Paper by Erik D. Demaine
- Reference:
- Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro, “Adaptive Set Intersections, Unions, and Differences”, in Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), San Francisco, California, January 9–11, 2000, pages 743–752.
- Abstract:
-
Motivated by boolean queries in text database systems, we consider the problems
of finding the intersection, union, or difference of a collection of sorted
sets. While the worst-case complexity of these problems is straightforward, we
consider a notion of complexity that depends on the particular instance. We
develop the idea of a proof that a given set is indeed the correct
answer. Proofs, and in particular shortest proofs, are characterized. We
present adaptive algorithms that make no a priori assumptions about the problem
instance, and show that their running times are within a constant factor of
optimal with respect to a natural measure of the difficulty of an instance. In
the process, we develop a framework for designing and evaluating adaptive
algorithms in the comparison model.
- Length:
- The paper is 10 pages and the talk is 20 minutes.
- Availability:
- The paper is available in PostScript (222k) and gzipped PostScript (86k).
- See information on file formats.
- [Google Scholar search]
- Related papers:
- ALENEX2001 (Experiments on Adaptive Set Intersections for Text Retrieval Systems)
See also other papers by Erik Demaine.
These pages are generated automagically from a
BibTeX file.
Last updated July 23, 2024 by
Erik Demaine.