Paper by Erik D. Demaine
- Reference:
- Greg Aloupis, Erik D. Demaine, Henk Meijer, Joseph O'Rourke, Ileana Streinu, and Godfried Toussaint, “Flat-State Connectivity of Chains with Fixed Acute Angles”, in Proceedings of the 14th Canadian Conference on Computational Geometry (CCCG 2002), Lethbridge, Alberta, Canada, August 12–14, 2002, pages 27–30.
- Abstract:
-
We prove that two classes of fixed-angle, open chains with acute angles are
“flat-state connected.” A chain is flat-state connected if
it can be reconfigured between any two of its planar realizations without
self-crossing. In a companion paper (under preparation) [ADD+],
several fixed-angle linkages will be proved flat-state connected or
disconnected. In particular, all orthogonal or obtuse-angle open chains are
flat-state connected. But it remains open whether this holds for acute-angle
open chains. In this paper, we prove that two classes of such chains are
indeed flat-state connected: those with equal acute angles, and those with
equal edge lengths and angles in (60°, 90°].
- Comments:
- This paper is also available from the electronic proceedings as http://www.cs.uleth.ca/~wismath/cccg/papers/16.ps.
- Length:
- The paper is 4 pages.
- Availability:
- The paper is available in PostScript (1005k), gzipped PostScript (303k), and PDF (129k).
- See information on file formats.
- [Google Scholar search]
- Related papers:
- Flat2Flat_ISAAC2002 (Flat-State Connectivity of Linkages under Dihedral Motions)
See also other papers by Erik Demaine.
These pages are generated automagically from a
BibTeX file.
Last updated December 28, 2024 by
Erik Demaine.