Paper by Erik D. Demaine

Reference:
Sachio Teramoto, Erik Demaine, and Ryuhei Uehara, “Voronoi game on graphs and its complexity”, Journal of Graph Algorithms and Applications, volume 15, number 4, 2011, pages 485–501.

Abstract:
The Voronoi game is a two-person game which is a model for a competitive facility location. The game is played on a continuous domain, and only two special cases (one-dimensional case and one-round case) are well investigated. We introduce the discrete Voronoi game in which the game arena is given as a graph. We first analyze the game when the arena is a large complete k-ary tree, and give an optimal strategy. When both players play optimally, the first player wins when k is odd, and the game ends in a tie for even k. Next we show that the discrete Voronoi game is intractable in general. Even for the one-round case in which the strategy adopted by the first player consist of a fixed single node, deciding whether the second player can win is NP-complete. We also show that deciding whether the second player can win is PSPACE-complete in general.

Comments:
This paper is also available from JGAA.

Availability:
The paper is available in PDF (242k).
See information on file formats.
[Google Scholar search]

Related papers:
VoronoiGame_CIG2006 (Voronoi game on graphs and its complexity)


See also other papers by Erik Demaine.
These pages are generated automagically from a BibTeX file.
Last updated July 23, 2024 by Erik Demaine.