Paper by Erik D. Demaine
- Reference:
- Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and Joseph O'Rourke, “Vertex-Unfolding of Simplicial Manifolds”, in Proceedings of the 18th Annual ACM Symposium on Computational Geometry (SoCG 2002), Barcelona, Spain, June 5–7, 2002, pages 237–243.
- Abstract:
-
We present an algorithm to unfold any triangulated 2-manifold (in particular,
any simplicial polyhedron) into a non-overlapping, connected planar layout in
linear time. The manifold is cut only along its edges. The resulting layout
is connected, but it may have a disconnected interior; the triangles are
connected at vertices, but not necessarily joined along edges. We extend our
algorithm to establish a similar result for simplicial manifolds of arbitrary
dimension.
- Length:
- The paper is 7 pages.
- Availability:
- The paper is available in PostScript (751k), gzipped PostScript (256k), and PDF (176k).
- See information on file formats.
- [Google Scholar search]
- Related papers:
- VertexUnfolding2 (Vertex-Unfoldings of Simplicial Manifolds)
See also other papers by Erik Demaine.
These pages are generated automagically from a
BibTeX file.
Last updated November 27, 2024 by
Erik Demaine.