Paper by Erik D. Demaine
- Reference:
- Glencora Borradaile, Erik D. Demaine, and Siamak Tazari, “Polynomial-Time Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs”, in Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), Freiburg, Germany, February 26–28, 2009, pages 171–182.
- Abstract:
-
We present the first polynomial-time approximation schemes (PTASes) for the
following subset-connectivity problems in edge-weighted graphs of bounded
genus: Steiner tree, low-connectivity survivable-network design, and subset
TSP. The schemes run in O(n log n) time for
graphs embedded on both orientable and non-orientable surfaces. This work
generalizes the PTAS frameworks of Borradaile, Klein, and Mathieu [BMK07,
Kle06] from planar graphs to bounded-genus graphs: any future problems shown
to admit the required structure theorem for planar graphs will similarly
extend to bounded-genus graphs.
- Copyright:
- Copyright held by the authors. Licensed under the Creative Commons Attribution-No Derivative Works 3.0 license.
- Availability:
- The paper is available in PostScript (1764k), gzipped PostScript (256k), and PDF (271k).
- See information on file formats.
- [Google Scholar search]
- Related papers:
- SteinerGenus_Algorithmica (Polynomial-Time Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs)
See also other papers by Erik Demaine.
These pages are generated automagically from a
BibTeX file.
Last updated July 23, 2024 by
Erik Demaine.