Paper by Erik D. Demaine
- Reference:
- Erik D. Demaine, Martin L. Demaine, John Iacono, and Stefan Langerman, “Wrapping Spheres with Flat Paper”, Computational Geometry: Theory and Applications, volume 42, number 8, 2009, pages 748–757. Special issue of selected papers from the 20th European Workshop on Computational Geometry, 2007.
- Abstract:
-
We study wrappings of smooth (convex) surfaces by a flat piece of paper or
foil. Such wrappings differ from standard mathematical origami because they
require infinitely many infinitesimally small folds (“crumpling”)
in order to transform the flat sheet into a surface of nonzero curvature. Our
goal is to find shapes that wrap a given surface, have small area and small
perimeter (for efficient material usage), and tile the plane (for efficient
mass production). Our results focus on the case of wrapping a sphere. We
characterize the smallest square that wraps the unit sphere, show that a 0.1%
smaller equilateral triangle suffices, and find a 20% smaller shape contained
in the equilateral triangle that still tiles the plane and has small
perimeter.
- Comments:
- This paper is also available from ScienceDirect.
- Length:
- The paper is 14 pages.
- Availability:
- The paper is available in gzipped PostScript (5289k) and PDF (508k).
- See information on file formats.
- [Google Scholar search]
- Related papers:
- SphereWrapping_EuroCG2007 (Wrapping the Mozartkugel)
See also other papers by Erik Demaine.
These pages are generated automagically from a
BibTeX file.
Last updated December 28, 2024 by
Erik Demaine.