Paper by Erik D. Demaine
- Reference:
- Erik D. Demaine and Stefan Langerman, “Optimizing a 2D Function Satisfying Unimodality Properties”, in Proceedings of the 13th Annual European Symposium on Algorithms (ESA 2005), Lecture Notes in Computer Science, volume 3669, Mallorca, Spain, October 3–6, 2005, pages 887–898.
- Abstract:
-
The number of probes needed by the best possible algorithm for locally or
globally optimizing a bivariate function varies substantially depending on
the assumptions made about the function. We consider a wide variety of
assumptions—in particular, global unimodality, unimodality of rows and/or
columns, and total unimodality—and prove tight or nearly tight upper and
lower bounds in all cases. Our results include both nontrivial optimization
algorithms and nontrivial adversary arguments depending on the scenario.
- Comments:
- This paper is also available from SpringerLink.
- Copyright:
- Copyright held by the authors.
- Length:
- The paper is 12 pages.
- Availability:
- The paper is available in PostScript (388k), gzipped PostScript (151k), and PDF (202k).
- See information on file formats.
- [Google Scholar search]
- Related papers:
- UnimodalOptimization_EuroCG2004 (Optimizing a 2D Function Satisfying Unimodality Properties)
See also other papers by Erik Demaine.
These pages are generated automagically from a
BibTeX file.
Last updated November 12, 2024 by
Erik Demaine.