In this paper, we present two approaches to the kinematic and dynamic modeling of folding origami structures. The first approach deals with the kinematics of unfolding single-vertex origami. This work is based on research conducted in the origami mathematics community, which is making rapid progress in understanding the geometry of origami and folding in general [3]. First, a unit positive “charge” is assigned to the creases of the structure in its folded state. Thus, each configuration of the structure as it unfolds can be assigned a value of electrostatic (Coulomb) energy. Because of repulsion between the positive charges, the structure will unfold if allowed to decrease its energy. If the energy minimization can be carried out all the way to the completely unfolded state, we are simultaneously guaranteed of the absense of collisions for the determined path.
The second method deals with dynamic modeling of folding multi-segment (accordion style) origamis. The actuation method for folding the segments uses a thin, stressed metal layer that is deposited as a hinge on a relatively stress free structural layer. Through the use of robotics routines, the hinges are modeled as revolute joints, and the system dynamics are calculated.