Paper by Erik D. Demaine

Reference:
Oswin Aichholzer, Erik Demaine, Matias Korman, Anna Lubiw, Jayson Lynch, Zuzana Masarova, Mikhail Rudoy, Virginia Vassilevska Williams, and Nicole Wein, “Hardness of Token Swapping on Trees”, in Proceedings of the 30th Annual European Symposium on Algorithms (ESA 2022), LIPIcs, Potsdam, Germany, September 5–7, 2022, 33:1–33:15.

Abstract:
Given a graph where every vertex has exactly one labeled token, how can we most quickly execute a given permutation on the tokens? In (sequential) token swapping, the goal is to use the shortest possible sequence of swaps, each of which exchanges the tokens at the two endpoints of an edge of the graph. In parallel token swapping, the goal is to use the fewest rounds, each of which consists of one or more swaps on the edges of a matching. We prove that both of these problems remain NP-hard when the graph is restricted to be a tree.

These token swapping problems have been studied by disparate groups of researchers in discrete mathematics, theoretical computer science, robot motion planning, game theory, and engineering. Previous work establishes NP-completeness on general graphs (for both problems), constant-factor approximation algorithms, and some poly-time exact algorithms for simple graph classes such as cliques, stars, paths, and cycles. Sequential and parallel token swapping on trees were first studied over thirty years ago (as “sorting with a transposition tree”) and over twenty-five years ago (as “routing permutations via matchings”), yet their complexities were previously unknown.

We also show limitations on approximation of sequential token swapping on trees: we identify a broad class of algorithms that encompass all three known polynomial-time algorithms that achieve the best known approximation factor (which is 2) and show that no such algorithm can achieve an approximation factor less than 2.

Comments:
This paper is also available from LIPIcs.

The full paper is available as arXiv:2103.06707.

Availability:
The paper is available in PDF (1122k).
See information on file formats.
[Google Scholar search]


See also other papers by Erik Demaine.
These pages are generated automagically from a BibTeX file.
Last updated July 29, 2022 by Erik Demaine.