.3.14. Therefore, we obtain the following lemma giving the desired (2 + 𝜀)-
approximation, a 2-factor improvement on the previous approximation bounds. Previous

works were only able to obtain a (4 + 𝜀)-approximation theoretical bound [SCS20]. We

see in our experimental analysis that such a bound improves the maximum error of our

algorithm compared to previous algorithms that obtain similar average errors. Given �xed

𝛿 and 𝜆, the maximal error of our algorithm is given by (2 + 3/𝜆)(1 + 𝛿).
We �rst show some properties of �̂�(𝑣) and then we show that we can obtain an ap-

proximate coreness number by looking at �̂�(𝑣).

Lemma 6.3.15. Let �̂�(𝑣) be the coreness estimate and 𝑘(𝑣) be the coreness of 𝑣, respectively.

If 𝑘(𝑣) > (2 + 3/𝜆) (1 + 𝛿)𝑔
′
, then �̂�(𝑣) ≥ (1 + 𝛿)𝑔

′
. Otherwise, if 𝑘(𝑣) < (1+𝛿)𝑔

′

(2+3/𝜆)(1+𝛿) , then

�̂�(𝑣) < (1 + 𝛿)𝑔
′
.

Proof. For simplicity, we assume the number of levels per group is 2
⌈︁
log(1+𝛿)𝑚

⌉︁
(a tighter

analysis can accomodate the case when the number of levels per group is

⌈︁
log(1+𝛿)𝑚

⌉︁
).

Let 𝑇 (𝑔 ′) be the topmost level of group 𝑔 ′ . In the �rst case, we show that if 𝑘(𝑣) >
(2 + 3/𝜆) (1+𝛿)𝑔

′
, then 𝑣 would be in a level higher than 𝑇 (𝑔 ′) in our level data structure.

This would also imply that �̂�(𝑣) ≥ (1+𝛿)𝑔
′
. Suppose for the sake of contradiction that 𝑣 is

located at some level ℓ(𝑣) where ℓ(𝑣) ≤ 𝑇 (𝑔 ′). This means that up(𝑣) ≤ (2 + 3/𝜆) (1+𝛿)𝑔
′

at level ℓ(𝑣). Furthermore, by the invariants of our level data structure, each vertex 𝑤 at

the same or lower level has up(𝑤) ≤ (2 + 3/𝜆) (1+𝛿)𝑔
′
. This means that when we remove

all vertices starting at level 0 sequentially up to and including ℓ(𝑣), all vertices removed

have degree ≤ (2 + 3/𝜆) (1 + 𝛿)𝑔
′

when removed. Thus, when we reach ℓ(𝑣), 𝑣 also has
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degree ≤ (2 + 3/𝜆) (1+𝛿)𝑔
′
. This is a contradiction with 𝑘(𝑣) > (2 + 3/𝜆) (1+𝛿)𝑔

′
. It must

then be the case that 𝑣 is at a level higher than 𝑇 (𝑔 ′) and �̂�(𝑣) ≥ (1 + 𝛿)𝑔
′
.

Now we prove that if 𝑘(𝑣) < (1+𝛿)𝑔
′

(2+3/𝜆)(1+𝛿) , then �̂�(𝑣) < (1 + 𝛿)𝑔
′
. We assume for sake of

contradiction that 𝑘(𝑣) < (1+𝛿)𝑔
′

(2+3/𝜆)(1+𝛿) and �̂�(𝑣) ≥ (1+𝛿)𝑔
′
. To prove this case, we consider

the following process, which we call the pruning process. Pruning is done on a subgraph

𝑆 ⊆ 𝐺. We use the notation 𝑑𝑆(𝑣) to denote the degree of 𝑣 in the subgraph induced by

𝑆 . For a given subgraph 𝑆 , we prune 𝑆 by repeatedly removing all vertices 𝑣 in 𝑆 whose

𝑑𝑆(𝑣) <
(1+𝛿)𝑔

′

(2+3/𝜆)(1+𝛿) . Note that in this argument, we need only consider levels from the

same group 𝑔 ′ before we reach a contradiction, so we assume that all levels are in the

group 𝑔 ′ . Let 𝑗 represent the number of levels below level 𝑇 (𝑔 ′). (Recall that because

�̂�(𝑣) ≥ (1 + 𝛿)𝑔
′
, ℓ(𝑣) ≥ 𝑇 (𝑔 ′). If we consider a level ℓ(𝑣) > 𝑇 (𝑔 ′), then the up*-degree

cannot decrease due to Invariant 2 becoming stricter. This only makes our proof easier,

and so for simplicity, we consider ℓ(𝑣) = 𝑇 (𝑔 ′).) We prove via induction that the number

of vertices pruned from the subgraph induced by 𝑍𝑇 (𝑔 ′)−𝑗 must be at least(︃
(2 + 3/𝜆)(1 + 𝛿)

2

)︃𝑗−1 (︃
(1 + 𝛿)𝑔

′
− (1 + 𝛿)𝑔

′

(2 + 3/𝜆) (1 + 𝛿)

)︃

or otherwise, 𝑘(𝑣) ≥ (1+𝛿)𝑔
′

(2+3/𝜆)(1+𝛿) . We �rst prove the base case when 𝑗 = 1. In the base

case, we know that 𝑑𝑍𝑇 (𝑔′ )−1(𝑣) ≥ (1 + 𝛿)𝑔
′

by Invariant 2. Then, if fewer than (1 + 𝛿)𝑔
′ −

(1+𝛿)𝑔
′

(2+3/𝜆)(1+𝛿) neighbors of 𝑣 are pruned from the graph, then 𝑣 is part of a≥ (1+𝛿)𝑔
′

(2+3/𝜆)(1+𝛿)-core

and 𝑘(𝑣) ≥ (1+𝛿)𝑔
′

(2+3/𝜆)(1+𝛿) , a contradiction.

Thus, at least (1 + 𝛿)𝑔
′ − (1+𝛿)𝑔

′

(2+3/𝜆)(1+𝛿) vertices must be pruned in this case. We now as-

sume the induction hypothesis for 𝑗 and prove that this is true for step 𝑗+1. By Invariant 2,

each vertex on level 𝑇 (𝑔 ′)− 𝑗 and above has degree at least (1 + 𝛿)𝑔
′

in graph 𝑍𝑇 (𝑔 ′)−𝑗−1.

Then, in order to prune all 𝑋 vertices from the previous induction step, we must prune

at least
(1+𝛿)𝑔

′
𝑋

2 edges. Each vertex that is pruned can remove at most
(1+𝛿)𝑔

′

(2+3/𝜆)(1+𝛿) edges

when it is pruned, by de�nition of our pruning procedure. Thus, the minimum number of

vertices we must prune in order to prune the𝑋 =
(︁ (2+3/𝜆)(1+𝛿)

2

)︁𝑗−1 (︂
(1 + 𝛿)𝑔

′ − (1+𝛿)𝑔
′

(2+3/𝜆)(1+𝛿)

)︂
vertices from the previous step is

(1 + 𝛿)𝑔
′
𝑋

2 (1+𝛿)𝑔′

(2+3/𝜆)(1+𝛿)

=
(2+3/𝜆)(1 + 𝛿)

2
𝑋

=
(︃
(2 + 3/𝜆)(1 + 𝛿)

2

)︃𝑗 (︃
(1 + 𝛿)𝑔

′
− (1 + 𝛿)𝑔

′

(2 + 3/𝜆) (1 + 𝛿)

)︃
.

Thus, we have proven our argument for the (𝑗 + 1)-st induction step. Note that for

𝑗 =
⌈︁
log(2+3/𝜆)(1+𝛿)/2(2𝑚+1)

⌉︁
, we have 𝑗 ≤ 2

⌈︁
log(1+𝛿)(𝑚)

⌉︁
. This is because, since we
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pick 𝜆 to be a constant, 2 + 3/𝜆 > 2 and for large enough 𝑚, log(2+3/𝜆)(1+𝛿)/2(2𝑚+ 1) ≤
2
⌈︁
log(1+𝛿)(𝑚)

⌉︁
. Then, by our induction, we must prune at least 2𝑚 + 1 vertices at this

step, which we cannot because there are at most 2𝑚 vertices. This last step holds because

all vertices with degree 0 must be on the �rst level. Hence, all vertices not on level 0 must

be adjacent to at least one edge, and 𝑛 ≤ 2𝑚. Thus, our assumption is incorrect and we

have proven our desired property.

Lemma 6.3.16. The coreness estimate �̂�(𝑣) of a vertex 𝑣 satis�es 𝑘(𝑣)
(2+𝜀) ≤ �̂�(𝑣) ≤ (2+𝜀)𝑘(𝑣)

for any constant 𝜀 > 0.

Proof. Suppose �̂�(𝑣) = (1 + 𝛿)𝑔 . Then, by Lemma 6.3.15,

(1 + 𝛿)𝑔

(2 + 3/𝜆) (1 + 𝛿)
≤ 𝑘(𝑣) ≤ (2 + 3/𝜆) (1 + 𝛿)𝑔+1.

Then, solving the above bounds,
𝑘(𝑣)

(2+3/𝜆)(1+𝛿) ≤ �̂�(𝑣) ≤ (2 + 3/𝜆) (1 + 𝛿)𝑘(𝑣). For any

constant 𝜀 > 0, there exists constants 𝜆,𝛿 > 0 where
𝑘(𝑣)

2(1+𝜀) ≤ �̂�(𝑣) ≤ 2(1+ 𝜀)𝑘(𝑣).

By Lemma 6.3.16, it su�ces to return �̂�(𝑣) as the estimate of the core number of 𝑣.

Lemma 6.3.16 then proves the approximation factor in Theorem 6.1.2.

Using our deterministic and space-e�cient data structures, we can obtain the follow-

ing additional results.

Corollary 6.3.17. Provided an input graph with 𝑚 edges, and a batch of updates ℬ, our
algorithm maintains a (2 + 𝜀)-approximation of the coreness values for all vertices (for any

constant 𝜀 > 0) in 𝑂(|ℬ| log2𝑚) amortized work and 𝑂(log3𝑚) depth worst-case, using

𝑂(𝑛 log2𝑚+𝑚) space.

Corollary 6.3.18. Provided an input graph with 𝑚 edges, and a batch of updates ℬ, our
algorithm maintains a (2 + 𝜀)-approximation of the coreness values for all vertices (for any

constant 𝜀 > 0) in 𝑂(|ℬ| log2𝑚) amortized work and 𝑂(log4𝑚) depth worst-case, using

𝑂(𝑛+𝑚) space.

Using this data structure, we show a bound for the outdegree if we orient all edges

towards neighbors at higher levels and orient edges from higher ID to lower ID in the

same level.

Corollary 6.3.19. The PLDS maintained by Algorithm 20 provides a low out-degree orien-

tation of out-degree at most (8+ 𝜀)𝛼 where 𝛼 is the arboricity, if all edges are oriented from

vertices in lower levels to vertices in higher levels and edges between vertices in the same level

are oriented from higher ID to lower ID.

Proof. Let the degeneracy of the graph be 𝑑. As is well-known, the degeneracy of the

graph is equal to 𝑘𝑚𝑎𝑥 where 𝑘𝑚𝑎𝑥 is the maximum 𝑘-core of the graph. Furthermore, it is

well-known that 𝑑 ≤ 2𝛼. By Lemma 6.3.16, the vertices in the largest 𝑘-core in the graph

are in a level with group number at most log(1+𝛿)((2 + 3/𝜆)𝑑) + 1. This means that the
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Algorithm 24 Static Approximate 𝑘-core Decomposition

Input: An undirected graph 𝐺(𝑉 ,𝐸).
Output: An array of (2 + 𝜀)-approximate coreness values.

1: ∀𝑣 ∈ 𝑉 , let 𝐶[𝑣] = |𝑁 (𝑣)|
2: Let𝑀 be a bucketing structure formed by initially assigning each 𝑣 ∈ 𝑉 to the

⌈︁
log1+𝜀𝐶[𝑣]

⌉︁
’th

bucket.

3: finished← 0, 𝑡← 0.

4: while (finished < |𝑉 |) do

5: (𝐼,bkt)← Vertex IDs and bucket ID of next (peeled) bucket in 𝑀 .

6: if > log1+𝛿(𝑛) iterations with 𝑡 = bkt then 𝑡← 𝑡 +1
7: else if bkt , 𝑡 then 𝑡← bkt
8: 𝑅← {(𝑣,𝑟𝑣) | 𝑣 ∈𝑁 (𝐼), 𝑟𝑣 = |{(𝑢,𝑣) ∈ 𝐸 | 𝑢 ∈ 𝐼}|}
9: 𝑈 ← Array of length |𝑅|.

10: parfor 𝑅[𝑖] = (𝑣,𝑟𝑣), 𝑖 ∈ [0, |𝑅|) do
11: inducedDeg = 𝐶[𝑣]− 𝑟𝑣
12: 𝐶[𝑣] = max(inducedDeg,

⌈︁
(1 + 𝜀)𝑡−1

⌉︁
)

13: newbkt =max(
⌈︁
log1+𝜀𝐶[𝑣]

⌉︁
, 𝑡)

14: 𝑈 [𝑖] = (𝑣,newbkt)
15: Update 𝑀 for each (𝑢,newbkt) in 𝑈 .

up-degree of each vertex in that group is at most (2+3/𝜆)(1+𝛿)log(1+𝛿)((2+3/𝜆)𝑑) = (4+𝜀)𝑑
for any constant 𝜀 > 0 for an appropriate setting of 𝜆 > 0. We then obtain an (8 + 𝜀)𝛼
out-degree orientation where 𝛼 is the arboricity of the graph.

Our data structure also provides an approximation of the densest subgraph within the

input graph by the Nash-Williams theorem.

Corollary 6.3.20. The PLDSmaintained by Algorithm 20 provides an (8+𝜀)-approximation

on the density of the densest subgraph within the input graph.

6.4 Static (2 + 𝜀)-Approximate 𝑘-core

Due to the P-completeness of 𝑘-core decomposition for 𝑘 ≥ 3 [AM84], all known static

exact 𝑘-core algorithms do not achieve polylogarithmic depth. We introduce a linear work

and polylogarithmic depth (2+𝜀)-approximate 𝑘-core decomposition algorithm based on

the parallel bucketing-based peeling algorithm for static exact 𝑘-core decomposition of

Dhulipala et al. [DBS17]. The algorithm maintains a mapping 𝑀 from 𝑣 ∈ 𝑉 to a set of

buckets, with the bucket for a vertex 𝑀(𝑣) changing over the course of the algorithm.

The algorithm starts at 𝑘 = 0, peels all vertices with degree at most 𝑘, increments 𝑘, and

repeats until the graph becomes empty. The 𝑘-core value of 𝑣 is the value of 𝑘 when 𝑣
is peeled. We observe that the dynamic algorithm in this chapter can be combined with

a peeling algorithm like the above to yield a linear-work approximate 𝑘-core algorithm

with polylogarithmic depth.
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Figure 6-5: Example of a run of Algorithm 24 described in Example 6.4.1.

Algorithm 24 shows pseudocode for our approximate 𝑘-core algorithm, which com-

putes an approximate coreness value for each vertex. The algorithm sets the initial core-

ness estimates, 𝐶[𝑣], of each vertex to its degree (Line 1). Then, it maintains a paral-

lel bucketing data structure 𝑀 , which maps each vertex to the ⌈log1+𝜀𝐶[𝑣]⌉’th bucket

(Line 2). It initializes a variable finished = 0 to keep track of the number of vertices

peeled and a variable 𝑡 = 0 used to compute the approximate core values (Line 3). The

rest of the algorithm performs peeling, where the peeling thresholds are powers of (1+𝜀).
The peeling loop (Line 4–Line 15) �rst extracts the lowest non-empty bucket from 𝑀
(Line 5), which consists of 𝐼 , a set of vertex IDs of vertices that are being peeled, and the

bucket number bkt. If more than log1+𝛿(𝑛) rounds of peeling have occured at the thresh-

old (1+𝜀)𝑡 , the algorithm increments 𝑡 (Line 6). Next, the algorithm computes in parallel

an array 𝑅 of pairs (𝑣,𝑟𝑣), where 𝑣 is a neighbor of some vertex in 𝐼 and 𝑟𝑣 is the number

of neighbors of 𝑣 in 𝐼 (Line 8). Finally, the algorithm computes in parallel the new buckets

for the a�ected neighbors 𝑣 (Line 10–Line 14). The coreness estimate is updated to the

maximum of the peeling threshold of the previous level and the current induced degree

of 𝑣 after 𝑟𝑣 of its neighbors are removed. Finally, the algorithm updates the buckets us-

ing the new coreness estimates for the updated vertices (Line 15), which can be done in

parallel using our bucketing data structure.

We provide an example of this algorithm below.

Example 6.4.1. Fig. 6-5 shows a run of Algorithm 24 on an example graph. Given the

parameters 𝜀 = 𝛿 = 1, the two buckets that the vertices of the input graph (shown in (𝑎))
are partitioned into are bucket index 1 (green vertices) and bucket index 2 (purple vertices).

Vertices 𝑣,𝑤, 𝑎, and 𝑏 have degree 2 so they are put into the bucket with index
⌈︀
log2(2)

⌉︀
= 1.

Since 𝑢, 𝑥, 𝑦, and 𝑧 have degree ≥ 3, they are put into the bucket with index

⌈︀
log2(3)

⌉︀
= 2.

Since the bucket with index 1 has the smaller bucket index, we peel o� all the vertices

in that bucket (the green vertices) and we assign the core estimate of (1 + 𝜀)1 = 2 to all

vertices in that bucket (shown in (𝑏)). We update the buckets of all neighbors of the peeled

vertices; however, since 𝑢, 𝑥, 𝑦, and 𝑧 all still have degree ≥ 3, they remain in the bucket with

index 2. Finally, we peel bucket index 2 and assign all vertices in that bucket an estimate of

(1+𝜀)2 = 4 (shown in (𝑐)). In this example, the estimates produced are 3-approximations of

the real coreness values.

We prove below that Algorithm 24 �nds an (2+𝜀)-approximate 𝑘-core decomposition

in 𝑂(𝑚) expected work and 𝑂(log3𝑚) depth whp, using 𝑂(𝑚) space, as stated in Theo-

rem 6.1.1. Our proof uses the quality guarantees in Lemma 8 of [GLM19], as well as an
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e�cient parallel semisort implementation [GSSB15].

Proof of Theorem 6.1.1. Our approximation guarantee is given by Lemma 8 of [GLM19].

Our algorithm uses a number of data structures that we use to obtain our work, depth,

and space bounds. Our parallel bucketing data structure (Line 2) can be maintained via a

sparse set (hash map), or by using the bucketing data structure from [DBS17]. The outer

loop iterates for𝑂(log𝑛) times (Line 4). Within each iteration of the outer loop, we iterate

for 𝑂(log(1+𝛿)𝑛) = 𝑂(log𝑛) rounds for constant 𝛿. After obtaining a set of vertices, we

update the buckets using semisort in𝑂(log𝑛) depth whp [DBS17]. Thus the overall depth

of the algorithm is 𝑂(log3𝑚) for any constant 𝛿 > 0.

The work of the algorithm can be bounded as follows. We charge the work for moving

a vertex from its current bucket to a lower bucket within a given round to one of the edges

that was peeled from the vertex in the round. Thus the total number of bucket moves done

by the algorithm is 𝑂(𝑚). Each round of the algorithm also peels a number of edges and

aggregates, for each vertex that has a neighbor in the current bucket, the number of edges

incident to this vertex that are peeled (the 𝑟𝑣 variable in the algorithm). We implement

this step using a randomized semisort [GSSB15]. Since 2𝑚 edges are peeled in total, the

overall work is 𝑂(𝑚) in expectation.

Lastly, we bound the space used by the algorithm. There are a total of 𝑂(log1+𝜀𝑛) =
𝑂(log𝑛) buckets for any constant 𝜀 > 0. Each vertex appears in exactly one bucket, and

thus the overall space of the bucketing structure is 𝑂(𝑛). The algorithm also semisorts

the edges peeled from the graph in each step. Since all 𝑚 edges could be peeled and

removed within a single step, and thus semisorted the overall space used by the algorithm

is 𝑂(𝑚).

The approximation guarantees provided by our algorithm are essentially the best pos-

sible, under widely believed conjectures. Speci�cally, Anderson and Mayr [AM84] show

that the optimization version of the High-Degree Subgraph problem, namely to compute

the largest core number, or degeneracy of a graph cannot be done better than a factor of

2. Thus, obtaining a polynomial work and polylogarithmic depth (2 − 𝜀)-approximation

to the coreness value of each vertex would yield a 2−𝜀 approximation to the optimization

version of the High-Degree Subgraph problem, and show that P = NC, contradicting a

widely-believed conjecture in parallel complexity theory.

In recent years, several results have given parallel algorithms that obtain a (1 + 𝛿)-
approximation to the coreness values in distributed models of computation such as the

Massively Parallel Computation model [ELM18, GLM19]. These results work by perform-

ing a random sparsi�cation of the graph into a subgraph that approximately preserves

the coreness values. They then send this subgraph to a single machine, which runs the

sequential peeling algorithm on the subgraph to �nd approximate coreness values. Cru-

cially, this second peeling step on a single machine can have Θ(𝑛) depth, and thus, this

approach does not yield a polylogarithmic depth algorithm in the work-depth model of

computation.
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Table 6.2: Sizes of graph inputs.

Graph Dataset Num. Vertices Num. Edges

dblp 425,957 2,099,732

brain 784,262 267,844,669

wiki 1,140,149 2,787,967

youtube 1,138,499 5,980,886

stackover�ow 2,601,977 28,183,518

livejournal 4,847,571 85,702,474

orkut 3,072,627 234,370,166

ctr 14,081,816 16,933,413

usa 23,072,627 28,854,312

twitter 41,652,231 2,405,026,092

friendster 65,608,366 3,612,134,270

6.5 Experimental Evaluation

Setup We use c2-standard-60 Google Cloud instances, which have 30 cores with

two-way hyper-threading (3.1 GHz Intel Xeon Cascade Lake) and 236 GiB memory, and

m1-megamem-96 Google Cloud instances, which have 48 cores with two-way hyper-

threading (2.0 GHz Intel Xeon Skylake) and 1433.6 GB memory. Our programs use a

work-stealing scheduler, and are compiled using g++ (version 7.5.0) with the -O3 �ag.

We terminate experiments that take over 3 hours. We test our algorithms on real-world

undirected graphs from SNAP [LS16], the DIMACS Shortest Paths challenge road net-

works [DGJ08], and Network Repository [RA15], shown in Table 6.2, namely dblp, brain,

wiki, orkut, friendster , stackoverflow, usa, ctr , youtube, and livejournal. We also

used twi�er , a symmetrized version of the Twitter network [KLPM10]. We remove du-

plicate edges as well as zero degree edges and self-loops. The table re�ects the size of

each graph after this preprocessing. Both stackover�ow and wiki are temporal networks

obtained from the SNAP database. For these two networks, we maintain the same order

of edge insertions and deletions in the order that they occur temporally as provided by

SNAP. usa and ctr are two high diameter road network graphs and brain is a highly dense

network of the human brain where the largest 𝑘-core has size ≥ 1200.

All experiments are run on the c2-standard-60 instances, except for twitter and

friendster, which are run on the m1-megamem-96 instances as they require more memory.

The edge updates for the dynamic algorithms (for all except the temporal networks) are

generated by taking a random permutation of a list containing two copies of each edge,

where the �rst appearance of an edge is an insertion, and the second appearance is a

deletion. Batches are generated by taking regular intervals of the list. For the experiments

on insertion-only batches, we ignore the second appearance of each edge and, likewise,

the �rst for deletion-only batches.

For the static algorithms in the batch-dynamic setting, within each batch we order

all insertions in the batch before all deletions. Then, we generate two static graphs per

batch, one following all insertions, and the other following all deletions. We re-run the
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static algorithms on each static graph generated in this manner, to obtain comparable

per-batch running times.
5

Algorithms Unless otherwise noted, we run our parallel algorithms using all available

cores with two-way hyper-threading. We make one modi�cation in our parallel imple-

mentation of our insertion procedure from our theoretical algorithm which is instead of

moving vertices up level-by-level, we perform a parallel �lter and sort that calculates the

desire-level of vertices we move up. This results in more work theoretically, but we �nd

that, practically, it results in faster runtimes. Also, notably, in practice, we optimized

the performance of our PLDS by considering

⌈︁
log(1+𝛿)𝑛

⌉︁
/50 levels per group instead of⌈︁

log(1+𝛿)𝑛
⌉︁
. We also implemented a version of our structure that exactly follows our the-

oretical algorithm and compared the performance of both structures. We see that even

such a simple optimization resulted in massive gains in performance.

We test the following implementations: LDS: the sequential dynamic approximation

algorithm using the level data structures of Bhattacharya et al. and Henzinger et al.

[BHNT15, HNW20]; PLDS: our parallel batch-dynamic approximation algorithm; PLD-
SOpt: our optimized parallel batch-dynamic approximation algorithm (that uses less lev-

els per group); ApproxKCore: our parallel static approximation algorithm; ExactKCore:

the parallel static exact algorithm of Dhulipala et al. [DBS17]; Hua: the parallel, batch-

dynamic exact algorithm of Hua et al. [HSY
+

20]; and Sun: the sequential dynamic ap-

proximation algorithm of Sun et al. [SCS20].

We implemented our algorithms using the Graph Based Benchmark Suite [DBS18b],

and we use the atomic compare-and-swap and fetch-and-add instructions. We also used a

concurrent hash table with linear probing [SB14] for the level sets 𝐿[𝑣][𝑗] and 𝑈 [𝑣]. For

deletions, we used the folklore tombstone method: when an element is deleted, we mark

the slot in the table as a tombstone, which can be reused, or cleared during a table resize.

Accuracy vs. Running Time We evaluated the empirical error ratio of the per-vertex

core estimates given by our algorithms (LDS, PLDS, and PLDSOpt) and Sun on dblp and

livejournal, using batches of size 105 and 106, respectively, consisting of both insertions

and deletions. The results are shown in Fig. 6-6. The �gure shows the average batch time

against the average and maximum per-vertex core estimate error ratio.
6

The parameters

that we use for LDS, PLDS, and PLDSOpt are 𝛿 = {0.1,0.2,0.4,0.8,1.6,3.2} and 𝜆 = {3,6,
12,24,48,96}. For Sun, we use the parameters 𝛿

sun
= 𝜆

sun
= {0.1,0.2,0.4,0.8,1.6,3.2},

and 𝛼
sun

= {2(1 + 3𝛿
sun

)} (these are parameters used in their algorithm [SCS20]). We

also tested 𝛼
sun

= 1.1, as done in Sun et al.’s code [SCS20]. In this setting, the theoretical

bounds given by Sun et al. [SCS20] no longer hold, but it gives better estimates empirically.

We compare this heuristic setting to a similar heuristic in our PLDS and LDS algorithms,

where we pick a value of 𝜆 < 3 such that (2 + 3/𝜆) = 1.1 for 𝛿 = {0.4,0.8,1.6,3.2}.
5
The insertions and deletions are processed separately in the static algorithms, because in large batches

many of the insertions and deletions in the generated updates cancel each other out.

6
This error ratio is computed as max( approx

exact
, exact

approx
). If the exact core number is 0, we ignore the vertex

in our error ratio; for vertices of non-zero degree, the lowest estimated core number is 1.
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Figure 6-6: Comparison of the average per-batch time versus the average (top row) and

maximum (bottom row) per-vertex core estimate error ratio of LDS, PLDS, PLDSOpt and

Sun, using varying parameters, on the dblp and livejournal graphs, with a batch size of

105 and 106, respectively. The data uses theoretically e�cient parameters as well as those

using (2 + 3/𝜆) = 𝛼
sun

= 1.1. The runtime for Hua is shown as a black horizontal line.

Overall, we see that using theoretically e�cient parameters, our PLDSOpt, PLDS and

LDS algorithms are faster than Sun, for parameters that give similar average and maxi-

mum per-vertex core estimate error ratios. For dblp, PLDSOpt achieves 22.35–195.82x and

PLDS achieves 11.15–25.02x speedups over Sun, and for livejournal, PLDSOpt achieves

27.64–497.63x and PLDS achieves 36.44–57.43x speedups over Sun. Using the same pa-

rameters, for dblp, PLDSOpt achieves a 3.43–57.124x speedups over PLDS; for livejournal,

the speedups are 1.70–51.36x. Moreover, PLDS achieves 1.41–5.23x speedups over LDS on

dblp, and 3.30–9.57x speedups over LDS on livejournal, using the same parameters; PLDS

does not show as much speedup over LDS on dblp because it is a small graph. PLDS also

has much lower maximum error ratios compared to Sun and PLDSOpt on parameters that

give similar average error ratios. PLDSOpt gives similar maximum errors to Sun with

maximum error factors of 4–58 compared to Sun’s maximum error factors of 1.5–47 for

dblp; for livejournal, PLDSOpt gives maximum error factors of 3–136.3 compared to Sun’s

maximum error of 4–182.

The heuristic settings in both our algorithms and Sun give better approximations at

the cost of speed. We achieve similar error ratios with up to 3.96x speedup using PLDS
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on dblp, and up to 22.64x speedup using PLDS on livejournal. Also, PLDS achieves 4.28–

11.01x speedup over LDS on dblp, and 8.71–11.43x speedup over LDS on livejournal. Un-

fortunately, PLDSOpt was not able to achieve comparable error ratios for these settings.

For the rest of the experiments, we �x 𝛿 = 0.4 and 𝜆 = 3; these parameters o�er a

reasonable tradeo� between approximation error and speed, as shown in Fig. 6-6. We

also focus on insertion-only and deletion-only batches since inputs are initially �ltered

anyways into such batches.

ComparisonwithHua et al We also compare with a parallel batch-dynamic algorithm

for exact 𝑘-core by Hua et al. [HSY
+

20]. We obtained a multicore implementation of

their code and tested their code under the same experimental conditions as our code.

Although the experiments in [HSY
+

20] tested the runtime of randomly sampling a batch

of insertions or deletions, we also tested our code under such settings and found that it

obtained similar speedups to the experiments run under our setting; thus, we present here

the results under our experimental setting. Hua et al. included a timing function in their

code which we use to time their code. However, this timing function does not include the

time to process the graph and maintain their data structures; we include all such times

(for updating the graph and maintaining our data structures) in our code. If we include

this time in Hua et al’s implementation, their running times increase by up to 8x for some

experiments. But for our experiments, we use the original timing functionality in Hua et

al.’s code without this additional time.

6.5.1 Experiments on Insertions

Batch Size vs. Running Time Fig. 6-7 (�rst row) shows the average insertion-only

per-batch running times on varying batch sizes for LDS, PLDS, PLDSOpt, ExactKCore,

and ApproxKCore on dblp and livejournal. ExactKCore and ApproxKCore recompute the

𝑘-core decomposition on the current batch as well as all previously inserted edges. We see

that PLDSOpt is 16.55–6205.19x and PLDS is 1.76–51.81x faster than LDS, and ApproxK-

Core is 1.37–1.67x faster than ExactKCore overall. PLDSOpt is also 8.47-18.91x faster

than PLDS. Moreover, for livejournal, ExactKCore and ApproxKCore both time out for

small batch sizes. For dblp, we see that PLDSOpt is up to 75.94x faster, PLDS is up to 7x

faster than ApproxKCore for small batch sizes, and even our sequential LDS is up to 3.98x

faster than ApproxKCore. Against Hua, PLDSOpt achieves a speedup over all batches

from 5.17–16.43x for dblp and 15.97–114.52x for livejournal. PLDS achieves speedups over

Hua for the smaller batches, a speedup of 1.51x for dblp and up to 13.51x speedup for

livejournal. Finally, ApproxKCore achieves speedups of up to 33.90x for dblp and 42.02x

for livejournal over Hua for the larger batch sizes.

Thread Count vs. Running Time We focus on the parallel speedups of our dynamic

algorithms since the parallel speedups of static algorithms have been well-studied. Fig. 6-8

(top row) shows the scalability of PLDSOpt, PLDS, and Hua with respect to their single-

thread running times on dblp and livejournal for insertion-only batches. We display the

scalability of the algorithms on dynamic inputs, of insertion-only batches of size 106.
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Figure 6-7: Average insertion-only (top row) and deletion-only (bottom row) per-batch

running times on varying batch sizes for LDS, PLDS, PLDSOpt, ExactKCore, and Approx-

KCore on dblp and livejournal. The missing batch sizes for ApproxKCore and ExactKCore

timed out at 3 hours.

PLDSOpt and PLDS achieve up to 30.28x and 26.46x self-relative speedup, respectively.

Hua achieves up to a 2.07x self-relative speedup. We see that our PLDS algorithms achieve

greater self-relative speedups than Hua.

Additional Graphs Fig. 6-9 (top) shows the runtimes of PLDSOpt, Hua, PLDS, ExactK-

Core, and ApproxKCore on additional graphs, using insertion-only batches, all of size 106.

Hua, ExactKCore and ApproxKCore timed out on twitter and friendster. For the remaining

graphs, ApproxKCore is up to 1.85x faster than ExactKCore on average per batch. For the

smaller graphs (dblp, youtube, and orkut), ApproxKCore is up to 4.55x faster than PLD-

SOpt and up to 48.29x faster than PLDS on average per batch, because 106 is a relatively

large batch size for these graphs, so it is faster to re-run our static algorithm compared

to our batch-dynamic algorithm. For the larger graphs (except for the graphs where Ap-

proxKCore times out), PLDSOpt achieves up to a 13.09x speedup and PLDS achieves up

to a 7.41x speedup against ApproxKCore. We see that among these graphs both PLD-

SOpt and PLDS perform particularly well in the high-diameter road networks suggesting

that the dynamic algorithms perform many less changes to the data structures than the
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Figure 6-8: Parallel speedup of PLDSOpt, PLDS and Hua, with respect to their single-

threaded running times on dblp and livejournal, using insertion-only (top row) and

deletion-only (bottom row) batches of size 106 for all algorithms. The last “60” on the

𝑥-axis indicates 30 cores with hyper-threading.

static algorithm for high-diameter (sparser) networks. For the largest graphs (twitter and

friendster), PLDSOpt and PLDS are orders of magnitude faster as ApproxKCore times out.

Compared against Hua, PLDSOpt achieves speedups of 6.20–58.66x on all graphs that

Hua did not time out for and is orders of magnitude faster on twitter and friendster since

Hua times out. Except for the two smallest graphs, dblp and wiki, PLDS achieves speedups

of 1.30–49.02x for all graphs that Hua did not time out for and is orders of magnitude faster

on the two largest graphs. On brain, twitter, and friendster, PLDSOpt achieves 13.83x,

5.82x, and 12.40x speedups, respectively, over PLDS, suggesting the optimization is most

bene�cial for dense graphs.

We also compared the performance of ApproxKCore and ExactKCore using the full

graph on all datasets. We found ApproxKCore to be 1.7–3.9x faster than ExactKCore,

with an average coreness error ratio of 1.044–1.172.

Accuracy of Approximation Algorithms We also computed the average and maxi-

mum errors of all of our approximation algorithms for our experiments shown in Fig. 6-9.

The data for these error ratios are shown in Table 6.3. We tested the errors for 𝛿 = 0.4
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Figure 6-9: Average per-batch running times for PLDSOpt, Hua, PLDS, ApproxKCore, and

ExactKCore, on dblp, youtube, wiki, ctr, usa, stackover�ow, livejournal, orkut, brain, twitter,

and friendster with batches of size 106 (and approximation settings 𝛿 = 0.4 and 𝜆 = 3 for

PLDSOpt and PLDS). Hua, ApproxKCore, and ExactKCore timed out (T.O.) at 3 hours for

twitter and friendster. The top graph shows insertion-only batch runtimes and the bottom

graph shows deletion-only batch runtimes.
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and 𝜆 = 3. According to our theoretical proofs, the maximum error (for PLDS) should

be (2 + 3/3) · (1 + 0.4) = 4.2. We see that indeed the maximum empirical error for PLDS

falls under this hard constraint. PLDSOpt achieves an average error of 1.359–2.118 on

insertion batches (left half) of Table 6.3 compared to errors of 1.593–3.363x for PLDS and

1.010–4.175 for ApproxKCore. For max error, PLDSOpt achieves a max error of 3 (less

than the theoretical optimal) compared to 3–4.193 for PLDS and 3–4.305 for ApproxKCore.

For twitter and friendster, we sampled error counts uniformly at random with probability

1/10 due to our timeout constraints. PLDS and ApproxKCore computations timed out on

both of these datasets (even with sampling). We see that decreasing the number of levels

improves the error ratio for insertion-only batches.

Table 6.3: Average and maximum errors of PLDSOpt, PLDS, and ApproxKCore on

insertion-only and deletion-only batches of size 106. Insertion-only batches errors are

shown on the left and deletion-only batches are shown on the right. * indicates that the

error was obtained via sampling the error probability with 1/10 probability. T.O. indi-

cates that the program timed out at 3 hours (even when performing the sampling with

1/10 probability).

Graph Dataset

PLDSOpt

Avg.

PLDSOpt

Max

PLDS

Avg.

PLDS

Max

Approx

KCore

Avg.

Approx

KCore

Max

dblp 1.9345 3 2.635 4 1.15 3.875

brain 1.834 3 3.363 4.193 1.315 4.305

wiki 1.590 3 1.780 4.172 1.010 3

youtube 1.359 3 1.593 4 1.1283 3.75

stackover�ow 1.826 3 2.272 4.067 1.048 3.875

livejournal 1.660 3 2.321 4.175 4.175 1.165

orkut 1.926 3 3.115 4.175 1.204 4.2

ctr 1.601 3 1.683 3 1.374 3

usa 1.826 3 1.683 3 1.379 3

twitter 2.118* 3* T.O. T.O. T.O. T.O.

friendster 1.851* 3* T.O. T.O. T.O. T.O.

Graph Dataset

PLDSOpt

Avg.

PLDSOpt

Max

PLDS

Avg.

PLDS

Max

Approx

KCore

Avg.

Approx

KCore

Max

dblp 1.187 6 1.507 2 1.236 3.0

brain 1.575 6 1.943 4.186 1.315 5.0

wiki 1.423 4 1.494 4 1.013 3.875

youtube 1.268 4 1.317 4 1.137 3.706

stackover�ow 1.630 6 1.792 4.172 1.045 3.908

livejournal 1.613 6 1.704 4.14 1.167 3.984

orkut 1.681 6 1.913 4.175 1.205 4.2

ctr 1.243 3 1.257 3 1.524 3.0

usa 1.253 3 1.278 3 1.522 3.0

twitter 1.893* 4* T.O. T.O. T.O. T.O.

friendster 1.685* 3* T.O. T.O. T.O. T.O.
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Space Usage Finally, we tested the space usage of our parallel batch-dynamic programs

against the space usage needed by Hua. We implemented functions that counted the space

usage of the entire level data structure used in our programs and the data structures used

in the Hua code using the sizeof operator. Fig. 6-10 (top row) shows the results of our

experiment. As expected, since our data structures require 𝑂(𝑛 log2𝑚 +𝑚) asymptotic

space, our space usage for PLDS is up to 63.87x more and 62.50x more than Hua for dblp

and livejournal, respectively. However, our PLDSOpt uses less memory than Hua in most

settings (up to 1.53x factor less memory) for dblp and up to 1.08x additional space in a few

cases; for livejournal, it uses up to 1.72x additional space.
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Figure 6-10: Average space usage in bytes for PLDSOpt, Hua, and PLDS in terms of the

average error. We varied 𝛿 and 𝜆 and computed the error ratio and space usage for the

programs on dblp and livejournal. We tested against 105 insertion-only (top row) and

deletion-only (bottom row) batches for dblp and 106 batch sizes for livejournal.

6.5.2 Experiments on Deletions

In this subsection, we present deletion-only experimental results of our LDS, PLDSOpt,

PLDS, and ApproxKCore algorithms using the same environment as our insertion-only ex-
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periments. In general, for our batch-dynamic implementations, deletions are faster than

insertions due to the fact that we move each vertex at most once. Speci�cally, when deter-

mining vertices to move up a level, in order to check the requisite invariants, each vertex

must maintain its neighbors in the levels below, keyed by level number. This takes more

work than the symmetric computation for deletions, where each vertex simply maintains

the set of neighbors in the levels above and needs not key these neighbors by their level

numbers. Furthermore, PLDSOpt results in slightly greater error for the deletion case

because we decrease the number of levels.

Batch Size vs. Running Time Fig. 6-7 (bottom row) shows the average deletion-only

per-batch running times on varying batch sizes for LDS, PLDSOpt, PLDS, ExactKCore,

and ApproxKCore on dblp and livejournal. ExactKCore and ApproxKCore recompute the

𝑘-core decomposition on the graph after removing the current batch, as well as all edges

in previous batches. We see that PLDSOpt is up to 7.17x faster than PLDS, PLDS is up to

24.75x faster than LDS, and ApproxKCore is up to 1.59x faster than ExactKCore overall.

Compared to using insertion-only batches, PLDS is slower than LDS on smaller batches,

and the speedup of PLDS over LDS is also smaller. We believe that this is due to the lower

amount of work in the desire level computations for deletion-only batches, where LDS

is faster at processing deletion-only batches compared to insertion-only batches. How-

ever, the speedups of PLDSOpt and PLDS over Hua are 3.39–44.58x and 1.2–7.89x, respec-

tively, for dblp and 1.71–45.01x and 1.27–6.59x, respectively, for livejournal. The additional

speedups of PLDS over Hua is due to our more e�cient deletion procedure that does less

work than our insertion procedure.

Moreover, for livejournal, ExactKCore and ApproxKCore both time out for the small

batch sizes. For dblp, we see that PLDS is up to 26.61x faster than ApproxKCore for small

batch sizes, and even our sequential LDS is up to 50.38x faster than ApproxKCore. For

ApproxKCore and ExactKCore, the running times are similar to the insertion-only case,

except for large batch sizes on dblp, where the deletion-only batches are faster to process.

This is because dblp is small, with fewer than 3× 106 edges, and so in the deletion-only

setting, we are left with a relatively small graph (or an empty graph in the 107 batch size

case) after the �rst batch. On the other hand, in the insertion-only setting, we have almost

half of the graph (or the full graph in the 107 batch size case) after the �rst batch. Thus,

there is greater processing required overall in the insertion-only setting, for small graphs

with large batch sizes.

Thread Count vs. Running Time Fig. 6-8 (bottom row) shows the scalability of PLDS

with respect to its single-thread running times on dblp and livejournal for deletion-

only batches of size 106. PLDSOpt achieves up to a 32.02x self-relative speedup and

PLDS achieves up to 25.33x self-relative speedup, similar to the speedups obtained in the

insertion-only setting. Unlike the case with insertions, Hua achieves no speedup on dblp

and up to a 1.30x self-relative speedup on livejournal.

Additional Graphs Fig. 6-9 (bottom graph) shows the runtimes of PLDSOpt, Hua,

PLDS, ExactKCore, and ApproxKCore on the remaining graphs, using deletion-only
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batches of size 106. Hua, ExactKCore and ApproxKCore timed out at 3 hours on twit-

ter and friendster. PLDSOpt is uniformly faster than all other programs for all graphs

except dblp, achieving a maximum speedup of 23.45x against PLDS, 19.64x against Ap-

proxKCore, and 52.36x against Hua (on all graphs that did not time out). These results

are similar to those obtained for insertions, although the slight speedup could be due to

fewer levels causing deletions to achieve greater speedup than insertions. For youtube

and orkut, ApproxKCore is up to 1.4x faster than ExactKCore on average per batch. Ad-

ditionally, for these graphs, ApproxKCore is up to 2.26x faster than PLDS on average per

batch, for the same reason as discussed earlier (106 is a relatively large batch size for these

graphs, and so it is faster to re-run our static algorithm compared to our batch-dynamic

algorithm). For the larger graphs (twitter and friendster), PLDS is orders of magnitude

faster, as ApproxKCore times out.

Accuracy and Space Usage Table 6.3 shows a slight increase in the maximum error

for PLDSOpt, with a max error of 6. This is expected theoretically; recall the theoretical

upper bound on the error is 4.2 (followed by PLDS). PLDS and ApproxKCore do not show

noticeable di�erences in error. Fig. 6-10 (bottom row) shows the space usage of PLDS,

PLDSOpt, and Hua for deletions. Similar to insertions, PLDSOpt uses less space than Hua

for most cases for dblp, up to 1.57x factor less space. PLDSOpt has a maximum space

usage of 1.07x and 1.69x for dblp and livejournal over Hua, and PLDS a 48.50x and 21.15x

factor over Hua.

6.6 Additional Data Structure Implementations

In addition to the randomized data structures presented in Section 3.4, we present two

additional sets of data structures that we can use to obtain a deterministic and a space-

e�cient (2 + 𝜀)-approximate 𝑘-core algorithms.

The work of all of our randomized, deterministic, and space-e�cient algorithms are

the same; however, using randomization allows us to obtain a better depth with slightly

less complicated data structures.

Deterministic Data Structures We initialize an array 𝑈 , of size 𝑛. Each vertex is

assigned a unique index in 𝑈 . The entry for the 𝑖’th vertex, 𝑈 [𝑖], contains a pointer to

a dynamic array that stores the neighbors of vertex 𝑣𝑖 at levels ≥ ℓ(𝑣𝑖). Each vertex 𝑣𝑖
also stores another dynamic array, 𝐿𝑣𝑖 , that contains pointers to a set of dynamic arrays

storing the neighbors of 𝑣𝑖 partitioned by their levels 𝑗 where 𝑗 < ℓ(𝑣𝑖). Speci�cally, we

maintain a separate dynamic array for each level from level 0 to level ℓ(𝑣𝑖)−1 storing the

neighbors of 𝑣𝑖 at each respective level. We also maintain the current level of each vertex

in an array.

To perform a batch of insertions into a dynamic array, we insert the elements at the

end of the array. The array is resized and doubles in size if too many elements are inserted

into the array (and it exceeds its current size). For a batch of deletions, the deletions are

initially marked with a “deleted” marker indicating that the element in the slot has been

deleted. A counter is used to maintain how many slots contain “deleted.” Then, once a
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constant fraction of elements (e.g. 1/2) has “deleted” marked in their slots, the array is

cleaned up by reassigning vertices to new slots and resizing the array.

𝑂(𝑛+𝑚)Total Space Data Structures Here we describe how to reduce the total space

usage of our data structures to𝑂(𝑚). All of our previous data structures use𝑂(𝑛 log2𝑚+
𝑚) space, which means that when 𝑚 = 𝑂(𝑛), we use space that is superlinear in the size

of the graph. To reduce the total space to 𝑂(𝑚), we maintain two structures for 𝐿𝑣𝑖 . We

can use either the deterministic or randomized structures for the other structures. Each

𝐿𝑣𝑖 is maintained as a linked list. The 𝑗’th node in the linked list maintains the number

of neighbors of 𝑣𝑖 at the 𝑗’th non-empty level (a non-empty level is one where 𝑣𝑖 has

neighbors at that level) that is less than ℓ(𝑣𝑖). The node representing a level is removed

from the linked list when the level becomes empty. Each node in 𝐿𝑣𝑖 contains pointers to

vertices at the level represented by the node. Each vertex then contains pointers to every

edge it is adjacent to and every edge contains pointers to the two nodes in the two linked

lists representing the levels in which endpoints of the edge reside. Using either dynamic

arrays or hash tables for the lists of neighbors allow us to maintain these data structures

in𝑂(𝑚) space. Since we only maintain a node in our linked list for every non-empty level,

our linked list contains precisely the number of elements equal to 2𝑚.

6.7 Potential Argument for Work Bound

Our work bound uses the potential functions presented in Section 4 of [BHNT15]. We

show that we can analyze our algorithm using these potential functions and our parallel

algorithm serializes to a set of sequential steps that obey the potential function. We obtain

the following lemma by the potential argument provided in this section.

Lemma 6.7.1. For a batch of ℬ < 𝑚 updates, Algorithm 20 returns a PLDS that main-

tains Invariant 1 and Invariant 2 in 𝑂(ℬ log2𝑚) amortized work and 𝑂(log2𝑚 loglog𝑚)
depth whp, using 𝑂(𝑛 log2𝑚+𝑚) space.

6.7.1 Proof of Work Bound

Unlike the algorithm presented in [HNW20, BHNT15], in each round, to handle deletions,

we recompute the dl(𝑣) of any vertex 𝑣 that we want to move to a lower level. Speci�cally,

we compute and move 𝑣 to the closest level that satis�es both Invariant 1 and Invariant 2.

This is a di�erent algorithm from the algorithm presented in [HNW20, BHNT15], and

so we present for completeness a work argument for our modi�ed algorithm. The work

bound we present accounts for the work of any one movement up or down levels using

the potential function argument of [BHNT15]. Note that this potential function also gives

us the amortized work per edge update since there exists a corresponding set of sequential

updates that cannot do less work than the set of parallel updates.

Charging the Cost of Moving Levels The strategy behind our potential function is

use the increase in our potential function due to edge updates to pay for the decrease in
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potential due to vertices moving up or down levels. We can then charge our costs to the

increase in potential due to edge updates. Below, we bound the increase in potential due

to edge updates and the decrease in potential due to vertex movements.

We use the following potential function to calculate our potential. First, recall some

notation. Let𝑍𝑖 be the set of vertices in levels 𝑖 to𝐾−1. In other words, 𝑍𝑖 =
⋃︀𝐾−1
𝑗=𝑖 𝑉𝑗 . Let

𝑁 (𝑢,𝑍𝑖) be the set of neighbors of 𝑢 in the induced subgraph given by 𝑍𝑖 . Let ℓ(𝑢) be the

current level that 𝑢 is on. Finally, let 𝑔𝑛(ℓ) be the group number of level ℓ; in other words,

ℓ ∈ 𝑔𝑔𝑛(ℓ). Let 𝑓 : [𝑛]× [𝑛]→ {0,1} be a function where 𝑓 (𝑢,𝑣) = 1 when ℓ(𝑢) = ℓ(𝑣) and

𝑓 (𝑢,𝑣) = 0 when ℓ(𝑢) , ℓ(𝑣). Using the potential functions de�ned in [BHNT15], for

some constant 𝜆 > 0:

Π =
∑︁
𝑣∈𝑉

Φ(𝑣) +
∑︁
𝑒∈𝐸

Ψ (𝑒) (6.1)

Φ(𝑣) = 𝜆
ℓ(𝑣)−1∑︁
𝑖=0

max(0, (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛(𝑖) −𝑁 (𝑣,𝑍𝑖)) (6.2)

Ψ (𝑢,𝑣) = 2(𝐾 −min(ℓ(𝑢), ℓ(𝑣))) + 𝑓 (𝑢,𝑣) (6.3)

We �rst calculate the potential changes for insertions and deletions of edges.

Insertion The insertion of an edge (𝑢,𝑣) creates a new edge with potentialΨ (𝑢,𝑣). The

new potential has value at most 2𝐾 + 1. With an edge insertion Φ(𝑢) and Φ(𝑣) cannot

increase. Thus, the potential increases by at most 2𝐾 +1.

Deletion The deletion of edge (𝑢,𝑣) increases potentials Φ(𝑢) and Φ(𝑣) by at most

2𝜆𝐾 . It does not increase any other potential since the potential of edge (𝑢,𝑣) is

eliminated.

First it is easy to see that the potential Π is always non-negative. Thus, we can

use the positive gain in potential over edge insertions and deletions to pay for the

decrease in potential caused by moving vertices to di�erent levels.

Now we discuss the change in potential given a movement of a vertex to a higher or

lower level. Moving such a vertex decreases the potential and we show that this decrease

in potential is enough to pay for the cost of moving the vertex to a higher or lower level.

A vertex 𝑣 moves from level 𝑖 to level dl(𝑣) < 𝑖 due to Algorithm 22 Since vertex

𝑣 moved down at least one level, this means that prior to the move, its up*-degree is

up*(𝑣) < (1 + 𝛿)𝑔𝑛(ℓ(𝑣)−1). It is moved to a level dl(𝑣) where its up*-degree is at least

(1 + 𝛿)𝑔𝑛(dl(𝑣)−1) and its up-degree is at most (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛(dl(𝑣)) (or it is moved to

level 0).
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The potential before the move is at least

𝜆
dl(𝑣)−1∑︁
𝑖=0

max
(︁
0, (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛(𝑖) −𝑁 (𝑣,𝑍𝑖)

)︁
+
ℓ(𝑣)−1∑︁
𝑖=dl(𝑣)

(𝜆+3)(1 + 𝛿)𝑔𝑛(𝑖)

since we only move a vertex to a lower level if up*(𝑣) < (1 + 𝛿)𝑔𝑛(ℓ(𝑣)−1) and we move it

to the closest level dl(𝑣) where Invariant 2 is no longer violated. To derive the second

term, since we moved vertex 𝑣 to level dl(𝑣), we know that its degree |𝑁 (𝑣,𝑍dl(𝑣))| <
(1 + 𝛿)𝑔𝑛(dl(𝑣)) (otherwise, we could’ve moved 𝑣 to level dl(𝑣) + 1). Then, substituting

(1+𝛿)𝑔𝑛(𝑖) for all levels 𝑖 ≥ dl(𝑣) into Φ(𝑣) allows us to obtain

∑︀ℓ(𝑣)−1
𝑖=dl(𝑣)(𝜆+3)(1+𝛿)𝑔𝑛(𝑖).

Then, when it reaches its �nal level, we know that it is at the highest level it can move to

or at level 0. In both cases,

Φ(𝑣) = 𝜆
dl(𝑣)−1∑︁
𝑖=0

max
(︁
0, (2 + 3/𝜆) (1 + 𝛿)𝑔𝑛(𝑖) −𝑁 (𝑣,𝑍𝑖)

)︁
after the move. In this case, Φ(𝑣) decreases by at least

∑︀ℓ(𝑣)−1
𝑖=dl(𝑣)(𝜆+3)(1 + 𝛿)𝑔𝑛(𝑖).

We need to account for two potential increases: the increase in Ψ and the increase

in Φ from neighbors of 𝑣. We �rst consider the increase in Ψ . The potential increase in

Ψ (𝑢,𝑣) for every edge (𝑢,𝑣) where ℓ(𝑢) ≥ dl(𝑣) is at most 2(ℓ(𝑣)− dl(𝑣))(1 + 𝛿)𝑔𝑛(dl(𝑣)),
since 𝑣 has up-degree at most (1+ 𝛿)𝑔𝑛(dl(𝑣)) at level dl(𝑣) (otherwise, we can increase its

dl(𝑣)) and each of these edge’s potential gain is upper bounded by 2 for every level in

[dl(𝑣), ℓ(𝑣)− 1].
Furthermore, we need to account for the increase in potential of every neighbor whose

edge is �ipped by the move. The total increase inΦ is at most 𝜆(ℓ(𝑣)−dl(𝑣))(1+𝛿)𝑔𝑛(dl(𝑣))
for every neighbor on levels > dl(𝑣)+1, since we move 𝑣 to the highest level that satis�es

the invariants and 𝑁 (𝑣,dl(𝑣)) < (1 + 𝛿)𝑔𝑛(dl(𝑣)). Decreasing the degree of each neighbor

by one for each of 𝑁 (𝑣,dl(𝑣)) < (1 + 𝛿)𝑔𝑛(dl(𝑣)) results in the total increase in Φ .

Then, in total, the potential decrease is at least

⎛⎜⎜⎜⎜⎜⎜⎝ℓ(𝑣)−1∑︁
𝑖=dl(𝑣)

(𝜆+3)(1 + 𝛿)𝑔𝑛(𝑖)
⎞⎟⎟⎟⎟⎟⎟⎠− (𝜆+2)(ℓ(𝑣)−dl(𝑣))(1 + 𝛿)𝑔𝑛(dl(𝑣))

≥ (ℓ(𝑣)−dl(𝑣))(1 + 𝛿)𝑔𝑛(dl(𝑣))

which is enough to pay for the at most (1 + 𝛿)𝑔𝑛(dl(𝑣)) edge �ips as well as the

𝑂(ℓ(𝑣) − dl(𝑣)) work for computing the desire-level. The total number of edge �ips

is upper bounded by 𝑁 (𝑣,dl(𝑣)). Since we moved 𝑣 to dl(𝑣) and not dl(𝑣) + 1, we

know that 𝑣 satis�es Invariant 2 at dl(𝑣) and not at dl(𝑣) + 1. Then, this means that

|𝑁 (𝑣,dl(𝑣)))| < (1 + 𝛿)𝑔𝑛(dl(𝑣)). Hence, our number of edge �ips is also bounded by

(1 + 𝛿)𝑔𝑛(dl(𝑣)).
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A vertex 𝑣 moves from level 𝑖 to level 𝑖 + 1 due to Algorithm 21 In order for Al-

gorithm 21 to move a vertex from level 𝑖 to 𝑖 + 1, it must have violated Invariant 1 and

that up(𝑣) > (2 + 3/𝜆)(1 + 𝛿)𝑔𝑛(𝑖) before the move. Before and after the move, Φ(𝑣) = 0,

since in these cases up*(𝑣) > (2 + 3/𝜆) (1+𝛿)𝑔𝑛(𝑖−1) and up*(𝑣) > (2 + 3/𝜆) (1+𝛿)𝑔𝑛(𝑖), re-

spectively. Thus, Φ(𝑣) does not change in value. Furthermore, the Φ(𝑤) of its neighbors

𝑤 cannot increase. Then, this leaves us with the potential change in Ψ (𝑣,𝑤).
Let 𝑍𝑖 be the set of neighbors that 𝑣 has to iterate through within its data structures

if 𝑣 goes up a level. The potential decrease for every neighbor of 𝑣 on 𝑖 = ℓ(𝑣) is 1. The

potential decrease for every neighbor on level 𝑖 + 1 is 1. Finally, the potential decrease

for every neighbor in levels > dl(𝑣) is 2. Then, the potential decrease for every neighbor

in 𝑍𝑖 is at least 1 and is enough to pay for the 𝑂(|𝑍𝑖 |) cost of iterating and moving the

neighbors of 𝑣 in its data structures.

Parallel Amortized Work The last part of the proof that needs to be shown is that

any set of parallel level data structure operations that is undertaken by Algorithm 21

or Algorithm 22 has a sequential set of operations of the form detailed above (i.e., moving

𝑣 to dl(𝑣) or moving 𝑣 from level 𝑖 to 𝑖 +1) that consists of the same or strictly larger set

of operations.

Lemma 6.7.2. For any set of operations performed in parallel by Algorithm 21 or Algo-

rithm 22, there exists an identical set of sequential operations to the set of parallel operations.

Proof. In Algorithm 21, the parallel set of operations consists of moving all vertices that

violate Invariant 1 in the same level 𝑖 up to level 𝑖 + 1. Again, suppose we choose an

arbitrary order to move the vertices in level 𝑖 to level 𝑖 + 1. Given two neighbors in the

order 𝑣 and 𝑤, if 𝑣 moves to level 𝑖 +1, the up-degree of 𝑤 still includes 𝑣; since the up-

degree of any vertex 𝑤 is not a�ected by the previous vertices that moved to level 𝑖 + 1,

𝑤 moves to 𝑖 + 1 on its turn. This order provides a sequential set of operations that is

equivalent to the parallel set of operations.

In Algorithm 22, the parallel set of operations consists of moving a set of vertices

down from arbitrary levels to the same level 𝑖. We show that there exists an identical

set of sequential operations to the parallel operations. First, any vertex whose dl(𝑣) = 𝑖
considered all vertices in levels ≥ 𝑖 − 1 in its calculation of dl(𝑣). Thus, any other vertex

𝑤 moving from a level 𝑗 > 𝑖 to level 𝑖 is included in calculating the desire-level of vertex

𝑣. Suppose we pick an arbitrary order to move the vertices that have dl(𝑣) = 𝑖 to level 𝑖.
Then, the desire-level of any vertex 𝑤 whose dl(𝑤) = 𝑖 does not change after 𝑣 is moved

to level 𝑖. Hence, when it is 𝑤’s turn in the order, 𝑤 moves to level 𝑖. This arbitrary order

is a sequential set of operations that is identical to the parallel set of operations.

Lemma 6.7.3. For a batch of ℬ < 𝑚 updates, Algorithm 20 requires𝑂(ℬ log2𝑚) amortized

work with high probability. The required space is 𝑂(𝑛 log2𝑚 +𝑚) using the randomized

data structures.

Proof. Our potential argument handles the cost of moving neighbors of a vertex 𝑣 be-

tween di�erent levels. Namely, our potential argument shows that such costs of updating
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neighbor lists of nodes require 𝑂(log2𝑚) amortized work per edge update to the struc-

ture.

Then, it remains to calculate the amount of work of Algorithm 23. We can obtain the

size of each neighbor list in𝑂(1) work and depth. If we show that the work of running Al-

gorithm 23 is asymptotically bounded by to the work of calculating the set of neighbor

vertices that need to be moved between neighbor lists for a vertex, then we can also charge

this work to the potential. To compute the �rst lower bound on dl(𝑣), we maintain a cu-

mulative sum of the total number of neighbors for each vertex at or below the current

level ℓ(𝑣). Then, we sequentially double the number of elements we use to compute the

next level. We use 𝑂((ℓ −dl(𝑣))) work to compute dl(𝑣).
Finally, we also bound the work of the �nal binary search. Let𝑅 be the size of the range

of values in which we perform our binary search. The size of the number of possible levels

becomes smaller as we decrease our range of values to search. Whenever we go right in

the binary search, we perform 𝑅/2 work. Whenever we go left in the binary search,

we also perform at most 𝑅/2 work. Thus, the total amount of work we perform while

doing the binary search is 𝑂(𝑅). And by the argument above, the amount of work is

𝑂
(︁
|𝑍dl(𝑣) ∖𝑍ℓ(𝑣)|

)︁
.

The total work of Algorithm 23 is 𝑂(|𝑍dl(𝑣) ∖ 𝑍ℓ(𝑣)| + (ℓ − dl(𝑣))) which we can suc-

cessfully charge to the potential. We conclude that the amount of work per update is

𝑂(log2𝑚).

6.7.2 Overall Work and Depth Bounds

Our deterministic and space-e�cient structures also give the following corollary using

our above work-bound arguments.

Corollary 6.7.4. There exists a set of data structures where Algorithm 20 requires𝑂(log2𝑚)
amortized work per update, deterministically, using 𝑂(𝑚+𝑛) space.

Using Corollary 6.3.12 and Lemma 6.7.3, we obtain Lemma 6.7.1. Similarly, combin-

ing Lemma 6.3.11 and Corollary 6.7.4 and Corollary 6.3.13 and Corollary 6.7.4, we obtain

the following two corollaries.

Corollary 6.7.5. For a batch of ℬ < 𝑚 updates, Algorithm 20 returns a PLDS that main-

tains Invariant 1 and Invariant 2 in 𝑂(ℬ log2𝑚) amortized work and 𝑂(log3𝑚) worst-case
depth, using 𝑂(𝑛 log2𝑚+𝑚) space.

Corollary 6.7.6. For a batch of ℬ < 𝑚 updates, Algorithm 20 returns a PLDS that main-

tains Invariant 1 and Invariant 2 in 𝑂(ℬ log2𝑚) amortized work and 𝑂(log4𝑚) worst-case
depth, using 𝑂(𝑛+𝑚) space.

6.8 Handling Vertex Insertions and Deletions

We can handle vertex insertions and deletions by inserting vertices that have zero degree

and considering deletions of vertices to be a batch of edge deletions of all edges adjacent
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to the deleted vertex. When we insert a vertex with zero degree, it automatically gets

added to level 0 and remains in level 0 until edges incident to the vertex are inserted.

For a vertex deletion, we add all edges incident to the deleted vertex to a batch of edge

deletions. Note, �rst, that all vertices which have 0 degree will remain in level 0. Thus,

there are at most 𝑂(𝑚) vertices which have non-zero degree.

Because we have 𝑂(log2𝑚) levels in our data structure, we rebuild the data struc-

ture once we have made 𝑚/2 edge updates (including edge updates from edges inci-

dent to deleted vertices). Rebuilding the data structure requires 𝑂(𝑚 log2𝑛) total work

which we can amortize to the 𝑚/2 edge updates to obtain 𝑂(log2𝑛) amortized work

whp. Running Algorithm 21 and Algorithm 22 on the entire set of 𝑂(𝑚) edges requires

𝑂(polylog𝑛) depth whp depending on the speci�c set of data structures we use.

Lastly, in order to obtain a set of vertices which are re-numbered consecutively (in

order to maintain our space bounds), we perform parallel integer sort or hashing.

6.9 Conclusion

We presented a work-e�cient parallel batch-dynamic level data structure that gives a

(2+𝜀)-approximate 𝑘-core decomposition. Our approach also gave a static approximate 𝑘-

core algorithm that is to the best of our knowledge the �rst work-e�cient algorithm with

polylogarithmic depth for this problem. We studied shared-memory implementations of

all of our algorithms and con�rmed the practical applicability of our approach.
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Chapter 7

Fully Dynamic (∆+1)-Vertex Coloring

in 𝑂(1) Update Time

This chapter presents results from the paper titled, "Fully Dynamic (∆+1)-Coloring in
Constant Update Time" that the thesis author coauthored with Sayan Bhattacharya,

Fabrizio Grandoni, Janardhan Kulkarni, and Shay Solomon [BGK
+
19]. This paper is

currently under submission at the time of the writing of this thesis.

7.1 Introduction

Vertex coloring is one of the most fundamental and most well-studied graph problems.

Consider any integral parameter 𝜆 > 0, an undirected graph 𝐺 = (𝑉 ,𝐸) with 𝑛 nodes and

𝑚 edges, and a palette 𝒞 = {1, . . . ,𝜆} of 𝜆 colors. A 𝜆-coloring in 𝐺 is simply a function

𝜒 : 𝑉 →𝒞 which assigns a color 𝜒(𝑣) ∈ 𝒞 to each vertex 𝑣 ∈ 𝑉 . Such a coloring is called

proper i� no two neighboring nodes in 𝐺 get the same color. The main goal is to compute

a proper 𝜆-coloring in the input graph 𝐺 = (𝑉 ,𝐸) such that 𝜆 is as small as possible.

Unfortunately, this problem is NP-hard and even extremely hard to approximate: for any

constant 𝜀 > 0, there is no polynomial-time approximation algorithm with approximation

factor 𝑛1−𝜀 unless 𝑃 , 𝑁𝑃 [FK98, KP06, Zuc07]. Vertex coloring remains NP-hard even

in graphs of small chromatic number. In particular, recognizing 3-colorable graphs is a

classic NP-hard problem [GJS74], and there is a deep line of work on coloring 3-colorable

graphs in polynomial time with as few colors as possible [KT17].

Since the problem is computationally hard in general, much of the work on vertex

coloring has focused on restricted families of graphs in di�erent settings. In the static

case, results have included settings such as bounded arboricity, with the classic paper

by Matula and Beck [MB83] in the sequential setting, and more recent results in a va-

riety of models including the streaming [BCG20], Congested Cliqe [BCG20, GS19],

MPC [BCG20], the general graph query [BCG20], and Local models [BE10, BE11, BCG20,

KP11]; other graph classes in which various vertex coloring problems were explored

in the static case include bounded treewidth graphs [AP89, JS97, FGK11], bounded

clique-width graphs [FGLS09, KR03], 𝑛-uniform hypergraphs [RSV15], bounded diame-

ter [CdCMGI
+

21, MPS19, MPS21], and bounded degree graphs [DDJP19]. In the dynamic
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case, past results on restricted families of graphs have focused on the class of bounded

arboricity graphs [HNW20, SW20b].

Obviously it is always possible to∆+1 color a graph𝐺 = (𝑉 ,𝐸)with maximum degree

∆, and a simple linear time algorithm can achieve this goal in the classical centralized o�-

line setting. Achieving the same goal in di�erent computational models is however not

trivial. For example this problem was extensively studied in the distributed literature, both

as a classical symmetry breaking problem, and due to its intimate connections with other

fundamental distributed problems such as maximal matching and maximal independent

set (MIS) [Lub86].

In this work we study the (∆+1)-coloring problem in the fully dynamic setting. Here,

the input graph𝐺 = (𝑉 ,𝐸) changes via a sequence of updates, where each update consists

of the insertion or deletion of an edge in 𝐺. There is a �xed parameter ∆ > 0 such that

the maximum degree in𝐺 remains upper bounded by∆ throughout this update sequence.

We want to design an algorithm that is capable of maintaining a proper (∆+1)-coloring

in such a dynamic graph 𝐺. The time taken by the algorithm to handle an update is

called its update time. We say that an algorithm has an amortized update time of 𝑂(𝛾) i�

starting from an empty graph,
1

it takes at most 𝑂(𝑡 ·𝛾) time to handle any sequence of 𝑡
updates. Our goal is to ensure that the amortized update time of our algorithm is as small

as possible. Our focus is on amortized time bounds, and we henceforth use the phrase

“update time” to refer to “amortized update time”.

There is a naive dynamic algorithm for this problem that has𝑂(∆) update time, which

works as follows. Suppose that we are maintaining a proper ∆ + 1-coloring 𝜒 : 𝑉 →
𝒞 in 𝐺. At this point, if an edge gets deleted from the graph, then we do nothing, as

the coloring 𝜒 continues to remain proper provided that ∆ remains �xed throughout the

update sequence. Otherwise, if an edge 𝑢𝑣 gets inserted into 𝐺, then we �rst check if

𝜒(𝑢) = 𝜒(𝑣). If not, we do nothing. If yes, then we pick an arbitrary endpoint 𝑥 ∈ {𝑢,𝑣},
and by scanning all its neighbors we identify a blank color 𝑐′ ∈ 𝒞 for 𝑥 (one that is not

assigned to any of its neighbors). Such a blank color is guaranteed to exist, since 𝑥 has at

most ∆ neighbors and the palette 𝒞 consists of ∆+1 colors. We now recolor the node 𝑥 by

assigning it the color 𝑐′ . This results in a proper (∆+1)-coloring in the current graph. The

time taken to implement this procedure is proportional to the degree of 𝑥, hence it is at

most 𝑂(∆). Bhattacharya et al. [BCHN18] signi�cantly improved the 𝑂(∆) time bound,

obtaining the following result.

Theorem 7.1.1. [BCHN18] There is a randomized dynamic algorithm that can maintain a

∆+1-coloring in a dynamic graph with 𝑂(log∆) update time in expectation.

A fundamental open question left by [BCHN18] is whether one can improve the update

time to constant. A constant update time is the holy grail for any graph problem that ad-

mits a linear time (static) algorithm, and thus far was obtained only for a handful of prob-

lems. Building on the algorithm of Baswana et al. [BGS15], in FOCS’16 Solomon [Sol16]

presented a randomized algorithm for maintaining a maximal matching with constant

1
In this chapter, when we refer to an empty graph, we mean a graph that has 𝑛 vertices and no edges.

However, our algorithm can be modi�ed to handle insertions and deletions of vertices with 0 degree. Such

vertices are inserted into and deleted from the bottommost level of our structure.
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update time. Remarkably, Solomon’s algorithm was the �rst to achieve a constant up-

date time for any nontrivial problem in general dynamic graphs. A maximal matching

provides a 2-approximation for both the maximum matching and the minimum vertex

cover. An alternative deterministic primal-dual approach, introduced by Bhattacharya

et al. [BHI15], maintains a fractional “almost-maximal" matching, and thus a (2 + 𝜀)-
approximation for the maximum matching size, and also an integral (2+𝜀)-approximation

for the minimum vertex cover. This line of work culminates in the SODA’19 paper of

Bhattacharya and Kulkarni [BK19], which achieves an update time 𝑂(1/𝜀2). There is an

intimate connection between the two approaches, which is hard to formalize, but at a

very high level, the randomness encapsulated within the maximal matching algorithms

of [BGS15, Sol16] naturally correspond to the fractional deterministic almost-maximal

solutions of [BHI15, BK19, GKKP17, BCH17].

Our main result is summarized in Theorem 7.1.2 below. We design a randomized algo-

rithm for (∆+1)-coloring with𝑂(1) update time in expectation and with high probability

(for a su�ciently long update sequence). This constitutes a dramatic improvement over

the update time of [BCHN18] as stated in Theorem 7.1.1. As with most existing random-

ized dynamic algorithms, both Theorems 7.1.1 and 7.1.2 hold only when the adversary

deciding the next update is oblivious to the past random choices made by the algorithm.

We emphasize that, unlike several related results in the literature–including the previous

result for (∆+1)-coloring [BCHN18], our bound holds also with high probability.

Theorem 7.1.2. There is a randomized algorithm for maintaining a (∆ + 1)-coloring in a

dynamic graph that, given any sequence of 𝑡 updates, takes total time 𝑂(𝑛 log𝑛 + 𝑛∆ + 𝑡)
in expectation and with high probability. The space usage is 𝑂(𝑛∆ +𝑚), where 𝑚 is the

maximum number of edges present at any time. For 𝑡 = Ω(𝑛 log𝑛 + 𝑛∆), we obtain 𝑂(1)
amortized update time in expectation and with high probability.

To provide a very quick explanation of our bound: the factor of 𝑂(𝑛∆) comes from

our data structure for maintaining free colors in Lemma 7.2.1, and the factor of𝑂(𝑛 log𝑛)
comes from Lemma 7.3.13 and Lemma 7.3.14 in our analysis.

Previous work: We start with a high level overview of the dynamic algorithm

in [BCHN18]. They maintain a hierarchical partition of the node-set 𝑉 into 𝑂(log∆)
levels. Let ℓ(𝑣) ∈ {1, . . . , log∆} denote the level of a node 𝑣 ∈ 𝑉 . For every edge (𝑢,𝑣) ∈ 𝐸,

say that 𝑢 is a same-level-neighbor, down-neighbor and up-neighbor of 𝑣 respectively i�

ℓ(𝑢) = ℓ(𝑣), ℓ(𝑢) < ℓ(𝑣) and ℓ(𝑢) ≥ ℓ(𝑣). The following invariant is maintained.

Invariant 3. Each node 𝑣 ∈ 𝑉 hasΩ(2ℓ(𝑣)) down-neighbors and𝑂(2ℓ(𝑣)) same-level neigh-

bors.

In order to ensure that Invariant 3 holds, the nodes need to keep changing their levels

as the input graph keeps getting updated via a sequence of edge insertions/deletions. It is

important to note that the subroutine in charge of maintaining this invariant is determin-

istic and has 𝑂(log∆) amortized update time.

The algorithm in [BCHN18] uses a separate (randomized) subroutine to maintain a

proper (∆ + 1)-coloring in the input graph, on top of the hierarchical partition. To ap-

preciate the main intuition behind this recoloring subroutine, consider the insertion of an
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edge (𝑢,𝑣) at some time-step 𝜏 , and suppose that both 𝑢 and 𝑣 had the same color just

before this insertion. Pick any arbitrary endpoint 𝑥 ∈ {𝑢,𝑣}. The algorithm picks a new

color for 𝑥 as follows. Let 𝒞𝑥 ⊆ 𝒞 denote the subset of colors that satisfy the following

property at time-step 𝜏 : A color 𝑐 ∈ 𝒞 belongs to 𝒞𝑥 i� (a) no up-neighbor of 𝑥 has color

𝑐, and (b) at most one down-neighbor of 𝑥 has color 𝑐. Since the node 𝑥 has at most ∆

neighbors and the palette 𝒞 consists of ∆+1 colors, a simple counting argument (see the

proof of Lemma 7.3.1) along with Invariant 3 implies that the size of the set 𝒞𝑥 is at least

Ω(2ℓ(𝑥)). Furthermore, using appropriate data structures, the set 𝒞𝑥 can be computed in

time proportional to the number of down-neighbors and same-level neighbors of 𝑥, which

is at most𝑂(2ℓ(𝑥)) by Invariant 3. The algorithm picks a color 𝑐′ uniformly at random from

the set 𝒞𝑥, and then recolors 𝑥 by assigning it the color 𝑐′ . By de�nition of the set 𝒞𝑥, at

most one neighbor (say, 𝑦) of 𝑥 has the color 𝑐′ , and, furthermore, if such a neighbor 𝑦
exists then ℓ(𝑦) < ℓ(𝑥). If the down-neighbor 𝑦 exists, then we recursively recolor 𝑦 in the

same manner. Note that this entire procedure leads to a chain of recolorings. However,

the levels of the nodes involved in these successive recolorings form a strictly decreasing

sequence. Thus, the total time taken by the subroutine to handle the edge insertion is at

most

∑︀ℓ(𝑥)
ℓ=1𝑂(2ℓ) =𝑂(2ℓ(𝑥)).

Now comes the most crucial observation. Note that each time the algorithm recolors

a node 𝑥, it picks a new color uniformly at random from a set of sizeΩ(2ℓ(𝑥)). Thus, intu-

itively, if the adversary deciding the update sequence is oblivious to the random choices

made by the algorithm, then in expectation at leastΩ(2ℓ(𝑥)/2) =Ω(2ℓ(𝑥)) edge insertions

incident on 𝑥 should take place before we encounter a bad event (where the other end-

point of the edge being inserted has the same color as 𝑥). The discussion in the preceding

paragraph implies that we need 𝑂(2ℓ(𝑥)) time to handle the bad event. Thus, overall we

get an amortized update time of 𝑂(1) in expectation.

Our contribution: To summarize, the algorithm in [BCHN18] has two components – (1)

a deterministic subroutine for maintaining the hierarchical partition which takes𝑂(log∆)
amortized update time, and (2) a randomized subroutine for maintaining a proper (∆+1)-
coloring which takes 𝑂(1) amortized update time. The analysis of the amortized update

time of the �rst subroutine is done via an intricate potential function, and it is not clear

if it is possible to improve the update time of this subroutine to 𝑂(1).
To get an overall update time of 𝑂(1), our algorithm merges these two components

together in a very careful manner. Our starting point is to build on the high-level strat-

egy used for maximal matching in [Sol16]. Suppose that we decide to recolor a node 𝑥
during the course of our algorithm (either due to the insertion of an edge incident on it,

or because one of its up-neighbors took up the same color as 𝑥 while recoloring itself).

Let ℓ(𝑥) be the current level of 𝑥. We �rst check if the number of down-neighbors of

𝑥 is Ω(3ℓ(𝑥)). If the answer is yes, then we move up the node 𝑥 to the minimum level

ℓ′(𝑥) > ℓ(𝑥) where the number of its down-neighbors becomesΘ(3ℓ
′(𝑥)), following which

we recolor the node 𝑥 in the same manner as in [BCHN18]. In contrast, if the answer is no,

then we �nd a new color for 𝑥 that does not con�ict with any of its neighbors and move

the node 𝑥 down to the smallest possible level. Thus, in our algorithm, the hierarchical

partition itself is determined by the random choices made by the nodes while they recolor

themselves. This makes the analysis of our algorithm signi�cantly more challenging than
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that of [BCHN18], as Invariant 3 is no longer satis�ed all the time.

Furthermore, our analysis is more challenging than that of [Sol16] in one central as-

pect, which we discuss next. As mentioned, due to the oblivious adversary assumption, at

least Ω(3ℓ(𝑥)/2) =Ω(3ℓ(𝑥)) edge insertions incident on node 𝑥 are expected to occur be-

fore a bad event is encountered, i.e., when the other endpoint 𝑥′ of the edge being inserted

has the same color as 𝑥. Importantly, the color of that other endpoint 𝑥′ at the time of that

edge insertion (𝑥,𝑥′) might have been chosen after the color of 𝑥 was chosen, which may

create dependencies between the (random variables corresponding to the) colors of 𝑥 and

𝑥′ . A similar reasoning was applied to the maximal matching problem [BGS15, Sol16];

if the matched edge incident on a node 𝑥, denoted by (𝑥,𝑥′), was sampled uniformly at

random among Ω(3ℓ(𝑥)) edges incident on 𝑥, then Ω(3ℓ(𝑥)) edge deletions incident on 𝑥
are expected to occur (among the sampled ones) before a bad event is encountered, where

the bad event here is that the deleted edge on 𝑥 is its matched edge (𝑥,𝑥′). There is an

inherent di�erence, however, between these two bad events. In the maximal matching

problem, the time step of the bad event is fully determined by the adversarial updates

that occur after the creation of that matched edge (under the oblivious adversary assump-

tion), and in particular it is independent of future random choices made by the algorithm.

On the other hand, in our coloring problem the time step of the bad event may depend

on random choices made by the algorithm after the random color of 𝑥 has been chosen,

due to nodes that become neighbors of 𝑥 in the future and whose colors are chosen af-

ter 𝑥’s color has been chosen. Thus, we must cope with subtle conditional probability

issues that did not e�ect the analysis in [BGS15, Sol16]. Note that in our analysis, the

value of ∆ is the maximum ∆ over the course of the edge updates. The main di�culty

with getting our running time for ∆ that is the maximum degree of the current graph is

that a single update may decrease the maximum degree of the current graph by 1; and

so every vertex which is colored with the (∆ + 1)-th color needs to be recolored in our

algorithm and recoloring all such nodes may be expensive in total. Speci�cally, we think

it may be possible to modify our algorithm to obtain a (deg(𝑣)+1)-coloring where deg(𝑣)
is the current degree of vertex 𝑣, in which case, the returned coloring will trivially be a

(∆𝑐𝑢𝑟𝑟𝑒𝑛𝑡+1)-coloring. So far no work has obtained such a dynamic (deg(𝑣)+1)-coloring

in 𝑂(1) amortized running time; it is an interesting open question whether there exists

a dynamic algorithm that maintains a (deg(𝑣) + 1)-coloring for all vertices 𝑣 ∈ 𝑉 in the

input graph in 𝑂(1) amortized time per update. Furthermore, it is an open question to

obtain (∆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +1)-coloring with high probability in 𝑂(1) amortized running time.

Independent work: Independently of our work, Henzinger and Peng [HP19] have ob-

tained an algorithm for (∆+1)-vertex coloring with𝑂(1) expected amortized update time.

Note that our work achieves (∆+1)-vertex coloring with𝑂(1) amortized update time not

only in expectation, but also with with high probability.

7.2 Our Algorithm

Consider a graph 𝐺 = (𝑉 ,𝐸) with |𝑉 | = 𝑛 nodes that is changing via a sequence of up-

dates (edge insertions and deletions). The graph initially starts o� as empty (containing 𝑛
vertices and no edges). Let ∆ > 0 be a �xed integer such that the maximum degree of any
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node in the dynamic graph 𝐺 is always upper bounded by ∆. In other words, ∆ repre-

sents the maximum degree that any vertex can take throughout the update sequence. Let

𝒞 = {1, . . . ,∆+ 1} denote a palette of ∆+ 1 colors. Our algorithm will maintain a proper

∆+1-coloring 𝜒 : 𝑉 →𝒞 in the dynamic graph 𝐺.

A hierarchical partition of the node-set 𝑉 : Fix a parameter 𝐿 = ⌈log3(𝑛 − 1)⌉ − 1.

Our dynamic algorithm will maintain a hierarchical partition of the node-set 𝑉 into 𝐿+2
distinct levels {−1,0, . . . ,𝐿}. We let ℓ(𝑣) ∈ {−1,0, . . . ,𝐿} denote the level of a given node

𝑣 ∈ 𝑉 . The levels of the nodes will vary over time. Consider any edge (𝑢,𝑣) ∈ 𝐸 in the

dynamic graph 𝐺 at any given point in time: We say that 𝑢 is an up-neighbor of 𝑣 i�

ℓ(𝑢) ≥ ℓ(𝑣), and a down-neighbor of 𝑣 i� ℓ(𝑢) < ℓ(𝑣).
Notations: Fix any node 𝑣 ∈ 𝑉 . Let 𝒩𝑣 = {𝑢 ∈ 𝑉 : 𝑢𝑣 ∈ 𝐸} denote the set of neighbors

of 𝑣. Furthermore, let 𝒞+𝑣 = {𝑐 ∈ 𝒞 : 𝑐 = 𝜒(𝑢) for some 𝑢 ∈ 𝒩𝑣 with ℓ(𝑢) ≥ ℓ(𝑣)} denote

the set of colors assigned to the up-neighbors of 𝑣. We say that 𝑐 ∈ 𝒞 is a blank color for

𝑣 i� no neighbor of 𝑣 currently has the color 𝑐. Similarly, we say that 𝑐 ∈ 𝒞 is a unique

color for 𝑣 i� 𝑐 < 𝒞+𝑣 and exactly one down-neighbor of 𝑣 currently has the color 𝑐. 𝐶𝑣 ,

as de�ned before,
2

then, consists of the blank and unique colors of 𝑣. Finally, for every

ℓ ∈ {−1, . . . ,𝐿}, we let 𝜙𝑣(ℓ) = |{𝑢 ∈ 𝒩𝑣 : ℓ(𝑢) < ℓ}| denote the number of neighbors of 𝑣
that currently lie below level ℓ. We are now ready to describe our dynamic algorithm.

Preprocessing: In the beginning, the input graph 𝐺 = (𝑉 ,𝐸) has an empty edge-set,

i.e., 𝐸 = ∅, and the algorithm starts with any arbitrary coloring 𝜒 : 𝑉 → 𝒞. All the

relevant data structures are initialized. Subsequently, the algorithm handles the sequence

of updates to the input graph in the following manner.

Handling the deletion of an edge: Suppose that an edge (𝑢,𝑣) gets deleted from 𝐺.

Just before this deletion, the coloring 𝜒 : 𝑉 →𝒞 maintained by the algorithm was proper

(no two adjacent nodes had the same color). So the coloring 𝜒 continues to remain proper

even after the deletion of the edge. So the deletion of an edge does not lead to any change

in the levels of the nodes and the coloring maintained by the algorithm.

Handling the insertion of an edge: This procedure is described in Algorithm 25.

Suppose that an edge (𝑢,𝑣) gets inserted into 𝐺. If, just before this insertion, we had

𝜒(𝑢) , 𝜒(𝑣), then we call this insertion con�ict-less, and otherwise con�icting. In case of

a con�ict-less insertion, the coloring 𝜒 continues to remain proper even after insertion of

the edge. In this case, the insertion does not lead to any change in the levels of the nodes

or the colors assigned to them. Otherwise, we pick the endpoint 𝑥 ∈ {𝑢,𝑣} that was most

recently recolored and call the subroutine recolor(𝑥). Such a choice of which vertex to

recolor is crucial for our proof of the running time. This call to recolor(𝑥) changes the

color assigned to 𝑥 and it might also change the level of 𝑥. However, there is a possibility

that the new color assigned to 𝑥 might be the same as the color of (at most one) down-

neighbor of 𝑥. If this is the case, then we go to that neighbor of 𝑥 it con�icts with, and

keep repeating the same process until we end up with a proper coloring in 𝐺.

Procedure recolor(𝑥) (see Algorithm 26), depending on whether 𝜙𝑥(ℓ(𝑥) + 1) <
3ℓ(𝑥)+2 or not, calls one of the procedures det-color(𝑥) and rand-color(𝑥).

2𝐶𝑣 denotes the subset of colors that satisfy the following property at timestep 𝜏 : A color 𝑐 ∈ 𝒞 belongs

to 𝒞𝑣 i� (a) no up-neighbor of 𝑣 has color 𝑐 and (b) at most one down-neighbor of 𝑣 has color 𝑐.
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det-color(𝑥): This subroutine �rst picks a blank color (say) 𝑐 for the node 𝑥. By de�-

nition no neighbor of 𝑥 has the color 𝑐. It now recolors the node 𝑥 by setting 𝜒(𝑥)← 𝑐.
Finally, it moves the node 𝑥 down to level −1, by setting ℓ(𝑥)← −1. It then updates all

the relevant data structures.

rand-color(𝑥): This subroutine works as follows. Let ℓ = ℓ(𝑥) be the level of the node 𝑥
when this subroutine is called. Step 04 in Algorithm 26 implies that at that time we have

𝜙𝑥(ℓ + 1) ≥ 3ℓ+2. It identi�es the minimum level ℓ′ > ℓ where 𝜙𝑥(ℓ′ + 1) < 3ℓ
′+2

. Such a

level ℓ′ must exist because𝜙𝑥(𝐿+1) ≤ (𝑛−1) < 3𝐿+2. The subroutine then moves the node

𝑥 up to level ℓ′ , by setting ℓ(𝑥)← ℓ′ , and updates all the relevant data structures. After

this step, the subroutine computes the set 𝒞𝑥 ⊆ 𝒞 of colors that are either blank or unique

for 𝑥, next called palette. It picks a color 𝑐 ∈ 𝒞𝑥 uniformly at random, and recolors the

node 𝑥 with color 𝑐, by setting 𝜒(𝑥)← 𝑐. It then updates all the relevant data structures.

If 𝑐 happens to be a blank color for 𝑥, then no neighbor of 𝑥 has the same color as 𝑐. In

other words, this recoloring of 𝑥 does not lead to any new con�ict. Accordingly, in this

case the subroutine returns NULL. Otherwise, if 𝑐 happens to be an unique color for 𝑥,

then by de�nition exactly one down-neighbor (and zero up-neighbors) of 𝑥 also has color

𝑐. Let this down-neighbor be 𝑦. In other words, the recoloring of 𝑥 creates a new con�ict

along the edge (𝑥,𝑦), and we need to recolor 𝑦 to ensure a proper coloring. Thus, in this

case the subroutine returns the node 𝑦.

Algorithm 25 handle-insertion((𝑢,𝑣)))

1: if 𝜒(𝑢) = 𝜒(𝑣) then
2: Let 𝑥 ∈ {𝑢,𝑣} be the endpoint that was most recently recolored.

3: while 𝑥 , NULL do

4: 𝑥← recolor(𝑥).

Algorithm 26 recolor(𝑥))

1: if 𝜙𝑥(ℓ(𝑥) + 1) < 3ℓ(𝑥)+2 then
2: det-color(𝑥).
3: else

4: 𝑦← rand-color(𝑥).
5: return 𝑦.

It is not di�cult to come up with suitable data structures for the algorithm described

above such that the following result holds (more details in Section 7.4). Due to the com-

plexity of the data structures from the need to maintain many low-level details, we defer

the full details of such structures to Section 7.4 so as not to interrupt the core ideas and

analysis in this section. However, we describe the main functionalities of the data struc-

tures here as is necessary in our main analysis.

Lemma 7.2.1. There is an implementation of the above dynamic algorithm such that:

1. The preprocessing time is 𝑂(∆𝑛);
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2. The space usage is 𝑂(∆𝑛+𝑚), where 𝑚 is the maximum number of edges present at

any time;

3. Each deletion and con�ict-less insertion takes 𝑂(1) time deterministically;

4. Procedure det-color(𝑥) takes time 𝑂(3ℓ(𝑥));
5. Procedure rand-color(𝑥) takes time 𝑂(3ℓ

′(𝑥)) where ℓ′(𝑥) > ℓ(𝑥) is the new level of

node 𝑥 at the end of the procedure.

Proof. We now justify the �ve claims made in the statement of the lemma. A full, detailed

implementation section of the data structures can be found in Section 7.4.1.

1. We initialize a dynamic array 𝒰𝑣 for each vertex 𝑣 that contains 𝑂(log𝑛) entries

(speci�cally, let 𝐿 be the set of non-empty levels for 𝑣, the dynamic array contains

𝑂(𝐿) entries) that stores the up-neighbors of 𝑣. Each index of the array 𝒰𝑣 contains

a pointer to a linked list containing the up-neighbors of 𝑣 at that level. For example,

suppose that 𝑤 is an up-neighbor of 𝑣 at level 𝑖. Then, the 𝑖-th entry of 𝒰𝑣 contains

a linked list which contains 𝑤. We initialize another linked list 𝒟𝑣 which contains

the down-neighbors of 𝑣. Furthermore, we initialize two linked lists, 𝒞+𝑣 and 𝒞𝑣 . 𝒞+𝑣
contains exactly one copy of each color held by up-neighbors stored in 𝒰𝑣 . 𝒞∖𝒞+𝑣
then represents the colors of the down-neighbors stored in𝒟𝑣 that are not in 𝒞+𝑣 and

the blank colors. The palette 𝒞𝑣 containing the unique and blank colors of 𝑣 can thus

be computed from 𝒞∖𝒞+𝑣 . Each 𝒰𝑣 has size 𝑂(1) initially when there are no edges

(see Section 7.4 for details); 𝒞+𝑣 and 𝒞𝑣 each has size𝑂(∆); and𝒟𝑣 is initially empty.

Thus, the preprocessing time necessary to initialize these structures is 𝑂(∆𝑛). 3

More details on these structures can be found in Section 7.4.1.

2. The total space used by𝒟𝑣 for all 𝑣 is𝑂(𝑚) since𝒟𝑣 for vertex 𝑣 stores at most the

number of neighbors of 𝑣. All other data structures are initialized during prepro-

cessing. Therefore, the space cost of the other data structures is 𝑂(∆𝑛). For each

edge 𝑒 = (𝑢,𝑣), we maintain pointers that represent 𝑒 between copies of 𝑢 and 𝑣 in

the various data structures. Refer to Section 7.4.1 for a detailed description of the

pointer management.

3. Deleting an edge 𝑢𝑣 requires deleting 𝑢 from 𝒰𝑣 and 𝑣 from 𝒟𝑢 (or vice versa).

Inserting an edge 𝑢𝑣 requires inserting 𝑢 into 𝒰𝑣 and 𝑣 into𝒟𝑢 (or vice versa). The

colors for 𝑢 and 𝑣 can be moved in between 𝒞+𝑣 and 𝒞𝑣 and between 𝒞+𝑢 and 𝒞𝑢 via

a set of pointers connecting the colors to the vertices. Refer to Fig. 7-1, Fig. 7-2 and

Section 7.4.3 for a detailed description of these elementary operations. The total

cost of these operations is then 𝑂(1).
4. In this procedure det-color(𝑣), the level of 𝑣 is set deterministically to −1 and

the color for 𝑣 is chosen deterministically from its set of blank colors. In this case,

all the data structures of vertices in levels [−1, ℓ(𝑣)] (where ℓ(𝑣) is the old level

of 𝑣) must be updated with the new level of 𝑣. Due to the existence of pointers

in between vertices and its neighbors in 𝒟𝑣 and 𝒰𝑣 in all the data structures, the

cost of updating each individual neighbor is 𝑂(1). To update the colors of the data

structures requires following 𝑂(1) pointers for each 𝑤 ∈ 𝒟𝑣 . By the de�nition of

recolor(𝑣) (which calls det-color(𝑣)), 𝜙𝑣(ℓ(𝑣) + 1) < 3ℓ(𝑣)+2. Hence, there are

3
We require such a list of blank and unique colors for each vertex 𝑣 in order to ensure our running time.

It is an interesting open question whether we can remove the need for such lists of blank and unique colors.
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𝑂(3ℓ(𝑣)) neighbors in levels [ℓ′(𝑣), ℓ(𝑣)] to update and the cost of the procedure

is 𝑂(3ℓ(𝑣)). Refer to Section 7.4.1 and Fig. 7-5 for a complete description of this

procedure.

5. Since ℓ′(𝑣) > ℓ(𝑣), all the data structures of vertices in levels [ℓ(𝑣), ℓ′(𝑣)] must be

updated with the new level of 𝑣. The data structures can be updated in the same

way as given above. Since ℓ′(𝑣) > −1 (it must be, by de�nition of the procedure),

then, 𝜙𝑣(ℓ′(𝑣) + 1) < 3ℓ
′(𝑣)+2

. Hence, this procedure takes 𝑂(3ℓ
′(𝑣)) time. Refer

to Section 7.4.1 and Fig. 7-6 for a complete description of this procedure.

Again, a complete, detailed description of our data structures (with pseudocode) can

be found in Section 7.4.

7.3 Analysis

We assume that our graph is empty at the end, meaning no edges exist on the graph after

we perform all the updates in our update sequence. To ensure we end with an empty

graph, we append additional edge deletions at the end of the original update sequence.

Since we begin with an empty graph, this at most doubles the number of updates in our

update sequence, but simpli�es our analysis. Because edge deletions will never cause a

recoloring of any vertex and the number of updates increases by at most a factor of 2, an

amortized runtime bound of our algorithm with respect to the new update sequence will

imply the same (up to a factor of 2) amortized bound with respect to the original sequence.

We now show that our dynamic algorithm maintains the following invariant.

Invariant 4. Consider a vertex 𝑣 at level ℓ(𝑣) ≥ 0 at a given point of time 𝜏 . When 𝑣 was

most recently recolored prior to 𝜏 , it chose a color uniformly at random from a palette of size

at least 3ℓ(𝑣)+1/2 + 1. Furthermore, at that time 𝑣 has at least 3ℓ(𝑣)+1 down-neighbors. For

ℓ(𝑣) = −1, the color of 𝑣 is set deterministically.

Lemma 7.3.1. Invariant 4 holds for all vertices at the beginning of each update.

Proof. During the preprocessing step the color of each node 𝑣 is set deterministically

to some arbitrary color and ℓ(𝑣) = −1. Hence the claim holds initially. The color of 𝑣
changes only due to a call to recolor(𝑣). Let ℓ(𝑣) and ℓ′(𝑣) denote the level of 𝑣 at

the beginning and end of this call. If recolor(𝑣) calls det-color(𝑣), the color of 𝑣 is

set determinstically and ℓ′(𝑣) = −1. Hence the invariant holds. Otherwise, recolor(𝑣)
invokes rand-color(𝑣). The latter procedure sets ℓ′(𝑣) to the smallest value (larger than

ℓ(𝑣)) such that 𝜙𝑣(ℓ′(𝑣) + 1) < 3ℓ
′(𝑣)+2

. Recall that 𝜙𝑣(ℓ) is the number of neighbors of

𝑣 of level smaller than ℓ. This implies that the number of down-neighbors of 𝑣 (at level

ℓ′(𝑣)) are 𝜙 := 𝜙𝑣(ℓ′(𝑣)) ≥ 3ℓ
′(𝑣)+1

.

It is then su�cient to argue that the palette used by rand-color(𝑣) has size at least

𝜙/2+1. We use exactly the same argument as in [BCHN18]. One has |𝒞∖𝒞+𝑣 | = (∆+1)−|𝒞+𝑣 |
since 𝒞+𝑣 contains exactly one copy of each color occupied by an up-neighbor of 𝑣. Since

the degree of any vertex is at most ∆ and the number of down-neighbors of 𝑣 is 𝜙, |𝒞+𝑣 | ≤
(∆ −𝜙) since the number of colors occupied by the up-neighbors is at most the number
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of up-neighbors. Then, |𝒞 ∖𝒞+𝑣 | = (∆+1)−|𝒞+𝑣 | ≥ (∆+1)− (∆−𝜙) = 𝜙+1, where equality

holds when 𝑣 has degree ∆ and up-neighbors of 𝑣 all have distinct colors. For any color

𝑐 ∈ 𝒞𝑣 that is occupied by at most one down-neighbor of 𝑣, 𝑐 is a blank or unique color.

Let 𝑥 be the number of down-neighbors of 𝑣 that occupy a unique color. Then, the size

of 𝑣’s palette is at least |𝒞𝑣 | ≥ |𝒞 ∖ 𝒞+𝑣 | − (𝜙 − 𝑥)/2; this is due to the fact that there can

be at most (𝜙 − 𝑥)/2 colors that are occupied by at least two down-neighbors of 𝑣. Then,

|𝒞𝑣 | ≥ |𝒞 ∖ 𝒞+𝑣 | − (𝜙 − 𝑥)/2 ≥ 1+ |𝜙| − (𝜙 − 𝑥)/2 ≥ 𝜙/2+1.

Let 𝑡 be the total number of updates. Excluding the preprocessing time, the run-

ning time of our algorithm is given by the cost of handling insertions and deletions.

By Lemma 7.2.1-Item 3, the total cost of deletions and insertions that do not cause con-

�icts is 𝑂(𝑡). We thus focus on insertions that cause con�icts. Modulo 𝑂(1) factors, the

total cost of the latter insertions is bounded by the total cost of the calls to recolor(·).
Epochs: It remains to bound the total cost of the calls to recolor(·). To that aim, and

inspired by [BGS15], we introduce the following notion of epochs. An epoch ℰ is associ-

ated with a node 𝑣 = 𝑣(ℰ), and consists of any maximal time interval in which 𝑣 does not

get recolored. So ℰ starts with a call to recolor(𝑣), and ends immediately before the next

call to recolor(𝑣) is executed. Note that even if 𝑣 gets recolored with the same color that

it occupied before, the epoch still ends and a new epoch begins. Observe that there are

potentially multiple epochs associated with the same node 𝑣. Notice that by construction,

during an epoch ℰ the level and color of 𝑣(ℰ) does not change: we refer to that level and

color as ℓ(ℰ) and 𝜒(ℰ), resp. By ℰℓ we denote the set of epochs at level ℓ. We de�ne

the cost 𝑐(ℰ) of an epoch ℰ as the time spent by the call to recolor(𝑣(ℰ)) that starts it,

and then we charge the cost of every epoch ℰ at level ℓ(ℰ) = −1 to the previous epoch

involving the same node 𝑣(ℰ).

Lemma 7.3.2. Excluding the preprocessing time, the total running time of the dynamic

algorithm is given by: 𝑂(
∑︀
ℓ
∑︀
ℰ∈ℰℓ 𝑐(ℰ)) =𝑂(

∑︀
ℓ |ℰℓ | · 3ℓ(ℰ)).

Proof. By the above discussion and Lemma 7.2.1 (Item 4-Item 5), the cost of any epoch ℰ
is given by 𝑐(ℰ) =𝑂

(︁
3ℓ(ℰ)

)︁
. The claim follows.

A classi�cation of epochs: It will be convenient to classify epochs as follows. An epoch

ℰ is �nal if it is not concluded by a call to recolor(𝑣(ℰ)). Thus, for a �nal epoch ℰ , 𝑣(ℰ)
keeps the same color from the beginning of ℰ till the end of all the updates. Otherwise

ℰ is terminated. A terminated epoch ℰ , 𝑣 = 𝑣(ℰ), terminates for one of the following

possible events: (1) some edge (𝑢,𝑣) is inserted, with 𝜒(𝑢) = 𝜒(𝑣), hence leading to a

call to recolor(𝑣); (2) a call to recolor(𝑤) for some up-neighbor 𝑤 of 𝑣 forces a call to

recolor(𝑣) (without the insertion of any edge incident to 𝑣). We call the epochs of the

�rst and second type original and induced, resp. In the second case, we say that the epoch

ℰ ′ that starts with the recoloring of 𝑤 induces ℰ .

Lemma 7.3.3. The total cost of induced epochs is (deterministically) at most𝑂(1) times the

total cost of original and �nal epochs.

Proof. Let us construct a directed epoch graph, with node set the set of epochs, and a

directed edge (ℰ ,ℰ ′) i� ℰ ′ induced ℰ . Notice that, for any edge (ℰ ,ℰ ′) in the epoch graph,
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ℓ(ℰ ′) > ℓ(ℰ). Observe also that this graph consists of a collection of disjoint, directed paths

starting at original, induced, or �nal epochs and ending at original and �nal epochs. Let us

charge the cost of each induced epoch ℰ to the root 𝑟(ℰ) of the corresponding path in the

epoch graph. All the cost is charged to original and �nal epochs, and the cost charged to

one epoch ℰ of the latter type is at most

∑︀
ℓ<ℓ(ℰ)𝑂(3ℓ) =𝑂(3ℓ(ℰ)). The claim follows.

Lemma 7.3.4. Given any sequence of 𝑡 updates, the total cost of �nal epochs is (determin-

istically) 𝑂(𝑡).

Proof. By Invariant 4, for any �nal epoch ℰ , 𝑣 = 𝑣(ℰ) and ℓ = ℓ(ℰ), 𝑣 must have at least

3ℓ+1 down-neighbors at the beginning of ℰ . Since by assumption at the end of the process

the graph is empty, there must be at least 3ℓ+1 deletions with one endpoint being 𝑣 during

ℰ . By charging the𝑂(3ℓ) cost of ℰ to the later deletions, and considering that each deletion

is charged at most twice, we achieve a average cost per deletion in𝑂(1), hence a total cost

in 𝑂(𝑡).

A classi�cation of levels: Recall that ℰℓ denotes the set of epochs at level ℓ. We now

classify the levels into 3 types, as de�ned below.

• A level ℓ is induced-heavy i� at least 1/2-fraction of the epochs in ℰℓ are induced.

• A level ℓ is �nal-heavy i� (a) it is not induced-heavy and (b) at least 1/8-fraction of

the epochs in ℰℓ are �nal.

• A level ℓ is original-heavy i� it is neither induced-heavy nor �nal-heavy. Note that

if a level ℓ is original-heavy, then ≥ 3/8-fraction of the epochs in ℰℓ are original.

Henceforth, we say that an epoch is induced-heavy, �nal-heavy and original-heavy if it

respectively belongs to an induced-heavy, �nal-heavy and original-heavy level. We use

the term “cost of a level ℓ” to refer to the total cost of all the epochs at level ℓ.

Lemma 7.3.5. The total cost of all the induced-heavy levels is (deterministically) at most

𝑂(1) times the total cost of all the original-heavy and �nal-heavy levels.

Proof. We perform charging level by level, starting from the lowest level −1. Given a level

ℓ, if it is either original-heavy or �nal-heavy then we do nothing. Otherwise, we match

each epoch ℰ ∈ ℰℓ that is either original or �nal with some distinct induced epoch ℰ ′ ∈ ℰℓ .
We next charge the cost of ℰ (as obtained from the proof of Lemma 7.3.3) to ℰ ′ . Finally,

we charge the cost of ℰ ′ to some original or �nal epoch ℰ ′′ at a higher level following

the same scheme as in the proof of Lemma 7.3.3. At the end of this process, only original

and �nal epochs at the original-heavy and �nal-heavy levels are charged. By an easy

induction, when we start processing level ℓ the total charge on an original or �nal epoch

at level ℓ coming from the lower levels is at most

∑︀
ℓ′<ℓ𝑂(3ℓ

′
) = 𝑂(3ℓ−1). The lemma

follows.

Lemma 7.3.6. Given any sequence of 𝑡 updates, the total cost of all the �nal-heavy levels is
(deterministically) at most 𝑂(𝑡).

Proof. Note that at each �nal-heavy level at least 1/8-fraction of the epochs are �nal.

Thus, the cost of the other epochs given by Lemma 7.3.2 can be charged to the �nal epochs

in the layer. There is already 𝑂(3ℓ) cost charged to the �nal epoch; thus, the additional

cost of other epochs in the same level only increases this cost by an 8-factor. The proof

now follows from Lemma 7.3.4.
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Corollary 7.3.7. The total cost of the dynamic algorithm, excluding the preprocessing time

and a term 𝑂(𝑡), is 𝑂(1) times the total cost of the original-heavy levels.

Proof. It follows from the above discussion and Lemma 7.3.5, Lemma 7.3.6.

Bounding the Cost of the Original-Heavy Levels: It now remains to bound the total

cost of the original-heavy levels. Recall that at each original-heavy level, at least 3/8-

fraction of the epochs are original. Thus, using a simple charging scheme, the task of

bounding the total cost of all the original-heavy levels reduces to bounding the total cost

of all the original epochs in these levels. At this point, it is tempting to use the following

argument. By Invariant 4, for each epoch ℰ , ℓ = ℓ(ℰ), the corresponding color 𝜒(ℰ) is cho-

sen uniformly at random in a palette of size at least 3ℓ(ℰ)/2+1. Therefore, if ℰ is original,

we expect to see at least Ω(3ℓ) edge insertions having 𝑣(ℰ) as one endpoint before one

such insertion causes a con�ict with 𝑣(ℰ). This would imply an 𝑂(1) amortized cost per

edge insertion. The problem with this argument is that, conditioning on an epoch ℰ being

original, modi�es a posteriori the distribution of colors taken at the beginning of ℰ . For

example, the choice of certain colors might make more likely that the considered epoch

is induced rather than original. To circumvent this issue, we need a more sophisticated

argument that exploits the fact that we are considering original epochs in original-heavy

levels only.

We de�ne the duration 𝑑𝑢𝑟(ℰ) of an epoch ℰ , 𝑣 = 𝑣(ℰ), as the number of edge in-

sertions of type (𝑢,𝑣) that happen during ℰ , plus possibly the �nal insertion that causes

the termination of ℰ (if ℰ is original). We also de�ne a critical notion of pseudo-duration

𝑝𝑠𝑑𝑢𝑟(ℰ) of ℰ as follows. Let (𝑣,𝑢1), . . . , (𝑣,𝑢𝑞) be the subsequence of insertions of edges

incident to 𝑣 in the input sequence after the creation of ℰ . For each 𝑢𝑖 in the sequence of

updates, let 𝜒(𝑢𝑖) represent the color of 𝑢𝑖 right before the creation of ℰ . Consider the se-

quence of colors 𝜒(𝑢1), . . . ,𝜒(𝑢𝑞). Remove from this sequence all colors not in the palette

𝐶 used by ℰ to sample 𝜒(ℰ), and then leave only the �rst occurrence of each duplicated

color. Let 𝜒(1), . . . ,𝜒(𝑘) be the obtained subsequence of (distinct) colors. We assume that

𝜒(1), . . . ,𝜒(𝑘) is a permutation of 𝐶 (so that 𝑘 = |𝐶|), and otherwise extend it arbitrarily

to enforce this property. We de�ne 𝑝𝑠𝑑𝑢𝑟(ℰ) to be the index 𝑖 such that 𝜒(𝑖) = 𝜒(ℰ). In

other words, 𝑝𝑠𝑑𝑢𝑟(ℰ) is equal to the number of distinct colors in 𝜒(𝑢1), . . . ,𝜒(𝑢𝑗) that

are also in 𝐶 where 𝜒(𝑢𝑗) is the �rst occurrence of the color 𝜒(ℰ). Such a 𝑗 exists since

𝑗 = 𝑖 if the �rst occurrence of 𝜒(ℰ) is at index 𝑖.

Lemma 7.3.8. For an original epoch ℰ , 𝑝𝑠𝑑𝑢𝑟(ℰ) ≤ 𝑑𝑢𝑟(ℰ) deterministically.

Proof. Let (𝑣,𝑢𝑖) be the edge insertion that causes the termination of ℰ , so that 𝑑𝑢𝑟(ℰ) =
𝑖. Let 𝑗 ≤ 𝑖 be the smallest index with 𝜒(𝑢𝑗) = 𝜒(𝑢𝑖). Let 𝐶 be the palette used by 𝑣
to sample 𝜒(𝑢𝑖). The value of 𝑝𝑠𝑑𝑢𝑟(ℰ) equals the number of distinct colors in the set

𝜒(𝑢1), . . . ,𝜒(𝑢𝑗) that are also in 𝐶. The latter number is clearly at most 𝑗 ≤ 𝑖. (In this

proof we crucially used the following property: If the insertion of an edge (𝑥,𝑦) creates a

con�ict, in the sense that both 𝑥 and 𝑦 have the same color, then our algorithm changes

the color of the node 𝑧 ∈ {𝑥,𝑦} that was most recently recolored.)

We say that an epoch ℰ is short if 𝑝𝑠𝑑𝑢𝑟(ℰ) ≤ 1
32𝑒3

ℓ(ℰ)
, and long otherwise. The

following critical technical lemma upper bounds the probability that an epoch is short.

212



Lemma 7.3.9. An epoch ℰ is short with probability at most
1
16𝑒 , independently from the

random bits used by the algorithm other than the ones used to sample 𝜒(ℰ).

Proof. Let 𝐶 be the palette from which 𝑣 = 𝑣(ℰ) took its color 𝑐 = 𝜒(ℰ) uniformly at

random. Let us condition on all the random bits used by the algorithm prior to the ones

used to sample 𝜒(ℰ). Notice that this �xes 𝐶 and the permutation 𝜒(1), . . . ,𝜒(|𝐶|) of 𝐶
used for the de�nition of 𝑝𝑠𝑑𝑢𝑟(ℰ) (see the paragraph before Lemma 7.3.8). The random

bits used after the sampling of 𝜒(ℰ) clearly do not a�ect 𝑝𝑠𝑑𝑢𝑟(ℰ). The probability that

𝑝𝑠𝑑𝑢𝑟(ℰ) = 𝑖, i.e. 𝜒(𝑖) = 𝜒(ℰ), is precisely 1/ |𝐶|. The latter probability is deterministically

at most
2

3ℓ(ℰ)
by Invariant 4. In particular, this upper bound holds independently from the

random bits on which we conditioned earlier. The claim then follows since

IP[ℰ is short] = IP

[︃
𝑝𝑠𝑑𝑢𝑟(ℰ) ≤ 3ℓ(ℰ)

32𝑒

]︃
=
3ℓ(ℰ)

32𝑒
· 1
|𝐶|
≤ 1
16𝑒

.

We next de�ne some bad events, that happen with very small probability. Recall that

ℰℓ is the set of epochs at level ℓ. We de�ne ℰ𝑠ℎ𝑜𝑟𝑡ℓ (resp., ℰ 𝑙𝑜𝑛𝑔ℓ ) as the collection of all

epochs in ℰℓ that are short (resp., long).

Lemma 7.3.10. Consider any 𝑥 ≥ 0, and let 𝐴𝑥ℓ be the event that |ℰℓ | > 𝑥 and |ℰ
𝑠ℎ𝑜𝑟𝑡
ℓ | ≥ |ℰℓ |4 .

Then IP(𝐴𝑥ℓ ) ≤
4

2𝑥/2
.

Proof. Fix two parameters 𝑞 and 𝑗 , with 𝑗 ≥ 𝑞/4, and consider any 𝑞 level-ℓ epochs

ℰ1, . . . ,ℰ𝑞, ordered by their creation time. We argue that the probability that precisely

𝑗 particular epochs ℰ(1), . . . ,ℰ(𝑗) among these 𝑞 are short is at most

(︁
1
16𝑒

)︁𝑗
. Let 𝐵(𝑖) be

the event that ℰ(𝑖) is short, 1 ≤ 𝑖 ≤ 𝑗 . By a simple induction and Lemma 7.3.9, we have

that IP(𝐵(𝑖) | 𝐵(1) ∩ 𝐵(2) ∩ . . .𝐵(𝑖−1)) ≤ 1
16𝑒 . Consequently, we get: IP(𝐵(1) ∩ 𝐵(2) ∩ . . . ∩

𝐵(𝑗)) = IP(𝐵(1)) · IP(𝐵(2) | 𝐵(1)) · . . . · IP(𝐵(𝑗) | 𝐵(1) ∩𝐵(2) ∩ . . .∩𝐵(𝑗−1)) ≤
(︁

1
16𝑒

)︁𝑗
.

There are

(︀𝑞
𝑗

)︀
choices for the subsequence ℰ(1) . . .ℰ(𝑗). Thus, we get: IP[|ℰℓ | = 𝑞 ∩

|ℰ𝑠ℎ𝑜𝑟𝑡ℓ | = 𝑗] ≤
(︀𝑞
𝑗

)︀(︁ 1
16𝑒

)︁𝑗
. Since

(︀𝑞
𝑗

)︀
≤ ( 𝑒𝑞𝑗 )

𝑗 ≤ (4𝑒)𝑗 , we have

(︀𝑞
𝑗

)︀(︁ 1
16𝑒

)︁𝑗
≤ 1

4𝑗
. Hence, IP(𝐴𝑥ℓ ) =∑︀

𝑞>𝑥
∑︀𝑞
𝑗=𝑞/4 IP[|ℰℓ | = 𝑞∩ |ℰ𝑠ℎ𝑜𝑟𝑡ℓ | = 𝑗] ≤

∑︀
𝑞>𝑥

∑︀𝑞
𝑗=𝑞/4

1
4𝑗
≤

∑︀
𝑞>𝑥

4
3 ·

1
2𝑞/2
≤ 4

2𝑥/2
.

Corollary 7.3.11. For a large enough constant 𝑎 > 0 and 𝑥 = 2𝑎 log2𝑛, let 𝐴 denote the

event that 𝐴𝑥ℓ happens for some level ℓ. Then IP(𝐴) =𝑂( log𝑛𝑛𝑎 ).

Proof. It follows from Lemma 7.3.10 and the union bound over all levels ℓ.

Lemma 7.3.12. Let 𝑔 be the number of level-ℓ epochs with duration ≥ 𝛿, and 𝐼𝑁ℓ be the set
of input insertions of edges incident to vertices at level ℓ. Then 𝑔 ≤ 2|𝐼𝑁ℓ |/𝛿.

Proof. Observe that for the duration of the concerned epochs, we consider only insertions

in 𝐼𝑁ℓ . Furthermore, each such insertion can in�uence the duration of at most 2 such

epochs. The claim follows by the pigeon-hole principle.
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Let 𝑐(ℰℓ) = 𝑂(3ℓ · |ℰℓ |) be the total cost of the epochs in level ℓ. We next relate the

occurrence of event ¬𝐴𝑥ℓ to the value of the random variable 𝑐(ℰℓ) for original epochs.

Lemma 7.3.13. If ¬𝐴𝑥ℓ occurs and level ℓ is original-heavy, then 𝑐(ℰℓ) =𝑂(|𝐼𝑁ℓ |+3ℓ𝑥).

Proof. If |ℰℓ | ≤ 𝑥, then we clearly have 𝑐(ℰℓ) = 𝑂(3ℓ𝑥). For the rest of the proof, we

assume that |ℰ𝑠ℎ𝑜𝑟𝑡ℓ | < |ℰℓ |4 , or equivalently: |ℰ 𝑙𝑜𝑛𝑔ℓ | ≥ 3
4 · |ℰℓ |. Let ℰ*ℓ ⊆ ℰℓ be the set of

original epochs at level ℓ. As the level ℓ is original-heavy, we have: |ℰ*ℓ | ≥
3
8 · |ℰℓ |. Since

|ℰ 𝑙𝑜𝑛𝑔ℓ | ≥ 3
4 · |ℰℓ |, applying the pigeon-hole principle we infer that at least 𝑞 ≥ |ℰℓ |8 level-ℓ

epochs are original and long at the same time. Speci�cally, we get: |ℰ*ℓ ∩ℰ
𝑙𝑜𝑛𝑔
ℓ | ≥ 1

8 · |ℰℓ |,
or equivalently: |ℰℓ | ≤ 8 · |ℰ*ℓ ∩ℰ

𝑙𝑜𝑛𝑔
ℓ |.

Any epoch ℰ ∈ ℰ*ℓ ∩ ℰ
𝑙𝑜𝑛𝑔
ℓ has duration 𝑑𝑢𝑟(ℰ) ≥ 𝑝𝑠𝑑𝑢𝑟(ℰ) ≥ 3ℓ

32𝑒 by Lemma 7.3.8

and the de�nition of long epochs. Hence by applying Lemma 7.3.12 with 𝛿 = 3ℓ
32𝑒 , we can

conclude that the number of such epochs is at most
2|𝐼𝑁ℓ |
3ℓ/(32𝑒)

= 64𝑒|𝐼𝑁ℓ |
3ℓ

. Hence, we get:

|ℰℓ | ≤ 8 · |ℰ*ℓ ∩ℰ
𝑙𝑜𝑛𝑔
ℓ | ≤ 8 · 64𝑒

3ℓ
· |𝐼𝑁ℓ |. The lemma follows if we multiply both sides of this

inequality by the 𝑂(3ℓ) cost charged to each epoch in ℰℓ .

We are now ready to bound the amortized update time of our dynamic algorithm.

Recall that 𝑡 denotes the total number of updates.

Lemma 7.3.14. For any �xed sequence of 𝑡 updates, with probability 1−𝑂(log𝑛/𝑛𝑎), the
total running time of our algorithm is 𝑂(𝑡 + 𝑎𝑛 log𝑛+∆𝑛).

Proof. By Lemma 7.2.1-Item 1, the preprocessing time is𝑂(∆𝑛). The total cost of deletion

and con�ict-less insertions is 𝑂(𝑡), due to Lemma 7.2.1-Item 3. Let us condition on the

event ¬𝐴, which happens with probability 1 − 𝑂(log𝑛/𝑛𝑎) by Corollary 7.3.11. Then

the total cost of the original-heavy levels is 𝑂(
∑︀
ℓ(|𝐼𝑁ℓ | + 3ℓ𝑎 log𝑛)) = 𝑂(𝑡 + 𝑛 log𝑛)

by Lemma 7.3.13. The lemma now follows from Corollary 7.3.7.

In order to prove that the amortized update time of our algorithm is 𝑂(1) in expecta-

tion, we also need the following upper bound on its worst-case total running time.

Lemma 7.3.15. Our algorithm’s total runtime is deterministically 𝑂(𝑡𝑛2 +𝑛 log𝑛+∆𝑛).

Proof. The preprocessing time is 𝑂(𝑛 log𝑛 + ∆𝑛) and the total cost of deletions and

con�ict-less insertions is 𝑂(𝑡) deterministically. Each con�icting insertion starts a se-

quence of calls to recolor(·) involving some nodes 𝑤1, . . . ,𝑤𝑞. A given node 𝑤 can ap-

pear multiple times in the latter sequence. However, the sequence ends when some node

𝑤* is moved to level −1, and in all other cases the level of 𝑤 is increased by at least one.

This means that the total cost associated with node 𝑤 is 𝑂(
∑︀
ℓ 3

ℓ) = 𝑂(𝑛). The lemma

follows by summing over the 𝑛 nodes and the 𝑂(𝑡) insertions.

Hence we can conclude:

Lemma 7.3.16. The total expected running time of our algorithm is 𝑂(𝑡 +𝑛 log𝑛+∆𝑛).
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Proof of Lemma 7.3.16. When the event ¬𝐴 happens, the total cost of the algorithm is

𝑂(𝑡 +∆𝑛) by Lemma 7.3.14. If instead the event 𝐴 happens, then the cost is 𝑂(𝑡𝑛2 +∆𝑛)
by Lemma 7.3.15. However the latter event happens with probability at most 𝑂( log𝑛𝑛𝑎 )
by Corollary 7.3.11. So this second case adds 𝑜(𝑡) to the total expected cost for 𝑎 > 2.

We now have all the ingredients to prove the main theorem of this chapter.

Proof of Theorem 7.1.2. Consider the dynamic algorithm described above. The space usage

follows from Lemma 7.2.1-Item 2 and the update time from Lemmas 7.3.14 and 7.3.16.

7.4 (∆+1)-Coloring Update Data Structures

In this section, we give a full detailed description of the data structures used by our dy-

namic algorithm.

The update algorithm is applied following edge insertions and deletions to and from

the graph. In this section, we provide a complete description of the update data structures

and algorithm. The pseudocode of this algorithm can be found in Section 7.5. We begin

with a description of the data structures and invariants that will be maintained by our

algorithm. Throughout, we use the phrase mutual pointers between two elements 𝑎 and 𝑏
(i.e. speci�cally, we use the phrase “mutual pointers between 𝑎 and 𝑏”) to mean pointers

from 𝑎 to 𝑏 and from 𝑏 to 𝑎 (hence the pointers are mutual).

7.4.1 Hierarchical Partitioning and Coloring Data Structures

Our algorithm maintains the following set of data structures which we divide into two

groups: the data structures responsible for maintaining our hierarchical partitioning and

the data structures used to maintain the set of colors associated with each vertex. Let 𝒞 be

the set of all∆+1 colors. The �rst group of data structures is a hierarchical partitioning of

the vertices of the graph into di�erent levels according to some procedures that maintain

a set of invariants. A vertex at a level has some number of neighbors in other levels of the

hierarchical partitioning structure. We refer to neighbors at the same or higher levels of

the hierarchical partitioning structure as the up-neighbors. We refer to neighbors at lower

levels of the hierarchical partitioning as the down-neighbors. Di�erent data structures will

be used to maintain the colors of the down-neighbors and the colors of the up-neighbors

of a vertex. We can obtain the palette, 𝒞𝑣 , de�ned to consist of the blank and unique

colors, by scanning through the list 𝒞 ∖ 𝒞+𝑣 .

The second group of data structures deals with maintaining the colors of the vertices,

inspired by the structures given in [BCHN18]. For the following data structures, we use

logarithms in base 3 unless stated otherwise.

Let 𝒞 be the set of all ∆+1 colors:

• Hierarchical Partitioning: We maintain the following data structures necessary

for our hierarchical partitioning.

1. For each vertex 𝑣:

(a) 𝒩𝑣 : a linked list containing all neighbors of 𝑣.

(b) 𝒟𝑣 : a linked list containing all down-neighbors of 𝑣.
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(c) 𝒰𝑣 : a dynamic array where each index corresponds to a distinct level ℓ ∈
{0, . . . , log3(𝑛−1)−1}. 𝒰𝑣[ℓ] holds a level number, a pointer to the head of

a non-empty doubly linked list containing all up-neighbors of 𝑣 at level ℓ,
and the size of the non-empty doubly linked list of neighbors. If this list

is empty, then the corresponding pointer is not stored.

2. For any vertex 𝑣 and any neighbor 𝑢 in 𝒟𝑣 , let 𝑢𝒟𝑣 represent the copy of

𝑢 ∈ 𝒟𝑣 , 𝑣𝒰𝑢[ℓ(𝑣)] be the copy of 𝑣 ∈ 𝒰𝑢[ℓ(𝑣)], 𝑣𝒩𝑢 be the copy of 𝑣 ∈ 𝒩𝑢 ,

and, �nally 𝑢𝒩𝑣 be the copy of 𝑢 ∈ 𝒩𝑣 . We maintain the following pairs of

pointers, where for each pair, there exists a pointer from the �rst element in

the pair to the second and vice versa: (𝑢𝒟𝑣 ,𝑣𝒰𝑢[ℓ(𝑣)]), (𝑢𝒟𝑣 ,𝑣𝒩𝑢 ), (𝑢𝒟𝑣 ,𝑢𝒩𝑣 }),
(𝑣𝒰𝑢[ℓ(𝑣)],𝑣𝒩𝑢 ), (𝑣𝒰𝑢[ℓ(𝑣)],𝑢𝒩𝑣 }), and (𝑣𝒩𝑢 ,𝑢𝒩𝑣 }). In other words, there exists

two pointers (one forwards and one backwards) between every pair of ele-

ments in {𝑢𝒟𝑣 ,𝑣𝒰𝑢[ℓ(𝑣)],𝑣𝒩𝑢 ,𝑢𝒩𝑣 }. The set of pointers means that given an

edge insertion or deletion, we are able to quickly access the endpoints of the

edge in each data structure once we locate one copy of an endpoint in memory.

3. We de�ne 𝜙𝑣(ℓ) to be the number of neighbors of 𝑣 with level strictly lower

than ℓ. We calculate the appropriate values for 𝜙𝑣(ℓ) as follows. For any

level, ℓ′ < ℓ(𝑣), we look through all neighbors stored in 𝒟𝑣 (de�ned above) to

calculate 𝜙𝑣(ℓ′). For levels ℓ′ ≥ ℓ(𝑣), we use the sizes of the linked lists in 𝒰𝑣
(de�ned above) to calculate 𝜙𝑣(ℓ′).

• Coloring: We maintain the following data structures for our coloring procedures.

These structures are similar to the structures used in [BCHN18].

1. A static array 𝜒 of size 𝑂(𝑛) where 𝜒[𝑖] stores the current color of the 𝑖-th
vertex.

2. For each vertex 𝑣:

(a) 𝒞+𝑣 : a doubly linked list of exactly one copy of each color occupied by

vertices in 𝒰𝑣 . Each color contains a counter 𝜇+𝑣 (𝑐) counting the number

of vertices in 𝒰𝑣 that is colored color 𝑐.
(b) The counters 𝜇+𝑣 (𝑐) are stored in a static array of size ∆+1 where index 𝑖

contains the number of vertices in 𝒰𝑣 that is colored with color 𝑖.
(c) 𝒞𝑣 : a doubly linked list of colors in 𝒞∖𝒞+𝑣 that are blank or unique.

(d) A static array 𝒫𝑣 of size ∆+1 containing mutual pointers (i.e. the pair of

pointers from element 𝑎 to element 𝑏 and from element 𝑏 to element 𝑎) to

each color 𝑐 in 𝒞𝑣 or 𝒞+𝑣 and to each of two additional nodes representing

each color in 𝒞. Let 𝑖𝑐 be the index of color 𝑐 in 𝒫𝑣 . Suppose that 𝑐 ∈ 𝒞𝑣 .

Let 𝑝𝑐 and 𝑝+𝑐 be the two additional nodes representing 𝑐. Then 𝒫𝑣[𝑖𝑐]
contains pointers to 𝑐 ∈ 𝒞𝑣 , 𝑝𝑐, and 𝑝+𝑐 . In addition, if 𝑐 ∈ 𝒞𝑣 , then it has

mutual pointers to 𝑝𝑐. If, instead, 𝑐 ∈ 𝒞+𝑣 , then it has mutual pointers to

𝑝+𝑐 instead. In other words, 𝑝𝑐 receives pointers from nodes in 𝒞𝑣 (and has

outgoing pointers to nodes in 𝒞𝑣) and 𝑝+𝑐 receives pointers from nodes in

𝒞+𝑣 (and has outgoing pointers to nodes in 𝒞+𝑣 ).

We de�ne the set of blank colors for 𝑣 to be colors in 𝒞𝑣 which are not occupied by any

vertex in𝒟𝑣 . We de�ne the set of unique colors of 𝑣 to be colors in 𝒞𝑣 which are occupied

by at most one vertex in 𝒟𝑣 .

We now describe the pointers from the hierarchical partitioning structures to the col-
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oring structures and vice versa.

• Each color 𝑐 in 𝒞+𝑣 has a pointer to 𝑝+𝑐 and vice versa.

• Each color 𝑐′ in 𝒞𝑣 has a pointer to 𝑝𝑐′ and vice versa.

• Each vertex 𝑢 ∈ 𝒰𝑣 contains mutual pointers to the node 𝑝+𝑐 representing its color

in 𝒫𝑣 that it is currently colored with. The color 𝑐 is also in 𝒞+𝑣 and has mutual

pointers to 𝑝+𝑐 .

• Each vertex 𝑢 ∈ 𝒟𝑣 contains mutual pointers to 𝑝𝑐 representing its corresponding

color in 𝒫𝑣 . If its color is in 𝒞𝑣 , then mutual pointers also exist between 𝑝𝑐 and 𝑐 in

𝒞𝑣 .

• Each edge (𝑢,𝑣) contains two pointers, one to 𝑢 ∈ 𝒩𝑣 and one to 𝑣 ∈ 𝒩𝑢 . 𝑢 and 𝑣
also contain pointers to edge (𝑢,𝑣).

Initial Data Structure Con�guration, Time Cost, and Space Usage There exist no

edges in the graph initially; thus all vertices can be colored the same color. Such an ar-

bitrary starting color is chosen. Before any edge updates are made, we assume that all

vertices are on level −1, colored with the arbitrary starting color. Thus, all colors are also

initially in 𝒞𝑣 .

Before any edge insertions, the only structures that we initialize are an empty dynamic

array 𝒰𝑣 for each vertex 𝑣, the list of all colors 𝒞, and 𝜒. When the �rst edge that contains

vertex 𝑣 as an endpoint is inserted, we initialize𝒩𝑣 ,𝒟𝑣 , 𝒰𝑣 , 𝒞+𝑣 , 𝒞𝑣 , 𝜇+𝑣 for 𝑣 (as well as the

associated pointers). The time for initializing these structures is𝑂(𝑛∆) which means that

the preprocessing time will result in 𝑂(1) amortized time per update assuming Ω(𝑛∆)
updates.

The dynamic arrays in our data structure are implemented as follows. When the array

contains no elements, we set the default size of the array to 8. Whenever the array is more

than half full, we double the size of the array. Similarly, whenever the array is less than

1/4 full, we shrink the size of the array by half. Then, suppose we have an array which

just shrank in size or doubled in size and the size of the array is 𝐿. We require at least

either 𝐿/4 insertions or deletions to double or halve the size of the array again. Thus, the

𝑂(𝐿) cost of resizing the array can be amortized over the 𝐿/4 updates to 𝑂(1) cost per

update. Given that our algorithm is run on a graph which is initially empty, all dynamic

arrays in our structure are initially empty and initialized to size 8.

We note a particular choice in constructing our data structures. In the case of𝒰𝑣 , given

our assumption of the number of updates, we can also implement 𝒰𝑣 as a static array

instead of a dynamic array. The maximum number of levels is bounded by log3(𝑛−1)+1.

Thus, if we instead implemented 𝒰𝑣 as static arrays instead of dynamic arrays, the total

space usage (and initialization cost) would be 𝑂(𝑛 log𝑛), amortizing to 𝑂(1) per update

given Ω(𝑛 log𝑛) updates. There may be reasons to implement 𝒰𝑣 as static arrays instead

of dynamic dynamic arrays such as easier implementation of basic functions. However,

we choose to use a dynamic array implementation for potential future work for the cases

when the number of updates is 𝑜(𝑛 log𝑛+𝑛∆). The key property we can potentially take

advantage of in using the dynamic array implementation is that the total space used (and

the total time spent in initializing the data structure) is within a constant factor of the

number of edges in the graph at any particular time.
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Usefulness of the Pointers Pointers between the various data structures used for the

hierarchical partitioning and for maintaining the coloring allows for us to quickly update

the state following an edge insertion or deletion. For example, when an edge 𝑢𝑣 is inserted

or deleted, we get pointers to 𝑣 ∈ 𝒩𝑢 and 𝑢 ∈ 𝒩𝑣 , and through these pointers we delete

all elements 𝑢 ∈ 𝒟𝑣 ,𝑣 ∈ 𝒰𝑢[ℓ(𝑣)],𝑣 ∈ 𝒩𝑢 ,𝑢 ∈ 𝒩𝑣 and potentially move a color from 𝒞+𝑢
to 𝒞𝑢 . The exact procedure for handling edge deletions is described later.

7.4.2 Invariants

Our update algorithm and data structures maintain the following invariant (reproduced

again here for readability).

Invariant 5. The following hold for all vertices:

1. A vertex in level ℓ was last colored using a palette of size at least (1/2)3ℓ+1 + 1. As
a special case, a vertex in level −1 was last colored using a palette of size 1 (in other

words, it was colored deterministically).

2. The level of a vertex remains unchanged until the vertex is recolored.

7.4.3 Edge Update Algorithm

We now describe the update algorithm in detail. The data structures are initialized as

described in Section 7.4.1. Then, edge updates are applied to the graph. Following an edge

insertion or deletion, the procedure handle-insertion(𝑢,𝑣) or handle-deletion(𝑢,𝑣),
respectively, is called. The descriptions of the insertion and deletion procedures are given

below.

Procedures handle-insertion(𝑢,𝑣) and handle-deletion(𝑢,𝑣).
handle-deletion(𝑢,𝑣) is called on an edge deletion 𝑢𝑣. This case would not result in

any need to recolor any vertices since a con�ict will never be created. Thus, we update the

relevant data structures in the obvious way (by deleting all relevant entries in all relevant

structures); details of this set of deletions are given in the pseudocode in Fig. 7-2.

Procedure handle-insertion(𝑢,𝑣) is called on an edge insertion

handle-insertion(𝑢,𝑣). The pseudocode for this procedure is given in Fig. 7-1.

If edge 𝑢𝑣 does not connect two vertices that are colored the same color (i.e. if the

insertion is con�ict-less), then we only need to update the relevant data structures with

the inserted edge. Namely the vertices are added to the structures maintaining the

neighbors of 𝑢 and 𝑣. If 𝑢 is on a higher level than 𝑣, then 𝑢 is added to 𝒰𝑣 and 𝑣 is added

to 𝒟𝑢 (and vice versa). If 𝑢 and 𝑣 are on the same level, then 𝑢 is added to 𝒰𝑣 and 𝑣 is

added to 𝒰𝑢 . Furthermore, the colors that are associated with the vertices are moved in

between the lists 𝒞+𝑣 and 𝒞𝑣 as necessary. See the pseudocode in Fig. 7-1 for exact details

of these straightforward data structure updates.

In the case that edge 𝑢𝑣 connects two vertices of the same color (i.e. if the insertion

is con�icting), we need to recolor at least one of these two vertices. We arbitrarily recolor

one of the vertices 𝑢 or 𝑣 using procedure recolor (i.e. recolor(𝑢) as given in the

pseudocode in Fig. 7-4). Procedure recolor is the crux of the update algorithm and is
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described next.

Whenever a con�ict is created following an edge insertion 𝑢𝑣, procedure recolor(𝑢) is

called on one of the two endpoints. This procedure is described below.

Procedure recolor(𝑣). The pseudocode for this procedure can be found in Fig. 7-4.

The procedure recolor(𝑣) makes use of the level of 𝑣 as well as the number of its down-

neighbors to either choose a blank color deterministically to recolor 𝑣 or to determine the

palette from which to select a random color to recolor 𝑣. Recall that all vertices start in

level −1 before any edges are inserted into the graph.

The procedure recolor(𝑣) considers two cases:

• Case 1: 𝜙𝑣(ℓ(𝑣) + 1) < 3ℓ(𝑣)+2. In other words, the �rst case is when the number of

down-neighbors and vertices on the same level as 𝑣 is not much greater than 3ℓ(𝑣)+1.

We show in the analysis that in this case, we can �nd the colors of all the neighbors

in 𝒟𝑣 and pick a color in 𝒞𝑣 that does not con�ict with any such neighbors (or

the color that it currently has). Thus, we deterministically choose a blank color to

recolor 𝑣, creating no further con�icts. The procedure to choose a blank color for

𝑣, det-color(𝑣), is described in the following.

• Case 2: 𝜙(ℓ(𝑣) + 1) ≥ 3ℓ(𝑣)+2. In this case, the number of down-neighbors and

vertices on the same level as 𝑣 is at least 3ℓ(𝑣)+2 and it will be too expensive to look

for a blank color since we need to look at all neighbors in 𝒟𝑣 to determine such a

color and the size of 𝒟𝑣 could be very large. Thus, we need to pick a random color

from 𝒞𝑣 to recolor 𝑣 by running Procedure rand-color(𝑣) as described below.

Procedures det-color(𝑣) and rand-color(𝑣). When called, the procedure

det-color(𝑣) starts by scanning the list 𝒞𝑣 to �nd at least one blank color that we can

use to color 𝑣. By the de�nition of (∆ + 1)-coloring, there must exist at least one blank

color with which we can use to color 𝑣. We can deterministically �nd a blank color in the

following way. The elements in 𝒞𝑣 are stored in a doubly linked list. We start with the

�rst element at the front of the list and scan through the list until we reach an element

that does not have a pointer to a vertex in 𝒟𝑣 . We can determine whether a color 𝑐 ∈ 𝒞𝑣
has a pointer to a vertex in 𝒟𝑣 by following the pointer from 𝑐 to 𝑝𝑐. From 𝑝𝑐, we can

then determine whether any vertices in 𝒟𝑣 are colored with 𝑐.
Let this �rst blank color be 𝑐𝑏. We assign color 𝑐𝑏 to 𝑣, update 𝜒(𝑖𝑣) to indicate that

the color of 𝑣 is 𝑐𝑏, and update the lists 𝒞+𝑤 and/or 𝒞𝑤 of all 𝑤 ∈ 𝒟𝑣 . To update all 𝒞+𝑤 and

𝒞𝑤, we follow the following set of pointers:

1. From 𝑤 ∈ 𝒟𝑣 , follow pointers to reach 𝑤 ∈ 𝒩𝑣 .

2. From 𝑤 ∈ 𝒩𝑣 , follow pointers to reach 𝑣 ∈ 𝒩𝑤.

3. From 𝑣 ∈ 𝒩𝑤, follow pointers to reach 𝑣 ∈ 𝒰𝑤[ℓ(𝑣)].
4. Let 𝑐 be the previous color of 𝑣 as recorded in 𝒞+𝑤. From 𝑣 ∈ 𝒰𝑤[ℓ(𝑣)], follow pointers

to reach 𝑐 ∈ 𝒞+𝑤.

5. Decrement 𝜇+𝑤(𝑐) by 1. Delete mutual pointers between 𝑣 and 𝑝+𝑐 . If now 𝜇+𝑤(𝑐) = 0,

remove 𝑐 from 𝒞+𝑤, append 𝑐 to the end of 𝒞𝑤, delete mutual pointers between 𝑐 and

𝑝+𝑐 , and add mutual pointers between 𝑐 and 𝑝𝑐.
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6. Use 𝒫𝑤 to �nd 𝑐𝑏 in either 𝒞+𝑤 or 𝒞𝑤. If 𝑐𝑏 ∈ 𝒞+𝑤, increment 𝜇+𝑤(𝑐𝑏) by 1. Otherwise,

if 𝑐𝑏 ∈ 𝒞𝑤, remove 𝑐𝑏 from 𝒞𝑤, append 𝑐𝑏 to the end of 𝒞+𝑤, increment 𝜇+𝑤(𝑐𝑏) by 1,

delete mutual pointers between 𝑐𝑏 and 𝑝𝑐𝑏 , and create mutual pointers between 𝑐𝑏
and 𝑝+𝑐𝑏 . Create mutual pointers between 𝑣 ∈ 𝒰𝑤[ℓ(𝑣)] and 𝑝+𝑐𝑏 .

After the above is done in terms of recoloring the vertex 𝑣, set-level(𝑣,−1) is called

to bring the level of 𝑣 down to −1. The description of set-level(𝑣,−1) is given in the

following. See the pseudocode for det-color(𝑣) in Fig. 7-5 for concrete details of this

procedure.

The procedure rand-color(𝑣) employs a level-rising mechanism. We mentioned

before the concept of partitioning vertices into levels. Each level bounds the down-

neighbbors of the vertices at that level, providing both an upper and lower bound on the

number of down-neighbors of the vertex. Because there are at most log3(𝑛 − 1) levels,

the number of vertices in each level is thus exponentially increasing. The procedure

rand-color(𝑣) takes advantage of this bound on the number of down-neighbors of the

vertex 𝑣 to �nd a level to recolor 𝑣 with a color randomly chosen from its 𝒞𝑣 . Speci�cally,

rand-color(𝑣) recolors 𝑣 at some level ℓ* higher than ℓ(𝑣), with a random blank or

unique color occupied by vertices of levels strictly lower than ℓ*. At level ℓ*, it attempts

to select a color 𝑐 within time 𝑂(3ℓ
*
); this can only occur if |𝒟𝑣 | = 𝑂(3ℓ

*
). Upon failure,

it calls itself recursively to color 𝑣 at yet a higher level. Again, set-level(𝑣,ℓ*) is called

every time 𝑣 moves to a high level.

Procedure set-level(𝑣,ℓ). Procedures det-color(𝑣) and rand-color(𝑣) may set

the level of 𝑣 to a di�erent level, in which case the procedure set-level(𝑣,ℓ) is called

with the new level ℓ as input. Let ℓ(𝑣) be the previous level of 𝑣. The procedure does

nothing if ℓ = ℓ(𝑣). Otherwise:

If 𝑣 is set to a lower level ℓ < ℓ(𝑣): we need to update the data structures of vertices

in levels [ℓ + 1, ℓ(𝑣)]. For each vertex 𝑤 ∈ 𝒟𝑣 where ℓ + 1 ≤ ℓ(𝑤) ≤ ℓ(𝑣), we make the

following data structure updates:

1. Delete 𝑤 from 𝒟𝑣 . Delete the mutual pointers between 𝑤 and 𝑝𝑐. Let 𝑤’s color be

𝑐. Move 𝑤’s color, 𝑐, in 𝒞𝑣 to 𝒞+𝑣 if 𝑐 is currently in 𝒞𝑣 . Delete the mutual pointers

between 𝑐 and 𝑝𝑐. Create mutual pointers between 𝑐 and 𝑝+𝑐 . Increment 𝑤’s color

count 𝜇+𝑣 (𝑐) by 1.

2. Add 𝑤 to 𝒰𝑣[ℓ(𝑤)]. Add mutual pointers between 𝑤 and 𝑝+𝑐 where 𝑐 is 𝑤’s color.

3. Delete 𝑣 from 𝒰𝑤[ℓ(𝑣)]. Let 𝑣’s color be 𝑐′ . Delete the mutual pointers between 𝑣
and 𝑝+𝑐′ . Decrement 𝑣’s color count 𝜇+𝑤(𝑐

′) by 1. If 𝜇+𝑤(𝑐
′) is now 0, move 𝑐′ from

𝒞+𝑤 to 𝒞𝑤, delete the mutual pointers between 𝑐′ and 𝑝+𝑐′ , and create mutual pointers

between 𝑐′ and 𝑝𝑐′ .
4. Add 𝑣 to 𝒟𝑤. Add mutual pointers between 𝑣 and 𝑝𝑐′ where 𝑐′ is 𝑣’s color if 𝑐′ was

moved to 𝒞𝑤.

5. Add mutual pointers between all elements 𝑣 ∈ 𝒟𝑤,𝑤 ∈ 𝒰𝑣[ℓ(𝑤)],𝑣 ∈ 𝒩𝑤,𝑤 ∈ 𝒩𝑣 .

6. Add mutual pointers between all copies of the same element: i.e. 𝑤 ∈ 𝒟𝑣 ,𝑤 ∈ 𝒩𝑣 ,
and/or 𝑤 ∈ 𝒰𝑣[ℓ(𝑤)].

7. Maintain mutual pointers between 𝒫𝑣[𝑖𝑐], 𝑝𝑐, and 𝑝+𝑐 . Maintain mutual pointers
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between 𝒫𝑤[𝑖𝑐′ ], 𝑝+𝑐′ , and 𝑝𝑐.
If 𝑣 is set to a higher level ℓ > ℓ(𝑣): we need to update the data structures of vertices in

levels [ℓ(𝑣), ℓ − 1]. Speci�cally, for each non-empty list 𝒰𝑣[𝑖], with ℓ(𝑣) ≤ 𝑖 ≤ ℓ − 1, and

for each vertex 𝑤 ∈ 𝒰𝑣[𝑖], we perform the following operations:

1. Delete 𝑤 from 𝒰𝑣[𝑖]. Let 𝑐 be the color of 𝑤. Delete the mutual pointers between 𝑤
and 𝑝+𝑐 . Decrement 𝜇+𝑣 (𝑐) by 1. If 𝜇+𝑣 (𝑐) = 0, then move 𝑐 from 𝒞+𝑣 to 𝒞𝑣 , delete the

mutual pointers between 𝑝+𝑐 and 𝑐, and add mutual pointers between 𝑝𝑐 and 𝑐.
2. Add𝑤 to𝒟𝑣 , create mutual pointers between𝑤 and 𝑝𝑐 (where 𝑐 is𝑤’s color), delete

𝑣 from 𝒟𝑤, and add 𝑣 to 𝒰𝑤[ℓ]. Let 𝑣’s color be 𝑐′ . Delete the mutual pointers

between 𝑣 and 𝑝𝑐′ . Add mutual pointers between 𝑣 and 𝑝+𝑐′ . If 𝑐′ is currently in 𝒞𝑤,

move 𝑣’s color, 𝑐′ , in 𝒞𝑤 to 𝒞+𝑤, delete mutual pointers between 𝑐′ and 𝑝𝑐′ , and add

mutual pointers between 𝑐′ and 𝑝+𝑐′ . Increment 𝜇+𝑤(𝑐
′) by 1.

3. Add mutual pointers between all elements 𝑤 ∈ 𝒟𝑣 ,𝑣 ∈ 𝒰𝑤[ℓ],𝑣 ∈𝑁𝑤,𝑤 ∈𝑁𝑣 .

4. Maintain mutual pointers between 𝒫𝑣[𝑖𝑐], 𝑝𝑐, and 𝑝+𝑐 . Maintain mutual pointers

between 𝒫𝑤[𝑖𝑐′ ], 𝑝𝑐′ , and 𝑝+𝑐′ .
The full pseudocode of this procedure can be found in Fig. 7-3.

7.5 Pseudocode

In the below pseudocode, we do not describe (most of) the straightforward but tedious

pointer creation procedures. We assume that the corresponding pointers are created ac-

cording to the procedure described in Section 7.4.1. In the cases where the pointer change

is signi�cant, we describe it in the pseudocode.

handle-insertion(𝑢,𝑣):
1. 𝒩𝑣←𝒩𝑣 ∪ {𝑢};
2. 𝒩𝑢←𝒩𝑢 ∪ {𝑣};
3. If ℓ(𝑢) > ℓ(𝑣):

(a) 𝒟𝑢←𝒟𝑢 ∪ {𝑣};
(b) 𝒰𝑣[ℓ(𝑢)]←𝒰𝑣[ℓ(𝑢)]∪ {𝑢};

4. Else if ℓ(𝑢) = ℓ(𝑣):
(a) 𝒰𝑣[ℓ(𝑢)]←𝒰𝑣[ℓ(𝑢)]∪ {𝑢};
(b) 𝒰𝑢[ℓ(𝑣)]←𝒰𝑢[ℓ(𝑣)]∪ {𝑣};

5. Else:

(a) 𝒟𝑣←𝒟𝑣 ∪ {𝑢};
(b) 𝒰𝑢[ℓ(𝑣)]←𝒰𝑢[ℓ(𝑣)]∪ {𝑣};

6. update-color-edge-insertion(𝑢,𝑣,𝑐𝑢 , 𝑐𝑣);
7. If color(𝑢) = color(𝑣): /* if 𝑢 and 𝑣 have the same color */

(a) recolor(𝑢); /* assuming 𝑢 is the most recently colored */

Figure 7-1: Handling edge insertion (𝑢,𝑣).
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handle-deletion(𝑢,𝑣):
1. 𝒩𝑣←𝒩𝑣 ∖ {𝑢};
2. 𝒩𝑢←𝒩𝑢 ∖ {𝑣};
3. If 𝑣 ∈ 𝒟𝑢 :

(a) 𝒟𝑢←𝒟𝑢 ∖ {𝑣};
(b) 𝒰𝑣[ℓ(𝑢)]←𝒰𝑣[ℓ(𝑢)] ∖ {𝑢};

4. Else if 𝑢 ∈ 𝒟𝑣 :

(a) 𝒟𝑣←𝒟𝑣 ∖ {𝑢};
(b) 𝒰𝑢[ℓ(𝑣)]←𝒰𝑢[ℓ(𝑣)] ∖ {𝑣};

5. Else:

(a) 𝒰𝑢[ℓ(𝑣)]←𝒰𝑢[ℓ(𝑣)] ∖ {𝑣};
(b) 𝒰𝑣[ℓ(𝑢)]←𝒰𝑣[ℓ(𝑢)] ∖ {𝑢};

6. Remove all associate color pointers and shift colors between 𝒞𝑢 , 𝒞+𝑢
and 𝒞𝑤, 𝒞+𝑤 as necessary;

Figure 7-2: Handling edge deletion (𝑢,𝑣).
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set-level(𝑣,ℓ):
1. For all 𝑤 ∈ 𝒟𝑣 : /* update 𝒰𝑤 regarding 𝑣’s new level */

(a) 𝒰𝑤[ℓ(𝑣)]←𝒰𝑤[ℓ(𝑣)] ∖ {𝑣};
(b) 𝒰𝑤[ℓ]←𝒰𝑤[ℓ]∪ {𝑣};

2. If ℓ < ℓ(𝑣): /* in this case the level of 𝑣 is decreased by at least one */

(a) For all 𝑤 ∈ 𝒟𝑣 such that ℓ ≤ ℓ(𝑤) < ℓ(𝑣): /* reassign color point-

ers*/

i. 𝒟𝑣←𝒟𝑣 ∖ {𝑤};
ii. Delete mutual pointers between 𝑤 and 𝑝

color(𝑤);

iii. If color(𝑤) ∈ 𝒞𝑣 :

A. Move color(𝑤) ∈ 𝒞𝑣 to 𝒞+𝑣 ;

B. Delete mutual pointers between color(𝑤) and 𝑝
color(𝑤);

C. Create mutual pointers between color(𝑤) and 𝑝+
color(𝑤);

iv. Increment 𝜇+𝑣 (color(𝑤)) by 1;

v. 𝒰𝑣[ℓ(𝑤)]←𝒰𝑣[ℓ(𝑤)]∪ {𝑤};
vi. Create mutual pointers between𝑤 and 𝑝+

color(𝑤) if such point-

ers do not already exist;

vii. 𝒰𝑤[ℓ]←𝒰𝑤[ℓ] ∖ {𝑣};
viii. Delete mutual pointers between color(𝑣) and 𝑝+

color(𝑣);

ix. Decrement 𝜇+𝑤(color(𝑣)) by 1;

x. If 𝜇+𝑤(color(𝑣)) = 0:

A. Move color(𝑣) ∈ 𝒞+𝑤 to 𝒞𝑤;

B. Delete mutual pointers between color(𝑣) and 𝑝+
color(𝑣);

C. Create mutual pointers between color(𝑣) and 𝑝
color(𝑣);

xi. 𝒟𝑤←𝒟𝑤 ∪ {𝑣};
xii. Create mutual pointers between 𝑣 and 𝑝

color(𝑣) if such point-

ers do not already exist;

3. If ℓ > ℓ(𝑣): /* in this case the level of 𝑣 is increased by at least one */
a

(a) For all 𝑖 = ℓ(𝑣), . . . , ℓ − 1 and all 𝑤 ∈ 𝒰𝑣[𝑖]:
i. 𝒰𝑣[𝑖]←𝒰𝑣[𝑖] ∖ {𝑤};

ii. Decrement 𝜇+𝑣 (color(𝑤)) by 1;

iii. If 𝜇+𝑣 (color(𝑤)) = 0: Move color(𝑤) from 𝒞+𝑣 to 𝒞𝑣 ;

iv. 𝒟𝑣←𝒟𝑣 ∪ {𝑤};
v. 𝒟𝑤←𝒟𝑤 ∖ {𝑣};

vi. 𝒰𝑤[ℓ]←𝒰𝑤[ℓ]∪ {𝑣};
vii. If color(𝑣) ∈ 𝒞𝑤: Move color(𝑣) from 𝒞𝑤 to 𝒞+𝑤;

viii. Increment 𝜇+𝑤(color(𝑣)) by 1;

4. ℓ(𝑣)← ℓ;

a
For the sake of clarity and brevity, we do not describe the pointer deletions, creations,

and changes in the case where ℓ > ℓ(𝑣) because these changes are almost identical to the

changes given above for the case ℓ < ℓ(𝑣).

Figure 7-3: Setting the old level ℓ(𝑣) of 𝑣 to ℓ.
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recolor(𝑣):
1. If 𝜙𝑣(ℓ(𝑣) + 1) < 3ℓ(𝑣)+2: det-color(𝑣);
2. Else rand-color(𝑣);

Figure 7-4: Recoloring a vertex that collides with the color of an adjacent vertex after an

edge insertion.

det-color(𝑣):
1. For all 𝑐 ∈ 𝒞𝑣 :

(a) If 𝑐 is not occupied by any vertex 𝑤 ∈ 𝒟𝑣 and 𝑐 ∈ 𝒞𝑣 : /* if 𝑐 is a

blank color, color 𝑣 with 𝑐 */

i. Set 𝜒 (𝑖𝑣) = 𝑐;
ii. For all 𝑤 ∈ 𝒟𝑣 :

A. update-color(𝑣,𝑤,𝑐).
iii. set-level(𝑣,−1);
iv. terminate the procedure; /* Note that the procedure will al-

ways terminate within this if statement because a blank color

always exists by de�nition of (∆+1)-coloring. */

Figure 7-5: Coloring 𝑣 deterministically with a blank color. It is assumed that 𝜙𝑣(ℓ(𝑣) +
1) < 3ℓ(𝑣)+2.

rand-color(𝑣):
1. ℓ*← ℓ(𝑣);
2. while 𝜙𝑣(ℓ* +1) ≥ 3ℓ

*+2
: ℓ*← ℓ* +1;

/* ℓ* is the minimum level after ℓ(𝑣) with 𝜙𝑣(ℓ* +1) < 3ℓ
*+2

*/

3. set-level(𝑣,ℓ*); /* after this call ℓ(𝑣) = ℓ* and 3ℓ
*+1 ≤ 𝑑out(𝑣) =

𝜙𝑣(ℓ*) < 3ℓ
*+2

*/

4. Pick a blank or unique color 𝑐 from 𝒞𝑣 uniformly at random;

/* 𝑐 is chosen with probability at most 2/3ℓ
*+1

and ℓ(𝑤) ≤ ℓ* − 1 */

5. If 𝑐 , color(𝑣): /* If 𝑐 is not the previous color of 𝑣. */

(a) Set 𝜒 (𝑖𝑣) = 𝑐;
(b) For all 𝑧 ∈ 𝒟𝑣 :

i. update-color(𝑣,𝑧,𝑐).
6. If 𝑐 is a unique color (let 𝑤 ∈ 𝜙𝑣 (ℓ*) be the vertex that is colored with

𝑐):
(a) recolor(𝑤);

Figure 7-6: Coloring 𝑣 at level ℓ* higher than ℓ(𝑣), with a random blank or unique color

of level lower than ℓ*. If the procedure chose a unique color, it calls recolor (which may

call itself recursively) to color 𝑤. It is assumed that 𝜙𝑣(ℓ(𝑣) + 1) ≥ 3ℓ(𝑣)+2.
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update-color-edge-insertion(𝑣,𝑤,𝑐𝑣 , 𝑐𝑤):
1. If ℓ(𝑣) > ℓ(𝑤):

(a) Locate 𝑣 ∈ 𝒰𝑤[ℓ(𝑣)];
(b) Delete the mutual pointers (if they exist) between 𝑣 and 𝑝+𝑐′ where

𝑐′ is 𝑣’s previous color; /* Note that 𝑣’s previous color could be

located by following pointers from 𝑣. */

(c) Decrement 𝜇+𝑤(𝑐
′) by 1 if pointers were deleted in the previous

step; /* If no pointers were deleted, then 𝑤 had no knowledge of

𝑣’s previous color and we do not need to decrement */

(d) If 𝜇+𝑤(𝑐
′) = 0:

i. Move 𝑐′ from 𝒞+𝑤 to 𝒞𝑤 by appending 𝑐′ to the end of the

linked list representing 𝒞𝑤;

(e) Locate 𝑝+𝑐𝑣 by following pointers from 𝒫𝑤;

(f) Create mutual pointers between 𝑣 and 𝑝+𝑐𝑣 ;
(g) Increment 𝜇+𝑤(𝑐𝑣) by 1;

(h) If 𝑐𝑣 is in 𝒞𝑤:

i. Move 𝑐𝑣 from 𝒞𝑤 to 𝒞+𝑤 by appending 𝑐𝑣 to the end of the

linked list representing 𝒞+𝑤;

(i) Locate 𝑤 ∈ 𝒟𝑣 .

(j) Delete the mutual pointers (if they exist) between 𝑤 and 𝑝𝑐′′
where 𝑐′′ is 𝑤’s previous color;

(k) Locate 𝑝𝑐𝑣 by following pointers from 𝒫𝑣 ;

(l) Create mutual pointers between 𝑤 ∈ 𝒟𝑣 and 𝑝𝑐𝑤 ;

2. Else if ℓ(𝑣) < ℓ(𝑤):
(a) /* Do the above except switch the roles of 𝑣 and 𝑤 as well as 𝑐𝑣

and 𝑐𝑤. */

3. Else:

(a) Locate 𝑣 ∈ 𝒰𝑤[ℓ(𝑣)] and 𝑤 ∈ 𝒰𝑣[ℓ(𝑤)];
(b) /* Do the above procedure given in the case when ℓ(𝑣) > ℓ(𝑤) for

𝑣 ∈ 𝒰𝑤[ℓ(𝑣)] for both 𝑣 ∈ 𝒰𝑤[ℓ(𝑣)] and 𝑤 ∈ 𝒰𝑣[ℓ(𝑤)].*/

Figure 7-7: Updates the data structures with 𝑣 and 𝑤’s colors when an edge is inserted

between 𝑣 and 𝑤.
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update-color(𝑣,𝑐𝑣):
1. For 𝑤 ∈ 𝒟𝑣 :

(a) Locate 𝑣 ∈ 𝒰𝑤[ℓ(𝑣)];
(b) Delete the mutual pointers (if they exist) between 𝑣 and 𝑝+𝑐′ where

𝑐′ is 𝑣’s previous color; /* Note that 𝑣’s previous color could be

located by following pointers from 𝑣. */

(c) Decrement 𝜇+𝑤(𝑐
′) by 1 if pointers were deleted in the previous

step; /* If no pointers were deleted, then 𝑤 had no knowledge of

𝑣’s previous color and we do not need to decrement */

(d) If 𝜇+𝑤(𝑐
′) = 0:

i. Move 𝑐′ from 𝒞+𝑤 to 𝒞𝑤 by appending 𝑐′ to the end of the

linked list representing 𝒞𝑤;

(e) Locate 𝑝+𝑐𝑣 by following pointers from 𝒫𝑤;

(f) Create mutual pointers between 𝑣 and 𝑝+𝑐𝑣 ;
(g) Increment 𝜇+𝑤(𝑐𝑣) by 1;

(h) If 𝑐𝑣 is in 𝒞𝑤:

i. Move 𝑐𝑣 from 𝒞𝑤 to 𝒞+𝑤 by appending 𝑐𝑣 to the end of the

linked list representing 𝒞+𝑤;

Figure 7-8: Updates the color pointers of 𝑣 of all of 𝑣’s down-neighbors when 𝑣 changes

color.
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Chapter 8

Parallel Batch-Dynamic 𝑘-Clique
Counting

This chapter presents results from the paper titled, "Parallel Batch-Dynamic 𝑘-Clique
Counting" that the thesis author coauthored with Laxman Dhulipala, Julian Shun, and

Shangdi Yu [DLSY20]. This paper appeared in the Symposium on Algorithmic Principles of

Computer Systems (APOCS) 2021.

8.1 Introduction

Subgraph counting algorithms are fundamental graph analysis tools, with numerous ap-

plications in network classi�cation in domains including social network analysis and

bioinformatics. A particularly important type of subgraph for these applications is the

triangle, or 3-clique—three vertices that are all mutually connected [New03]. Counting

the number of triangles is a basic and fundamental task that is used in numerous social

and network science measurements [Gra77, WS98].

In this chapter, we study the triangle counting problem and its generalization to higher

cliques from the perspective of dynamic algorithms. A 𝑘-clique consists of 𝑘 vertices and

all

(︀𝑘
2
)︀

possible edges among them (for applications of 𝑘-cliques, see, e.g., [HR05]). As

many real-world graphs change rapidly in real-time, it is crucial to design dynamic algo-

rithms that e�ciently maintain 𝑘-cliques upon updates, since the cost of re-computation

from scratch can be prohibitive. Furthermore, due to the fact that dynamic updates can

occur at a rapid rate in practice, it is increasingly important to design batch-dynamic
algorithms which can take arbitrarily large batches of updates (edge insertions or dele-

tions) as their input. Finally, since the batches, and corresponding update complexity

can be large, it is also desirable to use parallelism to speed-up maintenance and design

algorithms that map to modern parallel architectures.

Due to the broad applicability of 𝑘-clique counting in practice and the fact that 𝑘-

clique counting is a fundamental theoretical problem of its own right, there has been a

large body of prior work on the problem. Theoretically, the fastest static algorithm for ar-

bitrary graphs uses fast matrix multiplication, and counts 3ℓ cliques in𝑂(𝑛ℓ𝜔) time where

𝜔 is the matrix multiplication exponent [NP85]. Considerable e�ort has also been devoted
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to e�cient combinatorial algorithms. Chiba and Nishizeki [CN85] show how to compute

𝑘-cliques in𝑂(𝛼𝑘−2𝑚) work, where𝑚 is the number of edges in the graph and 𝛼 is the ar-

boricity of the graph. This algorithm was recently parallelized by Danisch et al. [DBS18a]

(although not in polylogarithmic depth). Worst-case optimal join algorithms can perform

𝑘-clique counting in𝑂(𝑚𝑘/2) work as a special case [NPRR18, ALT
+

17]. Alon, Yuster, and

Zwick [AYZ97] design an algorithm for triangle counting in the sequential model, based

on fast matrix multiplication. Eisenbrand and Grandoni [EG04] then extend this result

to 𝑘-clique counting based on fast matrix multiplication. Vassilevska designs a space-

e�cient combinatorial algorithm for 𝑘-clique counting [Vas09]. Finocchi et al. give clique

counting algorithms for MapReduce [FFF15]. Jain and Seshadri provide probabilistic al-

gorithms for estimating clique counts [JS17b]. The 𝑘-clique problem is also a classical

problem in parameterized-complexity, and is known to be 𝑊 [1]-complete [DF95a].

The problem of maintaining 𝑘-cliques under dynamic updates began more recently.

Eppstein et al. [ES09, EGST12] design sequential dynamic algorithms for maintaining size-

3 subgraphs in 𝑂(ℎ) amortized time and 𝑂(𝑚ℎ) space and size-4 subgraphs in 𝑂(ℎ2)
amortized time and 𝑂(𝑚ℎ2) space, where ℎ is the ℎ-index of the graph (ℎ = 𝑂(

√
𝑚)).

Ammar et al. extend the worst-case optimal join algorithms to the parallel and dynamic

setting [AMSJ18]. However, their update time is not better than the static worst-case

optimal join algorithm. Recently, Kara et al. [KNN
+

19] present a sequential dynamic al-

gorithm for maintaining triangles in𝑂(
√
𝑚) amortized time and𝑂(𝑚) space. Dvorak and

Tuma [DT13] present a dynamic algorithm that maintains 𝑘-cliques as a special case in

𝑂(𝛼𝑘−2 log𝑛) amortized time and 𝑂(𝛼𝑘−2𝑚) space by using low out-degree orientations

for graphs with arboricity 𝛼.

Designing Parallel Batch-Dynamic Algorithms Traditional dynamic algorithms re-

ceive and apply updates one at a time. However, in the parallel batch-dynamic setting,

the algorithm receives batches of updates one after the other, where each batch contains

a mix of edge insertions and deletions. Unlike traditional dynamic algorithms, a parallel

batch-dynamic algorithm can apply all of the updates together, and also take advantage

of parallelism while processing the batch. We note that the edges inside of a batch may

also be ordered (e.g., by a timestamp). If there are duplicate edge insertions within a batch,

or an insertion of an edge followed by its deletion, a batch-dynamic algorithm can easily

remove such redundant or nullifying updates.

The key challenge is to design the algorithm so that updates can be processed in paral-

lel while ensuring low work and depth bounds. The only existing parallel batch-dynamic

algorithms for 𝑘-clique counting are triangle counting algorithms by Ediger et al. [EJRB10]

and Makkar et al. [MBG17], which take linear work per update in the worst case. The al-

gorithms in this chapter make use of e�cient data structures such as parallel hash tables,

which let us perform parallel batches of edge insertions and deletions with better work

and (polylogarithmic) depth bounds. To the best of our knowledge, no prior work has

designed dynamic algorithms for the problem that support parallel batch updates with

non-trivial theoretical guarantees.

Theoretically-e�cient parallel dynamic (and batch-dynamic) algorithms have been de-

signed for a variety of other graph problems, including minimum spanning tree [KPR18,
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FL94, DF94], Euler tour trees [TDB19], connectivity [STTW18, AABD19, FL94], tree

contraction [RT94, AAW17], and depth-�rst search [Kha17]. Very recently, parallel dy-

namic algorithms were also designed for the Massively Parallel Computation (MPC) set-

ting [ILMP19, DDK
+

20].

Other Related Work There has been signi�cant amount of work on practical paral-

lel algorithms for the case of static 3-clique counting, also known as triangle counting.

(e.g., [SV11, AKM13, PC13, PSKP14, ST15], among many others). Due to the importance

of the problem, there is even an annual competition for parallel triangle counting solu-

tions [Gra]. Practical static counting algorithms for the special cases of 𝑘 = 4 and 𝑘 = 5
have also been developed [HD14, ESBD16, PSV17, ANR

+
17, DAH17].

Dynamic algorithms have been studied in distributed models of computation under

the framework of self-stabilization [Sch93]. In this setting, the system undergoes various

changes, for example topology changes, and must quickly converge to a stable state. Most

of the existing work in this setting focuses on a single change per round [CHHK16, BCH19,

AOSS19], although algorithms studying multiple changes per round have been considered

very recently [BKM19, CHDK
+

19]. Understanding how these algorithms relate to parallel

batch-dynamic algorithms is an interesting question for future work.

Summary of Our Contributions In this chapter, we design parallel algorithms in the

batch-dynamic setting, where the algorithm receives a batch of |ℬ| ≥ 1 edge updates that

can be processed in parallel. Our focus is on parallel batch-dynamic algorithms that ad-

mit strong theoretical bounds on their work and have polylogarithmic depth with high

probability. Note that although our work bounds may be amortized, our depth will be

polylogarithmic with high probability, leading to e�cient RNC algorithms. As a special

case of our results, we obtain algorithms for parallelizing single updates (|ℬ| = 1). We �rst

design a parallel batch-dynamic triangle counting algorithm based on the sequential al-

gorithm of Kara et al. [KNN
+

19]. For triangle counting, we obtain an algorithm that takes

𝑂(|ℬ|
√
|ℬ|+𝑚) amortized work and𝑂(log*(|ℬ|+𝑚)) depth w.h.p.

1
assuming a fetch-and-

add instruction that runs in𝑂(1) work and depth, and runs in𝑂(|ℬ|+𝑚) space. The work

of our parallel algorithm matches that of the sequential algorithm of performing one up-

date at a time (i.e., it is work-e�cient), and we can perform all updates in parallel with

low depth.

We then present a new parallel batch-dynamic algorithm based on fast ma-

trix multiplication. Using the best currently known parallel matrix multiplica-

tion [Wil12, LG14], our algorithm dynamically maintains the number of 𝑘-cliques in

𝑂
(︁
min

(︁
ℬ𝑚0.469𝑘−0.235, (ℬ +𝑚)0.469𝑘+0.469

)︁)︁
amortized work w.h.p. per batch of ℬ up-

dates where 𝑚 is de�ned as the maximum number of edges in the graph before and

after all updates in the batch are applied. Our approach is based on the algorithm

of [AYZ97, EG04, NP85], and maintains triples of 𝑘/3-cliques that together form 𝑘-cliques.

The depth is 𝑂(log(|ℬ|+𝑚)) w.h.p. and the space is 𝑂
(︁
(ℬ +𝑚)0.469𝑘+0.469

)︁
. Our results

also imply an amortized time bound of 𝑂
(︁
𝑚0.469𝑘−0.235

)︁
per update for dense graphs

1
We use “with high probability” (w.h.p.) to mean with probability at least 1−1/𝑛𝑐 for any constant 𝑐 > 0.
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in the sequential setting. Of potential independent interest, we present the �rst proof

of logarithmic depth in the parallelization of any tensor-based fast matrix multiplication

algorithms. We also give a simple batch-dynamic 𝑘-clique listing algorithm, based on enu-

merating smaller cliques and intersecting them with edges in the batch. The algorithm

runs in 𝑂(|ℬ|(𝑚+ |ℬ|)𝛼𝑘−4) expected work, 𝑂(log2𝑛) depth w.h.p., and 𝑂(𝑚+ℬ) space

for constant 𝑘.

Finally, we implement our new parallel batch-dynamic triangle counting algorithm for

multicore CPUs, and present some experimental results on large graphs and with vary-

ing batch sizes using a 72-core machine with two-way hyper-threading. We found our

parallel implementation to be much faster than the multicore implementation of Ediger

et al. [EJRB10]. We also developed an optimized multicore implementation of the GPU

algorithm by Makkar et al. [MBG17]. We found that our new algorithm is up to an order

of magnitude faster than our CPU implementation of the Makkar et al. algorithm, and our

new algorithm achieves 36.54–74.73x parallel speedup on 72 cores with hyper-threading.

Our code is publicly available at https://github.com/ParAlg/gbbs.

8.2 Technical Overview

In this section, we present a high-level technical overview of our approach in this chapter.

Parallel Batch-Dynamic Triangle Counting

Our parallel batch-dynamic triangle counting algorithm is based on a recently proposed

sequential dynamic algorithm due to Kara et al. [KNN
+

19]. They describe their algo-

rithm in the database setting, in the context of dynamically maintaining the result of a

database join. We provide a self-contained description of their sequential algorithm in Ap-

pendix C.1.

High-Level Approach The basic idea of the algorithm from [KNN
+

19] is to partition

the vertex set using degree-based thresholding. Roughly, they specify a threshold 𝑡 =
Θ(
√
𝑚), and classify all vertices with degree less than 𝑡 to be low-degree, and all vertices

with degree larger than 𝑡 to be high-degree. This thresholding technique is widely used in

the design of fast static triangle-counting and 𝑘-clique counting algorithms, (e.g., [NP85,

AYZ97]). Observe that if we insert an edge (𝑢,𝑣) incident to a low-degree vertex, 𝑢, we can

enumerate all 𝑤 in 𝑁 (𝑢) in 𝑂(
√
𝑚) expected time and check if (𝑢,𝑣,𝑤) forms a triangle

(checking if the (𝑣,𝑤) edge is present in𝐺 can be done by storing all edges in a hash table).

In this way, edge updates incident to low-degree vertices are handled relatively simply.

The more interesting case is how to handle edge updates between high-degree vertices.

The main problem is that a single edge insertion (𝑢,𝑣) between two high-degree vertices

can cause up to𝑂(𝑛) triangles to appear in𝐺, and enumerating all of these would require

𝑂(𝑛) work—potentially much more than 𝑂(
√
𝑚). Therefore, the algorithm maintains an

auxiliary data structure, 𝒯 , over wedges (2-paths). 𝒯 stores for every pair of high-degree

vertices (𝑣,𝑤), the number of low-degree vertices 𝑢 that are connected to both 𝑣 and 𝑤
(i.e., (𝑢,𝑣) and (𝑢,𝑤) are both in 𝐸). Given this structure, the number of triangles formed

230

https://github.com/ParAlg/gbbs


by the insertion of the edge (𝑣,𝑤) going between two high-degree vertices can be found in

𝑂(1) time by checking the count for (𝑣,𝑤) in 𝒯 . Updates to 𝒯 can be handled in 𝑂(
√
𝑚)

time, since 𝒯 need only be updated when a low-degree vertex inserts/deletes a neighbor,

and the number of entries in 𝒯 that are a�ected is at most 𝑡 = 𝑂(
√
𝑚). Some additional

care needs to be taken when specifying the threshold 𝑡 to handle re-classifying vertices

(going from low-degree to high-degree, or vice versa), and also to handle rebuilding the

data structures, which leads to a bound of 𝑂(
√
𝑚) amortized work per update for the

algorithm.

Incorporating Batching and Parallelism The input to the parallel batch-dynamic

algorithm is a batch containing (possibly) a mix of edge insertions and deletions (vertex

insertions and deletions can be handled by inserting or deleting its incident edges). For

simplicity, and without any loss in our asymptotic bounds, our algorithm handles inser-

tions and deletions separately. The algorithm �rst removes all nullifying updates, which

are updates that have no e�ect after applying the entire batch (i.e., an insertion which is

subsequently deleted within the same batch, an insertion of an edge that already exists or

a deletion of an edge that doesn’t exist). This can easily be done within the bounds using

basic parallel primitives. The algorithm then updates tables representing the adjacency in-

formation of both low-degree and high-degree vertices in parallel. To obtain strong paral-

lel bounds, we represent these sets using parallel hash tables. For each insertion (deletion),

we then determine the number of new triangles that are created (deleted). Since a given

triangle could incorporate multiple edges within the same batch of insertions (deletions),

our algorithm must carefully ensure that the triangle is counted only once, assigning each

new inserted (deleted) triangle uniquely to one of the updates forming it. We then update

the overall triangle count with the number of distinct triangles inserted (deleted) into the

graph by the current batch of insertions (deletions). The remaining work of the algorithm

cleans up mutable state such as marking of edges contained in the current update in the

hash tables, and also migrating vertices between low-degree and high-degree states.

Worst-Case Optimality We note that the Kara et al. algorithm which is the basis for

our parallel batch-dynamic triangle counting algorithm is conditionally optimal under the

Online Matrix-Vector Multiplication (OMv) conjecture [HKNS15, KNN
+

19]. The same

result in the sequential setting implies that our parallel work-bounds, which are work-

e�cient with respect to the Kara et al. algorithm [KNN
+

19], are conditionally optimal.

It is an interesting question whether our depth bounds are conditionally optimal on the

CRCW PRAM.

Dynamic 𝑘-Clique Counting via Fast Static Parallel Algorithms

Next, we present a very simple, and potentially practical algorithm for dynamically main-

taining the number of 𝑘-cliques based on statically enumerating smaller cliques in the

graph, and intersecting the enumerated cliques with the edge updates in the input batch.

The algorithm is space-e�cient, and is asymptotically more e�cient than other methods

for sparse graphs. Our algorithm is based on a recent and concurrent work proposing a
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work-e�cient parallel algorithm for counting 𝑘-cliques in work 𝑂(𝑚𝛼𝑘−2) and polylog-

arithmic depth [SDS20]. Using this algorithm, we show that updating the 𝑘-clique count

for a batch of |ℬ| updates can be done in 𝑂(|ℬ|(𝑚+ |ℬ|)𝛼𝑘−4) work, and polylogarithmic

depth, using 𝑂(𝑚 + |ℬ|) space by using the static algorithm to (i) enumerate all (𝑘 − 2)-
cliques, and (ii) checking whether each (𝑘−2)-clique forms a 𝑘-clique with an edge in the

batch. This algorithm strictly outperforms re-computation using the new static parallel

algorithm for |ℬ| < 𝛼2
.

Theorem8.2.1. Given a collection of updates,ℬ, there is a batch-dynamic 𝑘-clique counting
algorithm that updates the 𝑘-clique counts running in 𝑂(|ℬ|(𝑚 + |ℬ|)𝛼𝑘−4) expected work

and 𝑂(log2𝑛) depth w.h.p., using 𝑂(𝑚+ |ℬ|) space for constant 𝑘.

Dynamic 𝑘-Clique via Fast Matrix Multiplication

We then present a parallel batch-dynamic 𝑘-clique counting algorithm using parallel

fast matrix multiplication (MM). Our algorithm is inspired by the static triangle count-

ing algorithm of Alon, Yuster, and Zwick (AYZ) [AYZ97] and the static 𝑘-clique count-

ing algorithm of [EG04] that uses MM-based triangle counting. We present a new dy-

namic algorithm that obtains better bounds than the simple algorithm based on static

𝑘-clique enumeration above for larger values of 𝑘. Speci�cally, assuming a parallel ma-

trix multiplication exponent of 𝜔𝑝, our algorithm handles batches of |ℬ| edge insertion-

s/deletions using 𝑂

(︃
min

(︃
|ℬ|𝑚

(2𝑘−3)𝜔𝑝
3(1+𝜔𝑝) , (𝑚+ℬ)

2𝑘𝜔𝑝
3(1+𝜔𝑝)

)︃)︃
work and 𝑂(log𝑚) depth w.h.p.,

in𝑂

(︃
(𝑚+ℬ)

2𝑘𝜔𝑝
3(1+𝜔𝑝)

)︃
space where𝑚 is the maximum number of edges in the graph before

and after applying the batch of updates. To the best of our knowledge, the sequential

(batch-dynamic) version of our algorithm also provides the best bounds for dynamic tri-

angle counting in the sequential model for dense graphs for such values of 𝑘 (assuming

we use the best currently known matrix multiplication algorithm) [DT13].

High-Level Approach and Techniques For a given graph 𝐺 = (𝑉 ,𝐸), we create an

auxiliary graph𝐺′ = (𝑉 ′,𝐸′) with vertices and edges representing cliques of various sizes

in 𝐺. For a given 𝑘-clique problem, vertices in 𝑉 ′ represent cliques of size 𝑘/3 in 𝐺
and edges (𝑢,𝑣) between vertices 𝑢,𝑣 ∈ 𝑉 ′ represent cliques of size 2𝑘/3 in 𝐺. Thus,

a triangle in 𝐺′ represents a 𝑘-clique in 𝐺. Speci�cally, there exist exactly

(︀ 𝑘
𝑘/3

)︀(︀2𝑘/3
𝑘/3

)︀
di�erent triangles in 𝐺′ for each clique in 𝐺.

Given a batch of edge insertions and deletions to 𝐺, we create a set of edge insertions

and deletions to𝐺′ . An edge is inserted in𝐺′ when a new 2𝑘/3-clique is created in𝐺 and

an edge is deleted in 𝐺′ when a 2𝑘/3-clique is destroyed in 𝐺. Suppose, for now, that we

have a dynamic algorithm for processing the edge insertions/deletions into 𝐺′ . Counting

the number of triangles in 𝐺′ after processing all edge insertions/deletions and dividing

by

(︀ 𝑘
𝑘/3

)︀(︀2𝑘/3
𝑘

)︀
provides us with the exact number of cliques in 𝐺.

There are a number of challenges that we must deal with when formulating our dy-

namic triangle counting algorithm for counting the triangles in 𝐺′:
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1. We cannot simply count all the triangles in𝐺′ after inserting/deleting the new edges

as this does not perform better than a trivial static algorithm.

2. Any trivial dynamization of the AYZ algorithm will not be able to detect all new

triangles in𝐺′ . Speci�cally, because the AYZ algorithm counts all triangles contain-

ing a low-degree vertex separately from all triangles containing only high-degree

vertices, if an edge update only occurs between high-degree vertices, a trivial dy-

namization of the algorithm will not be able to detect any triangle that the two

high-degree endpoints make with low-degree vertices.

To solve the �rst challenge, we dynamically count low-degree and high-degree vertices

in di�erent ways. Let ℓ = 𝑘/3 and𝑀 = 2𝑚+1. For some value of 0 < 𝑡 < 1, we de�ne low-

degree vertices to be vertices that have degree less than 𝑀𝑡ℓ/2 and high-degree vertices

to have degree greater than 3𝑀𝑡ℓ/2. Vertices with degrees in the range [𝑀𝑡ℓ/2,3𝑀𝑡ℓ/2]
can be classi�ed as either low-degree or high-degree. We determine the speci�c value

for 𝑡 in Lemma 8.5.12. We perform rebalancing of the data structures as needed as they

handle more updates. For low-degree vertices, we only count the triangles that include

at least one newly inserted/deleted edge, at least one of whose endpoints is low-degree.

This means that we do not need to count any pre-existing triangles that contain at least

one low-degree vertex. For the high-degree vertices, because there is an upper bound on

the maximum number of such vertices in the graph, we update an adjacency matrix 𝐴
containing edges only between high-degree vertices. At the end of all of the edge up-

dates, computing 𝐴3
gives us a count of all of the triangles that contain three high-degree

vertices.

This procedure immediately then leads to our second challenge. To solve this second

challenge, we make the observation (proven in Lemma 8.5.3) that if there exists an edge

update between two high-degree vertices that creates or destroys a triangle that contains

a low-degree vertex in 𝐺′ , then there must exist at least one new edge insertion/deletion

that creates or destroys a triangle representing the same clique to that low-degree vertex in

the same batch of updates to 𝐺′ . Thus, we can use one of those edge insertions/deletions

to determine the new clique that was created and, through this method, �nd all triangles

containing at least one low-degree vertex and at least one new edge update. Some care

must be observed in implementing this procedure in order to not increase the runtime or

space usage; such details can be found in Section 8.5.2.

Incorporating Batching and Parallelism When dealing with a batch of updates con-

taining both edge insertions and deletions, we must be careful when vertices switch from

being high-degree to being low-degree and vice versa. If we intersperse the edge in-

sertions with the edge deletions, there is the possibility that a vertex switches between

low and high-degree multiple times in a single batch. Thus, we batch all edge deletions

together and perform these updates �rst before handling the edge insertions. After pro-

cessing the batch of edge deletions, we must subsequently move any high-degree vertices

that become low-degree to their correct data structures. After dealing with the edge in-

sertions, we must similarly move any low-degree vertices that become high-degree to the

correct data structures. Finally, for triangles that contain more than one edge update, we

must account for potential double counting by di�erent updates happening in parallel.
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Such challenges are described and dealt with in Section 8.5.2 and Algorithm 31.

8.3 Parallel Batch-Dynamic Triangle Counting

We now present our parallel batch-dynamic triangle counting algorithm, which is based

on the 𝑂(𝑚) space and 𝑂(
√
𝑚) amortized update, sequential, dynamic algorithm of Kara

et al. [KNN
+

19]. Theorem 8.3.1 summarizes the guarantees of our algorithm.

Theorem 8.3.1. There exists a parallel batch-dynamic triangle counting algorithm that

requires𝑂(|ℬ|(
√
|ℬ|+𝑚)) amortized work and𝑂(log*(ℬ+𝑚)) depth with high probability,

and 𝑂(|ℬ|+𝑚) space for a batch of |ℬ| edge updates.

Our algorithm is work-e�cient and achieves a signi�cantly lower depth for a batch

of updates than applying the updates one at a time using the sequential algorithm

of [KNN
+

19]. We provide a detailed description of the fully dynamic sequential algo-

rithm of [KNN
+

19] in Appendix C.1 for reference,
2

and a brief high-level overview of that

algorithm in this section.

8.3.1 Sequential Algorithm Overview

Given a graph 𝐺 = (𝑉 ,𝐸) with 𝑛 = |𝑉 | vertices and 𝑚 = |𝐸| edges, let 𝑀 = 2𝑚 + 1,

𝑡1 =
√
𝑀/2, and 𝑡2 = 3

√
𝑀/2. We classify a vertex as low-degree if its degree is at most

𝑡1 and high-degree if its degree is at least 𝑡2. Vertices with degree in between 𝑡1 and 𝑡2
can be classi�ed either way.

Data Structures The algorithm partitions the edges into four edge-stores ℋℋ, ℋℒ,

ℒℋ, and ℒℒ based on a degree-based partitioning of the vertices. ℋℋ stores all of the

edges (𝑢,𝑣), where both 𝑢 and 𝑣 are high-degree. ℋℒ stores edges (𝑢,𝑣), where 𝑢 is

high-degree and 𝑣 is low-degree. ℒℋ stores the edges (𝑢,𝑣), where 𝑢 is low-degree and

𝑣 is high-degree. Finally, ℒℒ stores edges (𝑢,𝑣), where both 𝑢 and 𝑣 are low-degree.

The algorithm also maintains a wedge-store 𝒯 (a wedge is a triple of distinct vertices

(𝑥,𝑦,𝑧) where both (𝑥,𝑦) and (𝑦,𝑧) are edges in 𝐸). For each pair of high-degree vertices 𝑢
and 𝑣, the wedge-store 𝒯 stores the number of wedges (𝑢,𝑤,𝑣), where 𝑤 is a low-degree

vertex. 𝒯 has the property that given an edge insertion (resp. deletion) (𝑢,𝑣) where both

𝑢 and 𝑣 are high-degree vertices, it returns the number of wedges (𝑢,𝑤,𝑣), where 𝑤 is

low-degree, that 𝑢 and 𝑣 are part of in 𝑂(1) expected time. 𝒯 is implemented via a hash

table indexed by pairs of high-degree vertices that stores the number of wedges for each

pair.

Finally, we have an array containing the degrees of each vertex, 𝒟.

2
Kara et al. [KNN

+
19] described their algorithm for counting directed 3-cycles in relational databases,

where each triangle edge is drawn from a di�erent relation, and we simpli�ed it for the case of undirected

graphs.
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Initialization Given a graph with 𝑚 edges, the algorithm �rst initializes the triangle

count 𝐶 using a static triangle counting algorithm in 𝑂(𝛼𝑚) = 𝑂(𝑚3/2) work and 𝑂(𝑚)
space [Lat08]. The ℋℋ, ℋℒ, ℒℋ, and ℒℒ tables are created by scanning all edges in the

input graph and inserting them into the appropriate hash tables. 𝒯 can be initialized by

iterating over edges (𝑢,𝑤) inℋℒ and for each 𝑤, iterating over all edges (𝑤,𝑣) in ℒℋ to

�nd pairs of high-degree vertices 𝑢 and 𝑣, and then incrementing 𝒯 (𝑢,𝑣).

The Kara et al. Algorithm [KNN
+
19] Given an edge insertion (𝑢,𝑣) (deletions are

handled similarly, and for simplicity assume that the edge does not already exist in𝐺), the

update algorithm must identify all tuples (𝑢,𝑤,𝑣) where (𝑢,𝑤) and (𝑣,𝑤) already exist

in 𝐺, since such triples correspond to new triangles formed by the edge insertion. The

algorithm proceeds by considering how a triangle’s edges can reside in the data structures.

For example, if all of 𝑢, 𝑣, and𝑤 are high-degree, then the algorithm will enumerate these

triangles by checkingℋℋ and �nding all neighbors𝑤 of 𝑢 that are also high-degree (there

are at most 𝑂(
√
𝑚) such neighbors), checking if the (𝑣,𝑤) edge exists in constant time.

On the other hand, if 𝑢 is low-degree, then checking its 𝑂(
√
𝑚) many neighbors su�ces

to enumerate all new triangles. The interesting case is if both 𝑢 and 𝑣 are high-degree,

but 𝑤 is low-degree, since there can be much more than 𝑂(
√
𝑚) such 𝑤’s. This case is

handled using 𝒯 , which stores for a given (𝑢,𝑣) edge in ℋℋ all 𝑤 such that (𝑤,𝑢) and

(𝑤,𝑣) both exist in ℒℋ.

Finally, the algorithm updates the data structures, �rst inserting the new edge into

the appropriate edge-store. The algorithm updates 𝒯 as follows. If 𝑢 and 𝑣 are both low-

degree or both high-degree, then no update is needed to 𝒯 . Otherwise, without loss of

generality suppose 𝑢 is low-degree and 𝑣 is high-degree. Then, the algorithm enumerates

all high-degree vertices𝑤 that are neighbors of 𝑢 and increments the value of (𝑣,𝑤) in 𝒯 .

8.3.2 Parallel Batch-Dynamic Update Algorithm

We present a high-level overview of our parallel algorithm in this section, and a more

detailed description in Section 8.3.3. We consider batches of |ℬ| edge insertions and/or

deletions. Let insert(𝑢,𝑣) represent the update corresponding to inserting an edge be-

tween vertices 𝑢 and 𝑣, and delete(𝑢,𝑣) represent deleting the edge between 𝑢 and 𝑣. We

�rst preprocess the batch to account for updates that nullify each other. For example, an

insert(𝑢,𝑣) update followed chronologically by a delete(𝑢,𝑣) update nullify each other

because the (𝑢,𝑣) edge that is inserted is immediately deleted, resulting in no change to

the graph. To process the batch consisting of nullifying updates, we claim that the only

update that is not nullifying for any pair of vertices is the chronologically last update

in the batch for that edge. Since all updates contain a timestamp, to account for nulli-

fying updates we �rst �nd all updates on the same edge by hashing the updates by the

edge that it is being performed on. Then, we run the parallel maximum-�nding algorithm

given in [Vis08] on each set of updates for each edge in parallel. This maximum-�nding

algorithm then returns the update with the largest timestamp (the most recent update)

from the set of updates for each edge. This set of returned updates then composes a batch

of non-nullifying updates.
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Before we go into the details of our parallel batch-dynamic triangle counting algo-

rithm, we �rst describe some challenges that must be solved in using Kara et al. [KNN
+

19]

for the parallel batch-dynamic setting.

Challenges Because Kara et al. [KNN
+

19] only considers one update at a time in their

algorithm, they do not deal with cases where a set of two or more updates creates a new

triangle. Since, in our setting, we must account for batches of multiple updates, we en-

counter the following set of challenges:

(1) We must be able to e�cient �nd new triangles that are created via two or more edge

insertions.

(2) We must be able to handle insertions and deletions simultaneously meaning that a

triangle with one inserted edge and one deleted edge should not be counted as a new

triangle.

(3) We must account for over-counting of triangles due to multiple updates occurring si-

multaneously.

For the rest of this section, we assume that |ℬ| ≤𝑚, as otherwise we can re-initialize

our data structure using the static parallel triangle-counting algorithm [ST15]
3

to get

the count in 𝑂(|ℬ|3/2) work, 𝑂(log* |ℬ|) depth, and 𝑂(|ℬ|) space (assuming atomic-add),

which is within the bounds of Theorem 8.3.1.

Parallel Initialization Given a graph with 𝑚 edges, we initialize the triangle count 𝐶
using a static parallel triangle counting algorithm in 𝑂(𝛼𝑚) = 𝑂(𝑚3/2) work, 𝑂(log*𝑚)
depth, and 𝑂(𝑚) space [ST15], using atomic-add. We initialize ℋℋ, ℋℒ, ℒℋ, and ℒℒ
by scanning the edges in parallel and inserting them into the appropriate parallel hash

tables. We initialize the degree array 𝒟 by scanning the vertices. Both steps take 𝑂(𝑚)
work and𝑂(log*𝑚) depth w.h.p. 𝒯 can be initialized by iterating over edges (𝑢,𝑤) inℋℒ
in parallel and for each 𝑤, iterating over all edges (𝑤,𝑣) in ℒℋ in parallel to �nd pairs of

high-degree vertices 𝑢 and 𝑣, and then incrementing 𝒯 (𝑢,𝑣). The number of entries in

ℋℒ is𝑂(𝑚) and each 𝑤 has𝑂(
√
𝑚) neighbors in ℒℋ, giving a total of𝑂(𝑚3/2) work and

𝑂(log*𝑚) depth w.h.p. for the hash table insertions. The amortized work per edge update

is 𝑂(
√
𝑚).

Data Structure Modi�cations We now describe additional information that is stored

inℋℋ,ℋℒ, ℒℋ, ℒℒ, and 𝒯 , which is used by the batch-dynamic update algorithm:

(1) Every edge stored in ℋℋ, ℋℒ, ℒℋ, and ℒℒ stores an associated state, indicating

whether it is an old edge, a new insertion or a new deletion, which correspond to

the values of 0, 1, and 2, respectively.

(2) 𝒯 (𝑢,𝑣) stores a tuple with 5 values instead of a single value for each index (𝑢,𝑣).
Speci�cally, a 5-tuple entry of 𝒯 (𝑢,𝑣) = (𝑡(𝑢,𝑣)1 , 𝑡

(𝑢,𝑣)
2 , 𝑡

(𝑢,𝑣)
3 , 𝑡

(𝑢,𝑣)
4 , 𝑡

(𝑢,𝑣)
5 ) represents the

following:

3
The hashing-based version of the algorithm given in [ST15] can be modi�ed to obtain the stated bounds

if it does not do ranking and when using the𝑂(log*𝑛) depth w.h.p. parallel hash table and uses atomic-add.
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• 𝑡
(𝑢,𝑣)
1 represents the number of wedges with endpoints 𝑢 and 𝑣 that include only

old edges.

• 𝑡
(𝑢,𝑣)
2 and 𝑡

(𝑢,𝑣)
3 represent the number of wedges with endpoints 𝑢 and 𝑣 containing

one or two newly inserted edges, respectively.

• 𝑡
(𝑢,𝑣)
4 and 𝑡

(𝑢,𝑣)
5 represent the number of wedges with endpoints 𝑢 and 𝑣 containing

one or two newly deleted edges, respectively. In other words, they are wedges that

do not exist anymore due to one or two edge deletions.

Algorithm Overview We �rst remove updates in the batch that either insert edges

already in the graph or delete edges not in the graph by using approximate compaction

to �lter. Next, we update the tablesℋℋ,ℋℒ, ℒℋ, and ℒℒ with the new edge insertions.

Recall that we must update the tables with both (𝑢,𝑣) and (𝑣,𝑢) (and similarly when we

update these tables with edge deletions). We also mark these edges as newly inserted.

Next, we update 𝒟 with the new degrees of all vertices due to edge insertions. Since

the degrees of some vertices have now increased, for low-degree vertices whose degree

exceeds 𝑡2, in parallel, we promote them to high-degree vertices, which involves updating

the tables ℋℋ, ℋℒ, ℒℋ, ℒℒ, and 𝒯 . Next, we update the tables ℋℋ, ℋℒ, ℒℋ, and

ℒℒ with new edge deletions, and mark these edges as newly deleted. We then call the

procedures update_table_insertions and update_table_deletions, which update

the wedge-table 𝒯 based on all new insertions and all new deletions, respectively. At this

point, our auxiliary data structures contain both new triangles formed by edge insertions,

and triangles deleted due to edge deletions.

For each update in the batch, we then determine the number of new triangles that

are created by counting di�erent types of triangles that the edge appears in (based on

the number of other updates forming the triangle). We then aggregate these per-update

counts to update the overall triangle count.

Now that the count is updated, the remaining steps of the algorithm handle unmarking

the edges and restoring the data structures so that they can be used by the next batch. We

unmark all newly inserted edges from the tables, and delete all edges marked as deletes in

this batch. Finally, we handle updating 𝒯 , the wedge-table for all insertions and deletions

of edges incident to low-degree vertices. The last steps in our algorithm are to update the

degrees in response to the newly inserted edges and the now truly deleted edges. Then,

since the degrees of some high-degree vertices may drop below 𝑡1 (and vice versa), we

convert them to low-degree vertices and update the tablesℋℋ,ℋℒ, ℒℋ, ℒℒ, and 𝒯 (and

vice versa). This step is called minor rebalancing. Finally, if the number of edges in the

graph becomes less than𝑀/4 or greater than𝑀 we reset the values of𝑀 , 𝑡1, and 𝑡2, and

re-initialize all of the data structures. This step is called major rebalancing.

Algorithm Description A simpli�ed version of our algorithm is shown below. The

following Count-Triangle procedure takes as input a batch of |ℬ| updates ℬ and returns

the count of the updated number of triangles in the graph (assuming the initialization

process has already been run on the input graph and all associated data structures are

up-to-date).

237



Algorithm 27 Simpli�ed parallel batch-dynamic triangle counting algorithm.

1: function Count-Triangles(ℬ)

2: parfor insert(𝑢,𝑣) ∈ ℬ do

3: Update and label edges (𝑢,𝑣) and (𝑣,𝑢) inℋℋ,

ℋℒ, ℒℋ, and ℒℒ as inserted edges.

4: parfor delete(𝑢,𝑣) ∈ ℬ do

5: Update and label edges (𝑢,𝑣) and (𝑣,𝑢) inℋℋ,

ℋℒ, ℒℋ, and ℒℒ as deleted edges.

6: parfor insert(𝑢,𝑣) ∈ ℬ or delete(𝑢,𝑣) ∈ ℬ do

7: Update 𝒯 with (𝑢,𝑣). 𝒯 records the number of

wedges that have 0, 1, or 2 edge updates.

8: parfor insert(𝑢,𝑣) ∈ ℬ or delete(𝑢,𝑣) ∈ ℬ do

9: Count the number of new triangles and deleted

triangles incident to edge (𝑢,𝑣), and account for

duplicates.

10: Rebalance data structures if necessary.

Small Example BatchUpdates Here we provide a small example of processing a batch

of updates. We assume that no rebalancing occurs. Suppose we have a batch of updates

containing an edge insertion (𝑢,𝑣) with timestamp 3, an edge deletion (𝑤,𝑥) with times-

tamp 1, and an edge deletion (𝑢,𝑣) with timestamp 2. Since the edge insertion (𝑢,𝑣) has

the later timestamp, it is the update that remains. After removing nullifying updates, the

two updates that remain are insertion of (𝑢,𝑣) and deletion of (𝑤,𝑥). The algorithm �rst

looks in 𝒟 to �nd the degrees of 𝑢, 𝑣, 𝑤, and 𝑥 in parallel. Suppose 𝑢, 𝑣, and 𝑤 are high-

degree and 𝑥 is low-degree. We need to �rst update our data structures with the new

edge updates. To update the data structure, we �rst update the edge tableℋℋ with (𝑢,𝑣)
marked as an edge insertion. Then, we update the edge tables ℋℒ and ℒℋ with (𝑤,𝑥)
as an edge deletion. Finally, we update the counts of wedges in 𝒯 with (𝑤,𝑥)’s deletion.

Speci�cally, for each of 𝑥’s neighbors 𝑦 in ℒℋ, we update 𝒯 (𝑤,𝑦) by incrementing 𝑡
(𝑤,𝑦)
4

(since (𝑥,𝑦) is not a new update).

After updating the data structures, we can count the changes to the total number of

triangles in the graph. All of the following actions can be performed in parallel. Suppose

that 𝑢 comes lexicographically before 𝑣. We count the number of neighbors of 𝑢 in ℋℋ
and this will be the number of new triangles containing three high-degree vertices. To

avoid overcounting, we do not count the number of high-degree neighbors of 𝑣. Since we

are counting the number of triangles containing updates, we also do not count the number

of high-degree neighbors of𝑤 since (𝑤,𝑥) cannot be part of any new triangles containing

three high-degree vertices. Then, in parallel, we count the number of neighbors of 𝑥 in

ℒℒ and ℒℋ; this is the number of deleted triangles containing one and two high-degree

vertices, respectively. We use 𝒯 to count the number of triangles containing one low-

degree vertex and (𝑢,𝑣). To count the number of inserted triangles containing (𝑢,𝑣) and

a low-degree vertex, we look up 𝑡
(𝑢,𝑣)
1 in 𝒯 and add it to our �nal triangle count; all other
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stored count values for (𝑢,𝑣) in 𝒯 are 0 since there are no other new updates incident to

𝑢 or 𝑣.

8.3.3 Parallel Batch-Dynamic Triangle Counting Detailed Algo-

rithm

The detailed pseudocode of our parallel batch-dynamic triangle counting algorithm are

shown below. Recall that the update procedure for a set of |ℬ| ≤𝑚 non-nullifying updates

is as follows (the subroutines used in the following steps are described afterward).

Algorithm 28 Detailed parallel batch-dynamic triangle counting procedure.

(1) Remove updates that insert edges already in the graph or delete edges not in the graph

as well as nullifying updates using approximate compaction.

(2) Update tables ℋℋ, ℋℒ, ℒℋ, and ℒℒ with the new edge insertions using

insert(𝑢,𝑣) and insert(𝑣,𝑢). Mark these edges as newly inserted by running

mark_inserted_edges(ℬ) on the batch of updates ℬ.

(3) Update tablesℋℋ,ℋℒ, ℒℋ, and ℒℒ with new edge deletions using delete(𝑢,𝑣) and

delete(𝑣,𝑢). Mark these edges as newly deleted using mark_deleted_edges(ℬ) on

ℬ.

(4) Call update_table_insertions(ℬ) for the set ℬ of all edge insertions insert(𝑢,𝑤),
where either 𝑢 or 𝑤 is low-degree and the other is high-degree.

(5) Call update_table_deletions(ℬ) for the set ℬ of all edge deletions delete(𝑢,𝑤)
where either 𝑢 or 𝑤 is low-degree and the other is high-degree.

(6) For each update in the batch, determine the number of new triangles that are created

by counting 6 values. Count the values using a 6-tuple, (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6) based on

the number of other updates contained in a triangle:

(a) For each edge insertion insert(𝑢,𝑣) resulting in a triangle containing

only one newly inserted edge (and no deleted edges), increment 𝑐1 by

count_triangles(1,0, insert(u,v)).
(b) For each edge insertion insert(𝑢,𝑣) resulting in a triangle contain-

ing two newly inserted edges (and no deleted edges), increment 𝑐2 by

count_triangles(2,0, insert(u,v)).
(c) For each edge insertion insert(𝑢,𝑣) resulting in a triangle containing three newly

inserted edges, increment 𝑐3 by count_triangles(3,0, insert(u,v)).
(d) For each edge deletion delete(𝑢,𝑣) resulting in a deleted triangle with one newly

deleted edge, increment 𝑐4 by count_triangles(0,1,delete(u,v)).
(e) For each edge deletion delete(𝑢,𝑣) resulting in a deleted triangle with two newly

deleted edges, increment 𝑐5 by count_triangles(0,2,delete(u,v)).
(f) For each edge deletion delete(𝑢,𝑣) resulting in a deleted triangle with three newly

deleted edges, increment 𝑐6 by count_triangles(0,3,delete(u,v)).
Let 𝐶 be the previous count of the number of triangles. Update 𝐶 to be 𝐶 + 𝑐1 +
(1/2)𝑐2 + (1/3)𝑐3 − 𝑐4 − (1/2)𝑐5 − (1/3)𝑐6, which becomes the new count.

(7) Scan through updates again. For each update, if the value stored in ℋℋ, ℋℒ, ℒℋ,

and/or ℒℒ is 2 (a deleted edge), remove this edge. If stored value is 1 (an inserted
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edge), change the value to 0. For all updates where the endpoints are both high-

degree or both low-degree, we are done. For each update (𝑢,𝑤) where either 𝑢 or

𝑤 is low-degree (assume without loss of generality that 𝑤 is) and the other is high-

degree, look for all high-degree neighbors 𝑣 of 𝑤 and update 𝒯 (𝑢,𝑣) by summing all

𝑐1, 𝑐2,, and 𝑐3 of the tuple and subtracting 𝑐4 and 𝑐5.

(8) Update 𝒟 with the new degrees.

(9) Perform minor rebalancing for all vertices 𝑣 that exceed 𝑡2 in degree or fall under

𝑡1 in parallel using minor_rebalance(v). This makes a formerly low-degree vertex

high-degree (and vice versa) and updates relevant structures.

(10) Perform major rebalancing if necessary (i.e., the total number of edges in the graph

is less than 𝑀/4 or greater than 𝑀). Major rebalancing re-initializes all structures.

Procedure mark_inserted_edges(ℬ). We scan through each of the insert(𝑢,𝑣) up-

dates in ℬ and mark (𝑢,𝑣) and (𝑣,𝑢) as newly inserted edges inℋℋ,ℋℒ, ℒℋ, and/or ℒℒ
by storing a value of 1 associated with the edge.

Procedure mark_deleted_edges(ℬ). Because we removed all nullifying updates before

ℬ is passed into the procedure, none of the deletion updates in ℬ should delete newly

inserted edges. For all edge deletions delete(𝑢,𝑣), we change the values stored under

(𝑢,𝑣) and (𝑣,𝑢) from 0 to 2 in the tablesℋℋ,ℋℒ, ℒℋ, and/or ℒℒ.

Procedure update_table_insertions(ℬ). For each (𝑢,𝑤) ∈ ℬ, assume without loss

of generality that 𝑤 is the low-degree vertex and do the following. We �rst �nd all of

𝑤’s neighbors, 𝑣, in ℒℋ in parallel. Then, we determine for each neighbor 𝑣 if (𝑤,𝑣)
is new (marked as 1). If the edge (𝑤,𝑣) is not new, then increment the second value

stored in the tuple with index 𝒯 (𝑢,𝑣). If (𝑤,𝑣) is newly inserted, then increment the

third value stored in 𝒯 (𝑢,𝑣). The �rst, fourth, and �fth values stored in 𝒯 (𝑢,𝑣) do not

change in this step. The �rst, second, and third values count the number of edge insertions

contained in the wedge keyed by (𝑢,𝑣). The �rst value counts all wedges with endpoints

𝑢 and 𝑣 that do not contain any edge update, the second count the number of wedges

containing one edge insertion, and the third counts the number of wedges containing two

edge insertions. Then, intuitively, the �rst, second, and third values will tell us later for

edge insertion (𝑢,𝑣) between two high-degree vertices whether newly created triangles

containing (𝑢,𝑣) have one (the only update being (𝑢,𝑣)), two, or three, respectively, new

edge insertions from the batch update. We do not update the edge insertion counts of

wedges which contain a mix of edge insertion updates and edge deletion updates.

Procedure update_table_deletions(ℬ). For each (𝑢,𝑤) ∈ ℬ, assume without loss

of generality that 𝑤 is the low-degree vertex and do the following. We �rst �nd all of

𝑤’s neighbors, 𝑣, in ℒℋ in parallel. Then, we determine for each neighbor 𝑣 if (𝑤,𝑣)
is a newly deleted edge (marked as 2). If (𝑤,𝑣) is not a newly deleted edge, increment

the fourth value in the tuple stored in 𝒯 (𝑢,𝑣) and decrement the �rst value. Otherwise,

if (𝑤,𝑣) is a newly deleted edge, increment the �fth value of 𝒯 (𝑢,𝑣) and decrement the

�rst value. The second and third values in 𝒯 (𝑢,𝑣) do not change in this step. For any

key (𝑢,𝑣), the �rst, fourth, and �fth values gives the number of wedges with endpoints

𝑢 and 𝑣 that contain zero, one, or two edge deletions, respectively. Intuitively, the �rst,

fourth, and �fth values tell us later whether newly deleted triangles have one (where the
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only edge deletion is (𝑢,𝑣)), two, or three, respectively, new edge deletions from the batch

update.

Procedure count_triangles(i,d,update). This procedure returns the number of tri-

angles containing the update insert(𝑢,𝑣) or delete(𝑢,𝑣) and exactly 𝑖 newly inserted edges

or exactly 𝑑 newly deleted edges (the update itself counts as one newly inserted edge or

one newly deleted edge). If at least one of 𝑢 or 𝑣 is low-degree, we search in the tables,

ℒℋ, and ℒℒ for neighbors of the low-degree vertex and the number of marked edges

per triangle: edges marked as 1 for insertion updates and edges marked as 2 for deletion

updates. If both 𝑢 and 𝑣 are high-degree, we �rst look through all high-degree vertices

using ℋℋ to see if any form a triangle with both high-degree endpoints 𝑢 and 𝑣 of the

update. This allows us to �nd all newly updated triangles containing only high-degree

vertices. Then, we con�rm the existence of a triangle for each neighbor found in the ta-

bles by checking for the third edge in ℋℋ, ℋℒ, ℒℋ, or ℒℒ. We return only the counts

containing the correct number of updates of the correct type. To avoid double counting

for each update we do the following. Suppose all vertices are ordered lexicographically

in some order. For any edge which contains two high-degree or two low-degree vertices,

we search in ℒℒ,ℋℋ, and ℒℋ for exactly one of the two endpoints, the one that is lexi-

cographically smaller.

Then, we return a tuple in 𝒯 (𝑢,𝑣) based on the values of 𝑖 and 𝑑 to determine the

count of triangles containing 𝑢 and 𝑣 and one low-degree vertex:

• Return the �rst value 𝑡
(𝑢,𝑣)
1 if either 𝑖 = 1 or 𝑑 = 1.

• Return the second value 𝑡
(𝑢,𝑣)
2 if 𝑖 = 2.

• Return the third value 𝑡
(𝑢,𝑣)
3 if 𝑖 = 3.

• Return the fourth value 𝑡
(𝑢,𝑣)
4 if 𝑑 = 2.

• Return the �fth value 𝑡
(𝑢,𝑣)
5 if 𝑑 = 3.

Note that we ignore all triangles that include more than one insertion update and more

than one deletion update.

Procedure minor_rebalance(u). This procedure performs a minor rebalance when

either the degree of 𝑢 decreases below 𝑡1 or increases above 𝑡2. We move all edges inℋℋ
andℋℒ to ℒℋ and ℒℒ and vice versa. We also update 𝒯 with new pairs of vertices that

became high-degree and delete pairs that are no longer both high-degree.

8.3.4 Analysis

We prove the correctness of our algorithm in the following theorem. The proof is based

on accounting for the contributions of an edge to each triangle that it participates in based

on the number of other updated edges found in the triangle.

Theorem 8.3.2. Our parallel batch-dynamic algorithm maintains the number of triangles

in the graph.

Proof. All triangles containing at least one low-degree vertex can be found either in 𝒯 or

by searching through ℒℋ and ℒℒ. All triangles containing all high-degree vertices can

be found by searching ℋℋ. Suppose that an edge update insert(𝑢,𝑣) (resp. delete(𝑢,𝑣))
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is part of 𝐼(𝑢,𝑣) (resp. 𝐷(𝑢,𝑣)) triangles. We need to add or subtract from the total count

of triangles 𝐼(𝑢,𝑣) or 𝐷(𝑢,𝑣), respectively. However, some of the triangles will be counted

twice or three times if they contain more than one edge update. By dividing each triangle

count by the number of updated edges they contain, each triangle is counted exactly once

for the total count 𝐶.

Overall Bound We now prove that our parallel batch-dynamic algorithm runs in

𝑂(ℬ
√
ℬ +𝑚) work, 𝑂(log*(ℬ +𝑚)) depth, and uses 𝑂(ℬ +𝑚) space. Henceforth, we as-

sume that our algorithm uses the atomic-add instruction (see Section 4.2). Removing nul-

lifying updates takes𝑂(ℬ) total work,𝑂(log*ℬ) depth w.h.p., and𝑂(ℬ) space for hashing

and the �nd-maximum procedure outlined in Section 8.3.2. In Item (1), we perform table

lookups for the updates into 𝒟 and in ℋℋ, ℋℒ, ℒℋ, or ℒℒ, followed by approximate

compaction to �lter. The hash table lookups take 𝑂(ℬ) work and 𝑂(log*𝑚) depth with

high probability and 𝑂(𝑚) space. Approximate compaction [GMV91] takes 𝑂(ℬ) work,

𝑂(log* |ℬ|) depth, and 𝑂(ℬ) space. Item (2), Item (3), and Item (8) perform hash table in-

sertions and updates on the batch of 𝑂(ℬ) edges, which takes 𝑂(ℬ) amortized work and

𝑂(log*𝑚) depth with high probability.

The next lemma shows that updating the tables based on the edges in the update

(Item (4) and Item (5)) can be done in 𝑂(ℬ
√
𝑚) work and 𝑂(log*𝑚) depth w.h.p., and

𝑂(𝑚) space.

Lemma 8.3.3. update_table_insertions(ℬ) and update_table_deletions(ℬ) on
a batch ℬ of size ℬ takes 𝑂(ℬ

√
𝑚) work and 𝑂(log*(ℬ +𝑚)) depth w.h.p., and 𝑂(ℬ +𝑚)

space.

Proof. For each 𝑤, we �nd all of its high-degree neighbors in ℒℋ and perform the incre-

ment or decrement in the corresponding entry in 𝒯 in parallel (at this point, the vertices

are still classi�ed based on their original degrees). The total number of new neighbors

gained across all vertices is𝑂(ℬ) since there are ℬ updates. Therefore, across all updates,

this takes 𝑂(ℬ
√
𝑚+ℬ) work and 𝑂(log* (ℬ +𝑚)) depth w.h.p. due to hash table lookup

and updates. Then, for all high-degree neighbors found, we perform the increments or

decrements on the corresponding entries in 𝒯 in parallel, taking the same bounds. All ver-

tices can be processed in parallel, giving a total of𝑂(ℬ
√
𝑚+ℬ) work and𝑂(log*(ℬ+𝑚))

depth w.h.p.

The next lemma bounds the complexity of updating the triangle count in Item (6).

Lemma 8.3.4. Updating the triangle count takes𝑂(ℬ
√
𝑚) work and𝑂(log*(ℬ+𝑚)) depth

w.h.p., and 𝑂(ℬ +𝑚) space.

Proof. We initialize 𝑐1, . . . , 𝑐6 to 0. For each edge update in ℬ where both endpoints are

high-degree, we perform lookups in 𝒯 andℋℋ for the relevant values in parallel and in-

crement the appropriate 𝑐𝑖 . Finding all triangles containing the edge update and contain-

ing only high-degree vertices takes 𝑂(ℬ
√
𝑚) work and 𝑂(log*(ℬ +𝑚)) depth w.h.p. This

is because there are 𝑂(
√
𝑚) high-degree vertices in total, and for each we check whether

it appears in the ℋℋ table for both endpoints of each update. Performing lookups in 𝒯
takes 𝑂(ℬ) work and 𝑂(log*(ℬ +𝑚)) depth w.h.p.
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For each update containing at least one endpoint with low-degree, we perform lookups

in the tables ℋℒ, ℒℋ, and ℒℒ to �nd all triangles containing the update and increment

the appropriate 𝑐𝑖 . This takes 𝑂(ℬ
√
𝑚 + ℬ) work and 𝑂(log*(ℬ +𝑚)) depth w.h.p. In-

crementing all 𝑐𝑖 ’s for all newly updated triangles takes 𝑂(ℬ) work and 𝑂(1) depth. We

then apply the equation in Item (6) to update 𝐶, which takes 𝑂(1) work and depth.

The following lemma bounds the cost for minor rebalancing, where a low-degree ver-

tex becomes high-degree or vice versa (Item (9)).

Lemma 8.3.5. Minor rebalancing for edge updates takes 𝑂(ℬ
√
𝑚) amortized work and

𝑂(log*(ℬ +𝑚)) depth w.h.p., and 𝑂(ℬ +𝑚) space.

Proof. We describe the case of edge insertions, and the case for edge deletions is similar.

Using approximate compaction to perform the �ltering, we �rst �nd the set 𝑆 of low-

degree vertices exceeding 𝑡2 in degree. This step takes 𝑂(ℬ) work and 𝑂(log*ℬ) depth

w.h.p. For vertices in 𝑆 , we then delete the edges from their old hash tables and move the

edges to their new hash tables. The work for each vertex is proportional to its current

degree, giving a total work of 𝑂(
∑︀
𝑣∈𝑆 deg(𝑣)) = 𝑂(ℬ

√
𝑚 + ℬ) w.h.p. since the original

degree of low-degree vertices is 𝑂(
√
𝑚) and each edge in the batch could have caused at

most 2 such vertices to have their degree increase by 1 (the w.h.p. is for parallel hash table

operations).

In addition to moving the edges into new hash tables, we also have to update 𝒯 with

new pairs of vertices that became high-degree and delete pairs of vertices that are no

longer both high-degree. To update these tables, we need to �nd all new pairs of high-

degree vertices. There are at most 𝑂(|ℬ|
√
𝑚+ℬ) such new pairs, which can be found

by �ltering neighbors using approximate compaction of vertices in 𝑆 in 𝑂(|ℬ|
√
𝑚+ℬ)

work and 𝑂(log*(ℬ +𝑚)) depth w.h.p. For each pair (𝑢,𝑣), we check all neighbors of

an endpoint that just became high-degree and increment the entry 𝒯 (𝑢,𝑣) for each low-

degree neighbor 𝑤 found that has edges (𝑢,𝑤) and (𝑤,𝑣). Low-degree neighbors have

degree 𝑂(
√
𝑚+ℬ), and so the total work is 𝑂(ℬ(𝑚 + ℬ)) and depth is 𝑂(log*(ℬ +𝑚))

w.h.p. using atomic-add. There must have beenΩ(
√
𝑚) updates on a vertex before minor

rebalancing is triggered, and so the amortized work per update is𝑂(|ℬ|
√
𝑚) and the depth

is 𝑂(log*𝑚) w.h.p. The space for �ltering is 𝑂(𝑚+ℬ).

We now �nish showing Theorem 8.3.1. Theorem 8.3.2 shows that our algorithm main-

tains the correct count of triangles. Lemma 8.3.3, Lemma 8.3.4, and Lemma 8.3.5 show that

the cost of updating tables to re�ect the batch, updating the triangle counts, and minor re-

balancing is𝑂(ℬ
√
𝑚+ℬ) amortized work and𝑂(log*(ℬ+𝑚)) depth w.h.p., and𝑂(ℬ+𝑚)

space.

Item (7) can be done in 𝑂(ℬ
√
𝑚) work and 𝑂(log*𝑚) depth as follows. We scan

through the batch ℬ in parallel and update the hash tables ℋℋ, ℋℒ, ℒℋ, and ℒℒ in

𝑂(ℬ) work and 𝑂(log*(ℬ +𝑚)) depth w.h.p. For all updates in ℬ containing one high-

degree vertex and one low-degree vertex, we update the table 𝒯 in parallel by scanning

the neighbors in ℒℋ of the low-degree vertex. This step takes 𝑂(ℬ
√
𝑚 + ℬ) work and

𝑂(log*(ℬ +𝑚)) depth w.h.p. Major rebalancing (Item (10)) takes 𝑂((ℬ +𝑚)3/2) work

and 𝑂(log*(ℬ +𝑚)) depth by re-initializing the data structures. The rebalancing happens
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every Ω(𝑚) updates, and so the amortized work per update is 𝑂(
√
ℬ +𝑚) and depth is

𝑂(log*(ℬ +𝑚)) w.h.p.

Therefore, our update algorithm takes𝑂(|ℬ|
√
|ℬ|+𝑚) amortized work and𝑂(log*(ℬ+

𝑚)) depth w.h.p., and𝑂(ℬ+𝑚) space overall using atomic-add as stated in Theorem 8.3.1.

Bounds without Atomic-Add Without the atomic-add instruction, we can use a par-

allel reduction [Jaj92] to sum over values when needed. This is work-e�cient and takes

logarithmic depth, but uses space proportional to the number of values summed over in

parallel. For updates, this is bounded by 𝑂(|ℬ|
√
𝑚 + |ℬ|), and for initialization and ma-

jor rebalancing, this is bounded by 𝑂(𝛼𝑚) [ST15]. This would give an overall bound of

𝑂(|ℬ|(
√
|ℬ|+𝑚)) work and 𝑂(log(|ℬ|+𝑚)) depth w.h.p., and 𝑂(𝛼𝑚+ |ℬ|

√
𝑚) space.

8.4 Dynamic 𝑘-Clique Counting via Fast Static Parallel
Algorithms

In this section, we present a very simple algorithm for dynamically maintaining the num-

ber of 𝑘-cliques for 𝑘 > 3 based on statically enumerating a number of smaller cliques

in the graph, and intersecting the enumerated cliques with the edge updates in the input

batch. Importantly, the algorithm is space-e�cient, and only relies on simple primitives

such as clique enumeration of cliques of size smaller than 𝑘, for which there are highly

e�cient algorithms both in theory and practice.

Fast Static Parallel 𝑘-Clique Enumeration The main tool used by algorithm is the

following theorem, which is presented in concurrent and independent work [SDS20]:

Theorem 8.4.1 (Theorem 4.2 of [SDS20]). There is a parallel algorithm that given a graph

𝐺 can enumerate all 𝑘-cliques in 𝐺 in𝑂(𝑚𝛼𝑘−2) expected work and𝑂(log2𝑛) depth w.h.p.,
using 𝑂(𝑚) space for constant 𝑘.

Theorem 8.4.1 is proven by modifying the Chiba-Nishizeki (CN) algorithm in the par-

allel setting, and combining the CN algorithm with parallel low-outdegree orientation

algorithms [BE10, GP11].

A Dynamic 𝑘-Clique Counting Algorithm Given Theorem 8.4.1, one approach to

maintain the number of 𝑘-cliques in 𝐺 upon receiving a batch of insertions or deletions

ℬ is to have each edge 𝑒 in the batch simply enumerate all (𝑘 −2)-cliques, check whether

𝑒 forms a 𝑘-clique with any of these (𝑘 − 2)-cliques, and update the clique counts based

on the newly discovered (or deleted) cliques.

Algorithm 29 presents a formalized version of this idea. The algorithm �rst removes

all nullifying updates from ℬ. It then checks whether the batch is large (|ℬ| ≥ 𝑚), and

if so simply recomputes the overall 𝑘-clique count by re-running the static enumeration

algorithm. Otherwise, the algorithm inserts the edge insertions in the batch into 𝐺, and

stores them in a static parallel hash table ℋ that maps each edge in the batch to a value

indicating whether the edge is an insertion or deletion in ℬ.
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Algorithm 29 Dynamic 𝑘-Clique Counting

1: function 𝑘-Cliqe-Count(𝐺 = (𝑉 ,𝐸),ℬ)

2: Let 𝑁 be the current count of cliques before processing the current batch.

3: Remove nullifying updates from ℬ.

4: if |ℬ| ≥𝑚 then

5: Rerun the static 𝑘-clique counting algorithm.

6: else

7: Insert all updates that are edge insertions in ℬ into 𝐺.

8: Letℋ be a static parallel hash table representing ℬ.

9: parfor 𝑒 = {𝑢,𝑣} ∈ ℬ do

10: Enumerate all (𝑘−2)-cliques in 𝐺 in parallel using the Algorithm from Theo-

rem 8.4.1.

11: parfor each enumerated (𝑘 − 2)-clique, 𝐶 do

12: if 𝐶 forms a newly inserted or newly deleted 𝑘-clique with 𝑒 then
13: if 𝑒 = (𝑢,𝑣) is the lexicographically-�rst edge in 𝐶 in the batch then

14: Atomically update the 𝑘-clique count with 𝐶 ∪ {𝑢,𝑣}: 𝑁 ←𝑁 +1.

15: Delete all updates that are edge deletions in ℬ from 𝐺.

Then, in parallel, for each edge 𝑒 = (𝑢,𝑣) in the batch, it enumerates all (𝑘−2)-cliques

in the graph. For each (𝑘−2)-clique, 𝐶, the algorithm checks whether this clique forms a

newly inserted or newly deleted 𝑘-clique with 𝑒. A newly inserted 𝑘-clique is one where at

least one edge is an edge insertion in ℬ and all other edges are not deleted in ℬ. Similarly

a newly deleted 𝑘-clique is one where at least one edge is an edge deletion in ℬ and all

other edges are not edge insertions in ℬ. This step is done by querying the static parallel

hash table ℋ for each edge in the clique to check whether it is an insertion or deletion

in ℬ. Cliques consisting of a mix of edge insertions and deletions are cliques that are not

previously present before the batch, and will not be present after the batch, and are thus

ignored.

For a newly inserted or deleted clique, the algorithm then checks whether 𝑒 is the

lexicographically-�rst edge in the batch inside of this clique formed by𝐶∪{𝑢,𝑣} (otherwise,

a di�erent edge update from the batch will �nd and handle the processing of this clique).
4

Checking whether 𝑒 is the lexicographically-�rst edge in a clique 𝐶 is done by querying

the static parallel hash tableℋ. For each clique where 𝑒 is the lexicographically-�rst edge

in the batch in the clique, we either atomically increment, or decrement the count, based

on whether this clique is newly inserted or newly deleted. After the clique count has been

updated, the algorithm updates 𝐺 by performing the edge deletions from ℬ.

We note that we could just as well enumerate all of the (𝑘−2)-cliques a single time, and

then for each (𝑘−2)-clique we discover, check whether it forms a 𝑘-clique with each edge

in the batch. A practical optimization of this idea may store edges in a batch incident to

4
An edge 𝑒 = (𝑢,𝑣) is the lexicographically �rst edge in the batch in a clique 𝐶 if, ∀𝑒′ = (𝑢′ ,𝑣′) ∈ 𝐶

such that (𝑢′ ,𝑣′) ∈ ℬ, 𝑒 is lexicographically smaller than 𝑒′ . Note that we are working over an undirected

graph without self-loops. By convention, when discussing lexicographic comparison, we have that for

any 𝑒 = (𝑢,𝑣) that 𝑢 < 𝑣; in other words, the order in the tuple representing the edge is based on the

lexicographical order of the two endpoints.
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their corresponding endpoints, and so vertices in the discovered (𝑘−2)-clique would only

need to check updates incident to the vertices in this clique. The asymptotic complexity of

both ideas—joining cliques with edges, instead of edges with cliques, and pruning edges

from the batch to consider—is the same in the worst case.

Correctness and Bounds If a 𝑘-clique in the graph is not incident to any edges in the

batch, then its count is una�ected (since we only perform modi�cations to the count for

cliques containing edges in ℬ). For cliques incident to edges in ℬ, we consider two cases.

If the clique 𝐶 is deleted after applying ℬ, observe that by decomposing 𝐶 into a (𝑘 −2)-
clique and the lexicographically-�rst marked edge 𝑒 in 𝐶, 𝐶 will be found and counted by

𝑒. The argument that a newly inserted clique, 𝐶, will be found is similar. Lastly, cliques

consisting of both edge insertions and deletions in ℬ will be correctly ignored by the

check on Line 12. In other words, we check in parallel whether any enumerated 𝑘-clique

𝐶 ∪ {𝑢,𝑣} contains both an edge deletion and an edge insertion (by checking in the hash

table representing ℬ); if so, the 𝑘-clique composed of 𝐶 ∪ {𝑢,𝑣} is not counted. This

argument proves the following theorem:

Theorem 8.4.2. Algorithm 29 correctly maintains the number of 𝑘-cliques in the graph.

Theorem8.4.3. Given a collection of updates,ℬ, there is a batch-dynamic 𝑘-clique counting
algorithm that updates the 𝑘-clique counts running in 𝑂(|ℬ|(𝑚 + |ℬ|)𝛼𝑘−4) expected work

and 𝑂(log2𝑛) depth w.h.p., using 𝑂(𝑚+ |ℬ|) space for constant 𝑘.

Proof. We analyze Algorithm 29. First, updating the graph, assuming that the edges in-

cident to each vertex are represented sparsely using a parallel hash table, requires 𝑂(|ℬ|)
work and 𝑂(log*𝑛) depth w.h.p.

If |ℬ| ≥ 𝑚, the algorithm calls the static 𝑘-clique counting algorithm, which takes

𝑂((𝑚 + |ℬ|)𝛼𝑘−2) expected work. Since 𝑚 = 𝑂(|ℬ|) and 𝛼2 = 𝑂(𝑚 + |ℬ|), the work of

calling the static algorithm is upper-bounded by 𝑂(|ℬ|(𝑚+ |ℬ|)𝛼𝑘−4) as required. Finally,

the depth bound is 𝑂(log𝑘−2𝑛) w.h.p. as required.

Otherwise, |ℬ| < 𝑚. Then, the algorithm �rst inserts and marks the batch in the graph.

It also stores the edges in the batch in a parallel hash table. Creating the parallel hash table

takes 𝑂(|ℬ|) work and 𝑂(log*𝑛) depth w.h.p., which are both subsumed by the overall

work and depth for the relevant setting of 𝑘 > 2. For each update, we list all (𝑘 − 2)-
cliques using the algorithm from Theorem 8.4.1. This step can be done in𝑂((𝑚+|ℬ|)𝛼𝑘−4)
expected work and 𝑂(log𝑘−4𝑛) depth w.h.p. If the (𝑘 −2)-clique 𝐶 forms a 𝑘-clique with

𝑒, then the cost of checking whether the clique is newly inserted or newly deleted usingℋ
costs 𝑂(𝑘) work, which is a constant, and 𝑂(1) depth. The cost of checking whether 𝑒 is

the lexicographically �rst edge in ℬ is also constant. Multiplying the cost of enumeration

by the number of edges in the batch completes the proof.

Our batch-dynamic algorithm outperforms re-computation using the static parallel

𝑘-clique counting algorithm for |ℬ| = 𝑜(𝛼2).
It is an interesting open question whether our dependence on 𝑚 could be entirely

removed from the update bound. Existing work has provided e�cient sequential dynamic

algorithms maintaining the 𝑘-clique count in �̃�(𝛼𝑘−2)work per update using dynamic low
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out-degree orientations [DT13]. It would be interesting to understand whether such an

algorithm can be work-e�ciently parallelized in the parallel batch-dynamic setting, which

would allow the dynamic algorithm to match the work of static parallel recomputation

up to logarithmic factors.

8.5 Dynamic 𝑘-Clique via Fast Matrix Multiplication

In this section, we present our �nal result which is a parallel batch-dynamic algorithm for

counting 𝑘-cliques based on fast matrix multiplication in general graphs (which may be

dense). For bounded arboricity graphs, we can also count cliques in 𝑂(|ℬ|(𝑚+ |ℬ|)𝛼𝑘−4)
expected work and 𝑂(log2𝑛) depth w.h.p., using 𝑂(𝑚 + |ℬ|) space as explained in the

previous section.

Using parallel matrix multiplication (discussed in Section 8.5.6), we achieve a better

work bound (in terms of 𝑚) for large values of 𝑘 than our bound of 𝑂(|ℬ|(|ℬ|+𝑚)𝛼𝑘−4)
obtained from the simple algorithm presented in Section 8.4. To the best of our knowledge,

our algorithm (when made sequential) also achieves the best runtime for any sequential

dynamic 𝑘-clique counting algorithm on dense graphs for large 𝑘 when using the best

currently known matrix multiplication algorithm [Wil12, LG14]. For values of 𝑘 > 9, our

MM based algorithm achieves 𝑜(𝑚𝑘/2−1) amortized time compared to the arboricity-based

algorithm of [DT13] that dynamically counts cliques in �̃�(𝛼𝑘−2) amortized time where 𝛼
is the arboricity of the graph (or �̃�

(︁
𝑚𝑘/2−1

)︁
amortized time when 𝛼 = Ω

(︁√
𝑚
)︁
) or the

trivial 𝑂
(︁
𝑚𝑘/2−1

)︁
algorithm of choosing all 𝑘/2 − 1 combinations of edges containing

neighbors of the incident vertices of the inserted edge.

Our dynamic algorithm modi�es the algorithm of [AYZ97] for counting triangles

based on fast matrix multiplication and combines it with a dynamic version of the static

𝑘-clique counting algorithm of [EG04] to count the number of 𝑘-cliques under edge up-

dates in batches of size |ℬ|. Section 8.5.1–Section 8.5.4 proves the following theorem for

the case when 𝑘 mod 3 = 0. Section 8.5.5 describes the changes needed for the case when

𝑘 mod 3 , 0.

Theorem 8.5.1. There exists a parallel batch-dynamic algorithm for counting the number of

𝑘-cliques, where 𝑘 mod 3 = 0, that takes 𝑂
(︃
min

(︃
|ℬ|𝑚

(2𝑘−3)𝜔𝑝
3(1+𝜔𝑝) , (𝑚+ℬ)

2𝑘𝜔𝑝
3(1+𝜔𝑝)

)︃)︃
amortized

work and 𝑂(log(𝑚 +ℬ)) depth w.h.p., in 𝑂

(︃
(𝑚+ℬ)

2𝑘𝜔𝑝
3(1+𝜔𝑝)

)︃
space, given a parallel matrix

multiplication algorithm with exponent 𝜔𝑝.

Using the best currently known matrix multiplication algorithms with exponent𝜔𝑝 =
2.373, we obtain the following work and space bounds.

Corollary 8.5.2. There exists a parallel batch-dynamic algorithm for counting the number

of 𝑘-cliques, where 𝑘 mod 3 = 0, which takes𝑂
(︁
min(ℬ𝑚0.469𝑘−0.704, (𝑚+ℬ)0.469𝑘)

)︁
work

and 𝑂(log(𝑚+ℬ)) depth w.h.p., in 𝑂
(︁
(𝑚+ℬ)0.469𝑘

)︁
space by Corollary 8.5.19.
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Speci�cally, when amortized over the total number of edge updates ℬ, we obtain an

amortized work bound of 𝑂(𝑚0.469𝑘−0.704) per edge update which is asymptotically bet-

ter than the combinatorial bound of 𝑂
(︁
𝑚𝑘/2−1

)︁
per update for 𝑘 > 9. To the best of our

knowledge, this is also the best known worst-case bound for dense graphs in the sequen-

tial setting.

Observe that our update algorithm only needs to handle batches of size 0 < ℬ ≤
𝑚𝜔𝑝/(1+𝜔𝑝)

. For batches which have sizeℬ > 𝑚𝜔𝑝/(1+𝜔𝑝)
, we can reinitialize our data struc-

tures in𝑂((𝑚+ℬ)0.469𝑘)work (𝑂
(︁
𝑚0.469𝑘−0.704

)︁
amortized work per update in the batch),

𝑂(logℬ) depth, and 𝑂((𝑚 +ℬ)0.469𝑘) space using our initialization algorithm described

in Lemma 8.5.5 and the fast parallel matrix multiplication of Corollary 8.5.19, which is

faster than using the update algorithm (in general, we can use any fast matrix multi-

plication algorithm that has low depth, but the cuto� for when to reinitialize would be

di�erent). The analysis of the reinitialization procedure (similar to the static case pre-

sented by Alon, Yuster, and Zwick [AYZ97]) is provided in Section 8.5.4. Thus, in the

following sections, we only describe our dynamic update procedures for batches of size

0 < ℬ ≤𝑚𝜔𝑝/(1+𝜔𝑝)
.

8.5.1 Our Algorithm

In what follows, we assume that 𝑘 mod 3 = 0 (please refer to Section 8.5.5 for 𝑘 mod 3 ,
0). We use a batch-dynamic triangle counting algorithm as a subroutine for our batch-

dynamic 𝑘-clique algorithm. Our algorithm for maintaining triangles is a batch-dynamic

version of the triangle counting algorithm by Alon, Yuster, and Zwick (AYZ) [AYZ97].

However, our dynamic algorithm cannot directly be used for the case of 𝑘 = 3 (and only

applies for cases 𝑘 > 3) due to the following challenge which we resolve in Section 8.5.2.

Furthermore, our analysis also assumes 𝑘 > 6 for greater simplicity and since for smaller

𝑘, our algorithm from Section 8.4 is also faster.

Adapting the Static Algorithm We face a major challenge when adapting the algo-

rithm of Alon, Yuster, and Zwick [AYZ97] for our setting as well as for the sequential

setting. Because the AYZ algorithm is meant to count cliques in the static setting, it is �ne

to consider two di�erent types of triangles and count the triangles of each type separately.

The two di�erent types of triangles considered are triangles which contain at least one

low-degree vertex and triangles which contain only high-degree vertices. In the static

case, we can �nd all low-degree vertices, but in the dynamic case, we cannot a�ord to

look at all low-degree vertices. If we only look at low-degree vertices incident to edge

updates, then the following case may occur: an edge update between two high-degree

nodes forms a new triangle incident to a low-degree node. In such a case, only looking at

the vertices adjacent to this edge update will not �nd this triangle. We resolve this issue

for 𝑘 > 3 via Lemma 8.5.3 in Section 8.5.2.
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De�nitions and Data Structures Given a graph 𝐺, we construct an auxiliary graph

𝐺′ consisting of vertices where each vertex represents a clique of size ℓ = 𝑘/3 in 𝐺.
5

An

edge (𝑢,𝑣) between two vertices in 𝐺′ exists if and only if the cliques represented by 𝑢
and 𝑣 form a clique of size 2ℓ in 𝐺. Our algorithm maintains a dynamic total triangle

count 𝐶 on 𝐺′ . Let 𝑀 = 2𝑚 + 1 and let a low-degree vertex in 𝐺′ be a vertex with

degree less than 𝑀𝑡ℓ/2 (for some 0 < 𝑡 < 1 to be determined later) and a high-degree
vertex in 𝐺′ be a vertex with degree greater than 3𝑀𝑡ℓ/2. The vertices with degree in the

range [𝑀𝑡ℓ/2,3𝑀𝑡ℓ/2] can be classi�ed as either low-degree or high-degree. In addition

to the total triangle count, we maintain a count, 𝐶ℒ, of all triangles involving a low-

degree vertex. Using the algorithm of AYZ [AYZ97], we assume we have a two-level hash

table, ℒ, representing the neighbors of low-degree vertices in 𝐺′ (a table mapping a low-

degree vertex to another hash table containing its incident edges). We also maintain the

adjacency matrix 𝐴 of high-degree vertices in 𝐺′ used in AYZ as a two-level hash table

for easy insertion and deletion of additional high-degree vertices. Finally, we maintain

another hash table 𝒟 which dynamically maintains the degrees of the vertices.

An simpli�ed version of the algorithm is given in Algorithm 30.

Algorithm 30 Simpli�ed matrix multiplication 𝑘-clique counting algorithm.

1: function Count-Cliqes(ℬ)

2: Update graph 𝐺′ with ℬ by inserting new ℓ- and 2ℓ-cliques.

3: Find batch of insertions into 𝐺′ , ℬ′𝐼 , and batch of deletions, ℬ′𝐷 .

4: Determine the �nal degrees of every vertex in 𝐺′ after performing updates ℬ′𝐼 and

ℬ′𝐷 .

5: parfor insert(𝑢,𝑣) ∈ ℬ′𝐼 ,handle-deletion(𝑢,𝑣) ∈ ℬ
′
𝐷 do

6

6: if either 𝑢 or 𝑣 is low-degree: 𝑑(𝑢) ≤ 𝛿 or 𝑑(𝑣) ≤ 𝛿 then
7: Enumerate all triangles containing (𝑢,𝑣). Let this set be 𝑇 .

8: By Lemma 8.5.3, �nd all possible triangles representing the same triangle 𝑡 ∈
𝑇 .

9: Correct for duplicate counting of triangles.

10: else

11: Update 𝐴 (adjacency list for high-degree vertices).

12: Compute 𝐴3
. The diagonal provides the triangle counts for all triangles containing

only high-degree vertices.

13: Sum the counts of all triangles.

14: Correct for duplicate counting of cliques.

5
We use a hash table 𝒬 that stores each vertex in 𝐺′ as an index to a set of vertices in 𝐺 and also stores

each set of vertices composing an ℓ-clique in 𝐺 (lexicographically sort the vertices and turn into a string)

as an index to a vertex in 𝐺′ .
6
Some care must be taken to ensure that rebalancing does not incur too much work. The details of how

to deal with rebalancing are given in the full implementation, Algorithm 31.
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8.5.2 Overview

Our algorithm proceeds as follows. Each edge in an update in the batch (edges in 𝐺) can

either create at most𝑂(𝑚𝑘/3−1) new (2𝑘/3)-cliques or disrupt𝑂(𝑚𝑘/3−1) existing (2𝑘/3)-
cliques in𝐺. We treat each of these newly created or destroyed cliques as an edge insertion

or deletion in𝐺′ . Since we preprocess the updates to𝐺 such that there are no duplicate or

nullifying updates, a destroyed clique cannot be created again or vice versa. This means

that the set of updates to 𝐺′ will also contain no nullifying updates.

Importantly, the AYZ algorithm does not take into account edge insertions and dele-

tions between two high-degree vertices that create or destroy triangles containing at least

one low-degree vertex.
7

Thus, we must prove the following lemma for any edge inser-

tion/deletion in𝐺 that results in an edge insertion in𝐺′ between two high-degree vertices

which creates or destroys a triangle containing a low-degree vertex. This lemma is crucial

for our algorithm, since it ensures that a triangle formed by two high-degree vertices and

a low-degree vertex will be discovered by enumerating all triangles formed or deleted by

an edge update incident to the low-degree vertex, and its current edges. Furthermore, this

lemma is the reason why our algorithm does not work for 𝑘 = 3 cliques.

Lemma 8.5.3. Given a graph 𝐺 = (𝑉 ,𝐸), the corresponding 𝐺′ = (𝑉 ′,𝐸′), and for 𝑘 > 3,
suppose an edge insertion (resp. deletion) between two high-degree vertices in 𝐺′ creates a
new triangle, (𝑢𝐻 ,𝑤𝐻 ,𝑥𝐿), in 𝐺′ which contains a low-degree vertex 𝑥𝐿. Let 𝑅(𝑦) denote the
set of vertices in 𝑉 represented by a vertex 𝑦 ∈ 𝑉 ′ . Then, there exists a new edge insertion

(resp. deletion) in 𝐺′ that is incident to 𝑥𝐿 and creates a new triangle (𝑢′,𝑤′,𝑥𝐿) such that

𝑅(𝑢′)∪𝑅(𝑤′) = 𝑅(𝑢𝐻 )∪𝑅(𝑤𝐻 ).

Proof. We prove this lemma for edge insertions in 𝐺. The proof can be easily modi�ed to

account for the case of edge deletions in 𝐺. Suppose an edge insertion (𝑦,𝑧) in 𝐺 leads

to an edge insertion in 𝐺′ between the two high-degree vertices 𝑢𝐻 and 𝑤𝐻 that creates

the new triangle (𝑢𝐻 ,𝑤𝐻 ,𝑥𝐿). The creation of the new triangle signi�es that a new clique

was created in 𝐺 consisting of vertices 𝑅(𝑢𝐻 )∪𝑅(𝑤𝐻 )∪𝑅(𝑥𝐿). Then, the edge insertion

(𝑦,𝑧) created a new 2𝑘/3-clique in 𝐺 consisting of the vertices in 𝑅(𝑢𝐻 )∪𝑅(𝑤𝐻 ). Since

the edge (𝑦,𝑧) between 𝑦,𝑧 ∈ 𝑉 did not exist previously but now exists,

(︀2𝑘/3−2
𝑘/3−2

)︀
new

cliques were created using the set of vertices in 𝑅(𝑢𝐻 )∪𝑅(𝑤𝐻 ). Each of these new cliques

corresponds to a new vertex in𝐺′ . Suppose 𝑢′ is one such new vertex representing vertex

set 𝑅(𝑢′) ⊆ 𝑅(𝑢𝐻 )∪𝑅(𝑤𝐻 ) and𝑤′ represents vertex set 𝑅(𝑤′) = (𝑅(𝑢𝐻 )∪𝑅(𝑤𝐻 ))∖𝑅(𝑢′).
Then, new edges are inserted between 𝑢′ and𝑤′ and between 𝑢′ and 𝑥𝐿 (the edge (𝑤′,𝑥𝐿)
might be a newly inserted edge or it is already present in the graph) since all triangles

representing the clique of vertices (𝑢𝐻 ,𝑤𝐻 ,𝑥𝐿) must be present in 𝐺′ . Thus, the new

triangle (𝑢′,𝑤′,𝑥𝐿) is created in 𝐺′ .

We now describe our dynamic clique counting algorithm that combines the AYZ al-

gorithm [AYZ97] with the clique counting algorithm of [EG04]. Given the batch of edge

insertions/deletions into 𝐺, we �rst compute the duplicate and nullifying updates and

remove them. Then, for a set of insertions/deletions into 𝐺′ , we form two batches, one

containing the edge insertions and one containing the edge deletions. Given the batch

7
Note that this is �ne for the static case but not for the dynamic case.
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of updates to 𝐺′ , we now formulate a dynamic version of the AYZ algorithm [AYZ97] on

the updates to 𝐺′ . For the batch of updates, we �rst look at the updates pertaining to the

low-degree vertices. For every update (𝑢,𝑣) that contains at least one low-degree vertex

(without loss of generality, let 𝑣 be a low-degree vertex), we search all of 𝑣’s 𝑂
(︁
3𝑀𝑡ℓ/2

)︁
neighbors and check whether a triangle is formed (resp. deleted). For each triangle formed

(resp. deleted), we update the total triangle count of the graph 𝐺′ . For high-degree ver-

tices, we update our adjacency matrix 𝐴 containing vertices with high-degree. To com-

pute the triangles containing high-degree vertices, we need only compute𝐴3
(the diagonal

will then provide us with the triangle counts). Lastly, one clique results in many di�erent

copies of triangles. We must obtain the correct clique count by dividing the number of

triangles by the number of ways we can partition the vertices in a 𝑘-clique into triples of

subcliques of size 𝑘/3.

8.5.3 Detailed Parallel Batch-Dynamic Matrix Multiplication

Based Algorithm

The analysis we perform in Section 8.5.4 on the e�ciency of our algorithm is with respect

to the detailed implementation. We provide the detailed description and implementation

of our algorithm below in Algorithm 31.

Algorithm 31 Detailed matrix multiplication based parallel batch-dynamic 𝑘-clique

counting algorithm.

(1) Given a batch ℬ of non-nullifying edge updates,
8

�rst update the graph 𝐺′ . If the

update is an insertion, insert(𝑢,𝑣), add all new ℓ-cliques created by it into 𝐺′ . If the

update is a deletion, handle-deletion(𝑢,𝑣), mark all ℓ-cliques destroyed by it in𝐺′ .9

For each update, insert(𝑢,𝑣) or handle-deletion(𝑢,𝑣), determine all 2ℓ-cliques that

include it. This will determine the set of edge insertions/deletions into𝐺′ . Let all edge

updates that destroy 2ℓ-cliques be a batch ℬ′𝐷 of edge deletions in 𝐺′ . Then, let all

2ℓ-cliques formed by edge updates be a batch of edge insertions ℬ′𝐼 into𝐺′ . Note that

edge insertions in the batch could be edges for newly created vertices; for each such

newly created vertex, we also add the vertex into𝐺′ and its associated data structures.

(2) Determine the �nal degree of each vertex after all insertions in ℬ′𝐼 and all deletions

in ℬ′𝐷 . (We do not perform the updates yet–only compute the �nal degrees.) For

all vertices, 𝑋, which become low-degree after the set of all updates (and were orig-

inally high-degree), we create a batch of updates ℬ′𝐼,𝐿 consisting of old edges (not

update edges) that are adjacent to vertices in 𝑋 and were not deleted by the batches

of updates. For all vertices, 𝑌 , which become high-degree after the set of updates

(and were originally low-degree), we create a batch of updates ℬ′𝐷,𝐻 consisting of old

edges adjacent to vertices in 𝑌 that were not deleted after the batches of updates.
10

8
Recall that we can always remove nullifying edge updates as given in Section 8.3.2.

9
We check in our hash table 𝒬 whether each newly created (deleted) ℓ-clique is already represented

(non-existent) in the graph 𝐺′ . If not, we insert the new clique and/or remove an old clique from 𝒬.

10
The batch of updates ℬ′𝐼,𝐿 is used to rebalance the data structures when vertices need to be removed
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(3) Let the edges in ℬ′𝐷∪ℬ
′
𝐷,𝐻 be the batch of edge deletions to 𝐺′ . For each of the edges

in ℬ′𝐷∪ℬ
′
𝐷,𝐻 , we �rst count the number of triangles it is a part of that contain at least

one low-degree vertex. We call this the set of deleted triangles. Let this number of

deleted triangles be 𝑇𝐷 (initially set 𝑇𝐷 = 0).

(a) To count the number of triangles that contain at least one low-degree vertex, we

�rst check for each edge whether one of its endpoints is low-degree. Let this set

of edge deletions be 𝐷 ′𝐿 ⊆ ℬ
′
𝐷 ∪ℬ

′
𝐷,𝐻 .

(b) For every edge (𝑢′,𝑣′) ∈𝐷 ′𝐿, without loss of generality let 𝑢′ be the lexicograph-

ically
11

�rst low-degree vertex. For every edge (𝑢′,𝑤′) incident to 𝑢′ , check

whether (𝑢′,𝑣′) forms a triangle with (𝑢′,𝑤′).
(c) For every (𝑢′,𝑣′,𝑤′) triangle deleted (where (𝑢′,𝑣′,𝑤′) is sorted lexicographi-

cally), call

𝑡← count_updated_low_degree_triangles((𝑢′,𝑣′,𝑤′), (𝑢′,𝑣′)), and atom-

ically update 𝑇𝐷 ← 𝑇𝐷 + 𝑡.
(4) Update 𝐶ℒ← 𝐶ℒ − 𝑇𝐷 .

(5) Update the data structures using the batches of edges insertions and deletions, ℬ′𝐷
and ℬ′𝐼 :

(a) Using ℬ′𝐷 , delete the relevant edges in ℒ (containing neighbors of low-degree

vertices) and then change the relevant values in 𝐴 to 0. We also update 𝒟 with

the new degrees of the vertices for which an adjacent edge was deleted.

(b) For the batch of edge insertions into𝐺′ ,ℬ′𝐼 , we �rst insert the relevant edges into

ℒ. Then, we change the relevant entries in 𝐴 from 0 to 1. Finally, we update 𝒟
with the new degrees of the vertices following the edge insertions.

(c) Remove all vertices which are no longer high-degree (i.e. their degree is now less

than 𝑀𝑡ℓ/2) from 𝐴. Create entries in ℒ for all edges adjacent to each vertex

that was removed from 𝐴.

(d) Remove the edges of all vertices which are no longer low-degree (i.e. their de-

gree is now greater than 3𝑀𝑡ℓ/2) from ℒ and create new entries in 𝐴 with the

new high-degree vertices. Set the relevant entries in 𝐴 corresponding to edges

adjacent to the new high-degree vertices to 1.

(6) Let the edges in ℬ′𝐼 ∪ℬ
′
𝐼,𝐿 be the batch of edge insertions to 𝐺′ . For each of the edges

in ℬ′𝐼 ∪ℬ
′
𝐼,𝐿, we �rst count the number of triangles it is a part of that contain at least

one low-degree vertex. We call this the set of inserted triangles. Let this value be 𝑇𝐼
(𝑇𝐼 = 0 initially).

(a) To count the number of triangles that contain at least one low-degree vertex, we

�rst check for each edge whether one of its endpoints is low-degree. Let this set

of edge insertions be 𝐼 ′𝐿 ⊆ ℬ
′
𝐼 ∪ℬ

′
𝐼,𝐿.

(b) For every edge (𝑢′,𝑣′) ∈ 𝐼 ′𝐿, without loss of generality let 𝑢′ be the lexicographi-

cally �rst low-degree vertex. For every edge (𝑢′,𝑤′) of 𝑢′ , check whether (𝑢′,𝑣′)

from 𝐴 after becoming low-degree. Because the edges adjacent to these vertices need to be inserted into

the structures maintaining low-degree vertices, ℬ′𝐼,𝐿, then, can be thought of as a set of edge insertions

to update low-degree data structures. Similarly, vertices which become high-degree need to be deleted

from low-degree structures, and hence, ℬ′𝐷,𝐻 can be thought of as a set of edge deletions from low-degree

structures.

11
The speci�c lexicographical order for the vertices in 𝐺′ is �xed but can be arbitrary.
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forms a triangle with (𝑢′,𝑤′).
(c) For every newly inserted triangle (𝑢′,𝑣′,𝑤′) (where (𝑢′,𝑣′,𝑤′) is sorted lexico-

graphically), call

𝑡 = count_updated_low_degree_triangles((𝑢′,𝑣′,𝑤′), (𝑢′,𝑣′)), and atomi-

cally update 𝑇𝐼 ← 𝑇𝐼 + 𝑡.
(7) Update 𝐶ℒ← 𝐶ℒ + 𝑇𝐼 .
(8) We perform parallel matrix multiplication after all entries in 𝐴 have been modi�ed to

calculate 𝑆 = 𝐴3
. Then, 𝐶ℋ = 1

2
∑︀
𝑖∈𝑛𝑆𝑖,𝑖 .

(9) Update 𝐶← 𝐶ℒ +𝐶ℋ.

(10) Compute the number of 𝑘-cliques by dividing 𝐶 by

(︀ 𝑘
𝑘/3

)︀(︀2𝑘/3
𝑘/3

)︀
.

(11) If𝑚 falls outside the range [𝑀/4,𝑀], then reinitialize the degree thresholds and data

structures.

Algorithm 31 uses a subroutine de�ned below in Algorithm 32.

Algorithm 32 Subroutine used in our detailed matrix multiplication 𝑘-clique counting

algorithm that counts the number of unique triangles containing an edge.

(1) Let 𝑢′,𝑣′,𝑤′ ∈ 𝑉 ′ represent the sets of vertices 𝑈 ′,𝑋 ′,𝑊 ′ ⊆ 𝑉 , respectively.

(2) Enumerate all possible triangles that represent the clique containing vertices 𝑈 ′ ∪
𝑋 ′ ∪𝑊 ′ .

(3) Sort the vertices of each triangle lexicographically to obtain tuples of vertices repre-

senting the triangles. Let ID(𝑢′,𝑣′) be the ID of edge (𝑢′,𝑣′).12

(4) For each enumerated tuple (𝑥′, 𝑦′, 𝑧′), create a label containing the tuple representing

the triangle concatenated with all labels (sorted lexicographically) of edges that are

updates in the triangle. Thus, each label can have 4 to 6 entries consisting of the

three vertices of a triangle tuple and at most 3 edge labels. For example, suppose that

(𝑥′, 𝑦′) is the only edge that is an updated edge in triangle (𝑥′, 𝑦′, 𝑧′). Then, the label

representing this triangle is (𝑥′, 𝑦′, 𝑧′, ID(𝑥′, 𝑦′)) where the ID of the edge is given by

ID(𝑥′, 𝑦′). The IDs of all deleted or inserted edges are appended to the end of the label

in the order ID(𝑥′, 𝑦′), ID(𝑦′, 𝑧′), ID(𝑧′,𝑥′).
(5) Sort all labels lexicographically.

(6) Without loss of generality, let 𝐿 = (𝑥′, 𝑦′, 𝑧′, ID(𝑥′, 𝑦′)) be the lexicographically-�rst of

these triangle labels which contains at least one edge deletion (resp. edge insertion)

of an edge that is incident to at least one low-degree vertex.

(7) If (𝑢′,𝑣′,𝑤′) corresponds to the lexicographically-�rst label 𝐿 and ID(𝑢′,𝑣′) is the

�rst edge ID in the label that contains a low-degree vertex, then (𝑢′,𝑣′) performs the

following steps:

(a) Count the number of unique triangles (using the labels, one can count the unique

triangles) containing at least one edge deletion (resp. insertion) and at least one

low-degree vertex as 𝑇𝐷 (resp. 𝑇𝐼 ). We count using the generated labels for the

triangles enumerated in Item (2) of this procedure.

(b) Return 𝑇𝐷 (resp. 𝑇𝐼 ).
(8) If (𝑢′,𝑣′,𝑤′) is not equal to 𝐿 or ID(𝑢′,𝑣′) is not the �rst edge ID that contains a

low-degree vertex in the label, return 0.
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8.5.4 Analysis

In Theorem 8.5.4, we prove that the procedure correctly returns the exact number of 𝑘-

cliques in 𝐺. The proof is similar to AYZ except that each ℓ-clique can appear multiple

times in 𝐺′ so we need to normalize by the constant stated in Item (10) of Algorithm 31.

Theorem 8.5.4. Algorithm 31 correctly computes the exact number of cliques in a graph

𝐺 = (𝑉 ,𝐸) when 𝑘 mod 3 = 0.

Proof. We �rst show that all triangles in 𝐺′ represent a 𝑘-clique in 𝐺. A vertex exists

in 𝐺′ if and only if it is a (𝑘/3)-clique in 𝐺. Similarly, an edge exists in 𝐺′ if and only

if it connects two vertices in 𝐺′ that form a (2𝑘/3)-clique in 𝐺. Thus, a triangle con-

nects 3 pairs of 3 distinct (𝑘/3)-cliques. This implies that each pair represents a complete

subgraph, which necessarily means by the pigeonhole principle that the triangle repre-

sents a 𝑘-clique. Now we show that for each unique 𝑘-clique in 𝐺, there exist exactly(︀ 𝑘
𝑘/3

)︀(︀2𝑘/3
𝑘/3

)︀
triangles representing it in 𝐺′ . For each 𝑘-clique in 𝐺, there are

(︀ 𝑘
𝑘/3

)︀
distinct

(𝑘/3)-subcliques. Each of these subcliques is represented by a vertex in 𝐺′ . Each distinct

triple of subcliques will be a triangle in 𝐺′ . There are

(︀ 𝑘
𝑘/3

)︀
ways to choose the �rst sub-

clique,

(︀2𝑘/3
𝑘/3

)︀
ways to choose the second subclique, and

(︀𝑘/3
𝑘/3

)︀
ways to choose the third

subclique in the triple. Thus, the total number of duplicate triangles is

(︀ 𝑘
𝑘/3

)︀(︀2𝑘/3
𝑘/3

)︀
.

We conclude by proving that our algorithm �nds the exact number of triangles in 𝐺′ .
All triangles containing edge updates where at least one of its endpoints is low-degree

can be found by searching all of the neighbors of the low-degree vertex. All such neigh-

bors will be in ℒ, thus, searching through the entries in ℒ is enough to �nd all triangles

containing at least one low-degree vertex and an edge update to a low-degree vertex.

By Lemma 8.5.3, all triangles with a low-degree vertex, containing a single edge update

between high-degree vertices can be found via the count_new_low_degree_triangles

procedure. The same logic handles vertices that change status from high-degree to low-

degree, since we treat edges incident to these vertices as new edge insertions. Finally,

the procedure ensures that no duplicate triangles are added to the update triangle count

because the lexicographically �rst triangle counts all possible triangles representing the

same clique (and no others increment the count). Table𝐴 is used to compute (via transitive

closure) the number of triangles that contain no low-degree vertices. Thus, by computing

𝐴3
, we �nd the remaining triangles which only contain high-degree vertices. Finally, di-

viding by the total number of di�erent triangles that are created per unique clique gives

us the precise count of the number of 𝑘-cliques in 𝐺.

Cost We now analyze the work, depth, and space of the dynamic algorithm. Our anal-

ysis assumes that 𝑚𝜔𝑝/(1+𝜔𝑝) = 𝑂(𝑚𝑡ℓ) so that the 𝑂(𝑚𝑡ℓ) terms in our analysis are only

a�ected by a constant factor for our batch size of ℬ ≤ 𝑚𝜔𝑝/(1+𝜔𝑝)
. This is true for 𝑘 > 6

because 𝑡 ≥ 1/3 and ℓ ≥ 3𝜔𝑝/(1 +𝜔𝑝). For small ℓ we use the combinatorial algorithm

from Section 8.4, which is also faster.

First, we compute the work and depth bound of performing preprocessing on an initial

graph 𝐺 = (𝑉 ,𝐸) with 𝑚 edges. We can also apply this preprocessing directly without

running the update algorithm whenever we receive a batch of size ℬ > 𝑚𝜔𝑝/(1+𝜔𝑝)
.
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For preprocessing, we use a di�erent threshold 𝑚𝑡′ℓ
for low-degree and high-degree

vertices. Searching for all the triangles containing at least one low-degree vertex takes

𝑂
(︁
𝑚(1+𝑡′)ℓ

)︁
work by a similar calculation as in Lemma 8.5.9 and searching for triangles

containing all high-degree vertices takes 𝑂
(︁
𝑚(1−𝑡′)ℓ𝜔𝑝

)︁
work by Lemma 8.5.10. Thus, the

optimal value 𝑡′ is when 𝑚(1+𝑡′)ℓ =𝑚(1−𝑡′)ℓ𝜔𝑝
, which gives 𝑡′ =

𝜔𝑝−1
𝜔𝑝+1

as in [AYZ97].

Lemma 8.5.5. Preprocessing the graph 𝐺 = (𝑉 ,𝐸) with 𝑚 edges into 𝐺′ , creating the data

structures ℒ, 𝐴, and 𝒟, and counting the number of 𝑘-cliques takes 𝑂

(︃
𝑚

2𝑘𝜔𝑝
3(1+𝜔𝑝)

)︃
work and

𝑂(log𝑚) depth w.h.p., and𝑂
(︃
𝑚

2𝑘𝜔𝑝
3(1+𝜔𝑝)

)︃
space assuming a parallel matrix multiplication al-

gorithm with coe�cient𝜔𝑝. Using the fastest parallel matrix multiplication currently known

([LG14], Corollary 8.5.19), preprocessing takes 𝑂
(︁
𝑚0.469𝑘

)︁
work and 𝑂(log𝑚) depth w.h.p.,

and 𝑂(𝑚0.469𝑘) space.

Proof. The graph 𝐺′ has size 𝑂(𝑚ℓ) by Lemma 8.5.6. We can �nd all ℓ-cliques using

𝑂(𝑚ℓ/2) work and 𝑂(1) depth and all 2ℓ-cliques using 𝑂(𝑚ℓ) work and 𝑂(1) depth. Ini-

tializing the data structures ℒ and 𝒟 with 𝑂(𝑚ℓ) entries requires insertions into two

parallel hash tables. This takes 𝑂(𝑚ℓ) work and 𝑂(log*𝑚) depth w.h.p., and 𝑂(𝑚ℓ)

space. There are 𝑂

(︃
𝑚

2ℓ
(1+𝜔𝑝)

)︃
high-degree vertices which means that initializing 𝐴, the

adjacency matrix, requires creating a 2-level hash table with 𝑂

(︃
𝑚

4ℓ
(1+𝜔𝑝)

)︃
entries. This

takes 𝑂

(︃
𝑚

4ℓ
(1+𝜔𝑝)

)︃
work and 𝑂(log*𝑚) depth w.h.p., and 𝑂

(︃
𝑚

4ℓ
(1+𝜔𝑝)

)︃
space. Computing

𝐴3
requires 𝑂

(︃
𝑚

2ℓ𝜔𝑝
(1+𝜔𝑝)

)︃
work, 𝑂(log𝑚) depth, and 𝑂

(︃
𝑚

2ℓ𝜔𝑝
(1+𝜔𝑝)

)︃
space. Finally, counting

all the triangles with at least one low-degree vertex requires 𝑂

(︃
𝑚

2ℓ𝜔𝑝
(1+𝜔𝑝)

)︃
work and 𝑂(1)

depth (by performing 𝑂
(︁
𝑚(1+𝑡)ℓ

)︁
lookups in ℒ). By Corollary 8.5.19, 𝜔𝑝 = 2.373, and

since ℓ = 𝑘/3, preprocessing takes 𝑂
(︁
𝑚0.469𝑘

)︁
work, 𝑂(log𝑚) depth, and 𝑂(𝑚0.469𝑘)

space.

Next, we analyze the update procedure of our dynamic algorithm. To start, we bound

the number of vertices and edges in 𝐺′ (representing the number of ℓ and 2ℓ cliques in

𝐺, respectively) in terms of 𝑚 (the number of edges in 𝐺) below.

Lemma 8.5.6 ([CN85]). Given a graph 𝐺 = (𝑉 ,𝐸) with 𝑚 edges, the number of 𝑘-cliques
that 𝐺 can have is bounded by 𝑂(𝑚𝑘/2).

Lemma 8.5.7. 𝐺′ uses 𝑂(𝑚ℓ) space.

Proof. Each vertex in 𝐺′ represents an ℓ-clique. By Lemma 8.5.6, 𝐺′ has 𝑂(𝑚ℓ/2) vertices

and thus 𝑂(𝑚ℓ) edges.
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Before we compute the number of triangles in 𝐺′ , we must update 𝐺′ and the data

structures associated with 𝐺′ with our batch of updates.

Lemma 8.5.8. Updating 𝐺′ and the associated data structures ℒ and 𝐴 after a batch of

ℬ edge updates in 𝐺 takes 𝑂(ℬ𝑚ℓ−1 +ℬ𝑚(2−2𝑡)ℓ−1) amortized work and 𝑂(log*𝑚) depth
w.h.p., and 𝑂

(︁
𝑚ℓ +𝑚(2−2𝑡)ℓ

)︁
space.

Proof. In Item (1) we �rst add and/or delete vertices in 𝐺′ . Since each vertex in 𝐺′ rep-

resents a di�erent clique of size ℓ, one edge update in 𝐺 can result in 𝑂(𝑚(ℓ/2)−1) new

vertices (or vertex deletions) since given two vertices (the endpoints of the edge update)

that must be in the ℓ-clique, we only need to look for all (ℓ − 2)-cliques in 𝐺. For a batch

of size ℬ, the total number of vertices added or deleted in 𝐺′ is 𝑂(ℬ𝑚(ℓ/2)−1).
In Item (5)a and Item (5)b, updating the data structuresℒ,𝐴, and𝒟 by insertions/dele-

tions into parallel hash tables requires 𝑂(ℬ𝑚ℓ−1) amortized work and 𝑂(log*𝑚) depth

w.h.p. Recall that the number of edges in 𝐺′ is determined by the total number of 2ℓ-
cliques in 𝐺. One edge update can a�ect at most 𝑂(𝑚ℓ−1) 2ℓ-cliques in 𝐺, thus, given a

ℬ-batch of edge updates in 𝐺, there will be 𝑂(ℬ𝑚ℓ−1) edge updates in 𝐺′ , separated into

a deletion batch ℬ′𝐷 and an insertion batch ℬ′𝐼 .
We now analyze the cost for Item (5)c and Item (5)d. Adding/removing a row and

column from 𝐴 takes 𝑂(𝑚(1−𝑡)ℓ) amortized work. Since there are 𝑂(𝑚ℓ−1) edge updates

in 𝐺′ per update in 𝐺, the total work for resizing is 𝑂(𝑚(2−𝑡)ℓ−1) per edge update in 𝐺.

The work for adding/removing a vertex from ℒ is 𝑂(𝑚𝑡ℓ), and since there are 𝑂(𝑚ℓ−1)
edge updates per update in 𝐺, the total work is 𝑂(𝑚(1+𝑡)ℓ−1) per update in 𝐺. We must

have Ω(𝑚𝑡ℓ) updates in 𝐺′ before a vertex changes statuses (becomes high-degree if it

originally was low-degree and vice versa) and needs to update𝐴 andℒ. Therefore, we can

charge the work of updating 𝐴 and ℒ against Ω(𝑚𝑡ℓ) updates in 𝐺′ . Thus, the amortized

work for updating 𝐴 and ℒ given a batch of ℬ updates in 𝐺 is 𝑂
(︁
ℬ
(︁
𝑚(2−2𝑡)ℓ−1 +𝑚ℓ−1

)︁)︁
for Item (1) and Item (5). The depth is 𝑂(log*𝑚) w.h.p. due to hash table operations.

The data structures ℒ,𝒟, and 𝐴 use a combined𝑂(𝑚ℓ+𝑚(2−2𝑡)ℓ) space because there

are 𝑂(𝑚ℓ) edges in the graph and 𝐴 contains 𝑂(𝑚(2−2𝑡)ℓ) entries.

By Lemma 8.5.8, Item (2) takes 𝑂
(︁
ℬ𝑚ℓ−1

)︁
amortized work to determine the �nal de-

grees and 𝑂(ℬ𝑚ℓ−1 + ℬ𝑚(2−2𝑡)ℓ−1) amortized work to compute 𝐵′𝐼,𝐿 and 𝐵′𝐷,𝐻 . In to-

tal, Item (2) takes 𝑂(ℬ𝑚ℓ−1 +ℬ𝑚(2−2𝑡)ℓ−1) amortized work, 𝑂(log𝑚) depth (dominated

by computing the �nal degrees), and 𝑂(𝑚ℓ +𝑚(2−2𝑡)ℓ) space by Lemma 8.5.8. Item (4),

Item (7), Item (9), and Item (10) of the algorithm take 𝑂(1) work. The following lemmas

bound the cost for the remaining steps.

Lemma 8.5.9 below bounds the cost for Item (3) and Item (6). The proof is based on

counting the number of new edge updates necessary in 𝐺′ .

Lemma 8.5.9. Computing all new 𝑘-cliques represented by triangles that contain at least one
low-degree vertex in 𝐺′ takes 𝑂(ℬ𝑚(𝑡+1)ℓ−1) work and 𝑂(log*𝑚) depth w.h.p., and 𝑂(𝑚ℓ)
space.

Proof. We �rst bound the work necessary to perform Item (3) and Item (6) for new edge

insertions and deletions. Given one edge update in 𝐺, there can be at most 𝑂(𝑚ℓ−1) edge
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updates necessary in 𝐺′ by Lemma 8.5.6. For each of these edge updates, we consider

whether each edge update in 𝐺′ contains a low-degree vertex. By Lemma 8.5.3 and Theo-

rem 8.5.4, to �nd all updated triangles containing at least one low-degree vertex, it is only

necessary to consider edge updates to low-degree vertices. For every edge update to a

low-degree vertex, we search the neighbors of that low-degree vertex to see if new trian-

gles are formed/destroyed. Since each low-degree vertex has degree 𝑂(𝑚𝑡ℓ), this results

in a total of 𝑂(𝑚(𝑡+1)ℓ−1) work per update in 𝐺 to perform the search. For each trian-

gle found that contains the low-degree vertex, we need to perform the additional work

of computing every triangle that contains the set of vertices represented by the triangle,

sort the labels, and determine which triangle is responsible for incrementing the count of

triangles by all

(︀ 𝑘
𝑘/3

)︀(︀2𝑘/3
𝑘/3

)︀
triangles representing the same clique. This additional work is

done by calling count_updated_low_degree_triangles((𝑢′,𝑣′,𝑤′), (𝑢′,𝑣′)) on each

triangle (𝑢′,𝑣′,𝑤′) and each edge update (𝑢′,𝑣′). The total amount of additional work

done for each triangle that is passed into count_updated_low_degree_triangles is

then 𝑂
(︁
𝑘(3𝑒2)𝑘

)︁
, where the number of triangles corresponding to the same 𝑘-clique is

given by 𝑂
(︁
(3𝑒2)𝑘

)︁
and an additional 𝑂(𝑘(3𝑒2)𝑘) work is required to sort all the la-

bels. Since we assume that 𝑘 is constant, this results in 𝑂(1) additional work per call

to count_updated_low_degree_triangles. The depth is𝑂(log*𝑚) w.h.p. due to hash

table lookups.

Now we bound the work of performing Item (3) and Item (6) for edges that are ‘in-

serted’ or ‘deleted’ due to rebalancing. Suppose there are 𝑋 vertices that must be re-

balanced in this way. Each of these 𝑋 vertices must have degree 𝑂(𝑚𝑡ℓ) at the time of

rebalancing. Thus, the total work performed for these updates is 𝑂(𝑋𝑚2𝑡ℓ). However, in

order for a rebalancing on a vertex to happen, there must be Ω(𝑚𝑡ℓ) updates. Thus, if

𝑋 vertices are rebalanced, then there must be Ω(𝑋𝑚𝑡ℓ) updates. Hence, we can charge

the work of rebalancing to the Ω(𝑋𝑚𝑡ℓ) updates to obtain 𝑂(𝑚𝑡ℓ) amortized work per

update in 𝐺′ . Then, we obtain 𝑂(ℬ𝑚(𝑡+1)ℓ−1) amortized work for a ℬ batch updates to

𝐺. Rebalancing requires 𝑂(log*𝑚) depth w.h.p. due to hash table operations and 𝑂(𝑚ℓ)
space (the total number of edges in the graph).

Lemma 8.5.10 bounds the cost for Item (8) by using the matrix multiplication bounds

for the adjacency matrix containing high-degree vertices.

Lemma 8.5.10. Computing 𝐴3
using parallel matrix multiplication takes 𝑂(𝑚(1−𝑡)ℓ𝜔𝑝)

work, where 𝜔𝑝 is the parallel matrix multiplication constant, 𝑂(log𝑚) depth, and

𝑂(𝑚𝜔𝑝(1−𝑡)ℓ) space, assuming that there exists a parallel matrix multiplication algorithm

with coe�cient 𝜔𝑝 and using 𝑂(log𝑛) depth and 𝑂(𝑛𝜔𝑝) space given 𝑛×𝑛 matrices.

Proof. There are𝑂(𝑚(1−𝑡)ℓ) high-degree vertices because each high-degree vertex has de-

greeΩ(𝑚𝑡ℓ) and there are𝑂(𝑚ℓ) edges in𝐺′ . Since the table 𝐴 is an adjacency matrix on

the high-degree vertices, by Corollary 8.5.19, parallel matrix multiplication can be done

in 𝑂(𝑚(1−𝑡)ℓ𝜔𝑝) work.

Lemma 8.5.11 bounds the cost for Item (11). The proof is based on amortizing the cost

for reconstruction over Ω(𝑚) updates.
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Lemma 8.5.11. Item (11) requires 𝑂(|ℬ|𝑚(2−2𝑡)ℓ−1 + |ℬ|𝑚ℓ−1) amortized work and

𝑂(log*𝑚) depth w.h.p., and 𝑂(𝑚(2−2𝑡)ℓ +𝑚ℓ) space.

Proof. We reconstruct 𝐴 from scratch, which has one entry for every pair of high-degree

vertices, which takes 𝑂(𝑚2(1−𝑡)ℓ) = 𝑂(𝑚(2−2𝑡)ℓ) work and space. However, this is amor-

tized against Ω(𝑚) updates, and so the amortized work is 𝑂(𝑚(2−2𝑡)ℓ−1) per update. The

work and space for creating ℒ can be bounded by 𝑂(𝑚ℓ), the number of edges in 𝐺′ .
Amortized againstΩ(𝑚) updates gives𝑂(𝑚ℓ−1) work per update. The depth is𝑂(log*𝑚)
w.h.p. using parallel hash table operations.

Given these costs, we can now compute the optimal value of 𝑡 in terms of𝜔𝑝 that min-

imizes the work. Note that here we compute for 𝑡 assuming ℬ = 1 because to adaptively

change our threshold requires too much work in terms of rebalancing the data structures.

However, if we have a �xed batch size, ℬ, we can further optimize our threshold 𝑡 to take

into account the �xed batch size.

Lemma 8.5.12. 𝑡 =
3−𝑘+𝑘𝜔𝑝
𝑘+𝑘𝜔𝑝

gives us an optimal work bound assuming ℬ = 1.

Proof. From Lemma 8.5.8, Lemma 8.5.9, Lemma 8.5.10, and Lemma 8.5.11, we have that

the work is 𝑂(ℬ𝑚(𝑡+1) 𝑘3−1 +𝑚
(1−𝑡)𝑘𝜔𝑝

3 ) w.h.p. (the 𝑂(ℬ𝑚(2−2𝑡)𝑙−1) term is dominated by

the 𝑂(ℬ𝑚(1+𝑡)𝑙−1) term since 𝜔𝑝 ≥ 2 implies 𝑡 ≥ 1/3). Assuming ℬ = 1, balancing the

two sides of the equation yields:

𝑚
(1−𝑡)𝑘𝜔𝑝

3 =𝑚(𝑡+1) 𝑘3−1.

Solving for 𝑡 gives

𝑡 =
3− 𝑘 + 𝑘𝜔𝑝
𝑘 + 𝑘𝜔𝑝

.

Plugging in our value for 𝑡 from Lemma 8.5.12, we prove Theorem 8.5.1 and Corol-

lary 8.5.2 for the cost of our algorithm when 0 < 𝑚 ≤𝑚𝜔𝑝/(1+𝜔𝑝)
.

8.5.5 Accounting for 𝑘 mod 3 , 0

We now modify the algorithm above to account for all values 𝑘 following the algorithm

presented in [EG04]. This requires several changes to how we construct our graph𝐺′ from

a graph𝐺 = (𝑉 ,𝐸), resulting in changes to our data structures which we detail below. We

recall the notation 𝑅(𝑥) for vertex 𝑥 ∈ 𝐺′ to denote the vertices in 𝐺 that 𝑥 represents.

Construction of 𝐺′

For 𝑘 mod 3 , 0, the fundamental problem we face in this case in constructing the graph

𝐺′ is that triangles in the graph 𝐺′ representing cliques of size

⌊︁
𝑘
3

⌋︁
no longer create 𝑘-

cliques. In fact, they now create (𝑘 − 1)-cliques or (𝑘 − 2)-cliques for 𝑘 mod 3 = 1 and

𝑘 mod 3 = 2, respectively. We modify the creation of 𝐺′ in the two following ways to

account for this issue:
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𝑘 mod 3 = 1: In this case, we create two sets of vertices. One set, 𝐴, of vertices rep-

resents all

(︁
𝑘−1
3

)︁
-cliques in the graph 𝐺. Edges exist between 𝑣1,𝑣2 ∈ 𝐴 if and only if

the vertices, 𝑅(𝑣1) and 𝑅(𝑣2), in the

(︁
𝑘−1
3

)︁
-cliques represented by 𝑣1 and 𝑣2 form a

2(𝑘−1)
3

clique and there are no duplicate vertices, i.e., 𝑅(𝑣1) ∩ 𝑅(𝑣2) = ∅. We create a second

set of vertices 𝐵 which contains vertices which represent cliques of size
𝑘+2
3 . Edges ex-

ist between 𝑣 ∈ 𝐴 and 𝑤 ∈ 𝐵 if and only if 𝑅(𝑣) and 𝑅(𝑤) form a

(︁
2𝑘+1
3

)︁
-clique and

𝑅(𝑣)∩𝑅(𝑤) =∅.

𝑘 mod 3 = 2: In this case, we still create two sets of vertices but 𝐴 instead represents(︁
𝑘+1
3

)︁
-cliques in the graph 𝐺. Edges exist between 𝑣1,𝑣2 ∈ 𝐴 if and only if 𝑅(𝑣1)∪𝑅(𝑣2)

form a

(︁2(𝑘+1)
3

)︁
-clique and 𝑅(𝑣1)∩𝑅(𝑣2) =∅. We create a second set of vertices 𝐵 which

contains vertices which represent cliques of size
𝑘−2
3 . Edges exist between 𝑣 ∈ 𝐴 and

𝑤 ∈ 𝐵 if and only if 𝑅(𝑣) and 𝑅(𝑤) form a

(︁
2𝑘−1
3

)︁
-clique and 𝑅(𝑣)∩𝑅(𝑤) =∅.

We �rst prove the properties the new graph 𝐺′ has, namely the number of vertices it

contains as well as the number of edges in the graph.

Lemma 8.5.13. 𝐺′ constructed as in Section 8.5.5 contains𝑂
(︁
𝑚

𝑘+2
6
)︁
vertices and𝑂

(︁
𝑚

2𝑘+1
6

)︁
edges if 𝑘 mod 3 = 1. 𝐺′ contains 𝑂

(︁
𝑚

𝑘+1
6
)︁
vertices and 𝑂

(︁
𝑚

𝑘+1
3
)︁
edges if 𝑘 mod 3 = 2.

Proof. When 𝑘 mod 3 = 1, the number of vertices is upper bounded (asymptotically) by

the number of

(︁
𝑘+2
3

)︁
-cliques in the graph. By Lemma 8.5.6, the number of vertices is then

bounded by𝑂
(︁
𝑚

𝑘+2
6
)︁
. The number of edges is bounded by the number of

(︁
2𝑘+1
3

)︁
-cliques in

the graph which is𝑂
(︁
𝑚

2𝑘+1
6

)︁
. Similarly, when 𝑘 mod 3 = 2, by Lemma 8.5.6, the number

of vertices and edges are bounded by 𝑂
(︁
𝑚

𝑘+1
6
)︁

and 𝑂
(︁
𝑚

𝑘+1
3
)︁
, respectively.

Data Structure and Algorithm Changes

The major data structure change is to rede�ne the high-degree and low-degree vertices

in terms of the number of edges in the graph. This means that low-degree is de�ned

as having a degree less than
𝑀
𝑡( 2𝑘+16 )
2 and high-degree as greater than

3𝑀𝑡( 2𝑘+16 )
2 for the

𝑘 mod 3 = 1 case; similarly we de�ne low-degree to be less than
𝑀
𝑡( 𝑘+13 )
2 and high-degree

to be greater than
3𝑀𝑡( 𝑘+13 )

2 for the 𝑘 mod 3 = 2 case.

Another key di�erence between this case and the case when 𝑘 is divisible by 3 is that

the number of duplicate cliques is di�erent for these two cases. For the 𝑘 mod 3 = 1
case, each 𝑘-clique in 𝐺 will be represented by

(︀ 𝑘
(𝑘+2)/3

)︀(︀(2𝑘−2)/3
(𝑘−1)/3

)︀
triangles found by

the algorithm. For the 𝑘 mod 3 = 2 case, each 𝑘-clique in 𝐺 will be represented by(︀ 𝑘
(𝑘−2)/3

)︀(︀(2𝑘+2)/3
(𝑘+1)/3

)︀
triangles. Thus, at the end of our algorithm, we must divide the count

of the triangles by their respective number of duplicates.

The rest of the algorithm remains the same as before, except that we solve for di�erent

values of 𝑡 depending on the case. Since the proofs for obtaining the following results are
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nearly identical to the ones for 𝑘 mod 3 = 0, we do not restate the proofs and only give

our results.

Lemma 8.5.14. For the case when 𝑘 mod 3 = 1, there exists 𝑂
(︁
𝑚

2𝑘+1
6

)︁
edges in the graph

and solving for the optimal value of 𝑡 (assuming ℬ = 1) gives 𝑡 =
2𝑘𝜔𝑝−2𝑘+𝜔𝑝+5
2𝑘𝜔𝑝+2𝑘+𝜔𝑝+1

. For the case

when 𝑘 mod 3 = 2, there exists 𝑂
(︁
𝑚

𝑘+1
3
)︁
edges in the graph and solving for the optimal

value of 𝑡 gives 𝑡 =
𝑘𝜔𝑝−𝑘+𝜔𝑝+2
𝑘𝜔𝑝+𝑘+𝜔𝑝+1

.

Using our values for 𝑡, we can obtain our �nal theorem, Theorem 8.5.15, for the work

and depth bounds for these two cases.

Theorem 8.5.15. Our fast matrix multiplication based 𝑘-clique algorithm takes

𝑂

(︃
min

(︃
ℬ𝑚

2(𝑘−1)𝜔𝑝
3(𝜔𝑝+1) , (ℬ +𝑚)

(2𝑘+1)𝜔𝑝
3(𝜔𝑝+1)

)︃)︃
work and 𝑂(log(𝑚 + ℬ)) depth w.h.p., and

𝑂

(︃
(ℬ +𝑚)

(2𝑘+1)𝜔𝑝
3(𝜔𝑝+1)

)︃
space assuming a parallel matrix multiplication algorithm with co-

e�cient 𝜔𝑝 when 𝑘 mod 3 = 1, and 𝑂

(︃
min

(︃
ℬ𝑚

(2𝑘−1)𝜔𝑝
3(𝜔𝑝+1) , (ℬ +𝑚)

2(𝑘+1)𝜔𝑝
3(𝜔𝑝+1)

)︃)︃
work and

𝑂(log(𝑚+ℬ)) depth w.h.p., and 𝑂

(︃
(ℬ +𝑚)

2(𝑘+1)𝜔𝑝
3(𝜔𝑝+1)

)︃
space when 𝑘 mod 3 = 2.

Corollary 8.5.16. Using Corollary 8.5.19 with𝜔𝑝 = 2.373, we obtain a parallel fast matrix

multiplication 𝑘-clique algorithm that takes 𝑂
(︁
min

(︁
ℬ𝑚0.469𝑘−0.469, (ℬ +𝑚)0.469𝑘+0.235

)︁)︁
work and 𝑂(log𝑚) depth w.h.p., and 𝑂

(︁
(ℬ +𝑚)0.469𝑘+0.235

)︁
space when 𝑘 mod 3 = 1,

and 𝑂
(︁
min

(︁
ℬ𝑚0.469𝑘−0.235, (ℬ +𝑚)0.469𝑘+0.469

)︁)︁
work and 𝑂(log𝑚) depth w.h.p., and

𝑂
(︁
(ℬ +𝑚)0.469𝑘+0.469

)︁
space when 𝑘 mod 3 = 2.

8.5.6 Parallel Fast Matrix Multiplication

In this section, we show that tensor-based matrix multiplication algorithms (including

Strassen’s algorithm) can be parallelized in 𝑂(log𝑛) depth and 𝑂(𝑛𝜔) work. Such tech-

niques are used for algorithms that achieve the best currently known matrix multiplica-

tion exponents [Wil12, LG14]. We assume, as is common in models such as the arithmetic

circuit model, that �eld operations can be performed in constant work. We refer read-

ers interested in learning more about current techniques in fast matrix multiplication

to [Blä13, Alm19].

Before we prove our main parallel result in this section, we �rst de�ne the matrix

multiplication tensor as used in previous literature.

De�nition 8.5.17 (Matrix Multiplication Tensor (see, e.g., [Alm19])). For pos-

itive integers 𝑎,𝑏,𝑐, the matrix multiplication tensor ⟨𝑎,𝑏,𝑐⟩ is a tensor over
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{︁
𝑥𝑖𝑗

}︁
𝑖∈[𝑎],𝑗∈[𝑏]

,
{︁
𝑦𝑗𝑘

}︁
𝑗∈[𝑏],𝑘∈[𝑐]

, {𝑧𝑘𝑖}𝑘∈[𝑐],𝑖∈[𝑎], where

⟨𝑎,𝑏,𝑐⟩ =
𝑎∑︁
𝑖=1

𝑏∑︁
𝑗=1

𝑐∑︁
𝑘=1

𝑥𝑖𝑗𝑦𝑗𝑘𝑧𝑘𝑖 .

The matrix multiplication tensor can be seen as a generating function for 𝐴×𝐵multi-

plication where the coe�cients of the 𝑧𝑘𝑖 terms are exactly the (𝑖,𝑘) entries in the matrix

product 𝐴×𝐵 where 𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝𝑥11 . . . 𝑥1𝑏
. . . . . . . . .
𝑥𝑎1 . . . 𝑥𝑎𝑏

⎞⎟⎟⎟⎟⎟⎟⎠ and 𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎝𝑦11 . . . 𝑦1𝑐
. . . . . . . . .
𝑦𝑏1 . . . 𝑦𝑏𝑐

⎞⎟⎟⎟⎟⎟⎟⎠.

Current matrix multiplications algorithms use this fact to obtain the best known ex-

ponents. The proof of the following lemma closely follows the proof of Proposition 4.1

given in [Alm19].

Lemma 8.5.18. Let 𝑅 (⟨𝑞,𝑞,𝑞⟩) ≤ 𝑟 (over a �eld F) be the rank of the matrix multiplication

tensor ⟨𝑞,𝑞,𝑞⟩. Assuming that �eld operations take 𝑂(1) work, then, there exists a parallel

matrix multiplication algorithm that performs 𝐴 × 𝐵 matrix multiplication (where 𝐴,𝐵 ∈
F𝑛×𝑛) over F using 𝑂

(︁
𝑛log𝑞(𝑟)

)︁
work and 𝑂((log𝑟 + log𝑞) log𝑞𝑛) depth using 𝑂

(︁
𝑛log𝑞(𝑟)

)︁
space.

Proof. By de�nition of rank, since 𝑅 (⟨𝑞,𝑞,𝑞⟩) ≤ 𝑟 ,

⟨𝑞,𝑞,𝑞⟩ =
𝑟∑︁
ℓ=1

⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑖,𝑗∈[𝑞]

𝑎𝑖𝑗ℓ𝑥𝑖𝑗

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑗,𝑘∈[𝑞]

𝑏𝑗𝑘ℓ𝑦𝑗𝑘

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ ∑︁
𝑘,𝑖∈[𝑞]

𝑐𝑘𝑖ℓ𝑧𝑘𝑖

⎞⎟⎟⎟⎟⎟⎟⎠
for some coe�cients 𝑎𝑖𝑗ℓ,𝑏𝑗𝑘ℓ, 𝑐𝑘𝑖ℓ ∈ F. Computing this matrix multiplication tensor re-

quires at most 𝑂
(︁
𝑟𝑞2

)︁
�eld operations.

Using this information, we perform parallel matrix multiplication via the following

recursive algorithm. We assume that 𝑛 is a power of 𝑞; otherwise, we can pad 𝐴 and 𝐵
with 0’s until such a condition is satis�ed–this would increase the dimensions by at most

a factor of 𝑞.

Partition the padded matrices 𝐴 and 𝐵 into 𝑞×𝑞 block matrices where each block has

size 𝑛/𝑞×𝑛/𝑞. This algorithm performs, in parallel, the following linear combinations for

each ℓ,

𝐴′ℓ =
∑︁
𝑖,𝑗∈[𝑞]

𝑎𝑖𝑗ℓ𝐴𝑖𝑗

𝐵′ℓ =
∑︁
𝑗,𝑘∈[𝑞]

𝑏𝑗𝑘ℓ𝐵𝑗𝑘

where 𝐴𝑖𝑗 and 𝐵𝑗𝑘 are the 𝑛/𝑞 × 𝑛/𝑞 blocks in 𝐴 and 𝐵, respectively. Such operations

require 𝑂(𝑟𝑞2) operations to perform; however, all such multiplication operations can be
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done in parallel, and the summation of the results can be done in𝑂(log𝑞) depth, resulting

in 𝑂(log𝑞) depth.

Then, for each ℓ ∈ [𝑟], we compute𝐶′ℓ = 𝐴
′
ℓ×𝐵

′
ℓ by performing parallel𝑛/𝑞×𝑛/𝑞matrix

multiplication recursively on𝐴′ℓ and 𝐵′ℓ where the base case is 𝑞×𝑞matrix multiplication.

All �eld operations in the same level of the recursion can be performed in parallel. There

are 𝑂(log𝑞𝑛) levels of recursion. Each level of recursion computes a number of �eld

operations in parallel in 𝑂(log𝑞) depth as in the top level.

Finally, after obtaining the results 𝐶′ℓ of the recursive calls, we compute

𝐶𝑘𝑖 =
∑︁
ℓ∈[𝑟]

𝑐𝑘𝑖ℓ𝐶
′
ℓ,𝑘𝑖

for all 𝑘, 𝑖 ∈ [𝑞] where 𝐶′ℓ,𝑘𝑖 are the results we obtain from our recursive calls. The blocks

𝐶𝑘𝑖 for all 𝑘, 𝑖 ∈ [𝑞] are the results of our matrix multiplication 𝐴×𝐵.

This �nal step can compute in parallel the blocks 𝐶𝑘𝑖 for all 𝑘, 𝑖 ∈ [𝑞] in𝑂(log𝑟) depth

(assuming that we have the results 𝐶′ℓ,𝑘𝑖) since the multiplication operations can be done

in parallel and the summation of the elements in the resulting matrices can be done in

𝑂(log𝑟) depth.

Thus, the depth required for this algorithm is 𝑂((log𝑟 + log𝑞) log𝑞𝑛).
To compute the work and space usage, we compute the total number of �eld operations

performed, which is 𝑂(𝑛2) per level of the recursion. For each level of recursion, there

are 𝑟 calls per subproblem of the recursion. Since we assume that each �eld operation is

𝑂(1) work, this results in total work given by

𝑊 (𝑛) = 𝑟 ·𝑊 (𝑛/𝑞) +𝑂(𝑛2).

Solving the recurrence gives 𝑊 (𝑛) = 𝑂
(︁
𝑛log𝑞 𝑟

)︁
work for the entire algorithm. The

space usage is also 𝑂
(︁
𝑛log𝑞 𝑟

)︁
.

Using Lemma 8.5.18, we obtain the following parallel matrix multiplication bounds:

Corollary 8.5.19. There exists a parallel matrix multiplication algorithm based on [Wil12,

LG14] that multiplies two 𝑛 × 𝑛 matrices with 𝑂
(︁
𝑛2.373

)︁
work and 𝑂(log𝑛) depth, using

𝑂
(︁
𝑛2.373

)︁
space.

8.6 Experimental Results

Experimental Setup Our experiments are performed on a 72-core Dell PowerEdge

R930 (with two-way hyper-threading) with 4 × 2.4GHz Intel 18-core E7-8867 v4 Xeon

processors (with a 4800MHz bus and 45MB L3 cache) and 1TB of main memory. Our

programs use a work-stealing scheduler that we implemented [BAD20]. The scheduler

is implemented similarly to Cilk for parallelism. Our programs are compiled using g++
(version 7.3.0) with the -O3 �ag.
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Graph Dataset Num. Vertices Num. Edges

Orkut 3,072,627 234,370,166

Twitter 41,652,231 2,405,026,092

rMAT 16,384 121,362,232

Table 8.1: Graph inputs, including number of vertices and edges.

𝑚 unique edges 𝑚 unique edges

2× 106 1,569,454 4× 108 55,395,676

2× 107 9,689,644 8× 108 74,698,492

1× 108 27,089,362 3.2× 109 121,362,232

2× 108 39,510,764

Table 8.2: Number of unique edges in the �rst 𝑚 edges from the rMAT generator.

Graph Data Table 8.1 lists the graphs that we use. com-Orkut is an undirected graph

of the Orkut social network [LS16]. Twi�er is a directed graph of the Twitter net-

work [KLPM10]. We symmetrize the Twitter graph for our experiments. For some of

our experiments which ingest a stream of edge updates, we sample edges from an rMAT

generator [CZF04] with 𝑎 = 0.5,𝑏 = 𝑐 = 0.1,𝑑 = 0.1 to perform the updates. The update

stream can have duplicate edges, and Table 8.2 reports the number of unique edges found

in pre�xes of various sizes of the rMAT stream that we generate. The unique edges in the

full stream represents the rMAT graph described in Table 8.1.

8.6.1 Our Implementation

Parallel Primitives We implemented a multicore CPU version of our algorithm using

the Graph Based Benchmark Suite (GBBS) [DBS18b], which includes a number of useful

parallel primitives, including high-performance parallel sorting, and primitives such as

pre�x sum, reduce, and �lter [Jaj92]. In what follows, a �lter takes an array 𝐴 and a

predicate function 𝑓 , and returns a new array containing 𝑎 ∈ 𝐴 for which 𝑓 (𝑎) is true, in

the same order that they appear in 𝐴. Our implementations use the atomic compare-and-

swap and atomic-add instructions available on modern CPUs.

Implementation For 𝒯 , we used the concurrent linear probing hash table by Shun

and Blelloch [SB14]. For each of the data structuresℋℋ,ℋℒ, ℒℋ, and ℒℒ, we created an

array of size 𝑛, storing (possibly null) pointers to hash tables [SB14]. For an edge (𝑢,𝑣) in

one of the data structures, the value 𝑣 will be stored in the hash table pointed to by the

𝑢’th slot in the array. We also tried using hash tables for both levels, but found it to be

slower in practice. For deletions, we used the folklore tombstone method. In this method,

when an element is deleted, we mark the slot in the table as a tombstone, which is a

special value. When inserting, we can insert into a tombstone, but we have to �rst check

until seeing an empty slot to make sure that we are not inserting a duplicate key. In the

preprocessing phase of the algorithm, instead of using approximate compaction, we used

�lter. To �nd the last update for duplicate updates, we use a parallel sample sort [SBF
+

12]
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Batch Size

Algorithm Graph 2× 103 2× 104 2× 105 2× 106 𝑚

Ours (INS)

Orkut 1.90e-3 4.76e-3 0.0235 0.168 –

Twitter 2.11e-3 7.10e-3 0.0430 0.366 –

rMAT 6.42e-4 2.09e-3 8.62e-3 0.0618 –

Makkar et al. (INS)

[MBG17]

Orkut 9.76e-4 2.69e-3 0.0143 0.0830 –

Twitter time-out 0.0644 0.437 3.88 –

rMAT 1.98e-3 6.90e-3 0.012 0.0335 –

Ours (DEL)

Orkut 1.80e-3 4.37e-3 0.0189 0.124 –

Twitter 2.14e-3 7.76e-3 0.0486 0.385 –

rMAT 6.48e-4 2.23e-3 9.21e-3 0.0723 –

Makkar et al. (DEL)

[MBG17]

Orkut 4.63e-4 1.46e-3 8.12e-3 0.0499 –

Twitter time-out 0.0597 0.401 3.64 –

rMAT 4.47e-4 1.81e-3 5.12e-3 0.027 –

Static [ST15]

Orkut – – – – 1.027

Twitter – – – – 32.1

rMAT – – – – 14.7

Table 8.3: Running times (seconds) for our parallel batch-dynamic triangle counting al-

gorithm and Makkar et al. [MBG17]’s algorithm on 72 cores with hyper-threading. We

apply the edges in each graph as batches of edge insertions (INS) or deletions (DEL) of

varying sizes, ranging from 2×103 to 2×106, and report the average time for each batch

size. The update time of Makkar et al. algorithm for Twitter batch size 2×103 is missing

because the expriment timed out. We also report the update time for the state-of-the-art

static triangle counting algorithm of Shun and Tangwongsan [ST15], which processes a

single batch of size 𝑚. Note that for the Twitter and Orkut datasets, all of the edges are

unique. However, for the rMAT dataset, batches can have duplicate edges. For each batch

size of each dataset, we list the fastest time in bold.

to sort the edges �rst by both endpoints, and then by timestamp. Then we use �lter to

remove duplicate updates. When we initialize the dynamic data structures, a vertex is

considered high-degree if it has degree greater than 2𝑡1 and low-degree otherwise.

During minor rebalancing, a vertex only changes its status if its degree drops below 𝑡1
or increases above 𝑡2 due to the batch update. In major rebalancing, we merge our dynamic

data structure and the updated edges into a compressed sparse row (CSR) format graph

and use the static parallel triangle counting algorithm by Shun and Tangwongsan [ST15]

to recompute the triangle count. We then build a new dynamic data structure from the CSR

graph. We also implement several natural optimizations which improve performance. To

reduce the overhead of using hash tables, we use an array to store the neighbors of vertices

with degree less than a certain threshold (we used 128 in our experiments). Moreover,

we only keep a single entry for (𝑢,𝑣) and (𝑣,𝑢) in the wedges table 𝒯 .

Experiments Table 8.3 report the parallel running times on varying insertion and dele-

tion batch sizes for our implementation of our new parallel batch-dynamic triangle count-

ing algorithm designed. For the two graphs based on static graph inputs (Orkut and Twit-

ter), we generate updates for the algorithm by representing the edges of the graph as an
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Figure 8-1: Running times of our parallel batch-dynamic triangle counting algorithm with

respect to thread count (the 𝑥-axis is in log-scale) on the Orkut (average time across all

batches) and Twitter (running time for the 6th batch) graph for both insertion (red dashed

line) and deletion (blue solid line). “144” indicates 72 cores with hyper-threading. The

experiment is run with a batch size of 2× 106. The parallel speedup on 144 threads over

a single thread is displayed.

array, and randomly permuting them. The algorithm is then run using batches of the

speci�ed size. For insertions, we start with an empty graph and apply batches from the

beginning to the end of the permuted array. For deletions, we start with the full graph

and apply batches from the end to the beginning of the permuted array. The table also re-

ports the running time for the GBBS implementation of the state-of-the-art static triangle

counting algorithm of Shun and Tangwongsan [ST15, DBS18b].

Across varying batch sizes, our algorithm achieves throughputs between 1.05–16.2

million edges per second for the Orkut graph, 0.935–5.46 million edges per second for the

Twitter graph, and 3.08–32.4 million edges per second for the rMAT graph. We obtain

much higher throughput for the rMAT graph due to the large number of duplicate edges

found in this graph stream, as illustrated in Table 8.2. We observe that in all cases, the av-

erage time for processing a batch is smaller than the running time of the static algorithm.

The maximum speedup of our algorithm over the static algorithm is 22709× for the rMAT

graph with a deletion batch of size 2 × 103, but in general our algorithm achieves good

speedups across the entire range of batches that we evaluate.

Lastly, Fig. 8-1 shows the parallel speedup of our algorithm with varying thread-count

on the Orkut and Twitter graph, for a �xed batch size of 2×106. Our algorithm achieves

a maximum of 74.73× speedup using 72 cores with hyper-threading for this experiment.

8.6.2 Comparison with Existing Algorithms

Comparison with Ediger et al We compared our implementation with a shared-

memory implementation of the Ediger et al. algorithm [EJRB10], which is implemented

as part of the STINGER dynamic graph processing system [EMRB12]. Unfortunately, we

found that their implementation is much slower than ours due to bottlenecks in the up-

date time for the underlying dynamic graph data structure. We note that recent work
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on streaming graph processing observed similar results for using STINGER [DBS19]. To

obtain a fair comparison, we chose to focus on implementing a more recent GPU batch-

dynamic triangle counting algorithm ourselves, which we discuss next.

Comparison with Makkar et al The Makkar et al. algorithm [MBG17] is a state-of-

the-art parallel batch-dynamic triangle counting implementation designed for GPUs. To

the best of our knowledge, there is no multicore implementation of this algorithm, and

so in this chapter we implement an optimized multicore version of their algorithm. The

algorithm works as follows. First, their algorithm separates the batch of updates into

batches for insertions and deletions. Then, for each batch of updates, it creates an update

graph, �̂�, for each batch consisting of only the updates within each batch. Then, it merges

the updates from each batch with the original edges in the graph to create an updated

graph for each of the batches, 𝐺′ . Note that this graph contains both the edges previously

in the graph, as well as the new edges.

The merging process to construct𝐺′ �rst sorts the batch to obtain sorted lists of neigh-

bors to add/delete from the adjacency lists of vertices in the graph. Then, the algorithm

performs a simple linear-work procedure to merge each existing adjacency list with the

sorted updates. In particular, doing 𝑡 edge updates on a vertex with degree 𝑑 takes𝑂(𝑑+𝑡)
work. Finally, the algorithm counts the triangles by intersecting the adjacency lists of

the endpoints of each edge in the batch. For each edge (𝑢,𝑣), they intersect 𝐺′(𝑢) with

𝐺′(𝑣), 𝐺′(𝑢) with �̂�(𝑣), and �̂�(𝑢) with �̂�(𝑣). The count of the number of triangles can

be obtained from the number of intersections obtained from each of these cases using a

simple inclusion-exclusion formula. They provide a further optimization by only inter-

secting truncated adjacency lists in some of the cases where a truncated adjacency list is

one where the list only contains vertices with IDs less than the ID of the vertex that the

adjacency list belongs to. Their algorithm has a worst case work bound of 𝑂(𝑛2).

Implementation We developed a new multicore implementation of the Makkar et al.

algorithm using the same parallel primitives and framework described earlier for the im-

plementation of our algorithm. We implemented several optimizations that improved per-

formance. First, we handle vertices with degree lower than 16 by storing their incident

edges in a special array of size 16𝑛, and only allocate memory for vertices with larger

degree. Second, we note that their algorithm does not specify how to handle redundant

insertions that are already present in the graph. We remove these edge updates by mod-

ifying the merge algorithm that constructs 𝐺′ from 𝐺. Speci�cally, during the merge, if

we identify that a given edge is already present in 𝐺, we mark it in the sorted sequence

of batch updates that we are merging in. Removing these marked updates to construct �̂�
without redundant updates is done by using a parallel �lter.

Performance Comparison Table 8.3 shows the running times of the Makkar et al. al-

gorithm on batches of insertions and deletions of di�erent sizes. The data points for the

Twitter graph are also plotted in Fig. 8-2. We observe that the Makkar et al. algorithm is

faster than our algorithm on the Orkut graph, especially for large batches. On the other

hand, for the Twitter graph, our algorithm is consistently faster for both insertions and
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Figure 8-2: This �gure plots the average insertion and deletion round times for each batch

size (log-log scale) on Twitter using 72 cores with hyper-threading. The plot is in log-

log scale. The lines for our algorithm are solid (blue for insertion and red for deletion)

while the lines for Makkar et al. algorithm are dashed (green for insertion and yellow for

deletion). The update time of Makkar et al. algorithm for Twitter batch size 2 × 103 is

missing because the experiment timed out (due to cumulative runtime being too large).

deletions across all batch sizes. This is because there are no vertices with very high degree

in the Orkut graph, and so the Makkar et al. algorithm does less work in merging adja-

cency lists with updates, while the Twitter graph has vertices with extremely high degree,

which are costly to merge. Both algorithms are signi�cantly faster than simply applying

the static triangle counting algorithm for the range of batch sizes that we considered.

Next, we evaluate the performance of insertion batches in our algorithm and the

Makkar et al. algorithm on the synthetic rMAT graph with 3.2 billion generated edges

(which have duplicates). This synthetic experiment allows us to study how both algo-

rithms perform as the graph becomes more dense. We evaluate the performance for dif-

ferent insertion batch sizes. The experiment uses pre�xes of the rMAT graph (the number

of unique edges per pre�x is shown in Table 8.2) to control the density of the graph. The

vertex set in this experiment is �xed, and thus a larger number of unique edges corre-

sponds to a denser graph.

Fig. 8-3 plots the running time of both implementations for varying batch sizes as a

function of the graph density. We observe that for small batch sizes, the performance of

the Makkar et al. algorithm degrades signi�cantly as the graph grows more dense and

contains more high-degree vertices. On the other hand, our algorithm’s performance

generally does not degrade as the graph grows denser, across all batch sizes. We also

signi�cantly outperform the Makkar et al. algorithm for small batch sizes. Speci�cally,

we obtain a maximum speedup of 3.31× for a batch of size 2 × 104. This is because

the overhead of updating of high-degree vertices in the Makkar et al. algorithm becomes

relatively higher, as work proportional to the vertex degree must be done regardless of

the number of new incident edges.
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Figure 8-3: Comparison of the performance of our implementation (DLSY, solid line) and

Makkar et al. algorithm [MBG17] (makkar, dotted line) for batches of insertions. The

�gure shows the average batch time for di�erent batch sizes on the rMAT graph with

varying pre�xes of the generated edge stream to control density. The number of unique

edges in the pre�x is shown on the 𝑥-axis. The number of vertices is �xed at 16,384. The

dark blue, red, green, and light blue lines are for batches of size 2×103, 2×104, 2×105,

and 2 × 106, respectively. We see that our new algorithm is faster for small batches and

on denser graphs.
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8.7 Open Questions

There are a number of theoretical and practical questions resulting from our triangle and

clique counting results:

1. For bounded arboricity graphs, we give a 𝑂(|ℬ|(𝑚 + |ℬ|)𝛼𝑘−4) expected work and

𝑂(log2𝑛) depth whp, and𝑂(𝑚+ |ℬ|) space algorithm. Can we do better in terms of

work and/or depth?

2. Can we apply the techniques used to obtain our batch-dynamic 𝑂(
√
𝑚) amortized

work, 𝑂(1) depth triangle counting algorithm to larger cliques, to obtain better

amortized work for e.g., 4-cliques or 5-cliques?

3. We did not implement our matrix multiplication based clique counting algorithm

so we do not know how well it performs in real dense networks. It would be in-

teresting to test whether it performs better than the trivial combinatorial algorithm

for counting larger cliques dynamically in dense networks such as the neuronal

network.

8.8 Conclusion

In this chapter, we have given new dynamic algorithms for the 𝑘-clique problem. We study

this fundamental problem in the batch-dynamic setting, which is better suited for parallel

hardware that is widely available today, and enables dynamic algorithms to scale to high-

rate data streams. We have presented a work-e�cient parallel batch-dynamic triangle

counting algorithm. We also gave a simple, enumeration-based algorithm for maintaining

the 𝑘-clique count. In addition, we have presented a novel parallel batch-dynamic 𝑘-

clique counting algorithm based on fast matrix multiplication, which is asymptotically

faster than existing dynamic approaches on dense graphs. Finally, we provide a multicore

implementation of our parallel batch-dynamic triangle counting algorithm and compare it

with state-of-the-art implementations that have weaker theoretical guarantees, showing

that our algorithm is competitive in practice.
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Part IV

Hardness from Pebbling
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Overview

You may have heard the following puzzle: what English word contains four consecutive

letters that are consecutive letters of the alphabet? [What are words containing the

following letters (consecutively)] RAOR, XS, DQ, HCR, XOP, and BEK?

Mathematical Mind-Benders [Win07]
13

This part of the thesis presents lower bound results that are obtained using a combi-

natorial game on directed acyclic graphs, known as a pebble game.

Complexity of Computing the Trade-O� between Cache Size andMemory Trans-

fers The red-blue pebble game was formulated in the 1980s [JWK81] to model the I/O

complexity of algorithms on a two-level memory hierarchy. Given a directed acyclic graph

representing computations (vertices) and their dependencies (edges), the red-blue pebble

game allows sequentially adding, removing, and recoloring red or blue pebbles according

to a few rules, where red pebbles represent data in cache (fast memory) and blue peb-

bles represent data on disk (slow, external memory). Speci�cally, a vertex can be newly

pebbled red if and only if all of its predecessors currently have a red pebble; pebbles can

always be removed; and pebbles can be recolored between red and blue (corresponding

to reading or writing data between disk and cache, also called I/Os or memory transfers).

Given an upper bound on the number of red pebbles at any time (the cache size), the goal

is to compute a game execution with the fewest pebble recolorings (memory transfers)

that �nish with pebbles on a speci�ed subset of nodes (outputs get computed).

In this chapter, we investigate the complexity of computing this trade-o� between red-

pebble limit (cache size) and number of recolorings (memory transfers) in general DAGs.

First we prove this problem PSPACE-complete through an extension of the proof of the

PSPACE-hardness of black pebbling [GLT80]. Second, we consider a natural restriction

on the red-blue pebble game to forbid pebble deletions, or equivalently, forbid discarding

data from cache without �rst writing it to disk. This assumption both simpli�es the model

and immediately places the trade-o� computation problem within NP. Unfortunately, we

show that even this restricted version is NP-complete. Finally, we show that the trade-o�

problem parameterized by the number of transitions is W[1]-hard, meaning that there is

likely no algorithm running in a �xed polynomial for constant number of transitions.

Speci�cally, in Chapter 9, we show:

• Generalized red-blue no-deletion pebble game on a DAG with maximum in-degree

2 is NP-Complete. [Theorem 9.2.1]

13
Arguably, linguistics puzzles are marginally related to cryptography.
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• Determining the minimum pebbling cost and number of transitions is PSPACE-

complete (even given constant number of transitions) to compute in the red-blue

pebble game. [Theorem 9.2.4]

• The red-blue pebble game parameterized by the number of transitions 𝑘 is W[1]-

hard. [Theorem 9.4.12]

Follow-up Work Recently, a follow-up work by Papp and Wattenhofer [PW20] study

a variety of additional variants of the red-blue pebble game and prove their hardness. No-

tably, they show the one-shot version as well as a novel variant which they call Compcost

to be NP-hard. The Compcost model assumes that computation within cache also has

some cost; thus, this model may be a more accurate representation of external-memory

than a model which assumes computation in cache have no cost.

Static-Memory-Hard Hash Functions from Pebbling A series of recent research

starting with (Alwen and Serbinenko, STOC 2015) has deepened our understanding of

the notion of memory-hardness in cryptography — a useful property of hash functions

for deterring large-scale password-cracking attacks — and has shown memory-hardness

to have intricate connections with the theory of graph pebbling. De�nitions of memory-

hardness are not yet uni�ed in the somewhat nascent �eld of memory-hardness, however,

and the guarantees proven to date are with respect to a range of proposed de�nitions. In

this chapter, we observe two signi�cant and practical considerations that are not analyzed

by existing models of memory-hardness, and propose new models to capture them, ac-

companied by constructions based on new hard-to-pebble graphs. Our contribution is

two-fold, as follows.

First, existing measures of memory-hardness only account for dynamic memory usage

(i.e., memory read/written at runtime), and do not consider static memory usage (e.g.,

memory on disk). Among other things, this means that memory requirements considered

by prior models are inherently upper-bounded by a hash function’s runtime; in contrast,

counting static memory would potentially allow quanti�cation of much larger memory

requirements, decoupled from runtime. We propose a new de�nition of static-memory-

hard function (SHF) which takes static memory into account: we model static memory

usage by oracle access to a large preprocessed string, which may be considered part of the

hash function description. Static memory requirements are complementary to dynamic

memory requirements: neither can replace the other, and to deter large-scale password-

cracking attacks, a hash function will bene�t from being both dynamic-memory-hard and

static-memory-hard. We give two SHF constructions based on pebbling. To prove static-

memory-hardness, we de�ne a new pebble game (“black-magic pebble game”), and new

graph constructions with optimal complexity under our proposed measure. Moreover,

we provide a prototype implementation of our �rst SHF construction (which is based on

pebbling of a simple “cylinder” graph), providing an initial demonstration of practical

feasibility for a limited range of parameter settings.

Secondly, existing memory-hardness models implicitly assume that the cost of space

and time are more or less on par: they consider only linear ratios between the costs of

time and space. We propose a new model to capture nonlinear time-space trade-o�s: e.g.,

272



how is the adversary impacted when space is quadratically more expensive than time? We

prove that nonlinear tradeo�s can in fact cause adversaries to employ di�erent strategies

from linear tradeo�s.

Finally, as an additional contribution of independent interest, we present an asymp-

totically tight graph construction that achieves the best possible space complexity up to

loglog𝑛-factors for an existing memory-hardness measure called cumulative complexity

in the sequential pebbling model.

Specially, in Chapter 10, we show:

• There exists a family of graphs where the cumulative complexity of any graph

with 𝑛 nodes in the family is Θ

(︂
𝑛2 loglog𝑛

log𝑛

)︂
which is asymptotically tight to the

upper bound of Θ

(︂
𝑛2 loglog𝑛

log𝑛

)︂
given in [ABP17a, ABP17b] in the sequential peb-

bling model. Notably we can show a family of constant in-degree graphs exists that

satisfy this property. [Theorem 10.6.23]

• The “cylinder graph” (Graph Construction 10.5.4) can be used to construct an SHF,

ℋ = (ℋ1,ℋ2), with static memory requirement Λ ∈ Θ((𝜅 − 𝜉 log(𝑞2))
√
𝑛) (in bits)

where 𝑛 is the number of nodes in the graph, 𝜅 is a security parameter, 𝑞2 is the

number of oracles queries made byℋ2, and 𝜉 ∈𝜔(1). This means that any success-

ful adversary using non-trivially less static memory than Λ must incur at least Λ

dynamic memory usage for at least Θ(
√
𝑛) steps. [Theorem 10.5.28]

• Graph Construction 10.5.15 can be used to construct an SHF, ℋ = (ℋ1,ℋ2), with

static memory requirementΛ ∈Θ((𝜅−𝜉 log(𝑞2))
√
𝑛) (in bits) where 𝑛, 𝜅, 𝑞2, and 𝜉

are as described above. This means that any successful adversary using non-trivially

less static memory thanΛmust incur at leastΛ dynamic memory usage for at least

Θ(𝑛) steps. [Theorem 10.5.30]

• There exist graphs for which an adversary facing a linear space-time cost trade-o�

would in fact employ a di�erent pebbling strategy from one facing a cubic trade-o�.

[Theorem 10.6.8]

• Given any graph construction 𝐺 = (𝑉 ,𝐸), there exists a pebbling strategy that is

less expensive asymptotically than any strategy using a number of pebbles asymp-

totically equal to the number of nodes in the graph for any time-space tradeo�.

[Theorem 10.6.13]
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Chapter 9

Complexity of Computing the

Trade-O� between Cache Size and

Memory Transfers

This chapter presents results from the paper titled, "Red-Blue Pebble Game: Complexity of

Computing the Trade-O� between Cache Size and Memory Transfers" that the thesis author

coauthored with Erik D. Demaine [DL18]. This paper appeared in the Symposium on

Parallelism in Algorithms and Architectures (SPAA) 2018.

9.1 Introduction

Pebble games were originally introduced to study compiler operations and programming

languages. One example of such an application is when a directed acyclic graph (DAG)

represents the computational dependencies between operations and the pebbles represent

register or memory allocation. Minimizing the resources allocated to perform a compu-

tation is accomplished by minimizing the number of pebbles placed on the graph [Set75],

and the time of computation is modeled by the number of pebbles moves the player makes

in a strategy that ultimately pebbles the desired output vertices. In addition to the standard

pebble game (also known as the black pebble game in the literature) that models register

or memory allocation, there are several other pebble games that are useful for studying

computation. The red-blue pebble game is used to study I/O complexity [JWK81], the re-

versible pebble game is used to model reversible computation [Ben89], and the black-white

pebble game is used to model non-deterministic straight-line programs [CS74].

In this chapter, we study the red-blue pebble game used to model the cost of programs

in a two-level memory hierarchy. The two-level memory hierarchy model of [JWK81] and

the blocked version, the I/O model or external memory model [AV88], were introduced

in the 1980s [JWK81, AV88] to capture the computational bottleneck of transferring data

between a large but slow disk and a small but fast cache. (See [Dem17] for more about

the history.) The red-blue pebble game models the number of such data transitions that

are necessary between cache and disk, as well as the limit of the cache size. The rules of

the game are as follows:
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Red-Blue Pebble Game [JWK81]. Given a DAG 𝐺 = (𝑉 ,𝐸), the game works as

follows:

1. At the start, every source node has a blue pebble, and no other nodes have

pebbles.

2. The player can place a red pebble on a node if and only if all of its predecessors

are currently pebbled with red pebbles.

3. The player can recolor a blue pebble to red, or a red pebble to blue.

4. The player can delete a pebble from a node at any time.

Goal: Pebble all sink nodes with blue pebbles.

Red pebbles represent data in cache and blue pebbles represent data in disk. We sup-

pose (as in real systems) that there is a limited amount of cache and an unlimited amount

of disk. In terms of the red-blue pebble game, this means that the number of red pebbles

is limited by some upper bound 𝑟 . Subject to this constraint, the goal is to pebble all tar-

get nodes while minimizing the number 𝑘 of pebble recolorings between red and blue, i.e.,

minimizing the number 𝑘 of memory transfers between cache and disk. Recoloring a peb-

ble from red to blue corresponds to writing data out from cache to disk, while recoloring

from blue to red corresponds to reading data in from disk to cache.

Much previous research has focused on proving lower and upper bounds on the peb-

bling cost (i.e., the number of pebbles and/or transitions used) of pebbling a given family

of DAGs under the rules of the red-blue pebble game. Such upper and lower bounds are

computed with respect to the number of transitions given a number of red pebbles, 𝑟 , that

are provided to pebble the graph. Such previous results include upper and lower bounds

of𝑂(𝑛 log𝑛/ log𝑟) andΩ(𝑛 log𝑛/ log𝑟), respectively, on the minimum number of transi-

tions needed to pebble an FFT graph. Upper and lower bounds on number of transitions

for other graph classes such as 𝑟-pyramids, diamond graphs, butter�y graphs, and matrix

multiplication graphs can be found in [ERP
+

15, JWK81, RSZ12]. More recently, the model

of one-shot red-blue pebble games was introduced in [CRSS16]. This pebble game is used

to model I/O-complexity without recomputating any calculations in cache. They also show

how to extend this model to the multi-level memory hierarchy case.

Despite somewhat extensive research on the upper and lower bounds of optimally peb-

bling a DAG in pebble games, the complexity of �nding a minimum solution has fewer re-

sults. In fact, it is not yet known whether it is hard to �nd the minimum number of pebbles

within a constant or logarithmic multiplicative approximation factor [CLNV15, DL17]. It

turns out that �nding a strategy to optimally pebble a graph in the standard pebble game

is computationally di�cult even when each vertex is allowed to be pebbled only once.

Speci�cally, �nding the minimum number of black pebbles needed to pebble a DAG in

the standard pebble game to within an additive 𝑛1/3−𝜀 term is PSPACE-complete [DL17]

and �nding the minimum number of black pebbles needed in the one-shot case is NP-

complete [Set75]. While much has been done in showing upper and lower bounds in

pebbling price in terms of number of red pebbles and number of transitions of pebbling

certain types of DAGs using the red-blue pebble game, the computational complexity of

�nding the exact number of minimum red pebbles used and the minimum number of

transitions has not been studied in the past to the best of the authors’ knowledge.
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The purpose of this chapter is two-fold. We seek to answer the question of compu-

tational complexity of �nding the optimal number of red pebbles and minimum number

of transitions used. Secondly, we seek to motivate the study of �nding lower bounds and

optimal pebbling strategies for certain graph classes by showing that such hardness re-

sults even hold for the very restricted class of layered graphs. In this chapter, we discuss

the following new results:

1. In Section 9.2, we show that the red-blue pebble game is PSPACE-complete, via a

simple extension of the result of [GLT80].

2. In Section 9.3, we introduce a new red-blue pebble game and prove it NP-complete.

Speci�cally, we consider the natural restriction to when all data must be kept some-

where, either in cache or on disk, or equivalently, the player cannot delete pebbles,

only recolor them.

3. In Section 9.4, we analyze the complexity of the red-blue pebble game when pa-

rameterized by the allowed number 𝑡 of transitions. We prove that this problem

is W[1]-hard, so it does not have a �xed-parameter algorithm (with running time

𝑓 (𝑡)𝑛𝑂(1)
) unless FPT = 𝑊 [1]. (Note that some PSPACE-complete problems are

�xed-parameter tractable, so this result is not implied by our other results.)

9.2 Red-Blue Pebble Game

We begin this section with a short proof that the red-blue pebble game with deletion is

PSPACE-complete. We do not expand too much into the proof since it relies heavily on

the proof given in [GLT80] (and is almost identical to the proof provided there). Therefore

we include this result �rst before our main result on red-blue pebbling without deletions

whose proof we expand upon in more detail in the next section.

First, we de�ne the red-blue start-in-disk game to be the version of the red-blue pebble

game as de�ned in Section 9.1 (i.e. all source nodes contain blue pebbles at the beginning

of the computation, i.e. at 𝑡 = 0, and all inputs if deleted from cache must be obtained

from disk and all outputs are written back to disk) and the red-blue start-in-cache game

to be the version of the red-blue pebble game where we remove the condition that all

source nodes contain blue pebbles at the beginning of the computation (i.e. essentially,

all inputs start in cache) and red pebbles can be placed at any time on the source nodes–

without the need of blue pebbles being on the source nodes �rst (i.e. inputs always stay

in cache). Furthermore, for the red-blue start-in-cache game, we assume that all targets

must be computed at least once in cache without the need to write the results back into

disk (i.e. this is also known as a visiting pebbling in cache [Nor15] in that the red pebbles

do not need to be turned into blue pebbles even if they are deleted in cache).

Before we dive into the proofs, we �rst show that any red-blue pebbling of a DAG 𝐺
using the rules of the red-blue start-in-cache game that has minimum red pebble space

usage 𝑟 and minimum number of transitions 𝑘 can be converted to a DAG 𝐺′ with min-

imum pebbling space usage 𝑟 + 1 and number of transitions 𝑘 + 1 + |𝑇 | (where 𝑇 is the

target set or output nodes) using the rules of the red-blue start-in-disk game.

Theorem 9.2.1 (Red-Blue Disk to Cache). Given a DAG, 𝐺 = (𝑉 ,𝐸) with target set 𝑇 and

bounded in-degree 2 that uses a minimum of 𝑟 red pebbles and 𝑘 transitions to pebble using
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the rules of the red-blue start-in-cache game, we can convert it into a DAG, 𝐺′ = (𝑉 ′,𝐸′),
that uses a minimum of 𝑟 +1 red pebbles and 𝑘+1+ |𝑇 | transitions to pebble using the rules
of the red-blue start-in-disk game.

Proof. First, create a node 𝑢 and let 𝑉 ′ = 𝑉 ∪ {𝑢}. Then, create a set of directed edges 𝑈
where we add an edge (𝑢,𝑣) to𝑈 for all 𝑣 ∈ 𝑉 . Let 𝐸′ = 𝐸∪𝑈 . Graph𝐺′ now potentially

has vertices with in-degree up to 3. In the �nal step of creating 𝐺′ , we replace all vertices

with in-degree 3 with pyramids of height 3. Note that a pyramid of height 3 functions in

the same manner as a node with in-degree 3 by normality of pebbling strategies proven

in [GLT80, Nor15].

Let status be the optimal strategy used to pebble 𝐺 using the rules of the red-blue

start-in-cache game that results in a minimum of 𝑟 red pebbles and 𝑘 transitions.

Now, we prove that a minimum of 𝑟+1 pebbles and 𝑘+1+|𝑇 | transitions are necessary

to pebble𝐺′ using the rules of the red-blue start-in-disk game. By construction,𝐺′ has one

source (leaf) node where one blue pebble is placed on it at the beginning of the pebbling

(at 𝑡 = 0). Before any other pebbles can be placed on 𝐺′ , we must use exactly 1 transition

to turn the blue pebble on the source to a red pebble. The red pebble remains on the

source, and we use strategy status to pebble the remaining nodes of 𝐺′ .
We now consider the minimum number of transitions that can be used with at most

𝑟 +1 red pebbles and before all outputs are written back to disk. We show that in order to

use a minimum of 𝑘 +1 transitions, the red pebble must remain on the source during the

entire computation of 𝐺′ . Suppose for contradiction, the red pebble is turned into a blue

pebble (recall that all leaves must contain a pebble at all times–otherwise they can never

be pebbled again using the rules of the red-blue start-in-disk game), then, in any future

pebbling of any other nodes in 𝐺′ , the blue pebble on the source must be turned into a

red pebble, resulting in 2 additional transitions (a total of 𝑘+3 transitions) which exceeds

the minimum allowed 𝑘 +1 transitions (since status uses a minimum of 𝑘 transitions and

turning the pebble on 𝑢 to red requires 1 transition). Thus, given that the red pebble

remains on the source during the entire pebbling of 𝐺′ (i.e. the red pebble on the source

𝑢 is present at time 𝑡 = argmax𝑃𝑡∈status
{|𝑃𝑡 |}) where the maximum number of red pebbles

are on the graph using strategy status) the number of red pebbles necessary to pebble 𝐺
is then increased by 1, so a minimum of 𝑟+1 red pebbles are necessary to pebble𝐺′ given

that a minimum of 𝑘+1 transitions are used before all outputs are written back into disk.

Finally, given the set 𝑇 of targets, one transition must be spent to turn a red pebble

into a blue pebble on each 𝑣𝑇 ∈ 𝑇 . Thus, at least |𝑇 | transitions must be spent in this case,

resulting in a total of at least 𝑘 +1+ |𝑇 | transitions.

In the remaining sections of this chapter, we prove all results with respect to the rules

of the red-blue start-in-cache game, even if we do not explicitly state that we do so. Note

that using Theorem 9.2.1, we can transform any graph 𝐺 we use in our hardness reduc-

tions into a graph 𝐺′ that can be used to show the corresponding hardness results for the

red-blue start-in-disk game.

The red-blue start-in-cache pebble game as de�ned above is PSPACE-hard as a simple

extension of the proof given in [GLT80]. The formal de�nition of the problem is given

below.
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De�nition 9.2.2 (Red-Blue Pebble Game). Given a DAG, 𝐺(𝑉 ,𝐸) with 𝑛 = |𝑉 | vertices
and 𝑚 = |𝐸| edges, �nd a pebbling of 𝐺 following the red-blue start-in-cache pebbling rules

as de�ned above such that at most 𝑟 red pebbles are present on𝐺 at any time and the number

of red-blue transitions, 𝑘, is minimized.

The proof structure and the gadgets to show that the red-blue pebble game is PSPACE-

hard can be constructed in the same way as the gadgets in the proof of the PSPACE-

hardness of the standard pebble game as de�ned in [GLT80]. The reduction would specify

the number of red pebbles necessary to be one greater than the number of pebbles nec-

essary in the proof presented by Gilbert et al. [GLT80] and the number of transitions to

be 0. We, thus, only need to show that the number of red pebbles necessary to pebble the

gadgets in the construction is indeed one greater than the number necessary to pebble the

construction provided in [GLT80]. We show that the construction can be pebbled with

one greater pebble in the red-blue pebble game using 0 transitions if and only if the con-

struction in [GLT80] can be pebbled using the rules of the standard pebble game; hence

the red-blue pebble game is PSPACE-complete.

Lemma 9.2.3. The proof construction provided in [GLT80] can be pebbled using 𝑠 pebbles
in the standard pebble game if and only if it can be pebbled using 𝑠 + 1 red pebbles and 0
transitions in the red-blue start-in-cache pebble game.

Proof. We �rst show that if the construction given in [GLT80] can be pebbled using 𝑠
pebbles in the standard pebble game, then it can be pebbled using 𝑠 + 1 red pebbles and

0 transitions in the red-blue pebble game. The only di�erence between the rules of the

standard pebble game and the red-blue pebble game is that in the standard pebble game,

a pebble can be moved from a node to a successor from a predecessor. However, in the

red-blue pebble game, we are no longer allowed to move a pebble from a predecessor

to a successor. However, the process of moving a pebble from predecessor to successor

can be modeled using 2 red pebbles. Suppose that a pebble is moved from a predecessor

to a successor in the standard pebble game. Let 𝑣 be a node in the graph and 𝑝 be the

predecessor from which a black pebble was moved to 𝑣. Let 𝑝𝑟𝑒𝑑(𝑣) indicate the set of

nodes that are the predecessors of 𝑣. Since a pebble was moved from 𝑝 to 𝑣, it means

that all nodes in 𝑝𝑟𝑒𝑑(𝑣) are pebbled with black pebbles. If the pebble movement from 𝑝
to 𝑣 is modeled using red pebbles, then at the time the black pebble was moved from 𝑝
to 𝑣, all nodes in 𝑝𝑟𝑒𝑑(𝑣) would be pebbled with red pebbles. Thus, one additional red

pebble can be placed on 𝑣 at the same time. In the construction provided by [GLT80], if

the constructed DAG can be pebbled using 𝑠 pebbles, then one additional pebble will be

able to simulate all pebble movements from predecessor nodes to successor nodes. Thus,

if the original construction can be pebbled using 𝑠 pebbles in the standard pebble game,

the construction can be pebbled using 𝑠 +1 pebbles in the red-blue start-in-cache pebble

game.

Now we show that if the construction provided in [GLT80] can be pebbled using 𝑠+1
red pebbles and 0 transitions in the red-blue pebble game, then it can be pebbled using 𝑠
black pebbles in the standard pebble game. We need to show that having one additional

pebble in the red-blue pebble game does not provide an advantage in any situations where

a pebble is moved from a predecessor to a successor in the standard pebble game. Suppose
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for the purposes of contradiction that there is an advantage if an extra pebble is provided

in the red-blue pebble game for situations where a pebble is moved from a predecessor

to successor node in the standard pebble game. Then, some node can be pebbled in the

red-blue pebble game with one extra pebble that cannot be pebbled in the standard pebble

game. Suppose that node 𝑣 cannot be pebbled in the standard pebble game. This means

that some node in 𝑝𝑟𝑒𝑑(𝑣) is not pebbled. Otherwise, a pebble can be moved from a node

in 𝑝𝑟𝑒𝑑(𝑣) to 𝑣. With one extra pebble, the node in 𝑝𝑟𝑒𝑑(𝑣) can be pebbled. However,

in the red-blue pebble game, no red pebbles can be moved from a node in 𝑝𝑟𝑒𝑑(𝑣) to 𝑣.

Therefore, 𝑣 cannot be pebbled even with one extra pebble, a contradiction.

In the proof construction provided in [GLT80], every pebbling of a node requires mov-

ing a pebble from a predecessor to a successor except pebbling the leaf nodes of the clause

gadgets. Thus, having an extra pebble in all cases but the case of pebbling the leaf nodes

of the clause gadgets does not provide an advantage. Now, we will show that having an

extra pebble in the red-blue pebble game also does not provide an advantage in this case.

In the proof provided by [GLT80], the clause gadgets can be pebbled using 3 additional

pebbles. Suppose that in the red-blue pebble game construction, the clauses now have

4 additional pebbles available. In this case, the red-blue pebble game only provides an

advantage if 4 pebbles can be used to pebble a clause gadget even if all variable gadgets

connecting to it are in the false con�guration. In this case, 4 pebbles must be used to peb-

ble all the leaves of the clause gadget. Then, since the non-leaf nodes of the clause gadget

requires a pebble to be moved from a predecessor to successor, they cannot be pebbled in

the red-blue pebble game using 4 pebbles if all literals connecting to the clause are false.

A simple case by case analysis shows that no other strategy can cause the clause gadget

to be completely pebbled.

Theorem 9.2.4. Determining the minimum pebbling cost and number of transitions is

PSPACE-complete (even given constant number of transitions) to compute in the red-blue

pebble game.

Proof. Containment in PSPACE is trivial and PSPACE-hardness of the red-blue pebble

game follows immediately from Lemma 9.2.3.

By noticing that we can transform the above hardness construction to a layered graph

by topologically sorting the vertices used in the construction and replacing each edge that

go between non-consecutive layers by a path of length equal to the number of layers that

the edge go between, we result in a multiplicative factor increase of at most 𝑂(𝑛2) in the

number of nodes in the graph since the number of layers is at most 𝑂(𝑛). It is trivial to

see that all pebbling constraints are still preserved by replacing edges with paths.

Corollary 9.2.5. Determining the minimum pebbling cost and number of transitions is

PSPACE-complete to compute in the red-blue pebble game even for layered graphs.

9.3 Red-Blue Pebble Game with No Deletion

In this section, we introduce our model of the red-blue pebble game with no deletion and

prove that it is NP-complete to determine the minimum number of red pebbles and tran-
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sitions needed to pebble a given DAG under the rules of this game. The red-blue pebble

game with no deletion is de�ned as follows:

1. A red pebble can be placed on any vertex that has a blue pebble. (Transition move.)

2. A blue pebble can be placed on any vertex that has a red pebble. (Transition move.)

3. A red pebble can be placed on a vertex where all predecessors of the vertex contain

red pebbles. (The red pebble can override preexisting pebble placements without

using any additional transitions, i.e. the vertex already contains a blue pebble.)

4. No pebbles can be deleted from a vertex.

As usual, red pebbles represent fast memory and blue pebbles represent slow memory;

we assume that we have in�nitely large slow memory, but only a bounded fast memory.

The goal of this game is to pebble all vertices in 𝐺 while minimizing the number of tran-

sition moves. The motivation of this game is to determine the added computational com-

plexity of allowing deletions to occur in the RAM. Suppose that one would like to limit

the number of deletions or to minimize the number of transitions as well as deletions.

Another motivation is to always maintain computed data in memory. For example, for

certain persistent data structures, one always want to keep some form of computed val-

ues in memory at all times. This chapter analyzes the computational complexity of such

a model.

The formal statement of the game is almost identical to the de�nition of the red-blue

pebble game and is the following:

De�nition 9.3.1 (Red-Blue Pebble Game with No Deletions). Given a DAG, 𝐺(𝑉 ,𝐸) with
𝑛 = |𝑉 | vertices and 𝑚 = |𝐸| edges, �nd a pebbling of 𝐺 following the red-blue with no

deletion pebbling rules (given above) such that at most 𝑟 red pebbles are present on 𝐺 at any

time and at most 𝑘 red-blue transitions are used.

In the next few sections, we show that the Red-Blue Pebble Game is NP-complete.

9.3.1 Proof Overview

We provide a reduction broadly similar in concept to [GLT80] except we reduce from

Positive 1-in-3 SAT to show that our problem is NP-complete. The de�nition of Positive

1-in-3 SAT is given below:

De�nition 9.3.2 (Positive 1-in-3 SAT [GJ90]). Given a set 𝑈 of variables and a collection

𝐶 of clauses over 𝑈 such that each clause 𝑐 ∈ 𝐶 has size |𝑐| = 3 and all literals in 𝑐 are
positive, does there exist a truth assignment for 𝑈 such that each clause has exactly one true

literal?

The proof of NP-completeness of the red-blue pebble game with no deletions proceeds

as follows. We create a set of variable gadgets that are pebbled with a set of red pebbles

that determine whether the variable is set to true or false. The variable gadgets are then

connected to clause and anti-clause gadgets that enforce the 1-in-3 condition on the literal

truth settings. The variable gadgets are also connected to a pebble sink path that ensures

that all variables are pebbled and set to a truth con�guration before the clause gadgets are

pebbled. Finally, the clause gadgets and variable gadgets are connected to a pebble hold
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path that ensures that all red pebbles are removed from these gadgets and are used to �ll

up the pebble hold path. Speci�cs about the gadgets and details of the proof construction

will be given in the next few sections.

The pebbling of the gadgets occur in two phases: Phase 1 and Phase 2. During Phase

1 of the pebbling, all variables gadgets are set to a truth value. During Phase 2 of the

pebbling, the portions of the variable gadgets that were not pebbled in Phase 1, leading

to the pebbling of the target node. The gadgets are connected in the following way: all

variable gadgets are connected to a pebble sink path (see 𝑔𝑖 , 𝑔
′
𝑖 , and 𝑔 ′′𝑖 in Fig. 9-2) where

the end of the path is connected to the �rst clause gadget; all clause gadgets are connected

via a path and the last clause is connected to another pebble sink path (see 𝑠𝑖 , 𝑠
′
𝑖 , and 𝑠′′𝑖 in

Fig. 9-2) which is connected to the target node. Each variable gadget is also connected to

the clause it appears in as well as the corresponding anti-clause. We de�ne the pebbling

of the clauses and anti-clauses to be the clause veri�cation phase.

9.3.2 Gadgets

In this section, we introduce some gadget components that will be used in the proof that

the red-blue pebble game with no deletions is NP-complete.

We de�ne a variable gadget for every 𝑥𝑖 ∈ 𝑈 . The purpose of the variable gadget is

to force a selection of variable assignments. In order to construct the variable gadget,

we use a pyramid gadget introduced by previous work [GLT80] that is used to “trap" a

certain minimum number of pebbles that must be used to pebble the gadget. Henceforth,

for every gadget, 𝑔 , we introduce, we will specify the minimum number of red pebbles,

𝑟𝑔 , that can remain on the gadget after it has been pebbled once and 𝑡𝑔 , the minimum

number of red-blue transitions that must be performed on the gadget after it is pebbled

each time.

The pyramid graph has been proven to use ℎ pebbles where ℎ is the height (where

a single node has height 1) of the pyramid graph using standard pebbling (with sliding

pebbles) [CS74]. Let Πℎ be a pyramid graph with height ℎ. It was proven in [Nor15] that

the standard pebbling price with no sliding is ℎ+1 for a pyramid with height ℎ. Here we

prove that using the red-blue pebbling strategy with no deletions, the minimum pebbling

price of a pyramid with height ℎ is 𝑟Πℎ
= ℎ+1 and 𝑡Πℎ

= ℎ(ℎ+1)
2 . Let 𝑃 𝑒𝑏𝑅𝐵𝐷(Πℎ) be the

minimum pebbling price of a pyramid graph using the red-blue strategy with no deletions.

The ending state of the pyramid has no red pebbles. We use this property of the pyramid

graph in our proof in Section 9.3.3.

Lemma 9.3.3. Given a pyramid graph of height ℎ, the 𝑃 𝑒𝑏𝑅𝐵𝐷(Πℎ) is 𝑟Πℎ
= ℎ + 1 and

𝑡Πℎ
= ℎ(ℎ+1)

2 such that no red pebbles remain on the pyramid at the end of the pebbling.

Proof. The standard pebbling lower bound (no sliding) for pyramids is ℎ+1 given a pyra-

mid of height ℎ. The number of red pebbles necessary to pebble a pyramid of height ℎ,

however, is ℎ+1 since the key component of the bound on standard pebbling of pyramids

relies on the ability to slide pebbles, whereas in our pebbling game, no pebble slides are

allowed. Otherwise, the rules for red pebble placement is the same as the rule for standard

pebbling with no sliding. Therefore, by the proof of Theorem 4.8 in [Nor15], the lower

bound for the number of red pebbles necessary to pebble Πℎ is 𝑟Πℎ
= ℎ+1.
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As stated in the proof of Theorem 4.8 in [Nor15], the strategy for achieving this peb-

bling is to pebble the bottom row (the sources) of the pyramid and use one extra pebble

to move the pebbles up the levels of the pyramid.

To prove the transitions bound, since the only way to remove all the pebbles from the

pyramid is to use transitions, the number of transitions is ≥ ℎ(ℎ+1)
2 . Since the pebbling

strategy stated above for pyramids is linear (each vertex is pebbled by a red pebble at

most once), each node is visited once and a red pebble is removed from each node once

resulting in 𝑡Πℎ
= ℎ(ℎ+1)

2 . When a pebble is “moved up” a level of the pyramid, the pebble

on the previous node is turned to blue.

Fig. 9-1 shows the construction of the pyramid gadget and its associated symbol that

will be used to denote it in all subsequent proofs in Section 9.3.3. One can see that the

number of pebbles required to �ll the pyramid gadget is also the number of leaves on the

bottom layer plus one and the number of transitions is

∑︀𝑙
𝑖=1 𝑖 where 𝑙 is the number of

leaves in the gadget.

Figure 9-1: Example of a pyramid gadget with 𝑟Π4
= 5 and 𝑡Π4

= 10.

Using the pyramid gadget we can construct the variable gadget as in Fig. 9-2.

𝑠′𝑖𝑠𝑖 𝑠′′𝑖

𝑎𝑖 − 2

𝑞𝑖

𝑞𝑖−1

𝑥*𝑖 𝑥𝑖

𝑥𝑖

𝑎𝑖

𝑥*𝑖

𝑎𝑖 − 1

𝑔𝑖

𝑔 ′𝑖

𝑔 ′′𝑖

Figure 9-2: Example of a variable gadget, 𝑥𝑖 , with pyramid costs 𝑎𝑖 , pebble sink path

connections 𝑔𝑖 , 𝑔
′
𝑖 , and 𝑔 ′′𝑖 . The corresponding pebble sinks that correspond with this

gadget are 𝑠𝑖 , 𝑠
′
𝑖 , and 𝑠′′𝑖 .

We de�ne 𝑎𝑖 for all 𝑥𝑖 shortly. Each 𝑥𝑖 variable gadget requires 𝑎𝑖 pebbles since in

order to choose an assignment for 𝑥𝑖 , 𝑎𝑖 pebbles must be used to pebble the pyramid
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gadget attached to the variable. Since each 𝑞𝑖 is part of two variable gadgets, we de�ne

𝑞𝑖−1 to be part of variable gadget 𝑥𝑖 and 𝑞𝑖 to be part of the next variable gadget. We show

that the gadget must be pebbled in the following way.

During Phase 1 of pebbling the variable gadget 𝑥𝑖 , each pyramid gadget is pebbled.

Then, the corresponding nodes in the pebble sink path can be pebbled in the order 𝑔𝑖 , 𝑔
′
𝑖 ,

and, then, 𝑔 ′′𝑖 . All nodes along the pebble sink path must be pebbled in order to pebble

the clauses and proceed to the clause veri�cation phase. First, 𝑎𝑖 pebbles must be used to

pebble both 𝑥𝑖 and 𝑥*𝑖 with red pebbles, converting all other pebbled vertices in each pyra-

mid to contain blue pebbles. This then leaves 𝑎𝑖 − 2 pebbles to pebble the other pyramid

gadget, leaving one pebble at the apex of the gadget and converting all other pebbled ver-

tices in the pyramid to contain blue pebbles. The apex of these pyramids are connected to

pyramid sink paths which are paths of length 𝑛 occuring after each set of clause and two

anti-clauses triples. Then, either the pair of nodes 𝑥𝑖 and 𝑥*𝑖 is pebbled with red pebbles

and 𝑥𝑖 and 𝑥*𝑖 are converted to blue pebbles or 𝑥𝑖 and 𝑥*𝑖 contain red pebbles and 𝑥𝑖 and 𝑥*𝑖
are not pebbled. We show that at most 3 red pebbles can remain on each variable gadget.

In Phase 2, 𝑞𝑖−1 will be pebbled once all clauses are pebbled. Therefore, all other nodes

of the variable gadget must be pebbled using the pebbles that remain on each pyramid

gadget. If the red pebbles from Phase 1 are placed on 𝑥*𝑖 and 𝑥𝑖 , then 𝑥𝑖 and 𝑥*𝑖 need to

be pebbled in Phase 2. Furthermore, 𝑠𝑖 , 𝑠
′
𝑖 and 𝑠′′𝑖 need to be pebbled with red pebbles in

Phase 2 by moving the red pebbles from each corresponding pyramid. The red pebbles

will remain on 𝑠𝑖 , 𝑠
′
𝑖 , and 𝑠′′𝑖 since no transitions are allowed to be spent on these nodes.

A clause gadget is created for each 𝑐𝑗 ∈ 𝐶. The clause gadget is connected to every

positive 𝑥𝑖 literal that is present in its respective clause 𝑐𝑗 . An example clause gadget with

𝑟𝑐𝑖 = 6 and 𝑡𝑐𝑖 = 29 (here 𝑟𝑐𝑖 does not include the red pebble on the one true literal and

the red pebble on 𝑝𝑖−1 and 𝑡𝑐𝑖 does not include the transition used to turn the pebble on

𝑝𝑖 to blue) is shown below in Fig. 9-3. The order of the clauses is determined arbitrarily

and all clauses are duplicated and occur in the same topological order in the two sets (the

original clauses and the duplicate clauses).

𝑝𝑖

6

𝑝𝑖−1 𝑥𝑖 𝑥*𝑖 𝑥𝑗 𝑥*𝑗 𝑥𝑘 𝑥*𝑘

Figure 9-3: Example of a clause gadget with 𝑟𝑐𝑖 = 2 and 𝑡𝑐𝑖 = 29 for clause 𝑐𝑖 = (𝑥𝑖∨𝑥𝑗∨𝑥𝑘).
The number of red pebbles that is needed to �ll this gadget is 6 (excluding the two red

pebbles that are present on the true literal and the red pebble on 𝑝𝑖−1).

The clause gadget is accompanied by two anti-clause gadgets, 𝑐𝑖 and 𝑐𝑖
′
, that are used

to enforce the exact 1-in-3SAT condition. The anti-clause gadgets should also be pebbled

with 𝑟𝑐𝑖 = 6 and 𝑡𝑐𝑖 = 64. 𝑐𝑖 contains all 𝑥𝑖 literals and 𝑐𝑖
′

contains all 𝑥*𝑖 literals. First, the

pyramids must be pebbled along the path leading up to 𝑝𝑖 . Then, the one negative literal

that is not pebbled must be pebbled with a red pebble by using 2 transitions. Finally, the
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remaining nodes of the gadget are pebbled once using 62 transitions resulting in 𝑝𝑖 being

pebbled with a red pebble. An anti-clause gadget is shown in Fig. 9-5.

Each variable gadget is connected to a pebble sink path as shown in Fig. 9-4. The pur-

pose of the pebble sink path is to ensure that all pyramids are pebbled by the end of Phase

1 of variable pebbling and that each variable only contains at most 3 red pebbles. The

pebble sink path can be pebbled using 𝑎𝑛 − 3𝑛 red pebbles and the number of transitions

needed to pebble this path is 3𝑛+ (𝑎𝑛−3𝑛+1)(𝑎𝑛−3𝑛)
2 . The number of transitions indicate that

each node of the pebble sink path can only be pebbled once. Once the end of the pebble

sink path is pebbled, the clause gadgets can be pebbled in the clause veri�cation phase.

We now prove our claims above more formally. We begin by proving that the end of

Phase 1, at most 3 red pebbles can remain on each of the variable gadgets.

Lemma 9.3.4. At most 3𝑛 red pebbles can remain on the variable gadgets at the end of

Phase 1 and the beginning of the clause veri�cation phase where 𝑛 is the number of variable

gadgets.

Proof. The number of nodes in the pebble sink path is 3𝑛 + (𝑎𝑛−3𝑛+1)(𝑎𝑛−3𝑛)
2 ; therefore,

in order to pebble the pebble sink path only once with red pebbles using exactly 3𝑛 +
(𝑎𝑛−3𝑛−1)(𝑎𝑛−3𝑛)

2 transitions, one can only pebble each of the pyramids along the path once.

To pebble the last pyramid on the path requires 𝑎𝑛 −3𝑛 pebbles; thus, one can only leave

at most 3𝑛 red pebbles on the variable gadgets when the pyramid is pebbled at the end of

Phase 1.

We prove a matching lower bound for the number of red pebbles that should remain

on the variable gadgets after Phase 1.

Lemma 9.3.5. At least 3 red pebbles must remain on each variable gadget at the end of

Phase 1 in order to be able to pebble the constructed graph using a minimum number of red

pebbles and transitions.

Proof. We prove this by contradiction. Consider the following cases where less than 3 red

pebbles are placed on a particular variable gadget:

1. A red pebble is removed from variable gadget 𝑥𝑖 from the apex of the pyramid with

cost 𝑎𝑖 − 2. This pebble can be used to save at most 2𝑚/3 transitions (where 𝑚
the total number of clause and anti-clause gadgets) but incurs an additional 4𝑚/3
because of the pyramid sink line, resulting in an extra 2𝑚/3 transitions.

2. A red pebble is removed from node 𝑥𝑖 , 𝑥
*
𝑖 , 𝑥𝑖 , or 𝑥*𝑖 . This pebble can be used to

satisfy an unsatis�ed clause or anti-clause. However, this means that there exists an

unsatis�ed clause or anti-clause occurring later on (since we duplicate all clauses).

In other words, there exists a clause where 6 pebbles are not enough to satisfy the

clause. Thus, at least 4 additional transitions are used to remove the pebble, satisfy

the unsatis�ed clause or anti-clause, and repebble the node that originally contained

the red pebble.

Thus, if a pebble is removed from a variable gadget that contains 3 pebbles, then extra

transitions are incurred beyond our allowed number of transitions. Thus, each variable

gadget must contain at least 3 red pebbles must remain on the variable gadgets at the end

of Phase 1.
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Using Lemma 9.3.4, we can now prove the number of red pebbles and transitions nec-

essary to pebble the variable gadgets.

Lemma 9.3.6. The pebbling price of the variable gadget (not including 𝑠𝑖 , 𝑠
′
𝑖 , 𝑠
′′
𝑖 , 𝑔𝑖 , 𝑔

′
𝑖 , 𝑔
′′
𝑖

or 𝑞𝑖) for variable 𝑥𝑖 is 𝑟𝑥𝑖 = 𝑎𝑖 and 𝑡𝑥𝑖 =
∑︀3
𝑗=1

(𝑎𝑖−𝑗+1)(𝑎𝑖−𝑗)
2 +4 assuming all red pebbles are

removed from the gadget at the end of the pebbling. The transitions cost includes the cost of

pebbling and removing red pebbles from all nodes as shown in Fig. 9-2 except 𝑠𝑖 , 𝑠
′
𝑖 , 𝑠
′′
𝑖 , 𝑔𝑖 , 𝑔

′
𝑖 ,

𝑔 ′′𝑖 and 𝑞𝑖 . Assuming all variable gadgets are set to a truth value during Phase 1 and Phase 2
begins with the pebbling of 𝑞0 and ends with red pebbles on 𝑠𝑖 , 𝑠

′
𝑖 , 𝑠
′′
𝑖 , 𝑞𝑖 , during Phase 1, the

pebbling cost is 𝑟𝑥𝑖 = 𝑎𝑖 and
∑︀3
𝑗=1

(𝑎𝑖−𝑗+1)(𝑎𝑖−𝑗)
2 −3 ≤ 𝑡 ≤

∑︀3
𝑗=1

(𝑎𝑖−𝑗+1)(𝑎𝑖−𝑗)
2 −1. Furthermore,

during Phase 2 of the pebbling, the pebbling cost is 𝑟𝑥𝑖 = 4 and 5 ≤ 𝑡𝑥𝑖 ≤ 7 and red pebbles

remain only on 𝑠𝑖 , 𝑠
′
𝑖 , 𝑠
′′
𝑖 , and 𝑞𝑖 .

Proof. Each of the three pyramids must be pebbled using the number of pebbles shown in

Fig. 9-2 by 9.3.3. The number of nodes in the gadget is

∑︀3
𝑗=1

(𝑎𝑖−𝑗+1)(𝑎𝑖−𝑗)
2 +4 (excluding 𝑠𝑖 ,

𝑠′𝑖 , 𝑠
′′
𝑖 , 𝑔𝑖 , 𝑔

′
𝑖 , 𝑔
′′
𝑖 and 𝑞𝑖). If we are limited to a total of 𝑡𝑥𝑖 =

∑︀3
𝑗=1

(𝑎𝑖−𝑗+1)(𝑎𝑖−𝑗)
2 +4 transitions

divided between Phase 1 and Phase 2, then each vertex of the gadget can only be pebbled

once among the two phases. In Phase 1, in order to set the values for all variables, we

must use 𝑎𝑖 red pebbles to pebble all three pyramids. By normality of red-blue pebbling

strategies, none of the 𝑎𝑖 pebbles can be used to pebble other gadgets when the pyramids

are being pebbled. Recall that 𝑔𝑖 , 𝑔
′
𝑖 , and 𝑔 ′′𝑖 must be pebbled at the end of Phase 1 in order

to begin pebbling the clauses since all 𝑔𝑖 , 𝑔
′
𝑖 , and 𝑔 ′′𝑖 are ancestors of the clause gadgets. In

order to pebble 𝑔𝑖 , 𝑔
′
𝑖 , and 𝑔 ′′𝑖 , all the pyramids in all variable gadgets 𝑥𝑖 must be pebbled

by the end of Phase 1.

In addition to pebbling the pyramids, one pair of 𝑥*𝑖 and 𝑥𝑖 or 𝑥*𝑖 and 𝑥𝑖 must be peb-

bled in Phase 1 due to our assumption that all variable gadgets are set to a truth value

during Phase 1. To ensure that each vertex in the gadget is pebbled exactly once during

Phase 1 and Phase 2, the variables must be selected in the indicated pairs. Suppose for

contradiction that 𝑥𝑖 and 𝑥*𝑖 are selected to each contain a red pebble, and no red pebbles

remain on 𝑥*𝑖 and 𝑥𝑖 . This means that 𝑥𝑖 must have been pebbled at some point in Phase 1

(and a transition was used to turn the pebble to blue). Now, in Phase 2, 𝑥𝑖 must be pebbled

again and use one more transition to turn the pebble to blue to pebble 𝑥*𝑖 , breaking our

invariant. The same holds if the pair 𝑥*𝑖 and 𝑥𝑖 was chosen initially (and no red pebbles

remain on 𝑥𝑖 and 𝑥*𝑖 ).

In Phase 2, the following set of pebblings must occur. If 𝑥𝑖 and 𝑥*𝑖 have red pebbles

remaining from Phase 1, then 𝑥*𝑖 and 𝑥𝑖 must be pebbled in Phase 2. Since, 𝑞𝑖−1 will be

pebbled by the end of the clause veri�cation phase, the remaining parts of the gadgets can

be pebbled using 7more transitions. If, instead, 𝑥𝑖 and 𝑥*𝑖 have red pebbles remaining from

Phase 1, then the remaining nodes of the gadget can be pebbled using 5 more transitions.

Since 𝑠𝑖 , 𝑠
′
𝑖 , 𝑠
′′
𝑖 , and 𝑞𝑖 must be pebbled with red pebbles at the end of pebbling 𝑥𝑖 in Phase

2, the number of pebbles necessary to pebble 𝑥𝑖 in Phase 2 is 4.

We prove the following lemma to help us prove that all variable gadgets must be set

in Phase 1.
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Lemma 9.3.7. If 𝑛′ variables do not have at least one of the two pairs, 𝑥*𝑖 and 𝑥𝑖 or

𝑥𝑖 and 𝑥*𝑖 , pebbled at the end of the clause veri�cation phase, then a total of at least(︁∑︀𝑛
𝑖=1

∑︀3
𝑗=1

(𝑎𝑖−𝑗+1)(𝑎𝑖−𝑗)
2 +4

)︁
+ 𝑛′ transitions are needed to pebble all variable gadgets in

Phase 1 and Phase 2.

Proof. Suppose that without loss of generality, node 𝑥𝑖 is pebbled and node 𝑥*𝑖 is not at

time 𝑡 in Phase 2. Suppose also that in accordance with the lemma, either node 𝑥*𝑖 or 𝑥𝑖 is

also not pebbled with a red pebble. Since all pyramids must be pebbled at the end of Phase

1, 𝑥*𝑖 must have been pebbled with a red pebble at some time 𝑡′ < 𝑡 during Phase 1. Since

𝑥*𝑖 was pebbled with a red pebble at time 𝑡′ and holds a blue pebble at time 𝑡 in Phase 2,

1 transition must have been used to convert the red pebble to a blue pebble during Phase

1 by Lemma 9.3.4. In order to pebble either 𝑥*𝑖 or 𝑥𝑖 in Phase 2, one transition must be

used to convert the blue pebble on 𝑥*𝑖 to a red pebble. Therefore, one additional transition

per each of the 𝑛′ variables must be used to pebble the remaining portions of the variable

gadgets. Therefore, the number of transitions necessary to pebble the variable gadgets in

Phase 1 and Phase 2 is at least

(︁∑︀𝑛
𝑖=1

∑︀3
𝑗=1

(𝑎𝑖−𝑗+1)(𝑎𝑖−𝑗)
2 +4

)︁
+𝑛′ .

Figure 9-4: Example pebble sink path. Each node is connected to the root of each pyramid

in each variable gadget.

Lemma 9.3.8. Given 𝑟𝑐𝑖 = 6 and 𝑡𝑐𝑖 = 29, the clause gadget 𝑐𝑖 (shown in Fig. 9-3) cannot be
pebbled if all three variable gadgets incident on 𝑐𝑖 are in the false con�guration and no red

pebbles remain on 𝑐𝑖 after it is pebbled (i.e. when 𝑝𝑖 is pebbled).

Proof. The clause gadget must be pebbled by �rst pebbling the pyramid gadget that re-

quires 6 red pebbles to pebble. Then, with the remaining 5 red pebbles the bottom layer

of the gadget (i.e. the nodes representing the literals) are pebbled using 4 red pebbles plus

the two pebbles that are present on the true positive literal (false literals are pebbled to

become true). The �nal red pebble plus the red pebble from 𝑝𝑖−1 are used to pebble the

next layer. The rest of the pebbling follows directly from this initial pebbling. Once the

gadget has been pebbled, one red pebble is left at the apex of the gadget, 𝑝𝑖 , and the true

literal still contains its red pebbles. Four transitions are used to convert the two pebbled

false literals back to false and 29 transitions are used to convert all other vertices except

𝑝𝑖 and the positive literal to blue.
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The amount of transitions needed to pebble the clause gadget if all incident literals are

in the false position is 31 if no red pebbles remain on the gadget after it is pebbled. Suppose

that two red pebbles remain on the gadget, then the number of red pebbles available to

the next clause is 4 which is not enough to ensure that the clause is successfully pebbled.

Suppose without loss of generality that two red pebbles remain on 𝑥𝑖 and 𝑥*𝑖 , then, two

red pebbles need to be removed from 𝑥𝑖 and 𝑥*𝑖 resulting in two extra transitions as before

(essentially setting the literal to true–but this can be done at most once per variable).

Therefore, a clause gadget cannot be pebbled under the conditions stated in the lemma

unless at least one literal is true.

Lemma 9.3.9. Given 𝑟𝑐𝑖 = 6 and 𝑡𝑐𝑖 = 61, the anti-clause gadget cannot be pebbled if less

than 2 negative literals are true.

Proof. 4 red pebbles are necessary to pebble the pyramids with costs in the range [3,6].
By Lemma 9.3.8, at least one of the 𝑥𝑖 , 𝑥𝑗 , and 𝑥𝑘 variables must be set to true. Thus, at

least one of 𝑥𝑖 ,𝑥𝑗 ,𝑥𝑘 does not contain a red pebble. Thus, at least 2 red pebbles in addition

to the red pebble on 𝑝𝑖−1 are necessary to pebble the descendents of 𝑥𝑖 ,𝑥𝑗 ,𝑥𝑘 .
Without loss of generality, we will assume we are pebbling the anti-clause gadgets

containing the 𝑥𝑖 variables. At most 2 transitions are allocated to pebble and unpebble any

𝑥𝑖 variables that are not pebbled with red pebbles from Phase 1. The remaining vertices

need at most 𝑡 = 59 transitions to pebble and unpebble. Therefore, the total number of

transitions and red pebbles needed is 𝑟 = 6 and 𝑡 = 61.

𝑝𝑖

6

4

𝑝𝑖−1 𝑥𝑖 𝑥𝑗 𝑥𝑘

· · ·

...

Figure 9-5: Example of an anti-clause gadget with 𝑟 = 6 and 𝑡 = 64. The number of red

pebbles that is needed to �ll this gadget is 6 (excluding the two red pebbles that are present

on the true negative literals).

Lemma 9.3.10. Each clause gadget must contain exactly one true literal pebbled with red

pebbles and each anti-clause gadget must contain exactly two true literals pebbled with red

pebbles at the end of Phase 1 before the clause veri�cation phase.

Proof. The following are the di�erent possible ways red pebbles can reside on the nodes

for each variable gadget:
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1. A clause contains 0 gadgets set in the true con�guration at time 𝑡 during the clause

veri�cation phase. If a clause contains 0 true literals, then we must pebble the clause

using either at least 7 red pebbles (in addition to the red pebble on 𝑝𝑖−1). Given that

all variable gadgets must contain 3 red pebbles by the end of Phase 1 by Lemma 9.3.5,

we must obtain the 2 extra pebbles from another variable gadget. Obtaining the 2
extra pebbles from the variable gadget results in 2 extra transitions during Phase 1

or at a previous time 𝑡′ < 𝑡 in the clause veri�cation phase. Furthermore, these two

pebbles must be deleted and reinserted back into the other variable gadget resulting

in two more transitions.

2. A clause contains 2 variable gadgets set in the true con�guration. In this case,

the clause gadget does not save any transitions since recomputation in memory is

free. However, this also means that both corresponding anti-clause gadgets need

one more red pebble placement to pebble them. This results in at least 2 additional

transitions to turn the blue pebbles on the negative literals to red plus 2 additional

transition from Phase 1 or some time 𝑡′ before the current time to obtain the extra

necessary red pebbles. This results in a net gain of 4 additional transitions.

3. A clause contains 3 true variables. This is the same case as 2 with net transitions

change (i.e. number of transitions needed to pebble the anti-clauses minus the num-

ber of transitions saved) of 8 instead.

4. Without loss of generality, a clause contains the pair 𝑥𝑖 and 𝑥*𝑖 that are pebbled with

red pebbles and 𝑥𝑖 is pebbled with a blue pebble and 𝑥*𝑖 is not pebbled. In order to

pebble the corresponding anti-clause, one pebble must be removed from 𝑥𝑖 using

one transition and the blue pebble on 𝑥𝑖 must be turned into a red pebble using an

additional transition. There will be a net increase of at least one additional transition

with each variable gadget that is set in this con�guration.

5. A variable gadget contains more than 3 pebbles. (For instance, a variable gadget

could contain red pebbles on 𝑥𝑖 , 𝑥
*
𝑖 , and 𝑥𝑖 .) Recall that at the end of Phase 1, all

variables gadgets are each pebbled with 3 red pebbles. Therefore, in order for a

literal to be pebbled with more than 2 red pebbles, at least one transition is used to

delete the pebble from a variable gadget by the end of Phase 1 (assuming that the

pebble is not one of the 6 red pebbles used to pebble the clause gadgets). If the red

pebble is moved onto a positive literal node then one transition is used to delete

the pebble from its previous node. If it is moved onto a negative literal node, then 2
transitions are used to delete the pebble from its previous node and place the pebble

on its new node. If the pebble movement is unnecessary for satisfying a clause or

anti-clause, then it would not occur. If the movement is necessary, then at least

one other transition per variable that contains more than 3 pebbles is necessary

resulting in more transitions than that allowed.

6. The variables switch value after some clauses are satis�ed. If the variables switch

from the true con�guration to the false con�guration to satisfy some anti-clause,

then the switch would result in at least 4 transitions per switch exceeding our al-

lowed bound on transitions. If the switch was from a false con�guration to a true

con�guration, then an extra 2 transitions per switch is necessary. Suppose that

some of these extra transitions are credited to the transitions necessary for pebbling

a clause. In the case of the false to true switch, none of the switches can be cred-
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ited to satisfying the corresponding previous clause since the switch needs to occur

before the �rst clause or anti-clause is unsatis�able. Therefore, no extra transitions

can be saved from previous clauses or anti-clauses since all clauses were satis�ed

(and none of the previously mentioned cases occurred). The problem occurs when

one of the previously false variables could be turned to true and a true variable can

be turned to false during clause veri�cation. However, this results in 2 extra tran-

sitions that cannot be shared in the next clause veri�cation since two of the true

literal red pebbles must be removed from the variable that was turned to false since

all variables must be set by the conclusion of the clause veri�cation phase. In the

other case, if a variable needs to be switched from true to false, then one can only

charge the transitions necessary for deleting the pebbles on the positive literals to

satisfying the previous clause. However, the 2 transitions for turning the negative

literals to true cannot be charged to clause satisfaction.

The proof of the lemma follows from the set of cases mentioned above.

Given these gadgets, we are ready to proceed with the reduction from Positive 1-in-3

SAT.

9.3.3 Reduction from Positive 1-in-3 SAT

Given a Positive 1-in-3 SAT expression, 𝜙, we create a variable gadget for each of the 𝑛
variables and a clause and two anti-clause gadgets (one for 𝑥𝑖 and one for 𝑥*𝑖 ) for each of

the 𝑚 clauses. The gadgets are linked together as shown in Fig. 9-6. .

Each variable gadget is connected to the next by the set of vertices 𝑄 consisting of

nodes 𝑞𝑖 ∈ 𝑄. Each variable gadget is also connected to the pebble sink path consisting

of vertices 𝑔𝑖 ∈ 𝐺 and to the pebble hold nodes 𝑠𝑖 , 𝑠
′
𝑖 , and 𝑠′′𝑖 . For each clause gadget,

we connect it with its corresponding anti-clause gadgets via the nodes in the set 𝑝𝑖 ∈ 𝑃 .

The �nal anti-clause gadget in the chain of clause and anti-clause gadgets is connected to

the bottom of the chain of variable gadgets. Finally, all variable gadgets are connected to

pebble hold nodes, 𝑠𝑖 , 𝑠
′
𝑖 , 𝑠
′′
𝑖 ∈ 𝑆 that are also along a path and ensure that all red pebbles

end on these set of nodes. There are no transitions allocated for these nodes; therefore,

any red pebbles that are used to pebble these nodes must remain.

We let 𝑎𝑛 = 3𝑛+6 and 𝑎𝑖 = 𝑎𝑖−1 +3. Therefore, we set 𝑟 = 3𝑛+6 and 𝑡 = 93𝑚+3𝑛+
22+

∑︀𝑛
𝑖=1

∑︀3
𝑗=1

(𝑎𝑖−𝑗+1)(𝑎𝑖−𝑗)
2 for the entirety of the construction.

We now provide an argument that red-blue pebbling with no deletions is in NP.

Lemma 9.3.11. Given a DAG𝐺(𝑉 ,𝐸)where 𝑛 = |𝑉 |, and parameters 𝑟 and 𝑡 and a pebbling
strategy, we can check whether the strategy works in time 𝑂(𝑛2).

Proof. We can solve any red-blue pebbling game using 𝑂(𝑛2) transitions given a rea-

sonable number of red pebbles. We can achieve this by performing the pebbling greed-

ily. If 𝑟 < max(𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)) for some vertex 𝑣, then the pebbling cannot be done.

Otherwise, all other pebblings can be completed using (2𝑑 + 1)𝑛 transitions where

𝑑 = max(𝑖𝑛𝑑𝑒𝑔𝑟𝑒𝑒(𝑣)) for all vertices 𝑣 in a graph 𝐺 with 𝑛 vertices. On the other

hand, a pebbling can never be performed if 𝑡 < 𝑛 − 𝑟 . Therefore, we seek to show that
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𝑛 − 𝑟 ≤ 𝑡 ≤ (2𝑑 + 1)𝑛 and 𝑟 ≥ 𝑑 are necessary conditions to valid strategies. To show

that all pebblings can be completed using (2𝑑 + 1)𝑛 transitions, �rst, topologically sort

the vertices in the DAG, then perform pebbling according to the topological sort.

No transitions are used to pebble the predecessors of the �rst node in the topological

sort and only 1 transition is used to remove a pebble from the node after it has been

pebbled. Now for each of the outgoing edges of this node, the number of times this vertex

will need to be pebbled and removed is at most the number of outgoing edges from the

node. Since all nodes that are predecessors of the current node in the topological sort

must be pebbled before the current node, the current node can be pebbled by using 𝑑
transitions to make all predecessors contain red pebbles, pebble the current node, and

then use 𝑑 + 1 transitions to convert all red pebbles to blue pebbles. There are 𝑛 nodes

that need to be pebbled in this way, therefore, at most (2𝑑 + 1)𝑛 transitions are needed

to pebble the graph. Therefore, the maximum number of transitions needed to pebble a

graph is 2𝑑𝑛 =𝑂(𝑛2).
Using only 𝑂(𝑛2) transitions results in a time of pebbling that is 𝑂(𝑛2). Therefore,

checking the pebbling strategy should not take more than polynomial amount of time (if

𝑡 =𝜔(𝑛2) and 𝑟 ≥ 𝑑, then the graph can always be pebbled).

Theorem 9.3.12. Generalized red-blue no-deletion pebble game on a DAG with maximum

in degree 7 is NP-complete by reduction from Positive 1-in-3 SAT.

Proof. We �rst show that given a solution to 𝜙, we can construct a solution to our con-

struction using the amount of red pebbles and transitions as described above. We �rst set

the variables according to the assignment provided by the satisfying assignments to 𝜙.

Then, we pebble the remainder of the construction according to the steps provided in the

previous section.

Now we prove that given a satisfying pebbling strategy to our construction, we also

have a satisfying assignment for 𝜙. First, during Phase 1 of pebbling the construction,

the variable gadgets as described in Section 9.3.2 are pebbled using the number of red

pebbles and transitions described in Lemma 9.3.6. By Lemma 9.3.7, at the end of Phase

1, the variable gadgets all have at least one pair of 𝑥𝑖 and 𝑥*𝑖 or 𝑥𝑖 and 𝑥*𝑖 pebbled with

red pebbles. Each pyramid of the variable gadget needs to be pebbled in order to pebble

the pebble sink path which is necessary to pebble before the clause veri�cation phase.

No more than 3 red pebbles can remain in each variable gadget since the next variable

gadget uses the number of red pebbles minus the 3 that remain in the previous variable

gadget. The remaining 6 pebbles after all variable gadgets are pebbled will be used to

pebble the clause and anti-clause gadgets. In order for the clause and anti-clause gadgets

to be pebbled, exactly 1 literal of each clause must be true as proven by Lemma 9.3.10.

Each clause and anti-clause gadget uses the number of red pebbles and transitions as

given in Lemma 9.3.8 and Lemma 9.3.9 in order to be pebbled. After all clauses and anti-

clauses have been pebbled, we can proceed with Phase 2 of pebbling the variables. The

cost of pebbling the variables during Phase 2 is given in Lemma 9.3.6.

Since the number of transitions thus far cover the pebbling of the variable gadgets, the

pebble sink path, and the clause/anti-clause gadgets, there does not remain any transitions

for the pebble hold nodes. Therefore, all the red pebbles will be used to pebble these
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pebble hold nodes. By Lemmas 9.3.7 and 9.3.10, if there exists a valid strategy to pebble

the con�guration, then there exists a valid variable assignment for 𝜙.

The problem is in NP by Lemma 9.3.11. Therefore, the problem is NP-Complete by

reduction from Positive 1-in-3SAT.

Corollary 9.3.13. Generalized red-blue no-deletion pebble game on a DAG with maximum

in degree 2 is NP-Complete by reduction from Positive 1-in-3 SAT.

Proof. This follows as an immediate corollary of Theorem 9.3.12 by using the gadgets

described in [GLT80].

One can produce a reduction with indegree 2 graphs by replacing all nodes with in-

degree greater than 2 with pyramids with height equal to the indegree minus 1. Similar

proofs can prove hardness in this case.

9.4 Red-Blue Pebble Game Parameterized by Transi-

tions

In this section, we prove that the red-blue pebble game with deletion where the number

of red-to-blue or blue-to-red transitions is parameterized by 𝑘 is W[1]-hard by reduction

from the W[1]-complete problem, Weighted 𝑞-CNF Satis�ability. It was previously shown

by [DF95a] that Weighted 𝑞-CNF Satis�ability is W[1]-complete for any �xed 𝑞 ≥ 2. In

order to maximize the similarity to our previous reductions, we will be reducing from

Weighted 3-CNF SAT via a parameterized reduction.

It has been noted that this result seems super�uous given the NP-hardness result for

0 transitions given in Section 9.2. However, we note that an NP-hardness result does not

necessarily supersede a parameterized complexity result since they are di�erent complex-

ity domains. In fact, there exist NP-complete problems with natural parameterizations

that have �xed-parameter tractable algorithms. Furthermore, the techniques presented

in this section are techniques that could be important for future proofs of hardness or

hard-to-pebble graph family constructions.

De�nition 9.4.1 (Weighted 𝑞-CNF Satis�ability [DF95a, DF95b]). Given a CNF formula,

𝜙, a set 𝑈 of variables (𝑛 = |𝑈 |), and a set 𝐶 of clauses (𝑚 = |𝐶|) where the number of

literals per clause is at most 𝑞, determine whether there is a satisfying assignment for 𝜙 of

truth values to the variables in 𝑈 such that the number of variables that are true is 𝑘.

Given a 3-CNF formula, we �rst create two clauses for each of the variables: for all

𝑥𝑖 ∈𝑈 we add the clauses (𝑥𝑖∨𝑥𝑖∨𝑥𝑖)∧(𝑥𝑖∨𝑥𝑖∨𝑥𝑖). Note that if a truth value is assigned

to 𝑥𝑖 , then both clauses must be true. The presence of these clauses is to ensure that each

of the variable gadgets in the reduction are assigned a valid truth value.

The reduction transforms an instance of Weighted 3-CNF SAT with parameter 𝑘 to

an instance of red-blue pebble game with deletion (note that this is a di�erent model from

the one presented in Section 9.3) such that the reduced instance is allowed 𝑟 = 7𝑛−4𝑘+1
pebbles and 2𝑘 red-blue transitions.
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We �rst provide an overview of our proof techniques. Then, we describe the gadgets

used in our proof. Finally, we provide the proof that the red-blue pebble game de�ned in

Section 9.2 is W[1]-hard.

9.4.1 Proof Overview

Given a Weighted 3-CNF SAT expression,𝜙, we �rst duplicate all the variables and clauses

until 𝑛′ the number of new variables including duplicates follows the rule
3𝑛′
4 > 𝑘. From

here onwards, we refer to 𝜙 to be the new 3-CNF expression (with the duplications) and

𝑛 to be the number of new variables.

As in the proof given in Section 9.3, we create a set of variable gadgets that are con-

nected to a set of clause gadgets that check whether each clause is satis�ed according to

the truth settings of the variables. The 𝑘 true variables conditions is enforced by the All-

False and 𝑘-True-Variables gadgets which �rst force all variable gadgets to be set to false,

then picks exactly 𝑘 variables to set to true and uses exactly 2𝑘 transitions. The problem is

parameterized by the number of transitions, 2𝑘, and the number of red pebbles is limited

by some number that is polynomial in the number of variables in 𝜙. All of the transi-

tions will be used before the clause gadgets are pebbled. Therefore, all pebblings of all

gadgets after the variable gadgets, the All-False gadget, and the 𝑘-True-Variables gadget

are pebbled using only red pebbles and no transitions.

We will now describe the gadgets that are used in the reduction.

9.4.2 Gadgets

Variable Gadget

The variable gadgets are used to represent the variables that are in𝑈 and are present in𝜙
(i.e. we do not create a variable gadget for variables that are not present in 𝜙). We again

categorize the complete pebbling of the variable gadgets into three phases: Phase 1, Phase

2, and Phase 3. During Phase 1, each variable must be pebbled in the following way. The

pyramid gadgets within each variable gadget are �rst pebbled with red pebbles and one

red pebble remains on the apex of each pyramid gadget. See Fig. 9-7.

After all variable gadgets have been pebbled once (i.e. both 𝑥′𝑖 and 𝑥𝑖 are pebbled), the

𝑥′𝑖 nodes must be pebbled with red pebbles. In order to pebble the 𝑥′𝑖 nodes, the remaining

red pebbles will be used as well as the red pebbles on 𝑥′𝑖 . The corresponding red pebble

on 𝑥′𝑖 is either turned to blue or removed. At most 𝑘 of these red pebbles may be turned to

blue since we are given only 2𝑘 transitions and each of the blue pebbles must be reverted

back to red at some point in the future (proof will be provided later). The three vertices

representing 𝑥𝑖 remain un-pebbled and a red pebble remains on each 𝑥𝑖 . Each vertex of 𝑥′𝑖
as well as 𝑥𝑖 are connected to the All False gadget (described below). The All False gadget

must be pebbled after the variable gadgets since all other subsequent pebbling depends

on the set of 2𝑘 +1 nodes that were pebbled during the pebbling of the All False gadget.
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Figure 9-7: Variable gadget.

Lemma 9.4.2. All variable gadgets must be in the false con�guration after Phase 1.

Proof. During Phase 1, the All False Gadget (see Fig. 9-8) must be pebbled. We are allowed

at most 𝑎𝑛 pebbles and the All False gadget consists of a set of 2𝑘+1 nodes each of which

costs 𝑎𝑛, 𝑎𝑛 − 1, . . . , 𝑎𝑛 − 2𝑘 pebbles to pebble (i.e. have indegree 𝑎𝑛, 𝑎𝑛 − 1, . . . , 𝑎𝑛 − 2𝑘).

Thus, the only possible pebbling con�guration is the con�guration that leads all variable

gadgets to be in the false con�guration and the remaining pebbles are used to pebble the

other nodes that each of the 2𝑘 +1 nodes are dependent on.

During Phase 3 of pebbling the variable gadgets, the other nodes within the gadget

are pebbled using the red pebbles that are left on the gadget from Phase 2. This phase

requires no transitions since the extra red pebbles from the clause and pebble sink path

gadgets can be used to pebble the variable gadgets during this phase.

All False Gadget

The All False gadget is used to check that all variables are initially set to false. See Fig. 9-8.

It consists of 2𝑘 +1 vertices with unbounded indegree with predecessors 𝑥′𝑖 and 𝑥𝑖 for all

𝑖. Furthermore, its predecessors also contain 𝑎𝑛−4𝑛− 𝑖 nodes for 𝑖 = {0, . . . ,2𝑘} to use up

the other 𝑎𝑛 − 4𝑛 − 𝑖 extra pebbles. The 2𝑘 + 1 nodes from the All False gadget are then

connected to the 𝑘-True-Variables gadget and all the clause gadgets.
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Figure 9-8: The All False gadget consists of 2𝑘 +1 nodes that all have 𝑥′𝑖 and 𝑥𝑖 as prede-

cessors. Each of these 2𝑘 +1 nodes are connected to the 𝑘-True-Variables gadget and the

clause gadgets.

𝑘-True-Variables Gadget

Phase 2 of the variable pebbling phases consists of resetting a set of 𝑘 variables to true.

The 𝑘-True-Variables gadget is present to constrain the number of true variables to exactly

𝑘. The 𝑘-True-Variables gadget consists of a single unbounded indegree vertex with 𝑥𝑖 as

predecessors for all 𝑖. After passing through the All False gadget, 𝑘 variable gadgets must

be switched from the False position to the True position by moving 3𝑘 pebbles from 𝑥′𝑖 to

𝑥𝑖 and using 𝑘 transitions to move 𝑘 red pebbles to 𝑥′𝑖 . As we will show in the next few

gadgets, 𝑘 transitions must be used to pebble 𝑥′𝑖 nodes with red pebbles. See Fig. 9-9 for

an example.

Figure 9-9: 𝑘-True gadget connects to all 𝑥𝑖 for all 𝑖.

Lemma 9.4.3. At the end of Phase 2, exactly 𝑘 variable gadgets are set in the true con�gu-

ration.

Proof. In order to prove this lemma, we �rst prove the following two claims.

Claim 9.4.4. At least 3𝑘 pebbles must be removed from 𝑥′𝑖 and used to pebble 𝑥𝑖 with red

pebbles and 𝑘 pebbles must be removed from 𝑥𝑖 .
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Proof. In order to pebble the 𝑘-True-Variables gadget, all the nodes that are incident to

the central node must be pebbled. Given that we only have 3𝑛 − 4𝑘 pebbles remaining

after pebbling all the variable gadgets in Phase 1 and the All-False gadget, we must use 4𝑘
pebbles from the variable gadgets in order to pebble the remaining 4𝑘 slots. The pebbling

strategy proceeds as follows.

First, pebble 3𝑛−4𝑘 𝑥𝑖 ’s. Of these, remove 4𝑘 pebbles from the corresponding 𝑥′𝑖 and

𝑥𝑖 . Using these removed pebbles, pebble the remaining 𝑘 variables (i.e. the remaining 4𝑘
𝑥𝑖 ’s).

Since the 2𝑘 + 1 pebbles from the All-False gadget are needed to pebble the 𝑘-True

gadget, we cannot remove these pebbles. Thus, the smallest number of pebbles we need

to remove is 4𝑘 from the variable gadgets.

Claim 9.4.5. No pyramid gadgets in the variable gadgets may be repebbled using ≤ 2𝑘
transitions in Phase 2.

Proof. In order to pebble the 𝑘-True-Variables gadget, the 2𝑘 + 1 nodes pebbled during

the All-False phase must remain pebbled with red pebbles. Even if all red pebbles were

removed from all 𝑥′𝑖 nodes, the number of red pebbles available is not enough to pebble

the pyramid with the smallest cost among all pyramids in variable gadgets. In order to

obtain the 2𝑘 + 1 red pebbles, at least 2𝑘 + 1 transitions need to be used to turn the red

pebbles on the All-False gadget to blue which exceeds our limit of 2𝑘 transitions.

Claim 9.4.6. At least 𝑘 pebbles must be turned from blue to red on 𝑥′𝑖 using 𝑘 transitions.

Proof. The Pebble Sink Path gadget uses 3𝑛−4𝑘−6 pebbles and the clause gadgets use 5
pebbles each; therefore, 3𝑛−4𝑘 of the pebbles that are used to pebble the 𝑘-True-Variables

gadget (or the variable gadgets) must be removed from the gadgets and used to pebble the

pebble sink path. Therefore a total of 4𝑛 pebbles remain on the variable gadgets. By

Lemma 9-10, each variable gadget must be set in either the true or false con�guration (in

other words, each variable gadget either has all 𝑥𝑖 nodes pebbled with red pebbles or 𝑥′𝑖
pebbled with a red pebble and all 𝑥′𝑖 nodes pebbled with red pebbles or 𝑥𝑖 pebbled with

a red pebble). In order to transform a variable gadget from the false con�guration to the

true con�guration, at least one transition must be used to pebble 𝑥′𝑖 with a red pebble

provided that the pyramid under 𝑥′𝑖 cannot be repebbled. We showed this in Claim 9.4.5

that in order to repebble this pyramid, more than 2𝑘 transitions are needed.

Therefore, the only way to change the truth value of a variable gadget is to use 1
transition per gadget. Suppose that a red pebble is removed from a 𝑥′𝑖 node. Then, the

node 𝑥′𝑖 must be pebbled by Lemma 9-10. Furthermore, if a node is removed from 𝑥𝑖 ,

then all 𝑥𝑖 nodes must be pebbled which implies that 𝑥′𝑖 must also be pebbled. Therefore,

the minimum number of variables that need to be switched from false to true is 𝑘 since

4𝑘 pebbles can be removed from 𝑘 variables and switched from false to true using the

strategy provided by Claim 9.4.4. The 𝑘 transitions are used to turn blue pebbles on 𝑘 𝑥′𝑖
nodes to red.

Claim 9.4.7. The minimum number of transitions that are needed for Phase 2 is 𝑘.
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Proof. This follows directly from Claim 9.4.6.

Therefore, since all variables either have 𝑥′𝑖 and 𝑥𝑖 or 𝑥𝑖 and 𝑥′𝑖 pebbled, all variables

are set to either true or false. Furthermore, as the claims show, at most 𝑘 variables are set

to true.

3-or-None Gadget

The 3-or-None gadgets are used to ensure that every variable either has 3 pebbles on

each 𝑥𝑖 or 𝑥′𝑖 or none on them. This is to ensure that the player cannot cheat by using

less than 3 pebbles to set either 𝑥′𝑖 or 𝑥𝑖 true. A 3-or-None gadget is created for each

variable. The 3-or-None gadget consists of sets of 2 vertices one picked from 𝑥𝑖 and the

other picked from 𝑥′𝑖 . All such pairings are connected to a path with vertices of indegree

5 (the other vertices are roots) so that only one pebble is allowed to go through the path.

See Fig. 9-10 for an example of a 3-or-None gadget. This gadget can be pebbled using 5
pebbles. However, more pebbles will not ensure that the gadget can be pebbled if it does

not satisfy the invariant as stated in Lemma 9.4.10. In other words, more pebbles does not

guarantee that the gadget can be pebbled without using any transitions. Attached to each

node of the 3-or-None gadget are 3𝑛−4𝑘−3 roots that have outgoing edges to the nodes

in the path in the gadget. The All-False termination node is also connected to every node

in the path of the 3-or-None gadget.

Figure 9-10: 3-or-None gadget. One is created for every variable.

Lemma 9.4.8. For every variable gadget that does not follow the condition speci�ed in

Lemma 9.4.10 and contains less than 6 red pebbles, at least two transitions are required to

satisfy the gadget.

Proof. Suppose that less than 6 red pebbles are on a variable gadget and no pair of com-

ponents 𝑥𝑖 and 𝑥′𝑖 or 𝑥′𝑖 and 𝑥𝑖 are pebbled with red pebbles, then the distribution of red
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pebbles are ones that partially �ll in some 𝑥𝑖 or 𝑥′𝑖 and does not pebble 𝑥𝑖 or 𝑥′𝑖 . Therefore,

in order to pebble the 𝑥𝑖 or 𝑥′𝑖 that does not contain a red pebble, we have to use two

transitions to turn the blue pebble on 𝑥𝑖 or 𝑥′𝑖 to red.

Lemma 9.4.9. Suppose some variable gadgets are set in the con�guration where 𝑥𝑖 and
𝑥′𝑖 are pebbled with red pebbles, then the number of transitions needed to pebble both the

All-False gadget and the 3-or-None gadget is greater than 2𝑘.

Proof. Suppose that 𝑏 variable gadgets have red pebbles on 𝑥𝑖 and 𝑥′𝑖 . During Phase 2,

4𝑘 red pebbles must be removed and moved to the 𝑥𝑖 nodes. In order for this to occur,

some number of red pebbles are removed. For any pebble placed during Phase 1 removed,

at least 2 transitions must be used to reset the value of the variable unless only the red

pebble on 𝑥𝑖 is removed and no other red pebbles are removed from the gadget. For each

of the variable gadgets where the red pebble on 𝑥𝑖 is removed, in order for the variable

gadget to have red pebbles on 𝑥𝑖 and 𝑥′𝑖 , two transitions must be spent on placing a red

pebble on 𝑥𝑖 during Phase 2. We know that having a variable gadget in the con�guration

𝑥𝑖 and 𝑥′𝑖 saves 2 pebbles. However, in order to achieve this con�guration, we must spend

4 transitions per gadget in Phase 2 which does not make up for the amount that is saved

by this con�guration. The removal of any other red pebble from a variable gadget requires

at least two transitions; therefore, the optimal removal number is 4 (instead of 3 which

would lead to a 𝑥𝑖 and 𝑥′𝑖 con�guration).

Lemma 9.4.10. In order to satisfy all 3-or-None gadgets using at most 2𝑘 transitions, the

only possible con�gurations for all pebbles must be placed in one of the two pairs of compo-

nents: 𝑥′𝑖 and 𝑥𝑖 or 𝑥𝑖 or 𝑥
′
𝑖 .

Proof. By Lemma 9.4.9, pebbles cannot be placed in the con�guration 𝑥𝑖 and 𝑥′𝑖 using at

most 2𝑘 transitions. Therefore, in order for a red pebble placement to satisfy the corre-

sponding 3-or-None gadget without using 2 additional transitions, the must be placed

in the pairs given in the lemma or red pebbles must be on all nodes 𝑥𝑖 and 𝑥′𝑖 . Suppose

that a variable gadget has this con�guration. Then, two pebbles will be removed from

some other variable gadget. Since no variables can be in the con�guration 𝑥𝑖 and 𝑥′𝑖 by

Lemma 9.4.9, if a variable is not set in a con�guration, then two transitions are used. By

Lemma 9.4.6, at least 𝑘 variables must be set to false at the end of Phase 2. Therefore,

each variable must be in the con�gurations as stated in this lemma in order to satisfy all

3-or-None gadgets.

The remaining gadgets may be pebbled with red pebbles without using any transitions.

Pebble Sink Path Gadget

The Pebble Sink Path Gadget is used to take up 3𝑛 − 4𝑘 − 6 pebbles that were used in

the 𝑘-True-Variables gadget (and were left over after passing through the gadget) leaving

only 5 pebbles for the remaining parts of the winning path. The Pebble Sink Path occurs

directly after the clause gadgets path and must be pebbled before the clause gadgets are
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pebbled. This sink path consists of 3𝑛 − 4𝑘 − 6 pyramid gadgets of successively smaller

value starting from 3𝑛− 4𝑘 − 1. See Fig. 9-11 for an example.

Figure 9-11: Pebble sink that captures 3𝑛−4𝑘 −6 pebbles leaving 5 pebbles to be used in

the clauses. Here 𝑔 = 3𝑛− 4𝑘 − 1.

Clause Gadget

After the set of 3-or-None gadgets comes the Clause gadgets which are used to ensure that

the 3SAT clauses are satis�ed by the assignments. The clause gadget can only be pebbled

with the 5 extra pebbles that remain after the pebble sink has been pebbled. Given that

all 2𝑘 transitions are used in Phase 2 and/or the pebbling 3-or-None gadgets phase, no

transitions can be spent in Phase 3 or pebbling the clause gadgets. The output of the clause

path must be connected to each vertex of the Pebble Sink Path gadget. See Fig. 9-12.

Finally, the target vertex can be pebbled with a red pebble if and only if all previous

gadgets are pebbled according to the necessary rules and conditions. The 2𝑘 + 1 nodes

from the All-False gadget are also predecessors of this target vertex.

Figure 9-12: Clause gadget.
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For an example reduction, see Fig. 9-13. The target vertex that must be pebbled is the

one colored blue.

Lemma 9.4.11. The clause gadget can be pebbled with 5 pebbles (not including the red

pebble on 𝑝𝑖−1) if and only if at least one of the variable gadgets that connects to it is set in

the true con�guration.

Proof. If at least one literal is true in the clause gadget, then we can pebble the gadget in

the following way. First, pebble all the other literals that are not set to true. Pebbling the

other literals requires at most 4 pebbles. Finally, pebble the bottom layer of the pyramid

for the literal that is set to true. Then, the pyramid can be pebbled using the method

described in Lemma 9.3.3 using �ve pebbles once the bottom layer of the pyramid has

been pebbled.

Based on the proof provided in Lemma 9.3.3, the cost of pebbling the pyramid in each

clause gadget is 5. In order for a red pebble to be placed on the pyramid in the clause

gadget (aside from the red pebble on 𝑝𝑖−1), 3 red pebbles must be used on all literals that

are not set in the true con�guration. Suppose that 2 pebbles are currently on the pyramid

at some time 𝑡, then, to pebble the last literal (since it is not set to true) takes at least 4
red pebbles. At the time the last literal is pebbled, as least 2 red pebbles must already be

on the pyramid (otherwise, the literal is not the last literal to be pebbled in the gadget).

Therefore, if the clause gadget can be pebbled using 5 red pebbles (not including the red

pebble on 𝑝𝑖−1), then the clause is satis�able.

9.4.3 Red-Blue Pebbling is W[1]-hard

In this section, we prove that red-blue pebbling parameterized by the number of transi-

tions is W[1]-hard using the gadgets as speci�ed in Section 9.4.2. An example construction

is shown in Fig. 9-13. The order of the pebbling is given as the following. First, the variable

gadgets are pebbled during Phase 1 of the pebbling which pebbles each pyramid gadget in

each variable with a red pebble. Then, the All-False gadget is pebbled which results in all

𝑥′𝑖 and 𝑥𝑖 nodes being pebbled with red pebbles. During Phase 2 of pebbling the variable

gadgets, 𝑘 variables are switched from the false con�guration to the true con�guration.

This in total uses the entirety of the allowed 2𝑘 transitions. To ensure the 2𝑘 transi-

tions are used in this phase, the 3-or-None gadgets are pebbled using only 5 red pebbles

and no transitions. After the 3-or-None gadgets are pebbled, we pebble the Pebble Sink

Path gadget which consumes 3𝑛 − 4𝑘 − 6 pebbles. The clause gadgets are pebbled with

the remaining 5 pebbles not used in the pebble sink path. Finally, the variable gadgets

are pebbled completely using all the pebbles during Phase 3 and the target node as indi-

cated in Fig. 9-13 pebbled with a red pebble. The total number of red pebbles necessary is

𝑟 = 7𝑛− 2𝑘 +1 and the total number of transitions is 𝑡 = 2𝑘.

Theorem 9.4.12. The red-blue pebble game parameterized by the number of transitions 𝑘
is W[1]-hard.

Proof. We �rst show that our reduction is a valid FPT reduction. As de�ned above, our

reduction is a polynomial time reduction in terms of 𝑛, 𝑚, and 𝑘. The number of nodes
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created is𝑂(𝑛+𝑚+𝑘) and the number of edges is at most the square of this amount. The

number of transitions is determined by the function 𝑓 (𝑘) = 2𝑘 where 𝑘 is the parameter

in Weighted 3-CNF Satis�ability.

Now we will prove that a solution exists in our construction if and only if a solution

exists for the expression 𝜙. Suppose a solution exists for 𝜙, then one can set the variables

in the construction to have the truth value given by the solution to 𝜙. We can set all

the variables to their corresponding truth values using at most 2𝑘 transitions. Further-

more, we can pebble the remainder of the construction using the prescribed number of

red pebbles.

As we proved in Lemma 9.4.10, the number of transitions that must be used after

pebbling the 3-or-None gadgets is 2𝑘. Therefore, the remainder of the construction must

be pebbled using red pebbles and no transitions. We proved in Lemma 9.4.11 that the

clauses can only be pebbled using 5 red pebbles if they are satis�able. Since the Pebble

Sink Path gadget is pebbled after the 3-or-None gadgets are pebbled, they must be pebbled

at the time when the clause gadgets are pebbled, leaving only 5 free red pebbles to pebble

the clause gadgets. Finally, the path leading up to the blue pebble can be pebbled if all

the clauses are successfully pebbled. Therefore, this is a valid reduction from Weighted

3-CNF SAT and the problem is W[1]-hard.

9.5 Open Problems

We conclude this chapter with several open questions:

1. Are red pebbling number and minimum number of transitions hard to approximate?

2. Does there exist FPT algorithms for restricted class of graphs (such as bounded

width graphs)?

3. Is �nding the red pebbling number W[1]-hard? Recall in Section 9.4 that we proved

W[1]-hardness only for transitions, not for number of red pebbles.
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Figure 9-6: Example construction given 𝜙 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3)∧ (𝑥3 ∨ 𝑥5 ∨ 𝑥4). Blue nodes

represent the pebble hold nodes and red nodes represent the pebble sink path. The green

node is the target node that needs to be pebbled in the end. Note that many of the edges

for variable nodes have been omitted for clarity.

302



3-or-None 
Gadgets

Figure 9-13: Example W[1]-hardness reduction for the red-blue pebble game. The vertex

colored blue is the vertex that must be pebbled at the end and can only be pebbled if and

only if the 3SAT instance has a solution that sets exactly 𝑘 variables to True and uses at

most 2𝑘 transitions.
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Chapter 10

Static-Memory-Hard Hash Functions

from Pebbling

This chapter presents results from the paper titled, "Static-Memory-Hard Functions, and

Modeling the Cost of Space vs. Time" that the thesis author coauthored with Thaddeus

Dryja and Sunoo Park [DLP18]. This paper appeared in the Theory of Cryptography

Conference (TCC) 2018.

10.1 Introduction

Pebble games were originally formulated to model time-space tradeo�s by a game played

on DAGs. Generally, a DAG can be thought to represent a computation graph where

each node is associated with some computation and a pebble placed on a node represents

performing the computation and saving the result of its computation in memory. Thus,

the number of pebbles represents the amount of memory necessary to perform some set of

computations. The natural complexity measures to optimize in this game is the minimum

number of pebbles used, as well as the minimum amount of time it takes to �nish pebbling

all the nodes; these goals correspond with minimizing the amount of memory and time

of computation.

Pebble games were �rst introduced to study programming languages and compiler

construction [PH70] but have since then been used to study a much broader range of

tasks such as register allocation [Set75], proof complexity [AdRNV17, Nor12], time-

space tradeo�s in Turing machine computation [Coo73, HPV77], reversible computa-

tion [Ben89], circuit complexity [Pot17], and time-space tradeo�s in various algorithms

such as FFT [Tom81], linear recursion [Cha73, SS79b], matrix multiplication [Tom81], and

integer multiplication [SS79a] in the RAM as well as the external memory model [JWK81].

To see a more comprehensive survey of the results in pebbling up to the last couple of

years, see [Pip82] up to the 1980s and [Nor15] up to 2015.

The relationship between pebbling and cryptography has been a subject of research in-

terest for decades, which has enjoyed renewed activity in the last few years. A series of re-

cent works [AB16, ABH17, ABP17a, ABP17b, AS15, AT17, ACP
+

16, AAC
+

17, BZ16, BZ17]

has deepened our understanding of the notion of memory-hardness in cryptography, and
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has shown memory-hardness to have intricate connections with the theory of graph peb-

bling.

Memory-hard functions (MHFs) have garnered substantial recent interest as a secu-

rity measure against adversaries trying to perform attacks at scale, particularly in the

ubiquitous context of password hashing. Consider the following scenario: hashes of user

passwords are stored in a database,
1

and when a user enters a password 𝑝 to log in, her

computer sends 𝐻(𝑝) to the database server, and the server compares the received hash

to its stored hash for that user’s account. For a normal user, it would be no problem if

hash evaluation were to take, say, one second. An attacker trying to guess the password

by brute-force search, on the other hand, would try orders of magnitude more passwords,

so a one-second hash evaluation could be prohibitively expensive for the attacker.

The evolution of password hashing functions has been something of an arms race

for decades, starting with the ability to increase the number of rounds in the DES-based

unix crypt function to increase its computation time—a feature that was used for exactly

the above purpose of deterring large-scale password-cracking. Attackers responded by

building special-purpose circuits for more e�cient evaluation of crypt, resulting in a gap

between the evaluation cost for an attacker and the cost for an honest user.
2

A promising approach to mitigating this asymmetry in cost between hash evalua-

tion on general- and special-purpose hardware is to increase the use of memory in the

password hashing function. Memory is implemented in standardized ways which have

been highly optimized, and memory chips are widely regarded to be an interchangeable

commodity. Commonly used forms of memory — whether on-die SRAM cache, DRAM,

or hard disks — are already optimized for the purpose of data I/O operations; and while

there is active research in improving memory access times and costs, progress is and has

been relatively incremental. This state of a�airs sets up a relatively “even playing �eld,” as

the normal user and the attacker are likely to be using memory chips of similar memory

access speed. While an attacker may choose to buy more memory, the cost of doing so

scales linearly with the amount purchased.

The designs of several MHFs proposed to date (e.g., [Per09, AS15, AB16, ACP
+

16,

ABP17a]) have proven memory-hardness guarantees by basing their hash function con-

structions on DAGs, and using space complexity bounds from graph pebbling. De�nitions

of memory-hardness are not yet uni�ed in this somewhat nascent �eld, however — the

�rst MHF candidate was proposed only in 2009 [Per09] — and the guarantees proven

are with respect to a range of de�nitions. The “cumulative complexity”-based de�nitions

of [AS15] have enjoyed notable popularity, but some of their shortcomings have been

pointed out by subsequent work proposing alternative more expressive measures, in par-

ticular, [ABP17b, AT17].

Our contribution We observe two signi�cant and practical considerations not analyzed

by existing models of memory-hardness, and propose new models to capture them, ac-

companied by constructions based on new hard-to-pebble graphs. Our main contribution

1
In practice, the password should �rst be concatenated with a random user-speci�c string called a salt,

and then hashed. The salt is stored in the database alongside the hash to deter dictionary attacks.

2
E.g., [CB02] discusses FPGA-based attacks on DES.
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is two-fold, as described in (1) and (2) below. We also provide an additional contribution

of separate interest, described in (3).

1. Static-memory-hardness. Existing measures of memory-hardness only account

for dynamic memory usage (i.e., memory read/written at runtime), and do not

consider static memory usage (e.g., memory on disk). Among other things, this

means that memory requirements considered by prior models are inherently upper-

bounded by a hash function’s runtime; in contrast, counting static memory would

potentially allow quanti�cation of much larger memory requirements, decoupled

from the honest evaluator’s runtime.

We propose a new de�nition of static-memory-hard function (SHF) (De�ni-

tion 10.4.2), and present two SHF constructions based on pebbling. To prove static-

memory-hardness, we de�ne a new pebble game called the black-magic pebble game

(De�nition 10.2.3), and prove properties of the space complexity of this game for

new graphs (Graph Constructions 10.5.4 and 10.5.15). Graph Construction 10.5.15

gives rise to an SHF with a better asymptotic guarantee (same space usage but sus-

tained over more time), whereas Graph Construction 10.5.4 yields an SHF with the

advantage of simplicity in practice. Informal theorems stating the constructions’

static-memory-hardness guarantees are given in Section 10.1.3 and formal theo-

rems are in Section 10.5. In Section 10.7, we discuss our prototype implementation

based on Graph Construction 10.5.4.

We emphasize that static memory requirements are complementary to dynamic

memory requirements: neither can replace the other, and to deter large-scale

password-cracking attacks, a hash function will bene�t from being both dynamic-

memory-hard and static-memory-hard.

2. Modeling nonlinear cost of space vs. time. Existing measures of memory-

hardness implicitly assume a linear trade-o� between the costs of space and time.

This model precludes situations where the relative costs of space and time might be

more unbalanced (e.g., quadratic or cubic). We demonstrate that this modeling lim-

itation is signi�cant, by giving an example where adversaries facing asymptotically

di�erent space-time cost tradeo�s would in fact employ di�erent strategies. Then,

to remedy this shortcoming, we de�ne graph-optimal variants of memory-hardness

measures (in Section 10.2) that explicitly model the relative cost of space and time.

These can be seen as extending the main memory-hardness measures in the litera-

ture (namely, cumulative complexity and sustained memory complexity). We prove

bounds on the new measure as elaborated in Section 10.1.3.

3. We give the �rst graph construction that is tight, up to loglog𝑛-factors, to the

optimal cumulative complexity that can be achieved for any graph (upper bound

due to [ABP17a, ABP17b]).

Informal version of Theorem 10.6.23. There exists a family of graphs where

the cumulative complexity of any graph with 𝑛 nodes in the family isΘ

(︂
𝑛2 loglog𝑛

log𝑛

)︂
which is asymptotically tight to the upper bound ofΘ

(︂
𝑛2 loglog𝑛

log𝑛

)︂
given in [ABP17a,

ABP17b] in the sequential pebbling model. Notably we can show a family of con-

stant in-degree graphs exists that satisfy this property.
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Next, Section 10.1.1 gives a brief background on graph pebbling, Section 10.1.2 gives

discussion on memory-hardness measures and related work, and Sections 10.1.3 and 10.1.3

give more detailed high-level overviews of our SHF contribution and nonlinear space-time

tradeo� model (items (1) and (2) above), respectively.

10.1.1 Background on graph pebbling

The standard black pebble game is parametrized by a directed acyclic graph (DAG) and

a special subset of its nodes (called the target set). In the game, an unlimited supply of

“pebbles” is made available to a player, who must place and remove pebbles on the nodes

of the DAG in a sequence of moves according to the following two rules.

1. A pebble may be placed or moved onto a node only if all of its predecessors have

already been pebbled. (In particular, pebbles may be placed on source nodes at any

time.)

2. Any pebble can be removed from the graph at any time.

The goal of the game is to arrive at a state where every node in the target set has been

covered by a pebble at least once in the pebbling of the graph. Often, the target set is the

set of the sink nodes.

The pebbling literature, starting with [PH70, Set75, Coo73, HPV77], has established a

number of complexity measures describing the complexity of pebbling: e.g., measuring

the minimum number of pebbles that must be used to achieve a complete pebbling, or

the minimum number of moves needed. In the literature, there are several variants of

the game, including sequential and parallel (depending on whether many pebbles can be

placed in a single move), and versions where other di�erent types of pebbles are used

(such as the red-blue pebble game [JWK81] and the black-white pebble game [CS74]). In

this work, our results are stated and proven in the context of constant in-degree graphs

since most graphs in the real-world have constant in-degree; however, our results extend

straightforwardly to non-constant in-degree graphs.

Graph pebbling and memory-hardness Graph pebbling algorithms can be used to

construct hash functions in the (parallel) random oracle model. This paradigm has been

used by prior constructions of memory-hard hashing [AS15] as well as other prior works

[DKW11].

Informally, the idea to “convert” a graph into a hash function is to associate with

each node 𝑣 a string called a label, which is de�ned to be 𝒪(𝑣,Pred(𝑣)) where 𝒪 is a

random oracle and Pred(𝑣) is the list of labels of predecessors of 𝑣. For source nodes,

the label is instead de�ned to be 𝒪(𝑣,𝜁) for a string 𝜁 which is an input to the hash

function. The output of the hash function is de�ned to be the list of labels of target nodes.

Intuitively, since the label of a node cannot be computed without the “random” labels of

all its predecessors, any algorithm computing this hash function must move through the

nodes of the graph according to rules very similar to those prescribed by the pebbling

game; and therefore, the memory requirement of computing the hash function roughly

corresponds to the pebble requirement of the graph. Thus, proving lower bounds on the

pebbling complexity of graph families has useful implications for constructing provably

memory-hard functions.
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In our setting, in contrast to previous work, we employ a variant of the above tech-

nique: the string 𝜁 is a �xed parameter of our hash function, and the input to the hash

function instead speci�es the indices of the target nodes whose labels are to be outputted.

10.1.2 Discussion on memory-hardness measures and related

work

The original paper proposing memory-hard functions [Per09] suggested a very simple

measure: the minimum amount of memory necessary to compute the hash function. It

was subsequently observed that a major drawback of this measure is that it does not

distinguish between functions 𝑓 and 𝑔 with the same peak memory usage, even if the

peak memory lasts a long time in evaluating 𝑓 and is just �eeting in evaluating 𝑔 (Figure

10-1a). This is signi�cant as the latter type of function is much better for a password-

cracking adversary. In particular, pipelining the evaluation of the latter type of function

would allow reuse of the same memory for many function evaluations at once, e�ectively

reducing the adversary’s amortized memory requirement by a factor of the number of

concurrent executions (Figure 10-1b).
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(b) Pipelined evaluations of 𝑔 (reusing memory)

Figure 10-1: Limitations of peak memory usage as a memory-hardness measure

Cumulative complexity [AS15] put forward the notion of cumulative complexity (CC),

a complexity measure on graphs. CC was adopted by several subsequent works as a

canonical measure of memory-hardness. CC measures the cumulative memory usage of

a graph pebbling function evaluation: that is, the sum of memory usage over all time-

steps of computation. In other words, this is the area under a graph of memory usage

against time. CC is designed to be very robust against amortization, and in particular,

scales linearly when computing many copies of a function on di�erent inputs. This is a

great advantage compared to the simpler measure of [Per09], which does not account well

for an amortizing adversary (as shown in Figure 10-1).
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Depth-robust graphs More recently, [AB16, ABP17a] proved bounds on optimal CC

of certain graph families. They showed that a particular graph property called depth-

robustness su�ces to attain optimal CC (up to polylog factors–the CC of any graph with

bounded in-degree is upper bounded by 𝑂
(︂
𝑛2 loglog𝑛

log𝑛

)︂
[AB16, ABP17b]). An (𝑟, 𝑠)-depth-

robust graph is one where there exists a path of length 𝑠 even when any 𝑟 vertices are

removed. Intuitively, this captures the notion that storing any 𝑟 vertices of the graph will

not shortcut the pebbling in a signi�cant way.

Sustained memory complexity Very recently, Alwen, Blocki, and Pietrzak [ABP17a]

proposed a new measure of memory complexity, which captures not only the cumulative

memory usage over time (as does CC), but goes further and captures the amount of time

for which a particular level of memory usage is sustained. Our SHF de�nition also captures

sustained memory usage: we propose a de�nition of capturing the duration for which

a given amount of memory is required, designed to capture static as well as dynamic

memory requirements. By the nature of static memory, it is especially appropriate in

our setting to consider (and maximize) the amount of time for which a static memory

requirement is sustained.

Bandwidth-hard function In a concurrent work, Blocki, Ren, and Zhou [BRZ18],

building upon the previous work of Ren and Devadas [RD17], studied the bandwidth

costs of di�erent functions. In real computers, cache misses take up signi�cantly more

energy or bandwidth than computation within the cache. Given any computation that

can be modeled as a DAG, the red-blue pebble game has been traditionally used to study

the I/O-transition cost of the computation [JWK81]. In their work [BRZ18], they show

an equivalence between lower bounds in the cost of the parallel red-blue pebble game

and the bandwidth-hardness or energy cost of evaluation of functions. Furthermore, they

analyze the bandwidth-hardness of some popular memory-hard functions and found that

memory-hardness does indeed correlate with bandwidth-hardness. Their work di�ers

from our work in that they do not look at static memory, instead looking at the dynamic

memory generated at evaluation time of the function and the bandwidth-hardness of such

a process.

Core-area memory ratio Previous works have considered certain hardware-

dependent non-linearities in the ratio between the cost of memory and computa-

tion [BK15, AB16, RD17]. Such phenomena may incur a multiplicative factor increase

in the memory cost that is dependent, in a possibly non-linear way, on speci�c hardware

features. Note that the non-linearity here is in the hardware-dependence, rather than the

space-time tradeo� itself. In contrast, our new models are more expressive, in that they

make con�gurable the asymptotic tradeo� between space and time (by a parameter 𝛼
which is in the exponent, as detailed in De�nition 10.2.21) in an application-dependent

way. This versatility of con�guration targets applications where the trade-o� may realis-

tically depend on arbitrary and possibly exogenous space/time costs, and thus contrasts

with metrics tailored for a speci�c hardware feature, such as core-memory ratio.
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Towards a general theory of moderately hard functions Most recently, Alwen and

Tackmann [AT17] proposed a more general (though not comprehensive) framework for

de�ning desirable guarantees of “moderately hard functions,” i.e., functions that are e�-

cient to compute but somewhat hard to invert. Their work points out a number of draw-

backs of prior measures such as those described above. Notably, many of the prior mea-

sures characterized the hardness of computing the function with an implicit assumption

that this hardness would translate to the hardness of inverting the function (as it would

indeed in the case of a brute-force approach to inversion). In other words, these measures

implicitly assume that the hash function in question “behaves like a random oracle” in the

sense that brute-force inversion is the optimal approach.

10.1.3 Our contributions in more detail

To prove static-memory-hardness, we de�ne a new pebble game called the black-magic

pebble game (De�nition 10.2.3), and prove properties of the space complexity of this game

for new graphs (Graph Constructions 10.5.4 and 10.5.15).

The black-magic pebble game may additionally be of independent interest for the peb-

bling literature. Indeed, a pebble game used to analyze security of proofs of space [DFKP15]

can be viewed as a non-adaptive
3

version of the black-magic pebble game in which the

target node set is sampled from a distribution by a challenger.

Based on our new graph constructions, we construct SHFs with provable guarantees

on sustained memory usage, as follows. Graph Construction 10.5.15 gives a better asymp-

totic guarantee (same space usage but sustained over more time), whereas Graph Con-

struction 10.5.4 has the advantage of simplicity in practice. In Section 10.7, we discuss our

prototype implementation based on Graph Construction 10.5.4.

Static-memory-hard functions (SHFs)

Prior memory-hardness measures make a modeling assumption: namely, that the memory

usage of interest is solely that of memory dynamically generated at run-time. However,

static memory can be costly for the adversary too, and yet it is not taken into account

by existing measures such as CC. Intuitively, it can be bene�cial to design a function

whose evaluation requires keeping a large amount of static memory on disk (which may

be thought to be produced in a one-time initial setup phase). While not all the static

memory might be accessed in any given evaluation, the “necessity” to maintain the data

on disk can arise from the idea that an adversary attempting to evaluate the function

on an arbitrary input while having stored a lesser amount of data would be forced to

dynamically generate comparable amounts of memory. Note that the resulting dynamic

memory requirements could be orders of magnitude larger (say, gigabytes) than the mem-

ory requirements of existing memory-hard function proposals, because unlike in prior

memory-hardness models, here we have decoupled the memory requirement from the

memory requirements of the honest evaluator.

3
Here, “non-adaptive” means that all magic pebbles must be �xed at the start of the game rather than

placed throughout the game.
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We propose a new model and de�nitions for static-memory-hard functions (SHFs), in

which we model static memory usage by oracle access to a large preprocessed string,

which may be considered part of the hash function description. In particular, the prepro-

cessed string can be public and known to the adversary — the important guarantee is that

without storing (almost) all of it statically, the adversary will incur huge online memory

requirements.

De�nition (informal).We model a static-memory-hard function family as a two-part al-

gorithm ℋ = (ℋ1,ℋ2) in the parallel random oracle model, where ℋ1(1𝜅) outputs a

“large” string to which ℋ2 has oracle access,
4

and ℋ2 receives an input 𝑥 and outputs

a hash function output 𝑦. Informally, our hardness requirement is that with high prob-

ability, any two-part adversary 𝒜 = (𝒜1,𝒜2) must either have 𝒜1 output a large state

(comparable to the output size ofℋ1), or have 𝒜2 use large (dynamic) space.

We then give two constructions of SHFs based on graph pebbling. To prove static-

memory-hardness, we de�ne a new pebble game called the black-magic pebble game of

which we give an overview in Section 10.1.3. Our simpler SHF construction is based on

a family of tree-like “cylinder” graphs, which achieves memory usage proportional to the

square root of the number of nodes, sustained over time proportional to the square root

of the number of nodes. Furthermore, we give a better construction based on pebbling

of a new graph family, that achieves better parameters: the same (square root) memory

usage, but sustained over time proportional to the number of nodes.

Informal version of Theorem 10.5.29. The “cylinder graph” (Graph Construc-

tion 10.5.4) can be used to construct an SHF, ℋ = (ℋ1,ℋ2), with static memory require-

mentΛ ∈Θ((𝜅−𝜉 log(𝑞2))
√
𝑛) (in bits) where 𝑛 is the number of nodes in the graph, 𝜅 is

a security parameter, 𝑞2 is the number of oracles queries made byℋ2, and 𝜉 ∈𝜔(1). This

means that any successful adversary using non-trivially less static memory than Λ must

incur at least Λ dynamic memory usage for at least Θ(
√
𝑛) steps.

Informal version of Theorem 10.5.30. Graph Construction 10.5.15 can be used to con-

struct an SHF, ℋ = (ℋ1,ℋ2), with static memory requirement Λ ∈Θ((𝜅 − 𝜉 log(𝑞2))
√
𝑛)

(in bits) where 𝑛, 𝜅, 𝑞2, and 𝜉 are as described above. This means that any successful

adversary using non-trivially less static memory than Λ must incur at least Λ dynamic

memory usage for at least Θ(𝑛) steps.

Static memory requirements are complementary to dynamic memory requirements:

neither can replace the other, and to deter large-scale password-cracking attacks, a hash

function will bene�t from being both dynamic-memory-hard and static-memory-hard. In

Section 10.4.1, we give a discussion of how, given a static-memory-hard function and a

(dynamic-)memory-hard function, they can be concatenated to yield a “dynamic SHF”

that inherits both the static memory requirement of the former and the dynamic memory

requirement of the latter.

Implementation We have a prototype implementation of our “cylinder” SHF construc-

tion. The code is available on github at https://github.com/adiabat/masshash. A

4
More precisely,ℋ2 may adaptively query the value ofℋ1’s output string at speci�c locations.
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discussion of the implementation and its performance for di�erent static memory sizes is

given in Section 10.7.

Remarks about the static-memory model

On static vs. dynamic memory In the case of function performing lookups to a large,

static memory table, the memory storing the table does not need to be writable. This may

seem to point to an optimization for the attacker: produce a read-only memory chip which

supports fast, random-access read queries, but omits the hardware needed for writing

data, as it has been pre-programmed at the factory with the precomputed static table.

However, in practice, this optimization seems implausible. In modern hardware, ROM

chips have almost entirely disappeared; where they do still exist, they are used for their

non-volatile storage properties (they retain data when power is lost, unlike most RAM),

and are copied to RAM before being read from, due to the low speed of the ROM. Current

development focuses almost exclusively on dynamic access memory which supports both

reads and writes, so it is reasonable to believe that an attacker would need to use this type

of hardware; switching to ROM would likely increase costs and slow down access to the

static table.

Static and dynamic memory requirements are thus incomparable, and both are useful

to deter a password-cracking adversary.

Alternative application: bounded retrieval (“big-key”) model As already stated

above, the preprocessed string in our setting is assumed to be public, and our static-

memory-hardness guarantees hold assuming the adversary knows the string. This is

useful as it allows de�ning a single hash function accessible to all parties in a system,

like a random oracle: one could imagine a standards body like NIST simply publishing a

set of parameters de�ning a �xed hash function with a �xed “preprocessed string.” One

informal way to think of this is that the preprocessed string is part of the description of

a �xed hash function. A single hash function accessible to everyone is particularly useful

for certain applications such as checksums, where many parties in a distributed network

may need to compute the same hash function.

In some other applications, however, hash function families may su�ce or be more

appropriate, i.e., where each party samples a function from the family for her own use,

rather than every party using exactly the same function. In such applications, the pre-

processed string can be considered the seed of a particular hash function from the family

de�ned by (ℋ1,ℋ2), and generated on a per-application basis. We observe one potential

advantage of such a setup, inspired by the bounded retrieval [Dzi06, CLW06, CDD
+

07,

ADW09, ADN
+

10, ADW09] (“big-key” [BKR16]) model.
5
: to make hash function evalu-

ation more di�cult for (e.g., password-cracking) adversaries. If the party using the hash

function decides to keep the preprocessed string secret, then an adversary would have to

ex�ltrate almost all of the large preprocessed string from the honest user in order to be

able to evaluate the hash function. As observed in the bounded retrieval literature, ex�l-

5
We cite the seminal papers that coined these terms, and note that there has been a rich literature on

the topic since.
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trating large quantities of data (say, gigabytes) can be much more costly for adversaries

than ex�ltrating smaller data items (such as secret keys).

Black-magic pebble game

We introduce a new pebble game called the black-magic pebble game. This game bears

some similarity to the standard (black) pebble game, with the main di�erence that the

player has access to an additional set of pebbles called magic pebbles. Magic pebbles are

subject to di�erent rules from standard pebbles: they may be placed anywhere at any

time, but cannot be removed once placed, and may be limited in supply. The pebbling

space cost of this game is de�ned as the maximum of the number of pebbles (both black

and magic pebbles) on the graph at any time-step and the total number of magic pebbles

used throughout the computation. Observe that while the most time-e�cient strategy in

the black-magic pebble game is always to pebble all the target nodes with magic pebbles

in the �rst step, the most space-e�cient strategy is much less clear.

Lower-bounds on space usage can be non-trivially di�erent between the standard and

black-magic pebble games. For example, if a graph has a constant number of targets, then

magic pebbling space usage will never exceed a constant number of pebbles
6
, whereas

the standard pebbling space usage can be super-constant. In particular, it is unclear, in

the new setting of magic pebbling, whether known upper-bounds on minimum pebbling

space usage in the standard pebble game
7

are transferable to the magic pebble game. We

prove in Section 10.5 that for layered graphs,
8

the best possible upper-bound on mini-

mum space usage for the black-magic pebble game is Θ(
√
𝑛) (i.e. in other words, there

exists a pebbling strategy for any layered graph such that at most Θ(
√
𝑛) pebbles–magic

and/or black–are needed to pebble the target nodes). We present a simple layered graph

construction that meets this upper bound in Section 10.5.1.

We leave determining both the lower bound and upper bound for minimum magic

pebbling space usage in general graphs as an open question. An answer to this open

question would be useful towards constructing better static-memory-hard functions using

the paradigm presented herein.

Our proof techniques rely on a close relationship between black-magic pebbling com-

plexity and a new graph property which we de�ne, called local hardness. Local hardness

considers black-magic pebbling complexity in a variant model where subsets of target

nodes are required to be pebbled (rather than all target nodes, as in the traditional peb-

bling game), and moreover, a “preprocessing phase” is allowed, wherein magic pebbles

may be placed on the graph in advance of knowing which target nodes are to be pro-

duced. This “preprocessing” aspect bears some resemblance to the black-white pebbling

game [CS74], a variant of the standard pebbling game in which some limited number of

white pebbles can be placed “for free,” and the black pebbles must be placed according

to the standard rules. However, our setting di�ers from the black-white pebbling game:

while preprocessing and storing magic pebbles in advance can be viewed as analogous to

6
In this case, you just place magic pebbles on all the targets.

7
E.g.,Θ

(︁
𝑛

log𝑛

)︁
space is necessary to pebble certain classes of graphs in the standard pebble game [LT82].

8
“Layered graph” is a standard term in the pebbling literature that refers to graphs whose nodes can be

partitioned into a sequence of “layers” such that edges only go between vertices in adjacent layers.
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placing white pebbles for free, the black-white pebbling game imposes restrictions on the

removal of white pebbles from the graph, which are not present in our setting.

Capturing relative cost of memory vs. time

Existing measures such as CC and sustained memory complexity trade o� space against

time at a linear ratio. In particular, CC measures the minimal area under a graph of mem-

ory usage against time, over all possible algorithms that evaluate a function.
9

However, di�erent applications may have di�erent relative cost of space and time. We

propose and de�ne a variant of CC called CC
𝛼

, parametrized by 𝛼 which determines the

relative cost of space and time, and observe that CC
𝛼

may be meaningfully di�erent from

CC and more suitable for certain application scenarios. For example, when memory is

“quadratically” more expensive than time, the measure of interest to an adversary may be

the area under a graph of memory squared against time, as demonstrated by the following

theorem.

Informal version of Theorem 10.6.8. There exist graphs for which an adversary facing

a linear space-time cost trade-o� would in fact employ a di�erent pebbling strategy from

one facing a cubic trade-o�.

It follows that when the costs of space and time are not linearly related, the CC mea-

sure may be measuring the complexity of the wrong algorithm, i.e., not the algorithm that

an adversary would in fact favor. We thus see that our CC
𝛼

measure is more appropriate

in settings where space may be substantially more costly than time (or vice versa). More-

over, our parametrized approach generalizes naturally to sustained memory complexity.

We show that our graph constructions are invariant across di�erent values of 𝛼, a poten-

tially desirable property for hash functions so that they are robust against di�erent types

of adversaries.

Informal version of Theorem 10.6.13. Given any graph construction𝐺 = (𝑉 ,𝐸), there

exists a pebbling strategy that is less expensive asymptotically than any strategy using a

number of pebbles asymptotically equal to the number of nodes in the graph for any time-

space tradeo�.

10.1.4 Organization

Section 10.2 introduces standard and new graph pebbling de�nitions, Section 10.3 intro-

duces computation in the parallel random oracle model (PROM) and its relation to our

new black-magic pebbling complexity measures, Section 10.4 introduces our de�nition

of a static-memory-hard function (SHF), Section 10.5 gives our SHF constructions and

9
Of course, in general, memory usage and time depend on the speci�c computational model in discus-

sion. However, in the stylized parallel random oracle model (PROM), on which all analyses in this chapter

(and previous literature on MHFs) are based, time-steps and memory usage are well-de�ned. We refer to

Section 10.3 for a description of the PROM.
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proofs. Then, Section 10.6 presents our modeling and motivation of nonlinear cost trade-

o�s between space and time, with upper and lower bounds in the new model. Finally,

Section 10.7 discusses our prototype SHF implementation.

10.2 Pebbling de�nitions

A pebbling game is a one-player game played on a DAG where the goal of the player is to

place pebbles on a set of one or more target nodes in the DAG.

In Section 10.2.1, we formally de�ne two variations of the sequential and parallel peb-

ble games: the standard (black) pebble game and the black-magic pebble game, the latter of

which we introduce in this work. We also give the de�nitions of valid strategies and moves

in these games. Then in Section 10.2.2, we de�ne measures for evaluating the sequential

and parallel pebbling complexity on families of graphs.

10.2.1 Standard and magic pebbling de�nitions

De�nition 10.2.1 (Standard (black) pebble game).

• Input: A DAG, 𝐺 = (𝑉 ,𝐸), and a target set 𝑇 ⊆ 𝑉 . De�ne Pred(𝑣) =
{𝑢 ∈ 𝑉 : (𝑢,𝑣) ∈ 𝐸}, and let 𝑆 ⊆ 𝑉 be the set of sources of 𝐺.

• Rules at move 𝑖: At the start of the game, no node of 𝐺 contains a pebble. The player

has access to a supply of black pebbles. Game-play proceeds in discrete moves, and 𝑃𝑖
(called a “pebble con�guration”) is de�ned as the set of nodes containing pebbles after

the 𝑖th move. 𝑃0 = ∅ represents the initial con�guration where no pebbles have been

placed. Each move may consist of multiple actions adhering to the following rules.
10

1. A pebble can be placed on any source, 𝑠 ∈ 𝑆 .
2. A pebble can be removed from any vertex.

3. A pebble can be placed on a non-source vertex, 𝑣, if and only if its direct prede-

cessors were pebbled at time 𝑖 − 1 (i.e., Pred(𝑣) ∈ 𝑃𝑖−1).
4. A pebble can be moved from vertex 𝑣 to vertex 𝑤 if and only if (𝑣,𝑤) ∈ 𝐸 and

Pred(𝑤) ∈ 𝑃𝑖−1.
• Goal: Pebble all nodes in 𝑇 at least once (i.e., 𝑇 ⊆

⋃︀𝑡
𝑖=0 𝑃𝑖).

11

Remark 10.2.2. At �rst glance, it may seem that rule 4 in De�nition 10.2.1 is redundant as a

similar e�ect can be achieved by a combination of the other rules. However, the application of

rule 4 can allow the usage of fewer pebbles. For example, a simple two-layer binary tree (with

three nodes) could be pebbled with two pebbles using rule 4, but would require three pebbles

otherwise. Nordström [Nor15] showed that in sequential strategies, it is always possible to

use one fewer pebble by using rule 4.

10
Multiple applications of rules 1, 2, and 3 can occur in a single move. E.g., multiple sources can be

pebbled in a single move. Rule 4 can also be applied multiple times in a single move for di�erent pebbles,

but cannot be applied more than once to the same pebble (since, naturally, a single pebble cannot move to

multiple locations).

11
This goal statement corresponds to the notion of a visiting pebbling as de�ned in [Nor15]. This chapter

will use this visiting pebbling notion throughout; however, we remark that an alternative notion of pebbling

exists in the literature, called persistent pebbling, which requires that all the nodes in 𝑇 be pebbled in the

�nal con�guration (i.e., 𝑇 ⊆ 𝑃𝑡).

316



We note for completeness that while rule 4 is standard in the pebbling literature, not all

the papers in the MHF literature include rule 4.

Next, we de�ne the black-magic pebble game which we will use to prove security prop-

erties of our static-memory-hard functions.

De�nition 10.2.3 (Black-magic pebble game).

• Input: A DAG 𝐺 = (𝑉 ,𝐸), a target set 𝑇 ⊆ 𝑉 , and magic pebble bound M ∈ ∪{∞}.
• Rules: At the start of the game, no node of 𝐺 contains a pebble. The player has

access to two types of pebbles: black pebbles and up toM magic pebbles. Game-play

proceeds in discrete moves, and 𝑃𝑖 = (𝑀𝑖 ,𝐵𝑖) is the pebble con�guration after the 𝑖th
move, where𝑀𝑖 ,𝐵𝑖 are the sets of nodes containing magic and black pebbles after the

𝑖th move, respectively. 𝑃0 = (∅,∅) represents the initial con�guration where no black

pebbles or magic pebbles have been placed. Each move may consist of multiple actions

adhering to the following rules.

1. Black pebbles can be placed and removed according to the rules of the standard

pebble game.
12

2. A magic pebble can be placed on and removed from any node, subject to the

constraint that at mostM magic pebbles are used throughout the game.

3. Each magic pebble can be placed at most once: after a magic pebble is removed

from a node, it disappears and can never be used again.

• Goal: Pebble all nodes in 𝑇 at least once (i.e., 𝑇 ⊆
⋃︀𝑡
𝑖=0 (𝑀𝑖 ∪𝐵𝑖)).

Remark 10.2.4. In the black-magic pebble game, unlike in the standard pebble game, there

is always the simple strategy of placing magic pebbles directly on all the target nodes. At �rst

glance, this may seem to trivialize the black-magic game. When optimizing for space usage,

however, this simple strategy may not be favorable for the player: by employing a di�erent

strategy, the player might be able to use much fewer than 𝑇 pebbles overall.

Next, we de�ne valid sequential and parallel strategies in these games.

De�nition 10.2.5 (Pebbling strategy). Let 𝐺 be a graph and 𝑇 be a target set. A standard

(resp., black-magic) pebbling strategy for (𝐺,𝑇 ) is de�ned as a sequence of pebble con�gu-
rations, status = {𝑃0, . . . , 𝑃𝑡}, satisfying conditions 1 and 2 below. status is moreover valid if

it satis�es condition 3, and sequential if it satis�es condition 4.

1. 𝑃0 =∅.

2. For each 𝑖 ∈ [𝑡], 𝑃𝑖 can be obtained from 𝑃𝑖−1 by a legal move in the standard (resp.,

black-magic) pebble game.

3. status successfully pebbles all targets, i.e., 𝑇 ⊆
𝑡⋃︀
𝑖=0
𝑃𝑖 .

4. For each 𝑖 ∈ [𝑡], 𝑃𝑖 contains at most one vertex not contained in 𝑃𝑖−1 (i.e., |𝑃𝑖∖𝑃𝑖−1| ≤ 1).
A black-magic pebbling strategy must satisfy one additional condition to be considered valid:

12
The rules of the standard pebble game are a standard de�nition in the pebbling literature. In the black-

magic game, a predecessor node counts as “pebbled” if it contains either a black or a magic pebble. Where

De�nition 10.2.1 treats 𝑃𝑖 as a set of nodes, De�nition 10.2.3 treats 𝑃𝑖 as equal to 𝑀𝑖 ∪𝐵𝑖 .
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5. At mostMmagic pebbles are used throughout the strategy, i.e., |
⋃︀
𝑖∈[𝑡]𝑀𝑖 | ≤Mwhere

𝑀𝑖 is the 𝑖th con�guration of magic pebbles
13
.

10.2.2 Cost of pebbling

In this subsection, we give de�nitions of several cost measures of graph pebbling, ap-

plicable to the standard and black-magic pebbling games. While these de�nitions assume

parallel strategies, we note that the sequential versions of the de�nitions are entirely anal-

ogous.

Space complexity in standard pebbling

We give a brief informal summary of the de�nitions in this subsection, before proceeding

to the formal de�nitions.

Pebbling complexitymeasures We informally overview the pebbling complexity def-

initions, some of which are new to this work.

The time complexity of a pebbling strategy status is the number of steps, i.e.,

Time (status) = |status|. The time complexity of a graph 𝐺 = (𝑉 ,𝐸) given that at most

𝑆 pebbles can be used is Time(𝐺,𝑆) = min
status∈P𝐺,𝑇 ,𝑆 (Time (status)). Next, we overview

variants of space complexity.

1. Space complexity of a pebbling strategy status on a graph𝐺, denoted byPs(status),
is the minimum number of pebbles required to execute status. Space complexity of

the graph 𝐺 with target set 𝑇 , written Ps(𝐺,𝑇 ), is the minimum space complexity

of any valid pebbling strategy for 𝐺.

2. Λ-sustained space complexity [ABP17a]
14

of a pebbling strategy status on a

graph 𝐺, denoted by Pss(status,Λ), is the number of time-steps during the execu-

tion of status, in which at least Λ pebbles are used. Λ-sustained space complexity

of the graph 𝐺 with target set 𝑇 , written Pss(𝐺,Λ,𝑇 ) is the minimum Λ-sustained

space complexity of all valid pebbling strategies for 𝐺.

3. Graph-optimal sustained complexity of a pebbling strategy status, denoted by

Popt-ss(status), is the number of time-steps during the execution of status, in which

the number of pebbles in use is equal to the space complexity of 𝐺. Graph-optimal

sustained complexity of the graph 𝐺 with target set 𝑇 , written Popt-ss(𝐺,𝑇 ) is the

minimum graph-optimal sustained complexity of all valid pebbling strategies for𝐺.

13
Note that here we assume that we can distinguish between a node when a magic pebble was placed on

it and removed, and another magic pebble is placed on it later. In other words, if a magic pebble was placed

on a node and removed, and then, a di�erent magic pebble is placed on the node at a later time, this node

counts as two distinct nodes in the union.

14
We note that our notation diverges from that of [ABP17a], but our De�nition 10.2.9 is equivalent to their

de�nition of “𝑠-sustained space complexity.” (E.g., they writeΠ𝑠𝑠(status,Λ) instead of Pss(𝐺,status,Λ).) We

gave this decision some consideration as inconsistent notation can add confusing clutter to a literature; we

decided on our notation (1) in order to keep consistency with the pebbling literature, where the pyramid

graphs that will be used in our SHF construction are traditionally denoted byΠ; and (2) because our notation

makes the graph 𝐺 explicit where sometimes it is implicit in [ABP17a], and this is important for the new

“graph-optimal sustained complexity” notion we introduce.
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4. ∆-suboptimal sustained complexity of a pebbling strategy status is the number

of time-steps, during the execution of status, in which the number of pebbles in use

is at least the space complexity of𝐺minus∆. ∆-suboptimal sustained complexity of

the graph𝐺 is the minimum∆-suboptimal sustained complexity of all valid pebbling

strategies for 𝐺.

A couple of remarks are in order.

Remark 10.2.6. The third and fourth de�nitions are new to this chapter. They can be seen as

special variants of Λ-sustained space complexity, i.e., with a special setting of Λ dependent

on the speci�c graph family in question. They are useful to de�ne in their own right, as

unlike plain Λ-sustained space complexity, these measures express complexity for a given

graph family relative to the best possible value of Λ at which sustained space usage could

be hoped for. In the rest of this chapter, we prove guarantees on graph-optimal sustained

complexity of our constructions, which have high sustained space usage at the optimal Λ-

value. However, we also de�ne ∆-suboptimal sustained complexity here for completeness,

since it is more general
15
and preferable to graph-optimal complexity when evaluating graph

families where the maximal space usage may not be sustained for very long.

Remark 10.2.7. We have found the term “Λ-sustained space complexity” can be slightly

confusing, in that it measures a number of time-steps rather than an amount of space. We

retain the original terminology as it was introduced, but include this remark to clarify this

point.

We now present the formal de�nitions of the complexity measures for the standard

pebbling game. In all of the below de�nitions, 𝐺 = (𝑉 ,𝐸) is a graph, 𝑇 ⊆ 𝑉 is a target set,

𝒫 = (𝑃1, . . . , 𝑃𝑡) is a standard pebbling strategy on (𝐺,𝑇 ), and P𝐺,𝑇 denotes the set of all

valid standard pebbling strategies on (𝐺,𝑇 ).

De�nition 10.2.8. The space complexity of pebbling strategy status is: Ps(status) =
max𝑃𝑖∈status (|𝑃𝑖 |). The space complexity of 𝐺 is the minimal space complexity of any valid

pebbling strategy that pebbles the target set 𝑇 ⊆ 𝑉 : Ps(𝐺,𝑇 ) = min
status

′∈P𝐺,𝑇 (Ps (status′)).

De�nition 10.2.9. The Λ-sustained space complexity of status is: Pss(status,Λ) =
|{𝑃𝑖 : |𝑃𝑖 | ≥Λ}|. The Λ-sustained space complexity of 𝐺 is the minimal Λ-sustained space

complexity of any valid pebbling strategy that pebbles the target set 𝑇 ⊆ 𝑉 : Pss(𝐺,Λ,𝑇 ) =
min

status
′∈P𝐺,𝑇 (Pss (status′,Λ)).

De�nition 10.2.10. The graph-optimal sustained complexity of status is:

Popt-ss(status) = Pss(status,Ps(𝐺,𝑇 )). The graph-optimal sustained complexity of 𝐺 is

the minimal graph-optimal sustained complexity of any valid pebbling strategy that pebbles

the target set 𝑇 ⊆ 𝑉 : Popt-ss(𝐺,𝑇 ) = min
status

′∈P𝐺,𝑇

(︁
Popt-ss (status′)

)︁
.

De�nition 10.2.11. The ∆-suboptimal sustained complexity of status is:

Popt-ss(status,∆) = Pss(status,Ps(𝐺,𝑇 )−∆).
15

More speci�cally, graph-optimal sustained complexity is∆-suboptimal sustained complexity for∆ = 0.
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The ∆-suboptimal sustained complexity of 𝐺 is the minimal graph-optimal sustained com-

plexity of any valid pebbling strategy that pebbles the target set 𝑇 ⊆ 𝑉 : Popt-ss(𝐺,∆,𝑇 ) =

min
status

′∈P𝐺,𝑇

(︁
Popt-ss (status′,∆)

)︁
.

Time complexity in standard pebbling

We present the following formal de�nitions for measuring the time complexity of strate-

gies in the standard pebble game. In all the below de�nitions,𝐺 = (𝑉 ,𝐸) is a graph, 𝑇 ⊆ 𝑉
is a target set, status = (𝑃1, . . . , 𝑃𝑡) is a standard pebbling strategy on (𝐺,𝑇 ) where P𝐺,𝑇 ,𝑆
denotes the set of all valid pebbling strategies on (𝐺,𝑇 ) that use at most 𝑆 pebbles.

De�nition 10.2.12. The time complexity of a pebbling strategy status is Time (status) =
|status|. The time complexity of a graph𝐺 = (𝑉 ,𝐸) given that at most 𝑆 pebbles can be used

is Time(𝐺,𝑆) = min
status∈P𝐺,𝑇 ,𝑆 (Time (status)).

Space complexity in black-magic pebbling

Next, we de�ne the corresponding complexity notions for the black-magic pebbling game.

As above, 𝐺 = (𝑉 ,𝐸) is a graph, 𝑇 ⊆ 𝑉 is a target set, and M is a magic pebble bound. In

this subsection, 𝒫 = (𝑃1, . . . , 𝑃𝑡) = ((𝑀1,𝐵1), . . . , (𝑀𝑡,𝐵𝑡)) denotes a black-magic pebbling

strategy on (𝐺,𝑇 ). Moreover, M𝐺,𝑇 ,M denotes the set of all valid magic pebbling strategies

on (𝐺,𝑇 ), and𝑚(status) denotes the total number of magic pebbles used in the execution

of status.

De�nition 10.2.13. The (magic) space complexity of 𝒫 is: Ps(status) =
max

(︁
𝑚(status),max𝑃𝑖∈status (|𝑃𝑖 |)

)︁
. The (magic) space complexity of 𝐺 w.r.t. M is

the minimal space complexity of any valid magic pebbling strategy that pebbles the target

set 𝑇 ⊆ 𝑉 : Ps(𝐺,M,𝑇 ) = min
status∈P𝐺,𝑇 ,M (Ps (status)).

Remark 10.2.14. We brie�y provide some intuition for the complexity measure de�ned

above in Def. 10.2.13. If we consider all magic pebbles to be static memory objects that were

saved from a previous evaluation of the hash function, then the total number of magic pebbles

is the amount of memory that was used to save the results of a previous evaluation of the

hash function. Because of this, it is natural to take the maximum of the memory used to

store results from a previous evaluation of the function and the current memory that is used

by our current pebbling strategy since that would represent how much memory was used to

compute the results of the hash function during the current evaluation.

De�nition 10.2.15. The (magic) Λ-sustained space complexity of 𝒫 is: Pss(status,Λ) =
|{𝑃𝑖 : |𝑃𝑖 | ≥Λ}|. The Λ-sustained space complexity of 𝐺 w.r.t. M and 𝑇 ⊆ 𝑉 is:

Pss(𝐺,Λ,M,𝑇 ) = min
status∈P𝐺,𝑇 ,M (Pss (status,Λ)).

De�nition 10.2.16. The (magic) graph-optimal sustained complexity of 𝒫 is:

Popt-ss(status) = Pss(status,Ps(𝐺,𝑇 )). The graph-optimal sustained complexity of 𝐺 w.r.t.

M and 𝑇 ⊆ 𝑉 is: Popt-ss(𝐺,M,𝑇 ) = min
status∈P𝐺,𝑇 ,M

(︁
Popt-ss (status)

)︁
.
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De�nition 10.2.17. The (magic) ∆-suboptimal sustained complexity of 𝒫 is:

Popt-ss(status,∆) = Pss(status,Ps(𝐺,𝑇 ) − ∆). The ∆-suboptimal sustained complex-

ity of 𝐺 w.r.t. M and 𝑇 ⊆ 𝑉 is:

Popt-ss(𝐺,∆,M,𝑇 ) = min
status∈P𝐺,𝑇 ,M

(︁
Popt-ss (status,∆)

)︁
.

10.2.3 Incrementally hard graphs

We introduce the following de�nition for our notion of graphs which require |𝑇 | pebbles

to pebble regardless of the number of targets that are asked, given a constraint on the

number of magic pebbles that can be used. This concept has not been previously analyzed

in the pebbling literature; traditional pebbling complexity usually treats graphs with �xed

target sets.

De�nition 10.2.18 (Incremental Hardness). Given at mostMmagic pebbles, for any subset

of targets 𝐶 ⊆ 𝑇 where |𝐶| >M, the number of pebbles (magic and black pebbles) necessary

in the black-magic pebble game to pebble𝐶 is at least |𝑇 |where the number of magic pebbles

used in this game is upper bounded byM: Ps(𝐺, |𝐶| − 1,𝐶) ≥ |𝑇 |.

𝛼-tradeo� cumulative complexity

𝛼-tradeo� cumulative complexity, or CC
𝛼

, is a new measure introduced in this chapter,

which accounts for situations where space and time do not trade o� linearly. Similar

notions to this have been explored before e.g. [FLW13], [BK15, AB16, RD17]. A discussion

of the core-area memory ratio [BK15, AB16, RD17] can be found in Section 10.1.2. They

considered the notion of 𝜆-memory-hardness to be applied to graphs where intuitively 𝑆 ·
𝑇 =Ω

(︁
𝐺𝜆+1

)︁
16

or rather the space-time cost is some exponential of the size of the stored

graph [FLW13]. We note that this notion is very di�erent from our notion of 𝛼-tradeo�

complexity since they only consider the space-time cost (not cumulative complexity) and

do not consider nonlinear tradeo�s between space and time (one can just consider 𝐺𝜆+1

to be a constant in the tradeo� curve).

Here, we see the usefulness of de�ning sustained complexities in terms of the mini-

mum required space (as opposed to being parametrized byΛ) since we can always obtain

an upper bound on CC
𝛼

, for any 𝛼, of a graph directly from our proofs of the space com-

plexity and sustained time complexity of a DAG.

De�nition 10.2.19 (Standard pebbling 𝛼-space cumulative complexity). Given a valid

parallel standard pebbling strategy, status, for pebbling a graph 𝐺 = (𝑉 ,𝐸), the standard

pebbling 𝛼-space cumulative complexity is the following:

p-cc𝛼(𝐺, status) =
∑︁

𝑃𝑖∈status
|𝑃𝑖 |𝛼 .

16
Note that 𝑆 is the maximum space used in the computation and 𝑇 is the time.

321



De�nition 10.2.20 (Black-magic pebbling𝛼-space cumulative complexity). Given a valid

parallel black-magic pebbling strategy, status, for pebbling a graph 𝐺 = (𝑉 ,𝐸), the black-

magic pebbling 𝛼-space cumulative complexity is the following:

p-cc𝑀𝛼 (𝐺, status) = max

⎛⎜⎜⎜⎜⎜⎜⎝𝑚(status)𝛼,
∑︁

𝑃𝑖∈status
|𝑃𝑖 |𝛼

⎞⎟⎟⎟⎟⎟⎟⎠ =max

⎛⎜⎜⎜⎜⎜⎜⎝𝑚(status)𝛼,
∑︁

𝑃𝑖∈status
|𝐵𝑖 ∪𝑀𝑖 |𝛼

⎞⎟⎟⎟⎟⎟⎟⎠
where 𝑚(status) denotes the total number of magic pebbles used in the magic pebbling

strategy status.

The following de�nition, CC
𝛼

, is an analogous de�nition to 𝐶𝐶 as de�ned by [AS15]

(speci�cally, CC
𝛼

when 𝛼 = 1 is equivalent to CC) to account for varying costs of memory

usage vs. time.

De�nition 10.2.21 (CC
𝛼

). Given a graph, 𝐺 ∈ G, and the family of all valid standard

pebbling strategies, P, we de�ne the CC𝛼(𝐺) to be

CC
𝛼(𝐺) = min

status∈P
(p-cc𝛼 (𝐺, status)) ,

and, given the family P𝑀 of all valid black-magic pebbling strategies, we de�ne CC
𝛼(𝐺) to

be

CC
𝛼(𝐺) = min

status
𝑀∈P𝑀

(︁
p-cc𝑀𝛼

(︁
𝐺, status𝑀

)︁)︁
.

10.3 Parallel random oracle model (PROM)

In this chapter, we consider two broad categories of computations: pebbling strategies

and PROM algorithms. Speci�cally, we discussed above the pebbling models and pebble

games we use to construct our static memory-hard functions. Now, we de�ne our PROM

algorithms.

Prior work has observed the close connections between these two types of computa-

tions as applied to DAGs, and our work brings out yet more connections between the two

models. In this section, we give an overview of how PROM computations work and de-

�ne the complexity measures that we apply to PROM algorithms. Some of the complexity

measures were introduced by prior work, and others are new in this work.

10.3.1 Overview of PROM computation

The random oracle model was introduced by [BR93]. When we say random oracle, we

always mean a parallel random oracle unless otherwise speci�ed.

An algorithm in the PROM is a probabilistic algorithm ℬ which has parallel access to

a stateless oracle 𝒪: that is, ℬ may submit many queries in parallel to 𝒪. We assume 𝒪 is

sampled uniformly from an oracle set O and that ℬ may depend on O but not 𝒪.

The algorithm proceeds in discrete time-steps called iterations, and may be thought to

consist of a series of algorithms (ℬ𝑖)𝑖∈, indexed by the iteration 𝑖, where each ℬ𝑖 passes a

322



state 𝜎𝑖 ∈ {0,1}* to its successor ℬ𝑖+1. 𝜎0 is de�ned to contain the input to the algorithm.

We write |𝜎𝑖 | to denote the size, in bits, of 𝜎𝑖 . We write 8𝜎𝑖8 to denote
|𝜎𝑖 |
𝑤 , where 𝑤 is

the output length of the oracle 𝒪. In other words, 8𝜎𝑖8 is the size of 𝜎𝑖 when counting in

words of size𝑤. In each iteration, the algorithm ℬ𝑖 may make a batch q𝑖 = (𝑞𝑖,1, . . . , 𝑞𝑖,|q𝑖 |)
of queries, consisting of |q𝑖 | individual queries to 𝒪, and instantly receive back from the

oracle the evaluations of 𝒪 on the individual queries, i.e., (𝒪(𝑞𝑖,1), . . . ,𝒪(𝑞𝑖,|q𝑖 |)).
At the end of any iteration, ℬ can append values to a special output register, and it can

end the computation by appending a special terminate symbol ⊥ on that register. When

this happens, the contents 𝑦 of the output register, excluding the trailing ⊥, is considered

to be the output of the computation. To denote the process of sampling an output, 𝑦,

provided input 𝑥, we write 𝑦←ℬ𝒪(𝑥).

De�nition 10.3.1 (Oracle functions). An oracle function is a collection f = {𝑓 𝒪 : 𝐷 →
𝑅}𝒪∈O of functions with domain 𝐷 and outputs in 𝑅 indexed by oracles 𝒪 ∈O.

A family of oracle functions is a set ℱ = {f𝜅 :𝐷𝜅→ 𝑅𝜅}𝜅∈ where each f𝜅 is indexed by
oracles from an oracle set O𝜅 : {0,1}𝜅→ {0,1}𝜅 indexed by a security parameter 𝜅.17

De�nition 10.3.2 (Memory complexity of PROM algorithms). The memory complexity

of ℬ(𝑥;𝜌) (i.e., the memory complexity of ℬ on input 𝑥 and randomness 𝜌) is de�ned as:

memO(ℬ,𝑥,𝜌) = max
𝑖∈
{8𝜎𝑖8} . (10.1)

De�nition 10.3.3 (Λ-sustained memory complexity of PROM algorithms). The Λ-

sustained memory complexity of ℬ(𝑥;𝜌) is de�ned as:

s-memO(Λ,ℬ,𝑥,𝜌) = |{𝑖 ∈: |𝜎𝑖 | ≥Λ}| . (10.2)

Note that (10.1) and (10.2) are distributions over the choice of 𝒪←O.

10.3.2 Functions de�ned by DAGs

We now describe how to translate a graph construction into a function family, whose

evaluation involves a series of oracle calls in the PROM. Any family of DAGs induces

a family of oracle functions in the PROM, whose complexity is related to the pebbling

complexity of the DAG. We �rst de�ne the syntax of labeling of DAG nodes, then de�ne

a graph function family.

De�nition 10.3.4 (Labeling). Let 𝐺 = (𝑉 ,𝐸) be a DAG with maximum in-degree 𝛿, let L
be an arbitrary “label set,” and de�ne O(𝛿,L) =

(︁[︁
𝑉 ×

⋃︀𝛿
𝛿′=1L

𝛿′
]︁
→ L

)︁
. For any function

𝒪 ∈ O(𝛿,L) and any label 𝜁 ∈ L, the (𝒪,𝜁)-labeling of 𝐺 is a mapping label𝒪,𝜁 : 𝑉 → L

17
For simplicity, we have the input and output domains of the oracles equal to {0,1}𝜅, but this is not a

necessary restriction: the sizes could be any polynomials in 𝜅.
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de�ned recursively as follows.
18

label𝒪,𝜁(𝑣) =

⎧⎪⎪⎨⎪⎪⎩𝒪(𝑣,𝜁) if indeg(𝑣) = 0
𝒪(𝑣, label𝒪,𝜁(𝑣1), . . . , label𝒪,𝜁(𝑣indeg(𝑣))) if indeg(𝑣) > 0

.

De�nition 10.3.5 (Graph function family). Let 𝑛 = 𝑛(𝜅) and let G𝛿 = {𝐺𝑛,𝛿 = (𝑉𝑛,𝐸𝑛)}𝜅∈
be a graph family. We write O𝛿,𝜅 to denote the set O(𝛿, {0,1}𝜅) as de�ned in De�nition

10.3.4. The graph function family of G is the family of oracle functions ℱG = {f𝐺}𝜅∈ where
f𝐺 = {𝑓 𝒪𝐺 : {0,1}𝜅 → ({0,1}𝜅)𝑧}𝒪∈O𝛿,𝜅 and 𝑧 = 𝑧(𝜅) is the number of sink nodes in 𝐺. The

output of 𝑓 𝒪𝐺 on input label 𝜁 ∈ {0,1}𝜅 is de�ned to be

𝑓 𝒪𝐺 (𝜁) = label𝒪,𝜁(𝑠1), . . . , label𝒪,𝜁(𝑠𝑖) ∀𝑠1, . . . , 𝑠𝑖 ∈ sink(𝐺),

where sink(𝐺) is the set of sink nodes of 𝐺.

10.3.3 Relating complexity of PROM algorithms and pebbling

strategies

Any PROM algorithm ℬ and input 𝑥 induce a black-magic pebbling strategy,

epf-magic𝜁(ℬ,𝒪,𝑥,$), called an ex-post-facto black-magic pebbling strategy. The way in

which this strategy is induced is similar to ex-post-facto pebbling as originally de�ned by

[AS15] in the context of the standard pebble game. Please refer to [AS15] for a detailed

description of this proof technique. We adapt their technique for the black-magic game.

De�nition 10.3.6 (Ex-post-facto black-magic pebbling). Let 𝑛 = 𝑛(𝜅) and let G𝛿 =
{𝐺𝑛,𝛿 = (𝑉𝑛,𝐸𝑛)}𝜅∈ be a graph family. Let 𝜁 = 𝜁(𝜅) ∈ {0,1}𝜅 be an arbitrary input label for

the graph function family ℱG. For any 𝑣 ∈ 𝑉𝑛, de�ne

pre-lab𝒪,𝜁(𝑣) = (𝑣, label𝒪,𝜁(Pred(𝑣))) .

Let ℬ be a non-uniform PROM algorithm. Fix an implicit security parameter 𝜅. Let 𝑥
be an input to ℬ. We now de�ne a magic pebbling strategy induced by any given execution

of ℬ𝒪(𝑥;$), where $ denotes the random coins of ℬ. Such an execution makes a sequence of

batches of random oracle calls (as de�ned in Section 10.3.1), which we denote by

q(ℬ,𝒪,𝑥,$) = (q1, . . . ,q𝑡) .

The induced black-magic pebbling strategy,

epf-magic𝜁(ℬ,𝒪,𝑥,$) = ((𝐵0,𝑀0), . . . , (𝐵𝑡,𝑀𝑡)) , (10.3)

is called an ex-post-facto black-magic pebbling, and is de�ned by the following procedure.

1. 𝐵0 =𝑀0 =∅.

18
We abuse notation slightly and also invoke label𝒪,𝜁 on sets of vertices, in which case the output is

de�ned to be a tuple containing the labels of all the input vertices, arranged in lexicographic order of vertices.
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2. For 𝑖 = 1, . . . , 𝑡:
(a) 𝐵𝑖 = 𝐵𝑖−1.
(b) 𝑀𝑖 =𝑀𝑖−1.
(c) For each individual query 𝑞 ∈ q𝑖 , if there is some 𝑣 ∈ 𝑉𝑛 such that 𝑞 =

pre-lab𝒪,𝜁(𝑣) and 𝑣 < 𝑃𝑖 , then “pebble 𝑣” by performing the following steps:

i. If Pred(𝑣) ⊆𝑀𝑖 ∪𝐵𝑖 :19

• 𝐵𝑖 = 𝐵𝑖 ∪ {𝑣}.
ii. Else:

• 𝑉 = {𝑣}.
• Let 𝑉 * be the transitive closure of 𝑉 under the following operation:

𝑉 = 𝑉 ∪ (
⋃︀
𝑣′∈𝑉 Pred(𝑣′)∖ (𝑀𝑖 ∪𝐵𝑖)).

• 𝑀𝑖 =𝑀𝑖 ∪𝑉 *.
3. For 𝑖 = 1, . . . , 𝑡:

(a) A node 𝑣 ∈𝑀𝑖 ∪𝐵𝑖 is said to be necessary at time 𝑖 if

∃𝑗 ∈ [𝑡],𝑞 ∈ q𝑗 ,𝑣′ ∈ 𝑉𝑛 s.t. 𝑗 > 𝑖 ∧ 𝑣 ∈ Pred(𝑣′)∧ 𝑞 = pre-lab𝒪,𝜁(𝑣
′)

∧
(︂
@𝑘 ∈ [𝑡],𝑞′ ∈ q𝑘 s.t. 𝑖 < 𝑘 < 𝑗 ∧ 𝑞′ = pre-lab𝒪,𝜁(𝑣)

)︂
.

In other words, a node is necessary if its label will be required in a future oracle

call, but its label will not be obtained by any oracle query between now and that

future oracle call.

Remove from 𝐵𝑖 and𝑀𝑖 all nodes that are not necessary at time 𝑖.

10.3.4 Legality and space usage of ex-post-facto black-magic peb-

bling

The following theorems establish that the space usage of PROM algorithms is closely

related to the space usage of the induced pebbling.

We will use the following supporting lemma, also used in prior work such as [AS15,

DKW11] (see, e.g., [DKW10] for a proof).

Lemma 10.3.7. Let 𝐵 = 𝑏1, . . . , 𝑏𝑢 be a sequence of random bits and let H be a set. Let 𝒫
be a randomized procedure that gets a hint ℎ ∈ H, and can adaptively query any of the bits

of 𝐵 by submitting an index 𝑖 and receiving 𝑏𝑖 as a response. At the end of its execution, 𝒫
outputs a subset 𝑆 ⊆ {1, . . . ,𝑢} of |𝑆 | = 𝜙 indices which were not previously queried, along

with guesses for the values of the bits {𝑏𝑖 : 𝑖 ∈ 𝑆}. Then the probability (over the choice of

𝐵 and the randomness of 𝒫 ) that there exists some ℎ ∈ H such that 𝒫 (ℎ) outputs all correct

guesses is at most |H|/2𝜙 .

Lemma 10.3.8 (Legality and magic pebble usage of ex-post-facto black-magic pebbling).

Let 𝑛 = 𝑛(𝜅) and let G𝛿 = {𝐺𝑛,𝛿 = (𝑉𝑛,𝐸𝑛)}𝜅∈ be a graph family. Let 𝜁 ∈ {0,1}𝜅 be an

arbitrary input label for G𝛿. Fix any e�cient PROM algorithm ℬ and input 𝑥. With over-

whelming probability over the choice of random oracle 𝒪 ← O and the random coins $ of

19
Recall that Pred(𝑣) returns the immediate predecessors of 𝑣 (i.e. vertices 𝑢 ∈ 𝑉𝑛 where (𝑢,𝑣) ∈ 𝐸𝑛).
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ℬ, it holds that the ex-post-facto magic pebbling epf-magic𝜁(ℬ,𝒪,𝑥,$) consists of valid
magic-pebbling moves, and uses fewer than 𝜒 =

⌊︁ |𝑥|
𝜅−log(𝑞) +1

⌋︁
magic pebbles (i.e., for all 𝑖,

|𝑀𝑖 | ≤ 𝜒), where 𝑞 is the number of oracle queries made by ℬ(𝑥).

Proof. Fix an algorithm ℬ and, for the sake of contradiction, suppose that there is an

input 𝑥 such that with non-negligible probability over 𝒪 and $, the induced pebbling

epf-magic𝜁(ℬ,𝒪,𝑥,$) uses at least 𝜒 magic pebbles or contains an invalid move. By

de�nition, this means that the following event ℰ occurs with non-negligible probability:

on at least 𝜒 occasions, a (magic) pebble is placed on a node 𝑣 although its parents were

not all pebbled in the previous step. In turn, this means that a correct random-oracle

query for the label of 𝑣 is made by ℬ; and the correct query contains the label of some

predecessor node 𝑣′ which was not contained in the output of any previous oracle call.

Let us suppose that event ℰ occurs with probability more than 𝑝 = 𝑞𝜒2|𝑥|

2𝜅𝜒 . Note that

this probability is negligible, since

𝑝 =
𝑞𝜒2|𝑥|

2𝜅𝜒
= 2𝜒 log(𝑞)+|𝑥|−𝜅𝜒

𝜒 log(𝑞) + |𝑥| −𝜅𝜒 = 𝜒(log(𝑞)−𝜅) + |𝑥| (analyzing the exponent)

=
⌊︃

|𝑥|
𝜅 − log(𝑞)

+ 1
⌋︃
(log(𝑞)−𝜅) + |𝑥| (substituting for 𝜒)

≤
|𝑥|+𝜅 − log(𝑞)
𝜅 − log(𝑞)

(log(𝑞)−𝜅) + |𝑥|

= −(|𝑥|+𝜅 − log(𝑞)) + |𝑥| (canceling denominator)

= −𝜅+ log(𝑞)

and 𝑞 is polynomial in 𝜅. Based on this assumption, we construct a predictor that pre-

dicts 𝜒 output values of the random oracle with impossibly high probability (speci�cally,

violating Lemma 10.3.7) as follows. The predictor 𝒫 depends on input 𝑥 and can query

the random oracle on inputs of its choice, before outputting its prediction. Let 𝑟 be an

upper bound on the number of random bits used by ℬ(𝑥). The predictor also has access

to a sequence �̂� of 𝑟 random bits, that it can use to simulate the random coins of ℬ.

• Hint: The predictor 𝒫 receives as its hint
20

either ⊥ if the induced pebbling

epf-magic𝜁(ℬ,𝒪,𝑥,$) is valid and uses no more than 𝜒 magic pebbles, or the fol-

lowing information otherwise:

– the index 𝑖* ∈ [𝑞] of the �rst oracle call causing the illegal event (inducing the

𝜒th placement of a magic pebble on some node 𝑣) to happen;

– the indices 𝐼 ⊂ [𝑖*] of all oracle calls preceding the 𝑖*th oracle call, that induce

the placement of a magic pebble or pebbles; and

– ℬ’s input 𝑥.

The size of this hint is at most 𝜒 log(𝑞) + |𝑥| bits.

• Execution: If the hint is ⊥, then 𝒫 halts and outputs nothing. Otherwise, 𝒫 runs

ℬ(𝑥; �̂�), forwarding all oracle calls to the random oracle, until the 𝑖*th query. By

20
Note that the hint may depend both on the choice of random oracle, and on the randomness �̂�.
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construction, for each 𝑖′ ∈ 𝐼 ∪ {𝑖*}, the 𝑖′th query contains the labels of the parents

of the node 𝑣𝑖′ whose pebbling is induced by the 𝑖′th query, and at least one of

these labels (say, label ℓ𝑤𝑖′ for parent node 𝑤𝑖′ ) was not the output of any previous

query to the random oracle. For each 𝑖′ ∈ 𝐼∪{𝑖}, our predictor recomputes the value

�̃�𝑖′ = pre-lab𝒪,𝜁(𝑤𝑖′ ) which is the preimage under𝒪 of ℓ𝑤𝑖′ . Note that by de�nition

of pre-lab, �̃�𝑖′ can be computed without ever querying 𝒪 on input �̃�𝑖′ . Finally, 𝒫
outputs the following pairs: {︁

(�̃�𝑖′ , ℓ𝑤𝑖′ )
}︁
𝑖′∈𝐼∪{𝑖*}

.

Since by construction, each query 𝑖′ ∈ 𝐼∪{𝑖*} induced the placement of a magic peb-

ble, it follows that each pair (�̃�𝑖′ , ℓ𝑤𝑖′ ) is a valid input-output pair of 𝒪. Moreover,

𝒫 never queried 𝒪 on any �̃�𝑖′ .
The predictor’s hint is ⊥ with probability at most that of ℰ , and the predictor succeeds

whenever the hint is not⊥. Hence, by our assumption about the probability 𝑝 of the event

ℰ , the predictor must succeed with probability greater than 𝑝 = 𝑞𝜒2|𝑥|

2𝜅𝜒 . By construction, the

size of the predictor’s hint set is at most 𝑞𝜒2|𝑥|, and the predictor’s output is 𝜅𝜒 bits long.

Thus Lemma 10.3.7 implies that the probability (over the choice of 𝒪 and the randomness

of 𝒫 ) that there is some hint such that 𝒫 outputs all correct guesses is at most
𝑞𝜒2|𝑥|

2𝜅𝜒 . (This

is equal to 𝑝.) We have a contradiction, and the lemma follows.

Lemma 10.3.9 (Space usage of ex-post-facto black-magic pebbling). Let 𝑛,G𝛿,𝜁 be as in

Lemma 10.3.8. Fix any PROM algorithm ℬ and input 𝑥. Fix any 𝑖 ∈ [𝑡], 𝜆 ≥ 0, and de�ne

epf-magic𝜁(ℬ,𝒪,𝑥,$) = (𝑃 𝒪1 , . . . , 𝑃
𝒪
𝑡 ) = ((𝐵𝒪1 ,𝑀

𝒪
1 ), . . . , (𝐵

𝒪
𝑡 ,𝑀

𝒪
𝑡 ))

for oracle 𝒪. We may omit the superscript 𝒪 for notational simplicity. It holds for all large

enough 𝜅 that the following probability is overwhelming:

Pr[∀𝑖 ∈ [𝑡], |𝑃𝑖 | ≤ 𝜒′] ,

where 𝜒′ =
⌊︁ |𝜎𝑖 |
𝜅−log(𝑞) +1

⌋︁
(where 𝜎𝑖 is the state that ℬ𝑖 passes to ℬ𝑖+1), 𝑞 is the number of

oracle queries made by ℬ, and the probability is taken over 𝒪←O and the coins of ℬ.

Proof. This proof has a very similar structure to that of Lemma 10.3.8. Assume for contra-

diction that with non-negligible probability for some 𝑖 ∈ [𝑡] it holds that |𝑃𝑖 | > 𝜒′ . Let ℰ
denote the event that the induced pebbling epf-magic𝜁(ℬ,𝒪,𝑥,$) satis�es |𝑃𝑖 | > 𝜒′ , and

suppose that ℰ occurs with probability more than 𝑝 = 𝑞𝜒
′
2|𝜎𝑖 |

2𝜅𝜒′
. Note that 𝑝 is negligible,
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since

𝑝 =
𝑞𝜒
′
2|𝜎𝑖 |

2𝜅𝜒′
= 2𝜒

′ log(𝑞)+|𝜎𝑖 |−𝜅𝜒′

𝜒′ log(𝑞) + |𝜎𝑖 | −𝜅𝜒′ = 𝜒′(log(𝑞)−𝜅) + |𝜎𝑖 | (analyzing the exponent)

=
⌊︃
|𝜎𝑖 |

𝜅 − log(𝑞)
+ 1

⌋︃
(log(𝑞)−𝜅) + |𝜎𝑖 | (substituting for 𝜒′)

≤
|𝜎𝑖 |+𝜅 − log(𝑞)
𝜅 − log(𝑞)

(log(𝑞)−𝜅) + |𝜎𝑖 |

= −(|𝜎𝑖 |+𝜅 − log(𝑞)) + |𝜎𝑖 | (canceling denominator)

= −𝜅+ log(𝑞)

We design a predictor 𝒫 to predict the labels of all nodes in 𝑃𝑖 with impossibly high

probability, as follows. We refer to the oracle call that causes the ex-post-facto pebbling

of a node 𝑣 ∈ 𝑃𝑖 a critical call. (Critical calls encompass both black and magic pebble

placements.) 𝒫 depends on 𝜎𝑖 , 𝒪, and a long enough sequence �̂� of random bits used to

simulate the coins of ℬ.

• Hint: The predictor 𝒫 receives as its hint either ⊥ if the induced pebbling

epf-magic𝜁(ℬ,𝒪,𝑥,$) satis�es |𝑃𝑖 | ≤ 𝜒′ , or the following information otherwise:

– the indices 𝐽 = {𝑗1, . . . , 𝑗𝑐} ∈ [𝑞]|𝑃𝑖 | of the critical calls made by ℬ, and

– the state 𝜎𝑖 outputted by ℬ at the end of iteration 𝑖, and

The size of this hint is |𝑃𝑖 | log(𝑞)+ |𝜎𝑖 | bits. By our assumption on |𝑃𝑖 |,21
this is more

than 𝜒′ log(𝑞) + |𝜎𝑖 | bits.

• Execution: 𝒫 runs ℬ on input (𝑧,𝜎𝑖), recording the labels of all input-nodes of the

critical calls. To answer any oracle call 𝑄 with output-node 𝑣, the predictor does

the following:

– Determines if the call is correct. A call is correct i� it is a critical call or for each

parent 𝑤𝑖′ of 𝑣, a correct call for 𝑤𝑖′ has already been made and 𝑄 matches

the results of those calls. In particular,𝑄 = pre-lab𝒪,𝜁′ (𝑤𝑖′ ) and no new oracle

calls need be made by the predictor to check this.

– If the call is correct and the label of 𝑣 has already been recorded then output

the label. Otherwise query 𝒪 to answer the call.

Finally, 𝒫 outputs predictions of all of the labels of the magic pebbles and all the

labels associated with 𝑃𝑖 , as follows.

– The labels of the magic pebbles are determined as described in the proof of

Lemma 10.3.8.

– Whenℬ terminates, 𝒫 checks the transcript to determine the set𝐵𝑖 .
22

It is easy

to verify that their labels were never queried to 𝒪 by 𝒫 . Then, for all 𝑣 ∈ 𝐵𝑖
the predictor computes 𝑣 = pre-lab𝒪,𝜁′ (𝑣) and outputs the pair (𝑣,ℓ𝑣) where

ℓ𝑣 is the label of 𝑣 (as speci�ed in the input of the oracle call for associated

critical call).

21
Recall for the sake of contradiction, we assumed |𝑃𝑖 | > 𝜒′ .

22
Recall, this is the set of nodes containing black pebbles.
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The predictor’s hint is⊥with probability at most that of ℰ , and the predictor succeeds

whenever the hint is not⊥. Hence, by our assumption about the probability 𝑝 of the event

ℰ , the predictor must succeed with probability greater than 𝑝. The predictor’s output is

𝜅|𝑃𝑖 | > 𝜅𝜒′ bits long. From Lemma 10.3.7, it follows that the probability (over the choice

of 𝒪 and the randomness of 𝒫 ) that there is some hint such that 𝒫 outputs all correct

guesses is at most (𝑞𝜒
′
2|𝜎𝑖 |)/2𝜅𝜒

′
. (This is equal to 𝑝.) We have a contradiction and the

lemma follows.

10.4 Static-memory-hard functions

We now de�ne static-memory-hard functions. As mentioned above, prior notions of

memory-hardness consider only dynamic memory usage. To model static memory us-

age, we consider a hash function with two parts (ℋ1,ℋ2) where ℋ2(𝑥) computes the

output of the hash function ℎ(𝑥) given oracle access to the output ofℋ1. This design can

be seen to reduce honest party computation time by limiting the hard work to one-o�

preprocessing phase, while maintaining a large space requirement for password-cracking

adversaries. Informally, our guarantee says that unless the adversary stores a speci�ed

amount of static memory, he must use an equivalent amount of dynamic memory to com-

pute ℎ correctly on many outputs. De�nition 10.4.1 is syntactic and De�nition 10.4.2

formalizes the memory-hardness guarantee.

Notation PPT stands for “probabilistic polynomial time.” For �⃗� ∈ {0,1}*, de�ne Seek�⃗� :

{1, . . . , |⃗𝑏|} → {0,1} to be an oracle that on input 𝜄 returns the 𝜄th bit of �⃗�.

De�nition 10.4.1 (Static-memory hash function family (SHF)). A static-memory hash

function family ℋ𝒪 = {ℎ𝒪𝜅 : {0,1}𝑤′ → {0,1}𝑤}𝜅∈ mapping 𝑤′ = 𝑤′(𝜅) bits to 𝑤 = 𝑤(𝜅)
bits is described by a pair of deterministic oracle algorithms (ℋ1,ℋ2) such that for all 𝜅 ∈
and 𝑥 ∈ {0,1}𝑛,

ℋSeek𝑅
2 (1𝜅,𝑥) = ℎ𝜅(𝑥), where 𝑅 =ℋ1(1

𝜅) .

(The superscript 𝒪 is left implicit.)

The next de�nition presents a parametrized notion of (Λ,∆, 𝜏,𝑞)-hardness of an SHF.

Before delving into the formal de�nition, we give a brief intuition of the guarantee pro-

vided by De�nition 10.4.2: any adversary who produces at least 𝑞 correct input-output

pairs of the hash function must either have used Λ−∆ static memory or incur a require-

ment of Λ dynamic memory sustained over 𝜏 time-steps at runtime.

The role of 𝑞. The parameter 𝑞 in De�nition 10.4.2 serves to capture the intuitive idea

that an adversary that uses a certain amount of space could always use that space to

directly store output values of ℎ𝜅. Clearly, an adversary with an arbitrary input 𝑅 could

very easily output up to 8|𝑅|8 correct output values. Our goal is to lower bound the

amount of space needed by an adversary who outputs nontrivially more correct values

than that — and 𝑞, which is a function of |𝑅|, captures how many more.
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De�nition 10.4.2 ((Λ,∆,𝜏,𝑞)-hardness of SHF). Letℋ = {ℎ𝜅}𝜅∈ be a static-memory hash

function family described by algorithms (ℋ1,ℋ2), mapping 𝑤′ to 𝑤 bits. ℋ is (Λ,∆, 𝜏,𝑞)-
hard if for any large enough 𝜅 ∈, any string 𝑅 ∈ {0,1}Λ−∆, and any PPT algorithm 𝒜, for
any set 𝑋 = {𝑥1, . . . ,𝑥𝑞} ⊆ {0,1}𝑤

′
, and for randomness 𝜌, there is a negligible 𝜀 such that

Pr
𝒪,𝜌

[︂{︁
(𝑥1,ℎ𝜅(𝑥1)), . . . , (𝑥𝑞,ℎ𝜅(𝑥𝑞))

}︁
=𝒜(1𝜅,𝑅;𝜌)∧ s-memO(Λ,𝒜,𝑅,𝜌) < 𝜏

]︂
< 𝜀 .

For simplicity, we henceforth assume 𝑤′ = 𝑤 = 𝜅 (i.e., the oracle’s input and output

sizes are equal to the security parameter) unless otherwise stated.

10.4.1 Dynamic SHFs

As discussed in detail in the introduction, static memory requirements are orthogonal

and complementary to dynamic memory requirements of MHFs as formalized by [AS15].

Given a pebbling-based SHF and a pebbling-based MHF, they can be combined by simple

concatenation into a “dynamic SHF,” a function that inherits both the static memory re-

quirement of the former and the dynamic memory requirement of the latter, as outlined

(informally) next.

Let ℋ𝒪dyn be a dynamic MHF and (ℋ𝒪1 ,ℋ
𝒪
2 ) be a SHF family, and the computation

of both of these correspond to computing labels of nodes in a DAG as a function of a

pebbling algorithm and a random oracle 𝒪. We construct a dynamic SHF ℋ𝒪 that is

de�ned as follows: on input (1𝜅,𝑥), outputℋ𝒪(0,·)2 (1𝜅,𝑥)||ℋ𝒪(1,·)dyn (1𝜅,𝑥). The resultingℋ𝒪
inherits both the MHF guarantees ofℋdyn and the SHF guarantees of (ℋ1,ℋ2). Note that

importantly, the labels of the nodes in the graphs corresponding to the MHF ℋ𝒪(0,·)dyn and

the SHF (ℋ𝒪(1,·)1 ,ℋ𝒪(1,·)2 ) are independent as the MHF and the SHF use disjoint partitions

of the random oracle domain.

Using this method, our SHF constructions can be combined with existing MHF con-

structions such as [AS15], [ABP17a], [ABP17b], yielding a “best of both worlds” dynamic

SHF that enjoys both types of memory-hardness.

10.5 SHF constructions

A�rst attempt What if we pebble a hard-to-pebble graph, and then let𝑅𝑘,𝑖 =𝐻(𝑃 (𝑘), 𝑖)
where 𝑃 (𝑘) is the entire pebbling of the graph (on input 𝑘 and iteration 𝑖 is the 𝑖-th call

to the hash function 𝐻 )? This would in fact work in the random oracle model where

the random oracle takes arbitrary-length input. However, in practice, hash functions do

not take arbitrary-length input. While constructions like Merkle-Damgård [Mer79] and

sponge [BDPA08] can transform a �xed-input-length hash function into one that takes

arbitrary-length inputs, the resulting function does not behave like a random oracle even

if the �xed-length hash function does.
23

Moreover, the computation graphs of known

23
For example, both the constructions mentioned process the input sequentially in chunks. Evaluating

the hash function on inputs that di�er only in the �nal chunk will yield outputs that di�er in a known
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length-expanding transformations such as Merkle-Damgård and sponge functions require

very little space to compute. For instance, the computation graph of the Merkle-Damgård

construction is a binary tree and the computation graph of the sponge function is a cater-

pillar graph both of which take logarithmic and constant space, respectively, to compute.

Thus, we have to use special constructions to achieve the local-hardness properties we

need.

Recall from De�nition 10.2.18 that the property we want is this “locally hard to access”

notion, meaning that if an adversarial party chooses to not store the static part of our hash

function which they obtain from performing the “preprocessing” computation associated

with ℋ1, then they must use the same memory and sustained time to recompute the

function when our static-memory-hard function is called on any subset of inputs larger

than the memory used to store the preprocessed computation. We achieve this desired

property in ourℋ1 functions using two novel DAG constructions, one of which is optimal

for a speci�c graph class and the other we conjecture to be optimal for all general graph

classes.

10.5.1 ℋ1 constructions

We �rst note the di�erences between the graph constructions we present here and the

constructions presented in previous literature [AS15, ACK
+

16, ABP17a, DFKP15]. Firstly,

many of the constructions presented in previous work feature a single target node. This

is reasonable in the context of memory-hard functions since both the honest party and

the adversary must compute the hash function dynamically (obtaining a single label as

the output of the function) on each input. However, in our context of static-memory-hard

functions, single-target-node constructions do not make sense. Secondly, our construc-

tions di�er from even the multiple target node constructions presented in the literature

(speci�cally, the constructions of [DFKP15]) since prior constructions mainly focused on

�nding graphs that have large memory vs. time tradeo�s.

Our constructions are designed with the goal that any adversary that does not store

almost all the target labels must dynamically use the same amount of space as needed to

store all the labels to compute the hash function (while still incurring a cost in runtime).

Moreover, our constructions based on local hardness ensure a stronger guarantee than

the constructions in [DFKP15]; in our case, one must use at least 𝑆 space (for some def-

inition of 𝑆) to compute any given subset of targets larger than one’s current memory

usage, whereas in their case, they use 𝑆 space to compute some subset of targets chosen

uniformly at random. Therefore, our speci�cations are stronger in that we provide a space

bound as well as a time bound for adversaries; and moreover, for honest parties, the time

cost is only a one-time setup cost. We prove our pebbling costs in terms of the black-

magic pebble game (de�ned in Section 10.2) as opposed to the standard pebble game used

in previous works. Most notably, this means that in all of our constructions, the pebbling

number is upper bounded by the number of targets (since one can always just pebble the

targets with magic pebbles).

way; this provides a way to distinguish these constructions from a random oracle even if the underlying

�xed-length hash function is a random oracle.
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We begin with some simple and clean constructions of ℋ1 based on pebbling con-

structions that exist in the literature. We �rst prove a lemma regarding the minimum

number of pebbles used in the PROM model and the minimum number of pebbles used

in the sequential memory model. This is useful in more than one way: (1) it tells us that

parallelization does not save the adversary in space so honest parties (who can only com-

pute a constant number of labels at a time) and adversaries (who can compute an arbitrary

number of labels at the same time) operate under the same space constraints and (2) it al-

lows us to directly compare sustained time complexities between adversaries and honest

parties with respect to space usage .

Lemma 10.5.1 (Standard Pebbling Sequential/Parallel Equivalence). Given a DAG 𝐺 =
(𝑉 ,𝐸), Ps(𝐺,𝑇 ) = P‖s(𝐺,𝑇 ) where Ps(𝐺,𝑇 ) is de�ned to be the minimum standard peb-

bling space complexity in the sequential model, and we de�ne P‖s(𝐺,𝑇 ) to be the minimum

standard pebbling space complexity in the parallel model.

Proof. Any sequential pebbling strategy, status can be simulated by a parallel pebbling

strategy, 𝒫 || since 𝒫 || can choose to place one pebble at a time. Therefore, P‖s(𝐺,𝑇 ) ≤
Ps(𝐺,𝑇 ). We now show that there exists a sequential pebbling strategy, status, that uses

the same number of pebbles to pebble a graph as a parallel strategy 𝒫 ||. Suppose that at

time 𝑖, a set of pebbles are added to nodes in 𝑃𝑖 in 𝐺 under algorithm 𝒫 ||. Then, 𝑝𝑟𝑒𝑑(𝑃𝑖)
must be pebbled at time 𝑖 − 1. status can thus spend |𝑃𝑖∖𝑃𝑖−1| pebbling steps to pebble

the graph sequentially by adding pebbles on all vertices 𝑣 ∈ 𝑃𝑖∖𝑃𝑖−1 sequentially until

the state of the graph is the same as the state of the graph at time 𝑖 under strategy 𝒫 ||.
Similarly, if a set of pebbles𝐷𝑖 are deleted from the graph at time 𝑖, then status can choose

to spend at most |𝐷𝑖 | sequential pebbling steps to delete |𝐷𝑖 | pebbles. If both strategies

start on identical graphs with the same starting con�guration 𝑃0, then we have shown

that P‖s(𝐺,𝑇 ) ≥ Ps(𝐺,𝑇 ). Thus, P‖s(𝐺,𝑇 ) = Ps(𝐺,𝑇 ).

We use Lemma 10.5.1 to prove an equivalent lemma for the black-magic pebble game

below.

Lemma 10.5.2 (Black-Magic Pebbling Sequential/Parallel Equivalence). Given a DAG𝐺 =
(𝑉 ,𝐸), Ps(𝐺, |𝑇 |,𝑇 ) = Ps

‖(𝐺, |𝑇 |,𝑇 ) where Ps(𝐺, |𝑇 |,𝑇 ) was de�ned to be the minimum

black-magic pebbling space complexity in the sequential model, and we de�ne Ps
‖(𝐺, |𝑇 |,𝑇 )

to be the minimum black-magic pebbling space complexity in the parallel model.

Proof. Any placement of black pebbles can be translated from the sequential to the

parallel pebbling strategy and vice versa using the techniques stated in the proof of

Lemma 10.5.1. Any sequential pebbling placement of magic pebbles can be simulated

trivially by a parallel pebbling strategy. Any parallel pebbling placement of𝑀 magic peb-

bles can be simulated via a sequential pebbling strategy using 𝑀 additional steps. Thus,

Ps(𝐺, |𝑇 |,𝑇 ) = Ps
‖(𝐺, |𝑇 |,𝑇 ).

Now, we jump into our constructions. We �rst provide a simple construction and show

why this construction is not optimal. In addition, we de�ne some subgraph components

in the pebbling literature that are important subcomponents of our constructions.
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A failed attempt atℋ1

We �rst provide a failed attempt at constructing ℋ1 due to the large amount of time

that is needed to compute the function (for the sequential honest party) with respect to

the amount of memory needed to store the output of the function. In other words, this

construction is problematic in the sense that an exponential number of steps is necessary

to compute the stored results of the function from scratch for the honest party but the

adversary with parallel processing time can compute the function from scratch in linear

time. Although the honest party could obtain the results of the preprocessing (i.e. the

static part of the hash function) from elsewhere, we must ensure that they can still feasibly

computeℋ1 themselves in the event that they do not trust any of the sources from which

they can obtain the static data.

Intuitively, our failed attempt at constructing ℋ1 is a series of binary search trees.

From here onwards, we describe all constructions of ℋ1 as a directed acyclic graph with

𝑛 nodes and later use our theorems above to prove static memory hardness from our

constructed DAGs.

Graph Construction 10.5.3 (Composite Binary Tree DAG). Let 𝐵𝐶ℎ be a composite binary

tree DAGwith height ℎ constructed in the following way where 𝑇 is the intended set of targets

of our DAG. Let 𝑠 = |𝑇 |. In our intended construction ℎ = 𝑠, also.
1. Let the set of nodes be 𝑉 . Let the set of edges be 𝐸.
2. Create (𝑠+1)2ℎ−1 + 𝑠 nodes.
3. Create 𝑠+1 binary search trees using (𝑠+1)2ℎ−1 nodes in total where edges are directed

from children to parents in each binary tree. Let 𝑟𝑖 for 𝑖 ∈ [1, 𝑠+1] be the roots of these
binary search trees.

4. Order the remaining nodes in some arbitrary order, let 𝑠𝑗 be the 𝑗th node in this order

for 𝑗 ∈ [1, 𝑠].
5. Create directed edges (𝑟𝑖 , 𝑠𝑖) and (𝑟𝑖+1 mod 𝑠, 𝑠𝑖) for all 𝑖 ∈ [1, 𝑠].
The set of target nodes consists of all nodes with 0 out-degree.

Given any binary search tree with height ℎ, the minimum number of pebbles necessary

to pebble the tree is ℎ (assuming a ‘tree’ with one node has height 1) using the rules of the

standard pebble game. Therefore, to ensure that the apex of the tree is pebbled and that

both the honest party and the adversary both use ℎ space to pebble the apex, the number

of leaves necessary at the base of the tree is 2ℎ−1. If we suppose that the computation-

ally weak honest party (who does not build special circuits) can only evaluate a constant

number of random oracle calls at a time (place a constant number of pebbles), the number

of sequential evaluations necessary for the honest party is ≥ Ω(2ℎ) which is infeasible

to accomplish. In constrast, the adversary only has to make 𝑂(ℎ) parallel random oracle

calls, an exponential factor di�erence between the honest party and the adversary! Such a

construction fails since it is clearly infeasible for the honest party since they would never

be able to compute all target values of ℋ1 from scratch (since this computation requires

exponential time for the honest party). Thus, we would like a construction that has the

same minimum space requirement but also small sequential evaluation time. We prove a

better (but also simply de�ned) construction below.

333



Cylinder construction

We make use of what is de�ned in the pebbling literature as a pyramid graph [GLT80]

in constructing our cylinder graph. The key characteristic of the pyramid graph we use

is that the number of pebbles that is required to pebble the apex of the pyramid is equal

to the height of the pyramid [GLT80] using the rules of the standard pebble game. Note

that a pyramid by itself is not useful for our purposes since the black-magic pebbling

space complexity of a pyramid with one apex is 1. Therefore, we need to be able to use

the pyramid in a di�erent construction that uses superconstant number of pebbles in the

magic pebble game in order to successfully pebble all target nodes.

Graph Construction 10.5.4 (Illustrated in Fig. 10-2). Let Π𝐶
ℎ be a cylinder graph with

height ℎ. We de�neΠ𝐶
ℎ as follows:

1. Create 2ℎ2 nodes. Let this set of 2ℎ2 nodes be 𝑉 .

2. Arrange the nodes in 𝑉 into 2ℎ levels of ℎ nodes each, ranging from level 0 to level

2ℎ−1. Let the 𝑗-th node in level 𝑖 be 𝑣𝑗𝑖 . Create directed edges (𝑣
𝑗 mod ℎ
𝑖 ,𝑣

𝑗 mod ℎ
𝑖+1 ) and

(𝑣𝑗 mod ℎ
𝑖 ,𝑣

(𝑗+1) mod ℎ
𝑖+1 ) for all 𝑖 ∈ [0,2ℎ− 2]. Let this set of edges be 𝐸.

The set of target nodes consists of all nodes with 0 out-degree.

Figure 10-2: Cylinder construction (Def. 10.5.4) for ℎ = 5.

Lemma 10.5.5. Given a cylinder graph with height ℎ,Π𝐶
ℎ , Ps(Π

𝐶
ℎ ,𝑇 ) ≥ ℎ.

Proof. Let 𝑇 be the target nodes of Π𝐶
ℎ . Each target node is connected to a pyramid

of height ℎ. Therefore, by the proofs of minimum pebbling cost of pyramids given

in [GLT80], the pyramid requires ℎ pebbles to pebble using the rules of the standard peb-

ble game. Therefore, to pebble any one target node 𝑡 ∈ 𝑇 requires ℎ pebbles, so pebbling

all target nodes of Π𝐶
ℎ , 𝑇 , trivially requires ℎ pebbles.

Lemma 10.5.6. Popt-ss(Π
𝐶
ℎ ,𝑇 ) ≥ 2ℎ.

Proof. The depth of Π𝐶
ℎ is 2ℎ (i.e. the longest directed path in Π𝐶

ℎ has length 2ℎ). Thus,

the minimum number of parallel steps necessary to pebble any 𝑣 ∈ 𝑇 is 2ℎ. Let 𝐿𝑖 be

the set of nodes at the 𝑖-th level of Π𝐶
ℎ where 𝑇 is at level 2ℎ − 1 and 𝑆 is at level 0. To

pebble each target node requires that all vertices in 𝐿ℎ−1 (𝑣𝑖ℎ−1 for all 𝑖 ∈ [1,ℎ]) be pebbled

at some time step 𝑡 simultaneously
24

, 𝑡 ∈ [0, 𝑡
status

], by normality of pebbing strategies
25

24
Whereby ‘simultaneously’, we mean there exists some time 𝑡′ where all vertices in 𝐿ℎ−1 are pebbled.

25
See the de�nition of frugal and normal strategies in De�nitions B.2.1 and B.2.2 [GLT80, DL17].
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given any normal strategy status. Thus, at least ℎ parallel time steps where ℎ pebbles are

on the graph simultaneously are necessary to pebble any target 𝑣 ∈ 𝑇 because to pebble

all nodes in 𝐿ℎ−1 at time 𝑡 requires ℎ parallel time steps where ℎ pebbles are used at each

time step.

Suppose for contradiction that Popt-ss(Π
𝐶
ℎ ,𝑇 ) < 2ℎ. We �rst prove that to pebble any

𝑘 targets (where 𝑘 ≤ ℎ) simultaneously require at least 𝑘 time steps (where each time

step is larger than 𝑡 de�ned above) where ℎ pebbles are on the graph simultaneously.

Furthermore, there exists time steps 𝑡𝑙−1 > 𝑡𝑙−2 > · · · > 𝑡1 > 𝑡 where ℎ pebbles are on all

vertices in 𝐿ℎ−1+𝑗 (𝑣𝑖ℎ−1+𝑗 for all 𝑖 ∈ [1,ℎ]) at time 𝑡𝑗 . We prove this by induction. Let

the base case be 𝑘 = 1. In order to pebble any target 𝑣 ∈ 𝑇 using a normal strategy

status, there must be a time step 𝑡1 > 𝑡 where ℎ pebbles are on all vertices in 𝐿ℎ (𝑣𝑖ℎ for all

𝑖 ∈ [1,ℎ]) by normality of pebbling strategies (see Theorem B.2.3 [GLT80]). We assume

as our induction hypothesis that the statement is true for all 𝑘 ≤ 𝑙 − 1 where 𝑙 ≤ ℎ. We

now prove the statement for 𝑘 = 𝑙. At time 𝑡𝑙−1, there exist ℎ pebbles on all vertices in

𝐿ℎ+𝑙−2 by de�nition of 𝑡𝑙−1 and by our induction hypothesis. By inspection, to pebble

any subset of 𝑙 targets requires all vertices in 𝐿ℎ+𝑙−1 to be pebbled at some point in the

execution of the pebbling strategy. Suppose there exists a strategy that pebbles 𝑘 targets

using at most 𝑘 − 1 parallel moves where ℎ pebbles are on the graph during each of the

𝑘 − 1 parallel moves. By our induction hypothesis, pebbling any 𝑘 − 1 sized subset of the

𝑘 targets requires 𝑘 − 1 parallel moves where ℎ pebbles are on the graph and all nodes in

𝐿ℎ+𝑘−1 for all 𝑘 < 𝑙 are pebbled simultaneously at time 𝑡𝑘 . If no more than ℎ − 1 pebbles

can be on the vertices in 𝐿ℎ+𝑙−1, this means that there exists a vertex in 𝐿ℎ+𝑙−1 that must

be pebbled with at least 𝑙 pebbles (given there exists a previous time step when ℎ pebbles

are on all vertices in 𝐿ℎ+𝑙−2 and no more than ℎ− 1 of these pebbles can be moved to the

vertices in 𝐿ℎ+𝑙−1). Let this vertex be 𝑢. If we continue strategy status without pebbling

𝑢, then there will exists a vertex at every level ℎ + 𝑙′ − 1 (for all 𝑙′ ≥ 𝑙) where 𝑙′ pebbles

are necessary to pebble the vertex. Thus, the lower bound on the minimum number of

pebbles necessary to pebble 𝑘 targets using strategy status is ℎ− 1+ 𝑙′ at some time step

𝑡𝑙′ > 𝑡𝑙−1, a contradiction since 𝑙′ ≥ 1.
26

Given that to pebble any 𝑘 targets requires at least 𝑘 time steps (inaddition to the ℎ
timesteps necessary to pebble all nodes in 𝐿ℎ−1) where ℎ pebbles are on the graph simulta-

neously. Thus, pebbling all targets using any strategy that pebbles sequentially subsets of

targets 𝑆1, . . . ,𝑆𝑑 where

⋃︀𝑑
𝑖=1𝑆𝑖 = 𝑇 results in

∑︀𝑑
𝑖=1 |𝑆𝑖 | ≥ ℎ steps where ℎ pebbles are on

the graph simultaneously. In all cases, we reach a contradiction with Popt-ss(Π
𝐶
ℎ ,𝑇 ) < 2ℎ.

Therefore, Popt-ss(Π
𝐶
ℎ ,𝑇 ) ≥ 2ℎ.

Theorem 10.5.7. Using the rules of the standard pebble game, ℎ pebbles are necessary for

at least ℎ parallel steps to pebble any target of a height 2ℎ cylinder graph,Π𝐶
ℎ .

Proof. To pebble any target of Π𝐶
ℎ requires ℎ pebbles on all nodes in level ℎ by normality

of pebbling strategies. Given at most ℎ pebbles, to pebble any subset 𝑘 of nodes in level

ℎ (by the normality of pebbling strategies) require ℎ pebbles to be present on the graph

26
Note that a simpler proof can be shown to state that at least ℎ pebbles are needed to pebble 𝑢 at level

𝑙′ but we present the present proof to show that even for a cylinder with height ℎ (instead of 2ℎ) our proof

here still holds–i.e. ℎ steps where ℎ pebbles are on the cylinder are necessary to pebble all targets 𝑇 .
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for at least 𝑘 parallel time steps as proven in the proof for Lemma 10.5.6. Thus, given

a pebbling strategy that pebbles the following subsets of nodes in level ℎ sequentially,

𝑆1, . . . ,𝑆𝑑 where 𝑇 =
⋃︀𝑑
𝑖=1𝑆𝑖 , the number of time steps where ℎ pebbles are on the graph

is given by

∑︀𝑑
𝑖=1 |𝑆𝑖 | ≥ ℎ. Therefore, ℎ pebbles are on the graph during at least ℎ time

steps when pebbling any target of Π𝐶
ℎ , proving our theorem.

Theorem 10.5.8. Ps(Π
𝐶
ℎ , |𝑇 |,𝑇 ) ≥ ℎwhereΠ

𝐶
ℎ is de�ned as in Def. 10.5.4 where |𝑆 | = |𝑇 | =

ℎ.

Proof. Assume for the sake of contradiction that 𝑠 < ℎ pebbles can be used to pebble all

target nodes in 𝑇 . By the rules of the black-magic pebble game, we can choose to use

either magic pebbles or black pebbles at each time step in a valid strategy.

We �rst prove that given 𝑠 < |𝑇 |magic pebbles, one would choose to place the pebbles

on 𝑠 target nodes as opposed to any number of intermediate nodes. Let 𝐿𝑖 be the set of

nodes at the 𝑖 + ℎ-th level of Π𝐶
ℎ (for 0 ≤ 𝑖 ≤ ℎ − 1) where 𝑇 is at level 2ℎ − 1 and 𝑆

is at level 0. Given 𝑠 adjacent pebble placements on nodes in 𝐿𝑖 , we can pebble at most

𝑗 ≤ max(0, 𝑠 + 𝑖 − ℎ + 1) target nodes by construction of Π𝐶
ℎ without performing any

repebbling of any nodes in 𝑆 . (Note that we do not need to account for the case when

𝑠 < |𝑇 | pebbles are placed on levels 0 to ℎ − 1 since no targets can be pebbled if that is

the case.) If repebbling of any node in 𝐿𝑖 needs to be done (using black pebbles), then at

least ℎ total pebbles are necessary to pebble 𝑇 . We now show this is true. Suppose that in

order to pebble a target node 𝑣 ∈ 𝑇 , there exist at most ℎ− 𝑖−1 magic pebbles on adjacent

nodes in 𝐿𝑖 . Then, at least 1 additional pebble is necessary at some node in 𝐿𝑖 to pebble

𝑣. Let the node that needs to be pebble in 𝐿𝑖 be 𝑤. Suppose that we use a black pebble to

pebble 𝑤 at level 𝑖 (i.e. we wouldn’t choose to use magic pebbles to pebble the ancestors

of𝑤 since that would use more magic pebble than if we used a magic pebble to pebble𝑤).

Note that 𝑤 is the apex of a pyramid of height at least 𝑖 +1. Therefore, at least 𝑖 +1 black

pebbles are necessary to pebble 𝑤 resulting in 𝑖 +1+ℎ− 𝑖 −1 = ℎ total pebbles necessary

to pebble 𝑣, which is greater than the initial ℎ− 𝑖 − 1 magic pebbles in total pebble count

for all 𝑖 ∈ [0,ℎ − 1] (our desired range of values of 𝑖). Note that this argument applies

recursively to any number 𝑖′ ≤ 𝑖 missing pebbles at level 𝑖.
Therefore, for any number of magic pebbles 𝑠′ ≤ 𝑠 that are not on target nodes, we

can obtain at most 𝑠′ − 1 target values without performing repebbling of any nodes in

𝑆 . It is then strictly more e�cient to pebble 𝑠′ target nodes with magic pebbles instead

of 𝑠′ non-target nodes. We can have a total of 𝑠 < ℎ magic pebbles which is not enough

pebbles to pebble all the target nodes. To pebble the target node that is not pebbled by

a magic pebble, we require ℎ additional pebbles by pebbling price of pyramids [GLT80],

contradicting our assumption.

As a simple extension of our theorem and proof above, we get Corollary 10.5.9. More-

over, as an extension of the proof given for Theorem 10.5.8 that all magic pebbles are

placed on targets and from Theorem 10.5.7, we obtain Corollary 10.5.10.

Corollary 10.5.9. Given a cylinder𝐺 = (𝑉 ,𝐸) as constructed in Graph Construction 10.5.4,
𝐺 is incrementally hard: Ps(𝐺, |𝐶| − 1,𝐶) ≥ |𝑇 | for any subset 𝐶 ⊆ 𝑇 .
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Corollary 10.5.10. Given a cylinder 𝐺 = (𝑉 ,𝐸) as constructed in Graph Construc-

tion 10.5.4, Popt-ss(𝐺, |𝐶| − 1,𝐶) =Θ(|𝑇 |) for all subsets of 𝐶 ⊆ 𝑇 .
A logical question to ask after constructing our very simple hash function based on a

cylinder graph is whether such a construction is optimal in terms of graph-optimal sus-

tained complexity and follows our requirements for a static-memory-hard hash function.

As it turns out, the graph-optimal sustained complexity of a cylinder graph is optimal in

the class of layered graphs. In other words, if we choose to use layered graphs in our

constructions, then we cannot hope to get a better memory and time guarantee. From

an implementation and practical standpoint, layered graphs are easier to implement and

hence this result has potential practical applications (as more complicated constructions

need to consider memory allocation factors in the real-life implementation, not considered

in the theoretical model).

Theorem 10.5.11. Given a layered graph, 𝐺 = (𝑉 ,𝐸), if the number of target nodes is

|𝑇 | = 𝑠 and Ps(𝐺,𝑠,𝑇 ) ≥ 𝑠, then |𝑉 | =Ω(𝑠2). A layered graph is one such that the vertices

can be partitioned into layers and edges only go between vertices in consecutive layers.

Proof. In order to satisfyPs(𝐺,𝑠,𝑇 ) ≥ 𝑠, the number of targets has to be at least 𝑠; if |𝑇 | < 𝑠,
then 𝑇 can be completely pebbled with less than 𝑠 magic pebbles and Ps(𝐺,𝑠,𝑇 ) < 𝑠.
Suppose the sources (the �rst level) are at level 0 and the targets (the last level) are at

level ℎ − 1 where ℎ is the height of the layered graph. In any layered graph with in-

degree 2, the cost of pebbling a vertex 𝑣𝑖 in level 𝑖 is at most 𝑖 +1 [Nor15]. Therefore, the

height of 𝐺 must be at least 𝑠 − 1, in order for Ps(𝐺,𝑠,𝑇 ) ≥ 𝑠. Let ℎ = 𝑠 − 1. In order for

Ps(𝐺,𝑠,𝑇 ) ≥ 𝑠, the width of the layered graph in layer 𝑗 for all 𝑗 ∈
[︁
ℎ
2 ,ℎ− 1

]︁
must be at

least
ℎ
2 (where by width, we mean the number of nodes in layer 𝑗).

Suppose that a layer 𝑗 where 𝑗 ∈
[︁
ℎ
2 ,ℎ− 1

]︁
has width less than

ℎ
2 . We can subsequently

use less than
ℎ
2 magic pebbles to pebble layer 𝑗 . Then, at most

ℎ
2 black pebbles are nec-

essary to pebble all targets in 𝑇 resulting in Ps(𝐺,𝑠,𝑇 ) < ℎ and Ps(𝐺,𝑠,𝑇 ) < 𝑠 (by our

de�nition of ℎ), a contradiction. The total number of nodes in layers [ℎ2 ,ℎ− 1] must then

be at least
ℎ2
4 , and |𝑉 | =Ω(ℎ2) =Ω(𝑠2).

Thus, our construction of the cylinder graph is optimal in terms of amount of memory

used in the asymptotic sense for the class of layered graphs. An open question is whether

this is also optimal when we consider the larger class of all DAGs.

Open Question. Does Thm 10.5.11 also hold for general graphs with bounded in-degree 2?

Given the impossibility of providing a better space guarantee for layered graphs, we

provide a general (non-layered) construction that transforms a graph from a certain class

into another graph with the same space guarantee as in Theorem 10.5.11. Furthermore, we

provide an example below that has the same space guarantees but a better time guarantee.

Layering shortcut-free graphs

We now show how to convert any shortcut-free DAG, 𝐺 = (𝑉 ,𝐸), with Ps(𝐺,𝑇 ) = 𝑠
and one target node (i.e. |𝑇 | = 1) into a DAG, 𝐺′ = (𝑉 ′,𝐸′), with |𝑇 ′ | = 𝑠 targets and

Ps(𝐺′, 𝑠, |𝑇 ′ |) = 𝑠.
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De�nition 10.5.12 (Shortcut-Free Graphs). Let 𝐺 = (𝑉 ,𝐸) be a DAG where Ps(𝐺,𝑇 ) ≥
𝑠. Let 𝑡status𝑠 be the last time step that exactly 𝑠 pebbles must be on 𝐺 during any normal

and regular pebbling strategy, status, (see Thms B.2.3 and B.2.5, [GLT80, DL17]) that uses 𝑠
pebbles. More speci�cally, let

𝑡status𝑠 = arg max
𝑡′∈[𝑡

status
]
{|𝑃𝑡′ | : |𝑃𝑡′ | ≥ Ps(𝐺,𝑇 )}

where 𝑡
status

= |status| and 𝑃𝑡′ ∈ status for all 𝑡′ ∈ [𝑡status]. Let 𝑋 be the union of the set of

nodes that are pebbled at 𝑡status𝑠 for all normal and regular strategies status: 𝑋 =
⋃︀

status∈P
𝑃𝑡status𝑠

.

Let 𝐷 be the set of descendants of nodes of 𝑋. A DAG is shortcut-free if |𝑋 | ≤ 𝑠 and given

𝑠1 < 𝑠 pebbles placed on any subset 𝑋1 ⊂ 𝑋, no normal and regular strategy uses less than

𝑠 − 𝑠1 pebbles to pebble 𝐷 ∪ (𝑋∖𝑋1).

Graph Construction 10.5.13. Given a shortcut-free DAG, 𝐺 = (𝑉 ,𝐸), with Ps(𝐺,𝑇 ) = 𝑠
and |𝑇 | = 1, we create a DAG, 𝐺′ = (𝑉 ′,𝐸′), with the following vertices and edges and with

the set of targets 𝑇 ′ where |𝑇 ′ | = 𝑠. Let 𝑋 be de�ned as in De�nition 10.5.12.

1. 𝑉 ′ is composed of the nodes in 𝑉 and 𝑠 − 1 copies of 𝑋 ∪𝐷 . Let the 𝑖-th copy of 𝑋 be

𝑋𝑖 (the original is 𝑋0) and let the 𝑖-th copy of 𝑥 ∈ 𝑋𝑖 be 𝑥𝑖 .
2. 𝐸′ is composed of the edges in 𝐸 and the following directed edges. If (𝑣,𝑤) ∈ 𝐸 and

𝑣,𝑤 ∈ 𝑋, then create edges (𝑣𝑖 ,𝑤𝑖) ∈ 𝐸′ for all 𝑖 ∈ [1, 𝑠 − 1]. Create edges (𝑢,𝑣𝑖) ∈ 𝐸′
if (𝑢,𝑣) ∈ 𝐸 and 𝑢 ∈ 𝑉 ∖ (𝑋 ∪𝐷).

3. The set of targets 𝑇 ′ is the union of the set of targets of the di�erent copies: 𝑇 ′ =⋃︀𝑠−1
𝑖=0𝑇𝑖 .

Using the above construction, we have created a graph 𝐺′ = (𝑉 ′,𝐸′) where |𝑉 ′ | = |𝑉 |+
(𝑠 − 1)(|𝐷 |+ |𝑋 |) and |𝑇 ′ | = 𝑠.

Theorem 10.5.14. Given a shortcut-free DAG 𝐺 = (𝑉 ,𝐸) with Ps(𝐺,𝑇 ) = 𝑠 and |𝑇 | = 1,
the construction produced by Graph Construction 10.5.13 produces a DAG 𝐺′ = (𝑉 ′,𝐸′) such
that Ps(𝐺′, 𝑠, |𝑇 |) = 𝑠.

Proof. We �rst prove that Ps(𝐺′, 𝑠, |𝑇 |) ≤ 𝑠. Since there are 𝑠 di�erent targets,

Ps(𝐺′, 𝑠, |𝑇 |) ≤ 𝑠 trivially.

We now prove thatPs(𝐺′, 𝑠, |𝑇 |) ≥ 𝑠. If only black pebbles are used to pebble the targets

in 𝑇 ′ , then 𝑠 black pebbles must trivially be used provided Ps(𝐺,𝑇 ) = 𝑠. Suppose some

number of magic pebbles are used. Using the magic pebbles on any node in a copy of

𝐷 (de�ned in Def. 10.5.13) that is not a target in 𝑇 ′ is strictly worse than using a magic

pebble on a target. Suppose the total number of pebbles used is less than 𝑠. We �rst prove

that no magic pebbles are used on copies of 𝐷 . If the total number of pebbles used is less

than 𝑠, then not all of the 𝑠 targets can be pebbled using magic pebbles. The remaining

target that is not pebbled must be pebbled using 𝑠 black pebbles since Ps(𝐺,𝑇 ) = 𝑠 by

de�nition. By the same logic, no magic pebbles are used on the nodes in the copies of 𝑋.

Therefore, if less than 𝑠 magic pebbles are used to pebble the graph, all magic pebbles

should be used to pebble the predecessors of 𝑋. No magic pebble can be removed and

repebbled since such a magic pebble must be placed 𝑠 times (once for each copy of 𝑋 and

𝐷), exceeding the maximum number of magic pebbles we can have. Given that we can
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use a total of less than 𝑠 magic pebbles to pebble the predecessors of 𝑋, suppose some

𝑠′ < 𝑠 pebbles are used, then less than 𝑠 − 𝑠′ pebbles are left to pebble each copy of 𝑋
and 𝐷; by incremental hardness, less than 𝑠− 𝑠′ cannot be used to pebble each copy of 𝑋
and 𝐷 . At least one magic pebble is used on the predecessors of 𝑋; by our de�nition of

shortcut-free, less than 𝑠 − 1 pebbles cannot be used to pebble 𝑋 and 𝐷 , a contradiction.

Thus, Ps(𝐺′, 𝑠,𝑇 ) ≥ 𝑠.

If𝐷 =Θ(𝑠) and 𝑠 =𝑂(
√
|𝑉 |), then |𝑉 ′ | =Θ(𝑠2+ |𝑉 |) which has a better sustained time

guarantee than our cylinder construction.

We �rst note that the sustained memory graphs presented in [ABP17a] do not achieve

optimal local memory hardness because 𝑋 ∪𝐷 (as de�ned in De�nition 10.5.13) is Θ(𝑛)
(since the sources are the ones that remain pebbled in their construction). Thus, we would

like to provide a construction of a shortcut-free DAG where |𝑋∪𝐷 | =Θ(𝑠). Note that the

size of𝑋∪𝐷 will always beΩ(𝑠), trivially. We now provide a de�nition of a shortcut-free

graph class 𝐺 that can be transformed using De�nition 10.5.13.

Graph Construction 10.5.15 (Illustrated in Fig. 10-3). Let 𝐺 = (𝑉 ,𝐸) be a graph de�ned

by parameter 𝑠 and in-degree 2 with the following set of vertices and edges:

1. Create a height 𝑠 pyramid. Let 𝑟𝑖 be the root of a subpyramid (i.e. a pyramid that lies

in the original height 𝑠 pyramid) with height 𝑖 ∈ [2, 𝑠]. One can pick any set of these

subpyramids.

2. Topologically sort the vertices in each level and create a path through the vertices in

each level (see Fig. 10-3). Replace any in-degree-3 nodes with a pyramid of height 3,
with a 6-factor increase in the number of vertices.

3. Create 𝑐1𝑠 additional nodes for some constant 𝑐1 ≥ 2 (in Fig. 10-3, 𝑐1 = 4). Label these
nodes 𝑣𝑗 for all 𝑗 ∈ [1, 𝑐1𝑠]. Create edges (𝑣𝑖 ,𝑣𝑖+1) for all 𝑖 ∈ [1, 𝑐1𝑠 − 1].

4. Create directed edges (𝑟𝑠,𝑣1) and (𝑟𝑖 ,𝑣𝑖−1+(𝑘−1)(𝑠−1)) for all 𝑘 ∈ [1, 𝑠].
5. Create 𝑠 − 1 additional nodes. Let these nodes be 𝑤𝑙 for all 𝑙 ∈ [1, 𝑠 − 1].
6. Create directed edges (𝑣𝑐1𝑠,𝑤1) and (𝑟𝑖 ,𝑤𝑖−1) for all 𝑖 ∈ [2, 𝑠].
7. The target node is 𝑤𝑠−1.

Lemma 10.5.16. Given a DAG 𝐺 = (𝑉 ,𝐸) and a parameter 𝑠 where 𝐺 is de�ned by De�-

nition 10.5.15, Ps(𝐺,𝑇 ) = 𝑠.

Proof. In order to pebble the apex of the pyramid of height 𝑠, we must use at least 𝑠 pebbles

as proven in the proof for black pebbling cost of pyramids [GLT80].

Before we prove that 𝐺 = (𝑉 ,𝐸) created by De�nition 10.5.15 with parameter 𝑠 is

shortcut-free, we �rst prove the following stronger lemma which will help us prove that

𝐺 is shortcut-free.

Lemma 10.5.17. Let𝐺 = (𝑉 ,𝐸) be a graph created using De�nition 10.5.15 with parameter

𝑠. Given a normal strategy status to pebble 𝐺, when 𝑣𝑞 for 𝑞 ∈ [1, 𝑐1𝑠] is pebbled at some

time step, black pebbles equal in number to the number of nodes in [𝑟𝑖 , 𝑟𝑠] are always present
on the graph where 𝑖 = (𝑞 mod 𝑠 − 1) + 1 from the time when 𝑣1 is pebbled to when 𝑣𝑞 is
pebbled.
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Figure 10-3: Example of a time optimal graph family construction as de�ned in

Def. 10.5.15. Here, 𝑠 = 5. Note that one can replace any constant in-degree node with

in-degree 𝑐 with a pyramid of size
𝑐(𝑐+1)

2 . For the sake of visual simplicity, such replace-

ments are not shown in this �gure.

Proof. We prove this lemma via induction.

In our base case when 𝑖 = 𝑠, when the corresponding 𝑣𝑞 is pebbled, a black pebble

must be on 𝑟𝑠 and 𝑣𝑞−1 in the previous time step. Thus, a black pebble remains on 𝑟𝑠 from

the time 𝑣1 is pebbled till the time that 𝑣𝑞 is pebbled or a set of 𝑠− 𝑗 black pebbles remain

on the 𝑗-th level of the pyramid for some 𝑗 ∈ [0, 𝑠 − 1] (in which case we can charge one

of these pebbles to be “present on 𝑟𝑠”). Suppose neither of these conditions are met. Then,

by the pebbling number of pyramids (see Thm B.2.6, [Nor15]), at least 𝑠 pebbles must be

used to pebble 𝑟𝑠, contradicting the frugality of status (since at most 𝑠 pebbles are used to

pebble 𝐺). In general, we make the observation that if there 𝑠 − 𝑗 pebbles on some level

𝑗 ∈ [0, 𝑠 − 1], then we can charge these 𝑠 − 𝑗 pebbles to be “on all nodes in [𝑟𝑗 , 𝑟𝑠]”.
For our induction hypothesis, we assume that the theorem is true for 𝑗 and prove the

stratement for 𝑖 = 𝑗−1. When 𝑖 = 𝑗−1 and the corresponding 𝑣𝑞 is pebbled, we assume by

our induction hypothesis that there are 𝑠 − 𝑗 black pebbles present on [𝑟𝑗 , 𝑟𝑠] (or charged

to be on [𝑟𝑗 , 𝑟𝑠]) from when 𝑣1 is pebbled to when 𝑣𝑞 is pebbled. In order to pebble 𝑣𝑞,
there must be black pebbles on 𝑟𝑖 and 𝑣𝑞−1. If there does not exist a black pebble on 𝑟𝑖 (or

on the predecessors of 𝑟𝑖) from when 𝑣1 is pebbled to when 𝑣𝑞 is pebbled, then at least

one pebble must be removed from some 𝑟 ∈ [𝑟𝑗 , 𝑟𝑠] or from 𝑣𝑞−1 since at least 𝑗−1 pebbles

are necessary to pebble 𝑟𝑗−1 (𝑠 − 𝑗 + 2 pebbles are currently in use–leaving not enough

pebbles to pebble 𝑟𝑗−1 unless a pebble is removed). If the black pebble is removed from

𝑣𝑞−1, the frugality of status is contradicted. If the black pebble is removed from some

𝑟 ∈ [𝑟𝑗 , 𝑟𝑠], then by observation, 𝑟𝑠 will need to be repebbled sometime in the future, also

a contradiction to the frugality of status. Thus, we prove our statement.

Lemma 10.5.18. Given a DAG 𝐺 = (𝑉 ,𝐸) and a parameter 𝑠 where 𝐺 is de�ned by De�-
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nition 10.5.15, 𝐺 is shortcut-free.

Proof. We �rst prove that any normal standard pebbling strategy status that pebbles 𝐺
must contain pebbles on all 𝑟𝑖 and 𝑣𝑐1𝑠 at some time (say, 𝑡𝑋 ) during the execution of

status.

Let 𝑋 be the set of vertices containing black pebbles when 𝑣𝑐1𝑠 is pebbled. Thus, a

total of 𝑠 pebbles must be on the graph (speci�cally on all nodes in 𝑋) at this time in any

normal strategy by proof of Lemma 10.5.17. We now prove the incremental hardness of

𝐺. Let 𝑠′ < 𝑠 pebbles be on 𝑋 at time 𝑡𝑋 . We prove that we cannot pebble 𝑋 ∪𝐷 using

less than 𝑠 − 𝑠′ pebbles.

Suppose for the purposes of contradiction, given 𝑠′ < 𝑠, assume that 𝑠′ pebbles are

placed on 𝑋 and less than 𝑠 − 𝑠′ pebbles can be used to pebble 𝑋∖𝑋 ′ ∪𝐷 . Supose that

𝑋∖𝑋 ′ includes either:

1. 𝑣𝑐1𝑠 and some 𝑠 − 𝑠′ − 1 subset of vertices in [𝑟2, 𝑟𝑠], or

2. some 𝑠 − 𝑠′ subset of vertices in [𝑟2, 𝑟𝑠].
In the �rst case, if no pebbles are on 𝑣𝑖 for 𝑖 ∈ [1, 𝑐1𝑠], then at least one pebble needs

to be used to pebble 𝑣𝑖 for 𝑖 ∈ [1, 𝑐1𝑠]. If 𝑋∖𝑋 ′ includes some 𝑠−𝑠′−1 subset of vertices in

[𝑟2, 𝑟𝑠], then at least 𝑠 − 𝑠′ pebbles are needed to pebble the vertices missing the pebbles.

In the second case, if some subset 𝑠− 𝑠′ of vertices in [𝑟2, 𝑟𝑠] are in 𝑋∖𝑋 ′ , then at least

𝑠− 𝑠′ +1 pebbles are necessary to pebble the nodes missing pebbles in order to be able to

pebble 𝑤𝑙 for 𝑙 ∈ [1, 𝑠 − 1].
In either case, at least 𝑠 − 𝑠′ pebbles are necessary to pebble 𝑋∖𝑋 ′ ∪ 𝐷 , thus, this

construction is shortcut-free.

Theorem 10.5.19. 𝑠 pebbles are necessary for at least Θ(𝑠2) parallel steps to pebble any

target of 𝐺′ .

Proof. To pebble 𝑣𝑗 for all 𝑗 ∈ [1, 𝑐1𝑠], we require pebbles on all 𝑟𝑖 for 𝑖 ∈ [2, 𝑠] and one

pebble on the path from 𝑣1 to 𝑣𝑐1𝑠; otherwise, the entire pyramid must be rebuilt, resulting

in repebbling all nodes in the graph as we showed in the proof of Lemma 10.5.17. To pebble

the pyramid requires 𝑠 pebbles on the pyramid at all times and takesΘ(𝑠2). We show this

is true.

Suppose that at some point before pebbling the apex of the pyramid that a pebble is

removed from the graph, then, by our requirement that 𝑠−1 pebbles must remain on 𝑟𝑖 for

𝑖 ∈ [2, 𝑠] and that a pebble must be on the path from 𝑣1 to 𝑣𝑐1𝑠, the removed pebble cannot

be used for either of these tasks. Thus, the entire pyramid must be rebuilt, contradicting

the frugality of the strategy.

Thus, 𝑠 nodes must remain on the graph for Θ(𝑠2 + 𝑐1𝑠) = Θ(𝑠2) parallel time steps,

proving our theorem.

We create 𝐺′ = (𝑉 ′,𝐸′) from 𝐺 (as constructed using De�nition 10.5.15) using De�ni-

tion 10.5.13 , resulting in a graph with Θ(𝑠2) total nodes.

Theorem 10.5.20. Ps(𝐺′, 𝑠,𝑇 ) = 𝑠.

Proof. By Lemma 10.5.18 the graph is shortcut-free and by Lemma 10.5.16 Ps(𝐺,𝑇 ) = 𝑠,
therefore, we use Theorem 10.5.14 to prove that Ps(𝐺′, 𝑠,𝑇 ) = 𝑠.
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By the proof that 𝐺′ is shortcut-free, we obtain the following corollary that 𝐺′ is

also incrementally hard. Moreover, Corollary 10.5.22 follows directly from the proof of

Theorem 10.5.14.

Corollary 10.5.21. Given a graph𝐺 = (𝑉 ,𝐸) as constructed in Graph Construction 10.5.15,
𝐺 is incrementally hard: Ps(𝐺, |𝐶| − 1,𝐶) ≥ |𝑇 | for any subset 𝐶 ⊆ 𝑇 .

The following corollary about the graph-optimal sustained time complexity is proven

directly from the proof of Lemma 10.5.17 and Theorem 10.5.19 that if less than
𝑠
2 magic

pebbles are on the pyramid, then half the pyramid must be rebuilt resulting inΘ(𝑠2) time-

steps in which 𝑠 pebbles are on the graph; thus proving for the cases when |𝐶| − 1 < 𝑠
2 .

We now prove the case when |𝐶| − 1 ≥ 𝑠
2 .

Corollary 10.5.22. Given a graph𝐺 = (𝑉 ,𝐸) as constructed in Graph Construction 10.5.15,
Popt-ss(𝐺, |𝐶| − 1,𝐶) =Θ(|𝑉 |) for all subsets of 𝐶 ⊆ 𝑇 .

Proof. If |𝐶| − 1 ≥ 𝑠
2 magic pebbles are not placed on 𝑟𝑖 for all 𝑖 ∈ [2, 𝑠], then we have to

rebuild at least half the pyramid, resulting inΘ(𝑠2) =Θ(|𝑉 |) time being used. Thus, some

𝑠′ ≥ 𝑠
2 magic pebbles must be used on 𝑟𝑖 for all 𝑖 ∈ [2, 𝑠]. Then, to pebble all |𝐶| ≥ 𝑠

2 targets

requires Θ(𝑠2) =Θ(|𝑉 |) time using another black pebble since 𝑠′ ≥ 𝑠
2 pebbles are used on

the pyramid.

10.5.2 ℋ2 construction

Our construction ofℋ2 is presented in Algorithm 33.

Algorithm 33ℋ2

On input (1𝜅,𝑥) and given oracle access to Seek𝑅 (where𝑅 is the string outputted byℋ1):

1. Let 8𝑅8 = |𝑅|/𝑤 be the length of 𝑅 in words.

2. Query the random oracle to obtain 𝜌0 = 𝒪(𝑥) and 𝜌1 = 𝒪(𝑥+1).
3. Use 𝜌0 to sample a random 𝜄 ∈ [8𝑅8].
4. Query the Seek𝑅 oracle to obtain 𝑦′ = Seek𝑅(𝜄).
5. Output 𝑦′ ⊕ 𝜌1.

Lemma 10.5.23. For any 𝑅, the output distribution of ℋ2 is uniform over the choice of

random oracle 𝒪←O.

Proof. Over the choice of random oracle, the value 𝜌1 computed in Step 2 is truly random,

and 𝑦′ is independent of 𝜌1 by construction, so the output 𝑦′⊕𝜌1 is also truly random.

Remark 10.5.24. Lemma 10.5.23 is important as an indication that our SHF construction

“behaves like a random oracle.” The memory-hardness guarantee alone does not assure that

the hash function is suitable for cryptographic hashing: e.g., a modi�ed version ofℋ2 which

directly outputted 𝑦′ instead of 𝑦′⊕𝜌1 would still satisfy memory-hardness, but would be an

awful hash function (with polynomial size codomain). The inadequacy of existing memory-

hardness de�nitions for assuring that a function “behaves like a hash function” is discussed

by [AT17].
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10.5.3 Proofs of hardness of SHF Constructions

We now prove the hardness of our graph constructions given earlier in Section 10.5.

We begin by stating two supporting lemmata. The �rst is due to Erdős and Rényi

[ER61], on the topic of the Coupon Collector’s Problem.

Lemma 10.5.25 ([ER61]). Let 𝑍𝑛 be a random variable denoting the number of samples

required, when drawing uniformly from a set of 𝑛 distinct objects with replacement, to draw

each object at least once. Then for any 𝑐, lim𝑛→∞Pr[𝑍𝑛 < 𝑛 log𝑛+ 𝑐𝑛] = 𝑒−𝑒
−𝑐
.

Corollary 10.5.26. Let𝑍𝑛,𝑘 be a random variable denoting the number of samples required,

when drawing uniformly from a set of 𝑛 distinct objects with replacement, to have drawn at

least 𝑘 ∈ [𝑛] distinct objects. Let 𝑞 ∈𝜔(𝑘 log𝑘). Then Pr[𝑍𝑛,𝑘 < 𝑞] is overwhelming (in 𝑘).

Proof. For𝑚 ∈ and 𝑖 ∈ [𝑚−1], let ℰ𝑖,𝑚 denote the event that after 𝑖 elements out of a set of

𝑚 elements have already been sampled uniformly with replacement, the (𝑖 +1)th sample

will coincide with one of the elements already drawn. For any 𝑖 ≤ 𝑘 ≤ 𝑛, it holds that

Pr[ℰ𝑖,𝑛] ≥ Pr[ℰ𝑖,𝑘]. The desired event of drawing 𝑘 distinct objects corresponds exactly to

the conjunction of ℰ𝑖,𝑚 for 𝑖 ∈ [𝑘]. Therefore, for all 𝑘 ∈ [𝑛] and any 𝑐′ ,

Pr[𝑍𝑛,𝑘 < 𝑐
′] ≥ Pr[𝑍𝑘 < 𝑐

′] . (10.4)

Hence, it su�ces for our purposes to bound Pr[𝑍𝑘]. From Lemma 10.5.25,

lim
𝑘→∞

Pr[𝑍𝑘 < 𝑘 log𝑘 + 𝑐𝑘] = lim
𝑘→∞

𝑒−𝑒
−𝑐
.

Applying a Taylor expansion, we get Pr[𝑍𝑘 < 𝑘 log𝑘 + 𝑐𝑘] ∈ 𝑂(1− 𝑒−𝑐). This probability

is overwhelming in 𝑘 (i.e., 𝑒−𝑐 is negligible) whenever 𝑐 ∈𝜔(log(𝑘)).

Theorems 10.5.27–10.5.30 state the static-memory-hardness of our SHF constructions

based on Graph Constructions 10.5.4 and 10.5.15.

Theorem 10.5.27. De�ne a static-memory hash function family (ℋ1,ℋ2) as follows: let
ℋ1 be the graph function family ℱΠ𝐶

ℎ
(Graph Construction 10.5.4), and let ℋ2 be as de-

�ned in Algorithm 33. Letℋ = {ℎ𝜅}𝜅∈ be the static-memory hash function family described

by (ℋ1,ℋ2). Let 𝑞2 be the number of oracle queries made by ℋ2, let �̂� = 𝜅 − 𝜉 log(𝑞2)
for any 𝜉 ∈ 𝜔(1), let Λ̂ ∈ 𝑂(

√
𝑛), 𝜏 ∈ Θ(

√
𝑛), and let 𝑞 ∈ 𝜔(Λ logΛ). Then (ℋ1,ℋ2) is

(�̂�Λ̂, �̂�,𝜏,𝑞)-hard.

Proof. Suppose, for contradiction, that the theorem does not hold. Then by De�ni-

tion 10.4.2, there exist: 𝜅 ∈, a string 𝑅 ∈ {0,1}�̂�(Λ̂−1), an algorithm 𝒜, and a set 𝑋 =
{𝑥1, . . . ,𝑥𝑞} such that the following probability is non-negligible:

Pr
𝒪,𝜌

[︂{︁
(𝑥1,ℎ𝜅(𝑥1)), . . . , (𝑥𝑞,ℎ𝜅(𝑥𝑞))

}︁
=𝒜(1𝜅,𝑅;𝜌)∧ s-memO(�̂�Λ̂,𝒜,𝑅,𝜌) < 𝜏

]︂
. (10.5)

We denote by ℰ𝜌 the event that

(𝑥1,ℎ𝜅(𝑥1)), . . . , (𝑥𝑞,ℎ𝜅(𝑥𝑞))
}︁
=𝒜(1𝜅,𝑅;𝜌)∧ s-memO(�̂�Λ̂,𝒜,𝑅,𝜌) < 𝜏 .
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Given a correct evaluation 𝑦 = ℎ𝜅(𝑥) ofℋ2 on a given input 𝑥, one can easily compute

𝜌0,𝜌1 by evaluating 𝒪 on 𝑥,𝑥 + 1 respectively, and demask 𝑦 to obtain the value 𝑦′(𝑥) =
𝑦 ⊕ 𝜌1 of the target label computed in Step 4 of Algorithm 33. Moreover, the index 𝜄
computed in Step 3 can be computed as a deterministic function of 𝜌0. De�ne ℬ′ to be the

deterministic algorithm that on input (𝑥,𝑦) computes 𝜌0,𝜌1 and 𝑦′ as described above,

and outputs (𝜄,𝑦′).
Next, de�ne ℬ to be the algorithm that runs𝒜 and then applies ℬ′ on each pair (𝑥𝑖 , 𝑦𝑖)

outputted by𝒜, and outputs the resulting set 𝐽 = {(𝜄1, 𝑦′1), . . . , (𝜄𝑞, 𝑦′𝑞)}where each (𝜄𝑖 , 𝑦′𝑖 ) =
ℬ′(𝑥𝑖 , 𝑦𝑖). By construction, if 𝑦𝑖 = ℎ𝜅(𝑥𝑖), each 𝑦′𝑖 is the correct label of 𝜄𝑖th target node of

the cylinder graph. Notice that this means that for each value of 𝜄, there is a unique value

of 𝑦′ such that (𝜄,𝑦′) = ℬ′(𝑥,ℎ𝜅(𝑥)) for any 𝑥.

Let 𝐼 denote |{𝜄𝑖}𝑥𝑖∈𝑋 |. Since the set 𝑋 is �xed before the random oracle, the loca-

tions 𝐼 are distributed uniformly and independently (with replacement). Then by Corol-

lary 10.5.26, the number of distinct locations |𝐼 | is at least Λ̂ with overwhelming proba-

bility. That is, there is a negligible function 𝜀′ such that Pr
[︁
|𝐼 | ≥ Λ̂

]︁
≥ 1−𝜀′ . Conditioned

on ℰ𝜌, all pairs (𝑥𝑖 , 𝑦𝑖) outputted by 𝒜 are such that 𝑦𝑖 = ℎ𝜅(𝑥𝑖), and we have already

observed that each value of 𝜄 induces a unique value of 𝑦′ outputted by ℬ′ on input pairs

of the form (𝑥𝑖 ,ℎ𝜅(𝑥𝑖)). It follows that Pr[|𝐽 | ≥ Λ̂ | ℰ𝜌] ≥ 1− 𝜀′ .
Now consider the ex-post-facto magic pebbling strategy status induced by ℬ. By

Lemma 10.3.8, with overwhelming probability over the random oracle and the coins of

ℬ, status is legal and uses at most⌊︃
|𝑅|
�̂�

⌋︃
=

⌊︃
�̂�(Λ̂− 1)

�̂�

⌋︃
≤ Λ̂− 1 (10.6)

magic pebbles; call this event ℰ ′𝜌 (where 𝜌 denotes the randomness ofℬ). By Lemma 10.3.9,

with overwhelming probability over the same,

∀𝑖 ∈ [𝑡], |𝑃𝑖 | ≤
⌊︃
|𝜎𝑖 |
�̂�

⌋︃
, (10.7)

where 𝑡 is the length of status, 𝑃𝑖 is the 𝑖th con�guration of status, and 𝜎𝑖 is the 𝑖th state of

the execution of ℬ. We denote by ℰ ′′𝜌 the event that (10.7) is satis�ed (where 𝜌 denotes the

randomness of ℬ). By de�nition, event ℰ𝜌 implies that |𝜎𝑖 | ≥ �̂�Λ̂ for fewer than 𝜏 values

of 𝑖. Combining this observation with (10.7), we have that whenever ℰ𝜌 occurs, |𝑃𝑖 | ≥ Λ̂
for fewer than 𝜏 values of 𝑖.

Finally, we observe that conditioned on ℰ𝜌, since we established above that ℬ outputs

a set of at least Λ̂ correct target labels, the strategy status must successfully pebble the

corresponding Λ̂ target nodes. Since Pr[ℰ𝜌] is non-negligible and Pr[ℰ ′] and Pr[ℰ ′′] are

overwhelming, Pr[ℰ ′∧ℰ ′′ |ℰ] must be negligibly close to Pr[ℰ] (and thus, non-negligible).

The occurrence of ℰ ∧ ℰ ′ ∧ ℰ ′′ implies the existence of a pebbling strategy status that is

legal, uses at most Λ̂−1 magic pebbles, and for which the number of time-steps in which

at least Λ̂ total (i.e., black and magic) pebbles are used is less than 𝜏 . This contradicts

Corollaries 10.5.9–10.5.10.
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Theorem 10.5.28. De�ne a static-memory hash function family (ℋ1,ℋ2) as follows: let
ℋ1 be the graph function family ℱ𝐺 (Graph Construction 10.5.15), and let ℋ2 be as de�ned

in Algorithm 33. Let 𝑞2 be the number of oracle queries made by ℋ2, let �̂� = 𝜅 − 𝜉 log(𝑞2)
for any 𝜉 ∈ 𝜔(1), let Λ̂ ∈ 𝑂(

√
𝑛), let 𝜏 ∈ Θ(𝑛), and let 𝑞 ∈ 𝜔(Λ logΛ). Then (ℋ1,ℋ2) is

(�̂�Λ̂, �̂�,𝜏,𝑞)-hard.

Proof sketch. Identical proof structure to the proof of Theorem 10.5.27, except instead

of invoking Corollaries 10.5.9–10.5.10 at the end, we derive a contradiction to Corollar-

ies 10.5.21–10.5.22.

The parameter 𝑞 is suboptimal in Theorems 10.5.27 and 10.5.28. We can achieve

optimality (i.e., 𝑞 = 8|𝑅|8) by the following alternative construction of ℋ2: make 𝑞′ =
𝜔(log(𝜅)) random calls instead of just one call to the Seek oracle in Step 4. To preserve

the output size of ℎ𝜅, it may be useful to reduce the size of node labels by a corresponding

factor of 𝑞′ . This can be achieved by truncating the random oracle outputs used to com-

pute labels in De�nition 10.3.4. The description of this altered ℋ𝑞
′

2 and the de�nition of

graph function family ℱ 𝑞
′

𝐺 with shorter labels are given in Appendix B.1.

Theorem 10.5.29. De�ne a static-memory hash function family (ℋ1,ℋ2) as follows: let

ℋ1 be the graph function family ℱ 𝜅/𝑞
′

Π𝐶
ℎ

(Graph Construction 10.5.4), and let ℋ2 be ℋ𝑞
′

2 as

de�ned in Algorithm 39 for some 𝑞′ ∈𝜔(logΛ). Let 𝑞2 be the number of oracle queries made

by ℋ2, let �̂� = 𝜅 − 𝜉 log(𝑞2) for any 𝜉 ∈ 𝜔(1), let Λ̂ ∈ 𝑂(
√
𝑛), 𝜏 ∈ Θ(

√
𝑛), and let 𝑞 = Λ.

Then (ℋ1,ℋ2) is (�̂�Λ̂, �̂�,𝜏,𝑞)-hard.

Proof sketch. Identical proof structure to the proof of Theorem 10.5.27, except that when

invoking Corollary 10.5.26, due to the design of ℋ𝑞
′

2 which calls Seek more times than

ℋ2, we obtain the stronger statement that an adversary that successfully outputs 𝑞 pairs

((𝑥1,ℎ𝜅(𝑥1)), . . . , (𝑥𝑞,ℎ𝜅(𝑥𝑞))) must correctly guess 𝑞 target labels of the graph.

Theorem 10.5.30. De�ne a static-memory hash function family (ℋ1,ℋ2) as follows: let

ℋ1 be the graph function family ℱ 𝜅/𝑞
′

𝐺 (Graph Construction 10.5.15), and let ℋ2 be ℋ𝑞
′

2 as

de�ned in Algorithm 39 for some 𝑞′ ∈𝜔(logΛ). Let 𝑞2 be the number of oracle queries made

by ℋ2, let �̂� = 𝜅 − 𝜉 log(𝑞2) for any 𝜉 ∈ 𝜔(1), let Λ̂ ∈ 𝑂(
√
𝑛), let 𝜏 ∈ Θ(𝑛), and let 𝑞 =Λ.

Then (ℋ1,ℋ2) is (�̂�Λ̂, �̂�,𝜏,𝑞)-hard.

Proof sketch. Identical proof structure to the proof of Theorem 10.5.29, except instead

of invoking Corollaries 10.5.9–10.5.10 at the end, we derive a contradiction to Corollar-

ies 10.5.21–10.5.22.

10.6 Capturing nonlinear space-time tradeo�s with

CC
𝛼

Next, we motivate our notion of CC
𝛼

(De�nition 10.2.21). We show that both the honest

party and the adversary may choose to use di�erent pebbling strategies given di�erent

345



values of 𝛼 even when 𝛼 is constant. Furthermore, we show that both of our pebbling

constructions ofℋ1 (given in Section 10.5) have the desirable feature that the honest party

and the adversary use the same strategy regardless of the size of 𝛼.

10.6.1 CC and CC
𝛼
consider cumulative cost of di�erent strategies

We present a graph family with in-degree-2 where the strategy that an adversary chooses

to pebble an instance 𝐺 in the graph family di�ers depending on the 𝛼 parameter of the

CC
𝛼

complexity measure. We show that in our case, for certain 𝛼, we would choose to use

constant space, whereas for other 𝛼, using superconstant space is the preferred option.

We de�ne our graph family as follows:

Graph Construction 10.6.1. We de�ne a graph family G with bounded degree 2 and

arbitrary 𝑛 ∈ N nodes such that the time-space tradeo� of a graph with 𝑛 nodes in the

family is 𝑇 (𝑆) ≥ (𝑛
𝑐

𝑛𝑎 )(𝑛
𝑎 − (𝑆 −2))(𝑛𝑏)+𝑛 (where 𝑆 is the number of pebbles used to pebble

the graph) where 0 ≤ 𝑎,𝑏,𝑐 < 1, 𝑏+ 𝑐 > 𝑎+1, 𝑎 < 𝑏,𝑐, and 𝑛𝑐 ≈ 𝑛−𝑛𝑎+𝑏.
• Given a graph 𝐺 = (𝑉 ,𝐸) with 𝑛 vertices, partition the set of vertices, 𝑉 , into 2 sets,

𝐴 and 𝐵 where |𝐴| = 𝑛𝑎+𝑏 and |𝐵| = 𝑛𝑐 (since we know 𝑛𝑐 ≈ 𝑛−𝑛𝑎+𝑏, 𝑛𝑐 +𝑛𝑎+𝑏 ≈ 𝑛).
• We arbitrarily order all vertices in 𝐵 in some order, [𝑣𝑖 , . . . , 𝑣𝑛] and create edges

(𝑣𝑗 ,𝑣𝑗+1) ∈ 𝐸 for all 𝑗 ∈ [𝑖,𝑛− 1].
• We arbitrarily order all vertices in 𝐴 in some order, [𝑣1, . . . , 𝑣𝑖−1] and create edges

(𝑣𝑗 ,𝑣𝑗+1) ∈ 𝐸 for all 𝑗 ∈ [1, 𝑖 − 2].
• We create edge (𝑣𝑖−1,𝑣𝑖).
• Create edges (𝑣𝑘 ,𝑣𝑙) ∈ 𝐸 (𝑣𝑘 ∈ 𝐴 and 𝑣𝑙 ∈ 𝐵) where 𝑘 mod 𝑛𝑏 = 0 and 𝑙 = 𝑛𝑎+𝑏 +(︁

𝑘
𝑛𝑏

)︁
+ (𝑞 − 1)𝑛𝑎 for all integers 𝑞 ∈

[︂
1, 𝑛

𝑐

𝑛𝑎

]︂
.

Fig. 10-4 illustrates Graph Construction 10.6.1.

B

Figure 10-4: Graph Construction 10.6.1 with 𝑛 = 16, 𝑎 = 1
4 , 𝑏 = 2

3 , 𝑐 = 2
3 . For clarity, we

depict 𝑛𝑎 = 2, 𝑛𝑏 ≈ 6 and 𝑛𝑐 ≈ 6.

We show that there are at least two pebbling strategies, status1 and status2, where

an adversary would di�er in his preferred strategy depending on 𝛼 when using the CC
𝛼

complexity measure when 𝛼 > 𝛼′ where 𝛼′ is calculated with respect to the parameters

of the graph family constructed from Graph Construction 10.6.1.
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Lemma 10.6.2. Given a pebbling strategy status1 that uses constant space 𝑆1,
Time(status1) =Θ(𝑛𝑏+𝑐) where 𝐺 ∈G in de�ned by Graph Construction 10.6.1.

Proof. Suppose that a constant 𝑆1 pebbles can be on the graph at any particular time, then

at most 𝑆1−1 of the vertices in𝐴 ⊆ 𝑉 can be pebbled. It does not help to pebble the vertices

in𝐵 since all vertices in𝐵 needs to be pebbled only once regardless of the pebbling strategy

used. Since only the vertices 𝑣𝑗 ∈ 𝐴 where 𝑗 mod 𝑛𝑏 = 0 are connected to vertices in 𝐵,

using the given 𝑆1, the optimal placements are on vertices 𝑣𝑗 in order to minimize pebbling

time since any extra space needs to be used to pebble𝐵 and pebbling anywhere else results

in greater pebbling time since the pebble needs to be moved to vertex 𝑣𝑗 by the pigeonhole

principle. Given constant 𝑆1 pebbles, there exist 𝑣𝑗 vertices that do not contain pebbles.

Thus, each time one reaches a vertex in 𝐵 with predecessor 𝑣𝑗 ∈ 𝐴 without a pebble, at

least 𝑛𝑏 time must be spent to pebble it. Therefore, given 𝑆1 pebbles, the total amount of

time necessary to pebble 𝐺 is (𝑛
𝑐

𝑛𝑎 )(𝑛
𝑎 − 𝑆1)(𝑛𝑏) +𝑛 =Θ(𝑛𝑏+𝑐).

Corollary 10.6.3. Given a pebbling strategy, status1, that uses constant space 𝑆1,
p-cc𝛼(status1) =Θ(𝑛𝑏+𝑐) where 𝐺 ∈G is constructed by Def. 10.6.1.

Proof. This follows immediately from Lemma 10.6.2 since constant space is used through-

out the pebbling.

Lemma 10.6.4. Given a pebbling strategy status2 that uses space 𝑆2 = 𝑛𝑎 + 1,
Time(status2) =Θ(𝑛) where 𝐺 ∈G is constructed by Graph Construction 10.6.1.

Proof. It is trivial to show that pebbling a line takes Ω(𝑛) time since all nodes have to be

pebbled at least once. We now show a strategy using 𝑛𝑎 +1 pebbles that uses 𝑂(𝑛) time.

We start with the vertices in 𝐴 and pebble them in topological order, keeping pebbles

on all 𝑣𝑗 ∈ 𝐴 where 𝑗 mod 𝑛𝑏 = 0. There exists exactly 𝑛𝑎 vertices in 𝐴 by de�nition that

are predecessors of vertices in 𝐵. Therefore, as we pebble the vertices in 𝐴 in topological

order, we leave a pebble on each vertex 𝑣𝑗 . When we pebble 𝐵 all predecessors of vertices

in 𝐵 are either in 𝐵 or are pebbled in 𝐴. Therefore, we only need to pebble all vertices in

𝐴 and 𝐵 once, resulting in Time(status2) =Θ(𝑛).

The following corollary is directly proven by the proof of Lemma 10.6.2.

Corollary 10.6.5. Given a pebbling strategy, status2, that uses space 𝑆2 = 𝑛𝑎 + 1 and

Time(status2) = Θ(𝑛), p-cc𝛼(status2) = Θ(𝑛𝛼𝑎+1) where 𝐺 ∈ G is constructed by Graph

Construction 10.6.1.

Lemma 10.6.6. When 𝛼 = 1, then CC
𝛼(𝐺) =Θ(𝑛𝑎+1).

Proof. Suppose in the case when 𝛼 = 1, we use a pebbling strategy, status, that uses

nonconstant space 𝑠 ≤ 𝑛𝑎 + 1. Then, for each pebble, we pebble one of the vertices 𝑣𝑗 ∈
𝐴 where 𝑗 mod 𝑛𝑏 = 0. The resulting p-cc𝛼(status) = 𝑠(𝑛

𝑐

𝑛𝑎 )(𝑛
𝑎 − 𝑠)(𝑛𝑏) + 𝑛 which is

minimized when 𝑠 = 𝑛𝑎 +1 given 𝑏+ 𝑐 > 𝑎+1 by de�nition of our graph family.

Lemma 10.6.7. For all 𝑎,𝑏,𝑐, there exists an 𝛼′ such that for all constant 𝛼 > 𝛼′ , CC𝛼(𝐺) =
Θ(𝑛𝑏+𝑐).
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Proof. Given a pebbling strategy, status, that uses space 𝑠 = 𝜔(1), the pebbling

cost is then p-cc𝛼(status) = 𝑠𝛼(𝑛
𝑐

𝑛𝑎 )(𝑛
𝑎 − 𝑠)(𝑛𝑏) + 𝑛. When 𝛼 > 1, p-cc𝛼(status) =

Θ(min(𝑠𝛼𝑛𝑏+𝑐,𝑛𝛼𝑎+1)) = 𝜔(𝑛𝑏+𝑐) when 𝛼 > 𝑏+𝑐
𝑎 and 𝑠 = 𝜔(1). Therefore, only for

𝑠 = 𝑂(1), does the pebbling cost become p-cc𝛼(status) = Θ(𝑛𝑏+𝑐) when 𝛼′ = 𝑏+𝑐
𝑎 . Since

𝑎,𝑏,𝑐 are constants, for all 𝛼 > 𝛼′ , CC
𝛼(𝐺) =Θ

(︁
𝑛𝑏+𝑐

)︁
.

From the above two lemmas, we immediately get the following theorem regarding the

CC
𝛼

of the constructions given di�erent constant values of 𝛼.

Theorem 10.6.8. Given a graph 𝐺 = (𝑉 ,𝐸) as constructed by Graph Construction 10.6.1,

when 𝛼 = 1, CC𝛼(𝐺) =Θ(𝑛𝑎+1) but when 𝛼 > 𝛼′ for some constant 𝛼′ , CC𝛼(𝐺) =Θ(𝑛𝑏+𝑐).

As an immediate result of the above, there exists a point for constants 𝑎,𝑏,𝑐 that the

adversary chooses a di�erent strategy to pebble a graph for di�erent constant values of

𝛼 (we can pick values of 𝑎,𝑏,𝑐 such that 𝛼′ can be reduced even down to 𝛼′ ≥ 3).

10.6.2 Upper bounds for CC
𝛼

We prove a tighter upper bound for CC
𝛼

when 𝛼 is a constant than the trivial upper

bound of 𝑛𝛼+1. We �rst note that 𝑛𝛼+1 is a trivial upper bound on the CC
𝛼(𝐺) of a

graph, 𝐺, since at any timestep Ps(𝐺,𝑇 ) ≤ 𝑛 and the algorithm runs for Time(𝐺, |𝑇 |) ≤ 𝑛
given 𝑛 space is used throughout. Therefore, CC

𝛼(𝐺) ≤ 𝑛𝛼+1 for all graphs 𝐺. We now

prove a tighter upper bound using the general pebbling algorithm described in [AB16] as

GenPeb(𝐺,𝑆,𝑔,𝑑).
We formulate a simpli�ed version of the GenPeb(𝐺,𝑆,𝑔,𝑑) procedure which we call

the GenPeb(𝐺) procedure. At a high-level the GenPeb(𝐺) algorithm proceeds as follows

(see [AB16] for more detail).

De�nition 10.6.9 (GenPeb(𝐺):).
1. There exists a subset 𝑆 of |𝑆 | ≤ 2𝛼𝑛 loglog𝑛

log𝑛 vertices (for large enough 𝑛

where 2𝛼 loglog𝑛 ≤ log𝑛) such that depth(𝐺 − 𝑆) ≤ 𝑛
log𝛼 𝑛 (Lemma 6.1, 6.2

in [AB16], [Val77]).

2. Balloon Phase: Pebble all nodes up to depth 𝑛
log𝛼 𝑛 (depth measured from the last light

phase) until all immediate descendants lie in 𝑆 .
3. Light Phase: When all immediate descendants lie in 𝑆 , remove all pebbles from nodes

not in 𝑆 and not on parents of the next nodes to be pebbled. Continue in the light phase

until a node not in 𝑆 must be pebbled.

4. Repeat the above until no more nodes need to be pebbled.

Lemma 10.6.10. Let 𝑠Σ be the total number of pebbles used in the balloon phase (the sum

of the number of pebbles used in all balloon phases) and 𝑠Σ∖𝑆 be the total number of pebbles

used in the balloon phases on all nodes 𝑣 < 𝑆 . Then, 𝑠Σ∖𝑆 ≤ 𝑛.

Proof. This proof is trivial since at most 𝑛 pebbles can be the graph at any time.

Lemma 10.6.11. LetΣ∖𝑆 be the subgraph of𝐺 = (𝑉 ,𝐸)which is pebbled during the balloon
phase and whose vertices are not in 𝑆 . Then, CC𝛼(Σ∖𝑆) ≤ 𝑛𝛼+1

log𝛼 𝑛 .
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Proof. By Lemma 10.6.10, the number of pebbles necessary to pebble Σ∖𝑆 is at most 𝑛:

𝑠Σ∖𝑆 ≤ 𝑛. Therefore, we can compute CC
𝛼(Σ∖𝑆) ≤

∑︀
𝐵𝑖∈ℬ(|𝐵𝑖 |)

𝛼 ≤ 𝑛𝛼( 𝑛
log𝛼 𝑛 ) =

𝑛𝛼+1

log𝛼 𝑛
given a series of balloon phase pebble con�gurations ℬ where

∑︀
𝐵𝑖∈ℬ |𝐵𝑖 | = 𝑛 and

𝐵0
⋃︀
· · · ·

⋃︀
· 𝐵|ℬ| = 𝑉 .

Lemma 10.6.12. Let CC
𝛼(𝑆) be the cost of pebbling 𝑆 in both the light and the balloon

phases. The CC
𝛼(𝑆) of the light and balloon phases is at most 𝑂

(︂
𝑛𝛼+1(loglog𝑛)𝛼

log𝛼 𝑛

)︂
.

Proof. The total amount of time that light and balloon phases last in which nodes in 𝑆 are

pebbled is at most 𝑛 timesteps since a number greater than 𝑛 implies that |𝑆 | ≥ 𝑛 which

is impossible since the number of nodes in the graph is 𝑛. In the light phases, at most

2|𝑆 | = 4𝛼𝑛 loglog𝑛
log𝑛 pebbles are kept on the graph since each node has bounded in-degree

2. Therefore, CC
𝛼(𝐺) ≤ 4𝛼𝛼𝛼𝑛𝛼+1(loglog𝑛)𝛼

log𝛼 𝑛 .

Theorem 10.6.13. For any bounded in-degree-2 graph, CC
𝛼(𝐺) = 𝑂

(︂
𝑛𝛼+1(loglog𝑛)𝛼

log𝛼 𝑛

)︂
for

constant 𝛼 ≥ 1.

Proof. This follows directly from Lemmas 10.6.11 and 10.6.12.

10.6.3 Asymptotically tight sequential lower bound for 𝛼 = 1

We give an explicit construction of a graph that achieves asymptotically tight lower bound

(up to loglog𝑛 factors) in CC
𝛼

that matches our upper bound provided in Section 10.6 for

𝛼 = 1 and in [AB16, ABP17b] when considering the sequential pebbling model
27

. Previous

constructions [AB16, ABP17a] ignored loglog𝑛 factors and were not tight up to such

factors in the parallel model. Because we consider the sequential pebbling model (and

not the parallel model) in proving our lowerbound below, our results are incomparable

to these previous lower bound results in the parallel model. Our graph constructions are

new, and their tightness in the parallel pebbling model is an open question.

In our construction, we make use of the stacked superconcentrators constructed in

[LT82, §4] except that the vertices are connected in some topological order (blowing up

our graph by only a constant factor of 6 if we replace all degree 3 nodes with a height 3
pyramid).

Graph Construction 10.6.14. Let 𝐶(𝑛,𝑘) be a stacked superconcentrator with 𝑘 layers

where 𝐶𝑖 is the 𝑖-th linear superconcentrator. We create the following edges between nodes.

Let T be a topological sort order of the vertices in 𝐶(𝑛,𝑘). Create edges (𝑣𝑖 ,𝑣𝑖+1) where 𝑣𝑖
is the vertex immediately preceding 𝑣𝑖+1 in T. Replace all degree 3 nodes with pyramids of

height 3.

It was proven in [LT82] (Theorem 4.2.6) that given 𝑆 ≤ 𝑛
20 pebbles, 𝑘 layers, and 𝑛

nodes in each linear superconcentrator per layer, the pebbling time, 𝑇 (𝑛,𝑘,𝑆), of pebbling

𝐶(𝑛,𝑘) is lower bounded by:

27
Although our construction matches asymptotically the best lower bound construction in the pROM

(see the footnote for Lemma 10.6.22).
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𝑇 (𝑛,𝑘,𝑆) = 𝑛Ω

⎛⎜⎜⎜⎜⎝(︃ 𝑛𝑘64𝑆

)︃𝑘⎞⎟⎟⎟⎟⎠ .
In our construction de�ned by Def. 10.6.14, we �rst let 𝑆 = 𝑐1(𝑁 loglog𝑁/ log𝑁 ) (for

some constant 𝑐1), 𝑛 = 20𝑆 , 𝑘 = ⌊𝑁/𝑆⌋, and we get a graph 𝐶(𝑛,𝑘) with Θ(𝑁 ) vertices.

Thus, we obtain the following tradeo� for this graph given 𝑆 pebbles:

𝑇 ≥ 𝑆Ω
(︂𝑁
𝑆

)︂Ω(𝑁/𝑆)

for 𝑆 ≤ 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
for some constant 𝑐2 where 𝑐2 < 𝑐1.

Thus, we notice two main characteristics of our graph. If 𝑆 ≥ 𝑐1
(︁
𝑁 loglog𝑁

log𝑁

)︁
, then the

time it takes to pebble the graph is 𝑂(𝑁 ) since the width of the graph is Θ
(︁
𝑁 loglog𝑁

log𝑁

)︁
.

Second, if 𝑆 ≤ 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
then 𝑆 pebbles are used to pebble the graph for 𝜔(𝑁 ) time

by Theorem 4.2.6 of [LT82]. Note that if the tradeo� is su�ciently great, then we achieve

our stated lower bound. To prove our stated lower bound, we modify the proof for The-

orem 4.2.5 of [LT82] so that we account for CC
𝛼

instead of just the time-space trade-

o�. Minimizing the equation for tradeo� in terms of 𝛼 = 1 and showing that the cost is

greater than the cost of when 𝑆 ≥ 𝑐1
(︁
𝑁 loglog𝑁

log𝑁

)︁
and the cumulative complexity for when

𝑆 ≥ 𝑐1
(︁
𝑁 loglog𝑁

log𝑁

)︁
is Θ

(︂
𝑁2 loglog𝑁

log𝑁

)︂
then provides us with the lower bound we want.

We use the same notation as that used in the proof of Theorem 4.2.5 in [LT82]. Let 𝑛
be the number of outputs of the superconcentrator 𝐶(𝑛,𝑘) and 𝑘 be the number of copies

of the linear superconcentrators (number of levels in the stack of superconcentrators) in

𝐶(𝑛,𝑘). We number the parts of 𝐶(𝑛,𝑘) similarly to how they are numbered in the proof

of Theorem 4.2.5, let 𝐶𝑖 be the 𝑖-th copy of the linear superconcentrators that composes

𝐶(𝑛,𝑘). We consider the outputs of 𝐶𝑘 as numbered in the order in which they are �rst

pebbled. Let 𝑧𝑖 be the time that output 𝑖 (where 1 ≤ 𝑖 ≤ 𝑛) is pebbled. Therefore, 𝑧0 = 0
and 𝑧𝑛+1 = Time(𝐶(𝑛,𝑘),𝑆). Then, let [𝑧′𝑖 , 𝑧

′′
𝑖 ] be the interval of time starting with the 𝑧′𝑖-

th move and ending with the 𝑧′′𝑖 -th move where 𝑧𝑖−1 ≤ 𝑧′𝑖 ≤ 𝑧
′′
𝑖 ≤ 𝑧𝑖 . Let 𝑝𝑖 be the minimum

number of pebbles on𝐶𝑘 in the interval [𝑧𝑖−1, 𝑧𝑖] for 1 ≤ 𝑖 ≤ 𝑛 and where 𝑝0 = 0, 𝑝𝑛+1 = 0,

and 𝑝𝑖 ≤ 𝑆 for all 𝑖 in the valid range.

We �rst note that since we do not remove any vertices or edges (only add edges to the

construction to maintain the topological order and to ensure that at most one additional

pebble is added to the graph at each time step), all properties of the graph with respect to

𝑛 as proven in [LT82] still hold (i.e. adding edges does not change the linear superconcen-

trator properties of the graphs). Hence, we restate some of the key theorems and lemmas

in [LT82] that will allow us to prove the lower bound in CC
𝛼

when 𝛼 = 1 that we seek.

We restate the de�nition of a good interval given in [LT82] below:

De�nition 10.6.15 (Good Intervals [LT82]). An interval [𝑖, 𝑗] ⊂ [1,𝑛] is good if it ful�lls
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the following three requirements:

𝑝𝑖 ≤
𝑗 − 𝑖
2
, (10.8)

𝑝𝑗+1 ≤
𝑗 − 𝑖
2
, (10.9)

𝑝𝑘 >
𝑗 − 𝑖
8

for 𝑖 < 𝑘 ≤ 𝑗. (10.10)

We also restate one key lemma relating to good intervals below:

Lemma 10.6.16 (Lemma 4.2.3 [LT82]). During the good interval [𝑖, 𝑗] at least 𝑛−2𝑆 di�er-

ent outputs of 𝐶𝑘−1 are pebbled. Only 𝑆 −1−
⌊︁
𝑗−𝑖
8

⌋︁
pebbles are available to pebble the 𝑛−2𝑆

di�erent outputs of 𝐶𝑘−1.

We also restate a combinatorial lemma proved in [LT82] that will allow us to prove a

recursive relation on CC
𝛼

(which will subsequently allow us to provide a bound for our

construction).

Lemma 10.6.17 (Lemma 4.2.4 [LT82]). Let 𝑟 ≤ 𝑛. We can �nd a set of disjoint good intervals

in [1, 𝑟] that covers at least 𝑟4 − 𝑆 − 𝑝𝑟+1 elements of [1, 𝑟].

Finally, we adapt a theorem based on a simple application of BLBA that provides a

(not quite tight enough) lower bound on the time necessary to pebble our constructed

graph given 𝑆 pebbles and provide a proof for our construction de�ned in Graph Con-

struction 10.6.14.

Theorem 10.6.18 (Theorem 4.2.1 [LT82]). In order to pebble all outputs of 𝐶(𝑛,𝑘) as de-
�ned in Graph Construction 10.6.14 using 𝑆 black pebbles, 2 ≤ 𝑆 ≤ 𝑛−1

4 (starting with any

con�guration of pebbles on the graph), we need 𝑇 placements where

𝑇 ≥ 𝑛
(︂ 𝑛
10𝑆

)︂𝑘
.

Using these lemmas, we now write our �nal recursive theorem for the CC
𝛼

of our

construction.

Theorem 10.6.19. Let CC
𝛼(𝑁,𝑘,𝑆) be the CC𝛼 (when 𝛼 = 1) necessary to pebble all the

outputs of 𝐶(𝑛,𝑘) (recall that the topological sort of the vertices requires that for the last
output to be pebbled, all other outputs must be pebbled) with 𝑆 ≤ 𝑛

20 pebbles. Then,
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𝑇 (𝑛,1,𝑆) ≥ 𝑛2

10𝑆
(10.11)

𝑇 (𝑛,𝑘,𝑆) ≥ min
(𝑥1,...,𝑥𝑚)∈𝐷𝑘

∑︁
1≤𝑖≤𝑚

𝑇
(︂
𝑛,𝑘 − 1,𝑆 − 1−

⌊︂𝑥𝑖 − 1
8

⌋︂)︂
for 𝑘 > 1, (10.12)

CC
𝛼(𝑁,𝑘,𝑆) ≥ min

𝐷1,...,𝐷𝑘

∑︁
1≤𝑗≤𝑘

∑︁
(𝑥1,...,𝑥𝑚)∈𝐷𝑗

⌊︂𝑥𝑖 − 1
8

⌋︂(︂
𝑇
(︂
𝑛,𝑗 − 1,𝑆 − 1−

⌊︂𝑥𝑖 − 1
8

⌋︂)︂)︂
(10.13)

≥min
𝐷

∑︁
(𝑥1,...,𝑥𝑚)∈𝐷

⌊︂𝑥𝑖 − 1
8

⌋︂
𝑇
(︂
𝑛,𝑘 − 1,𝑆 − 1−

⌊︂𝑥𝑖 − 1
8

⌋︂)︂
. (10.14)

where𝐷𝑖 is an index set that contains all the ways in which we can select a large number

of good intervals. Speci�cally,

𝐷𝑖 =

⎧⎪⎪⎨⎪⎪⎩(𝑥1, . . . ,𝑥𝑚)|𝑚 >
𝑛

64𝑆
,1 ≤ 𝑥𝑖 ≤ 8𝑆 − 6 for 1 ≤ 𝑖 ≤𝑚, and

∑︁
1≤𝑖≤𝑚

𝑥𝑖 ≥
𝑛
8

⎫⎪⎪⎬⎪⎪⎭ .
Proof. The proof for the expression for 𝑇 (𝑛,𝑘,𝑆) follows directly from Theorem 4.2.5

in [LT82].

Now we prove the expression for CC
𝛼

of 𝐶(𝑛,𝑘) for the case when 𝑆 ≤ 𝑛/20. For each

good interval, at least

⌊︁
𝑥𝑖−1
8

⌋︁
pebbles must remain on 𝐶𝑘 while 𝐶1, . . . ,𝐶𝑘−1 are pebbled

with the remaining 𝑆 − 1 −
⌊︁
𝑖−1
8

⌋︁
pebbles. Therefore, the CC

𝛼
when 𝛼 = 1 of the good

period with length 𝑥 is

⌊︁
𝑥𝑖−1
8

⌋︁
𝑇
(︁
𝑛,𝑘 − 1,𝑆 − 1−

⌊︁
𝑥𝑖−1
8

⌋︁)︁
. By Lemma 10.6.17, we have that

the total length of the disjoint good intervals is at least 𝑛/8 (since 𝑝𝑟+1 ≤ 𝑆 and 𝑛/4−2𝑆 ≥
𝑛/8). Thus, summing over the CC

𝛼
for all good intervals and minimizing over all possible

allocations of good intervals gives a lower bound on the CC
𝛼

for𝐶𝑘 which is a lowerbound

on the CC
𝛼

when 𝛼 = 1 of the entire graph.

Lemma 10.6.20. When 𝑆 = 𝑐1
(︁
𝑁 loglog𝑁

log𝑁

)︁
for some constant 𝑐1, 𝑛 = 20𝑆 , 𝑘 = ⌊𝑁/𝑆⌋ and

we create a graph according to Graph Construction 10.6.14, 𝐶(𝑛,𝑘) with Θ(𝑁 ) vertices,

CC
𝛼(𝑁,𝑘,𝑆) ≥min

𝐷

∑︁
(𝑥1,...,𝑥𝑚)∈𝐷

⌊︂𝑥𝑖 − 1
8

⌋︂⎛⎜⎜⎜⎜⎜⎜⎜⎝20𝑆
⎛⎜⎜⎜⎜⎜⎜⎝ 20𝑆(⌊𝑁/𝑆⌋ − 1)𝑐

(︁
𝑆 − 1−

⌊︁
𝑥𝑖−1
8

⌋︁)︁⎞⎟⎟⎟⎟⎟⎟⎠
⌊𝑁/𝑆⌋−1⎞⎟⎟⎟⎟⎟⎟⎟⎠ (10.15)

for 𝑆 ≤ 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
for some constants 𝑐 (speci�ed in the proof) and 𝑐2 < 𝑐1.

Proof. We know from [LT82] that the expression for 𝑇 (𝑛,𝑘,𝑆) is lower bounded by

𝑇 (𝑛,𝑘,𝑆) ≥ 𝑛
(︁
𝑛𝑘
𝑐𝑆

)︁𝑘
for some constant 𝑐 ≥ 10. Therefore, we can substitute this expression

into our Eq. 10.14 to obtain the following expression:
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CC
𝛼(𝑁,𝑘,𝑆) ≥min

𝐷

∑︁
(𝑥1,...,𝑥𝑚)∈𝐷

⌊︂𝑥𝑖 − 1
8

⌋︂⎛⎜⎜⎜⎜⎜⎜⎜⎝𝑛
⎛⎜⎜⎜⎜⎜⎜⎝ 𝑛(𝑘 − 1)
𝑐(𝑆 − 1−

⌊︁
𝑥𝑖−1
8

⌋︁
)

⎞⎟⎟⎟⎟⎟⎟⎠
𝑘−1⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

Substituting our values as stated above then gives

CC
𝛼(𝑁,𝑘,𝑆) ≥min

𝐷

∑︁
(𝑥1,...,𝑥𝑚)∈𝐷

⌊︂𝑥𝑖 − 1
8

⌋︂⎛⎜⎜⎜⎜⎜⎜⎜⎝20𝑆
⎛⎜⎜⎜⎜⎜⎜⎝ 20𝑆(⌊𝑁/𝑆⌋ − 1)𝑐

(︁
𝑆 − 1−

⌊︁
𝑥𝑖−1
8

⌋︁)︁⎞⎟⎟⎟⎟⎟⎟⎠
⌊𝑁/𝑆⌋−1⎞⎟⎟⎟⎟⎟⎟⎟⎠ (10.16)

for some number of pebbles used that is less than 𝑛/20; or in other words, for some

constant 𝑐2, 𝑆 ≤ 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
where we determine the exact values of 𝑐1 and 𝑐2 later on

(since the exact values of 𝑐1 and 𝑐2 also depend on the types of linear superconcentrators

used in each of the 𝑘 layers of our construction).

Lemma 10.6.21. Given 𝑆 ≤ 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
for some constant 𝑐2 where 𝑐2

(︁
𝑁 loglog𝑁

log𝑁

)︁
<

𝑛/20,

CC
𝛼(𝑁,𝑘,𝑆) ≥ 𝑐2

8

(︃
𝑁 loglog𝑁

log𝑁

)︃⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝20𝑆
⎛⎜⎜⎜⎜⎜⎜⎝20𝑆

(︁⌊︁
𝑁
𝑆

⌋︁
− 1

)︁
𝑐(𝑆 − 1)

⎞⎟⎟⎟⎟⎟⎟⎠
⌊𝑁𝑆 ⌋−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (10.17)

Proof. We assume for the sake of contradiction that there exists a closed formed lower-

bound for the equation where some 𝑥𝑖 > 1. Suppose there exists some good period with

length 𝑥𝑖 > 1, then the term

𝑥𝑖
8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝20𝑆
⎛⎜⎜⎜⎜⎜⎜⎝ 20𝑆

(︁⌊︁
𝑁
𝑆

⌋︁
− 1

)︁
𝑐(𝑆 − 1−

⌊︁
𝑥𝑖−1
8

⌋︁
)

⎞⎟⎟⎟⎟⎟⎟⎠
⌊𝑁𝑆 ⌋−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
is in the summation of the calculation of CC

𝛼(𝑁,𝑘,𝑆) (see Eq. 10.16). We can replace

the term with the following:

𝑥𝑖

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝18
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝20𝑆

⎛⎜⎜⎜⎜⎜⎜⎝20𝑆
(︁⌊︁
𝑁
𝑆

⌋︁
− 1

)︁
𝑐(𝑆 − 1)

⎞⎟⎟⎟⎟⎟⎟⎠
⌊𝑁𝑆 ⌋−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

which results in a smaller CC
𝛼(𝑁,𝑘,𝑆) a contradiction, therefore no values of 𝑥𝑖 are

greater than 1 and the closed form lower bound is that as stated in Eq. 10.17.
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Lemma 10.6.22. Given 𝑆 ≤ 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
for some constant 𝑐2 where 𝑐2

(︁
𝑁 loglog𝑁

log𝑁

)︁
<

𝑛/20, CC𝛼 when 𝛼 = 1 is 𝜔
(︂
𝑁2 loglog𝑁

log𝑁

)︂
.
28

Proof. From Lemma 10.6.21, the CC
𝛼

when less than 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
pebbles are used is

lower bounded by the closed form expression,

CC
𝛼(𝑁,𝑘,𝑆) ≥ 𝑐2

64

(︃
𝑁 loglog𝑁

log𝑁

)︃⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝20𝑆
⎛⎜⎜⎜⎜⎜⎜⎝20𝑆

(︁⌊︁
𝑁
𝑆

⌋︁
− 1

)︁
𝑐(𝑆 − 1)

⎞⎟⎟⎟⎟⎟⎟⎠
⌊𝑁𝑆 ⌋−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (10.18)

We know that the lower bound given in Eq. 10.18 is Θ

(︃
𝑁 loglog𝑁

log𝑁

(︃
𝑆
(︁
𝑁
𝑆

)︁𝑁
𝑆 −1

)︃)︃
.

Given 𝑆 ≤ 𝑁 loglog𝑁
log𝑁 pebbles, we now prove that the CC

𝛼
of our construction for 𝛼 = 1

is 𝜔
(︂
𝑁2 loglog𝑁

log𝑁

)︂
. We know that 𝑆

(︁
𝑁
𝑆

)︁𝑁
𝑆 −1 = 𝜔(𝑁 ) for all 𝑆 ≤ 𝑐2

(︁
𝑁 loglog𝑁

log𝑁

)︁
. Therefore,

CC
𝛼(𝑁,𝑘,𝑆) = 𝜔

(︂
𝑁2 loglog𝑁

log𝑁

)︂
.

Theorem10.6.23. Given 𝑆 > 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
, CC

𝛼
when𝛼 = 1 isΩ

(︂
𝑁2 loglog𝑁

log𝑁

)︂
. Therefore,

CC
𝛼(𝐺) = Θ

(︂
𝑁2 loglog𝑁

log𝑁

)︂
in the sequential pebbling model where 𝐺 is given by our Graph

Construction 10.6.14 above.

Proof. Let 𝑆 be large enough that a single linear superconcentrator with 𝑛 output nodes

can be pebbled in almost linear time. In this case, we use the simple BLBA argument pre-

sented in Theorem 4.2.1 of [LT82] to prove that in this case, CC
𝛼(𝑁,𝑘,𝑆) =Ω

(︂
𝑁2 loglog𝑁

log𝑁

)︂
since each𝐶𝑖 in the construction of𝐶(𝑛,𝑘) as de�ned in Graph Construction 10.6.14 along

with the edges joining 𝐶𝑘−1 with 𝐶𝑘 is an 𝑛-superconcentrator.

The BLBA theorem as proven in [LT82] proves a tradeo� in time with respect to the

number of pebbles in the starting and ending con�guration of the graph. Let 𝑆𝑎 be the

starting number of pebbles on the graph and 𝑆𝑏 be the ending number of pebbles on the

graph. Suppose that 𝑆𝑏 = 0 for the sake of lowerbounding our cumulative complexity.

Then 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
<min1≤𝑖≤𝑘

(︁
𝑆 𝑖𝑎

)︁
≤ 𝑆 by our theorem statement where 𝑆 𝑖𝑎 is the start-

ing pebble con�guration for level 𝑖. Suppose that 𝑆𝑐𝑖𝑎 ≤ 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
for 𝐿 levels (i.e. for

some set of levels in [𝑐1, . . . , 𝑐𝐿]), then CC
𝛼(𝑛, 𝑖,𝑆) is given by Lemma 10.6.22 for the 𝐿 val-

ues. Using Lemma 10.6.22, we see that in order for the bound from Lemma 10.6.22 to not

hold, we must have 𝐿 = 𝑜(𝑁/𝑆). But, then, 𝑁/𝑆 − 𝑜(𝑁/𝑆) = Θ(𝑁/𝑆) layers are pebbled

with 𝑆 𝑖𝑎 > 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
pebbles. Therefore, we achieve the same asymptotic bound by

considering 𝑐2
(︁
𝑁 loglog𝑁

log𝑁

)︁
<min1≤𝑖≤𝑘

(︁
𝑆 𝑖𝑎

)︁
≤ 𝑆 .

28
We can show for this case that CC

𝛼
is 𝜔

(︁
𝑁2

log𝑁

)︁
in the parallel random oracle case since the runtime in

Eq. 10.18 can be improved by at most a factor of
1
𝑆 .
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Thus, by BLBA, we know that

𝑇 (𝑛,1,𝑆) ≥max
(︂
1,
𝑛− 2𝑆
2𝑆 +1

)︂
(10.19)

𝑇 (𝑛, 𝑖,𝑆) ≥ 𝑛
(︂
max

(︂
1,

𝑛
10𝑆

)︂)︂𝑖
(10.20)

CC
𝛼(𝑁,𝑘,𝑆) ≥

∑︁
1≤𝑖≤𝑘:𝑆 𝑖𝑎

𝑆 𝑖𝑎𝑇 (𝑛, 𝑖 − 1,𝑆 − 𝑆 𝑖𝑎)max
(︃
1,

(︃
𝑛− 2𝑆 𝑖𝑎
2𝑆 𝑖𝑎 +1

)︃)︃
(10.21)

≥ 𝑛 min
1≤𝑖≤𝑘:𝑆 𝑖𝑎

(︁
𝑆 𝑖𝑎

)︁
max

(︂
1,
𝑛− 2𝑆
2𝑆 +1

)︂
(𝑘 − 1) (10.22)

We can simplify in the last step since 𝑇 (𝑛, 𝑖 − 1,𝑆 − 𝑆 𝑖𝑎) ≥ 𝑛 for all 1 ≤ 𝑖 ≤ 𝑘. Further-

more, by our argument above, we know that min1≤𝑖≤𝑘:𝑆 𝑖𝑎
(︁
𝑆 𝑖𝑎

)︁
=Θ(𝑆).

When 𝑛 = 𝑐1
(︁
𝑁 loglog𝑁

log𝑁

)︁
, 𝑆 > 𝑐2

(︁
𝑁 loglog𝑁

log𝑁

)︁
, and 𝑘 = log𝑁

loglog𝑁 , then Eq. 10.22 simpli�es

to Ω

(︂
𝑁2 loglog𝑁

log𝑁

)︂
for some prede�ned 𝑐2 and 𝑐1. Otherwise, the time of pebbling is 𝑁

using 𝑐1
(︁
𝑁 loglog𝑁

log𝑁

)︁
pebbles resulting in CC

𝛼
when 𝛼 = 1 to be Θ

(︁
𝑁 loglog𝑁

log𝑁

)︁
.

Case of 𝛼 = 2 We brie�y note that the above construction does not asymptotically

achieve tightness for𝛼 = 2 by our current analysis. This is due to the fact that when𝛼 = 2,

Lemma 10.6.22 no longer holds due to the fact that

(︁
𝑁 loglog𝑁

log𝑁

)︁
·
(︁ log𝑁
loglog𝑁

)︁ log𝑁
loglog𝑁 = 𝑜(𝑁 2).

Open Question. Does there exist a bounded in-degree graph family that has CC
𝛼
for 𝛼 ≥ 2

that meets the upper bound?

10.7 Cylinder-based SHF implementation

We implemented a prototype our cylinder construction de�ned in Def. 10.5.4. We choose

to implement this construction because it is simplest of the constructions we present for

ℋ1, yet achieves memory and time bounds comparable to our more complicated con-

struction. Our implementation seeks to give a preliminary demonstration of practical

feasibility of the cylinder construction for certain parameter ranges; it is not a detailed

evaluation of optimized performance.

In implementing the pebbling construction, we seek to minimize the runtime of ℋ1
while maximizing its output size. This leads to some interesting tradeo�s as well as an

observation about static-memory-hardness and the random oracle model in general.

Overviewof implementation First, we map an entire row of labels (i.e., labels in a par-

ticular layer of our construction) in our cylinder construction de�ned in De�nition 10.5.4

to an array of bits in memory of length 𝑙. We implement a serialized pebbling algorithm

by iteratively reading 𝑛 bits, starting at o�set 𝑓 , applying a hash function to the read bits,
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(a) Runtime vs. output size,

128 B input, 65 KB row

(b) Runtime vs. input size, 1 B

output, 65 KB row

(c) Runtime vs. row size, 64 B

output, 128 B input

Figure 10-5: Evaluation of cylinder implementation

writing the 𝑛-bit output from the hash function at o�set 𝑓 , and �nally incrementing 𝑓
by additive 𝑛 bits for the next round. This process is repeated until the end of the string,

which constitutes one row of the cylinder construction. This procedure of processing the

rows of the cylinder is repeated once for every row of the cylinder DAG.

Parameters Our con�gurable parameters are: the total size of the array 𝑙, the input size

𝑖 and the output size 𝑛 of the hash function. Other parameters depend on these as follows:

• The label size is 𝑛 which is also the output length of the hash function. Every hash

produces one label. The number of labels per row is then
𝑙
𝑛 . 𝑙 should be a multiple

of 𝑛 so that there are no partial labels at the end of the array.

• The indegree of the wraparound pyramid is
𝑖
𝑛 . Here as well, 𝑖 should be a multiple

of 𝑛 so that the degree is an integer and this maps cleanly to the pebbling model

when we consider ingree 2𝑛 (ie constant indegree 2 in the pebbling model).

• The height needed for the wraparound pyramid is then the array size divided by the

di�erence between input and output sizes, or
𝑙
𝑖−𝑛 . The input size must be greater

than the output size for the height to be de�ned. This corresponds with the require-

ment that the degree must be at least 2 for the pyramid construction to provide

meaningful guarantees.

Instantiating the random oracle We used blake2b, a fast and well-known hash func-

tion. Blake2b has an internal state size of 1024 bits, so we were able to set 𝑖 to 1024 bits

while keeping the memory-hardness. 𝑛was set to 512 bits, giving an indegree-2 pebbling

graph. Decreasing either 𝑖 or 𝑛 would lead to ine�cient use of the function. It would

seem that hash functions with a larger internal state size, capable of supporting a larger 𝑖
would be faster for this usage, but it is not as clear as larger state sizes may correlate with

slower evaluation of a single hash.

We measured the time taken by using a single core of an AMD Ryzen 7 1700 processor.

The single threaded code was able to perform approximately 300 million hash operations

per second on 1024 bit inputs. This rate could be increased by using multiple cores, but the

300 million hashes per second rate can be used with the above �gures to see how many

hash operations are being performed at the di�erent settings.

356



10.7.1 Remarks on implementation and musings on random ora-

cles in practice

Reducing number of hashes The runtime of evaluatingℋ1 is determined by the num-

ber of hash transformations called as very little other computation is done. The number

of hashes per row is
𝑙
𝑛 , and the number of rows is

𝑙
𝑖−𝑛 , giving a total number of hash calls

as (︃
𝑙
𝑛

)︃(︃
𝑙

𝑖 −𝑛

)︃
=

𝑙2

𝑛𝑖 −𝑛2
.

𝑙2 indicates the expected time requirement proportional to the square of the output size.

To optimize the time for a given 𝑙, we look at the denominator, 𝑛𝑖 −𝑛2, noting that 𝑖 > 𝑛,

keeping this positive. To reduce the time taken, increase the input size 𝑖. Graphically, this

makes sense as descending from the top of the wraparound pyramid, the higher degree

will quickly cover the entire width of a row. However, in practice we cannot increase 𝑖
and maintain the memory-hard properties: this is an interesting divergence between the

random oracle model and real-world hash functions.

Data busses to the randomoracle One aspect which is rarely discussed in the random

oracle model is the exact process by which one makes a call to the oracle. Does the query

need to be sent to the oracle via a parallel bus, all bits at once, or is the query sent via

a serial bus, one bit at a time? If serially, can we send some of the bits, then wait a

while, and send the rest? We are not aware of literature dealing with these mechanics

of data transmission to and from the oracle; however, in our case it is quite relevant. If

serial transmission is allowed, 𝑖 can be made arbitrarily large without needing to store

the whole row of the wraparound pyramid in memory. For each bit of a label, as soon

as it is computed it can be sent to all the oracles using that bit as an input, and promptly

forgotten; the oracles act as a memory cache. The memory-hardness proofs implicity

assume an oracle model where the entire query is handed over simultaneously to the

oracle, and as such, any query to the oracle must exist in its entirety in memory before

the query is made.

In practice, real-world hash functions resemble a serial-bus oracle much more closely

than a parallel bus oracle. Whether we’re referring to the Merkle-Damgård construction,

the Sponge construction [BDPA11], or other methods, today’s widely used hash functions

are built out of �xed length one-way functions. The internal state of a hash function

can thus act as a data cache for the purposes of the pebbling graph. For a high-degree

node, the left predecessors can be fed to the hash function and forgotten before the right

predecessors are known. Since the internal state of the hash function has a �xed size, this

defeats the memory hardness promised by the pebbling construction.

Data-dependence and cache timing attacks We implement a data-dependent mem-

ory access pattern forℋ2. Other papers (e.g., Catena [LW15] and Balloon Hash [BCGS16])

have identi�ed security vulnerabilities due to data-dependent memory access patterns

which can leak information about the password to an attacker with incomplete access to

the physical system evaluating the password hashing function. These attacks occur be-
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cause of the variable time taken to evaluate the function based on the input data, primarily

due to the automatic caching of data inside the CPU.

We believe that our ℋ2 function, while implementing a data-dependent memory ac-

cess pattern, is likely much more resistant to cache timing attacks than the examples

mentioned above, based on the following analysis. In practical usage, the output of ℋ1
will be very large with respect to the number of queriesℋ2 performs on the data; for any

single evaluation of ℋ2, nearly all of the ℋ1 data will go unread. Because of this sparse

access, data will be read once and not used again before being evicted from the cache. The

probability that an input to ℋ2 results in a collision, and multiple reads from the same

memory region, is thus modeled by (8Λ8)−𝑄 whereΛ is the size of the output ofℋ1, and

𝑄 is the number of oracle calls made byℋ2.

Inputs resulting in cache hits should be rare, and knowledge of a cache hit duringℋ2
evaluation give a bounded advantage to the attacker expressed by

total number of access patterns with 𝑛 collisions

total number of zero-collision access patterns

.

However, we note that this could still be signi�cant advantage in practice because at-

tackers do not need to perform memory lookups into the set of ℋ1 outputs in order to

detect collisions. That is, an attacker still has to perform lots of hashes, but their memory

requirement could go down signi�cantly.

Onmemory allocation In order to implement the wraparound pyramid in the e�cient

way described above, memory usage needs to be slightly greater than that stated in theo-

retical model, due to necessary memory allocations in the hardware. Namely, the leftmost

bits of the array need to be copied and appended to the right side, so that the lower level

input values are available to the �nal hash interations which consume the wraparound

inputs. This increases the memory needed by 𝑖 −𝑛.
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Chapter 11

Summary

This thesis presents a set of algorithms and lower bound results for computing environ-

ments in models that represent modern computing environments. Part II �rst discusses

static graph algorithms. Chapter 3 provides approximation algorithms for hard-to-solve

graph problems in graphs that are near an algorithmically tractable graph class. Chapter 4

discusses algorithms in the MPC model for small subgraph counting and demonstrates

via experiments that our algorithms also empirically provides better approximations than

the state-of-the-art on all tested real-world graphs. Chapter 5 shows a near-linear time

scheduling algorithm for scheduling with communication delay where precedence con-

strained jobs are modeled as directed acyclic graphs.

Part III then expands on new e�cient and scalable dynamic graph algorithms. Chap-

ter 7 shows a 𝑂(1) amortized time, whp, dynamic algorithm for (∆ + 1)-vertex color-

ing. Chapter 6 provides a new parallel, batch-dynamic 𝑘-core decomposition algorithm.

Chapter 8 provides new parallel, work-e�cient batch-dynamic algorithms for triangle

and clique counting. Both of these chapters also include extensive experiments showing

orders of magnitude improvement in performance on real-world networks.

Finally, Part IV discusses hardness results from pebbling and cryptographic construc-

tions using such hard instances. Chapter 9 presents a set of results showing the hardness

of obtaining optimal computation schedules on directed acyclic computation graphs in

the external-memory model. Chapter 10 concludes with constructions using such hard

instance graphs to construct static-memory-hard hash functions that use disk memory

to deter large-scale password-cracking attacks, even against an adversary with unlimited

parallel processing power.
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Chapter 12

Future Directions

There are a number of open questions that remain as a result of this thesis. We hope that

those who are interested in working on the questions central to the theme of this thesis

will take the time to explore these and other questions in the future.

Here we summarize the open questions stated at the end of each chapter for conve-

nience.

12.1 Chapter 3: Structural Rounding

We hope that our framework for extending approximation algorithms from structural

graph classes to graphs near those classes, by editing to the class and lifting the resulting

solution, can be applied to many more contexts. Speci�c challenges raised by this work

include the following:

1. Editing via edge contractions. Approximation algorithms for this type of editing

would enable the framework to apply to the many optimization problems closed

under just contraction, such as TSP Tour and Connected Vertex Cover.

2. Editing to 𝐻-minor-free graphs. Existing results apply only when 𝐻 is planar

[FLMS12]. According to Graph Minor Theory, the natural next steps are when 𝐻
can be drawn with a single crossing, when 𝐻 is an apex graph (removal of one

vertex leaves a planar graph), and when 𝐻 is an arbitrary graph (say, a clique). 𝐻-

minor-free graphs have many PTASs (e.g., [DH05, DHK11]) that would be exciting

to extend via structural rounding.

3. Editing to bounded clique number and bounded weak 𝑐-coloring number. While we

have lower bounds on approximability, we lack good approximation algorithms.

It is also an interesting to see if this framework will lead to faster approximation al-

gorithms in practice, on real-world networks.

12.2 Chapter 4: Massively Parallel Small Subgraph

Counting

There are a number of key open questions that result from our work:
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1. Can we obtain a better bound on the number of triangles, 𝑇 , while guaranteeing a

(1+𝜀)-approximation, 𝑂(𝑛𝛿) space per machine (for any constant 𝛿 > 0),
̃︀𝑂(𝑛+𝑚)

total space, and𝑂(1) rounds? The main challenge for us was obtaining the induced

subgraph for each set of sampled vertices in a machine; perhaps with a di�erent

MPC procedure for doing this, one can obtain a better bound on 𝑇 .

2. Our exact triangle counting algorithm uses 𝑂(loglog𝑛) rounds. Is it possible to

obtain 𝑂(1) rounds while using 𝑂(𝑛𝛿) space per machine (for constant 𝛿 > 0) and

𝑂(𝑚𝛼) total space?

3. The best-known algorithm for computing a (2+𝜀)-approximate 𝑘-core decomposi-

tion in 𝑂(𝑛𝛿) space per machine (for constant 𝛿 > 0) requires 𝑂(
√︀
log𝑛 · loglog𝑛)

rounds, whp, and total memory
̃︀𝑂 (︁

max{𝑚,𝑛1+𝛿}
)︁

[GLM19]. Is it possible to reduce

the number of rounds or the total memory for this problem using ideas from our

exact triangle counting algorithm (for graphs with bounded arboricity)?

12.3 Chapter 5: Near-Linear Time Scheduling

Our results so far only apply to scheduling with duplication. In [MRS
+

20], a polynomial-

time reduction is presented that transforms a schedule with duplication into one without

duplication (with a polylogarithmic increase in makespan). However, this reduction in-

volves constructing an auxiliary graph of possiblyΩ(𝜌2) size, and thus does not lend itself

easily to a near-linear time algorithm. It would be interesting to see if a near-linear time

reduction could be found.

12.4 Chapter 8: Parallel Batch-Dynamic 𝑘-Clique
Counting

There are a number of theoretical and practical questions resulting from our triangle and

clique counting results:

1. For bounded arboricity graphs, we give a 𝑂(|ℬ|(𝑚 + |ℬ|)𝛼𝑘−4) expected work and

𝑂(log2𝑛) depth whp, and𝑂(𝑚+ |ℬ|) space algorithm. Can we do better in terms of

work and/or depth?

2. Can we apply the techniques used to obtain our batch-dynamic 𝑂(
√
𝑚) amortized

work, 𝑂(1) depth triangle counting algorithm to larger cliques, to obtain better

amortized work for e.g., 4-cliques or 5-cliques?

3. We did not implement our matrix multiplication based clique counting algorithm

so we do not know how well it performs in real dense networks. It would be in-

teresting to test whether it performs better than the trivial combinatorial algorithm

for counting larger cliques dynamically in dense networks such as the neuronal

network.
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12.5 Chapter 9 Hardness of Red-Blue Pebbling

There are several remaining open questions resulting from our hardness results:

1. Are red pebbling number and minimum number of transitions hard to approximate?

2. Does there exist FPT algorithms for restricted class of graphs (such as bounded

width graphs)?

3. Is �nding the red pebbling number W[1]-hard? Recall in Section 9.4 that we proved

W[1]-hardness only for transitions, not for number of red pebbles.
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Appendix A

Scheduling Appendix

A.1 Count-Distinct Estimator [BYJK
+
02]

Algorithm 34 [BYJK
+

02] algorithm for estimating number of distinct elements in a set.

Input A multiset 𝑆 of elements where 𝑛 = |𝑆 |.
Output An estimate on the number of distinct elements in the input multiset.

1: Let 𝑡← 𝑐
𝜀2

for some �xed constant 𝑐 ≥ 1.

2: Let ℋ be a 2-universal hash family mapping elements from [𝑛] to elements in [𝑁 ]
where 𝑁 = 𝑛3.

3: Let ℎ1, . . . ,ℎ𝑐′ log𝑛 ∈ ℋ be a set of 𝑐′ log𝑛 hash functions chosen uniformly at random

fromℋ where 𝑐′ ≥ 1 is a constant.

4: Maintain a di�erent binary tree 𝑇𝑖 of the smallest 𝑡 values seen so far of the hash

outputs of hash function ℎ𝑖 . Initially each 𝑇𝑖 has no elements.

5: for 𝑎𝑗 ∈ 𝑆 do

6: for ℎ𝑖 ∈ [ℎ1, . . . ,ℎ𝑐′ log𝑛] do
7: Compute ℎ𝑖(𝑎𝑗).
8: if ℎ𝑖(𝑎𝑗) is smaller than the largest element in 𝑇𝑖 then
9: Add ℎ𝑖(𝑎𝑗) to 𝑇𝑖 .

10: if size of 𝑇𝑖 is greater than 𝑡 then
11: Remove the largest element in 𝑇𝑖 from 𝑇𝑖 .

12: Let 𝐿 be a list of hash values. Initially 𝐿 is empty.

13: for each 𝑇𝑖 do
14: Let ℓ𝑖 be the largest element in 𝑇𝑖 .
15: Insert ℓ𝑖 into 𝐿.

16: Sort 𝐿.

17: Return 𝑡𝑁/ℓ where ℓ is the median of 𝐿.

We provide the algorithm of Bar-Yossef et al. [BYJK
+

02] in Algorithm 34. The algo-

rithm of [BYJK
+

02] works as follows. Provided a multiset 𝑆 of elements where 𝑛 = |𝑆 |, we

pick 𝑡 = 𝑐
𝜀2

where 𝑐 is some �xed constant 𝑐 ≥ 1 and ℋ, a 2-univesal hash family. Then,

we choose 𝑂(log𝑛) hash functions from ℋ uniformly at random, without replacement.
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For each hash function ℎ𝑖 : [𝑛]→ [𝑛3] (𝑖 =𝑂(log𝑛)), we maintain a balanced binary tree

𝑇𝑖 of the smallest 𝑡 values seen so far from the hash outputs of ℎ𝑖 . Initially, all 𝑇𝑖 are

empty. We iterate through 𝑆 and for each 𝑎𝑗 ∈ 𝑆 , we compute ℎ𝑖(𝑎𝑗) using each ℎ𝑖 that

we picked; we update 𝑇𝑖 if ℎ𝑖(𝑎𝑗) is smaller than the largest element in 𝑇𝑖 or if the size of

𝑇𝑖 is smaller than 𝑡. After iterating through all of 𝑆 , for each 𝑇𝑖 , we add the largest value

of each tree 𝑇𝑖 to a list 𝐿. Then, we sort 𝐿 and �nd the median value ℓ (using the median

trick). We return 𝑡𝑛3/ℓ as our estimate.

We now show how to use Algorithm 34 to get our desired mergeable estimator. Let

𝒯𝑋 be the set of trees 𝑇𝑖 ∈ 𝒯𝑋 maintained for the estimator de�ned by Algorithm 34 for

multiset 𝑋. Since each 𝑇𝑖 has size at most 𝑂(𝑡) =𝑂
(︁
1
𝜀2

)︁
, the total space required to store

all 𝑇𝑖 is𝑂
(︁
1
𝜀2
log2𝑛

)︁
in bits. We can initialize our estimator on input 𝑑 by picking a set of

random hash functions: ℎ1, . . . ,ℎ𝑑 log𝑛 ∈ ℋ. Let𝐻 be the set of picked hash function. Then,

for each set 𝑆 , we initialize 𝑑 log𝑛 trees 𝑇𝑖 ∈ 𝒯𝑆 (as used in Algorithm 34) and maintain 𝒯𝑆
in memory. The elements of 𝑇𝑖 are computed using ℎ𝑖 ∈ 𝐻 . Let 𝒟𝑆 denote the estimator

for 𝑆 . Using 𝒯𝑆 for set 𝑆 , we can implement the following functions (pseudocode for the

three functions can be found in Algorithm 35):

• CountDistinctEstimator.insert(𝒟𝑆 ,𝑥): Insert ℎ𝑖(𝑥) into 𝑇𝑖 ∈ 𝒯𝑆 for each 𝑖 ∈
[𝑑 log𝑛]. If 𝑇𝑖 has size greater than 𝑡, delete the largest element of 𝑇𝑖 .

• CountDistinctEstimator.merge(𝒟𝑆1 , 𝒟𝑆2): Here we assume that the same set

of hash functions are used for both 𝒟𝑆1 and 𝒟𝑆2 . For each pair of 𝑇1,𝑖 ∈ 𝒯𝑆1 and

𝑇2,𝑖 ∈ 𝒯𝑆2 for hash function ℎ𝑖 , build a new tree 𝑇𝑖 by taking the 𝑡 smallest elements

from 𝑇1,𝑖 ∪ 𝑇2,𝑖 .
• CountDistinctEstimator.estimateCardinality(𝒟𝑆): Let ℓ be the median value

of the largest values of the trees 𝑇𝑖 ∈ 𝒯𝑆 . Return 𝑡𝑁/ℓ.
The estimator provided in Bar-Yossef et al. [BYJK

+
02] satis�es the following lemmas

as proven in [CG06] (speci�cally it is proven that the estimator is unbiased):

Lemma A.1.1 ([BYJK
+

02]). The Bar-Yossef et al. [BYJK
+
02] estimator is an(︁

𝜀, 1
𝑛𝑑
,𝑂

(︁
1
𝜀2
log2𝑛

)︁)︁
-estimator for the count-distinct problem.

Lemma A.1.2. Furthermore, the insert, merge, and estimate cardinality functions of the

Bar-Yossef et al. [BYJK
+
02] estimator can be implemented in 𝑂

(︁
1
𝜀2
log2𝑛

)︁
time.

Proof. CountDistinctEstimator.insert requires 𝑂(log 𝑡) time to insert ℎ𝑖(𝑥)
and 𝑂(log 𝑡) time to remove the largest element. Thus, this method requires

𝑂
(︁
log

(︁
1
𝜀

)︁)︁
= 𝑂

(︁
1
𝜀2

)︁
time. CountDistinctEstimator.merge requires 𝑂(𝑡) = 𝑂

(︁
1
𝜀2

)︁
time to merge 𝑇1,𝑖 and 𝑇2,𝑖 and also 𝑂(𝑡) time to build the new tree. Finally,

CountDistinctEstimator.estimateCardinality requires 𝑂(log𝑛) time to create

the list 𝐿 and 𝑂(log𝑛 loglog𝑛) time to sort and �nd the median.

Estimating the Number of Ancestors and Edges Using the count-distinct estimator

described above, we can provide our full algorithms for estimating the number of ances-

tors and the number of edges in the induced subgraph of every vertex in a given input

graph.
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Algorithm 35 Initialize New CountDistinctEstimator.
Input 𝒟𝑆 ,𝒯𝑆 , 𝑡,ℎ𝑖 ∈ ℋ are as de�ned above for multiset 𝑆 . Let 𝑛 = |𝑆 |.
Output An estimator.

1: CountDistinctEstimator.insert(𝒟𝑆 ,𝑥):
2: for 𝑇𝑖 ∈ 𝒯𝑆 do

3: Compute ℎ𝑖(𝑥).
4: if 𝑇𝑖 has less than 𝑡 elements or ℎ𝑖(𝑥) is smaller than the largest value in 𝑇𝑖 then
5: Insert ℎ𝑖(𝑥) into 𝑇𝑖 .

6: if 𝑇𝑖 has more than 𝑡 elements then

7: Remove the largest element in 𝑇𝑖 .

8: CountDistinctEstimator.merge(𝒟𝑆1 , 𝒟𝑆2):
9: for 𝑇1,𝑖 ∈ 𝒯𝑆1 , 𝑇2,𝑖 ∈ 𝒯𝑆2 do

10: Perform inorder traversal of 𝑇1,𝑖 and 𝑇2,𝑖 to obtain non-decreasing lists of elements,

𝐿1,𝑖 and 𝐿2,𝑖 .
11: Merge 𝐿1,𝑖 and 𝐿2,𝑖 to obtain a new non-decreasing list of elements, 𝐿.

12: Build a new balanced binary tree from the �rst 𝑡 elements of 𝐿.

13: CountDistinctEstimator.estimateCardinality(𝒟𝑆):
14: for 𝑇𝑖 ∈ 𝒯𝑆 do

15: Insert largest element of 𝑇𝑖 into list 𝐿.

16: Sort 𝐿.

17: Let ℓ be the median of 𝐿.

18: Return 𝑡𝑛3/ℓ.
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Our complete algorithm for estimating the number of ancestors 𝑎(𝑣) of every vertex

in an input graph is given in Algorithm 36.

Algorithm 36 Estimate Number of Ancestors

Input A graph 𝐻 = (𝑉 ,𝐸).
Output Estimate 𝑎𝐻 (𝑣) such that (1− 𝜀)|𝒜𝐻 (𝑣)| ≤ 𝑎𝐻 (𝑣) ≤ (1 + 𝜀)|𝒜𝐻 (𝑣)|, ∀𝑣 ∈ 𝑉 .

1: Topologically sort all the vertices in 𝐻 .

2: for vertex 𝑤 in the topological order of vertices in 𝐻 do

3: Let Pred(𝑤) be the set of predecessors of 𝑤.

4: Let 𝒟𝑤← New

(︁
𝜀, 1
𝑛𝑑
,𝑂

(︁
1
𝜀2
log2𝑛

)︁)︁
-CountDistinctEstimator for 𝑤.

5: CountDistinctEstimator.insert(𝒟𝑤,𝑤)
6: for 𝑣 ∈ Pred(𝑤) do
7: 𝒟𝑤 = CountDistinctEstimator.merge(𝒟𝑤,𝒟𝑣).
8: 𝑎𝐻 (𝑤) = CountDistinctEstimator.estimateCardinality(𝒟𝑤).

Our algorithm for �nding 𝑒(𝑣) for every vertex in the input graph is given in Algo-

rithm 37.

Algorithm 37 Estimate Number of Ancestor Edges

Input A graph 𝐻 = (𝑉 ,𝐸).
Output Estimate 𝑒𝐻 (𝑣) such that (1− 𝜀)|ℰ𝐻 (𝑣)| ≤ 𝑒𝐻 (𝑣) ≤ (1 + 𝜀)|ℰ𝐻 (𝑣)|, ∀𝑣 ∈ 𝑉 .

1: Topologically sort all the vertices in 𝐻 .

2: for vertex 𝑤 in the topological order of vertices in 𝐻 do

3: Let Pred(𝑤) be the set of predecessors of 𝑤.

4: Let 𝒟𝑤← New

(︁
𝜀, 1
𝑛𝑑
,𝑂

(︁
1
𝜀2
log2𝑛

)︁)︁
-CountDistinctEstimator for 𝑤.

5: for 𝑣 ∈ Pred(𝑤) do
6: CountDistinctEstimator.insert(𝒟𝑤, (𝑣,𝑤)).
7: 𝒟𝑤 = CountDistinctEstimator.merge(𝒟𝑤,𝒟𝑣).
8: 𝑒𝐻 (𝑤) = CountDistinctEstimator.estimateCardinality(𝒟𝑤).

A.2 List Scheduling

Here we provide a brief description of the classic Graham list scheduling algo-

rithm [Gra71]. For our purposes, we are given a set of vertices and their ancestors. We

duplicate the ancestors for each vertex 𝑣 so that each vertex and its ancestors is scheduled

as a single unit with job size equal to the number of ancestors of 𝑣. Then, we perform the

following greedy procedure: for each vertex 𝑣, we sequentially assign 𝑣 to the machine

𝑀𝑖 ∈ℳ with smallest load (i.e. load is de�ned by the jobs lengths of all jobs assigned to

it). We can maintain loads of the machines in a heap to determine the machine with the

lowest load at any time. To schedule 𝑛 jobs using this procedure requires𝑂(𝑛 ln𝑀) time.
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A.3 Scheduling General Graphs Full Algorithm

Algorithm 19 is a shortened version of Algorithm 38 presented here.

Algorithm 38 ScheduleGeneralGraph(𝐺)
Input A directed acyclic task graph 𝐺 = (𝑉 ,𝐸).
Output A schedule of the input graph 𝐺 = (𝑉 ,𝐸) on 𝑀 processors.

1: Letℋ←∅ represent a list of small subgraphs that we will build.

2: Initialize a data structure to keep track of marked vertices; all vertices are initially

unmarked.

3: while 𝐺 is not empty do

4: Let 𝑉𝐻 ←∅ be the vertices of the current small subgraph we are building.

5: Initialize queue 𝑄 with all sources (vertices with no ancestors) of 𝐺.

6: while 𝑄 is not empty do Remove �rst element 𝑣 of 𝑄. Compute the size estimate

for 𝑣’s ancestor set as 𝑎(𝑣).
7: if 𝑎(𝑣) ≤ 4

3𝜌 then

8: Mark 𝑣 and add it to 𝑉𝐻 .

9: for each successor 𝑤 of 𝑣 do

10: if all predecessors of 𝑤 are marked then

11: Enqueue 𝑤 into queue 𝑄.

12: Compute edge set 𝐸𝐻 to be all edges induced by 𝑉𝐻 .

13: Add 𝐻 = (𝑉𝐻 ,𝐸𝐻 ) toℋ.

14: Remove 𝑉𝐻 and all incident edges from 𝐺.

15: for 𝐻 ∈ ℋ in the order they were added do

16: Call ScheduleSmallSubgraph(𝐻 ) to obtain a schedule of 𝐻 . [Algorithm 16]
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Appendix B

Static-Memory-Hard Hash Functions

B.1 Details of SHF construction with short labels

Algorithm 39ℋ𝑞
′

2

On input (1𝜅,𝑥) and given oracle access to Seek𝑅 (where𝑅 is the string outputted byℋ1):

1. Let 8𝑅8 = |𝑅|/𝑤 be the length of 𝑅 in words.

2. Query the random oracle to obtain 𝜌0 = 𝒪(𝑥) and 𝜌1 = 𝒪(𝑥+1).
3. Use 𝜌0 to sample randomly 𝜄1, . . . , 𝜄𝑞′ ∈ [8𝑅8].
4. Query the Seek𝑅 oracle to obtain {𝑦′𝑖 = Seek𝑅(𝜄𝑖)}𝑖∈[𝑞′].
5. Output (𝑦′1|| . . . ||𝑦

′
𝑞′ )⊕ 𝜌1.

De�nition B.1.1 (𝑞′′-labeling). Let 𝐺 = (𝑉 ,𝐸) be a DAG with maximum in-degree 𝛿, let
L be an arbitrary “label set,” and de�ne O(𝛿,L) =

(︁
𝑉 ×

⋃︀𝛿
𝛿′=1L

𝛿′ → L
)︁
. Let 𝒪|𝑞′′ be the

function that outputs the �rst 𝑞′ bits of the output of 𝒪. For any function 𝒪 ∈ O(𝛿,L)
and any label 𝜁 ∈ L, the (𝒪,𝜁,𝑞′′)-labeling of 𝐺 is a mapping label𝒪,𝜁 : 𝑉 → L de�ned

recursively as follows.
1

label𝒪,𝜁(𝑣) =

⎧⎪⎪⎨⎪⎪⎩𝒪|𝑞′′ (𝑣,𝜁) if indeg(𝑣) = 0
𝒪|𝑞′′ (𝑣, label𝒪,𝜁(Pred(𝑣))) if indeg(𝑣) > 0

.

Then, we de�ne our family of random oracle functions de�ned from our hard to pebble

graph family constructions.

De�nition B.1.2 (𝑞′′-graph function family). Let 𝑛 = 𝑛(𝜅) and let G𝛿 = {𝐺𝑛,𝛿 =
(𝑉𝑛,𝐸𝑛)}𝜅∈ be a graph family. We write O𝛿,𝜅 to denote the set O(𝛿, {0,1}𝜅) as de�ned
in De�nition B.1.1. The 𝑞′′-graph function family of G is the family of oracle functions

ℱ 𝑞
′′

G = {f𝐺}𝜅∈ where f𝐺 = {𝑓 𝒪𝐺 : {0,1}𝜅 → ({0,1}𝜅)𝑧}𝒪∈O𝛿,𝜅 and 𝑧 = 𝑧(𝜅) is the number of

1
We abuse notation slightly and also invoke label𝒪,𝜁 on sets of vertices, in which case the output is

de�ned to be a tuple containing the labels of all the input vertices, arranged in lexicographic order of vertices.

373



sink nodes in 𝐺. The output of 𝑓 𝒪𝐺 on input label 𝜁 ∈ {0,1}𝜅 is de�ned to be

𝑓 𝒪𝐺 (𝜁) = label𝒪,𝜁(sink(𝐺)) ,

where sink(𝐺) is the set of sink nodes of 𝐺.

B.2 Regular and normal pebbling strategies

Here, we restate three theorems and prove brie�y their equivalent formulation in the

parallel model for the parallel model adapted from theorems in [GLT80, DL17] proven in

the sequential model.

We �rst restate the de�nitions for normal and regular strategies:

De�nition B.2.1 (Frugal Strategy [GLT80]). Given a DAG 𝐺 = (𝑉 ,𝐸), a frugal strategy

is a pebbling strategy with no unnecessary placements. In particular, the following are true

of any frugal pebbling strategy:

1. At all times after the �rst placement on a vertex 𝑣, some path from 𝑣 to the goal vertex
contains a pebble.

2. At all times after the last placement on a vertex 𝑣, all paths from 𝑣 to the goal vertex

contain a pebble.

3. The number of placements on a nongoal vertex is bounded by the total number of

placements on its successors.

De�nition B.2.2 (Normal Strategy [GLT80]). A normal strategy is a standard pebbling

strategy that is frugal and it pebbles each pyramid 𝑃 in 𝐺 as follows: after the �rst pebble

is placed on 𝑃 , no placement or removal of pebbles occurs outside 𝑃 until the apex of 𝑃 is

pebbled and all other pebbles are removed from 𝑃 . No new placement occurs on 𝑃 until after

the pebble on the apex of 𝑃 is removed.

Theorem B.2.3 (Normal Strategy Conversion [GLT80]). If the goal vertex is not inside a

pyramid, any standard pebbling strategy can be transformed into a normal pebbling strategy

without increasing the number of pebbles used in both the sequential and parallel pebbling

models.

Proof. The proof of this statement in the sequential model is given in [GLT80]. We now

prove this statement in the parallel model. By our proof of Lemma 10.5.1, any sequential

strategy can be simulated trivially by a parallel strategy; therefore, if any pebbling strategy

can be transformed into a sequential normal pebbling strategy, then any pebbling strategy

can be transformed into a parallel normal pebbling strategy.

We now de�ne regular pebbling strategies:

De�nition B.2.4 (Regular Strategy [DL17]). Given a DAG 𝐺 = (𝑉 ,𝐸), a regular strategy

is a standard pebbling strategy that is frugal and after the �rst pebble is placed on any road

graph 𝑅𝑤 ∈ 𝐺, no placements of pebbles occurs outisde 𝑅𝑤 until the set of desired outputs of

𝑅𝑤 all contain pebbles and all other pebbles are removed from 𝑅𝑤.
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By the same argument as given for the proof of Theorem B.2.3, we can prove the

equivalent for parallel regular pebbling strategies.

Theorem B.2.5 (Regular Strategy Conversion [DL17]). Given a DAG 𝐺 = (𝑉 ,𝐸), if each
input, 𝑖𝑗 ∈ {𝑖1, . . . , 𝑖𝑤}, to a road graph has at most 1 predecessor, any standard pebbling

strategy that pebbles a set of desired outputs, 𝑂 ⊆ {𝑜1, . . . , 𝑜𝑤}, at the same tiime can be

transformed into a regular strategy without increasing the number of pebbles used.

In addition, we prove this stronger theorem about the pebbling space complexity of

pyramid graphs below than the theorems provided in [GLT80, Nor15] that will be useful

for determining the pebbling space complexity of pyramids in the magic pebble game.

Theorem B.2.6. Given a pyramid graph Πℎ with ℎ levels where level 1 has ℎ nodes and

level ℎ has 1 node. Given 𝑆 pebbles and if all 𝑆 pebbles are placed on level 𝑖 of the pyramid

and 𝑆 < ℎ + 1 − 𝑖, then the apex of the pyramid cannot be pebbled using the rules of the

standard pebble game.

Proof. Given 𝑆 < ℎ+1− 𝑖 pebbles on the 𝑖-th layer of a height ℎ pyramid, we know that

the 𝑖-th level of the pyramid forms a height ℎ+1− 𝑖 height pyramid with the apex. Thus,

by the pebbling space complexity of pyramids, ℎ + 1 − 𝑖 pebbles are necessary on level

ℎ+1− 𝑖 in order to pebble the apex.
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Appendix C

Parallel Batch-Dynamic 𝑘-Clique
Counting Appendix

C.1 Sequential Fully Dynamic Triangle Counting Al-

gorithm of [KNN
+
19]

Here, we present the sequential fully dynamic triangle counting algorithm of Kara et

al. [KNN
+

19] that operates in 𝑂(𝑚) space, 𝑂(
√
𝑚) amortized work per edge update, and

𝑂(𝑚3/2) work for preprocessing. This algorithm returns the exact count of the number

of triangles in an undirected graph under both edge insertions and deletions. Kara et

al. [KNN
+

19] present their algorithm for directed 3-cycles using relational database ter-

minology (where each edge in the triangle may be drawn from a di�erent relation), but

we simplify their algorithm for the case of undirected graphs. Kara et al. [KNN
+

19] prove

the following theorem.

Theorem C.1.1 (Fully Dynamic Triangle Counting [KNN
+

19]). There exists a sequential

algorithm to count the number of triangles in an undirected graph𝐺 = (𝑉 ,𝐸) using𝑂(𝑚3/2)
preprocessing work that can handle an edge update in 𝑂(

√
𝑚) amortized work and 𝑂(𝑚)

space.

We now explain the fully dynamic triangle counting algorithm of [KNN
+

19] in greater

detail.

Given a graph 𝐺 = (𝑉 ,𝐸) with 𝑛 = |𝑉 | vertices and 𝑚 = |𝐸| edges, we initialize the

following variables: 𝑀 = 2𝑚+1, 𝑡1 =
√
𝑀/2, and 𝑡2 = 3

√
𝑀/2. We de�ne a vertex to be

low-degree if its degree is at most 𝑡1 and high-degree if its degree is at least 𝑡2. Vertices

with degree in between 𝑡1 and 𝑡2 can be classi�ed either way. Let 𝐶 be the current count

of the number of triangles in the graph. We compute the initial count of the number of

triangles in the input graph𝐺 using a static triangle counting algorithm [IR77] in𝑂(𝑚3/2)
work and 𝑂(𝑚) space. Thus, we immediately have a preprocessing work of 𝑂(𝑚3/2).

We create four data structuresℋℋ,ℋℒ,ℒℋ, andℒℒ. ℋℋ stores all of the edges (𝑢,𝑣)
where both 𝑢 and 𝑣 are high-degree,ℋℒ stores edges (𝑢,𝑣), where 𝑢 is high-degree and

𝑣 is low-degree, ℒℋ stores the edges (𝑢,𝑣) where 𝑢 is low-degree and 𝑣 is high-degree,
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and ℒℒ stores edges where both 𝑢 and 𝑣 are low-degree. With our data structures, the

following operations are supported:

1. Given a vertex 𝑣, determine whether it is low-degree or high-degree in 𝑂(1) work.

2. Given an edge (𝑢,𝑣), check if it is inℋℋ,ℋℒ, ℒℋ, or ℒℒ in 𝑂(1) work.

3. Given a vertex 𝑣, return all neighbors of 𝑣 in ℋℋ, ℋℒ, ℒℋ, and ℒℒ in 𝑂(deg(𝑣))
work.

4. Given an edge (𝑣,𝑤) to insert or delete, updateℋℋ,ℋℒ, ℒℋ, or ℒℒ in 𝑂(1) work.

We can implementℋℋ,ℋℒ, ℒℋ, and ℒℒ to support these operations by using a two-

level hash table for each of these structures and an additional array 𝒟. 𝒟 is a dynamic

hash table containing a key for each vertex that has non-zero degree and stores the degree

of the vertex as the value. The data structures support insertions and deletions in 𝑂(1)
work. 𝒟 can be initialized in 𝑂(𝑚) work by scanning over all vertices and computing

their degree. ℋℋ,ℋℒ, ℒℋ, and ℒℒ can be initialized in 𝑂(𝑚) work by scanning over all

edges and inserting them into the right table based on the degrees of their endpoints.

We maintain one additional data structure 𝒯 that counts the number of wedges

(𝑢,𝑤,𝑣), where 𝑢 and 𝑣 are high-degree vertices and 𝑤 is a low-degree vertex. 𝒯 has

the property that given an edge insertion or deletion (𝑢,𝑣) where both 𝑢 and 𝑣 are high-

degree vertices, it returns the number of such wedges (𝑢,𝑤,𝑣) where 𝑤 is low-degree

that 𝑢 and 𝑣 are part of in 𝑂(1) work. We can implement this via a hash table indexed

by pairs of high-degree vertices that stores the number of wedges for each pair. 𝒯 can be

initialized in 𝑂(𝑚3/2) work by iterating over all edges (𝑢,𝑤) inℋℒ and then for each 𝑤,

iterating over all edges (𝑤,𝑣) in ℒℋ to determine whether 𝑣 is high-degree, and if so then

increment 𝑇 (𝑢,𝑣) by 1. There are 𝑂(𝑚) edges (𝑢,𝑤) in ℋℒ, and for each 𝑤 there are at

most𝑂(
√
𝑚) edges (𝑤,𝑣) in ℒℋ since 𝑤 is low-degree. Each lookup and increment takes

𝑂(1) work, giving an overall work of 𝑂(𝑚3/2).

C.1.1 Update Procedure [KNN
+
19]

The procedure for handling single edge updates in the sequential setting given

by [KNN
+

19] as follows:

For an edge insertion (resp. deletion) (𝑢,𝑣), we �rst �nd the degree of 𝑢 and 𝑣 in 𝒟
and then look up the edge in their respective tables ℋℋ, ℋℒ, ℒℋ, or ℒℒ. If the edge

already exists (resp. does not exist) in the table, nothing else is done. Otherwise, we need

to �nd all tuples (𝑢,𝑤,𝑣) such that (𝑣,𝑢) and (𝑢,𝑤) already exist in the graph because for

each such tuple, a new triangle will be formed (resp. an existing triangle will be deleted).

We �rst update the triangle count, and then we update the data structures. For updating

the triangle count 𝐶, there are 4 di�erent cases for such tuples, and so we check each of

the following cases:

1. (𝑢,𝑤) is inℋℋ and (𝑤,𝑣) is inℋ𝑦 where 𝑦 ∈ {ℋ,ℒ}: We extract all high-degree

neighbors of 𝑢 inℋℋ. Given that the degree of all high-degree vertices is Ω(
√
𝑚),

there are at most 𝑂(
√
𝑚) such vertices. For each of these neighbors, we can check

in 𝑂(1) work for each 𝑤 whether (𝑤,𝑣) exists inℋ𝑦. This takes 𝑂(
√
𝑚) work.

2. (𝑢,𝑤) is in ℋℒ and (𝑤,𝑣) is in ℒℋ where 𝑦 ∈ {ℋ,ℒ}: Since both 𝑢 and 𝑣 are

high-degree in this case, we perform an𝑂(1) work lookup in 𝒯 for the count of the

number of wedges (𝑢,𝑤,𝑣) in this case.
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3. (𝑢,𝑤) is in ℒℋ and (𝑤,𝑣) is inℋ𝑦 where 𝑦 ∈ {ℋ,ℒ}: Scan through the neigh-

bors of 𝑢 in ℒℋ. For each neighbors of 𝑢, check whether (𝑤,𝑣) exists in ℋ𝑦. This

takes 𝑂(
√
𝑚) work since 𝑢 has low-degree.

4. (𝑢,𝑤) is in ℒℒ and (𝑤,𝑣) is in ℒ𝑦 where 𝑦 ∈ {ℒ,ℋ}: Again, scan through the

neighbors of 𝑢 in ℒℋ. For each neighbors of 𝑢, check whether (𝑤,𝑣) exists in ℒ𝑦.

This takes 𝑂(
√
𝑚) work since 𝑢 has low-degree.

After updating the triangle count, we proceed with updating the data structures with

the edge insertion (resp. deletion).

We �rst update 𝒯 given an edge insertion (resp. deletion) (𝑢,𝑣) as follows:

1. If 𝑢 is high-degree and 𝑣 is low-degree, then we �nd all of 𝑣’s neighbors in ℒℋ and

for each such neighbor 𝑥, we increment (resp. decrement) the entry 𝒯 (𝑢,𝑥) by 1. It

takes 𝑂(
√
𝑚) work to perform this update since 𝑣 is low-degree.

2. If 𝑢 is low-degree and 𝑣 is high-degree, then we scan through all vertices inℋℒ and

for each vertex 𝑥 in ℋℒ that has 𝑢 as a neighbor, we increment (resp. decrement)

𝒯 (𝑥,𝑣) by 1. This takes 𝑂(
√
𝑚) work since there are at most 𝑂(

√
𝑚) high-degree

vertices.

In addition to the updates to 𝒯 , we also insert (resp. delete) (𝑢,𝑣) intoℋℋ,ℋℒ, ℒℋ,

and ℒℒ depending on the degrees of 𝑢 and 𝑣, and update 𝒟. For a given edge (𝑢,𝑣)
insertion (resp. deletion), we �rst determine whether 𝑢 and 𝑣 are low-degree or high-

degree by looking in 𝒟 for 𝑢 and 𝑣 in 𝑂(1) work. ℋℋ,ℋℒ, ℒℋ, and ℒℒ are constructed

as hash tables keyed by �rst the �rst vertex in the edge tuple and then the second vertex

in the edge tuple with pointers to second-level hash tables storing the neighbors of that

particular vertex. If 𝑢 is high-degree, then the edge is inserted (resp. deleted) intoℋℋ or

ℋℒ (depending on whether 𝑣 is low or high-degree) using 𝑢 as the key and adding 𝑣 to

the second level hash table. Similarly, if 𝑢 is low-degree, (𝑢,𝑣) is inserted (resp. deleted)

into ℒℋ or ℒℒ. Furthermore, (𝑣,𝑢) is also inserted into its respective table depending on

whether 𝑣 is low or high-degree. The entries for 𝑢 and 𝑣 in𝒟 are then incremented (resp.

decremented) in 𝒟. The updates to these data structures take 𝑂(1) work.

We also have to deal with the cases where the degree classi�cation of vertices have

changed or the number of edges has changed by too much that the values of 𝑀 , 𝑡1, and

𝑡2 need to be updated. This is described in the next section.

C.1.2 Rebalancing [KNN
+
19]

We now describe the rebalancing procedure given in [KNN
+

19] when a low-degree ver-

tex becomes a high-degree vertex (or vice versa) and when too many updates have been

applied (and all the data structures must be changed according to the new values of 𝑀 ,

𝑡1, and 𝑡2).

Minor rebalancing This type of rebalancing occurs if a vertex which was previously

high-degree has its degree fall below 𝑡1 or if a vertex that was previously low-degree has

its degree increase above 𝑡2. In the �rst case, we move the vertex and all its edges from

ℋℋ to ℋℒ, and from ℒℋ to ℒℒ. In the second case, we move the vertex and all its

edges from ℋℒ toℋℋ, and from ℒℒ to ℒℋ. Since our data structures support additions

and deletions of an edge in 𝑂(1) work, and since the degree of 𝑣 is Θ(
√
𝑚) at this point,

379



we perform Θ(
√
𝑚) updates. We showed in Appendix C.1.1 that updates take 𝑂(

√
𝑚)

work so we take 𝑂(𝑚) work overall for a minor rebalancing. However, Ω(
√
𝑚) updates

must have occurred on this vertex before we have to perform minor rebalancing since

𝑡2 − 𝑡1 = Θ(
√
𝑚), and so we can amortize this cost over the Ω(

√
𝑚) updates, resulting in

𝑂(
√
𝑚) amortized work per update.

Major rebalancing A major rebalancing occurs when 𝑚, the number of edges in the

graph, falls outside the range [𝑀/4,𝑀]. We simply reinitialize the data structures as

in the original algorithm. Major rebalancing can only occur after Ω(𝑀) updates, and

so we can a�ord to re-initialize our data structure and recompute the triangle count from

scratch using an𝑂(𝑚3/2) work triangle counting algorithm. The amortized work of major

rebalancing over Ω(𝑚) updates is then 𝑂(
√
𝑚).
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