Paper by Erik D. Demaine
- Reference:
- Piotr Berman, Erik D. Demaine, and Morteza Zadimoghaddam, “O(1)-Approximations for Maximum Movement Problems”, in Proceedings of the 14th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2011), Princeton, New Jersey, August 17–19, 2011, pages 62–74.
- Abstract:
-
We develop constant-factor approximation algorithms for minimizing the maximum
movement made by pebbles on a graph to reach a configuration in which the
pebbles form a connected subgraph (connectivity), or interconnect a constant
number of stationary nodes (Steiner tree). These problems model the
minimization of the total time required to reconfigure a robot swarm to
achieve a proximity (e.g., radio) network with these connectivity properties.
Our approximation factors are tight up to constant factors, as none of these
problems admit a (2 − ε)-approximation assuming
P ≠ NP.
- Comments:
- This paper is also available from SpringerLink.
- Length:
- The paper is 12 pages.
- Availability:
- The paper is available in PDF (276k).
- See information on file formats.
- [Google Scholar search]
See also other papers by Erik Demaine.
These pages are generated automagically from a
BibTeX file.
Last updated November 12, 2024 by
Erik Demaine.