Paper by Erik D. Demaine

Reference:
Erik D. Demaine, David Eppstein, Jeff Erickson, George W. Hart, and Joseph O'Rourke, “Vertex-Unfolding of Simplicial Manifolds”, in Proceedings of the 18th Annual ACM Symposium on Computational Geometry (SoCG 2002), Barcelona, Spain, June 5–7, 2002, pages 237–243.

Abstract:
We present an algorithm to unfold any triangulated 2-manifold (in particular, any simplicial polyhedron) into a non-overlapping, connected planar layout in linear time. The manifold is cut only along its edges. The resulting layout is connected, but it may have a disconnected interior; the triangles are connected at vertices, but not necessarily joined along edges. We extend our algorithm to establish a similar result for simplicial manifolds of arbitrary dimension.

Length:
The paper is 7 pages.

Availability:
The paper is available in PostScript (751k), gzipped PostScript (256k), and PDF (176k).
See information on file formats.
[Google Scholar search]

Related papers:
VertexUnfolding2 (Vertex-Unfoldings of Simplicial Manifolds)


See also other papers by Erik Demaine.
These pages are generated automagically from a BibTeX file.
Last updated July 23, 2024 by Erik Demaine.