Paper by Erik D. Demaine

Reference:
Erik D. Demaine, Jason S. Ku, and Madonna Yoder, “Efficient Foldings of Triangular and Hexagonal Mazes”, in Origami7: Proceedings of the 7th International Meeting on Origami in Science, Mathematics and Education (OSME 2018), volume 2, Oxford, England, September 5–7, 2018, pages 647–652, Tarquin.

Abstract:
We present algorithms to fold a convex sheet of paper into a maze formed by extruding from a floor, a subset of edges from either a regular triangular or hexagonal grid. The algorithm provides constructions which are efficient, seamless, and watertight.

Length:
The paper is 6 pages.

Availability:
The paper is available in PDF (415k).
See information on file formats.
[Google Scholar search]


See also other papers by Erik Demaine.
These pages are generated automagically from a BibTeX file.
Last updated November 12, 2024 by Erik Demaine.