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ABSTRACT

This Master’s thesis investigates three diverse problem domains through the lens of com-
putational inapproximability: Max 2SAT-3, the Net tile-rotating puzzle family, and the
mobile game Euclidea.

Max 2SAT-3 is a problem long known to be APX-complete, but finding a clear proof is
harder than one might expect. We examine the history of Max 2SAT-3, addressing past
misconceptions and clarifying where the reduction chain has been opaque, and present a
novel proof of its APX-completeness.

Net variants form a wide class of puzzles with lots of potential for future research. We
introduce a natural optimization variant of Net and demonstrate its inapproximability, as
well as consolidate existing findings and present other new results.

Euclidea is a mobile game based on Euclidean straightedge-and-compass constructions.
We define the game as an optimization problem and establish its APX-hardness, as well
as discuss challenges in upper-bounding its complexity, relating to current knowledge gaps
regarding the constructible and algebraic numbers.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

When a student learns in an intro complexity theory course that the Max Cut and Clique
problems are both NP-complete, they might be tempted to chalk them up as roughly the
same. Max Cut and Clique are both graph problems that take in a graph G and target
parameter k, and it’s NP-complete to determine whether G has “the thing you want” of size
at least k. When the student’s parents ask what they’re studying, they may also simplify
a little: “There’s this class of problems called ‘NP-complete’, and you can show that any
NP-complete problem is just as hard to solve as any other.”

However, when stepping into the world of approximation and inapproximability, Max
Cut and Clique start to look very different. The Max Cut problem is approximable to a
ratio of about 0.878 [1], meaning that there’s a polynomial-time algorithm that produces a
cut that’s at least 87% of the optimal value. Meanwhile, the Clique problem is Poly-APX-
complete, meaning that unless P = NP, there is no polynomial-time algorithm that can even
consistently come within a factor better than O(n1−ϵ) of optimal, for any ϵ > 0 [2].

Serious study of inapproximability dates back to at least 1991, when Papadimitriou and
Yannakakis defined a new approximation complexity class and showed a list of problems
complete for it [3]. Even within the realm of NP optimization problems, the corresponding
decision problems of which lie in NP, there are plenty of complexity classes for problems to
fall into. For this reason, the field of inapproximability is only growing, and it continues to
have many interesting open problems to offer.

In this work, we present a collection of novel results relating to the computational hardness
of approximation. We also include some other computational complexity results related to
the specific topics discussed in this work, as well as bring fresh explanations to existing
results, where needed.

1.1 Inapproximability Background

This section will serve as a brief guide to the various types of approximation hardness
and reductions used in this work.

In an optimization problem, potential solutions to an input are either rejected as invalid
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or accepted as valid, in which case the solution is assigned a cost, a score of how good or
bad the solution is. The optimization problem then essentially asks: given an input, can you
find a solution with the highest (or lowest) cost? The optimal cost for an instance x of the
problem is widely denoted OPT(x).

NP optimization problems (NPO) are a broad class consisting of optimization problems
where all the problem functions run in polynomial time, and the decision problem of whether
OPT(x) is at least (or at most) a threshold k is in NP.

APX is the subset of NPO which can be approximated to a constant factor in polynomial
time. This is the class we will concern ourselves the most with in this work.

A PTAS, or Polynomial-Time Approximation Scheme, is an polynomial-time algorithm
to approximate a problem to within a ratio of (1 + ϵ), for any ϵ > 0. Our work often deals
with APX-hardness, one of the implications of which is that no PTAS exists for the problem
unless P = NP.

A problem is APX-hard if there is a PTAS-reduction from any APX problem to it. An
L-reduction is a stricter form of PTAS-reduction; these reduction types will be explained in
more detail where used in this work.

Finally, an c-gap version of an optimization problem is the decision problem of deciding
between OPT ≤ k and OPT > c · k, given that one of the two cases must be true. Gap
hardness is mentioned in a few sections, but primarily used only in Chapter 3.

1.2 Overview of Chapters

In Chapter 2, we present a novel proof of the APX-completeness of Max 2SAT-3, which is
a foundational APX-complete problem used in many reductions as the most restricted form
of the Max nSAT-k family. We also present a history of the problem, as well as an analysis
of how mistakes in the reduction chain have occurred, as presentations of the reduction chain
of Max 2SAT-3 have often been confusing and convoluted in the literature.

In Chapter 3, we define a natural optimization variant of Net, a popular tile-rotating
puzzle type, and prove inapproximability with a gap-producing reduction. Under a further
variation where most pieces can be rearranged arbitrarily, we prove a perhaps surprising
decision NP-hardness result. We also collect existing results on Net variants into a table,
and present an insightful approach to an alternate proof for one of the results.

Finally, in Chapter 4, we present a novel analysis of the game Euclidea, which revolves
around performing Euclidean constructions in a minimum number of steps. We prove that
the game itself is APX-hard under this natural optimization target, for two definitions of a
Euclidean construction step. We also discuss challenges in upper-bounding the complexity of
Euclidea, with applications reaching into the theory of constructible and algebraic numbers.
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Chapter 2

Max 2SAT-3

The proof that Max 2SAT is APX-complete1 dates back to Papadimitriou and Yannakakis’
seminal 1991 paper on approximation algorithm hardness [1]. The same paper also shows
that Max 3SAT-k is APX-complete, for a fixed constant k.

In the time since, it has been shown and is widely accepted that Max 2SAT-3 is APX-
complete—the strongest result one can hope for. However, the reduction can split up in a
few different ways, and the parts are often scattered across the literature or sometimes left
as exercises to the reader. In addition, one step of the reduction has caused confusion in the
past—the reduction from Max 2SAT-k to Max 2SAT-3.2

In this chapter, we provide a resource showing the APX-completeness of Max 2SAT-
3, focusing on this difficult step of the reduction. In Section 2.1, we briefly explain some
preliminaries, and discuss the Max 2SAT-k to Max 2SAT-3 reduction step. In Section 2.2,
we give an overview of previous works related to these results, and discuss how the Max
2SAT-k to Max 2SAT-3 reduction has historically caused confusion. In Section 2.3, we
discuss the techniques that previous proofs of APX-hardness have used, and present a new,
simple L-reduction from Max 2SAT-k to Max 2SAT-3, inspired by the core ideas of these
techniques.

This chapter represents joint work with Zi Song Yeoh, Lily Chung, Erik Demaine, and
others in the MIT class Algorithmic Lower Bounds: Fun with Hardness Proofs (6.5440),
taught by Erik Demaine in Fall 2023.

2.1 Preliminaries

Just as reducing from 3SAT remains a very popular choice for complexity theorists to
prove problems NP-hard, researchers of approximation hardness often reduce from Max
2SAT or Max 3SAT to prove problems APX-hard. It is often helpful in such reductions
for a variable’s number of occurrences to be upper-bounded by a constant k, which gives

1MAX SNP-complete in the original work.
2As discussed in Section 2.1, equivalent reductions are often historically presented as from Max 3SAT-k

to Max 3SAT-3.
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rise to Max 2SAT-k or Max 3SAT-k. When it matters that the number of occurrences is
bounded but the bound itself doesn’t matter, this can also be called Max 2SAT-O(1) or Max
3SAT-O(1).

The two main approximation types we will consider in this chapter will be PTAS-reductions
[2] [3] and L-reductions [1]. PTAS-reductions are the basis of the definition of APX-hardness,
so at the core, we will be analyzing whether certain reductions meet the definition of a PTAS-
reduction. The reductions we present will also be L-reductions; introduced earlier, they are a
strengthening of PTAS-reductions, and also remain one of the most popular reduction types
for showing APX-hardness.

We will mainly focus on analyzing the steps which reduce from Max 2SAT-k or Max
3SAT-k to the equivalent problem with a smaller constant k, as these are the reduction steps
which have been the most varied and posed the most challenges.

Many of these reductions generally rely on adding clauses of size 2, and as such, can be
used to reduce from Max 2SAT-O(1) or Max 3SAT-O(1). Throughout the remainder of this
chapter, we will refer to these reductions in terms of Max 2SAT, except in instances where
the reductions were used historically for Max 3SAT.

2.2 History of Max nSAT-k reductions

First, we list some of the past works that have showed APX-hardness results for 2SAT
and 3SAT; we go into more detail on the techniques used in Section 2.3.1. Then, we explain
how an easily-made assumption can lead to a fallacious reduction from Max 2SAT-O(1) to
Max 2SAT-5 or Max 2SAT-3, and discuss how this has occurred in the past.

2.2.1 Summary of Past Work

One of the earliest known works in this field is Papadimitriou and Yannakakis’ 1991 paper
[1], where they define the L-reduction and demonstrate many problems that are L-reducible
from Max SAT.3 As part of these results, they showed Max 3SAT to be APX-complete,
as well as Max 3SAT-O(1). They reduce directly from Max 3SAT to Max 3SAT-8, using
expander graphs and a clever argument to weaken the expander graph requirements.4

The proof that Max 2SAT is APX-complete also dates back to [1]. First, they reduce from
Max 3SAT-k to Max-degree-k+1 Independent Set, for any bound k on variable occurrences.
The reduction to Max 2SAT again increases the bound by 1, from Max-degree-k Independent
Set to Max 2SAT-k+1. Though not explicitly stated, combined with their reduction to Max
3SAT-8, these reductions directly show APX-completeness for Max 2SAT-10.

As early as 1994, the textbook Computational Complexity [4], also written by Papadim-
itriou, gave a proof of Max 3SAT-3 APX-completeness in Theorem 13.10. Using the same

3Which we now know to be equivalent to APX-completeness.
4The authors claim that the construction can reduce to Max 3SAT-6, with more care in connecting the

cubic expander graph to the binary trees.
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reduction chain from [1], they explicitly claim Max 2SAT-5 APX-complete as well. The
proof is very dense, but it uses similar expander graph requirement weakening, as well as
defining an amplifier, which corresponds fairly closely to our designated directed expander
graph, defined in Section 2.3.1. The textbook, however, uses non-constructive arguments
to show that amplifiers exist, and relies on external sources to prove that an algorithm to
generate them in log(n) space. As such, the last part of the argument becomes very difficult
to follow.

A 1997 paper by Trevisan [5] was the first we could find to not only claim that Max 2SAT-
3 is APX-hard, but also to reduce from it. As a combination of previous results, the paper
proves this claim almost in passing—the justification is “(apply to Max 2SAT the reduction
from Max 3SAT to Max 3SAT-3 described in [4]).”

In the 1998 paper A Threshold of ln n for Approximating Set Cover [6], Feige shows as
an intermediate result that E3SAT-E5 is gap inapproximable, meaning that (1 − ϵ, 1)-gap
E3SAT-E5 is NP-hard for some ϵ > 0. As we will discuss in Section 2.2.3, this result and
proof can be easily mistaken at a glance to fill in the missing link of Max 3SAT-O(1) to Max
3SAT-5, especially after [7] left it as an exercise to the reader. The key difference is that the
reduction is only a gap reduction, and as we will see, the difference is crucial.

Ausiello’s 1999 textbook, Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties [7] reduces from Max 3SAT to Max 3SAT-3
in three parts: Max 3SAT → Max 3SAT-29 → Max 3SAT-5 → Max 3SAT-3. They present
an L-reduction from Max 3SAT to Max 3SAT-29 using expander graphs, and from Max
3SAT-5 to Max 3SAT-3 via explicit construction; however, the reduction from Max 3SAT-29
to Max 3SAT-5 is left as an exercise. Despite this fact, the textbook is a commonly-cited
resource for the APX-completeness of Max 3SAT-3, including a citation on the Wikipedia
page for the problem [8].

Finally, Berman and Karpinski showed in 1999 that Max E2SAT-E3 is gap inapproximable
[9]. This is the most specific possible class one can hope to prove hardness results for in the
nSAT-k family. However, as well as using a different type of reduction, gap inapproximability
is a weaker result than APX-completeness—although the former also implies that a PTAS
cannot exist, it does not imply the latter. Their approach passes through Max-degree-3 Max
Cut, the inapproximability proof of which also uses techniques similar to expander graphs.

To summarize, although each work has its own merits and most aimed to prove other
results, none of these works have demonstrated a correct, complete, and clear APX-hardness
reduction.

2.2.2 Erroneous Reduction Example

The specific step in the reduction chain that has proved difficult is that of reducing from
Max 2SAT, or Max 2SAT-k with a large constant k, down to Max 2SAT-k with a small
constant, such as 5 or 3. Mistakes in this reduction mostly revolve around proving that
when splitting up a variable into multiple copies, the optimum for any particular instance
can be achieved when each copy takes the same truth value in the resulting graph. If this is
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not the case, then the definition of an L-reduction, or even a PTAS-reduction, may not be
satisfied.

To illustrate this point, we will first present an example of such a reduction, and then
discuss a few examples where it has appeared.

Theorem 2.2.1. For all B > 3, there exists an L-reduction from Max 2SAT-B to Max
2SAT-3.

Proof (erroneous). Given a 2CNF-B formula ϕ, we will first define the corresponding 2CNF-
3 formula ϕ′. Consider a variable x in ϕ which occurs k times. Replace x with k separate
variables {x1, . . . , xk}, and add clauses (¬xi ∨ xi+1) for 1 ≤ i ≤ k (where xk+1 = x1). This
forms a chain of implications, as the clauses are logically equivalent to (xi → xi+1). An
example is illustrated by the diagram in Figure 2.1.

Now, given assignment A to ϕ, and corresponding assignment A′ to ϕ′, let Score2SAT-B(ϕ,A)
and Score2SAT-3(ϕ

′, A′) denote the number of clauses satisfied by A and A′ in their respective
problems. By construction, all xi for a particular variable x take on the same value due to
the cycle of implications in ϕ′. Thus, if ϕ has N clauses, then ϕ′ has N ′ ≤ 3N clauses,5 and

Score2SAT-3(ϕ
′, A′) = Score2SAT-B(ϕ,A) +N ′ −N.

The error in this proof has already been made, so we can now show the L-reduction
properties. OPT for a 2SAT instance, or any CNF formula, is always at least 1/2 the
number of clauses, as each clause is either satisfied by the all-True or all-False input.6 Thus,

OPT2SAT-3(ϕ
′) = OPT2SAT-B(ϕ) +N ′ −N

≤ OPT2SAT-B(ϕ) + 2N

≤ 5 · OPT2SAT-B(ϕ)

= O(OPT2SAT-B(ϕ)),

and for a pair of assignments A,A′,

OPT2SAT-B(ϕ)− Score2SAT-B(ϕ,A)

= (OPT2SAT-3(ϕ
′)−N ′ +N)− (Score2SAT-3(ϕ

′, A′)−N ′ +N)

= O(OPT2SAT-3(ϕ
′)− Score2SAT-3(ϕ

′, A′)),

showing both necessary big O relations.

Unfortunately, this is not a valid L-reduction, because we need to account for many
possible assignments A′ corresponding to the same A, and provide a well-defined function

5Each clause in ϕ accounting for itself, and one link in the variable cycle for each of its (up to 2) variables.
6If given an EnSAT instance, where each clause has exactly n distinct variables, then we can use an

expected value argument. Each clause is only unsatisfied 1/2n of the time, so the average assignment
satisfies 1− (1/2n) of the clauses, and OPT must be at least that much.
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clause legend

Figure 2.1. Illustration of an erroneous reduction from 2SAT-O(1) to 2SAT-3. Bottom
left: clause legend for this figure and future figures in this chapter. A one-variable clause is
denoted with a segment connecting only to that variable. Gray arrows represent clauses
logically equivalent to an implication (x → y). Top: the original variable x on the left has
been replaced with many copies xi on the right, each appearing in one of the clauses that x
was a part of. These copies xi are connected in a cycle of implications. Bottom right: if we
assign all xi’s on the top row true and all xi’s on the bottom row false, we can satisfy all
but one clause in the cycle. However, if we must pick a truth value to use for all xi, up to 5
clauses may be unsatisfied.
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for this correspondence. The simplest such function might be: given an assignment A′ to ϕ′,
we construct A by taking a majority vote of the truth values of xi’s, breaking ties arbitrarily.

If alternate values for A′ perform worse than the “canonical” one we assumed in the
erroneous proof, then there is no harm done to the proof—OPT will not change, and the
error OPT2SAT-3(ϕ

′) − Score2SAT-3(ϕ
′, A′) can only be greater than that for the “canonical”

A′.
However, we will demonstrate that this is not the case for using the majority function

to map assignments A′ back to A—an optimal solution to ϕ′ will be mapped to a non-
optimal solution to ϕ. We will show this by concrete example with the majority function to
demonstrate the concept, and it should be clear that any other choice of function A′ 7→ A is
also susceptible to the same issue.

Our counterexample ϕ uses 4 variables, x1, x2, x3, x4, and 16 clauses:7

• (xi) and (¬xi), for each i ∈ {1, 2, 3, 4},

• 3 copies each of (¬x1 ∨ ¬x3) and (¬x2 ∨ ¬x4)

• 1 copy of (x1 ∨ x2) and (x3 ∨ x4).

An optimal solution to the 2SAT-6 instance ϕ would be to have x1 and x3 be true, and x2

and x4 false, or vice versa. This satisfies all but 4 clauses, which is optimal because one
clause per variable must go unsatisfied, by construction.

One way to transform this instance into a 2SAT-3 instance ϕ′, via the erroneous reduction,
is shown in Figure 2.2. The resulting ϕ′ has 40 clauses, and one can show using the implication
cycles that OPT must be at most 36—there must still be at least one unsatisfied clause
corresponding to each variable.

One such optimal solution is shown in Figure 2.3, along with how this solution is mapped
back onto ϕ via the majority function. The resulting assignment is the all-False assignment,
which is not an optimal solution to ϕ. Both (x1 ∨ x2) and (x3 ∨ x4) are also left unsatisfied,
bringing the total to 6 unsatisfied clauses.

This violates the requirement for an L-reduction, as due to the right hand side being O(0),

OPT2SAT-B(ϕ)− Score2SAT-B(ϕ,A) ̸∈ O(OPT2SAT-3(ϕ
′)− Score2SAT-3(ϕ

′, A′)).

This in fact fails the PTAS-reduction condition as well, as the assignment A′ is exactly
optimal, so falls within a (1 + δ)-approximation to OPT2SAT-3(ϕ

′) for any δ > 0, while the
resulting A is only an (12/10)-approximation to OPT2SAT-B(ϕ).

Thus, the reduction does not fulfill the role of showing APX-completeness for Max 2SAT-k
for small values of k.

7Credit to Zi Song Yeoh for discovery of the original version of this counterexample, reproduced here with
only minor changes.
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2SAT-6

2SAT-3

Figure 2.2. A 2SAT-6 instance, and one possible way to transform it into a 2SAT-3
instance. Clauses are drawn as denoted in the clause legend in Figure 2.1. Each cluster of 6
variables in the 2SAT-3 instance is connected with an implication cycle, and corresponds
with one xi in the 2SAT-6 instance.

   

   

   

   

2SAT-6

2SAT-3

Figure 2.3. A solution to the reduced 2SAT-3 instance which violates the L-reduction
condition, and the corresponding 2SAT-6 instance using the majority function. Broken
clauses are denoted with X’s. Although this is an optimal solution to the 2SAT-3 instance,
every implication cycle is broken. The majority of variables in each cycle are False, which
results in a suboptimal solution when mapped back to the 2SAT-6 instance.
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2.2.3 Confusion and Omissions

After its publication, the majority of citations for APX-completeness of Max 2SAT-3 and
Max 3SAT-3 appeared to shift towards Ausiello’s 1999 textbook [7]. Although the textbook
is a good aid in understanding most of the reduction chain, the fact that it doesn’t present the
entire proof leaves a hole for those aiming to fully understand the results. Some papers cited
Berman and Karpinski [9] as well for its numerical bounds on gap approximation hardness,
but inadvertently labeled it APX-hardness, adding to the confusion.8

Feige’s gap inapproximability result for E3SAT-E5 [6] is shown fairly early in the results,
in Proposition 2.1.2. Although this result does not imply that the problem is APX-hard, as
we will see, the setup and reduction are very similar to an APX-hardness argument.

The proof of this result is only sketched, and proof that the construction works is left to
the reader. The given construction turns out to be very similar to the erroneous L-reduction
presented in Section Section 2.2.2, the only difference being that each link in the cycle of
xi’s has a two-way implication, so that each is part of 5 clauses.

Though not explicitly stated, we can assume from context that this is a gap-preserving
reduction. This reduction only differs from an L-reduction in one way: when transforming
an assignment to the reduced 3SAT-5 instance back to the original 3SAT-k instance, the
proof is concerned with ensuring the number of unsatisfied clauses stays within a constant
factor, rather than ensuring the difference from the optimal solution stays within a constant
factor.

In this case, the construction correctly works as a gap-preserving reduction. Although
an optimal solution to the reduced CNF formula may become suboptimal when mapped to
the original problem, the number of unsatisfied clauses cannot grow by more than a factor
of k/2, since each variable cycle of xi’s broken in the reduced instance adds 2 unsatisfied
clauses, and can only help satisfy the up to k clauses that x was a member in.9

The fact that this central idea is left as an exercise to the reader, combined with the
gap reduction’s similarity to an L-reduction, and the fact that the sketched reduction takes
the APX-hardness of 3SAT-k as a starting point, all adds to confusion when attempting to
understand the Max 2SAT-3 reduction chain.

2.3 Max 2SAT-3 APX-completeness

To start, for any n, k, Max nSAT-k is in APX via a simple 2-approximation—as previously
mentioned, every clause is satisfied by either the all-True or all-False input, so one of these
inputs must satisfy at least half the clauses.10

As such, this section will focus on the APX-hardness proof, in particular on the difficult
8As far as we could find, [9] does not attempt to prove APX-hardness of these problems.
9Note that this gap reduction would work just as well with a single directed cycle, which would show gap

hardness for 3SAT-3.
10For Max 3SAT, Karloff-Zwick is another polynomial-time algorithm which provides a 7/8-approximation

if the formula is satisfiable.
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step of reducing from 2SAT-O(1) to 2SAT-3. We will first cover some techniques intro-
duced by earlier papers in Section 2.3.1, then using the core design motivation behind these
techniques, present a new L-reduction from 2SAT-O(1) to 2SAT-3.

2.3.1 Previously Used Techniques

The techniques we encountered for reducing the number of variable occurrences mainly
revolve around the theory of expander graphs. We will begin by discussing the framework
of these reductions and the desired properties of a construction. We will then show how
expander graphs have these desired properties, and explicitly define a variant of expander
graphs which embody these properties more directly.

There are two main applications for these reductions: ones that start from Max 2SAT-
O(1), and ones that start from Max 2SAT with unbounded variable occurrences.11

In either case, the central idea is to split up a variable x into many copies, to spread out
the clauses containing x among them. However, as discussed in Section 2.2.2, we must ensure
that it is optimal to assign all copies of x the same truth value—that is, that “cheating” by
assigning some copies of x true and others false cannot increase the total number of satisfied
clauses. Thus, we want some way of connecting copies of x with clauses such that when
the assignment to copies of x is split, enough of these clauses are violated to guarantee this
property.

Now, we can define an expander graph, and show how it can be used in such a construction.

Definition 2.3.1. An expander graph is a graph G = (V,E) so that any partition V = V1⊔V2

has at least min(|V1|, |V2|) edges between vertices in V1 and V2.

Suppose we have a 2CNF variable x with k occurrences, and suppose an expander graph
G = (V,E) on k nodes has max degree k′. Then, replace x with k copies x1, . . . , xk, cor-
responding to vertices in V . For each original clause containing x, arbitrarily replace the
occurrence of x with a distinct member xi ∈ V . Then, for each edge xixj in E, add the
clauses xi ∨ ¬xj and xj ∨ ¬xi, which enforce equality.

We can prove that it’s always optimal to set all xi equal and satisfy all edge conditions.
Otherwise, the definition ensures that compared to such a state where all xi are equal,
changing the value of c different xi will satisfy up to c additional clauses, but invalidate at
least c clauses within G.

This argument allows us to reduce from Max 2SAT-k to Max 2SAT-2k′ +1 given a single
expander graph, or from Max 2SAT if given an infinite family of expander graphs with
bounded max degree.

However, our necessary condition is weaker than just expander graphs, in two ways. First,
expander graphs are undirected, but end up being split into two “directed” clauses. Second,
we can allow |G| to be larger than the number of occurrences of x, so not all nodes must
connect to an outside clause.

11Most historical applications did work with Max 3SAT, but we will continue defaulting to “Max 2SAT”
when a technique is applicable to either one.
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expander graph 

designated directed 

expander graph

Figure 2.4. Left: an example of partitioning an expander graph. Since min(|V1|, |V2|) = 3,
there must be at least three edges between V1 and V2, the positions of which don’t matter.
Right: an example of partitioning a designated directed expander graph. Exterior nodes
are still shown in black, while interior nodes are shown in gray. Edges are now directed and
colored based on direction. Here, min(|V1 ∩ V ′|, |V2 ∩ V ′|) = 1, so there must be at least one
edge pointing from V1 into V2, and from V2 into V1.

With this in mind, we lastly define the variant on expander graphs which is directly
applicable to these reductions. See Figure 2.4 for a comparison between this variant and a
traditional expander graph.

Definition 2.3.2. A designated directed expander graph is a directed graph G = (V,E) with
exterior nodes V ′ ⊆ V , so that any partition V = V1⊔V2 has at least min(|V1∩V ′|, |V2∩V ′|)
edges pointing from V1 into V2, and at least min(|V1 ∩ V ′|, |V2 ∩ V ′|) edges pointing from V2

into V1.

Then, we can make the following reduction using a similar argument as before.

Lemma 2.3.3. Suppose we have a designated directed expander graph on B exterior nodes,
with max degree B′

ext on exterior nodes and overall max degree B′
int. Let B′ = max(B′

ext +
1, B′

int). Then, there is an L-reduction from Max 2SAT-B to Max 2SAT-B′.

Proof. Let G = (V,E) be the designated directed expander graph, and let V ′ ⊆ V be the
set of exterior nodes, where |V ′| = B.

Suppose we are given a 2CNF-B formula ϕ; we will first construct a new 2CNF formula ϕ′.
As before, consider a variable x in ϕ; suppose x appears k times. We first create a copy of G
corresponding to x, denoted Gx, in ϕ′ as follows. First, create a variable in ϕ′ corresponding
to each vertex v ∈ V . Then, for each directed edge (v1, v2) ∈ E, connect the corresponding
variables with the clause (¬v1 ∨ v2), logically equivalent to (v1 → v2). Finally, pick k of the
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exterior nodes {v1, . . . , vk} ⊆ V ′ and add the k original clauses containing x in ϕ, replacing
x with distinct vi.12

In this construction, each variable is used in at most B′ = max(B′
ext + 1, B′

int) clauses in
ϕ′, since only exterior nodes may connect to a single clause outside the graph.

Then, given an assignment A′ of ϕ′, we produce the assignment A of ϕ using the majority
function on only the exterior nodes. We will show that any assignment of ϕ′ can be converted
into one with at least as many satisfied clauses, such that for each variable x, its exterior
nodes have the same value. Consider an assignment A′ of ϕ′, and fix a variable x occurring
k times in ϕ; we will focus on clauses involving Gx.

There are k exterior nodes ∈ V ′
x connected to external clauses. Suppose i of them are

assigned True, and k− i are assigned False. Then, let VT , VF be a partition of Gx on whether
each node was assigned True or False, respectively. By the designated directed expander
graph condition, at least min(|VT ∩ V ′

x|, |VF ∩ V ′
x|) = min(i, k − i) clauses are implications

pointing from VT to VF . Thus, there are at least min(i, k − i) unsatisfied clauses internal to
Gx.

This safely defends against the issues raised in Section 2.2.2, since any assignment A′

that doesn’t have consensus across Gx is locally inferior to one that does: by changing all
nodes in Gx to the majority vote, the number of satisfied interior edges increases by at least
min(i, k− i), while the number of satisfied exterior edges decreases by at most min(i, k− i).
The resulting assignment still maps to the same A, as well.

We can now formally demonstrate that this is an L-reduction. If ϕ has M variables and
N clauses, where M ≤ 2N due to ϕ being a 2SAT instance, then ϕ′ has N ′ = |V |M +N ≤
(2|V |+ 1)N clauses, and

Score2SAT-B′(ϕ′, A′) ≤ Score2SAT-B(ϕ,A) +N ′ −N. (∗)

Note that this inequality is proved as a result of the above argument.
Now,

OPT2SAT-B′(ϕ′) ≤ OPT2SAT-B(ϕ) +N ′ −N

≤ OPT2SAT-B(ϕ) + 2|V |N
≤ (4|V |+ 1) · OPT2SAT-B(ϕ)

= O(OPT2SAT-B(ϕ)),

and for an assignment A′ of ϕ′ which maps to an assignment A of ϕ,

OPT2SAT-B(ϕ)− Score2SAT-B(ϕ,A)

≤ (OPT2SAT-B′(ϕ′)−N ′ +N)− (Score2SAT-3B′(ϕ′, A′)−N ′ +N)

= O(OPT2SAT-B′(ϕ′)− Score2SAT-B′(ϕ′, A′)),

noting that the inequality (∗) for Score is actually tight for OPT, via the canonical A′ where
12All clauses of ϕ will appear exactly once in ϕ′, with each variable x of the clause replaced by some

exterior node in Gx.
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Figure 2.5. Redrawing of the graph depicted by Figure 8.7 in [7].a This gadget is an
instance of a designated directed expander graph (proof left to the reader), and was used
for the Max 3SAT-5 to Max 3SAT-3 reduction. Blue segments represent connections of this
gadget to other clauses, via the external nodes.
a The graph was edited to fix a presumed drawing mistake.

all nodes in Gx take on the truth value of x in A. This shows both necessary big O relations,
so we have given a valid L-reduction.

Note that the explicit graph used for the Max 3SAT-5 → Max 3SAT-3 reduction in [7],
shown in Figure 2.5 is an example of such a designated directed expander graph, using 15
total nodes to achieve such a graph with k = 5, k′

1 = 2, k′
2 = 3.

2.3.2 Simple L-Reduction from Max 2SAT-O(1) to Max 2SAT-3

In this section, we provide a simple L-reduction from Max 2SAT-O(1) to Max 2SAT-3.
As mentioned in Section 2.2.1, the reductions used in [1] are enough to show APX-hardness

of Max 2SAT-10. Thus, when combined with this foundational work, this reduction will
complete a full proof that Max 2SAT-3 is APX-hard.

The central idea of the following reduction is to define a designated directed expander
graph on k exterior nodes x1, . . . , xk by instantiating a large directed cycle for each xi, then
simulating implications of the form xi → xj by connecting a node in xi’s cycle to one in xj’s
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cycle.13

Theorem 2.3.4 (Restatement of Theorem 2.2.1). For all B > 3, there exists an L-reduction
from Max 2SAT-B to Max 2SAT-3.

Proof. Using Lemma 2.3.3, it suffices to provide a designated directed expander graph on
B exterior nodes, satisfying B′

ext = 2 and B′
int = 3. Figure 2.6 provides an example of this

graph for the B = 4 case.

  

    

        

        

             

Figure 2.6. A designated directed expander graph for some variable x occurring 4 times
in the Max 2SAT-O(1) instance. The purple nodes on the left are the exterior nodes, are
connected to one original clause each.

Define the graph G = (V,E) containing the following:

• B exterior nodes, V ′ = {x1, . . . , xB}.

• For each exterior node xi, B(B − 1) interior nodes vi1, . . . , vi,B(B−1).

• For each exterior node xi, a directed cycle connecting it with all its interior nodes:
xi → vi1 → vi2 → · · · → vi,B(B−1) → xi.

• Enumerate all ordered pairs of exterior nodes. For each pair xi, xj which is nth in the
enumeration, add the edge vin → vjn.

This graph has B directed cycles of B(B − 1) + 1 nodes each;14 however, the size of this
graph is irrelevant to showing the L-reduction, as B is a constant.

13Credit to Lily Chung and Zi Song Yeoh for the discovery and initial writeup of this reduction.
14Interior nodes per exterior node can be reduced from B(B−1) to B(B−1)/⌊B/2⌋ ≈ 2B, by partitioning

KB into perfect or maximal matchings to make more efficient use of space. The size can be reduced even
further by using expander graph techniques to reduce the interconnection between cycles. However, this
demonstrates that our technique can turn even a complete graph into a cubic designated directed expander
graph.
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Each external node xi is only connected to vi1 and vi,B(B−1), and has degree 2. Each
internal node vin is connected to some vjn, as well as two adjacent nodes in the cycle, so has
degree 3. Thus, the degrees satisfy B′

ext = 2 and B′
int = 3.

Now, we will show that G satisfies the designated directed expander graph property.
Given an arbitrary partition V = V1 ⊔ V2, call an index i consistent if {xi, vi1, . . . , vi,B(B−1)}
is a subset of either V1 or V2, and inconsistent otherwise. Suppose without loss of generality
that |V1 ∩ V ′| < |V2 ∩ V ′|, that is, fewer xi are in V1 than in V2. We want to show that there
are |V1 ∩ V ′| edges between V1 and V2 in both directions.

Every inconsistent index contributes at least 1 edge in each direction, since the directed
cycle passes through both V1 and V2. Every pair of consistent indices i, j where xi and xj are
in opposite partitions also contributes at least 1 edge in each direction, due to the vin → vjn
and vjn → vin edges.

Suppose there is some consistent j such that xj ∈ V2. Then, all indices i in |V1 ∩ V ′| are
either inconsistent and contribute 1 directly, or are consistent and the pair i, j contributes
1. If there is no such j, then |V2 ∩V ′| > |V1 ∩V ′| indices are inconsistent. In either case, the
designated directed expander graph property has been shown.
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Chapter 3

The Net Tile Rotation Puzzle Family

Net is one of the puzzles in Simon Tatham’s Portable Puzzle Collection, dating back to
2004 [1]. In Net, you are given a grid of rotatable tiles, each with a section of pipe that
has 1, 2, 3, or 4 loose ends connecting to some adjacent tiles. An example grid is shown
in Figure 3.1. When two adjacent tiles have loose ends that match up, the two loose ends
become a connection between the tiles, instead. The goal of the game is to connect all the
tiles, with no loose ends remaining.

This basic puzzle format dates back to even before Net, and variants of this concept
have since become ubiquitous as puzzle minigames and standalone games. Versions of this
game have gone by many names, including FreeNet, Pipes, KPlumber, Infinity Loop, and the
Patching minigame from Puzzle Pirates, to name a few examples.

In this chapter, we will mainly consider Net as it appears in Simon Tatham’s Portable
Puzzle Collection, as well as KPlumber and the Puzzle Pirates variant. We first summarize
our results in Section 3.1, then introduce these main variants in Section 3.2. Then, in
Section 3.3, we’ll give an alternate proof of a known result, that Net is NP-complete. Finally,
in Section 3.4, we’ll show that Puzzle Pirates ’ Patching minigame is itself NP-complete as
a decision problem, and a closely-inspired optimization variant of Net is Θ(n)-gap NP-hard
as well, meaning it has no constant-factor approximation algorithm if P ̸= NP.

This chapter represents joint work with Andy Tockman, Della Hendrickson, Erik Demaine,
and others in the MIT class Algorithmic Lower Bounds: Fun with Hardness Proofs (6.5440),
taught by Erik Demaine in Fall 2023.

3.1 Results Summary

In this section, we summarize existing a new results in complexity of Net variants, prove
a minor result from the table, and discuss an open problem of note.

Section 3.1 shows current progress on characterizing the complexity of Net variants with
limited piece types. The table covers Net (as “connected tree”), KPlumber (with neither
modifier), and a third variant (“connected”) which to our knowledge has not been studied
before. For this section, we will refer to the “connected” variant as Cycle-Net. The table
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Figure 3.1. An example game of Net, from Simon Tatham’s Portable Puzzle Collection.
The source piece is marked with a black square, and the network is highlighted in blue.

does not cover the optimization variant introduced in Section 3.4, as the format would be
too different.1

The KPlumber results in the table are from [2]. The polynomial-time algorithms given in
Theorems 3 and 4 of [2] are applicable to Cycle-Net as well, because these KPlumber cases
have a single valid solution, if any.

NP-completeness of Net with or without blanks and Q pieces will be discussed in Sec-
tion 3.3. Since “tree” is an input restriction, NP-completeness results carry over from Net
to Cycle-Net. Polynomial-time algorithms carry over from Cycle-Net to Net. In addition,
there are no instances of Net when Q pieces are disallowed. This is because the condition
requires that the average degree of pieces be strictly less than 2.

Now, we include here a brief result:

Theorem 3.1.1. Cycle-Net is solvable in polynomial time with O, Q, I, X pieces.

Proof. Note that if a Q, I, or X piece is known to have a neighbor with a half-edge pointing
into it, then its orientation is determined. Thus, we can solve a Net instance via breadth-first
search of all the pieces, starting at an X piece, if there is one. For each new piece adjacent
to the existing network, we determine its orientation, so the problem will be solved when
the traversal finishes, or the algorithm fails due to forcing a loose end.

In the case where there is no X piece, then the instance is only solvable if it consists of
consecutive I pieces on a single row or column, bookended by two Q pieces.

Finally, we would like to remark on the last remaining KPlumber case, that of KPlumber
with only Q and I pieces.2 The authors of [2] found this case especially pernicious, as

1We considered making “connected” a trichotomy: All tiles must be connected, tiles may be disconnected,
or maximize the connected component of tiles. This trichotomy would seem to imply that the optimization
variant also requires no loose ends anywhere, however.

2All other pieces besides L are optional, as [2] showed that all remaining cases are equivalent.
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Figure 3.2. Table showing progress on characterizing Net variants with limited piece
types.a Piece type headers (shown in purple) specify whether the piece type is allowed;
“connected” indicates that solutions must form a single connected network, and “tree”
indicates that additionally, the input is constrained to inputs that satisfy the tree
constraint defined in Section 3.2.2. The “connected tree” variant is equivalent to Net, and
without either modifier is equivalent to KPlumber.
a Credit to Della Hendrickson for the design, as well as generating the LaTeX source for this table.

did we. Although we will not include our findings on this problem, we recommend it as a
simply-stated but tough problem to work on.

3.2 Rules, Variants, and Prior Work

In this section, we will first introduce the terminology we will be using throughout the
chapter. Then, we’ll introduce the rules for Net and notable variant rulesets, and survey
prior work relating to each of them.

3.2.1 Terminology and Piece Types

Most Net variants use their own terminology, based on the theming of the game. For
instance, the goal of Net is to connect tiles into a network, the goal of Patching is to connect
tears in a sail to patch them, and many variants revolve around connecting pipes to a water
source, to fill them all with water. Thus, we will introduce here some common terminology
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Figure 3.3. Net piece types, as displayed in Simon Tatham’s Portable Puzzle Collection.
Styling may vary between implementations of the game, but Q pieces are often marked
with a symbol in the center, to distinguish them from loose ends that must be connected.

we will use to describe the pieces and rules for all variants.

• The tiles, or pieces are the individual squares of the grid, which may be rotated. A tile
may have up to four half-edges or segments, represented by line segments emanating
from the center towards a side of the square. The number of segments a tile or piece has
is its degree. Two adjacent tiles are connected if each has a segment pointing towards
the other. Segments which are not part of connections are called loose ends.

• A piece type describes the shape of a single tile, up to rotation. There are six different
piece types, which we will refer to by letters, which serve as a visual aid mimicking the
shape that a tile’s segments form. There is only one piece type with each of degrees
0, 1, 3, and 4; these are called O pieces (or blanks), Q pieces, T pieces, and X pieces,
respectively. The two piece types with degree 2 are the I pieces, with two segments
opposite each other, and L pieces, with segments at a right angle. The six distinct
piece types and corresponding letters are shown in Figure 3.3.

• In some variants, the source is just a special non-blank piece, and the network is the
connected component of the source, that is, all tiles with a path of connections to the
source. The source and network in Net can be seen in Figure 3.1. Pieces that must be
connected to the source, usually Q pieces, are called required sinks.

3.2.2 Net

In Net, the player starts with a grid of tiles, none of which are blank. There is a source
tile, and the goal is to rotate each tile until all tiles are part of the network. In this variant,
the input must satisfy that

(total # of half-edges on the board) = 2(# of tiles on the board − 1),

which guarantees that the resulting network forms a tree, and will not have any loose ends
or cycles.3

3This directly follows from the fact that in a connected graph G = (V,E), |E| = |V | − 1 is equivalent to
G being a tree.
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There is also an option to enable toroidal wrapping on the grid, meaning that a tile on the
bottom row of the grid is adjacent to the corresponding tile on the top row, and similarly
for columns.

With these rules, Net was shown to be NP-complete by Marzio De Biasi in 2012 [3].4 In
Section 3.3, we will describe this proof in more detail, as well as present an alternate proof
of this result.

3.2.3 Puzzle Pirates

Puzzle Pirates [4] is an MMO, or massively multiplayer online game, released in 2003.
The game revolves around life as a pirate aboard a pirate ship, which can enter combat with
other pirate ships. As the name suggests, much of the gameplay is based on puzzles, which
are generally simple but may involve time pressure and teamwork to complete.

Puzzle Pirates is one of many games to feature Net-like gameplay as a minigame. It
features the Patching [5] puzzle, in which players attempt to patch a torn sail by rotating
squares of cloth so that the tears line up; otherwise risking tearing the entire sail.5

The Patching variant features a source, represented by a spool of thread, and arbitrarily
many required sinks, called tie-offs. The goal is to make the source’s network as large as
possible, under the conditions that required sinks must be included, and the network must
have no loose ends. Pieces outside the network, however, are allowed to have loose ends.

The variant also features blockers, which cannot be moved and don’t connect to anything,
essentially rendering it an immobile blank.

The final rule unique to this variant is that pieces can be dragged around and swapped
with each other. We will analyze the variant both with and without this rule in Section 3.4,
so the existence of immobile blockers will be useful for the version allowing pieces to move.

3.3 Net is NP-Complete: Another Proof

The proof that Net is NP-Complete in [3] is based on a reduction from Hamiltonian cycle
on grid graphs of max degree 3. In Section 3.3.1, we will first give a brief overview of the
reduction that De Biasi used. Then, in Section 3.3.2, we will present an alternate proof of the
same result, using a reduction from the Tree-Residue Vertex-Breaking problem, or TRVB.

3.3.1 Existing Reduction from Grid Graph Hamiltonicity

Hamiltonian cycle is one of Karp’s 21 NP-complete problems, as one of the foundational
NP-completeness results. Many puzzles are shown to be NP-hard by reduction from Hamilto-
nian cycle; however, for many puzzles, it is difficult to construct representations of arbitrary

4Both with and without toroidal wrapping; however, the wrapping is not very significant in the context
of this chapter.

5We recognize that being able to freely rotate squares to line up tears would not be possible in reality.
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graphs. As such, researchers have proved Hamiltonian cycle NP-hard on many restrictions
of graphs, including the set of grid graphs with max degree 3.

Grid graphs can be formulated as follows: pick a set of vertices (x, y) on the coordinate
grid, and connect two vertices if and only if they are adjacent—that is, if they are distance
1 apart. Thus, the result on Hamiltonian cycle on max degree 3 grid graphs states that even
when restricted to these grid graphs which have no degree-4 vertices, it is still NP-hard to
determine whether such a graph contains a Hamiltonian cycle. We will use the problem of
Hamiltonian cycle on grid graphs again in Section 3.4.2.

The application of this problem to Net relies on the fact that Net requires its solution to
be connected into a single network, and it’s not enough for just all loose ends to be filled.
Thus, [3] designs gadgets to simulate vertices of such a grid graph, such that all the pieces
are connected if and only if the grid graph has a Hamiltonian cycle.6 Consult [3] for full
details of the reduction.

3.3.2 Reduction from Tree-Residue Vertex-Breaking

Tree-Residue Vertex-Breaking [6], or TRVB, is a problem intended for use in NP-hardness
reductions, introduced by Erik Demaine and Mikhail Rudoy in 2018. The problem takes as
input an arbitrary multigraph G, with each node labeled either breakable or unbreakable. To
break a breakable node v with degree d, replace v with new degree-1 vertices v1, . . . , vd, each
connected to one of v’s old neighbors.

The authors study constraints on the input multigraph, specifically restrictions to planar
graphs, and restrictions on the possible degrees of breakable and unbreakable vertices. Thus,
for B,U ⊆ N, the (B,U)-TRVB problem restricts breakable vertices to have degrees in B,
and unbreakable vertices to have degrees in U . The Planar Graph (B,U)-TRVB problem
additionally restricts the multigraph to be simple and planar.

A template for a gadget using Planar Graph ({4}, {})-TRVB is shown in Figure 3.4. When
extended to an entire graph G, if gadgets of this form are connected together by wires, the
thick black lines will end up forming a single cycle if and only if the shaded interior forms a
tree.7

This construction forms the central idea behind our reduction, which we now present.

Theorem 3.3.1. Net, as defined in Section 3.2.2, is NP-hard.

Proof. We reduce from Planar Graph ({4}, {})-TRVB. Given a 4-regular planar graph G,
we first find a planar embedding of G satisfying the following:

• All vertices lie on lattice points, with its four edges pointing in the four cardinal
directions, and

• All edges are drawn with a combination of axis-aligned segments.
6The input constraint then guarantees that there are no cycles or loose ends, but this is also true by

direct construction.
7This fact is proven in Section 1 of [6], and some details are described in the proof of Theorem 3.3.1.

34



Figure 3.4. Figure 3 from [6]. This diagram illustrates how the authors intended a
possible vertex-breaking gadget to work. On the left is the skeleton of the gadget, which
can be filled to represent an unbroken or broken vertex, shown respectively in the center
and on the right. The shaded regions represent the interior of the gadget.

In Net terminology, this is equivalent to topologically constructing G with only X, I, L, and
O tiles.8

Now, we take each tile of this construction, and replace it with a corresponding 14 × 14
metacell, of those shown in Figure 3.5. For X tiles, default arbitrarily to the unbroken vertex
gadget metacell.

The vertex gadget functions exactly as the theoretical vertex gadget posed by [6]. In the
gadget tile itself, each solution has four connected components, corresponding to the thick
black lines in Figure 3.4.9 The edge gadgets have two connected components representing
the boundaries of the edge, to connect the interior of the tree. Each metacell can be proved
to only have the solutions shown, by starting from the outside and working in. A formal
proof of this is omitted, but the vertex gadget case will be discussed in Section 3.3.3.

Suppose the TRVB instance G = (V,E) has the solution of breaking vertices V ′ ⊆ V ,
producing a tree G′. Then, for each vertex gadget in the reduced Net instance, rotate tiles to
either the unbroken or broken position, corresponding to the vertex’s membership in V ′. The
metacells used to construct G will now be connected in a single cycle, from the connected
component analysis above. As described in Section 1 of [6], this is because the shaded interior
of the gadgets is topologically equivalent to the tree G′, so is simply connected.

It is also important to note that if the vertex gadgets are arranged in a way that doesn’t
correspond to a valid TRVB solution, then the shaded interior will not be simply connected.
If G′ has a cycle, then the cycle corresponds to a hole in the shaded interior, the inside
loop of which is disconnected from the rest of the boundary. If G′ is disconnected, then the
shaded interior and its boundary are also disconnected.

At this point, one might notice two remaining issues, the remedies to which are shown
in Figure 3.6. First, only the metacells used in the construction of G are considered in the

8One can also imagine this as a Microsoft PowerPoint diagram with rectilinear arrows.
9In square dancing terms, an unbroken vertex connects each dancer with their corner, and a broken vertex

connects each dancer with their partner.
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above analysis, and O tile metacells are ignored. This can be fixed simply using a scheme for
connecting a blank metacell with an adjacent metacell—their border is composed mostly of
Q pieces, so select one pair of adjacent Q pieces in the middle, and replace them with I pieces.
One can check that this does not interfere with the metacells’ ability to solve uniquely. Then,
after placing the metacells for G, we can fill space by placing blank metacells one by one,
connecting them with an adjacent existing metacell.

The second issue is that as mentioned above, the tiles are connected in a single cycle,
which violates the tree input constraint described in Section 3.2.2. This can also be fixed
simply—since we are only over by one edge, we define a modified I tile metacell to include
the source tile, and break the cycle in one location.

3.3.3 Reduction Design Discussion

Now, we present the design motivation behind the vertex gadget, which also serves as a
brief intuition behind why this gadget has only two solutions.

One early attempt at such a vertex gadget is shown in Figure 3.7. This gadget had an issue
where besides the two solutions corresponding to the unbroken and broken TRVB vertex,
there was a third solution that connected the entire gadget into one connected component.
This is fatal to the construction, since the reduction relied on the fact that lack of a TRVB
solution implies that the network must be disconnected, and the gadget’s solutions’ careful
partitions into four connected components is what helps achieve this.

Rather than just accepting this and trying to construct something different, though, we
analyzed why this solution failed, which proved to be very insightful. Restricting to the tiles
of the gadget which are not fixed (colored in Figure 3.7), and even further to just the specific
segments of tiles which were not fixed, we saw that the two solutions actually differed in a
very predictable way—where one had an edge the other would not, and they would swap in
an alternating fashion. This makes sense when considering that most tiles had only one free
segment, or half-edge, and these half-edges needed to be paired together to form edges.

Taking the union of these conditionally-existing edges led to two rectangular loops (shown
in pink in Figure 3.7, with colored dots indicating membership to solutions). Tiles with
one free segment form the majority of the loops, and simply enforce that in any possible
solution, exactly one neighboring edge is active. L tiles with both free segments form the
loop crossings. These tiles are entirely free to move, but can be thought of as two separate
conditions—if you take an X tile and remove one of each pair of opposite segments, you will
always be left with an L tile in some orientation. Thus, the same logical conditions that
force alternating carry through crossings, traveling straight through.

Now, the problem with our gadget attempt is clear—we were able to construct a mixed
solution because there were two loops, meaning four solutions in total.

To fix this issue, we set out to design a gadget with just one loop, but still had the TRVB
connectivity properties. We started with a single loop that would travel twice around the
center, and then filled in the rest to ensure that the two possible solutions had the correct
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Figure 3.5. Metacells for the Net NP-hardness reduction from Planar Graph
({4}, {})-TRVB (Tree-Residue Vertex-Breaking) problem.a Top (left-to-right): The
solutions to the X tile metacell (vertex gadget), representing an unbroken and broken
vertex. Bottom (left-to-right): The I, L, and O tile metacells (edge gadgets and space
filling gadget). Metacells are joined together by composing the pink squares together. Tiles
part of the embedding of G which have fixed orientation are shown in black. Tiles unique
to the vertex gadget solution are shown in green or red. Tiles used to fill space are shown
in blue. In all gadgets, the space corresponding to the interior of G is shaded.
a Credit to Andy Tockman for designing these space-filling metacells based on the gadget design
in Figure 3.8.
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Figure 3.6. Modifications necessary to create a valid Net input. Left: Connecting two
adjacent metacells, which is done when necessary to ensure that the grid forms a tree when
connected. Right: Modification of an I tile metacell to include a source tile, boxed in
yellow. This metacell also serves to break the cycle exactly once.

connected components, and were even able to eliminate cycles from the gadget, making it
valid for the Net ruleset.

The designed gadget is shown in Figure 3.8, and is the basis of the reduction presented
in Section 3.3.2.

3.4 Puzzle Pirates Optimization Variant

In this section, we analyze the Puzzle Pirates optimization variant of Net, called Patching,
background for which is discussed in Section 3.2.3. We choose to analyze this variant in
particular because it is a fairly natural extension of Net to a non-trivial optimization problem,
particularly the version without tile movement.

The variant’s pieces are described on the Puzzle Pirates wiki, YPPedia [5], however, there
is no full rules explanation. Here, we briefly explain the rules, to the extent necessary to
analyze the complexity. The following must hold for the variant without tile movement:

• As in Net, there is a single source (termed the “spool” in this variant) which is a Q
piece.

• The tree input restriction does not apply, and cycles are allowed.

• The player is not required to connect all the pieces, but the goal is to maximize the
size of the source’s connected component, or the network.

• A tile is not allowed to have loose ends if it is part of the network; however, other tiles
may have loose ends.

For the variant with tile movement, we require the following to hold in addition:
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Figure 3.7. Example of a previous attempt at a TRVB vertex gadget (allowing cycles),
along with a mixed solution which combines the unbroken and broken solutions into a new
solution with only one connected component. At locations where one solution has an edge
where the other does not, large pink dots are placed on the midpoint of the edge, or
corresponding location. The top diagram shows the two logical implication loops (where
loops must go straight at crossings) formed by taking the union of these edges. Colored
dots on the top diagram indicate which solution an edge belongs to (where edges begin and
end at centers of tiles); a valid solution must have an edge at every other point in the loop.
The mixed solution picks the left (green) solution for the wide loop, and the right (orange)
solution for the tall loop. Tiles corresponding to loop crossings are highlighted in the
mixed solution; the orientations of these tiles are not present in the original solutions, but
solution mixing nevertheless causes these to be valid L tiles.
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Figure 3.8. The TRVB vertex gadget that our solution is based on. The top diagram is
shown in the same format as Figure 3.7, but modified to only have one implication loop
(where loops must go straight at crossings). The gadget was designed from this diagram,
and its two solutions are shown below. Locations where one solution has an edge where the
other does not are omitted on the solutions for clarity; however, these locations correspond
in position to what is shown in the top diagram.
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• There may be any number of required sinks (termed “tie-offs”) which are Q pieces.

• There may be any number of blockers, which are special blanks which cannot be moved
by the following rule.

• The player may rearrange the positions of any tiles besides the source, required sinks,
and blockers, within the bounds of the grid.

We will begin in Section 3.4.1 by using a gap-producing reduction to show hardness of
approximation in the case where all tiles are immobile. In Section 3.4.2, we will then show
the weaker result of decision NP-hardness in the case where tiles may be moved by the player.

3.4.1 Θ(n)-gap NP-Hardness Without Tile Movement

In this section, we show that for the Patching variant without tile movement, the gap
problem of distinguishing between OPT = 4 tiles and OPT = Θ(n) tiles is NP-hard. We
will do so via a gap-producing reduction from Planar Monotone Rectilinear 3SAT.

Gap-producing reductions are similar to the gap-preserving reduction, which was discussed
in Chapter 2 as a weaker form of reduction than the L-reduction. The difference is that a
gap-producing reduction starts with any NP-hard problem, not necessarily a gap decision
problem, and produces a gap of b/a by showing that a YES instance to the original problem
leads to an OPT of at least b, while a NO instance leads to an OPT of at most a.

Planar Monotone Rectilinear 3SAT [7] is an input restriction to 3SAT. Rather than the
restrictions on variable occurrences analyzed in Chapter 2, Planar Monotone Rectilinear
3SAT requires the following:

• The graph formed by connecting all variables to clauses they appear in is planar.

• Each clause is either all-positive (xi∨xj ∨xk) or all-negative (¬xi∨¬xj ∨¬xk) (mono-
tone).

• The above graph can be drawn with the following conditions (rectilinear):

– Variable nodes are disjoint vertical segments on the y-axis.

– Clauses are vertical segments off the y-axis, with positive clauses to the right of
the y-axis and negative clauses to the left.10

– Edges, or wires between variables and clauses are horizontal segments connecting
the corresponding vertical segments. No other intersections or overlap between
segments is allowed, besides edge segments meeting their variable segment and
clause segment.

Now, we present the reduction.
10This problem is canonically formulated with variables on the x-axis, positive clauses above, and negative

clauses below; however, we alter the description for clarity to match our gadget diagrams.
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Theorem 3.4.1. The Θ(n)-gap problem for Patching without tile movement is NP-hard.

Proof. We reduce from Planar Monotone Rectilinear 3SAT.11

The central idea of this reduction is to leverage the rule against loose ends specifically
only within the network. We create a situation where the player can either trivially create
a network of size 4, or make the choice to try solving the 3SAT instance.12 If we choose the
latter, then all the wires connected to the network are in danger of creating loose ends, and
the player is forced to choose the least-bad options to manage this.

Our variable gadget is shown in Figure 3.9. Here, the player is logically forced to set
exactly one of xi and ¬xi, where False means in the network, and a True means disconnected
from the network. Although the gadget is depicted as compactly as possible, it is clear that we
can vertically spread out variable initialization and fanouts as much as needed to approximate
the y values of horizontal wires in the Planar Monotone Rectilinear 3SAT instance.

Our clause gadget is shown in Figure 3.10. All the positive clauses will appear to the right
of the variable gadget, and all negative clauses will appear to the left. As with the variable
gadget, the input wires can have vertical spacing adjusted to match the incoming y values of
horizontal wires. The clause is satisfied if there are no loose ends on any tile in the network,
so the game rules require all clauses to be satisfied.

This clause takes inputs xi, xj, xk, and is designed with a key decision tile (an L piece
marked with a red circle in Figure 3.10). Two inputs to the key decision tile are xi and xj

directly. The other two are xk or a safe dead end in some order—there is a separate choice to
allow xk to choose its input, but if xk is in the network, it must connect to the key decision
tile. Many examples of solutions to the clause gadget are shown in the figure, but we can
analyze the cases exhaustively:

• If all of xi, xj, xk are True, the entire gadget is disconnected from the source, so there’s
no risk of loose ends in the network. The clause is trivially satisfied.

• When only xk is True, we simply route xi and xj to each other through the key decision
tile.

• When only xi or only xj is True, we route xk to the key decision tile in the position
that allows it to join with the other of xi or xj.

• When xk and one of xi or xj is True, we route the other into a dead end through the
key decision tile.

• When xi and xj are True, we can route xk into the key decision tile through one of its
positions, then routing a dead end to the other position.

• Finally, when all of xi, xj, xk are 0, the piece circled in red will have 3 half-edges
adjacent to it, each part of the network. However, it cannot handle all of them because
it only has degree 2. Thus, this is the only case where the clause is not satisfiable.

11Or just Planar Monotone 3SAT, with slightly more effort.
12We can even eliminate the choice of creating a small network, which makes the decision problem of

creating any size network NP-hard.
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variable fanout

Figure 3.9. Variable and fanout gadgets for the gap reduction from Planar Monotone
Rectilinear 3SAT, for the Patching puzzle in Puzzle Pirates without tile movement. Fanout
is simple because the reduction is based on connectivity. When faced with the variable
gadget, the player has a choice to either give up (shown left), or try to solve the Planar
Monotone Rectilinear 3SAT instance (shown center). Tiles in the network (corresponding
to False values) are shown in blue, and other tiles (corresponding to True values) are shown
in gray. The source is boxed in yellow, and all Q pieces are marked with a small box as a
visual aid to distinguish them from loose ends, which appear often in this construction.

Now, we analyze how many tiles are part of the network in the case where the 3SAT
instance is solved. Note that for any given instance, we can place clauses arbitrarily far in
the x-direction from variables and each other in the construction. This allows us to analyze
the network size asymptotically as the proportion of literals in the 3CNF formula which
evaluate to False under the assignment. Although False literals are not required to satisfy
the formula, the proportion of False literals is still Θ(1) for Planar Monotone Rectilinear
3SAT instances, under some minor restrictions that do not interfere with NP-hardness.13

13This aligns with intuition that the ratio of False literals clearly does not approach zero for virtually all
useful 3SAT instances. The proof sketch: if we remove all size-1 clauses and any duplicate size-2 clauses,
one can show by induction that (# clauses ≤ 6(# vars − 2)). Then, if we guarantee that each variable has
at least one positive and one negative use by removing dummy variables, we can show that one wire for each
variable must be False, which accounts for asymptotically ≥ 1/18 of wires.
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Figure 3.10. Example solutions to the clause gadget for the gap reduction from Planar
Monotone Rectilinear 3SAT, for the Patching puzzle in Puzzle Pirates without tile
movement. The clause takes as input three wires which are either in the network (False) or
disconnected (True), and can be configured to leave no loose ends iff at least one wire is
True. Tiles are colored as in Figure 3.9. The key decision tile is marked with a red circle.
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3.4.2 Decision NP-Hardness With Tile Movement

In this section, we show that for the Patching variant with tile movement, blockers, and
required sinks,14 the decision problem of distinguishing between OPT < k tiles and OPT
≥ k tiles is NP-hard, where k is taken as input.

An immediate fact of note for this problem is that the amount of information encoded in
the movable Net pieces themselves is very low. If the player can rearrange tiles arbitrarily,
then all that matters is how many of each piece type there are, so the amount of informa-
tion encoded becomes logarithmic in the board size. Thus, to get NP-hardness, we must
essentially encode all information in the immobile pieces.

We choose to reduce from Hamiltonian cycle on grid graphs of max degree 3, a problem
discussed in Section 3.3.1 as it was used by [3] to show NP-hardness of Net.15 This problem
has the advantage that the reduction is very compact.

Theorem 3.4.2. The decision problem for Patching with tile movement is NP-hard.

Proof. We reduce from Hamiltonian cycle on grid graphs.
An example of a reduced instance is shown in Figure 3.11. Given an arbitrary grid graph

G = (V,E), we may embed it as follows:

• First, identify a top-right corner of G, that is, a vertex (x, y) ∈ V such that (x +
1, y), (x, y + 1) ̸∈ V .

• Define a grid large enough to comfortably fit G.

• Place a blank at each vertex coordinate of G.

• Place a blocker at each non-vertex coordinate of G, at least so that G is surrounded
by one layer of blockers.

• At the selected top-right corner (x, y) of G, replace the blank with an X piece.

• Place the source at (x, y+1), and a required sink at (x+1, y), extending the grid and
adding blockers if necessary.

• Add at least |V | − 1 L pieces and |V | − 1 I pieces to the grid, outside of G.

It is clear that if the Hamiltonian cycle problem has a solution, then we can use the L
and I pieces to transcribe the solution onto the grid, achieving a maximum of |V | + 2 tiles
if we are able to do so.

Now, suppose we have a solution producing a network of |V |+ 2 tiles. The X piece must
always be adjacent to the source and required sink, unless they are connected directly with
an L piece, which gives a network of 3 tiles. Then, any tile we place within the bounds of G

14Use of required sinks (tie-offs) is only a convenience for this reduction, but may be useful for future
work.

15Use of max degree 3 is also only a convenience, for ensuring the X piece placement in edge cases.
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Figure 3.11. An example reduced instance for the reduction from Hamiltonian cycle on
grid graphs of max degree 3, for the Patching puzzle in Puzzle Pirates with tile movement.
Blockers are shown as brown boxes with Xs, the source is boxed in yellow, and the required
sink is the small pink square. Other pieces are drawn in blue, with most pieces in a “piece
bank” to the left.

must have degree 2, as the only pieces left are L and I pieces. Since loose ends are disallowed,
we can directly extract a cycle in G starting and ending at the X piece. If the network has
|V |+ 2 tiles, then this cycle must be a Hamiltonian cycle.
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Chapter 4

Euclidea

Euclidea [1] is a popular mobile puzzle game revolving around Euclidean constructions,
constructions of various geometric objects using only an unmarked straightedge and compass.
The game currently features 156 levels, with challenges ranging from finding the midpoint
of a line segment, to finding the regular octagon inscribed in a given square, or constructing
an angle of 3◦.

In this chapter, we analyze the computational complexity of Euclidea. In Section 4.1, we
explain the game mechanics and formally define Euclidea as an optimization problem, with
two natural optimization metrics given by the game design. In Section 4.2, we show that both
of the natural optimization problems are APX-hard, and by extension, the decision versions
of the problems are NP-hard. In Section 4.3, we define solution-checking more rigorously,
and discuss challenges that arise when trying to upper bound the complexity of Euclidea.

This chapter represents primarily individual work, with contributions from Erik Demaine,
Josh Brunner, Lily Chung, and Jenny Diomidova, the instructor and TAs of the MIT class
Algorithmic Lower Bounds: Fun with Hardness Proofs (6.5440), taught by Erik Demaine in
Fall 2023.

4.1 Overview

In each level of Euclidea, the player begins with a base configuration of points, lines,
and circles. The base configuration also permits line segments, but for ease of formalizing
the problem, we will only consider infinite lines. From there, the straightedge tool allows
the player to pick any two points A,B and draw the (infinite) line AB. The compass tool
similarly takes two points A,B, and draws the circle centered at A passing through B. The
goal of Euclidea is to construct one or more target objects, which have some desired geometric
relation to the base configuration; for example, the circumcenter of a given triangle.

Certain constructions, such as perpendicular bisector and angle bisector, are useful enough
that once the player completes the level constructing them, Euclidea provides these con-
structions to the player as tools. These tools are used similarly to the basic straightedge
and compass tools, and function as a shortcut to make constructions simpler and visually
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cleaner. Any construction using these tools is still a straightedge-and-compass construction,
because each application of a tool can be simulated with the steps used to construct the tool.

The computational difficulty of Euclidea lies in finding the shortest solution to a level;
this is presented as a main objective of the game, but is not a requirement to progress. The
notion of a shortest solution is measured by two different metrics. A construction’s length
in L-moves is simply the number of tool applications, where any tool that Euclidea provides
counts as a single move. A construction’s length in E-moves also scores straightedge/compass
moves as 1, but other tools have a cost equal to the number of moves required for that tool’s
construction. In other words, E-moves represent the length if only straightedge/compass
moves were allowed.1

As an example, the orthocenter of a triangle ABC can be constructed by using the per-
pendicular bisector tool twice, once on AB and once on BC. This solution has a length of 2
in L-moves, or 6 in E-moves (denoted “2L 6E”), since one can use three straightedge/compass
moves to construct each perpendicular bisector.

Players can earn up to four “stars” for each level, which represent objectives for the level
and aid in progression. These stars are:

• A completion star for any construction of the target object or objects.

• The E-star for the shortest straightedge-and-compass-only construction (or shortest
construction as measured by E-moves).

• The L-star for a shortest construction using any tools (as measured by L-moves).

• The V-star for constructing all possible target objects—for example, “construct an
equilateral triangle with given edge” has two solutions.

The objectives for the E-star and L-star correspond directly to the player finding the
optimal solution under the respective construction length metrics. In these terms, we show
in this chapter that not only is it NP-hard to achieve an E-star or L-star, it is NP-hard to
even approximate these solutions to better than a constant factor.

4.1.1 Problem Definition

In this section, we first introduce terms that will be used throughout the entire chapter,
building up to the definitions of a construction, configuration, and level. We will then
formally define the Euclidea optimization problem.

Although there are some simplifying assumptions made along the way, the definitions in
this section are written in a very technical manner. The remainder of this chapter is written
to be fairly understandable without the definitions, especially if the reader is familiar with

1Since any construction can be transformed into a pure straightedge-and-compass construction without
changing the E-move value, this means that it’s always optimal to only use the straightedge and compass,
since using tools may cause the player to miss out on useful intersection points.
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Euclidea. As such, we ask that this section be treated as a reference of terms, and as a basis
for formalizing Euclidea.

Throughout the following definitions and the rest of the chapter, there will be many cases
where we define a new point based on existing objects. In this case, we let determined point
denote a new point that is the intersection of two or more existing lines or circles, so that its
position is determined up to a constant number of possible locations. We then distinguish a
generic point on a line/circle from just a generic point, where the former is constrained to lie
on some object but is otherwise free, and the latter is entirely unconstrained in placement.
We will use non-determined point to refer to a point which is either generic or generic on a
line/circle.2

Definition 4.1.1. An elementary move, or E-move, is a single use of the straightedge or
compass, where inputs may either be generic points in the plane, or constrained to lie on
one or two previously constructed objects. An L-move is a single use of any tool provided
in the game, including E-moves.

The additional tools provided by L-moves are:

• Perpendicular bisector, which takes as input two points A,B and draws their perpen-
dicular bisector,

• Perpendicular line, which takes as input a point A and line ℓ and draws the line passing
through A perpendicular to ℓ,

• Angle bisector, which takes as input three points A,B,C and draws the line passing
through B bisecting angle ∠ABC,

• Parallel line, which takes as input a point A and line ℓ and draws the line passing
through A parallel to ℓ, and

• Non-collapsing compass, which takes as input three points A,B,C and draws the circle
centered at C with radius AB.

Definition 4.1.2. An E- or L-construction C is a sequence of point or line/circle definitions.
Point definitions take in a list of 0, 1, or 2 existing line/circle objects, and define a (generic,
generic on an object, or determined) point that lies on those objects. Line/circle definitions
take in the inputs to an E- or L-move, respective to the construction type, and defines the
line or circle which is the output of that move.

Essentially, a construction is a sequence of moves assumed to be performed from an
empty plane, starting by defining generic points, and it encodes information on how each
move depends on previously-constructed objects. A construction’s cost in E- or L-moves
does not include point definitions.

2Since constructions use determined points, for the most part, Euclidea will highlight any non-determined
point red, to ensure that placing such a point was an intentional choice by the player.
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Now, we need to define the configuration that the player starts with, as well as the target
objects that the player is trying to construct. In Euclidea, the base configuration may need
to have certain geometric properties; for example, some levels may start the player with a
square, but no circles which would have been required to construct the square. Thus, we
cannot just define the base configuration as some construction, but must define it as a subset
of the constructed objects.

The easiest way to define target objects is in terms of a construction involving the base
configuration, especially since we would like to enforce that constructing target objects is
possible. One convenient solution, then, would be to have a single construction C, with
target objects and base configuration objects marked. To do this, we must ensure that the
target objects are constructible using only the base configuration. The following definitions
formalize this.

Definition 4.1.3. Define the dependency partial order ≺ on a construction C to be the
transitive completion of the following relation: if object Y is used as a direct input to
construct X in C, then Y ≺ X.3

In a construction, an object is determined by a set of previously-constructed objects if its
location depends only on those objects, and is determined uniquely by those objects.4 More
formally,

Definition 4.1.4. In a construction C, a set of objects T is determined from another set of
objects V if for all X ∈ T and all Y ⪯ X, either:

1. For some Z ∈ V , Y ⪯ Z ≺ X, or

2. Y was constructed after all elements of V , and for some Z ∈ V , Z ≺ Y .

The cost of constructing T from V is the total number of distinct line/circle objects Y which
are verified by this process and do not fall into case (1) above.

Essentially, the definition of “determined from” allows tracing the antecedents of T back
entirely to objects in V , to get a construction starting with objects in V and ending with all
objects in T . The cost is a formal way of counting the number of objects used to make this
construction, in the usual way. The condition that intermediate values must be constructed
after all elements of V is only added for ease of definition of the Euclidea problem, where we
must consider alternate constructions of the target objects.

Definition 4.1.5. A base configuration is a tuple B = (C,V), where C is an E-construction,
and V is a subset of the objects of C, to be marked visible. The objects not marked visible
are called hidden.

An E- or L-construction from B = (C,V) is any further sequence of E- or L-moves C+
such that the combination C + C+ is a valid construction, and where the set of all objects
defined in C+ is determined from V .

3We consider dependency to be a symbolic relation for constructions, and ignore edge cases where a
dependency may disappear due to geometric invariants.

4Up to a constant number of solutions.
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Finally, we define a Euclidea level and the Euclidea optimization problem for both E-
moves and L-moves:

Definition 4.1.6. Let a Euclidea level be a tuple L = (C,V , C+, T ), where B = (C,V) is a
base configuration, C+ is an E-construction from B, and T is a subset of the objects defined
in C+. T denotes the target objects of the level.

With these definitions, the Euclidea E- or L-move optimization problem is as follows.
Given a Euclidea level L = (C,V , C+, T ), a solution (C ′

+, T ′) is valid if:

1. C+ is an E- or L-construction from base configuration B = (C,V),

2. T ′ is a subset of the objects defined in C ′
+, and

3. There is a bijection between T and T ′ such that corresponding objects always have the
same mathematical position, regardless of the exact positions of any non-determined
point in C, C+, or C ′

+.

What is the minimum possible E- or L-move cost of constructing T from V?

4.2 Euclidea is APX-Hard

In this section, we prove that the E-move and L-move Euclidea optimization problems
are APX-hard.

In Section 4.2.1, we define our main reduction to show APX-hardness for the E-move
optimization problem. In Section 4.2.2, we then discuss issues with rigorously proving cor-
rectness of the previous reduction, and define a simpler one. We also note that this simplified
reduction shows APX-hardness for the L-move optimization problem, as well. Finally, in
Section 4.2.3, we briefly discuss the extent to which our assumptions generalize Euclidea.

4.2.1 E-Move APX-Hardness

In this section, we define an L-reduction5 from Cubic Max Vertex Cover, which is known
to be APX-complete [2]. In this reduction, we intentionally treat leniently the proof that
intended solutions to the reduced Euclidea instance are optimal. This issue, as well as a sim-
plified reduction that trades elegance and realism for rigor, will be presented in Section 4.2.2.

Max Vertex Cover is defined as follows. Given a graph G = (V,E), what is the smallest
subset V ′ ⊆ V of vertices such that every edge e ∈ E is incident to a vertex in V ′?

Cubic Max Vertex Cover is an input restriction on this problem, requiring that G is a
cubic graph.

Theorem 4.2.1. The Euclidea E-move optimization problem is APX-hard.
5Not related to L-moves in Euclidea; L-reductions were discussed primarily in Chapter 2.
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Proof. We show an L-reduction from Cubic Max Vertex Cover.
Suppose we have an input cubic graph G = (V,E) to Vertex Cover. The idea is to define

a reduced Euclidea instance which embeds G, where we can perform some moves to select a
set V ′ ⊆ V of vertices, which will save us some moves if V ′ is a vertex cover.

As a high-level overview, there are a few key elements necessary for this reduction to
work:

• An edge must be satisfied with being covered by either incident vertex,

• A vertex must cover all its edges in a constant number of moves,

• Bypassing Vertex Cover by covering an edge ViVj ∈ E manually must cost at least as
much as covering a vertex, and

• The length of the solution must increase linearly with the size of the vertex cover.

Now, we proceed with the reduction. First, we will embed G generically in the plane,
possibly with crossings; let (V = {V1, . . . , Vn}, E) be this embedding. Our goal will be to
construct the circumcenter of a triangle with base ViVj, for each edge ViVj ∈ E. Figure 4.1
indicates how the desired properties of the reduction will be satisfied—a circumcenter can
be constructed with any two perpendicular bisectors, and we will have enough freedom to
place the third vertex Pij of the triangles to satisfy the others.

The base configuration B = (C,V) is specified as follows:

• Embed G as (V,E) generically in the plane, as stated above. This can be done by
placing all vertices in V as generic points, and constructing lines ViVj for all ViVj ∈ E.

• For each vertex Vi, pick radius ri arbitrarily such that for all i, j, ri + rj > |ViVj|. For
all i, construct the circle Ci centered at Vi with radius ri.

• For all ViVj ∈ E, let Pij be one of the two intersections of Ci and Cj, chosen arbitrarily.
Construct the lines ViPij and VjPij.

• Finally, construct the perpendicular bisector of all ViVj ∈ E, (denoted L(Vi, Vj) in
Figure 4.1).

• At this point, the construction C is composed of the above operations. Mark the circles
Ci hidden, and let the visible objects V consist of all other objects.

The target object set T is the set of circumcenters Tij of triangles △ViVjPij, for all
ViVj ∈ E. It is trivial to find a sequence of moves C+ to specify them, by further constructing
the perpendicular bisectors of all edges ViPij. This completes the definition of the Euclidea
level.

Given a valid solution (C ′
+, T ′) to the Euclidea instance, we extract a vertex cover by

taking the set of vertices Vi where the circle Ci was drawn in the sequence C ′
+. If any
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Figure 4.1. Left: An edge ViVj can be covered by either of its vertices, since either
perpendicular bisector (dotted green) can construct the circumcenter. L(A,B) denotes the
perpendicular bisector of the line segment AB. Right: A single move at a vertex (C1

centered at V1) can cover all edges adjacent to the vertex, due to our construction.

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. A reduced Euclidea instance for input G = K4, in the L-reduction from Cubic
Max Vertex Cover to the Euclidea E-move optimization problem. The circles Ci (shown
dashed, light gray) are not included in the base configuration. The perpendicular bisectors
L(Vi, Vj) shown in Figure 4.1 are included in the base configuration, but are omitted here
for clarity.
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circumcenter Tij was constructed without drawing the corresponding Ci or Cj, add one of
Vi or Vj arbitrarily to the vertex cover.

Now, we demonstrate this construction is a valid L-reduction.
Given a valid vertex cover V ′ with |V ′| = k, we can draw Ci for all Vi ∈ V ′ in k moves, a

subset of the circles which were hidden in the base configuration. Then, for each edge ViVj,
assume without loss of generality that Vi ∈ V ′. We use two more moves per edge to construct
the perpendicular bisector L(Vi, Pij). This constructs all circumcenters Tij in k′ = 2|E| + k
E-moves, showing that OPTEuclidea ≤ 2|E|+OPTVertex Cover. Because G is cubic, one vertex
can cover at most three edges, so we have |E| ≤ 3OPTVertex Cover, and

OPTEuclidea ≤ O(OPTVertex Cover).

In the other direction, suppose we have a valid k′-move construction. One of Euclidea’s
levels constructs the circumcircle optimally in 3L 7E, which implies that two perpendicular
bisectors is the optimal way to construct the circumcenter [3]. One perpendicular bisector is
already given, so at least three E-moves must be used to construct any given circumcenter
Tij.

Now, we argue that the only way constructions of different circumcenters Tij can share
moves is via the circles Ci. Note that the triangle △ViVjPij only depends on the initial
settings of Vi, Vj, ri, rj. If we fix these values and can vary all other settings, any object with
a dependency on Vk for k ̸= i, j will vary as well.

Thus, what we wish to prove is that even if the set of dependencies of Tij contains objects
X ≺ Tij which depends on some other value besides {Vi, Vj, ri, rj}, it still requires at least
3 objects specific to i and j, at most one of which is Ci or Cj. This would allow us to
prove an upper bound on the size of a vertex cover generated from a valid solution to the
Euclidea instance—specifically, for a solution of length k′, the vertex cover would have size
k ≤ k′ − 2|E|.

The potential issue, in general, is that X may be the result of some expensive computation
which depends on no inputs, but assists in constructing Tij. Then, even if X could potentially
save just one move in constructing Tij, this translates to an O(n) benefit for a one-time cost.

We take as assumption that the construction of Tij should only depend on inputs related
to i and j, for the purposes of this proof, and defer discussion to Section 4.2.2.

In this chapter, we omit the detailed L-reduction calculations. If the above assertions
hold, then we can use the bound on the vertex cover size for the mapped solution to prove
that OPTEuclidea = 2|E|+ OPTVertex Cover, and

k − OPTVertex Cover = O(k′ − OPTEuclidea).

Under the above assumption, this completes the proof that the Euclidea E-move opti-
mization problem is APX-hard.
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4.2.2 Simplified E-Move Reduction and L-Move APX-Hardness

In this section, we mainly discuss difficulties in the reduction given in Section 4.2.1.
We then present a simplified reduction that circumvents these issues, and show that this
simplified reduction works for the L-move problem, as well.

The main issue with the reduction is that in our solution, we are not just constructing
a single circumcenter Tij. We are also constructing other circumcenters, or could even just
perform an independent, expensive computation that doesn’t depend on any input, and then
use these results to construct Tij faster. Even though we know that Tij only depends on
select inputs, it is difficult to even prove that the independent computation cannot assist in
constructing Tij in fewer moves than the optimal solution, if the independent computation’s
moves are free.

As alluded to earlier, we must prove this for the reduction to work, because we can effec-
tively treat an independent computation’s moves as cost 0. If a computation is independent
of any inputs and saves a move in constructing a circumcenter Tij, then by symmetry, it
saves a move for all circumcenters. One needs only to run this computation once, and then
they can reap the benefits by saving O(n) moves for a fixed cost.

Although we don’t have a perfect solution to this issue, we circumvent it by further
simplifying the reduction, at the cost of similarity to real Euclidea gameplay.

Simplified proof of Theorem 4.2.1. We modify the reduction for E-moves to simplify the con-
struction by designating Pij directly to be the target objects, instead of the circumcenters.6
Because Pij was only the intersection of two objects, Ci and Cj, we must then provide an
extra object passing through it, so that only one of Ci and Cj is needed. We must also
provide an additional arbitrary point Ri on Ci in the base construction, so that the player
can draw a circle of the correct radius.

The reduced problem is now as follows. Given an embedding (V = {V1, . . . , Vn}, E) of
graph G, and for each i, a point Ri of distance ri from Vi, construct the points Pij for all
ViVj ∈ E such that |ViPij| = ri.

Formally, the base configuration is specified as follows:

• Embed G as (V,E) generically in the plane, as before. This time, the edges ViVj don’t
need to be constructed.

• For each vertex Vi, pick radius ri arbitrarily such that for all i, j, ri + rj > |ViVj|.

• For all i, construct the circle Ci centered at Vi with radius ri. Construct Ri as a generic
point on Ci.

• For all ViVj ∈ E, let Pij, P
′
ij be the two intersections of Ci and Cj. Construct the line

PijP
′
ij.

• Mark the circles Ci and points Pij, P
′
ij hidden, and all other objects visible.

6Another very similar option embeds G = (V,E) by drawing each vertex as a generic line in the plane,
and the goal is to construct all line intersections corresponding to edges in E.
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The target objects are the Pij (one or both) for each ViVj ∈ E, and are already specified
by hidden objects in the base configuration.

In this case, the proof of correctness follows more easily than in the previous reduction.
This is mainly because all that is required to construct the target objects is to reinstate the
circles Ci corresponding to a vertex cover.

Specifically, because Pij is not already constructed, the cost of constructing it, relative
to the base configuration, must be at least 1 move. Consider the set of inputs this move
can depend on. Because Pij is sensitive to the inputs Vi, Vj, ri, rj, and no object in the base
configuration captures the entire dependency (not even the line PijP

′
ij, as ri and rj can change

together), the move constructing Pij must depend on a nonempty subset of {Vi, Vj, ri, rj}.
Now, given a solution to the Euclidea instance, we can extract a vertex cover as follows:

for each constructed Pij, add Vi if the move constructing it depended on Vi or ri, and
respectively for j. If the move depended on both, pick whichever of Vi or Vj has lower index.

This ensures that the vertex cover’s size is upper bounded by the number of distinct moves
used to construct all Pij. It is a valid vertex cover, since each Pij corresponds to an edge, and
adds either Vi or Vj to the vertex cover. This allows us to finish the L-reduction as before.

Finally, we address the L-move optimization problem, using the above reduction.

Theorem 4.2.2. The Euclidea L-move optimization problem is APX-hard.

Proof. We note that the above simplified L-reduction works equivalently if we replace E-
moves with L-moves.

4.2.3 Generalizing Assumptions

In this section, we briefly discuss the worry that we may be overgeneralizing Euclidea, for
the sake of proving hardness.

One interesting dimension we can judge the previous reductions on is how much they feel
like real geometric constructions, or how in the spirit of Euclidea they feel. It turns out that
although our definition of Euclidea feels like a generalization, closer inspection reveals that
the original game shares some of these idiosyncrasies as well.

One salient difference is the construction of many target objects, whereas Euclidea mostly
provides a single object or polygon as a goal. In the way we’ve defined the problem, however,
it’s difficult to draw a distinction between a set of objects forming a polygon from other
arbitrary sets of objects. In addition, some levels ask to construct multiple segments outside
the context of polygons.7

Another major seemingly-artificial step was the hidden objects in the base configuration—
without the circles Ci, it seems unnatural to promise that all segments ViPij are equal
for a given i. However, as previously discussed, Euclidea has many levels where the base
configuration is a square, or other polygon. Under our definition, there must have been

7See Euclidea 3.4 “Three equal segments - 1”, or Euclidea 7.5 “Heron’s Problem”.
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Figure 4.3. A reduced Euclidea instance for input G = K4, in the simplified L-reduction
from Cubic Max Vertex Cover to the Euclidea E- or L-move optimization problem. The
target objects are the circled points Pij. Lines passing through Pij are given in the base
configuration so that only one of Ci or Cj needs to be drawn to construct the point. Points
Ri are included to ensure that any Ci can be drawn in a single move. In this reduction, not
only the circles Ci (shown dashed, light gray) but also the edges ViVj (shown dotted, blue)
are not included in the base configuration.
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some hidden objects aiding the construction of the square, as well. Under this lens, the base
configurations used in the reductions aren’t actually as different from usual as one might
expect.

4.3 In Search of a Complexity Upper Bound

In this section, we describe some of the challenges that plagued attempts to upper bound
the complexity of Euclidea, and show that verifying a construction is in BPP if and only if
deciding equality of constructible numbers is.

Let us begin by considering the obvious certificate to the Euclidea optimization problem:
a valid construction of the target objects with length at most k. This certificate’s size is
certainly polynomial in the input size, since at least k moves were taken to construct (and
thus define) the target objects. However, verifying the certificate amounts to checking that
the constructed objects and target objects are identical, which is not obviously in P for two
reasons:

• The equality between objects must hold regardless of the positions of generic points
in the construction. This means that verification is more like comparing equality of
functions than of values.

• This function is not necessarily polynomial either (see Figure 4.4)—it can be repre-
sented by an arithmetic circuit using the operations +,−,×, /,

√
· . In other words,

the function returns constructible numbers as long as the inputs are themselves con-
structible.

Given this, it seems natural to aim for placing certificate verification in BPP, which
would place Euclidea in Merlin-Arthur. This is a natural choice because Polynomial Identity
Testing is one of the remaining problems known to be in BPP but not known to be in P. It
seems intuitive, as well, that one should be able to verify constructions with bounded error
probability.

However, when putting the above issues together, it becomes difficult to even place con-
struction verification in BPP. Instead, we will present a sketch of a proof that verifying
constructions lies in BPP if and only if equality of constructible numbers is in BPP. The
latter is, to our knowledge, still an open problem.8

First, it’s well-known that given a segment of length 1, it’s possible to construct a segment
of length x for any constructible number x (which is where the name comes from). Thus,
verifying constructions in BPP trivially implies comparing constructible numbers in BPP.

Now, suppose we have an algorithm for comparing constructible numbers in BPP. Then,
let the inputs x1, . . . , xm represent the construction’s degrees of freedom, and consider the
minimal polynomial describing an output value x. It has up to exponential degree, and
its coefficients may be up to exponential-degree polynomials in the construction’s inputs.

8A special case of this, sums of radicals, was shown to be in BPP by [4].
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Figure 4.4. Illustration of the system of equations arising from two intersecting circles.
When solving for (x, y) in terms of inputs, the expression will contain square roots. It’s
also possible to set x or y equal to a polynomial of exponential degree, or have them be
roots of a polynomial of exponential degree.

Suppose now that we only allow the input to vary along one degree of freedom xi, so the
minimal polynomial reduces to a plane curve p(x, xi) = 0 of exponential degree d. Consider
the analogous plane curve for the target object corresponding to x, p′(x, xi) = 0 of degree
d′. By Bézout’s theorem, these two curves must either be identical, or intersect in no more
than dd′ points. Assuming the degrees are bounded above by 2n, the number of intersection
points is ≤ 22n.

To verify a construction, begin by fixing the input x1, . . . , xm except for one particular
xi. Use O(n) bits of randomness to pick a random value of xi from |S| ≫ 22n options.
Evaluate the constructed objects and target objects as constructible numbers, and use the
BPP algorithm to compare them with bounded error probability. There is an additional
possibility of error if the constructed and target objects actually happen to be equal for
this choice of xi. However, this happens with bounded error as well, because it corresponds
to hitting an intersection point between the plane curves, which happens with probability
≤ 22n/|S| ≪ 1.
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